WO2022006895A1 - 电池及其相关装置、制备方法和制备设备 - Google Patents

电池及其相关装置、制备方法和制备设备 Download PDF

Info

Publication number
WO2022006895A1
WO2022006895A1 PCT/CN2020/101440 CN2020101440W WO2022006895A1 WO 2022006895 A1 WO2022006895 A1 WO 2022006895A1 CN 2020101440 W CN2020101440 W CN 2020101440W WO 2022006895 A1 WO2022006895 A1 WO 2022006895A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
thermal management
pressure relief
wall
relief mechanism
Prior art date
Application number
PCT/CN2020/101440
Other languages
English (en)
French (fr)
Inventor
曾毓群
姚鹏程
曾智敏
吴凯
陈兴地
王鹏
陈小波
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20803067.6A priority Critical patent/EP3965213B1/en
Priority to CN202080005840.0A priority patent/CN114175363B/zh
Priority to PCT/CN2020/101440 priority patent/WO2022006895A1/zh
Priority to KR1020227018654A priority patent/KR20220095224A/ko
Priority to JP2022534435A priority patent/JP7419533B2/ja
Priority to US17/123,092 priority patent/US11955654B2/en
Publication of WO2022006895A1 publication Critical patent/WO2022006895A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/618Pressure control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of batteries, and in particular, to a battery and its related device, preparation method and preparation equipment.
  • Chemical cells, electrochemical cells, electrochemical cells or electrochemical cells refer to a type of device that converts the chemical energy of positive and negative active materials into electrical energy through redox reactions. Different from ordinary redox reactions, the oxidation and reduction reactions are carried out separately, the oxidation is at the negative electrode, the reduction is at the positive electrode, and the gain and loss of electrons are carried out through an external circuit, so a current is formed. This is an essential feature of all batteries. After long-term research and development, chemical batteries have ushered in a wide variety of applications. Huge installations as large as a building can hold, as small as millimeters of type. The development of modern electronic technology has put forward high requirements for chemical batteries. Every breakthrough in chemical battery technology has brought about a revolutionary development of electronic devices. Many electrochemical scientists in the world have concentrated their research and development interests in the field of chemical batteries used as power for electric vehicles.
  • lithium-ion battery As a kind of chemical battery, lithium-ion battery has the advantages of small size, high energy density, high power density, many cycles of use and long storage time. It has been used in some electronic equipment, electric vehicles, electric toys and electric equipment. Widely used, for example, lithium-ion batteries are currently widely used in mobile phones, notebook computers, battery cars, electric vehicles, electric planes, electric ships, electric toy cars, electric toy ships, electric toy planes and electric tools, and so on.
  • lithium-ion batteries With the continuous development of lithium-ion battery technology, higher requirements are placed on the performance of lithium-ion batteries. It is hoped that lithium-ion batteries can consider various design factors at the same time, and the safety performance of lithium-ion batteries is particularly important.
  • the present application proposes a battery and its related device, preparation method and preparation equipment, so as to improve the safety performance and compactness of the battery.
  • a battery comprising: a battery cell, the battery cell comprising a pressure relief mechanism and at least two walls, the at least two walls comprising intersecting first walls and a second wall, the pressure relief mechanism is provided on the first wall, the pressure relief mechanism is used to actuate to relieve the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold value; heat a management member attached to the first wall, the thermal management member for containing fluid to regulate the temperature of the battery cells; and a support member attached to the second wall for supporting the A battery cell; wherein the thermal management component is configured to allow exhaust from within the battery cell to pass through the thermal management component when the pressure relief mechanism is actuated.
  • the support member is connected to the thermal management member and the pressure relief member.
  • the mechanisms will be arranged on two intersecting walls in the battery cell, which will provide flexibility in the space occupied by the battery that is not available in the prior art.
  • the required space occupied by the pressure relief mechanism and thermal management components and support components will be distributed in two different dimensions or directions. This can help improve space utilization, such as a battery suitable for placement in a vehicle, thereby helping to improve the compactness of the battery structure and improve the energy density of the battery in the vehicle.
  • this design also helps to utilize the timely internal pressure relief to improve the safety of the battery.
  • the battery cell further includes: a case, the case including a accommodating cavity formed by a bottom wall and a side wall and an opening capable of approaching the accommodating cavity; a cover plate, the cover plate suitable for for closing the opening; wherein the first wall comprises at least one of the cover plate or the side wall, and the second wall is the bottom wall.
  • the design of the battery cell with the housing with the opening accommodating cavity and the cover plate suitable for closing the opening facilitates the installation or removal of the battery cell, helps to reduce the maintenance cost, and helps to provide the Arrangement with some flexibility.
  • the battery further includes a case including a cover and a case, the case and the cover together form an electrical cavity for accommodating the battery cells, wherein , the support member is a part of the casing or is arranged inside the casing.
  • the case and cover can provide space for accommodating a plurality of battery cells and provide reliable protection for the battery cells.
  • the box further includes a beam extending between the cover and the box disposed opposite each other, and the thermal management component is disposed between the beam and the first wall between.
  • the thermal management member and the support member are formed as a unitary construction. Such an integrally constructed support member and thermal management member can contribute to improving the structural strength of the battery.
  • the thermal management component is provided with a through hole configured to allow the exhaust from within the battery cell to pass through the thermal management component.
  • a through hole configured to allow the exhaust from within the battery cell to pass through the thermal management component.
  • the thermal management component is configured to be disruptable by the emissions from within the battery cells such that the emissions from within the battery cells can pass through the heat Manage widgets.
  • the thermal management component is configured to be disruptable by the exhaust from within the battery cells such that the fluid flows from the interior of the thermal management component. This arrangement enables the high-temperature and high-pressure emissions from the battery cells to be effectively cooled or otherwise regulated in an appropriate manner as early as possible, thereby helping to improve the safety performance of the battery.
  • the thermal management component further includes a relief structure configured to provide a space to allow actuation of the pressure relief mechanism, wherein the thermal management component is attached to the battery cell body to form an escape cavity between the escape structure and the pressure relief mechanism. Setting the avoidance structure can ensure that the pressure relief mechanism can be effectively actuated.
  • the escape cavity can provide a buffer space for the discharge of the battery cell, thereby reducing the impact force of the discharge of the battery cell on the outside, and further improving the safety performance of the battery.
  • the shelter structure includes a shelter bottom wall and a shelter side wall surrounding the shelter cavity, the shelter bottom wall being configured to be broken upon actuation of the pressure relief mechanism to allow the venting objects pass through the thermal management components.
  • the escape bottom wall includes a partial relief mechanism configured to be actuated when the pressure relief mechanism is actuated to allow at least emissions from the battery cells Exhaust through the thermal management component.
  • a partial relief mechanism configured to be actuated when the pressure relief mechanism is actuated to allow at least emissions from the battery cells Exhaust through the thermal management component.
  • the escape side wall is at a predetermined angle relative to the escape bottom wall, and the predetermined angle is between 105° and 175°.
  • a shelter structure arranged in this manner is easier to manufacture and also helps to promote the destruction of the shelter side walls by emissions from the battery cells so that the fluid can flow out faster to help cool the emissions, thereby increasing the safety of the battery performance.
  • the escape sidewall is configured to be broken upon actuation of the pressure relief mechanism, thereby allowing the fluid to flow out.
  • the battery further includes a collection chamber disposed on the other side of the thermal management component relative to the pressure relief mechanism and configured to be activated upon actuation of the pressure relief mechanism Collect the emissions.
  • the arrangement of the collection cavity can provide further buffering of the discharge to further reduce the impact force of the discharge, in addition, the collection cavity also helps to reduce the risk of secondary damage that the discharge may cause to external components or structures.
  • the beam has a hollow space that constitutes the collection cavity. This arrangement can further improve space utilization.
  • the support member further includes an additional collection cavity that is in operative communication with the collection cavity at a lower portion or bottom of the collection cavity.
  • the arrangement of the additional collection chamber can provide further cushioning for the discharge to further reduce the impact of the discharge and provide more space for temporarily containing the discharge before it is expelled out of the battery.
  • a flow guide structure is provided in the collection cavity, and the flow guide structure is configured to facilitate guiding the discharge to a predetermined location. This arrangement will facilitate more efficient directing of emissions to the additional collection chamber as quickly as possible, or to discharge the emissions more safely out of the battery via the additional collection chamber, so as to avoid the accumulation of emissions in the collection chamber causing other Security Risk.
  • the fluid is a cooling medium
  • the thermal management component is configured to accommodate the cooling medium to cool the battery cells. Using the cooling medium to cool the battery cells can make the battery cells in a lower temperature and safer working state, which helps to improve the safety performance of the battery.
  • an apparatus is provided.
  • the device includes the battery described in the first aspect above, and the battery is used to provide electrical energy to the device.
  • a method of manufacturing a battery comprising: providing a plurality of battery cells, at least one battery cell of the plurality of battery cells comprising: at least two walls, The at least two walls include a first wall and a second wall arranged to intersect; and a pressure relief mechanism, the pressure relief mechanism is arranged on the first wall, and the pressure relief mechanism is used in the battery cell.
  • thermal management member for containing a fluid to regulating the temperature of the battery cells, and being configured to allow exhaust from within the battery cells to pass through the thermal management member when the pressure relief mechanism is actuated; and providing a support member and placing all the The support member is attached to the second wall to support the battery cell.
  • the method further includes: providing a case including a cover and a case, the case and the cover together enclosing an electrical cavity for accommodating the battery cells ; and the supporting member is provided inside the casing, or a part of the casing is used as the supporting member.
  • the box further includes a beam extending between the cover and the box disposed opposite each other; and providing the thermal management component includes arranging the thermal management component at between the beam and the first wall.
  • an apparatus for preparing a battery comprising: a battery cell preparation module for preparing a plurality of battery cells, at least one battery cell in the plurality of battery cells It includes a pressure relief mechanism and at least two walls, the at least two walls include a first wall and a second wall that are arranged to intersect, the pressure relief mechanism is arranged on the first wall, and the pressure relief mechanism is used in the actuation to release the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold value; a thermal management component preparation module for preparing a thermal management component for containing fluid to regulate the battery cell temperature of the body, and is configured such that when the pressure relief mechanism is actuated, the exhaust discharged from the battery cells passes through the thermal management member; a support member preparation module is used to prepare a support member, the support member components for supporting the battery cells; and an assembly module for attaching the thermal management component to the first wall and attaching the support component to the second wall.
  • FIG. 1 shows a schematic structural diagram of some embodiments of a vehicle using the battery of the present application
  • FIG. 2 shows an exploded view of a battery cell in a standing position according to some embodiments of the present application
  • FIG. 3 shows a perspective view of a battery cell lying flat according to some embodiments of the present application
  • FIG. 4 shows a flat three-dimensional view of the battery cell shown in FIG. 3 viewed from another angle;
  • FIG. 5 shows an exploded view of the battery cell shown in FIG. 4;
  • FIG. 6 shows an exploded view of a battery according to some embodiments of the present application.
  • Figure 7 shows a cross-sectional view of the battery shown in Figure 6;
  • FIG. 8 shows a partial enlarged cross-sectional view of part A of FIG. 7, which shows an exemplary avoidance structure formed on the thermal management component;
  • FIG. 9 illustrates a perspective view of a case portion of a case of a battery according to some embodiments of the present application.
  • FIG. 10 shows a perspective view of a casing portion of a casing of a battery according to other embodiments of the present application.
  • Figure 11 shows a top view of a thermal management component according to some embodiments of the present application.
  • Figure 12 shows a bottom view of the thermal management component shown in Figure 11;
  • Figure 13 shows an A-A cross-sectional view of the thermal management component shown in Figure 11;
  • Figure 14 shows an exploded view of the thermal management component shown in Figure 11;
  • FIG. 15 shows a schematic flowchart of some embodiments of the method for preparing a battery of the present application
  • FIG. 16 shows a schematic structural diagram of some embodiments of the apparatus for preparing a battery of the present application.
  • the batteries mentioned in the art can be divided into disposable batteries and rechargeable batteries according to whether they are rechargeable.
  • Primary batteries are commonly known as “disposable” batteries and primary batteries, because after their power is exhausted, they cannot be recharged and can only be discarded.
  • Rechargeable batteries are also called secondary batteries or secondary batteries and accumulators.
  • the material and process of rechargeable batteries are different from those of disposable batteries. The advantage is that they can be recycled many times after charging, and the output current load capacity of rechargeable batteries is higher than that of most disposable batteries.
  • Common types of rechargeable batteries are: lead-acid batteries, nickel-metal hydride batteries and lithium-ion batteries.
  • Lithium-ion batteries have the advantages of light weight, large capacity (1.5 times to 2 times the capacity of nickel-hydrogen batteries of the same weight), no memory effect, etc., and have a very low self-discharge rate, so even if the price is relatively high, it is still available. universal application. Lithium-ion batteries are also used in pure electric vehicles and hybrid vehicles. Lithium-ion batteries used for this purpose have relatively low capacity, but have larger output, charging current, and some have longer lifespan, but the cost is higher .
  • the batteries described in the embodiments of the present application refer to rechargeable batteries.
  • the embodiments disclosed in the present application will be described mainly by taking a lithium-ion battery as an example. It should be understood that the embodiments disclosed herein are applicable to any other suitable type of rechargeable battery.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery package etc.
  • the batteries mentioned in the embodiments disclosed in this application can be directly or indirectly applied to a suitable device to power the device.
  • battery cells can be divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft pack battery cells. The following will mainly focus on the prismatic battery cells. It should be understood that the embodiments described hereinafter are also applicable in at least some respects to cylindrical or pouch cells.
  • the application of batteries includes three levels: battery cells, battery modules and battery packs.
  • the battery module is formed by electrically connecting a certain number of battery cells together and putting them into a frame in order to protect the battery cells from external shock, heat, vibration, etc.
  • the battery pack is the final state of the battery system loaded into an electric vehicle.
  • Most current battery packs are made by assembling various control and protection systems such as a battery management system (BMS), thermal management components, etc. on one or more battery modules.
  • BMS battery management system
  • thermal management components etc.
  • the layer of the battery module can be omitted, that is, the battery pack can be formed directly from the battery cells. This improvement enables the battery system to significantly reduce the number of components while increasing the weight energy density and volumetric energy density.
  • the batteries referred to in this application include battery modules or battery packs.
  • Lithium-ion battery cells mainly rely on the movement of lithium ions between the positive pole piece and the negative pole piece to work.
  • Lithium-ion cells use an intercalated lithium compound as an electrode material.
  • the common cathode materials used for lithium-ion batteries are: lithium cobalt oxide (LiCoO2), lithium manganate (LiMn2O4), lithium nickelate (LiNiO2) and lithium iron phosphate (LiFePO4).
  • a separator is arranged between the positive pole piece and the negative pole piece to form a thin film structure with three layers of materials.
  • the thin film structure is generally formed into an electrode assembly of a desired shape by winding or stacking.
  • a three-layer material thin film structure in a cylindrical battery cell is rolled into a cylindrical shaped electrode assembly, while a thin film structure in a prismatic battery cell is rolled or stacked into an electrode assembly having a generally rectangular parallelepiped shape.
  • the main safety hazard comes from the charging and discharging process, and also requires a suitable ambient temperature design.
  • the protection measures include at least switch elements, selection of appropriate isolation diaphragm materials and pressure relief mechanisms.
