WO2024065786A1 - 包装壳、电池单体、电池模组、电池及用电装置 - Google Patents
包装壳、电池单体、电池模组、电池及用电装置 Download PDFInfo
- Publication number
- WO2024065786A1 WO2024065786A1 PCT/CN2022/123531 CN2022123531W WO2024065786A1 WO 2024065786 A1 WO2024065786 A1 WO 2024065786A1 CN 2022123531 W CN2022123531 W CN 2022123531W WO 2024065786 A1 WO2024065786 A1 WO 2024065786A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- pressure relief
- battery cell
- packaging shell
- sealing
- Prior art date
Links
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 85
- 229910052751 metal Inorganic materials 0.000 claims abstract description 68
- 239000002184 metal Substances 0.000 claims abstract description 68
- 238000007789 sealing Methods 0.000 claims description 73
- 239000000463 material Substances 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 10
- 238000005507 spraying Methods 0.000 claims description 10
- 238000005192 partition Methods 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 7
- 238000007906 compression Methods 0.000 claims description 7
- 239000007921 spray Substances 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims 3
- 239000010409 thin film Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 118
- 239000010408 film Substances 0.000 description 71
- 238000000034 method Methods 0.000 description 17
- 230000009286 beneficial effect Effects 0.000 description 15
- 238000004880 explosion Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- 239000007773 negative electrode material Substances 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 5
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 206010038743 Restlessness Diseases 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004079 fireproofing Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/105—Pouches or flexible bags
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the field of battery technology, and in particular to a packaging shell, a battery cell, a battery module, a battery and an electrical device.
- explosion-proof valves When a battery cell encounters overheating, overcharging, internal short circuit, collision, extrusion, etc., the electrode assembly inside the battery cell will generate a lot of heat and cause expansion. When the expansion is limited or the internal pressure is too high, the battery cell is very likely to explode, causing harm to people's lives and property.
- some battery cells in the related art use explosion-proof valves.
- the design of explosion-proof valves is not only complex in structure and high in cost, but also has a limited scope of application. For example, it cannot be set in soft-pack battery cells.
- the embodiments of the present application provide a packaging shell, a battery cell, a battery module, a battery and an electrical device, which can achieve directional pressure relief and eruption to avoid the explosion problem of the battery cell.
- the method for forming the pressure relief part is simple, easy to process, low in cost and has a wide range of applications.
- an embodiment of the present application provides a packaging shell for a battery cell, the packaging shell defining a housing cavity for housing an electrode assembly, the packaging shell comprising a stacked film layer and a metal layer, the metal layer having a notch area, and a portion of the film layer covering the notch area forming a pressure relief portion.
- the position of the film layer corresponding to the notch area is formed into a pressure relief portion that can seal the notch area and easily break through to release pressure, thereby achieving directional pressure relief of the battery cell while meeting the sealing requirements of the packaging shell, avoiding the explosion problem caused by excessive internal pressure of the battery cell, and because the pressure relief direction is determined, the diffusion impact range of the pressure relief eruption can be effectively reduced, thereby improving the overall safety of the battery.
- the method of forming the pressure relief portion of the packaging shell proposed in this application is simple, easy to process, and low in cost. It is applicable to cylindrical battery cells, square battery cells, and soft-pack battery cells, and has a wide range of applications.
- the two sides of the thickness of the accommodating cavity are end surface areas, the end surface areas on both sides are connected to the side area, and the pressure relief part is arranged in the side area.
- the side area is suitable for being provided with an electrical connection part, and the pressure relief part is arranged on the opposite side of the electrical connection part.
- the pressure relief portion is suitable for being placed on both sides of the length of the accommodating cavity together with the electrical connection portion.
- the electrical connection portion can be better prevented from being affected by thermal runaway.
- the pressure relief portion is adapted to be arranged corresponding to the axial end of the electrode assembly which is a wound electrode assembly. In the above technical solution, it is beneficial to quickly relieve pressure.
- the pressure relief portion is adapted to be arranged on the peripheral side of the electrode assembly which is a laminated electrode assembly. In the above technical solution, it is beneficial to release pressure quickly.
- the film layer includes an inner film layer covering the inner side of the metal layer, and/or an outer film layer covering the outer side of the metal layer.
- the structural reliability of the packaging shell is better.
- the packaging shell is formed by at least one heat-sealing film that is sealed and pressed, and the heat-sealing film includes the metal layer and the film layers located on both sides of the metal layer.
- the packaging shell is convenient for packaging soft-pack battery cells.
- the pressure relief portion is located at the heat-sealed edge. In the above technical solution, it is beneficial to effectively release pressure.
- the heat-sealed edge includes a weak seal area
- the sealing strength of the weak seal area is less than the sealing strength of the remaining area of the heat-sealed edge
- the pressure relief portion is located in the weak seal area.
- the sealing width of the weak sealing area is smaller than the sealing width of the remaining area; or the sealing compression amount of the weak sealing area is smaller than the sealing compression amount of the remaining area.
- the notch region passes through the edge of the metal layer. In the above technical solution, it is easy to process.
- the notch region is spaced apart from the edge of the metal layer.
- the design is flexible.
- an embodiment of the present application further provides a battery cell, comprising an electrode assembly and a packaging shell of the above-mentioned battery cell, wherein the electrode assembly is disposed in the accommodating cavity.
- an embodiment of the present application further provides a battery module, comprising a module housing and at least one of the above-mentioned battery cells, wherein the battery cell is placed in a receiving space formed by the module housing.
- one side surface of the module housing is a set surface
- an explosion-proof portion is provided on the set surface
- the pressure relief portion of the battery cell is arranged toward the set surface.
- the thickness direction of each battery cell is a first direction
- the plurality of battery cells in the module housing are arranged into a battery pack along the first direction
- the setting surface is provided on one side of the plurality of battery packs in a second direction, and the second direction intersects the first direction.
- the explosion-proof portion is arranged corresponding to the central position of the battery pack in the first direction. In the above technical solution, it is beneficial to quickly release pressure.
- the module housing has a power connection portion, and the power connection portion and the explosion-proof portion are arranged on different sides. In the above technical solution, it is beneficial to improve the influence of thermal runaway on the power connection portion.
- the power connection part and the explosion-proof part are arranged on opposite sides of the module housing. In the above technical solution, it is beneficial to improve the influence of thermal runaway on the power connection part.
- an embodiment of the present application further provides a battery, comprising: a battery module and an exhaust assembly, wherein the battery module is the above-mentioned battery module, the exhaust assembly defines an exhaust cavity, the explosion-proof portion of the battery module is arranged toward the exhaust assembly, and the explosion-proof portion is suitable for spraying into the exhaust cavity.
- the battery modules are respectively arranged on both sides of the discharge assembly, and the discharge cavity has a spray-proof part, and the spray-proof part includes a particle processing part and/or a fireproof material part.
- the spray-proof part includes a particle processing part and/or a fireproof material part.
- the side of the exhaust assembly facing the battery module has a heat exchange portion.
- the battery further comprises a box body, a plurality of the battery modules are arranged in the box body, and the discharge assembly constitutes a partition beam and/or a side beam of the box body.
- an embodiment of the present application further provides an electrical device comprising the above-mentioned battery.
- FIG1 is a schematic diagram of a battery cell provided in some embodiments of the present application.
- FIG2 is a cross-sectional view of a battery cell provided in some embodiments of the present application.
- FIG3 is a cross-sectional view of a packaging shell provided in some embodiments of the present application.
- FIG4 is a cross-sectional view of a packaging shell provided in some embodiments of the present application.
- FIG5 is a schematic diagram of a battery cell provided in some embodiments of the present application.
- FIG6 is a schematic diagram of a metal layer provided in some embodiments of the present application.
- FIG7 is a schematic diagram of a metal layer provided in some embodiments of the present application.
- FIG8 is a schematic diagram of a battery module provided in some embodiments of the present application.
- FIG9 is a schematic diagram of a battery provided in some embodiments of the present application.
- FIG10 is an exploded view of a battery provided in some embodiments of the present application.
- FIG11 is a schematic diagram of a discharge assembly provided in some embodiments of the present application.
- FIG12 is a partial diagram of an exhaust assembly provided in some embodiments of the present application.
- FIG. 13 is a schematic diagram of a vehicle provided in some embodiments of the present application.
- the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
- installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
- a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
- the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
- a battery refers to a single physical module that includes one or more battery cells to provide higher voltage and capacity.
- the battery mentioned in this application may include a battery module or a battery pack.
- Some batteries may include a casing for encapsulating one or more battery cells or multiple battery modules. The casing can prevent liquids or other foreign matter from affecting the charging or discharging of the battery cells.
- some batteries may not include the above-mentioned casing and are directly set in the battery installation compartment of the electrical device.
- battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries or magnesium-ion batteries, etc., and the embodiments of the present application do not limit this.
- Battery cells may be cylindrical, flat, rectangular or other shapes, etc., and the embodiments of the present application do not limit this. Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application do not limit this.
- a battery cell may include a packaging shell, an electrode assembly and an electrolyte, and the packaging shell is used to contain the electrode assembly and the electrolyte.
- the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
- the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
- the positive electrode sheet includes a positive electrode collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode collector, the positive electrode collector not coated with the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer, and the positive electrode collector not coated with the positive electrode active material layer serves as a positive electrode ear.
- the material of the positive electrode collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
- the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
- the negative electrode active material layer is coated on the surface of the negative electrode current collector.
- the negative electrode current collector not coated with the negative electrode active material layer protrudes from the negative electrode current collector coated with the negative electrode active material layer.
- the negative electrode current collector not coated with the negative electrode active material layer serves as a negative electrode tab.
- the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon, etc. In order to ensure that a large current is passed without melting, the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
- the material of the isolation film may be PP (polypropylene) or PE (polyethylene), etc.
- the electrode assembly may be a winding structure or a stacked structure, but the embodiments of the present application are not limited thereto.
- the applicant has proposed a packaging shell 1 of a battery cell 100 after in-depth research, and the packaging shell 1 is set to include a film layer 11 and a metal layer 12 that are stacked, the metal layer 12 has a notch area 121, and the part of the film layer 11 covering the notch area 121 is formed as a pressure relief portion 111.
- the notch area 121 by setting a part of the metal layer 12 of the packaging shell 1 as the notch area 121, so that the position of the film layer 11 corresponding to the notch area 121 is formed as a pressure relief portion 111 that can be sealed and easily broken, so that on the premise of meeting the sealing requirements of the packaging shell 1, the directional pressure relief of the battery cell 100 can be achieved, and the explosion problem caused by excessive internal pressure of the battery cell 100 can be avoided.
- the pressure relief direction is determined, the diffusion influence range of the pressure relief eruption can be effectively reduced, and the overall safety of the battery 10000 can be improved.
- the method of forming the pressure relief portion 111 of the packaging shell 1 proposed in this application is simple, easy to process, and low in cost. It is applicable to cylindrical battery cells, square battery cells, and soft-pack battery cells, and has a wide range of applications.
- the battery 10000 disclosed in the embodiment of the present application can be used in, but not limited to, an electric device 20000 such as a vehicle, a ship or an aircraft. Therefore, the embodiment of the present application provides an electric device 20000 using the battery 10000 as a power source, and the electric device 20000 can be, but not limited to, a mobile phone, a tablet, a laptop computer, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, etc.
- the electric toy can include a fixed or mobile electric toy, for example, a game console, an electric car toy, an electric ship toy, an electric airplane toy, etc.
- the spacecraft can include an airplane, a rocket, a space shuttle, a spacecraft, etc.
- the packaging shell 1 according to some embodiments of the present application is described below.
- the packaging shell 1 is used for a battery cell 100 , and the packaging shell 1 defines a receiving chamber 101 for receiving an electrode assembly 2 . It is understood that the electrode assembly 2 and the electrolyte of the battery cell 100 are both disposed in the receiving chamber 101 .
- the packaging shell 1 includes a film layer 11 and a metal layer 12 which are stacked, the metal layer 12 has a notch area 121 , and the portion of the film layer 11 covering the notch area 121 is formed as a pressure relief portion 111 .
- the stacking arrangement of the thin film layer 11 and the metal layer 12 means that the thin film layer 11 covers at least one side surface of the metal layer 12 .
- the number of layers of the film layer 11 is not limited, and it can be a single layer or multiple layers.
- the material of the film layer 11 is not limited, and it can be set to different non-metallic materials according to functional requirements. Therefore, according to the actual situation such as the material of the film layer 11, it can be selected on which side of the thickness of the metal layer 12 the film layer 11 is covered.
- the metal layer 12 is in any form, for example, it can be in the form of a metal plate (for example, a packaging shell for a square battery cell), or a metal foil (for example, a packaging shell for a soft-pack battery cell), etc.
- the material of the metal layer 12 is not limited, and different materials can be selected as needed, which is not limited here.
- the packaging shell 1 of the battery cell 100 of the present application by setting a part of the metal layer 12 of the packaging shell 1 as the notch area 121, the position of the film layer 11 corresponding to the notch area 121 is formed into a pressure relief portion 111 that can seal the notch area 121 and easily break through the pressure relief, so that the directional pressure relief of the battery cell 100 can be achieved on the premise of meeting the sealing requirements of the packaging shell 1, avoiding the explosion problem caused by excessive internal pressure of the battery cell 100, and because the pressure relief direction is determined, the diffusion influence range of the pressure relief eruption can be effectively reduced, and the overall safety of the battery 10000 is improved.
- the method of forming the pressure relief portion 111 of the packaging shell 1 proposed in the present application is simple, easy to process, and low in cost. It is applicable to cylindrical battery cells, square battery cells, and soft-pack battery cells, and has a wide range of applications.
- an explosion-proof valve can be provided on the metal shell to provide pressure relief and explosion prevention.
- the explosion-proof valve has a relatively complex structure and is difficult to install, has a high production cost, and is affected by installation and other conditions, and there is a problem that the reliability of pressure relief is difficult to ensure.
- a notch area 121 can be dug out on the metal shell, and a film can be applied on the metal shell so that the notch area 121 is sealed by the film, thereby obtaining a pressure relief portion 111 corresponding to the notch area 121, which can effectively reduce the difficulty of processing and assembly of the packaging shell 1, reduce processing costs, and improve the reliability of pressure relief and explosion prevention.
- the packaging shell of the soft-pack battery cell forms a local narrow sealing area at the sealing edge position, that is, the local sealing width is smaller than the sealing width at other positions, so that the heat generated inside the soft-pack battery cell can easily break through and spray out from the local narrow sealing area.
- the electrolyte in the soft-pack battery cell will corrode the packaging shell to a certain extent, when the sealing width of the local narrow sealing area is small and the sealing length is large, it is easy to affect the sealing of the soft-pack battery cell, and there is a risk of leakage.
- the notch area 121 can be dug out on the metal layer 12, and the notch area 121 can be sealed with a film covering the metal layer 12 to obtain the pressure relief portion 111, so that pressure relief can be achieved through the pressure relief portion 111 to avoid explosion. Moreover, since the pressure relief portion 111 is provided, directional pressure relief can be achieved, and the adverse effects on other battery cells 100 in the battery 10000 caused by thermal runaway eruption can be reduced.
- the pressure relief portion 111 is formed by the notch area 121 of the metal layer 12, even if the pressure relief portion 111 is located at the edge sealing position, it is not necessary to set it as a local extremely narrow edge sealing to meet the requirement of easy penetration, so as to avoid the hidden danger of liquid leakage, thereby improving the reliability of the battery 10000.
- the two sides of the thickness of the accommodating cavity 101 are end surface areas 1011, and the end surface areas 1011 on both sides are connected to each other to form a side area 1012, and the pressure relief portion 111 is disposed in the side area 1012.
- the thickness direction of the positive and negative electrode sheets in the electrode assembly 2 is usually the thickness direction of the accommodating cavity 101
- the pressure relief eruption direction is usually perpendicular to the thickness direction of the positive and negative electrode sheets, that is, it is equivalent to pressure relief eruption toward the side area 1012.
- the pressure relief portion 111 in the side area 1012 it is beneficial to quickly release pressure and erupt, further avoiding the risk of explosion and improving safety.
- the present application is not limited to this.
- the pressure relief portion 111 may also be disposed in the end surface area 1011 to adapt to different electrode assembly 2 settings, or to meet other requirements such as ease of processing, which will not be elaborated here.
- the type of the electrode assembly 2 in the battery cell 100 to which the packaging shell 1 of the present application is applied is not limited.