  • the switching element refers to an element that can stop the charging or discharging of the battery when the temperature or resistance in the battery cell reaches a certain threshold.
  • the separator is used to separate the positive pole piece and the negative pole piece. When the temperature rises to a certain value, it can automatically dissolve the micro-scale (or even nano-scale) micropores attached to it, so that lithium ions cannot pass through the separator. Terminates the internal reaction of the battery.
  • the pressure relief mechanism refers to an element or component that can be actuated to release the internal pressure and/or internal substances when the internal pressure or internal temperature of the battery cell reaches a predetermined threshold.
  • the pressure relief mechanism can specifically take the form of an explosion-proof valve, a gas valve, a pressure relief valve or a safety valve, etc., and can specifically adopt a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell reaches a predetermined When the threshold value is reached, the pressure relief mechanism performs an action or the weak structure provided in the pressure relief mechanism is destroyed, thereby forming an opening or a channel for releasing the internal pressure.
  • the threshold referred to in this application may be a pressure threshold or a temperature threshold, and the design of the threshold varies according to different design requirements. Design or determine this threshold. And, the threshold value may depend on, for example, the materials used for one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
  • the "actuating" referred to in this application means that the pressure relief mechanism is actuated or activated to release the internal pressure or substance of the battery cell.
  • the resulting action may include, but is not limited to, rupture, tearing, shattering, or opening of at least a portion of the pressure relief mechanism.
  • the emissions from the battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high temperature and high pressure gas and/or flames generated by the reaction, etc.
  • the high-temperature and high-pressure discharge is discharged toward the direction in which the pressure relief mechanism of the battery cell is arranged, and its power and destructive force are huge, and can even break through one or more structures such as the cover body, etc., arranged in this direction.
  • the traditional pressure relief mechanism is generally arranged on the cover plate at the top or above the battery cell, that is, on the same side as the electrode terminals on the cover plate, and the support member is generally arranged on the opposite side of the cover plate, that is, Typically the support members are attached to the bottom wall or bottom of the housing.
  • the supporting member referred to in this application can be understood as a member used to provide support or resist the effect of gravity, so it can generally be understood as a member attached to the bottom wall or bottom of the casing to serve as a support for the battery cells. The function of the body being supported or fixed on it.
  • the aforementioned arrangement of arranging the pressure relief mechanism and the support member on two mutually opposite surfaces/walls/portions of the battery cell has been used in the battery field for many years, and has its rationality.
  • the cover plate is processed separately and has a flat plate-like structure, and the pressure relief mechanism can be stably mounted or formed on the cover plate through a simple and appropriate process.
  • separately disposing the pressure relief mechanism on the casing of the battery cell may use a more complicated process and bring about a higher cost.
  • supporting the battery cells from the bottom is also an implementation method with relatively low manufacturing difficulty.
  • the avoidance space refers to the space inside or outside the pressure relief mechanism in the actuation direction (i.e., the direction of being torn) when the pressure relief mechanism is actuated (e.g., at least a portion of the pressure relief mechanism is torn). That is, the avoidance space is the space that allows actuation of the pressure relief mechanism. Since the cover plate has a thicker thickness than the casing, it is easier to form an escape space if the pressure relief mechanism is arranged on the cover plate, thereby facilitating the design and manufacture of battery cells. Specifically, since the casing of the battery cell is formed by punching an aluminum sheet.
  • the wall thickness of the stamped shell is very thin.
  • the thin wall thickness of the housing makes it difficult to place pressure relief mechanisms on it that require clearance.
  • the one-piece concave structure of the housing makes it difficult to install the pressure relief mechanism thereon, which also increases the cost of battery cells.
  • the pressure relief mechanism is arranged on the cover plate and the support member is arranged at the bottom opposite to the cover plate, so that the pressure relief mechanism and the support member are arranged relative to the two opposite walls of the battery cell.
  • this design concept needs to solve various technical problems and overcome certain technical biases or design concepts that have been held in the industry for a long time, and it is not achieved overnight.
  • devices to which the batteries described in the embodiments of the present application are applicable include, but are not limited to, mobile phones, portable devices, notebook computers, battery cars, electric vehicles, ships, spacecraft, electric toys, and electric tools, etc.
  • aerospace Equipment includes airplanes, rockets, space shuttles and spacecraft, etc.
  • Electric toys include stationary or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric aircraft toys, etc.
  • Power tools include metal cutting Power tools, grinding power tools, assembling power tools and railway power tools such as drills, grinders, wrenches, screwdrivers, hammers, impact drills, concrete vibrators and planers.
  • the batteries described in the embodiments of the present application are not only applicable to the above-described devices, but also applicable to all devices using batteries. However, for the sake of brevity, the following embodiments are described by taking an electric vehicle as an example.
  • FIG. 1 shows a simple schematic diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle, or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle.
  • the battery 10 may be provided inside the vehicle 1 , for example, the battery 10 may be provided at the bottom or the front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operation power source of the vehicle 1 .
  • the vehicle 1 may further include the controller 30 and the motor 40 .
  • the controller 30 is used to control the battery 10 to supply power to the motor 40 , for example, for starting, navigating, and running the vehicle 1 for working power requirements.
  • the battery 10 can not only be used as the operating power source of the vehicle 1 , but also can be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery 10 referred to hereinafter can also be understood as a battery pack including a plurality of battery cells 20 .
  • the battery cell 20 includes a case 21 , an electrode assembly 22 and an electrolyte.
  • the electrode assembly 22 is accommodated in the case 21 of the battery cell 20, and the electrode assembly 22 includes a positive electrode tab, a negative electrode tab, and a separator.
  • the material of the separator can be PP or PE, etc.
  • the electrode assembly 22 may be a wound structure or a laminated structure.
  • the box 21 may include a housing 211 and a cover plate 212 .
  • the housing 211 includes a receiving cavity 211a formed by a plurality of walls and an opening 211b.
  • a cover plate 212 is arranged at the opening 211b to close the accommodation cavity 211a.
  • the accommodating cavity 211a also accommodates an electrolyte.
  • the positive pole piece and the negative pole piece in the electrode assembly 22 are generally provided with tabs, and the tabs generally include positive pole tabs and negative pole tabs.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode current collector without the positive electrode active material layer protrudes from the coated positive electrode active material layer.
  • the positive electrode current collector is not coated with the positive electrode active material layer as the positive electrode tab, the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate etc.; the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode current collector without the negative electrode active material layer is protruded from the negative electrode that has been coated with the negative electrode active material layer.
  • the current collector, the negative electrode current collector without the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the positive electrode tab and the negative electrode tab may be electrically connected to the positive electrode terminal 214 a and the negative electrode terminal 214 b located outside the battery cell 20 through the connection member 23 , respectively.
  • the positive electrode terminal 214a and the negative electrode terminal 214b may generally be provided on the cover plate 212 portion.
  • a plurality of battery cells 20 are connected together in series and/or in parallel via the positive electrode terminal 214a and the negative electrode terminal 214b for various applications.
  • the housing 211 has one opening 211b, in other embodiments, the housing 211 may also have two openings 211b arranged opposite to each other, the Cover plates 212 are respectively arranged at the two openings 211b to close the accommodating cavity 211a.
  • FIG. 6 shows an exploded view of the battery 10 containing a plurality of battery cells 20
  • FIG. 7 shows a cross-sectional view of the battery 10 shown in FIG. 6
  • the positive electrode terminal 214a and the negative electrode terminal 214b above may be collectively referred to as the electrode terminal 214
  • the electrode terminal 214 is shown in FIG. 7
  • a battery 10 according to some embodiments of the present application includes a plurality of battery cells 20 and a bussing member 12 for connecting electrode terminals 214 in series and/or in parallel
  • the plurality of battery cells 20 are electrically connected.
  • At least one of the battery cells 20 includes a pressure relief mechanism 213 .
  • a pressure relief mechanism 213 may be provided on a battery cell of the plurality of battery cells 20 that may be more susceptible to thermal runaway due to its location in the battery 10 .
  • each battery cell 20 in the battery 10 may also be provided with a pressure relief mechanism 213 .
  • the pressure relief mechanism 213 is used to actuate when the internal pressure or temperature of at least one battery cell 20 in which it is located reaches a threshold value to relieve the pressure inside the battery cell 20 , so as to avoid more dangerous accidents.
  • the pressure relief mechanism 213 may also be referred to as an explosion-proof valve, a gas valve, a pressure relief valve, a safety valve, or the like.
  • the bus member 12 is also called a bus bar, a bus bar, or the like, and is a member that electrically connects a plurality of battery cells 20 in series and/or parallel. After the plurality of battery cells 20 are connected in series and in parallel with the bus member 12, they have a higher voltage, so the side having the bus member 12 is sometimes referred to as the high voltage side.
  • FIG. 8 shows a partial enlarged cross-sectional view of the pressure relief mechanism 213 included in the battery 10 shown in FIG. 7 and the thermal management component 13 associated with the pressure relief mechanism 213 .
  • the thermal management component 13 is configured so that the exhaust from within the battery cells 20 passes through the thermal management component 13 when the pressure relief mechanism 213 is actuated.
  • the thermal management component 13 in this application refers to a component that can manage or adjust the temperature of the battery cells 20
  • the management or adjustment of the temperature here refers to the heating of the battery cells 20 .
  • the thermal management part 13 may include at least one of a cooling part and a heating part.
  • heating the battery 10 can improve battery performance before starting an electric vehicle in some regions with colder winter temperatures.
  • the battery cells 20 will generate heat, resulting in an increase in temperature, so the thermal management component 13 can also be used to contain fluid to cool the plurality of battery cells 20 .
  • the thermal management components 13 are generally attached to the battery cells 20 by means such as thermally conductive silicone. It should be understood that the thermal management components may also be attached to the battery cells 20 by other means, such as using other adhesives.
  • the thermal management part 13 can contain a cooling fluid for the purpose of cooling Therefore, the thermal management component 13 can also be called a cooling component, a cooling system or a cooling plate, etc., and the fluid contained therein can also be called a cooling medium or a cooling fluid, more specifically, a cooling liquid or a cooling gas.
  • the fluid contained in the thermal management component 13 may be circulated to achieve better temperature regulation.
  • the fluid may be water, a mixture of water and glycol, or air, and the like.
  • the battery 10 generally includes a case 11 for enclosing one or more battery cells 20 .
  • the box body 11 can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the box body 11 is generally composed of a cover body 111 and a box shell 112 .
  • the structure of the box body 11 especially the box shell 112 of the box body 11 , will be described in more detail below.
  • an important feature of the battery 10 is that the thermal management component 13 associated with the pressure relief mechanism 213 is attached to the device provided with the pressure relief mechanism 213 .
  • the same side (or the same wall) of the battery cell 20, and the support member for supporting the battery cell 20 is attached to the other side (or another wall) that intersects it.
  • the side of the battery cell 20 supported by the supporting member is referred to as the second wall (in some preferred embodiments, the second wall may be specifically understood as the bottom wall, or may also be referred to as the bottom), it should be It is understood that no matter how the battery cell 20 is placed in the battery or battery pack, eg, upright, sideways, flat (lying), upside down, such as in the case 11, it is supported by the support member.
  • the side is called the second wall.
  • the side of the battery cell 20 to which the thermal management component 13 is attached and the pressure relief mechanism 213 is provided is referred to as a first wall (in some preferred embodiments, the first wall can also be specifically understood as a side wall) , or it may also be called the side).
  • “standing upright” in this application means that the battery cells 20 are installed in the box body 11 with the cover plate 212 adjacent to and approximately parallel to the cover body 111 , as shown in FIGS. 2 and 6 . .
  • “laying flat” or “laying sideways” means that the battery cells 20 are installed in the case 11 with the cover plate 212 approximately perpendicular to the cover body 111 , as shown in FIGS. 3-5 .
  • “Upside down” means that the battery cells 20 are installed in the case 11 with the cover plate 212 adjacent and approximately parallel to the bottom portion 112 a of the case 112 .
  • first wall and the second wall referred to in this application can intersect with each other, the first wall and the second wall can be any suitable walls of the battery cell 20, including side walls, bottom walls, Cover plate 212 .
  • the support member refers to a member used to support the battery cell 20, for example, the thermal management member 13 or a part thereof, or any suitable part of the casing 112 of the battery 10 as shown in FIGS.
  • the support member may also be only a member arranged inside the case 112 for supporting the battery cells 20 .
  • FIGS. 9-10 schematically illustrate embodiments in which the bottom portion of the tank shell 112 is provided as the support member 16 or the support member 16 constitutes the bottom portion or a portion of the tank shell 112, and wherein the more The battery cells 20 are removed to clearly show the features of the side portions 112b and bottom portion of the case 112 .
  • the battery 10 adopts this method of connecting the supporting member 16 and the thermal management member 13 together with the pressure relief mechanism 213
  • the two intersecting wall surfaces arranged in the battery cell 20 provide flexibility in the space occupied by the battery that is not available in the prior art. That is, in the embodiment according to the present application, the space occupied by the design of the pressure relief mechanism 213 and the support member 16 will be dispersed into two different dimensions or directions.
  • the design of the pressure relief mechanism 213 and the support member 16 will mainly occupy the lateral space and the height space of the vehicle, respectively, which not only helps to make the prior art Vehicle designs that are not supported or suitable for batteries become feasible, and may also in some cases help improve the space utilization available on the vehicle for arranging battery devices, thereby increasing the energy density of battery devices that can be arranged in the vehicle.
  • the space occupied by the design of the pressure relief mechanism 213 and the support member 16 will be distributed in two different dimensions or directions, which may significantly improve the compactness of the battery structure for at least some automotive designs, thereby increasing the energy of the battery density.
  • the pressure relief mechanism 213 may be provided on the first wall of the battery cell 20 , and the thermal management component 13 is attached to the first wall.
  • the pressure relief mechanism 213 may be arranged with its outer surface flush with the outer surface of the first wall. This flush arrangement further facilitates the attachment between the first wall and the thermal management component 13 .
  • the outer surface of the pressure relief mechanism 213 may also be arranged to be recessed into the outer surface of the first wall. Such a concave structure can provide a part of the avoidance space, thereby reducing or even omitting, for example, the avoidance structure 134 in the thermal management component 13, and the avoidance structure 134 will be described in detail below.
  • the support member 16 is attached to the second wall to support the battery cells 20 in a direction opposite to the direction of gravity.
  • the pressure relief mechanism 213 and the thermal management component 13 may be disposed on the first wall of the battery cell 20 that is parallel to the direction of gravity, regardless of how the battery cell 20 is placed on the case 11 middle.
  • the first wall is the sidewall of the battery cells 20 itself, and when the battery cells 20 are laid flat in the box 11
  • the first wall may be the cover plate 212 or a wall opposite to the cover plate 212 .
  • FIGS. 6-8 In order to specifically illustrate the specific structure and design of the case 11 for encapsulating one or more battery cells 20 in the battery 10 described above.
  • the case 11 may include a cover 111 and a case 112 .
  • the cover body 111 and the case 112 may be hermetically assembled together to enclose together an electrical cavity 11 a for accommodating a plurality of battery cells 20 .
  • the thermal management component 13 may form part of the case 11 for housing a plurality of battery cells.
  • the thermal management member 13 may constitute the side portion 112b of the casing 112 of the case 11 or constitute a part of the side portion 112b.
  • the casing 112 also includes a bottom portion 112a. As shown in FIGS.
  • the side portion 112b is formed as a frame structure and can be assembled with the thermal management component 13 .
  • the structure of the battery 10 can be made more compact, the effective utilization rate of space can be improved, and the energy density can be improved.
  • the support member 16 may form part of the casing 112 , or, for example, the bottom portion 112a of the casing 112 or a partial structure thereof constitutes the support member 16 .
  • the support member 16 may also be disposed within the casing 112 .