- the pressure relief portion 111 is suitable for being arranged at the axial end of the corresponding electrode assembly 2 being a wound electrode assembly.
- the thickness direction of the positive and negative electrode sheets in the wound electrode assembly is perpendicular to the axial direction of the wound electrode assembly, and the pressure relief spraying direction is usually perpendicular to the thickness direction of the positive and negative electrode sheets, that is, it is equivalent to pressure relief spraying toward the axial direction of the wound electrode assembly.
- the pressure relief portion 111 is suitable for being arranged on the peripheral side of the corresponding electrode assembly 2 being a laminated electrode assembly.
- the thickness direction of the positive and negative electrode sheets in the laminated electrode assembly is perpendicular to the peripheral side of the laminated electrode assembly, and the pressure relief spraying direction is usually perpendicular to the thickness direction of the positive and negative electrode sheets, that is, it is equivalent to pressure relief spraying toward the peripheral side of the laminated electrode assembly.
- the side region 1012 is suitable for being provided with an electrical connection portion 3 (such as a pole ear or pole, etc.), and the pressure relief portion 111 is arranged on the opposite side from the electrical connection portion 3. That is to say, the pressure relief portion 111 and the electrical connection portion 3 are not arranged on the same side surface.
- an electrical connection portion 3 such as a pole ear or pole, etc.
- the electrical connection portion 3 and the pressure relief portion 111 are respectively located on different surfaces of the battery cell 100, it is beneficial to ensure that there is a large spacing between the electrical connection portion 3 and the pressure relief portion 111 of the battery cell 100, so as to effectively avoid the conductive particles in the discharge discharged by the battery cell 100 through the pressure relief portion 111 flowing to the electrical connection portion 3 in the case of thermal runaway, causing insulation failure, high-voltage ignition and other problems, and ensure the creepage clearance between the electrical connection portions 3 of the battery cell 100 to avoid short circuit problems and improve the working reliability of the battery cell 100.
- the pressure relief portion 111 is suitable for being placed on both sides of the length of the accommodating cavity 101 together with the electrical connection portion 3.
- the distance between the electrical connection portion 3 and the pressure relief portion 111 can be further increased, and the electrical connection portion 3 can be better protected from the effects of the discharge discharged by the pressure relief portion 111, that is, the probability of being affected is lower, and the safety and reliability of the battery cell 100 are better.
- the present application is not limited to this.
- the pressure relief portion 111 and the electrical connection portion 3 can also be arranged on two adjacent sides of the battery cell 100, or on both sides of the width of the battery cell 100, etc., to meet other different requirements, which will not be elaborated here.
- the film layer 11 may include an inner film layer 11b covering the inner side of the metal layer 12, wherein the “inner side” refers to the side of the metal layer 12 facing the accommodating cavity 101.
- the film layer 11 may be used to perform corresponding functions, such as insulation, heat-melting, and other related functions.
- the film layer 11 may include an outer film layer 11a covering the outer side of the metal layer 12, wherein the “outer side” refers to the side of the metal layer 12 facing away from the accommodating cavity 101.
- the film layer 11 may be used to perform corresponding functions, such as protection, insulation, and other related functions.
- the film layer 11 is multi-layered and includes an inner film layer 11b covering the inner side of the metal layer 12, and also includes an outer film layer 11a covering the outer side of the metal layer 12.
- the sealing performance at the pressure relief portion 111 can be improved to better avoid the risk of liquid leakage.
- the "inside” refers to the side of the metal layer 12 facing the accommodating cavity 101; the “outside” refers to the side of the metal layer 12 facing away from the accommodating cavity 101.
- the packaging shell 1 is formed by sealing and pressing a heat-sealed edge 103 with at least one heat-sealing film 102, and the heat-sealing film 102 includes a metal layer 12 and a film layer 11 located on both sides of the metal layer 12 (i.e., the film layer 11 located on the outside of the metal layer 12 and the film layer 11 located on the inside of the metal layer 12).
- the heat-sealing film 102 includes a metal layer 12 and a film layer 11 located on both sides of the metal layer 12 (i.e., the film layer 11 located on the outside of the metal layer 12 and the film layer 11 located on the inside of the metal layer 12).
- the packaging shell 1 can be used for a soft-pack battery cell
- the heat-sealing film 102 includes: an outer film layer 11a (i.e., the film layer 11 located on the outside of the metal layer 12), a metal layer 12, and an inner film layer 11b (i.e., the film layer 11 located on the inside of the metal layer 12) arranged in sequence from the outside to the inside.
- the packaging shell 1 is formed by two heat-sealing films 102 sealed and pressed with a heat-sealing edge 103
- the two heat-sealing films 102 can be pressed together by a heat press, and the inner film layer 11b melts and fuses together to form a circle of heat-sealing edge 103 at the edge of the two heat-sealing films 102.
- the space between the two heat-sealing films 102 surrounded by the heat-sealing edge 103 is the accommodating cavity 101.
- the packaging shell 1 when the packaging shell 1 is formed by a piece of heat-sealing film 102 sealed and pressed with a heat-sealing edge 103, during packaging, the heat-sealing film 102 is folded in half, and then the remaining three sides are heat-sealed to surround the accommodating cavity 101 between the three-side heat-sealing edges 103 and the fold, which can also achieve the packaging effect, which is not described in detail here.
- the packaging shell 1 can also be formed by three or more pieces of heat-sealing film 102 sealed and pressed with a heat-sealing edge 103, which is not described in detail here.
- the inner film layer 11b may be a polypropylene layer, etc., to play a role of heat-melting connection, etc.
- the outer film layer 11a may be a polyethylene layer or a nylon layer, etc., to play a protective role.
- the metal layer 12 may be an aluminum foil, a steel foil, etc., to play a supporting, insulating, etc. role, which is not limited here.
- the heat-sealing film 102 includes: an outer film layer 11a, a metal layer 12 and an inner film layer 11b arranged in sequence from the outside to the inside, the number of outer film layers 11a is not limited, and the number of inner film layers 11b is also not limited.
- the outer film layer 11a and the inner film layer 11b can be connected (for example, as shown in FIG. 4) or not connected (for example, as shown in FIG. 3), and there is no limitation here.
- the packaging shell 1 when the packaging shell 1 is used for a square battery cell, as shown in FIG5 , the packaging shell 1 may include a metal layer 12 in the form of a metal plate and at least one film layer 11, and the film layer 11 may be located on the inner side (i.e., the inner film layer 11b) or the outer side (i.e., the outer film layer 11a) of the metal layer 12.
- the material of the metal layer 12 is not limited, such as a steel plate or an aluminum plate, etc., which will not be described in detail here.
- the pressure relief portion 111 may be located at the heat-sealing edge 103.
- the heat-sealing edge 103 is relatively weak, the heat-sealing edge 103 and the pressure relief portion 111 are superimposed to better meet the pressure relief and eruption requirements.
- the heat-sealed edge 103 may include a weak-sealed area, the sealing strength of the weak-sealed area is less than the sealing strength of the remaining areas of the heat-sealed edge 103, and the pressure relief portion 111 is located in the weak-sealed area.
- the weak-sealed area is more easily damaged than other parts of the heat-sealed edge 103. Therefore, by arranging the pressure relief portion 111 in the weak-sealed area, the pressure relief and eruption requirements can be better met by superimposing the weak-sealed area and the pressure relief portion 111.
- the formation method of the weak seal area is not limited.
- the sealing width of the weak seal area is smaller than the sealing width of the remaining areas.
- the portion with a relatively narrow edge sealing width is used as the weak seal area, which is convenient for processing.
- the width of the weak seal area does not need to be extremely narrow, thereby meeting the pressure relief and eruption requirements while avoiding leakage problems.
- the sealing compression amount of the weak sealing area is smaller than that of the remaining areas.
- the part with relatively smaller sealing compression amount is used as the weak sealing area, which is convenient for processing and can better avoid leakage problems.
- the notch region 121 may penetrate the edge of the metal layer 12. Thus, it is convenient to process the notch region 121. Moreover, when the pressure relief portion 111 is located at the heat-sealed edge 103, by setting the notch region 121 to penetrate the edge of the metal layer 12, the position requirement of the pressure relief portion 111 can be better met.
- the notch area 121 may also be spaced apart from the edge of the metal layer 12. In other words, the notch area 121 does not penetrate the edge of the metal layer 12, so that the setting position of the pressure relief portion 111 can be flexible and varied to meet a variety of different design requirements, which will not be described in detail here.
- the number of notch areas 121 is not limited, and therefore the number of corresponding pressure relief parts 111 is not limited.
- multiple pressure relief parts 111 may be provided, which is conducive to rapid pressure relief eruption, and in this case, the erupted emissions can be collected from multiple directions.
- a battery cell 100 may include an electrode assembly 2 and a packaging shell 1, wherein the packaging shell 1 defines a housing cavity 101 for housing the electrode assembly 2, and the packaging shell 1 is a packaging shell 1 of a battery cell 100 according to any embodiment of the present application.
- the packaging shell 1 of the present application by adopting the packaging shell 1 of the present application, by setting a part of the metal layer 12 of the packaging shell 1 as the notch area 121, so that the position of the film layer 11 corresponding to the notch area 121 is formed as a pressure relief portion 111 that can seal the notch area 121 and easily break through the pressure relief, so that on the premise of meeting the sealing requirements of the packaging shell 1, the directional pressure relief of the battery cell 100 can be achieved, and the explosion problem caused by excessive internal pressure of the battery cell 100 is avoided. Moreover, since the pressure relief direction is determined, the diffusion influence range of the pressure relief eruption can be effectively reduced, and the overall safety of the battery 10000 is improved.
- the method of forming the pressure relief portion 111 of the packaging shell 1 proposed in the present application is simple, easy to process, and low in cost. It is applicable to cylindrical battery cells, square battery cells, and soft-pack battery cells, and has a wide range of applications, so that the type of battery cell 100 in the embodiment of the present application is not limited.
- the battery module 1000 may include a module housing 200 and at least one battery cell 100 according to an embodiment of the present application, and the battery cell 100 is placed in a receiving space formed by the module housing 200. That is, a receiving space is formed in the module housing 200, and one or more battery cells 100 may be placed in the receiving space. When multiple battery cells 100 are placed, the multiple battery cells 100 may be installed as a whole, thereby improving assembly efficiency.
- the safety of the battery cell 100 can be improved while reducing the cost, thereby improving the safety of the entire battery module 1000 and reducing the cost of the entire battery module 1000.
- one side surface of the module housing 200 is a set surface 201, and an explosion-proof portion 202 is provided on the set surface 201.
- the pressure relief portion 111 of the battery cell 100 is arranged toward the set surface 201, that is, the side of each battery cell 100 where the pressure relief portion 111 is arranged is arranged toward the set surface 201, so that it can be generally sprayed toward the explosion-proof portion 202.
- the discharge discharged by the pressure relief of the battery cell 100 can be easily sprayed out from the explosion-proof portion 202, which is conducive to improving the safety of the battery module 1000.
- the specific composition of the explosion-proof portion 202 is not limited, for example, it can be a thinned weak portion, or an explosion-proof valve, etc., which is not limited here.
- a plurality of battery cells 100 are disposed in the module housing 200, and the plurality of battery cells 100 are arranged along the first direction F1 to form a battery pack 300, the thickness direction of each battery cell 100 is the first direction F1, and the set surface 201 is disposed on one side of the plurality of battery packs 300 in the second direction F2, and the second direction F2 intersects the first direction F1.
- the second direction F2 and the first direction F1 extend in different directions, and may intersect at an acute angle, a right angle, or an obtuse angle, for example.
- the thickness direction of the positive and negative electrode sheets in the electrode assembly 2 is usually the thickness direction of the battery cell 100 (i.e., the first direction F1), and the pressure relief and eruption direction is usually perpendicular to the thickness direction of the positive and negative electrode sheets (for example, along the second direction F2 or slightly inclined to the second direction F2). Therefore, by setting the set surface 201 of the explosion-proof part 202 on one side of the battery pack 300 in the second direction F2, the requirement of pressure relief and eruption of the battery cell 100 along the second direction F2 can be met, which is beneficial to the rapid pressure relief and eruption of each battery cell 100 in the module shell 200, further avoiding the risk of explosion and improving safety.
- each battery cell 100 is equivalent to being set flat, occupying a smaller vertical space, reducing the overall height of the battery module 1000, and lowering the center of gravity height of the battery cell 100, thereby reducing the pressure relief splash range of the battery cell 100.
- the explosion-proof portion 202 may be arranged at the central position of the battery pack 300 in the first direction F1, so that any battery cell 100 in the battery pack 300 can break through the explosion-proof portion 202 relatively quickly when the pressure is released and the explosion is released, thereby further improving the safety of the battery module 1000.
- the battery pack 300 includes four battery cells 100 arranged along the first direction F1, and the explosion-proof portion 202 is arranged at the position between the two middle battery cells 100; for another example, the battery pack 300 includes five battery cells 100 arranged along the first direction F1, and the explosion-proof portion 202 is arranged at the position corresponding to a battery cell 100 located in the middle of the five battery cells 100.
- the module housing 200 has a power connection portion 203, and the power connection portion 203 is arranged on the opposite side from the explosion-proof portion 202.
- the explosion-proof portion 202 and the power connection portion 203 are not arranged on the same side surface.
- the power connection portion 203 and the explosion-proof portion 202 are respectively located on different surfaces of the battery module 1000, it is beneficial to ensure that there is a large spacing between the power connection portion 203 and the explosion-proof portion 202 of the battery module 1000, so as to effectively avoid the conductive particles in the discharge discharged by the battery module 1000 through the explosion-proof portion 202 flowing to the power connection portion 203 in the case of thermal runaway, causing insulation failure, high-voltage ignition and other problems, and ensure the creepage clearance between the power connection portions 203 of the battery module 1000 to avoid short circuit problems and improve the working reliability of the battery module 1000.
- the power connection part 203 and the explosion-proof part 202 are arranged on opposite sides of the module housing 200.
- the distance between the power connection part 203 and the explosion-proof part 202 can be further increased, and the power connection part 203 can be better protected from the effects of the emissions discharged by the explosion-proof part 202, that is, the probability of being affected is smaller, and the safety and reliability of the battery module 1000 are better.
- the present application is not limited to this.
- the power connection part 203 and the explosion-proof part 202 can also be arranged on adjacent sides of the module housing 200, or even on the same side, so as to meet different actual needs, which will not be elaborated here.
- the battery 10000 may include: a battery module 1000 and an exhaust assembly 2000, the battery module 1000 is a battery module 1000 according to an embodiment of the present application, the exhaust assembly 2000 defines an exhaust chamber 2001, and the explosion-proof portion 202 of the battery module 1000 is arranged toward the exhaust assembly 2000, and the explosion-proof portion 202 is suitable for spraying into the exhaust chamber 2001.
- the battery cell 100 when the battery cell 100 has thermal runaway, the battery cell 100 discharges emissions such as flames, smoke or gas through the pressure relief portion 111, and the emissions are then ejected through the explosion-proof portion 202 and enter the discharge chamber 2001 to be stored in the discharge chamber 2001, or guided away through the discharge chamber 2001, etc. Therefore, by providing the discharge assembly 2000, when thermal runaway occurs, the exhaust demand can be met, and the insulation failure problem caused by the wandering of conductive particles can be avoided, thereby reducing the heat diffusion effect caused by thermal runaway.
- emissions such as flames, smoke or gas
- the pressure relief portion 111 the emissions are then ejected through the explosion-proof portion 202 and enter the discharge chamber 2001 to be stored in the discharge chamber 2001, or guided away through the discharge chamber 2001, etc. Therefore, by providing the discharge assembly 2000, when thermal runaway occurs, the exhaust demand can be met, and the insulation failure problem caused by the wandering of conductive particles can be avoided, thereby reducing the heat diffusion effect caused by thermal runaway.
- the battery module 1000 can be arranged outside the discharge assembly 2000, and the explosion-proof part 202 of the battery module 1000 is arranged facing the inlet 2002 of the discharge chamber 2001 to facilitate rapid discharge toward the discharge chamber 2001 in the event of thermal runaway.
- the discharge component 2000 when the discharge component 2000 is simultaneously arranged to correspond to a plurality of battery modules 1000, the discharge component 2000 may have a plurality of inlets 2002, each of which corresponds to a battery module 1000, that is, a plurality of battery modules 1000 are arranged to correspond to a plurality of inlets 2002 one by one. More specifically, the explosion-proof portion 202 of each battery module 1000 is arranged to correspond to an inlet 2002, which is conducive to rapid pressure relief and discharge during thermal runaway.