  • thermal management member 13 may be integrally formed with support member 16 . It can be understood that it is this structural design of arranging the thermal management member 13 and the support member 16 on the intersecting first and second walls as described above, so that both the thermal management member 13 and the support member 16 can also be used. It is designed to be intersected or connected, and on this basis, the two can be further integrally formed.
  • the thermal management member 13 and the support member 16 may form an L-shaped, inverted T-shaped, or U-shaped, or the like, integral configuration. Thereby, the structural strength of the battery can be improved.
  • the support member 16 may also be fastened together with the thermal management member 13 in a suitable manner, which facilitates the manufacture of the support member 16 and the thermal management member 13 and thus reduces the manufacturing cost.
  • the thermal management component 13 may also be integrally formed with the side portion 112b or the bottom portion 112a of the case 112, so that the case 112 of the case 11 may be integrally formed. This molding method can make the strength of the tank shell 112 part higher, and it is not easy to cause leakage.
  • the relationship between the thermal management member 13 and the case 11 may be various.
  • the thermal management component 13 may not be a part of the casing 112 of the casing 11, but a component assembled on one side of the casing 112. This way will help keep the box body 11 airtight.
  • the thermal management component 13 can also be integrated into the box shell 112 in a suitable manner, which is also beneficial to keep the box body 11 airtight.
  • the battery 10 also includes a collection cavity 11b formed by at least a portion of the side portion 112b of the case 112 .
  • the collection chamber 11b in the present application refers to a cavity that collects emissions from the battery cells 20 and the thermal management component 13 when the pressure relief mechanism 213 is actuated.
  • the side portion 112b or a part of the side portion 112b may be configured as a hollow structure, and the hollow structure constitutes the collection cavity 11b, which can make the battery 10 more compact and lightweight at the same time.
  • the thermal management member 13 may be arranged between the side portion 112 b and the battery cell 20 , and specifically, the thermal management member 13 may be arranged between the side portion 112 b and the first wall of the battery cell 20 .
  • the collection chamber 11b can also be formed by a beam 114 arranged to extend between the cover body 111 and the tank shell 112 .
  • the beam 114 extends from the bottom portion 112a of the case 112 toward the cover body 111 in a direction perpendicular to the bottom portion 112a.
  • the thermal management part 13 may be arranged between the beams 114 and the battery cells 20 , and specifically, the thermal management parts 13 may be arranged between the beams 114 and the first walls of the battery cells 20 .
  • the beam 114 may have a hollow structure, and the hollow space of the beam 114 may constitute the collection cavity 11b.
  • the side portions 112b of the box shell 112 and the beams 114 may be the same component.
  • the collection chamber 11b is used to collect the discharge and can be sealed or unsealed.
  • the collection chamber 11b may contain air, or other gases.
  • the collection chamber 11b may also contain liquid, such as cooling liquid, or a component for accommodating the liquid may be provided to further reduce the temperature of the effluent entering the collection chamber 11b. Further optionally, the gas or liquid in the collection chamber 11b is circulated.
  • the support member 16 may also include an additional collection chamber (not shown in the figures), and the additional collection chamber can be operatively communicated with the collection chamber 11b at the bottom or lower portion of the collection chamber 11b for receiving the collection chamber from the collection chamber 11b. Emissions from the battery cells 20 .
  • the additional collection cavity can also provide a larger heat dissipation area for the exhaust, so that the exhaust can be discharged after the battery 10 can be effectively cooled, thereby improving the safety performance of the battery 10 .
  • the collection chamber 11b can also be provided with a flow guide structure, which can assist in guiding the discharge to a predetermined position in the collection chamber 11b through a structure such as a guide groove, and the predetermined position can be located in the additional collection chamber and the collection chamber. near the connection of 11b. Thereby, it will be beneficial to guide the exhaust more efficiently into the additional collection chamber as soon as possible to be accommodated, or to safely discharge the exhaust out of the battery 10 via the additional collection chamber.
  • the thermal management member 13 may be further designed to have a structure as set forth below Any one or more of characteristics and attributes.
  • the thermal management component 13 may include a pair of thermally conductive plates and a flow channel 133 formed between the pair of thermally conductive plates.
  • the pair of thermally conductive plates will be referred to as a first thermally conductive plate 131 attached to the plurality of battery cells 20 and a second thermally conductive plate 131 disposed on a side of the first thermally conductive plate 131 away from the battery cells 20 Thermally conductive plate 132 .
  • the flow channel 133 is used for fluid to flow therein.
  • the thermal management component 13 including the first thermally conductive plate 131 , the second thermally conductive plate 132 and the flow channel 133 may be integrally formed by a suitable process such as blow molding.
  • the first thermally conductive plate 131 and the second thermally conductive plate 132 are assembled together by welding (eg, brazing).
  • the first thermally conductive plate 131 , the second thermally conductive plate 132 and the flow channel 133 may also be formed separately and assembled together to form the thermal management component 13 .
  • the first thermally conductive plate 131 and the second thermally conductive plate 132 may be respectively formed with semi-recessed structures corresponding to the flow channels 133 , and the semi-recessed structures of the first thermally conductive plate 131 and the second thermally conductive plate 132 The groove structures are aligned with each other.
  • the specific structure of the thermal management component 13 described above is only illustrative, and is not intended to limit the protection scope of the present application. Any other suitable structure or arrangement is also possible.
  • at least one of the first thermally conductive plate 131, the second thermally conductive plate 132, and the flow channel 133 may be omitted.
  • the second thermally conductive plate 132 may be omitted. That is, in some embodiments, the thermal management component 13 may only include the first heat conducting plate 131 and the flow channel 133 arranged on one side or embedded therein.
  • improvements related to the thermal management component 13 in the present application will be described below mainly by taking the thermal management component 13 including the first thermal conductive plate 131 , the second thermal conductive plate 132 and the flow channel 133 as an example.
  • an avoidance structure 134 needs to be provided outside the battery cell 20 corresponding to the position of the pressure relief mechanism 213 , so that the pressure relief mechanism 213 can be smoothly actuated so as to play its due role. effect.
  • the avoidance structure 134 may be disposed on the thermal management component 13 , thereby enabling the avoidance structure 134 and the pressure relief mechanism 213 to be formed in the event that the thermal management component 13 is attached to the plurality of battery cells 20 .
  • cavity 134a that is to say, the avoidance cavity 134a mentioned in this application refers to a closed cavity formed by the avoidance structure 134 and the pressure relief mechanism 213 together.
  • the inlet side surface of the escape cavity 134a may be opened by the actuation of the pressure relief mechanism 213, and the outlet side surface opposite to the inlet side surface may be partially opened by the high temperature and high pressure discharge It is broken and opened, thereby forming a discharge channel for the discharge.
  • the avoidance cavity 134a may be a non-sealed cavity formed by, for example, the avoidance structure 134 and the pressure relief mechanism 213 together, and the outlet side surface of the non-sealed cavity may originally have a discharge flow out channel.
  • the escape structure 134 formed on the thermal management component 13 may include an escape bottom wall 134b and an escape side wall 134c surrounding the escape cavity 134a.
  • the avoidance bottom wall 134b and the avoidance side wall 134c in this application are relative to the avoidance cavity 134a.
  • the avoidance bottom wall 134b refers to the wall of the avoidance cavity 134a opposite to the pressure relief mechanism 213, and the avoidance side wall 134c is a wall adjacent to the avoidance bottom wall 134b and surrounds the avoidance cavity 134a at a predetermined angle.
  • the avoidance bottom wall 134b may be a part of the second thermally conductive plate 132
  • the avoidance side wall 134c may be a part of the first thermally conductive plate 131 .
  • the avoidance structure 134 may be formed by recessing a portion of the first thermally conductive plate 131 toward the second thermally conductive plate 132 to form an opening, and fixing the edge of the opening to the second thermally conductive plate 132 by a suitable fixing method formed together.
  • the pressure relief mechanism 213 When the pressure relief mechanism 213 is actuated, the exhaust from the battery cells 20 will first enter the escape cavity 134a. As indicated by the arrows in the escape cavity 134a of FIG. 8, the discharge will be discharged outward in a generally fan-shaped direction.
  • the thermal management components 13 in embodiments according to the present application can be destroyed when the pressure relief mechanism 213 is actuated to allow emissions from the battery cells 20 to pass through the thermal management components 13 .
  • the advantage of this arrangement is that high-temperature and high-pressure emissions from the battery cells 20 can smoothly pass through the thermal management component 13 , thereby avoiding secondary accidents caused by failure to discharge the emissions in time, thereby improving the safety performance of the battery 10 .
  • a through hole or a partial relief mechanism may be provided at a position of the thermal management component 13 opposite to the pressure relief mechanism 213 .
  • a partial relief mechanism may be provided on the avoidance bottom wall 134b , that is, the second heat conducting plate 132 .
  • the local relief mechanism in the present application refers to a mechanism that can be actuated when the pressure relief mechanism 213 is actuated to allow at least the exhaust from the battery cells 20 to escape through the thermal management component 13 .
  • the partial relief mechanism may also adopt the same structure as the pressure relief mechanism 213 on the battery cell 20 .
  • the local relief mechanism may be a mechanism disposed on the second heat conducting plate 132 and having the same configuration as the pressure relief mechanism 213 .
  • the partial relief mechanism may also adopt a different structure from the pressure relief mechanism 213, but is only a weak structure disposed at the avoidance bottom wall 134b, and the weak structure may include, but is not limited to: 134b Integral thinning, notch (eg, cross-shaped notch 134d shown in Figures 11 and 14), or a consumable made of a fragile material such as plastic installed at the escape bottom wall 134b, etc. .
  • the avoidance structure 134 may also be a through hole penetrating the thermal management component 13 . That is to say, the avoidance structure 134 may only have the avoidance sidewall 134c, and the avoidance sidewall 134c is the hole wall of the through hole. In this case, the exhaust from the battery cells 20 can be discharged directly through the avoidance structure 134 when the pressure relief mechanism 213 is actuated. In this way, the formation of secondary high voltage can be more effectively avoided, thereby improving the safety performance of the battery 10 .
  • the battery 10 includes a collection chamber 11b formed by at least a portion of the side portion 112b of the case 112 for use in the pressure relief mechanism 213 . Emissions from battery cells 20 and/or thermal management components 13 are collected during operation.
  • a drain hole 114a may be provided in the side portion 112b of the case 112 at a position or a wall surface corresponding to the thermal management member 13 or the pressure relief mechanism 213 . In this case, after passing through the thermal management member 13, the exhaust will enter the collection chamber 11b formed by the side portion 112b via the exhaust hole 114a.
  • the collection chamber 11b may also be formed by a beam 114 arranged to extend between the cover body 111 and the tank shell 112, in which case, the corresponding The above-mentioned discharge holes 114a are provided on the beam 114 at the position or on the wall surface corresponding to the thermal management component 13 or the pressure relief mechanism 213, for the discharge from the battery cells 20 and/or the thermal management component 13 to enter the beam through the discharge holes 114a 114 in the collection chamber 11b.
  • thermal management component 13 may also be configured to be broken upon actuation of pressure relief mechanism 213 to allow fluid outflow.
  • the fluid outflow can quickly cool down the high temperature and high pressure discharge from the battery cells 20 and extinguish the fire, thereby avoiding further damage to other battery cells 20 and the battery 10 and causing more serious accidents.
  • the escape sidewalls 134c may also be formed to be easily damaged by emissions from the battery cells 20 .
  • the discharge from the battery cells 20 may be discharged outward in a substantially conical shape.
  • the contact area between the escape side wall 134c and the exhaust can be increased, the possibility of the escape side wall 134c being damaged can be increased.
  • the escape side wall 134c may be at a predetermined angle relative to the escape bottom wall bottom wall 134b, and the predetermined angle is between 105° and 175°. By setting this angle reasonably, the avoidance side wall 134c can be more easily damaged when the pressure relief mechanism 213 is actuated, so as to further enable the fluid to flow out to contact the discharge, and the discharge is discharged at the moment when the fluid (such as cooling liquid) flows out.
  • the high temperature gasification so as to absorb a lot of heat from the exhaust, to achieve the effect of cooling the exhaust in time.
  • this arrangement of the avoidance sidewalls 134c can also be applied to the above-mentioned case of having the avoidance cavity 134a and the case of the avoidance structure 134 being a through hole.
  • the diameter of the through hole may gradually decrease in the direction of the pressure relief mechanism 213 toward the thermal management component 13 , and the hole wall of the through hole faces the thermal management component relative to the pressure relief mechanism 213 .
  • the angle formed by the orientation of the components 13 may be, for example, between 15° and 85°.
  • any type of weak structure may also be provided on the avoidance sidewall 134c to facilitate the escape of the sidewall 134c by the exhaust when the pressure relief mechanism 213 is actuated to allow fluid to flow out.
  • the thermal management member 13 has the escape structure 134 .
  • the thermal management component 13 may not include the avoidance structure 134 .
  • the escape cavity 134 may be formed by, for example, forming a portion protruding from the periphery of the pressure relief mechanism 213 and the thermal management member 13 .
  • the position opposite to the pressure relief mechanism 213 on the thermal management member 13 may be provided with a partial relief mechanism or a weak structure to enable the exhaust from the battery cells to pass through the thermal management member 13 and/or break through the thermal management member 13 to escape. Make the fluid flow out.
  • the pressure relief mechanism 213 may be designed to be actuated without a space to avoid. Such pressure relief mechanism 213 may be disposed close to the thermal management component 13, while the thermal management component 13 may not have The avoidance structure 134 also does not need to form the avoidance cavity 134a. The same is possible.
  • the escape cavity 134a may be designed to be isolated from the collection cavity 11b by the thermal management member 13 .
  • the so-called “isolation” here refers to separation, which may not be hermetically sealed. In this case, it is more favorable for the discharge to break through the avoidance side wall 134c so that the fluid flows out, so as to further reduce the temperature of the discharge and extinguish the fire, thereby improving the safety performance of the battery.
  • the avoidance structure 134 described above is a through hole
  • the avoidance cavity 134a and the collection cavity 11b may communicate with each other. This method is more conducive to the discharge of emissions, thereby avoiding the potential safety hazards caused by the secondary high pressure.
  • FIG. 15 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application.
  • the method 300 includes: 301 providing a plurality of battery cells, at least one battery cell in the plurality of battery cells includes a pressure relief mechanism and at least two walls, and the at least two walls include a first battery cell arranged to intersect.
  • a wall and a second wall, the pressure relief mechanism is provided on the first wall, and the pressure relief mechanism is used to actuate when the internal pressure or temperature of the battery cell reaches a threshold value to relieve the internal pressure;
  • 302 provides thermal management components, and heat a management member attached to the first wall, the thermal management member for containing a fluid to regulate the temperature of the battery cell, and configured such that when the pressure relief mechanism is actuated, exhaust from within the battery cell passes through the thermal management member;
  • 303 provides a support member and attaches the support member to the second wall to support the battery cells.
  • the method further includes: providing 304 a case, the case including a cover and a case, the case and the cover together enclosing an electrical cavity for accommodating the battery cells; and, on the inner side of the case Provide support components.
  • a portion of the casing may be used as a support member.
  • the tank further includes a beam extending between the cover and the tank shell disposed opposite each other, and providing the thermal management component includes disposing the thermal management component between the beam and the first wall.
  • FIG. 16 shows a schematic block diagram of an apparatus 400 for preparing a battery according to an embodiment of the present application.
  • an apparatus 400 includes: a battery cell preparation module 401 for preparing a plurality of battery cells, and at least one battery cell in the plurality of battery cells includes: at least two A wall and a pressure relief mechanism, the at least two walls include a first wall and a second wall disposed intersecting, the pressure relief mechanism is disposed on the first wall and is used to actuate to release when the internal pressure or temperature of the battery cell reaches a threshold value Internal pressure; thermal management component preparation module 402 for preparing thermal management components for containing fluids to regulate the temperature of the battery cells and configured to be discharged from within the battery cells when the pressure relief mechanism is actuated The exhaust passes through the thermal management member; a support member preparation module 403 for preparing a support member for supporting the battery cells; and an assembly module 404 for attaching the thermal management member to the first wall and attaching the support member connected to