- battery modules 1000 are respectively provided on both sides of the discharge component 2000, wherein a plurality of battery modules 1000 are provided on each of the two sides of the discharge component, and the plurality of battery modules 1000 are spaced apart along the length direction of the discharge component 2000.
- the plurality of battery modules 1000 can share the same discharge component 2000, thereby simplifying the structure and reducing the volume of the battery 10000.
- battery modules 1000 are provided on both sides of the discharge assembly 2000 , and a spray prevention component 2003 is provided in the discharge cavity 2001 .
- the spray prevention component 2003 includes a particle processing component and/or a fireproof material component.
- emissions such as flames, smoke or gases generated by the battery cell 100 can enter the emission chamber 2001.
- the flames or conductive particles in the emissions can be effectively isolated by blocking the anti-spray component 2003 to prevent them from being sprayed to the opposite side, causing secondary damage to the battery module 1000 on the opposite side due to thermal runaway.
- the particle treatment component can capture, collect, limit, or coat the particles with an insulating layer and other related operations to avoid insulation failure problems caused by the conductive particles in the particles moving around.
- the fireproof material pieces in a protective state can block the direct spray of flames in the emissions, that is, at least part of the flame in the emissions can be blocked by the fireproof material pieces, thereby achieving a more effective fireproofing effect to improve the heat diffusion problem caused by thermal runaway.
- the side of the discharge assembly 2000 facing the battery module 1000 has a heat exchange portion 2004.
- the heat exchange portion 2004 is used to exchange heat with at least one of the battery module 1000 and the discharge chamber 2001 to dissipate heat from at least one of the battery module 1000 and the discharge chamber 2001, thereby achieving a cooling effect and reducing the probability of heat spread.
- the discharge assembly 2000 not only ensures the exhaust function, but also has a heat dissipation function.
- the heat exchange part 2004 may include a heat exchange cavity, which may be filled with a flowable heat exchange fluid.
- the heat exchange fluid may flow in the heat exchange cavity, and continuously exchange heat with the exhaust in the discharge cavity 2001 by relying on its fluidity, thereby taking away the heat accumulated in the discharge cavity 2001, reducing the probability of heat concentration, improving safety, and reducing the probability of heat spread.
- the discharge assembly 2000 may include a beam body 2005 and a cold plate 2006 disposed outside the beam body 2005, a discharge cavity 2001 is defined between the beam body 2005 and the cold plate 2006, an inlet 2002 connected to the discharge cavity 2001 is formed on the cold plate 2006, and a heat exchange cavity is formed in the cold plate 2006, so that the cold plate 2006 serves as a heat exchange part 2004.
- the discharge assembly 2000 is layered, which is convenient for processing and manufacturing, and can increase the area of heat exchange between the heat exchange part 2004 and the battery module 1000. At the same time, it can also increase the heat conduction area between the heat exchange part 2004 and the discharge cavity 2001, which is conducive to improving the heat dissipation and cooling effect.
- the cold plate 2006 can also separate the discharge cavity 2001 from the battery module 1000 to prevent high-temperature emissions from causing adverse thermal effects on the battery module 1000.
- the battery 10000 may further include a box 3000, in which a plurality of battery modules 1000 are arranged. That is, the battery 10000 according to some embodiments of the present application may include a box 3000 for encapsulating one or more battery modules 1000, and the box 3000 may prevent liquid or other foreign matter from affecting the normal operation of the battery module 1000. Alternatively, according to other embodiments of the battery 10000 of the present application, the battery 10000 may also not include a box 3000 for encapsulating one or more battery modules 1000, for example, the discharge assembly 2000 and the battery module 1000 are directly arranged in the power-consuming device 20000, etc. Among them, the plurality of battery modules 1000 may be connected in series and/or in parallel, which is not limited here.
- the box 3000 according to the embodiment of the present application defines a housing cavity 3001 for housing the battery module 1000, that is, the battery module 1000 can be disposed in the housing cavity 3001, and the box 3000 includes the discharge assembly 2000 according to the present application, for example, the discharge assembly 2000 can constitute a partition beam and/or a side beam of the box 3000. Therefore, according to the box 3000 according to the embodiment of the present application, since the discharge assembly 2000 is provided, in the case of thermal runaway, the conductive particles in the particulate matter in the discharge of the battery module 1000 can be prevented from wandering around and causing insulation failure problems, thereby improving safety.
- the exhaust assembly 2000 is integrated into the box 3000. While realizing the exhaust function, the exhaust assembly 2000 can also serve as a part of the box 3000 to strengthen the structure, so that the box 3000 can reduce or even remove some beam structures, so that the battery 10000 using the box 3000 has higher space utilization, more compact structure and higher energy density. It should be noted that the exhaust assembly 2000 is not limited to the location of the box 3000.
- the box body 3000 includes a side beam and a partition beam, and the partition beam is located in the space surrounded by the frame to divide the space into a plurality of accommodating chambers 3001, and at least one of the side beam and the partition beam is configured as a discharge assembly 2000, and at this time, the battery module 1000 can be located on the horizontal side of the discharge assembly 2000, and the battery module 1000 can be discharged in the horizontal direction during thermal runaway.
- the battery modules 1000 when the battery modules 1000 are respectively arranged on both sides of the partition beam, and the partition beam is configured as a discharge assembly 2000, the battery modules 1000 on both sides can share the discharge assembly 2000, thereby reducing the number of discharge assemblies 2000, reducing costs, improving discharge efficiency, and improving structural compactness, thereby improving energy density.
- the electric device 20000 according to the embodiment of the present application includes the battery 10000 according to any embodiment of the present application, and the battery 10000 is used to provide electric energy for the electric device 20000.
- the safety of the electric device 20000 can be improved.
- the type of the electrical device 20000 is not limited, for example, it can be a vehicle, a mobile phone, a portable device, a laptop computer, a ship, a spacecraft, an electric toy, an electric tool, etc.
- the vehicle can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
- the spacecraft includes an airplane, a rocket, a space shuttle and a spacecraft, etc.
- the electric toy includes a fixed or mobile electric toy, for example, a game console, an electric car toy, an electric ship toy and an electric airplane toy, etc.
- the electric tool includes a metal cutting electric tool, a grinding electric tool, an assembly electric tool and a railway electric tool, for example, an electric drill, an electric grinder, an electric wrench, an electric screwdriver, an electric hammer, an impact drill, a concrete vibrator and an electric planer, etc.
- the battery 10000 when the battery 10000 is used in a vehicle, the battery 10000 can be arranged at the bottom, head or tail of the vehicle.
- the battery 10000 can be used to power the vehicle, for example, the battery 10000 can be used as an operating power source for the vehicle.
- the vehicle may also include a controller and a motor, and the controller is used to control the battery 10000 to power the motor, for example, for the working power requirements of the vehicle when starting, navigating and driving.
- the battery 10000 can not only be used as an operating power source for the vehicle, but also as a driving power source for the vehicle, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Gas Exhaust Devices For Batteries (AREA)
Abstract
一种包装壳、电池单体、电池模组、电池及用电装置,所述包装壳限定出容纳电极组件的容纳腔,所述包装壳包括层叠设置的薄膜层和金属层,所述金属层具有缺口区域,所述薄膜层覆盖所述缺口区域的部位形成为泄压部。
Description
本申请涉及电池技术领域,尤其是涉及一种包装壳、电池单体、电池模组、电池及用电装置。
当电池单体遇到过热、过充、内部短路、碰撞、挤压等情况时,电池单体内部的电极组件会产生大量的热量引起膨胀,在膨胀受限或内压过大的情况下,电池单体极易发生爆炸,对人们的生命财产安全造成危害。为解决该技术问题,相关技术中一些电池单体采用防爆阀,然而,防爆阀的设计不但结构复杂、成本高,并且适用范围有限,例如无法设置于软包电池单体。
发明内容
本申请实施例提供一种包装壳、电池单体、电池模组、电池及用电装置,能够实现定向泄压喷发,避免电池单体的爆炸问题,而且形成泄压部的方式简单,容易加工,成本低,适用范围广。
第一方面,本申请实施例提供一种电池单体的包装壳,所述包装壳限定出容纳电极组件的容纳腔,所述包装壳包括层叠设置的薄膜层和金属层,所述金属层具有缺口区域,所述薄膜层覆盖所述缺口区域的部位形成为泄压部。
在上述技术方案中,通过将包装壳的金属层的局部设为缺口区域,以使薄膜层对应缺口区域的位置形成为能够起到密封缺口区域且容易冲破泄压的泄压部,从而在满足包装壳的密封要求的前提下,可以实现电池单体的定向泄压,避免了电池单体内部压力过大发生的爆炸问题,且由于泄压方向是确定的,从而可以有效缩小泄压喷发的扩散影响范围,提高电池整体的安全性。而且,本申请提出的包装壳形成泄压部的方式简单,容易加工,成本低,对于柱形电池单体、方形电池单体和软包电池单体均适用,适用范围广。
在一些实施例中,所述容纳腔的厚度两侧分别为端面区域,连接两侧的所述端面区域的为侧部区域,所述泄压部设于所述侧部区域。在上述技术方案中,有利于快速泄压。
在一些实施例中,所述侧部区域适于设有电连接部,所述泄压部与所述电连接部异侧设置。在上述技术方案中,有利于改善电连接部受热失控的影响。
在一些实施例中,所述泄压部适于与所述电连接部分置于所述容纳腔的长度两侧。在 上述技术方案中,可以更好地避免电连接部受热失控的影响。
在一些实施例中,所述泄压部适于对应所述电极组件为卷绕式电极组件的轴端设置。在上述技术方案中,有利于快速泄压。
在一些实施例中,所述泄压部适于对应所述电极组件为叠片式电极组件的周侧设置。在上述技术方案中,有利于快速泄压。
在一些实施例中,所述薄膜层包括覆盖于所述金属层内侧的内薄膜层,和/或覆盖于所述金属层外侧的外薄膜层。由此,包装壳的结构可靠性较好。
在一些实施例中,所述包装壳由至少一片热封膜封压热封边形成,所述热封膜包括所述金属层和位于所述金属层内外两侧的所述薄膜层。由此,包装壳有利于用于软包电池单体的包装。
在一些实施例中,所述泄压部位于所述热封边处。在上述技术方案中,有利于有效泄压。
在一些实施例中,所述热封边包括弱封区域,所述弱封区域的密封强度小于所述热封边的其余区域的密封强度,所述泄压部位于所述弱封区域。在上述技术方案中,有利于有效泄压。
在一些实施例中,所述弱封区域的密封宽度小于所述其余区域的密封宽度;或者,所述弱封区域的封压压缩量小于所述其余区域的封压压缩量。在上述技术方案中,便于加工。
在一些实施例中,所述缺口区域贯穿所述金属层的边缘。在上述技术方案中,便于加工。
在一些实施例中,所述缺口区域与所述金属层的边缘间隔开。在上述技术方案中,设计灵活。
第二方面,本申请实施例还提供一种电池单体,包括电极组件和上述的电池单体的包装壳,所述电极组件设于所述容纳腔内。
第三方面,本申请实施例还提供一种电池模组,包括模组壳体和至少一个上述的电池单体,所述电池单体放置于所述模组壳体形成的容纳空间中。
在一些实施例中,所述模组壳体的一侧表面为设定表面,所述设定表面上设有防爆部,所述电池单体的所述泄压部朝向所述设定表面设置。在上述技术方案中,有利于快速定向泄压。
在一些实施例中,每个所述电池单体的厚度方向均为第一方向,所述模组壳体内的多个所述电池单体沿所述第一方向排列成电池组,所述设定表面设于多个所述电池组在第二 方向上的一侧,所述第二方向相交于所述第一方向。在上述技术方案中,有利于快速泄压。
在一些实施例中,所述防爆部对应所述电池组在所述第一方向上的中央位置设置。在上述技术方案中,有利于快速泄压。
在一些实施例中,所述模组壳体上具有接电部,所述接电部与所述防爆部异侧设置。在上述技术方案中,有利于改善接电部受热失控的影响。
在一些实施例中,所述接电部与所述防爆部设于所述模组壳体的相对两侧。在上述技术方案中,有利于改善接电部受热失控的影响。
第四方面,本申请实施例还提供一种电池,包括:电池模组和排放组件,所述电池模组为上述的电池模组,所述排放组件限定出排放腔,所述电池模组的所述防爆部朝向所述排放组件设置,所述防爆部适于向所述排放腔内喷发。
在一些实施例中,所述排放组件的两侧分别设有所述电池模组,所述排放腔内具有防对喷件,所述防对喷件包括颗粒物处理件和/或防火材料件。在上述技术方案中,有利于提高电池的安全性。
在一些实施例中,所述排放组件的朝向所述电池模组的一侧具有换热部。在上述技术方案中,有利于提升电池的工作可靠性。
在一些实施例中,所述电池还包括箱体,所述箱体内设有多个所述电池模组,所述排放组件构成所述箱体的分隔梁和/或边梁。在上述技术方案中,有利于简化结构。
第五方面,本申请实施例还提供一种用电装置,包括上述的电池。
图1为本申请一些实施例提供的电池单体的示意图;
图2为本申请一些实施例提供的电池单体的剖视图;
图3为本申请一些实施例提供的包装壳的截面图;
图4为本申请一些实施例提供的包装壳的截面图;
图5为本申请一些实施例提供的电池单体的示意图;
图6为本申请一些实施例提供的金属层的示意图;
图7为本申请一些实施例提供的金属层的示意图;
图8为本申请一些实施例提供的电池模组的示意图;
图9为本申请一些实施例提供的电池的示意图;
图10为本申请一些实施例提供的电池的爆炸图;
图11为本申请一些实施例提供的排放组件的示意图;
图12为本申请一些实施例提供的排放组件局部图;
图13为本申请一些实施例提供的车辆的示意图。
附图标记:
10000-电池;1000-电池模组;100-电池单体;1-包装壳;101-容纳腔;1011-端面区域;1012-侧部区域;102-热封膜;103-热封边;11-薄膜层;111-泄压部;11a-外薄膜层;11b-内薄膜层;12-金属层;121-缺口区域;2-电极组件;3-电连接部;200-模组壳体;201-设定表面;202-防爆部;203-接电部;300-电池组;2000-排放组件;2001-排放腔;2002-入口;2003-防对喷件;2004-换热部;2005-梁体;2006-冷板;3000-箱体;3001-容置腔;20000-用电装置。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模组或电池包等。一些电池可以包括用于封装一个或多个电池单体或多个电池模组的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。当然,还有一些电池可以不包括上述箱体,直接设置在用电装置的电池安装舱内。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
例如,电池单体可以包括包装壳、电极组件和电解液,包装壳用于容纳电极组件和电解液。电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。
负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表 面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
当电池单体遇到过热、过充、内部短路、碰撞、挤压等情况时,电池单体内部的电极组件会产生大量的热量引起膨胀,在膨胀受限或内压过大的情况下,电池单体极易发生爆炸,对人们的生命财产安全造成危害。