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电池及其相关装置、制备方法和制备设备。该电池包括电池单体,电池单体包括泄压机构和至少两个壁,至少两个壁包括相交设置的第一壁和第二壁,泄压机构设置于第一壁,泄压机构用于在电池单体的内部压力或温度达到阈值时致动以泄放内部压力;热管理部件,附接至第一壁,热管理部件用于容纳流体以给电池单体降温;以及支撑部件,附接至第二壁,用于支撑电池单体;其中,热管理部件被构造成在泄压机构致动时,从电池单体内排出的排放物穿过热管理部件。通过泄压机构、热管理部件及支撑部件的这种布置方式,可有助于提高诸如适于布置在车辆中的电池的空间利用率,从而帮助提高电池的紧凑程度,还有助于提高电池的安全性。

Description

电池及其相关装置、制备方法和制备设备 技术领域
本申请涉及电池领域,具体涉及一种电池及其相关装置、制备方法和制备设备。
背景技术
化学电池、电化电池、电化学电池或电化学池是指通过氧化还原反应,把正极、负极活性物质的化学能,转化为电能的一类装置。与普通氧化还原反应不同的是氧化和还原反应是分开进行的,氧化在负极,还原在正极,而电子得失是通过外部线路进行的,所以形成了电流。这是所有电池的本质特点。经过长期的研究、发展,化学电池迎来了品种繁多,应用广泛的局面。大到一座建筑方能容纳得下的巨大装置,小到以毫米计的类型。现代电子技术的发展,对化学电池提出了很高的要求。每一次化学电池技术的突破,都带来了电子设备革命性的发展。世界上很多电化学科学家,都把研发兴趣集中在做为电动汽车动力的化学电池领域。
锂离子电池作为化学电池的一种,具有体积小、能量密度高、功率密度高、循环使用次数多和存储时间长等优点,在一些电子设备、电动交通工具、电动玩具和电动设备上得到了广泛应用,例如,锂离子电池目前广泛地应用于手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具,等等。
随着锂离子电池技术的不断发展,对锂离子电池的性能提出了更高的要求,希望锂离子电池能够同时考虑多方面的设计因素,其中锂离子电池的安全性能尤为重要。
发明内容
本申请提出一种电池及其相关装置、制备方法和制备设备,以提高电池的安全性能及紧凑程度。
根据本申请的第一方面,提供了一种电池,该电池包括:电池单体,所述电池单体包括泄压机构和至少两个壁,所述至少两个壁包括相交设置的第一壁和第二壁,所述泄压机构设置于所述第一壁,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;热管理部件,附接至所述第一壁,所述热管理部件用于容纳流体,以调节所述电池单体的温度;以及支撑部件,附接至所述第二壁, 用于支撑所述电池单体;其中,所述热管理部件被构造成在所述泄压机构致动时,从所述电池单体内排出的排放物穿过所述热管理部件。
通过泄压机构、热管理部件及支撑部件的这种布置方式,无论电池单体在该电池中以立放、侧放、平放或倒放的方式布置,支撑部件与热管理部件和泄压机构都将被布置于电池单体中相交设置的两个壁面,这将在电池占据的空间上提供现有技术所不具有的灵活性。由于,泄压机构及热管理部件和支撑部件的所需占用的空间将被分散到两个不同的维度或方向上。这可有助于提高诸如适于布置在车辆中的电池的空间利用率,进而帮助提高电池结构的紧凑程度,提高车辆中的电池的能量密度。同时,这种设计通过热管理部件和泄压机构的配合,也有助于利用及时的内部压力泄放,而提高电池的安全性。
在一些实施例中,所述电池单体还包括:壳体,所述壳体包括由底壁和侧壁形成的容纳腔以及能够接近所述容纳腔的开口;盖板,所述盖板适于封闭所述开口;其中,所述第一壁包括所述盖板或所述侧壁中的至少一个壁,并且所述第二壁是所述底壁。这种具有带开口的容纳腔的壳体以及适于封闭开口的盖板的电池单体的设计,便于安装或者拆卸电池单体,有助于降低维护成本,并有助于提供电池单体的布置方式以一定的灵活性。
在一些实施例中,所述电池还包括箱体,所述箱体包括盖体和箱壳,所述箱壳和所述盖体共同包围形成用于容纳所述电池单体的电气腔,其中,所述支撑部件是所述箱壳的一部分或者布置在所述箱壳的内侧。箱壳和盖体能够提供用来容纳多个电池单体的空间并提供对电池单体的可靠防护。
在一些实施例中,所述箱体还包括在彼此相对布置的所述盖体和所述箱壳之间延伸的梁,并且所述热管理部件布置在所述梁和所述第一壁之间。这种布置方式能够充分提高空间利用率,进而使得电池结构能够更加紧凑。
在一些实施例中,所述热管理部件和所述支撑部件形成为一体构造。这种一体构造的支撑部件和热管理部件,能够有助于提高电池的结构强度。
在一些实施例中,所述热管理部件设置有通孔,所述通孔被构造成允许从所述电池单体内排出的所述排放物穿过所述热管理部件。通过热管理部件上设置的通孔,在电池内部发生热失控的情况下,能够确保电池单体的排放物第一时间能够经由通孔向外排放穿过热管理部件,降低因排放物排放不畅而带来的风险。并且采用通孔的方式能够使得来自电池单体的排放物更加迅速地通过通孔排放出电池,从而降低因排放受 阻而造成的二次高压的风险,提高了电池的安全性能。
在一些实施例中,所述热管理部件被构造成能够被从所述电池单体内排出的所述排放物破坏,以使得从所述电池单体内排出的所述排放物能够穿过所述热管理部件。通过这种热管理部件的构造,能够使得在电池内部发生热失控的情况下,确保电池单体的排放物得到有效排放,降低因排放物排放不畅而带来的风险,提高电池内部发生热失控的情况下电池的安全性。
在一些实施例中,所述热管理部件被构造成能够被从所述电池单体内排出的所述排放物破坏,以使得所述流体从所述热管理部件的内部流出。这种布置方式使得诸如来自电池单体的高温高压排放物能够及早得到有效降温或者及早得到其他适当方式的温度调节,因而有助于提高电池的安全性能。
在一些实施例中,所述热管理部件还包括避让结构,所述避让结构被构造为能够提供允许所述泄压机构致动的空间,其中,所述热管理部件附接至所述电池单体以在所述避让结构和所述泄压机构之间形成避让腔。设置避让结构能够保证泄压机构能够有效致动。此外,避让腔能够提供用于电池单体的排放物的缓冲空间,从而降低电池单体的排放物对外部的冲击力,进一步提高电池的安全性能。
在一些实施例中,所述避让结构包括避让底壁和围绕所述避让腔的避让侧壁,所述避让底壁被构造成在所述泄压机构致动时被破坏,以允许所述排放物穿过所述热管理部件。这种布置以简单的方式和较低的成本实现了在泄压机构致动时使排放物穿过热管理部件的目的。
在一些实施例中,所述避让底壁包括局部泄放机构,所述局部泄放机构被构造为在所述泄压机构致动时被致动以允许至少来自所述电池单体的排放物穿过所述热管理部件排出。这种布置以简单的方式和较低的成本实现了在泄压机构致动时使排放物穿过热管理部件的目的,并且在正常使用状态(例如电池单体均未出现热失控的情况)下,将电池单体的内部空间在一定程度上密闭起来。
在一些实施例中,所述避让侧壁相对于所述避让底壁成预定角度,并且所述预定角度在105°和175°之间。以此方式设置的避让结构制造较为容易,并且还有助于促进避让侧壁被来自电池单体的排放物所破坏,以使得流体能较快地流出以帮助冷却排放物,从而提高电池的安全性能。
在一些实施例中,所述避让侧壁被构造成在所述泄压机构致动时被破坏,从而使所述流体流出。该布置以低成本以及简单的方式使得流体能够流出,从而利用电池自 身的流体及时地调节或影响来自电池单体的排放物的温度,例如快速地降低来自电池单体的排放物的温度,从而进一步提高电池的安全性能。
在一些实施例中,所述电池还包括收集腔,所述收集腔相对于所述泄压机构布置于所述热管理部件的另一侧,并被构造成在所述泄压机构致动时收集所述排放物。通过收集腔的设置能够提供排放物的进一步缓冲,以进一步降低排放物的冲击力,此外,收集腔还有助于降低排放物可能对外部部件或外部结构造成的二次伤害的风险。
在一些实施例中,所述梁具有中空空间,所述中空空间构成所述收集腔。这种布置方式能够进一步提高空间利用率。
在一些实施例中,所述支撑部件还包括附加收集腔,所述附加收集腔与所述收集腔可操作地连通于所述收集腔的下部或底部。附加收集腔的布置能够为排放物提供进一步缓冲,以进一步降低排放物的冲击力,并提供更大的用于在将排放物排出电池以外前暂时容纳排放物的空间。
在一些实施例中,所述收集腔内设有导流结构,所述导流结构被构造为能够有利于将所述排放物引导至预定位置。这种布置将有利于更有效率地将排放物尽快引导至附加收集腔中容纳,或者经由附加收集腔而将排放物更安全地排出电池以外,以免在收集腔中积聚的排放物造成其他的安全风险。
在一些实施例中,所述流体为冷却介质,所述热管理部件用于容纳所述冷却介质,以给所述电池单体降温。利用冷却介质对电池单体的降温,可使得电池单体处于温度较低且更安全的工作状态,有助于提高电池的安全性能。
根据本申请的第二方面,提供了一种装置。该装置包括上文中第一方面所描述的电池,该电池用于为该装置提供电能。
根据本申请的第三方面,还提供了一种制备电池的方法,该方法包括:提供多个电池单体,所述多个电池单体中的至少一个电池单体包括:至少两个壁,所述至少两个壁包括相交设置的第一壁和第二壁;和泄压机构,所述泄压机构设置于所述第一壁,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;以及,提供热管理部件,并将所述热管理部件附接至所述第一壁,所述热管理部件用于容纳流体以调节所述电池单体的温度,并且被构造成在所述泄压机构致动时,从所述电池单体内排出的排放物穿过所述热管理部件;以及,提供支撑部件,并将所述支撑部件附接至所述第二壁,以支撑所述电池单体。
在一些实施例中,所述方法还包括:提供箱体,所述箱体包括盖体和箱壳,所述 箱壳和所述盖体共同包围形成用于容纳所述电池单体的电气腔;以及,在所述箱壳的内侧提供所述支撑部件,或者,将所述箱壳的一部分作为所述支撑部件。
在一些实施例中,所述箱体还包括在彼此相对布置的所述盖体和所述箱壳之间延伸的梁;并且,提供所述热管理部件包括,将所述热管理部件布置在所述梁和所述第一壁之间。
根据本申请的第四方面,提供了一种制备电池的设备,该设备包括:电池单体制备模块,用于制备多个电池单体,所述多个电池单体中的至少一个电池单体包括泄压机构和至少两个壁,所述至少两个壁包括相交设置的第一壁和第二壁,所述泄压机构设置于所述第一壁,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;热管理部件制备模块,用于制备热管理部件,所述热管理部件用于容纳流体以调节所述电池单体的温度,并且被构造成在所述泄压机构致动时,从所述电池单体内排出的排放物穿过所述热管理部件;支撑部件制备模块,用于制备支撑部件,所述支撑部件用于支撑所述电池单体;以及装配模块,用于将所述热管理部件附接至所述第一壁以及将所述支撑部件附接至所述第二壁。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了一种采用本申请的电池的车辆的一些实施例的结构示意图;
图2示出了根据本申请的一些实施例的电池单体立放的分解视图;
图3示出了根据本申请的一些实施例的电池单体平放的立体视图;
图4示出了图3所示的电池单体从另一角度观察的平放的立体视图;
图5示出了图4所示的电池单体的分解视图;
图6示出了根据本申请的一些实施例的电池的分解视图;
图7示出了图6所示的电池的剖视图;
图8示出了图7中A部的局部放大剖视图,其中示出了形成在热管理部件上的一种示例性的避让结构;
图9示出了根据本申请的一些实施例的电池的箱体的箱壳部分的立体视图;
图10示出了根据本申请的另一些实施例的电池的箱体的箱壳部分的立体视图;
图11示出了根据本申请的一些实施例的热管理部件的俯视图;
图12示出了图11中所示的热管理部件的仰视图;
图13示出了图11中所示的热管理部件的A-A剖视图;
图14示出了图11中所示的热管理部件的分解视图;
图15示出了本申请制备电池的方法的一些实施例的流程示意图;
图16示出了本申请制备电池的设备的一些实施例的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合显示出根据本申请的多个实施例的附图,对本申请的实施例中的技术方案进行清楚、完整地描述,应当可以理解的是,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中记载的实施例,本领域普通技术人员在不用花费创造性劳动的前提下所获得的所有其他实施例,都将属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”、“包含”、“有”、“具有”、“含有”、“含”等为开放式的用词。因此,“包括”、“包含”、“有”例如一个或多个步骤或元件的一种方法或装置,其具有一个或多个步骤或元件,但不限于仅具有这一个或多个元件。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、 “相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
如上所述,应当强调,当在本说明书中使用术语“包括/包含”时,用于明确表明表示所述特征、整数、步骤或组件的存在,但不排除存在或添加一个或更多个其他特征、整数、步骤、部件或成组的特征、整数、步骤、部件。如本申请所用,单数形式“一个”、“一”和“该”也包括复数形式,除非上下文另有明确指示
本说明书中的用词“一”、“一个”可以表示一个,但也可与“至少一个”或“一个或多个”的含义一致。术语“约”一般表示提及的数值加上或减去10%,或更具体地是加上或减去5%。在权利要求书中使用的术语“或”,除非明确表示其仅指可替代的方案,否则其表示“和/或”的意思。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域中所提到的电池按是否可充电可以分为一次性电池和可充电电池。一次性电池(Primary Battery)俗称“用完即弃”电池及原电池,因为它们的电量耗尽后,无法再充电使用,只能丢弃。可充电电池又称二次电池(Secondary Battery)或二级电池、蓄电池。可充电电池的制作材料和工艺与一次性电池不同,其优点是在充电后可多次循环使用,可充电电池的输出电流负荷力要比大部分一次性电池高。目前常见的可充电电池的类型有:铅酸电池、镍氢电池和锂离子电池。锂离子电池具有重量轻、容量大(容量是同重量的镍氢电池的1.5倍~2倍)、无记忆效应等优点,且具有很低的自放电率,因而即使价格相对较高,仍然得到了普遍应用。锂离子电池也用于纯电动车及混合动力车,用于这种用途的锂离子电池容量相对略低,但有较大的输出、充电电流,也有的有较长的寿命,但成本较高。
本申请的实施例中所描述的电池是指可充电电池。下文中将主要以锂离子电池为 例来描述本申请公开的实施例。应当理解的是,本申请公开的实施例对于其他任意适当类型的可充电电池都是适用的。本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块,例如,本申请中所提到的电池可以包括电池模块或电池包等。本申请中公开的实施例所提到的电池可以直接或者间接应用于适当的装置中来为该装置供电。电池单体一般按封装的方式可分成三种:柱形电池单体、方形电池单体和软包电池单体。下文中将主要围绕方形电池单体来展开。应当理解的是,下文中所描述的实施例在至少某些方面对于柱形电池单体或软包电池单体而言也是适用的。
在一些诸如电动汽车等的大功率应用场合,电池的应用包括三个层次:电池单体、电池模块和电池包。电池模块是为了从外部冲击、热、振动等中保护电池单体,将一定数目的电池单体电连接在一起并放入一个框架中而形成的。电池包则是装入电动汽车的电池系统的最终状态。目前的大部分电池包是在一个或多个电池模块上装配电池管理系统(BMS)、热管理部件等各种控制和保护系统而制成的。随着电池领域技术的发展,电池模块这个层次可以被省略,也即,可以直接从电池单体形成电池包。这一改进使得电池系统在重量能量密度、体积能量密度得到提升的同时零部件数量显著下降。本申请中所提到的电池包括电池模块或电池包。