基于此,申请人经过深入研究,提出了一种电池单体100的包装壳1,将包装壳1设置为包括层叠设置的薄膜层11和金属层12,金属层12具有缺口区域121,薄膜层11覆盖缺口区域121的部位形成为泄压部111。由此,通过将包装壳1的金属层12的局部设为缺口区域121,以使薄膜层11对应缺口区域121的位置形成为能够密封且容易冲破的泄压部111,从而在满足包装壳1的密封要求的前提下,可以实现电池单体100的定向泄压,避免了电池单体100内部压力过大发生的爆炸问题,且由于泄压方向是确定的,从而可以有效缩小泄压喷发的扩散影响范围,提高电池10000整体的安全性。而且,本申请提出的包装壳1形成泄压部111的方式简单,容易加工,成本低,对于柱形电池单体、方形电池单体和软包电池单体均适用,适用范围广。
此外,需要说明的是,本申请实施例公开的电池10000可以但不限用于车辆、船舶或飞行器等用电装置20000中。因此,本申请实施例提供一种使用电池10000作为电源的用电装置20000,用电装置20000可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
下面,描述根据本申请一些实施例的包装壳1。
如图1和图2所示,包装壳1用于电池单体100,包装壳1限定出容纳电极组件2的容纳腔101。可以理解的是,电池单体100的电极组件2和电解液均设置在容纳腔101内。
结合图3,包装壳1包括层叠设置的薄膜层11和金属层12,金属层12具有缺口区域121,薄膜层11覆盖缺口区域121的部位形成为泄压部111。
其中,薄膜层11和金属层12层叠设置指的是,薄膜层11覆盖于金属层12的厚度至少一侧表面。
其中,薄膜层11的层数不限,可以为单层或多层。并且,薄膜层11的材质不限,可以根据功能需要设置为不同的非金属材质。由此,可以根据薄膜层11的材质等实际情况,选择将薄膜层11覆盖在金属层12的厚度哪侧表面。
其中,金属层12的形式不限,例如可以为金属板形式(例如用于方形电池单体的包装壳)、或金属箔形式(例如用于软包电池单体的包装壳)等。并且,金属层12的材质不限,可以根据需要选择不同的材质,这里不作限制。
由此,根据本申请的电池单体100的包装壳1,通过将包装壳1的金属层12的局部设为缺口区域121,以使薄膜层11对应缺口区域121的位置形成为能够起到密封缺口区域121且容易冲破泄压的泄压部111,从而在满足包装壳1的密封要求的前提下,可以实现电池单体100的定向泄压,避免了电池单体100内部压力过大发生的爆炸问题,且由于泄压方向是确定的,从而可以有效缩小泄压喷发的扩散影响范围,提高电池10000整体的安全性。而且,本申请提出的包装壳1形成泄压部111的方式简单,容易加工,成本低,对于柱形电池单体、方形电池单体和软包电池单体均适用,适用范围广。
发明人发现,对于方形电池单体来说,可以在金属壳上设置防爆阀,起到泄压防爆的功能。但是,防爆阀的结构较为复杂,且安装较难,生产成本较高,且受安装等情况影响,存在泄压可靠性难以保证的问题。而当方形电池单体采用本申请的包装壳1时,可以通过在金属壳上挖出缺口区域121,并在金属壳上覆膜,以使缺口区域121获得覆膜的密封,从而获得对应缺口区域121的泄压部111,可以有效地降低包装壳1的加工难度和装配难度,降低加工成本,提高泄压防爆的可靠性。
发明人发现,对于软包电池单体来说,通常采用较薄的薄膜作为包装壳进行包装,此种包装壳上很难设置防爆阀,当遇到过热、过充、内部短路、碰撞、挤压等情况,软包电池单体内部的电极组件会产生大量的热量引起膨胀,在膨胀受限或内压过大的情况下,软包电池单体极易发生爆炸。而且,当软包电池单体在膨胀受限或内压过大发生喷发时,由于喷发的方向不确定,极大的增大了喷发的扩散影响范围,例如容易引发电池中其他软包电池单体也发生爆炸,致使电池整体的安全隐患更大,不利于消费者的使用安全。
为了解决上述技术问题,在一些现有技术中,软包电池单体的包装壳在封边位置形成局部窄封区,即局部的封压宽度小于其余位置的封压宽度,以使得软包电池单体内部产生的热量容易从局部窄封区冲破喷出。然而,由于软包电池单体内的电解液会对包装壳起到一定的腐蚀作用,当局部窄封区的封压宽度较小,且封压长度较大时,容易影响软包电池单体的密封性,存在漏液隐患。
而当软包电池单体采用本申请的包装壳1时,可以通过在金属层12上挖出缺口区域121,并利用覆盖金属层12的薄膜密封缺口区域121以获得泄压部111,可以实现通过泄压部111实现泄压,避免发生爆炸,而且由于设置了泄压部111,可以实现定向泄压,可以降低热失控喷发时对电池10000中的其他电池单体100造成的不利影响。而且,由于泄压部111是通过金属层12的缺口区域121形成,即便泄压部111位于封边位置,也无需为了满足易冲破需求而设置成局部极窄封边,避免形成漏液隐患,从而可以提高电池10000的可靠性。
在本申请的一些实施例中,如图2和图5所示,容纳腔101的厚度两侧分别为端面区域1011,连接两侧的端面区域1011的为侧部区域1012,泄压部111设于侧部区域1012。由此,有利于快速泄压,提高电池单体100的热失控安全性。例如,一般来说,电极组件2中的正负极片的厚度方向通常为容纳腔101的厚度方向,泄压喷发方向通常是垂直于正负极片的厚度方向,也就是说,相当于是朝向侧部区域1012泄压喷发,这样,通过将泄压部111设于侧部区域1012,有利于快速泄压喷发,进一步避免爆炸风险,提高安全性。
当然,本申请不限于此,在本申请的其他实施例中,也可以将泄压部111设于端面区域1011,以适应不同的电极组件2设置方式,或者满足便于加工等其他要求,这里不作赘述。
如上文所述,本申请的包装壳1所应用的电池单体100中的电极组件2的类型不限。
例如,在一些实施例中,当电极组件2为卷绕式电极组件时,泄压部111适于对应电极组件2为卷绕式电极组件的轴端设置。具体而言,对于卷绕式电极组件来说,卷绕式电极组件中的正负极片的厚度方向垂直于卷绕式电极组件的轴向,泄压喷发方向通常是垂直于正负极片的厚度方向,也就是说,相当于是朝向卷绕式电极组件的轴向泄压喷发,这样,通过将泄压部111设于卷绕式电极组件的轴端,有利于快速泄压喷发,进一步避免爆炸风险,提高安全性。
例如,在一些实施例中,当电极组件2为叠片式电极组件时,泄压部111适于对应电极组件2为叠片式电极组件的周侧设置。具体而言,对于叠片式电极组件来说,叠片式电极组件中的正负极片的厚度方向垂直于叠片式电极组件的周侧,泄压喷发方向通常是垂直于正负极片的厚度方向,也就是说,相当于是朝向叠片式电极组件的周侧泄压喷发,这样,通过将泄压部111设于叠片式电极组件的周侧,有利于快速泄压喷发,进一步避免爆炸风险,提高安全性。
在本申请的一些实施例中,如图1所示,侧部区域1012适于设有电连接部3(例如极耳或极柱等),泄压部111与电连接部3异侧设置。也就是说,泄压部111与电连接部3并 非设于同侧表面,这样,由于电连接部3和泄压部111分别位于电池单体100的不同表面上,有利于保证电池单体100的电连接部3和泄压部111之间具有较大的间距,以有效避免在热失控等情况下,电池单体100通过泄压部111排放的排放物中的导电颗粒等流至电连接部3造成绝缘失效、高压打火等问题,保证电池单体100的电连接部3之间的爬电间隙,以避免发生短路问题,提高电池单体100的工作可靠性。
可选地,如图1所示,泄压部111适于与电连接部3分置于容纳腔101的长度两侧。由此,可以进一步拉远电连接部3与泄压部111之间的距离,更好地保证电连接部3免受泄压部111排出的排放物的影响,即受影响概率更小,电池单体100的使用安全性和可靠性更好。
当然,本申请不限于此,例如在本申请的其他实施例中,也可以将泄压部111与电连接部3设于电池单体100的相邻两侧,或者设于电池单体100的宽度两侧等等,以满足其他不同要求,这里不作赘述。
在本申请的一些实施例中,如图3所示,薄膜层11可以包括覆盖于金属层12内侧的内薄膜层11b,其中,“内侧”指的是金属层12朝向容纳腔101的一侧。由此,可以利用薄膜层11起到相应的功能,例如起到绝缘、或热熔等相关功能。
在本申请的一些实施例中,如图3所示,薄膜层11可以包括覆盖于金属层12外侧的外薄膜层11a,其中,“外侧”指的是金属层12背向容纳腔101的一侧。由此,可以利用薄膜层11起到相应的功能,例如起到保护、或绝缘等相关功能。