锂离子电池单体主要依靠锂离子在正极极片和负极极片之间移动来工作。锂离子电池单体使用一个嵌入的锂化合物作为一个电极材料。目前用作锂离子电池的正极材料主要常见的有:锂钴氧化物(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)及磷酸锂铁(LiFePO4)。正极极片和负极极片之间设置有隔离膜以形成具有三层材料的薄膜结构。该薄膜结构一般通过卷绕或者叠置的方式制成所需形状的电极组件。例如,柱形电池单体中的三层材料的薄膜结构被卷绕成柱形形状的电极组件,而方形电池单体中的薄膜结构被卷绕或者叠置成具有大致长方体形状的电极组件。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还要求有适宜的环境温度设计。为了有效地避免不必要的损失,对电池单体一般会有至少三重保护措施。具体而言,保护措施至少包括开关元件、选择适当的隔离膜材料以及泄压机构。开关元件是指在电池单体内的温度或者电阻达到一定阈值时而能够使电池停止充电或者放电的元件。隔离膜用于隔离正极极片和负极极片,可以在温度上升到一定数值时自动溶解掉附着在其上的微米级(甚至纳米级)微孔,从而使锂离子不能在隔离膜上通过,终止电池的内部反应。
泄压机构是指在电池单体的内部压力或内部温度达到预定阈值时能够致动以泄放内部压力和/或内部物质的元件或部件。泄压机构具体可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力泄放的开口或通道。本申请中所称的阈值可以是压力阈值或温度阈值,该阈值的设计根据设计需求的不同而不同,例如可根据被认为是存在危险或失控风险的电池单体的内部压力或内部温度值而设计或确定该阈值。并且,该阈值例如可能取决于电池单体中的正极极片、负极极片、电解液和隔离膜中的一种或几种所用的材料。
本申请中所提到的“致动”是指泄压机构产生动作或被激活以泄放电池单体的内部压力或物质。所产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、撕裂、破碎或者打开等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力/温度的情况下使电池单体产生压力或排放物的泄放,从而避免更严重的事故发生。本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体和/或火焰等。通常,该高温高压的排放物朝向电池单体的设置泄压机构的方向排放,其威力和破坏力巨大,甚至能够冲破在该方向上设置的诸如盖体等的一个或多个结构。
传统的泄压机构一般是设置在电池单体顶部或者上方的盖板上,即,与盖板上的电极端子布置在同一侧,支撑部件一般则设置在与盖板相对的一侧,即,通常支撑部件附接至壳体的底壁或底部。本申请中所称的支撑部件可理解为用以提供支撑作用或者抵抗重力作用的部件,故其通常可被理解为是附接至壳体的底壁或底部的部件,以起到将电池单体支撑或固定于其上的作用。
并且,前述这种将泄压机构和支撑部件布置于电池单体的两个彼此相对的表面/壁/部分的布置方式已经在电池领域应用了多年,具有其存在的合理性。具体而言,对于电池单体的盒而言,盖板是被单独加工的,其具有平板状的结构,能通过简单且适当的工艺将泄压机构稳固地安装或形成在盖板上。与之相比,将泄压机构单独地设置在电池单体的壳体上可能会使用更加复杂的工艺并带来更高的成本。同时,从底部对电池单体进行支撑也是一种制造难度相对较低的实现方式。
此外,对于传统的泄压机构而言,在致动时需要有一定的避让空间。避让空间是 指泄压机构在致动时(例如泄压机构的至少一部分被撕裂),泄压机构内部或外部的在致动方向(即,被撕裂的方向)上的空间。也就是说,避让空间是允许泄压机构致动的空间。由于盖板相比于壳体具有更厚的厚度,将泄压机构设置在盖板上也更容易形成避让空间,从而利于电池单体的设计和制造。具体而言,由于电池单体的壳体通过将铝薄板冲压而成。相比于盖板,冲压而成的壳体壁厚很薄。一方面,壳体这种较薄的壁厚使得很难将需要避让空间的泄压机构设置在其上。另一方面,壳体这种一体式凹入的结构使得很难在其上安装泄压机构,这同时也会造成电池单体成本的增加。
此外,将泄压机构设置在除电池单体顶部或者上方的盖板以外的地方还存在一个严重的问题是,泄压机构将更加容易地受到壳体内的电解液的侵蚀。在可充电电池产业蓬勃发展的这些年中,电池生产厂商综合考虑到成本以及其他各种因素,基本都是将电池单体、特别是动力电池单体的泄压机构设置在电池单体上方的盖板上,即,泄压机构与电池单体的电极端子设置在同一侧。这也成为电池设计者在设计电池时长期秉持的设计概念。
然而,这种被电池设计者长期秉持的设计概念也存在一些缺点。例如,将泄压机构设置在电池单体上的盖板并将支撑结构布置于与盖板相对的电池单体的底部,这种设计不可避免地导致泄压机构和支撑结构的设计所需占用的空间主要将发生在同一个维度或者同一个方向上,典型地,将是在基本竖直的方向上或者说高度方向上占据空间。由于在这一方向上的这种空间占用不可避免且很难减少,因而这大大限制了应用这种电池或电池包的汽车的结构设计的设计空间。同时,这种设计还可能存在着来自电池单体的排放物将电池单体上方的结构全部烧穿从而危害到驾驶舱内的人员安全的问题。
总的来说,要改变将泄压机构设置在盖板上而将支撑部件设置于与盖板相对的底部,从而将泄压机构和支撑部件相对于电池单体的两个彼此相对的壁设置的这种设计理念对研究人员以及本领域技术人员而言是需要解决各种技术问题并克服一定的技术偏见或者长久以来业内秉持的设计概念的,并非是一蹴而就的。
为了解决或至少部分地解决现有技术中电池存在的上述问题以及其他潜在问题,本申请的发明人反其道而行之并对此进行了大量的研究和实验后,提出了一种新型的电池。
举例来说,本申请的实施例描述的电池所适用的装置包括但不限于:手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等, 例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请实施例描述的电池不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动汽车为例进行说明。
例如,图1示出了根据本申请一实施例的一种车辆1的简易示意图。车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。如图1所示,车辆1的内部可以设置电池10,例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源。并且车辆1还可以包括控制器30和马达40。控制器30用来控制电池10为马达40的供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。在下文中所称的电池10也可以理解为是包括多个电池单体20的电池包。
如图2-5所示,电池单体20包括盒21、电极组件22和电解液。电极组件22被容纳在电池单体20的盒21中,电极组件22包括正极极片、负极极片和隔离膜。隔离膜的材质可以为PP或PE等。电极组件22可以是卷绕式的结构,也可以是叠片式的结构。盒21可包括壳体211和盖板212。壳体211包括由多个壁形成的容纳腔211a以及开口211b。盖板212布置在开口211b处以封闭容纳腔211a。除了电极组件22之外,容纳腔211a中还容纳有电解液。电极组件22中的正极极片和负极极片一般会设有极耳,极耳一般包括正极极耳和负极极耳。具体地,正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂覆正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂覆正极活性物质层的正极集流体作为正极极耳,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等;负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而 不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。正极极耳和负极极耳可通过连接构件23分别与位于电池单体20外部的正电极端子214a和负电极端子214b电连接。对方形电池单体而言,正电极端子214a和负电极端子214b一般可设置在盖板212部分。多个电池单体20经由正电极端子214a和负电极端子214b而被串联和/或并联在一起以应用于各种应用场合。
可以理解的是,尽管在图2-5所示的实施例中,壳体211具有一个开口211b,但在其他一些实施例中,壳体211也可具有诸如相对布置的两个开口211b,该两个开口211b处分别布置盖板212以封闭容纳腔211a。
图6示出了容纳有多个电池单体20的电池10的分解视图,图7则示出了图6所示的电池10的剖视图。可以理解的是,为描述方便,可将上文的正电极端子214a和负电极端子214b合称为电极端子214,并在图7中示出电极端子214。如图6-7所示,根据本申请的一些实施例的电池10包括多个电池单体20以及汇流部件12,其中汇流部件12用于通过连接电极端子214而以串联和/或并联的方式电连接多个电池单体20。这些电池单体20中的至少一个电池单体20包括泄压机构213。在一些实施例中,可以是多个电池单体20中的由于其在电池10中所处的位置而可能更容易遭受热失控的电池单体上设置有泄压机构213。当然,也可以是电池10中的每个电池单体20都设置有泄压机构213。
泄压机构213用于在其所在的至少一个电池单体20的内部压力或温度达到阈值时致动以泄放电池单体20内部的压力,从而避免更加危险的事故发生。如上面所提到的,泄压机构213又可以被称为防爆阀、气阀、泄压阀或安全阀等。汇流部件12又被称为汇流排或母线等,其是将多个电池单体20以串联和/或并联的方式电连接的部件。多个电池单体20通过汇流部件12串并联后,具有较高的电压,因此具有汇流部件12的这一侧有时被称为高压侧。
图8示出了图7所示的电池10所包括的泄压机构213及和泄压机构213相关联的热管理部件13的局部放大剖视图。如图6-8所示,热管理部件13被构造成在泄压机构213致动时,从电池单体20内排出的排放物穿过热管理部件13。可以理解的是,本申请中的热管理部件13是指能够对电池单体20的温度进行管理或调节的部件,在此所称的对温度的管理或调节是指对电池单体20的加热或者冷却,具体而言,热管理部件13可以包括冷却部件和加热部件中的至少一种。例如,在一些冬天气温较寒冷的地区启动电动汽车之前,对电池10进行加热能够提高电池性能。在电池10使用过程 中,电池单体20都会发热从而导致温度升高,因此热管理部件13也可以用于容纳流体以给多个电池单体20降温。为了实现降温的有效性,热管理部件13一般都通过诸如导热硅胶等方式而附接至电池单体20。应理解的是,热管理部件也可通过其他方式诸如采用其他粘接剂而附接至电池单体20。
在本申请的实施例的描述中,将主要针对将热管理部件13用于为电池单体20冷却或降温的情形进行介绍,在这些情形下,热管理部件13可容纳冷却流体以便实现降温目的,因而也可将热管理部件13称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。可选的,热管理部件13中容纳的流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气,等等。
继续参考图6所示,电池10一般包括用于封装一个或多个电池单体20的箱体11。箱体11可以避免液体或其他异物影响电池单体的充电或放电,箱体11一般可由盖体111和箱壳112组成。其中,对于箱体11尤其是箱体11的箱壳112的结构,将在下文进行更具体的介绍。
参考图6-8所示,不同于传统的电池,根据本申请的实施例的电池10的一个重要特点在于,和泄压机构213相关联的热管理部件13附接至设置有泄压机构213的电池单体的同一侧(或同一壁),而用于支撑电池单体20的支撑部件则附接至与之相交的另一侧(或另一壁)。为便于描述,下文中将电池单体20被支撑部件支撑的一侧为第二壁(在一些优选实施例中第二壁可被具体地理解为底壁,或者也可称为底部),应理解的是无论电池单体20在电池或电池包中被如何放置例如立放、侧放、平放(平躺放置)、倒放在诸如箱体11中,都将其被支撑部件支撑的一侧称为第二壁。相应的,将电池单体20中附接有热管理部件13并设置有泄压机构213的一侧称为第一壁(在一些优选实施例中第一壁也可被具体地理解为侧壁,或者也可称为侧部)。
应当理解的是,本申请中的“立放”是指电池单体20以盖板212邻近且近似平行于盖体111的方式而被安装在箱体11中,如图2和图6所示。类似地,“平放”或“侧放”是指电池单体20以盖板212近似垂直于盖体111的方式而被安装在箱体11中,如图3-5所示。“倒放”则是指电池单体20以盖板212邻近且近似平行于箱壳112的底部部分112a的方式而被安装在箱体11中。
还应理解的是,本申请中所称的第一壁和第二壁只要能够彼此相交,第一壁和第二壁可以是电池单体20的任意适当的壁,包括侧壁、底壁、盖板212。支撑部件是指 用来支撑电池单体20的部件,例如,可以是热管理部件13或者其一部分、或者如图6-8所示的电池10的箱壳112的任意适当的部分、或者如图7中所示的电池10的防护构件或防护板115,等等。当然,支撑部件也可以仅是布置在箱壳112的内侧、用来支撑电池单体20的部件。为便于理解,图9-10示意性地示出了将箱壳112的底部部分提供为支撑部件16或者说由支撑部件16构成箱壳112的底部部分或其一部分的实施例,并且其中为更清楚地显示箱壳112的侧部部分112b和底部部分的特征而移除了电池单体20。
无论是将电池单体20立放、侧放、平放、倒放的方式下,根据本申请的实施例的电池10所采用的这种将支撑部件16与热管理部件13连同泄压机构213布置于电池单体20中相交设置的两处壁面,均会在电池所占据的空间上提供现有技术所不具有的灵活性。即,在根据本申请的实施例中,泄压机构213和支撑部件16的设计所需占用的空间将被分散到两个不同的维度或方向上。
典型地,对于基本呈方形的电池10及电池单体20而言,泄压机构213和支撑部件16的设计将分别主要占用汽车的横向空间和高度空间,这不仅有助于使得现有技术的电池所无法支持或适用的汽车设计变得可行,还可能在一些情形下有助于提高车辆上可用于布置电池装置的空间利用率,进而提高车辆中可布置的电池装置的能量密度。具体而言,电池技术发展到目前,在保证安全性的情况下,电池10除容纳电池单体20的空间之外的各结构和部件所占用的尺寸能够减少1mm都会十分困难,因此,通过将泄压机构213和支撑部件16的设计所需占用的空间将被分散到两个不同的维度或方向上,对于至少部分的汽车设计而言可能显著提高电池结构的紧凑程度,从而提高电池的能量密度。
根据本申请的一些实施例,如图6-8所示,泄压机构213可以设置在电池单体20的第一壁,并且热管理部件13附接至该第一壁。在一些实施例中,泄压机构213可以被布置为其外表面与第一壁的外表面齐平。这种齐平的布置方式更加有利于第一壁和热管理部件13之间的附接。在一些替代的实施例中,泄压机构213的外表面也可以被布置为凹入第一壁的外表面。这种凹入结构可以提供一部分避让空间,从而减小甚至省略例如热管理部件13中的避让结构134,避让结构134将在下文中具体阐述。
根据本申请的一些实施例,如图9-10所示,支撑部件16附接至第二壁,以沿与重力方向相反的方向支撑电池单体20。并且,如图6-8所示,泄压机构213和热管理部件13可以设置在电池单体20的与重力方向平行的第一壁上,而不论电池单体20 是如何放置在箱体11中。例如,在电池单体20立放或倒放在箱体11中的情况下,该第一壁即为电池单体20本身的侧壁,而在电池单体20平放在箱体11中的情况下,该第一壁可以是盖板212或者与盖板212相对的壁。
为了便于描述,下文将参照图6-8所示描述泄压机构213和热管理部件13布置在电池单体20的侧部或者说侧壁的一些实施例,其中将进一步结合图9-10更为具体地阐述前文所描述的电池10中用于封装一个或多个电池单体20的箱体11的具体结构和设计。
在一些实施例中,如图6-7和图9-10所示,箱体11可以包括盖体111和箱壳112。盖体111和箱壳112可密封地组合在一起以共同包围形成用于容纳多个电池单体20的电气腔11a。在一些实施例中,热管理部件13可以构成用于容纳多个电池单体的箱体11的一部分。例如,热管理部件13可以构成箱体11的箱壳112的侧部部分112b或者构成侧部部分112b的一部分。除了侧部部分112b之外,箱壳112还包括底部部分112a。如图6-7所示,在一些实施例中,侧部部分112b形成为框架结构,并能够与热管理部件13装配在一起。以此方式,能够使电池10的结构更加紧凑、空间有效利用率提高,有利于提高能量密度。
在一些实施例中,该支撑部件16可以构成箱壳112的一部分,或者说,例如,箱壳112的底部部分112a或其局部结构构成了该支撑部件16。又或者,根据一些替代性的实施例,该支撑部件16也可以布置在箱壳112之内。
在一些实施例中,热管理部件13可以是与支撑部件16一体成型的。可以理解的是,正是如上所述的将热管理部件13和支撑部件16布置于相交的第一壁和第二壁的这种结构设计,使得热管理部件13和支撑部件16二者也可被设计为是相交或者说相连接的,在此基础上,可进一步将二者一体成型。例如,热管理部件13和支撑部件16可形成L型、倒T型或者U型等的整体构造。由此,将能够提高电池的结构强度。在一些替代的实施例中,支撑部件16也可以是与热管理部件13通过适当的方式紧固在一起,这种方式更便于支撑部件16和热管理部件13的制造,并因此降低制造成本。
在一些替代的实施例中,热管理部件13还可以和箱壳112的侧部部分112b或底部部分112a一体成型的,从而箱体11的箱壳112可以是一体成型的。这种成型方式能够使箱壳112部分的强度更高,并且不容易产生泄漏。
换言之,热管理部件13与箱体11之间的关系可以是多种多样的。例如,在一些替代的实施例中,热管理部件13也可以不是箱体11的箱壳112的一部分,而是装配 在箱壳112的一侧的一个部件。这种方式将利于保持箱体11的密闭。在另一些替代的实施例中,热管理部件13也可以通过适当的方式被集成在箱壳112之内,这同样有利于保持箱体11的密闭。
在一些实施例中,如图6-9所示,电池10还包括由箱壳112的侧部部分112b的至少一部分构成的收集腔11b。本申请中的收集腔11b是指在泄压机构213致动时收集来自电池单体20和热管理部件13的排放物的空腔。例如,侧部部分112b或者侧部部分112b局部可以被构造为空心结构,并且该空心结构构成收集腔11b,这种方式可以在使电池10的结构更加紧凑的同时能够使电池10轻量化。热管理部件13可以布置在侧部部分112b和电池单体20之间,具体地,热管理部件13可以布置在侧部部分112b和电池单体20的第一壁之间。
附加地或者作为替代的方案,该收集腔11b还可以由布置成在盖体111和箱壳112之间延伸的梁114构成。梁114从箱壳112的底部部分112a沿垂直于底部部分112a的方向向盖体111延伸。热管理部件13可以布置在梁114和电池单体20之间,具体的,热管理部件13可以布置在梁114和电池单体20的第一壁之间。在一些实施例中,梁114可以具有中空的结构,并且梁114的中空空间可以构成收集腔11b。
在一些实施例中,箱壳112的侧部部分112b和梁114可以是相同的部件。
收集腔11b用于收集排放物,可以是密封或非密封的。在一些实施例中,收集腔11b内可以包含空气,或者其他气体。可选地,收集腔11b内也可以包含液体,比如冷却液,或者,设置容纳该液体的部件,以对进入收集腔11b的排放物进一步降温。进一步可选地,收集腔11b内的气体或者液体是循环流动的。
在一些实施例中,支撑部件16还可以包括附加收集腔(图中未示出),并且附加收集腔能够与收集腔11b可操作地连通于收集腔11b的底部或下部,以用来容纳来自电池单体20的排放物。附加收集腔也可以为排放物提供更大的散热面积,从而使得排放物能够在电池10内能得到有效降温后才排出,由此提高了电池10的安全性能。收集腔11b内还可设有导流结构,该导流结构可通过诸如导流槽等结构而辅助将排放物引导至收集腔11b内的预定位置,该预定位置可位于附加收集腔与收集腔11b的连通处的附近。由此,将有利于更有效率地将排放物尽快引导至附加收集腔中容纳,或者经由附加收集腔而将排放物安全地排出电池10以外。
在如前文结合图6-10所描述的将泄压机构213和热管理部件13布置在电池单体20的第一壁的实施例中,热管理部件13可进一步被设计为具有如下阐述的结构特征 和属性中的任意一个或多个。
图11至图14分别示出了根据本申请的一些实施例的热管理部件13的不同角度的结构视图、剖视图以及分解视图。如图11-14以及此前提到的图8所示,在一些实施例中,热管理部件13可以包括一对导热板以及形成在该一对导热板之间的流道133。为了便于下文中的描述,该一对导热板将被称为附接至多个电池单体20的第一导热板131以及布置在第一导热板131的远离电池单体20的一侧的第二导热板132。流道133用来供流体在其中流动。在一些实施例中,包括第一导热板131、第二导热板132以及流道133的热管理部件13可以通过吹塑等适当的工艺一体地形成。在一些替代的实施例中,第一导热板131和第二导热板132通过焊接(如钎焊)装配在一起。在一些替代的实施例中,第一导热板131、第二导热板132以及流道133也可以分别形成并组装在一起以形成热管理部件13。
例如,在一些实施例中,第一导热板131和第二导热板132上可以分别形成有对应于流道133的半凹槽结构,并且第一导热板131和第二导热板132的半凹槽结构相互对齐。通过将第一导热板131和第二导热板132组装在一起,来将第一导热板131和第二导热板132的半凹槽结构组合成流道133,并最终形成热管理部件13。
当然,应当理解的是,上文中所描述的热管理部件13的具体结构只是示意性的,并不旨在限制本申请的保护范围。其他任意适当的结构或者布置也是可能的。例如,在一些替代的实施例中,第一导热板131、第二导热板132以及流道133中的至少一个可以被省略。例如,第二导热板132可以被省略。也就是说,在一些实施例中,热管理部件13可以仅包括第一导热板131以及布置在一侧或者嵌置在其中的流道133。为了便于描述,下文中将主要以热管理部件13包括第一导热板131、第二导热板132以及流道133为例来描述本申请中与热管理部件13相关的改进。
上文中提到过有的泄压机构213在致动时需要在电池单体20的外部对应于泄压机构213的位置设置避让结构134,这样使泄压机构213能够顺利致动从而发挥应有的作用。在一些实施例中,避让结构134可以布置在热管理部件13上,从而使得热管理部件13附接到多个电池单体20的情况下能够在避让结构134和泄压机构213之间形成避让腔134a。也就是说,本申请中所提到的避让腔134a是指由避让结构134和泄压机构213共同围绕形成的密闭空腔,在这种方案中,针对来自电池单体20的排放物的排放而言,该避让腔134a的入口一侧表面可因泄压机构213的致动而被打开,而与该入口一侧表面相对的出口一侧表面则可因高温高压的排放物而被部分地破坏而被 打开,从而形成排放物的泄放通道。而根据另一些实施例,该避让腔134a可以是例如由避让结构134和泄压机构213共同围绕形成的非密闭空腔,该非密闭空腔中的出口一侧表面可原本就具有供排放物流出的通道。
进一步参考图8和图13所示,在一些实施例中,形成在热管理部件13上的避让结构134可以包括避让底壁134b和围绕避让腔134a的避让侧壁134c。本申请中的避让底壁134b和避让侧壁134c是相对于避让腔134a而言的。具体而言,避让底壁134b是指避让腔134a的与泄压机构213相对的壁,而避让侧壁134c是与避让底壁134b邻接并成预定角度而围绕避让腔134a的壁。在一些实施例中,避让底壁134b可以是第二导热板132的一部分,而避让侧壁134c可以是第一导热板131的一部分。
例如,在一些实施例中,避让结构134可以通过将第一导热板131的一部分朝向第二导热板132凹入并形成开口,并将开口的边缘与第二导热板132通过适当的固定方式固定在一起而形成。在泄压机构213致动时,来自电池单体20的排放物会首先进入到该避让腔134a中。如图8的避让腔134a中的箭头所示,排放物会大致以扇形方向向外排出。
不同于传统的热管理部件的是,根据本申请的实施例中的热管理部件13能够在泄压机构213致动时被破坏,以使来自电池单体20的排放物穿过热管理部件13。这样设置的优势在于能够使得来自电池单体20的高温高压排放物顺利地穿过热管理部件13,从而避免排放物不能及时排出所造成的二次事故,由此提高电池10的安全性能。
为了使排放物能够顺利穿过热管理部件13,可以在热管理部件13与泄压机构213相对的位置设置通孔或者局部泄放机构。例如,在一些实施例中,在避让底壁134b上,也即,第二导热板132上可以设置有局部泄放机构。本申请中的局部泄放机构是指在泄压机构213致动时能够致动从而允许至少来自电池单体20的排放物穿过热管理部件13排出的机构。在一些实施例中,局部泄放机构也可以采用与电池单体20上的泄压机构213同样的构造。也就是说,在一些实施例中,局部泄放机构可以是布置在第二导热板132的具有与泄压机构213相同构造的机构。在一些替代的实施例中,局部泄放机构也可以采用与泄压机构213不同的构造,而只是设置在避让底壁134b处的薄弱结构,薄弱结构例如可以包括但不限于:与避让底壁134b一体的厚度减薄部、刻痕(例如,图11和14中所示的十字形刻痕134d)或者安装在避让底壁134b处的由诸如塑料等易损材料制成的易损部等。
在一些实施例中,为了使排放物能够顺利穿过热管理部件13,避让结构134也可以是贯穿热管理部件13的通孔。也就是说,避让结构134可以仅具有避让侧壁134c,并且该避让侧壁134c即为通孔的孔壁。在这种情况下,在泄压机构213致动时来自电池单体20的排放物能够直接穿过避让结构134而排出。以此方式,能够更加有效地避免二次高压的形成,从而提高电池10的安全性能。
在如上所述并如图6-9所示的一些实施例中,电池10包括由箱壳112的侧部部分112b的至少一部分构成的收集腔11b,收集腔11b用于在泄压机构213致动时收集来自电池单体20和/或热管理部件13的排放物。在这样的实施例中,如图8所示,在箱壳112的侧部部分112b中对应热管理部件13或泄压机构213的位置或壁面上可设有排放孔114a。在这种情况下,排放物在穿过热管理部件13后将经由排放孔114a而进入侧部部分112b构成的收集腔11b。
可以理解的是,如上所述,在一些替代性的实施例中,收集腔11b也可能由布置成在盖体111和箱壳112之间延伸的梁114构成,在这种情况下,可相应地在梁114对应热管理部件13或泄压机构213的位置或壁面上设有前述排放孔114a,用于供来自电池单体20和/或热管理部件13的排放物经由排放孔114a进入梁114所构成的收集腔11b中。
在一些实施例中,热管理部件13还可以被构造成能够在泄压机构213致动时被破坏以使得流体流出。流体流出能够快速地对来自电池单体20的高温高压排放物进行降温以及灭火,从而避免对其他电池单体20以及电池10造成进一步伤害而引发更严重的事故。例如,在一些实施例中,避让侧壁134c也可以被形成为容易被来自电池单体20的排放物破坏。
由于电池单体20的内部压力比较大,来自电池单体20的排放物会以大致锥形的形状向外排放。在这种情况下,如果能够增大避让侧壁134c与排放物的接触面积就能够提高避让侧壁134c被破坏的可能性。例如,在一些实施例中,避让侧壁134c相对于避让底壁底壁134b可成预定角度,并且该预定角度在105°和175°之间。通过合理地设置该角度,能够使得避让侧壁134c在泄压机构213致动时更容易被破坏,以进一步使得流体能够流出以与排放物接触,流体(如冷却液)流出的瞬间被排放物的高温气化,从而从排放物处吸收大量的热量,达到及时冷却排放物的效果。
此外,避让侧壁134c的这种布置方式也可以适用于上述具有避让腔134a的情况以及避让结构134是通孔的情况。例如,避让结构134是通孔的情况下,该通孔的孔 径可以沿泄压机构213朝向热管理部件13的方向逐渐减小,并且该通孔的孔壁相对于泄压机构213朝向热管理部件13的方向所成的夹角可例如在15°和85°之间。
在另一些实施例中,在避让侧壁134c上也可以设有任何类型的薄弱结构,以便于在泄压机构213致动时避让侧壁134c被排放物所破坏而使得流体流出。
上面的实施例描述了热管理部件13具有避让结构134的情况。然而,在一些替代性的实施例中,热管理部件13也可以不包括避让结构134。在这种情况下,避让腔134例如可以通过形成在泄压机构213周边突出的部分和热管理部件13来形成。并且,热管理部件13上与泄压机构213的相对的位置可以设置有局部泄放机构或者薄弱结构来使得来自电池单体的排放物能够穿过热管理部件13和/或冲破热管理部件13而使流体流出。
在另一些替代性的实施例中,泄压机构213可被设计成不需要避让空间就能够致动,这类泄压机构213可以紧贴着热管理部件13布置,而热管理部件13可不具有避让结构134,也不必形成避让腔134a。这同样是可行的。
在上文中所描述的存在避让腔134a的实施例中,避让腔134a可被设计为通过热管理部件13与收集腔11b隔离。这里所谓的“隔离”指分离,可以不是密封的。这种情况能够更加有利于排放物冲破避让侧壁134c从而使流体流出,以对排放物进一步降温和灭火,从而提高电池的安全性能。此外,在上文中所描述的避让结构134是通孔的情况下,避让腔134a可以和收集腔11b相互连通。这种方式更加利于排放物的排放,从而避免二次高压所带来的安全隐患。
上文中结合图1至图14描述了本申请的实施例的电池,下面将结合图15和图16描述本申请的实施例的制备电池的方法和装置,其中未详细描述的部分可参见前述各实施例。
具体而言,图15示出了本申请的实施例的制备电池的方法300的示意性流程图。如图15所示,该方法300包括:301提供多个电池单体,多个电池单体中的至少一个电池单体包括泄压机构和至少两个壁,至少两个壁包括相交设置的第一壁和第二壁,泄压机构设置于第一壁,泄压机构用于在电池单体的内部压力或温度达到阈值时致动以泄放内部压力;302提供热管理部件,并将热管理部件附接至第一壁,热管理部件用于容纳流体以调节电池单体的温度,并且被构造成在泄压机构致动时,从电池单体内排出的排放物穿过热管理部件;以及303提供支撑部件,并将支撑部件附接至第二壁,以支撑电 池单体。
在一些实施例中,该方法还包括:304提供箱体,箱体包括盖体和箱壳,箱壳和盖体共同包围形成用于容纳电池单体的电气腔;以及,在箱壳的内侧提供支撑部件。或者,根据一些替代的实施例,可将箱壳的一部分作为支撑部件。
在一些实施例中,箱体还包括在彼此相对布置的盖体和箱壳之间延伸的梁,而提供热管理部件则包括,将热管理部件布置在梁和第一壁之间。
图16示出了本申请的实施例的制备电池的设备400的示意性框图。如图16所示,根据本申请的实施例的设备400包括:电池单体制备模块401,用于制备多个电池单体,多个电池单体中的至少一个电池单体包括:至少两个壁和泄压机构,至少两个壁包括相交设置的第一壁和第二壁,泄压机构设置于第一壁,并用于在电池单体的内部压力或温度达到阈值时致动以泄放内部压力;热管理部件制备模块402,用于制备热管理部件,热管理部件用于容纳流体以调节电池单体的温度,并且被构造成在泄压机构致动时,从电池单体内排出的排放物穿过热管理部件;支撑部件制备模块403,用于制备支撑部件,支撑部件用于支撑电池单体;以及装配模块404,用于将热管理部件附接至第一壁以及将支撑部件附接至第二壁。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的精神和范围。