在本申请的一些实施例中,如图3所示,薄膜层11为多层且包括覆盖于金属层12内侧的内薄膜层11b,同时还包括覆盖于金属层12外侧的外薄膜层11a。由此,可以提高泄压部111处的密封性,更好地避免漏液隐患。其中,“内侧”指的是金属层12朝向容纳腔101的一侧;“外侧”指的是金属层12背向容纳腔101的一侧。
例如在一些实施例中,包装壳1由至少一片热封膜102封压热封边103形成,热封膜102包括金属层12和位于金属层12内外两侧的薄膜层11(即(即位于金属层12外侧的薄膜层11和位于金属层12内侧的薄膜层11)。例如图2所示,该包装壳1可以用于软包电池单体,热封膜102均包括从外到内依次设置的:外薄膜层11a(即位于金属层12外侧的薄膜层11)、金属层12和内薄膜层11b(即位于金属层12内侧的薄膜层11)。
例如,当包装壳1由两片热封膜102封压热封边103形成时,封装时,可以由热压机将两片热封膜102压合,内薄膜层11b融化并融合在一起,在两片热封膜102的边缘形成一圈热封边103,同时在两个热封膜102之间由热封边103围绕起来的空间即为容纳腔101。
又例如,当包装壳1由一片热封膜102封压热封边103形成时,封装时,该热封膜102 对折,然后进行其余三边热封,以在三侧热封边103与折痕之间围绕出容纳腔101,也能够达到封装的效果,这里不作赘述。或者,在本申请的其他实施例中,包装壳1还可以由三片或以上热封膜102封压热封边103形成,这里不作赘述。
对于热封膜102来说,内薄膜层11b可以为聚丙烯层等,以起到热熔连接等作用。外薄膜层11a可以为聚乙烯层或尼龙层等,起到保护作用。金属层12可以为铝箔、钢箔等,起到支撑、隔绝等作用,这里不作限制。
值得说明的是,当热封膜102包括从外到内依次设置的:外薄膜层11a、金属层12和内薄膜层11b时,外薄膜层11a的数量不限,内薄膜层11b的数量也不限,在对应缺口区域121的位置,外薄膜层11a与内薄膜层11b可以是连接的(例如图4所示),也可以是不连接的(例如图3所示),这里不作限制。
此外,值得说明的是,当包装壳1用于方形电池单体时,例如图5所示,包装壳1可以包括金属板形式的金属层12和至少一层薄膜层11,薄膜层11可以位于金属层12的内侧(即内薄膜层11b)或者外侧(即外薄膜层11a)。金属层12的材质不限,例如为钢板或铝板等,这里不作赘述。
当包装壳1由至少一片热封膜102封压热封边103形成时,在一些可选实施例中,如图1所示,泄压部111可以位于热封边103处。由此,由于热封边103相对薄弱,通过热封边103与泄压部111的叠加,可以更好地满足泄压喷发需求。
进一步地,热封边103可以包括弱封区域,弱封区域的密封强度小于热封边103的其余区域的密封强度,泄压部111位于弱封区域。也就是说,在相同的压力下,弱封区域相较热封边103的其他部位更容易被破坏。由此,通过将泄压部111设于弱封区域,通过弱封区域与泄压部111的叠加,可以更好地满足泄压喷发需求。
弱封区域的形成方式不限。例如在一些可选示例中,弱封区域的密封宽度小于其余区域的密封宽度。也就是说,通过封边宽度的不同,使得封边宽度相对较窄的部分作为弱封区域,从而便于加工。此外,由于在弱封区域设有泄压部111,使得弱封区域的宽度无需极窄,从而在满足泄压喷发要求的同时,避免漏液问题。
又例如在另外一些可选示例中,弱封区域的封压压缩量小于其余区域的封压压缩量。也就是说,通过封装时的封压压缩量不同,使得封压压缩量相对较小的部分作为弱封区域,从而便于加工,而且可以较好地避免漏液问题。
在本申请的一些实施例中,如图6所示,缺口区域121可以贯穿金属层12的边缘。由此,便于缺口区域121的加工。而且,当泄压部111位于热封边103时,通过将缺口区域 121设置为贯穿金属层12的边缘,可以较好地满足泄压部111的位置要求。
在本申请的另外一些实施例中,如图7所示,缺口区域121还可以与金属层12的边缘间隔开。也就是说,缺口区域121并未贯穿金属层12的边缘,从而可以使得泄压部111的设置位置灵活、多变,满足多种不同的设计需求,这里不作赘述。
值得说明的是,缺口区域121的数量不限,因此对应的泄压部111的数量不限,例如泄压部111可以仅为一个,从而有利于定向泄压喷发,有利于喷发的排放物的收集。或者,也可以将泄压部111设置为多个,从而有利于快速泄压喷发,此时,可以从多个方向收集喷发的排放物。
下面,描述根据本申请实施例的电池单体100。
如图1和图2所示,电池单体100可以包括电极组件2和包装壳1,包装壳1限定出容纳电极组件2的容纳腔101,且包装壳1为根据本申请任一实施例的电池单体100的包装壳1。由此,根据本申请的电池单体100,通过采用本申请的包装壳1,通过将包装壳1的金属层12的局部设为缺口区域121,以使薄膜层11对应缺口区域121的位置形成为能够起到密封缺口区域121且容易冲破泄压的泄压部111,从而在满足包装壳1的密封要求的前提下,可以实现电池单体100的定向泄压,避免了电池单体100内部压力过大发生的爆炸问题,且由于泄压方向是确定的,从而可以有效缩小泄压喷发的扩散影响范围,提高电池10000整体的安全性。
而且,本申请提出的包装壳1形成泄压部111的方式简单,容易加工,成本低,对于柱形电池单体、方形电池单体和软包电池单体均适用,适用范围广,从而使得本申请实施例的电池单体100的类型不限。
下面,描述根据本申请实施例的电池模组1000。
如图8所示,电池模组1000可以包括模组壳体200和至少一个根据本申请实施例的电池单体100,电池单体100放置于模组壳体200形成的容纳空间中。也就是说,模组壳体200内形成有容纳空间,容纳空间内可以放置一个或者多个电池单体100,当放置多个电池单体100时,可以实现多个电池单体100的整体安装,从而提高装配效率。
基于上述方案,由于本申请的电池单体100采用本申请的包装壳1,可以在降低成本的基础上,提高电池单体100的安全性,从而可以提升整个电池模组1000的安全性,并降低整个电池模组1000的成本。
在一些实施例中,如图8所示,模组壳体200的一侧表面为设定表面201,设定表面201上设有防爆部202,电池单体100的泄压部111朝向设定表面201设置,也就是说,每个电 池单体100的设置泄压部111的一侧朝向设定表面201设置,从而可以大体朝向防爆部202喷发。由此,电池单体100泄压排放的排放物可以很容易从防爆部202喷出,从而有利于提升电池模组1000的安全性。值得说明的是,防爆部202的具体构成不限,例如可以为厚度减薄的薄弱部、或者防爆阀等,这里不作限制。
例如在一些实施例中,如图8所示,模组壳体200内设置多个电池单体100,且多个电池单体100沿第一方向F1排列成电池组300,每个电池单体100的厚度方向均为第一方向F1,设定表面201设于多个电池组300在第二方向F2上的一侧,第二方向F2相交于第一方向F1。也就是说,第二方向F2与第一方向F1的延伸方向不同,例如可以相交锐角、直角或钝角。
一般来说,电极组件2中的正负极片的厚度方向通常为电池单体100的厚度方向(即第一方向F1),泄压喷发方向通常是垂直于正负极片的厚度方向(例如沿着第二方向F2或者稍微倾斜于第二方向F2),由此,通过将设置防爆部202的设定表面201设于电池组300在第二方向F2上的一侧,正好可以满足电池单体100沿第二方向F2泄压喷发的要求,有利于模组壳体200内的每个电池单体100的快速泄压喷发,进一步避免爆炸风险,提高安全性。
此外,当将第一方向F1设置为竖直方向,第二方向F2设置为水平方向,每个电池单体100都相当于是平躺设置,占用的竖向空间较小,减小电池模组1000的整体高度,而且可以降低电池单体100的重心高度,缩小电池单体100的泄压喷溅范围。
在一些实施例中,如图8所示,防爆部202可以对应电池组300在第一方向F1上的中央位置设置,由此,电池组300中任一电池单体100泄压喷发时都能相对较快速地冲破防爆部202,从而进一步提升电池模组1000的安全性。例如,电池组300包括沿第一方向F1排列的四个电池单体100,中间的两个电池单体100之间的位置对应设置防爆部202;又例如,电池组300包括沿第一方向F1排列的五个电池单体100,处于五个电池单体100中间位置的一个电池单体100对应的位置设置防爆部202。
在一些实施例中,如图8所示,模组壳体200上具有接电部203,接电部203与防爆部202异侧设置。也就是说,也就是说,防爆部202与接电部203并非设于同侧表面,这样,由于接电部203和防爆部202分别位于电池模组1000的不同表面上,有利于保证电池模组1000的接