Claims (23)

  1. 一种电池(10),包括:
    电池单体(20),所述电池单体(20)包括:
    至少两个壁,所述至少两个壁包括相交设置的第一壁和第二壁;和
    泄压机构(213),所述泄压机构(213)设置于所述第一壁,所述泄压机构(213)用于在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    热管理部件(13),附接至所述第一壁,所述热管理部件(13)用于容纳流体,以调节所述电池单体(20)的温度;以及
    支撑部件(16),附接至所述第二壁,用于支撑所述电池单体(20);
    其中,所述热管理部件(13)被构造成在所述泄压机构(213)致动时,从所述电池单体(20)内排出的排放物穿过所述热管理部件(13)。
  2. 根据权利要求1所述的电池(10),其中,所述电池单体(20)还包括:
    壳体(211),所述壳体(211)包括由底壁和侧壁形成的容纳腔(213c)以及能够接近所述容纳腔(213c)的开口(214d);
    盖板(212),所述盖板(212)适于封闭所述开口(214d);
    其中,所述第一壁包括所述盖板(212)或所述侧壁中的至少一个壁,并且所述第二壁是所述底壁。
  3. 根据权利要求1或2所述的电池(10),其中,所述电池(10)还包括:
    箱体(11),所述箱体(11)包括盖体(111)和箱壳(112),所述箱壳(112)和所述盖体(111)共同包围形成用于容纳所述电池单体(20)的电气腔(11a),
    其中,所述支撑部件(16)是所述箱壳(112)的一部分或者布置在所述箱壳(112)的内侧。
  4. 根据权利要求3所述的电池(10),其中,所述箱体(11)还包括在彼此相对布置的所述盖体(111)和所述箱壳(112)之间延伸的梁(114),并且所述热管理部件(13)布置在所述梁(114)和所述第一壁之间。
  5. 根据权利要求1-4中任一项所述的电池(10),其中,所述热管理部件(13)和所述支撑部件(16)形成为一体构造。
  6. 根据权利要求1-5中任一项所述的电池(10),其中,所述热管理部件(13)设置有通孔,所述通孔被构造成允许从所述电池单体内排出的所述排放物穿过所述热 管理部件(13)。
  7. 根据权利要求1-5中任一项所述的电池(10),其中,所述热管理部件(13)被构造成能够被从所述电池单体(20)内排出的所述排放物破坏,以使得从所述电池单体(20)内排出的所述排放物能够穿过所述热管理部件(13)。
  8. 根据权利要求1-5中任一项所述的电池(10),其中,所述热管理部件(13)被构造成能够被从所述电池单体(20)内排出的所述排放物破坏,以使得所述流体从所述热管理部件(13)的内部流出。
  9. 根据权利要求1-8中任一项所述的电池(10),其中,所述热管理部件(13)还包括:
    避让结构(134),所述避让结构(134)被构造为能够提供允许所述泄压机构(213)致动的空间;并且
    其中,所述热管理部件(13)附接至所述电池单体(20)以在所述避让结构(134)和所述泄压机构(213)之间形成避让腔(134a)。
  10. 根据权利要求9所述的电池(10),其中,所述避让结构(134)包括避让底壁(134b)和围绕所述避让腔(134a)的避让侧壁(134c),所述避让底壁(134b)被构造成在所述泄压机构(213)致动时被破坏,以允许所述排放物穿过所述热管理部件(13)。
  11. 根据权利要求10所述的电池(10),其中,所述避让底壁(134b)包括局部泄放机构,所述局部泄放机构被构造为在所述泄压机构(213)致动时被致动以允许至少来自所述电池单体(20)的排放物穿过所述热管理部件(13)排出。
  12. 根据权利要求10所述的电池(10),其中,所述避让侧壁(134c)相对于所述避让底壁(134b)成预定角度,并且所述预定角度在105°和175°之间。
  13. 根据权利要求10-12中任一项所述的电池(10),其中,所述避让侧壁(134c)被构造成在所述泄压机构(213)致动时被破坏,从而使所述流体流出。
  14. 根据权利要求1-13中任一项所述的电池(10),其中,所述电池(10)还包括:
    收集腔(11b),所述收集腔(11b)相对于所述泄压机构(213)布置于所述热管理部件(13)的另一侧,并被构造成在所述泄压机构(213)致动时收集所述排放物。
  15. 根据权利要求14所述的电池(10),其中,所述梁(114)具有中空空间,所述中空空间构成所述收集腔(11b)。
  16. 根据权利要求14或15所述的电池(10),其中,所述支撑部件(16)还包括附加收集腔,所述附加收集腔与所述收集腔(11b)可操作地连通于所述收集腔(11b)的下部或底部。
  17. 根据权利要求14-16中任一项所述的电池(10),其中,所述收集腔(11b)内设有导流结构,所述导流结构被构造为能够有利于将所述排放物引导至预定位置。
  18. 根据权利要求1-17中任一项所述的电池(10),其中,所述流体为冷却介质,所述热管理部件(13)用于容纳所述冷却介质,以给所述电池单体(20)降温。
  19. 一种装置,包括如权利要求1-18所述的电池,所述电池用于提供电能。
  20. 一种制备电池的方法,包括:
    提供多个电池单体(20),所述多个电池单体(20)中的至少一个电池单体(20)包括:
    至少两个壁,所述至少两个壁包括相交设置的第一壁和第二壁;和
    泄压机构(213),所述泄压机构(213)设置于所述第一壁,所述泄压机构(213)用于在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    提供热管理部件(13),并将所述热管理部件(13)附接至所述第一壁,所述热管理部件(13)用于容纳流体以调节所述电池单体(20)的温度,并且被构造成在所述泄压机构(213)致动时,从所述电池单体内排出的排放物穿过所述热管理部件(13);以及
    提供支撑部件(16),并将所述支撑部件(16)附接至所述第二壁,以支撑所述电池单体(20)。
  21. 根据权利要求20所述的方法,其中,所述方法还包括:
    提供箱体(11),所述箱体(11)包括盖体(111)和箱壳(112),所述箱壳(112)和所述盖体(111)共同包围形成用于容纳所述电池单体(20)的电气腔(11a);以及
    在所述箱壳(112)的内侧提供所述支撑部件(16),或者,将所述箱壳(112)的一部分作为所述支撑部件(16)。
  22. 根据权利要求21所述的方法,其中,所述箱体(11)还包括在彼此相对布置的所述盖体(111)和所述箱壳(112)之间延伸的梁(114);并且
    提供所述热管理部件(13)包括,将所述热管理部件(13)布置在所述梁(114) 和所述第一壁之间。
  23. 一种制备电池的设备,包括:
    电池单体制备模块,用于制备多个电池单体(20),所述多个电池单体(20)中的至少一个电池单体(20)包括:
    至少两个壁,所述至少两个壁包括相交设置的第一壁和第二壁;和
    泄压机构(213),所述泄压机构(213)设置于所述第一壁,所述泄压机构(213)用于在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    热管理部件制备模块,用于制备热管理部件(13),所述热管理部件(13)用于容纳流体以调节所述电池单体(20)的温度,并且被构造成在所述泄压机构(213)致动时,从所述电池单体内排出的排放物穿过所述热管理部件(13);
    支撑部件制备模块,用于制备支撑部件(16),所述支撑部件(16)用于支撑所述电池单体(20);以及
    装配模块,用于将所述热管理部件(13)附接至所述第一壁以及将所述支撑部件(16)附接至所述第二壁。
PCT/CN2020/101440 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备 WO2022006895A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20803067.6A EP3965213B1 (en) 2020-07-10 2020-07-10 Battery and related apparatus thereof, preparation method and preparation device
CN202080005840.0A CN114175363B (zh) 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备
PCT/CN2020/101440 WO2022006895A1 (zh) 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备
KR1020227018654A KR20220095224A (ko) 2020-07-10 2020-07-10 배터리 및 관련 장치, 제조 방법 및 제조 장치
JP2022534435A JP7419533B2 (ja) 2020-07-10 2020-07-10 電池、その関連装置、製造方法及び製造機器
US17/123,092 US11955654B2 (en) 2020-07-10 2020-12-15 Battery, and related device, preparation method and preparation apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101440 WO2022006895A1 (zh) 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/123,092 Continuation US11955654B2 (en) 2020-07-10 2020-12-15 Battery, and related device, preparation method and preparation apparatus thereof

Publications (1)

Publication Number Publication Date
WO2022006895A1 true WO2022006895A1 (zh) 2022-01-13

Family

ID=79173126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101440 WO2022006895A1 (zh) 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备

Country Status (6)

Country Link
US (1) US11955654B2 (zh)
EP (1) EP3965213B1 (zh)
JP (1) JP7419533B2 (zh)
KR (1) KR20220095224A (zh)
CN (1) CN114175363B (zh)
WO (1) WO2022006895A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036533A1 (zh) * 2022-08-17 2024-02-22 宁德时代新能源科技股份有限公司 电池和用电装置
WO2024036535A1 (zh) * 2022-08-17 2024-02-22 宁德时代新能源科技股份有限公司 热管理部件、箱体组件、电池和用电装置
WO2024036528A1 (zh) * 2022-08-17 2024-02-22 宁德时代新能源科技股份有限公司 箱体组件、电池及用电装置
WO2024065717A1 (zh) * 2022-09-30 2024-04-04 宁德时代新能源科技股份有限公司 电池及用电设备
WO2024065786A1 (zh) * 2022-09-30 2024-04-04 宁德时代新能源科技股份有限公司 包装壳、电池单体、电池模组、电池及用电装置
WO2024077604A1 (zh) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 电池和用电装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114175364B (zh) 2020-07-10 2024-02-23 宁德时代新能源科技股份有限公司 电池、用电装置、制备电池的方法和装置
EP3965213B1 (en) 2020-07-10 2023-03-29 Contemporary Amperex Technology Co., Limited Battery and related apparatus thereof, preparation method and preparation device
CA3156564A1 (en) 2020-07-10 2022-01-13 Contemporary Amperex Technology Co., Limited Case of battery, battery, power consumption device, and method and device for preparing battery
CN117063338A (zh) * 2022-01-14 2023-11-14 宁德时代新能源科技股份有限公司 电池、用电设备、制备电池的方法和设备
CN114374049A (zh) * 2022-02-10 2022-04-19 中创新航科技股份有限公司 电池箱体及电池包
CN117941152A (zh) * 2022-07-15 2024-04-26 宁德时代新能源科技股份有限公司 电池和用电装置
KR20240033834A (ko) * 2022-09-06 2024-03-13 주식회사 엘지에너지솔루션 배터리 팩 및 이를 포함하는 자동차
CN116845473B (zh) * 2023-09-01 2024-02-23 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110293974A1 (en) * 2010-06-01 2011-12-01 Ji-Hyoung Yoon Battery pack
CN106784489A (zh) * 2017-01-20 2017-05-31 江门市大长江集团有限公司 电池盒、电芯安装组件及电池包
US20180351219A1 (en) * 2017-05-31 2018-12-06 NextEv USA, Inc. Battery cell cooling plate with cell vents
CN110061329A (zh) * 2018-01-19 2019-07-26 翰昂汽车零部件有限公司 具有集成排气口的电池冷却板

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017648B4 (de) * 2005-04-15 2008-01-10 Daimlerchrysler Ag Flüssigkeitsgekühlte Batterie und Verfahren zum Betreiben einer solchen
JP2007027011A (ja) 2005-07-20 2007-02-01 Sanyo Electric Co Ltd 電源装置
JP5344932B2 (ja) 2006-03-06 2013-11-20 エルジー・ケム・リミテッド 中型または大型電池モジュール
CN101385187B (zh) 2006-04-19 2011-02-23 Temic汽车电机有限公司 用于能量储存器的热交换器
RU60792U1 (ru) 2006-10-10 2007-01-27 Открытое акционерное общество "Литий-Элемент" Первичная литиевая батарея
US20090159354A1 (en) 2007-12-25 2009-06-25 Wenfeng Jiang Battery system having interconnected battery packs each having multiple electrochemical storage cells
JP5231026B2 (ja) 2008-01-10 2013-07-10 日立ビークルエナジー株式会社 電池モジュール
KR101023919B1 (ko) 2008-06-09 2011-03-22 삼성에스디아이 주식회사 리튬 이차전지
DE102008043789A1 (de) 2008-11-17 2010-05-20 Robert Bosch Gmbh Batteriemodul
KR101029837B1 (ko) 2009-01-06 2011-04-15 주식회사 엘지화학 신규한 구조의 전지모듈 및 이를 포함하는 중대형 전지팩
US9093726B2 (en) 2009-09-12 2015-07-28 Tesla Motors, Inc. Active thermal runaway mitigation system for use within a battery pack
JP5466906B2 (ja) * 2009-09-18 2014-04-09 パナソニック株式会社 電池モジュール
JP5537111B2 (ja) 2009-09-30 2014-07-02 株式会社東芝 二次電池装置
DE102009046385A1 (de) 2009-11-04 2011-05-05 SB LiMotive Company Ltd., Suwon Batterie mit Entgasungssystem und Verfahren zum Abführen von Austretungen
KR20130043154A (ko) 2010-08-06 2013-04-29 파나소닉 주식회사 전지 모듈
KR101191660B1 (ko) * 2010-11-08 2012-10-17 에스비리모티브 주식회사 전지 모듈
JPWO2012101981A1 (ja) * 2011-01-25 2014-06-30 パナソニック株式会社 電池モジュール及びそれに用いる組電池
WO2012138576A1 (en) 2011-04-05 2012-10-11 Blacklight Power, Inc. H2o-based electrochemical hydrogen-catalyst power system
EP2541666B1 (en) * 2011-07-01 2014-08-20 Autoliv Development AB A battery safety arrangement for a motor vehicle
DE102011112688A1 (de) 2011-09-05 2013-03-07 Audi Ag Batterie für ein Fahrzeug und Fahrzeug
US9689624B2 (en) * 2011-11-18 2017-06-27 GM Global Technology Operations LLC Method for mitigating thermal propagation of batteries using heat pipes
US9066420B2 (en) 2012-03-16 2015-06-23 Hamilton Sundstrand Corporation Explosion proof by containment enclosure for housing electrical equipment
DE102013201021A1 (de) 2013-01-23 2014-07-24 Robert Bosch Gmbh Batteriemodul mit mehreren Batteriezellen sowie Behälter zur Aufnahme einer Batteriezelle
JP6279834B2 (ja) * 2013-02-20 2018-02-14 ホーチキ株式会社 蓄電装置及びそれを使用する移動体又は施設
US9912021B2 (en) 2013-05-17 2018-03-06 Hamilton Sundstrand Corporation Electrical storage device thermal management systems
JP2015018706A (ja) 2013-07-11 2015-01-29 株式会社豊田自動織機 蓄電装置モジュール
US9761917B2 (en) 2013-09-30 2017-09-12 Panasonic Intellectual Property Management Co., Ltd. Battery unit
CN203589111U (zh) 2013-11-27 2014-05-07 浙江正电新能源有限公司 单体电池温度控制防爆膜装置
KR102197995B1 (ko) * 2014-01-29 2021-01-04 삼성에스디아이 주식회사 배터리 모듈
DE102014001352A1 (de) 2014-02-01 2015-08-06 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Kraftfahrzeug mit Luftzufuhr für eine Batterieaufnahme
GB201406692D0 (en) 2014-04-14 2014-05-28 Williams Grand Prix Eng Heat transfer system
DE102014114023A1 (de) 2014-09-26 2016-03-31 Obrist Technologies Gmbh Batteriesystem
JP6506942B2 (ja) 2014-10-23 2019-04-24 日東電工株式会社 断熱材およびバッテリーカバー
KR101728495B1 (ko) 2014-12-03 2017-04-19 주식회사 엘지화학 이차전지 벤팅 가스 분석장치 및 그의 분석방법
EP3266056B1 (en) 2015-03-06 2020-07-15 Sterling PBES Energy Solutions Ltd. Battery module with thermal runaway and gas exhaust management system
JP6248972B2 (ja) 2015-03-23 2017-12-20 トヨタ自動車株式会社 電池パック
JP6686286B2 (ja) 2015-03-30 2020-04-22 三洋電機株式会社 角形二次電池及びそれを用いた組電池
US20170088006A1 (en) 2015-09-24 2017-03-30 Ford Global Technologies, Llc Hybrid vehicle with combined cabin and battery cooling
JP2018538655A (ja) 2015-10-02 2018-12-27 アーコニック インコーポレイテッドArconic Inc. エネルギー貯蔵装置および関連方法
CN106785182B (zh) 2015-11-23 2019-06-11 宁德时代新能源科技股份有限公司 电池包
US9595705B1 (en) * 2016-03-03 2017-03-14 Faraday&Future Inc. Electric vehicle battery
CN205488300U (zh) 2016-04-08 2016-08-17 翟顺利 一种锂电池组的安全防护装置
US10903465B2 (en) 2016-06-30 2021-01-26 Sanyo Electric Co., Ltd. Battery block
CN110165104B (zh) 2016-07-29 2022-11-25 苹果公司 高密度电池组
JP6560179B2 (ja) 2016-10-17 2019-08-14 矢崎総業株式会社 バスバーモジュール
WO2018100983A1 (ja) 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 電池モジュール
EP3333932B1 (en) * 2016-12-06 2019-02-13 Samsung SDI Co., Ltd. Battery system
CN206301865U (zh) 2016-12-19 2017-07-04 安徽江淮汽车集团股份有限公司 一种锂离子蓄电池模组结构
CN206401400U (zh) 2017-01-20 2017-08-11 江门市大长江集团有限公司 电池盒、电芯安装组件及电池包
KR101799540B1 (ko) 2017-01-23 2017-11-20 (주)알씨디에이치 원전 dc비상전원 공급 장치용 전지모듈
WO2018140309A1 (en) 2017-01-24 2018-08-02 Ticona Llc Battery module for an electric vehicle
DE102017105286A1 (de) 2017-03-13 2018-09-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Notentgasungsanordnung für ein Gehäuse im Kfz-Bereich
CN207097998U (zh) 2017-05-18 2018-03-13 华霆(合肥)动力技术有限公司 电池热管理装置及动力电池
US20200136110A1 (en) 2017-06-08 2020-04-30 Sanyo Electric Co., Ltd. Battery module
JP6850208B2 (ja) 2017-06-19 2021-03-31 株式会社Gsユアサ 蓄電素子及び蓄電モジュール
DE102017212223A1 (de) * 2017-07-18 2019-01-24 Bayerische Motoren Werke Aktiengesellschaft Batterie eines elektrisch angetriebenen kraftfahrzeugs
JP2019029245A (ja) 2017-08-01 2019-02-21 株式会社Gsユアサ 蓄電装置
KR102258178B1 (ko) 2017-10-27 2021-06-03 주식회사 엘지에너지솔루션 냉각 및 조립 구조를 단순화시킨 배터리 모듈 및 그 제조방법
JP7010671B2 (ja) 2017-11-15 2022-01-26 スカッドエレクトロニクスジャパン株式会社 リチウムイオン電池モジュール
US20190173074A1 (en) 2017-12-04 2019-06-06 Kabushiki Kaisha Toshiba Battery
WO2019118552A1 (en) 2017-12-13 2019-06-20 Cadenza Innovation, Inc. Overcharge electrical disconnect system
RU2675595C1 (ru) 2017-12-29 2018-12-20 Публичное акционерное общество "Сатурн", (ПАО "Сатурн") Клапан герметичного литий-ионного аккумулятора
CN208298909U (zh) * 2018-01-29 2018-12-28 浙江美都海创锂电科技有限公司 一种安全防爆圆柱型电池模块
CN110277533B (zh) 2018-03-16 2020-12-29 宁德时代新能源科技股份有限公司 电池模组
CN208256764U (zh) 2018-05-24 2018-12-18 宁德时代新能源科技股份有限公司 上盖组件及电池模组
US20210296721A1 (en) * 2018-07-31 2021-09-23 Panasonic Intellectual Property Management Co., Ltd. Battery module and battery pack
RU186666U1 (ru) 2018-10-26 2019-01-29 Акционерное общество "Литий-Элемент" Первичная литиевая батарея
US11394079B2 (en) * 2018-11-13 2022-07-19 Rivian Ip Holdings, Llc Battery cell pack thermal runaway mitigation
CN209104274U (zh) 2018-12-28 2019-07-12 宁德时代新能源科技股份有限公司 电池模组
CN111384324B (zh) 2018-12-28 2021-08-06 宁德时代新能源科技股份有限公司 电池模组
CN209071461U (zh) 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包
CN111106277B (zh) 2018-12-29 2021-05-07 宁德时代新能源科技股份有限公司 电池包
EP3916834A4 (en) 2019-01-25 2022-03-16 SANYO Electric Co., Ltd. BATTERY PACK
US11296386B2 (en) 2019-02-06 2022-04-05 GS Yuasa Lithium Power Inc. Expandable electrochemical cell effluent containment device and corresponding systems and methods
CN209401662U (zh) 2019-03-28 2019-09-17 宁德时代新能源科技股份有限公司 电池包
CN209804781U (zh) 2019-05-10 2019-12-17 北京新能源汽车股份有限公司 电池模组及具有其的车辆
CN209626294U (zh) 2019-05-27 2019-11-12 广东旭派锂能能源有限公司 一种易拆装轻质锂电池
CN209822772U (zh) 2019-06-28 2019-12-20 宁德时代新能源科技股份有限公司 电池模组
DE102019118905A1 (de) 2019-07-12 2021-01-14 Carl Freudenberg Kg Kühlsystem und Energiespeicher mit einem Kühlsystem
CN210467893U (zh) 2019-08-07 2020-05-05 江苏时代新能源科技有限公司 二次电池及电池包
CN210129540U (zh) 2019-08-15 2020-03-06 宁德时代新能源科技股份有限公司 电池模组
CN210576161U (zh) 2019-09-20 2020-05-19 深圳市比克动力电池有限公司 一种具有高安全性能的锂离子电池及电池模组
CN210576163U (zh) 2019-10-29 2020-05-19 蜂巢能源科技有限公司 电池模组
CN110707260A (zh) 2019-11-12 2020-01-17 深圳未名七号新能源有限公司 储能装置
CN211376746U (zh) 2020-02-21 2020-08-28 宁德时代新能源科技股份有限公司 电池组及装置
CN213601965U (zh) * 2020-07-10 2021-07-02 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213026308U (zh) 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213026309U (zh) 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电装置和制备电池的装置
EP3965214B1 (en) * 2020-07-10 2023-06-21 Contemporary Amperex Technology Co., Limited Battery and related apparatus thereof and preparation method and preparation device therefor
EP3965213B1 (en) 2020-07-10 2023-03-29 Contemporary Amperex Technology Co., Limited Battery and related apparatus thereof, preparation method and preparation device
US20220021068A1 (en) * 2020-07-10 2022-01-20 Contemporary Amperex Technology Co., Limited Battery, and related device, preparation method and preparation apparatus thereof
CA3156564A1 (en) 2020-07-10 2022-01-13 Contemporary Amperex Technology Co., Limited Case of battery, battery, power consumption device, and method and device for preparing battery
CN114175364B (zh) 2020-07-10 2024-02-23 宁德时代新能源科技股份有限公司 电池、用电装置、制备电池的方法和装置
CN213584016U (zh) 2020-07-10 2021-06-29 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CA3156571A1 (en) * 2020-07-10 2022-01-13 Contemporary Amperex Technology Co., Limited Battery, power consumption device, method and device for preparing battery
EP3965197B1 (en) 2020-07-10 2023-03-15 Contemporary Amperex Technology Co., Limited Battery, electric device, and battery preparation method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110293974A1 (en) * 2010-06-01 2011-12-01 Ji-Hyoung Yoon Battery pack
CN106784489A (zh) * 2017-01-20 2017-05-31 江门市大长江集团有限公司 电池盒、电芯安装组件及电池包
US20180351219A1 (en) * 2017-05-31 2018-12-06 NextEv USA, Inc. Battery cell cooling plate with cell vents
CN110061329A (zh) * 2018-01-19 2019-07-26 翰昂汽车零部件有限公司 具有集成排气口的电池冷却板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965213A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036533A1 (zh) * 2022-08-17 2024-02-22 宁德时代新能源科技股份有限公司 电池和用电装置
WO2024036535A1 (zh) * 2022-08-17 2024-02-22 宁德时代新能源科技股份有限公司 热管理部件、箱体组件、电池和用电装置
WO2024036528A1 (zh) * 2022-08-17 2024-02-22 宁德时代新能源科技股份有限公司 箱体组件、电池及用电装置
WO2024065717A1 (zh) * 2022-09-30 2024-04-04 宁德时代新能源科技股份有限公司 电池及用电设备
WO2024065786A1 (zh) * 2022-09-30 2024-04-04 宁德时代新能源科技股份有限公司 包装壳、电池单体、电池模组、电池及用电装置
WO2024077604A1 (zh) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 电池和用电装置

Also Published As

Publication number Publication date
US20220013849A1 (en) 2022-01-13
EP3965213B1 (en) 2023-03-29
EP3965213A4 (en) 2022-03-09
CN114175363B (zh) 2024-02-20
KR20220095224A (ko) 2022-07-06
JP2023505969A (ja) 2023-02-14
EP3965213A1 (en) 2022-03-09
JP7419533B2 (ja) 2024-01-22
CN114175363A (zh) 2022-03-11
US11955654B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2022006895A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
US11967725B2 (en) Case of battery, battery, power consumption device, and method and device for preparing battery
WO2022006897A1 (zh) 电池及其相关装置、制备方法和制备设备
JP7429719B2 (ja) 電池、電力消費機器、電池の製造方法及び装置
EP3958378B1 (en) Battery, electric device, and method and device for preparing battery
CN213636145U (zh) 电池、包括电池的装置和制备电池的设备
WO2022007435A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022205076A1 (zh) 电池、用电装置、制备电池的方法和装置
RU2808234C1 (ru) Батарея и относящееся к ней устройство, способ ее изготовления и аппарат для ее изготовления
RU2805991C1 (ru) Батарея и связанное с ней устройство, способ ее изготовления и устройство для ее изготовления

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020803067

Country of ref document: EP

Effective date: 20201116

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20803067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227018654

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022534435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE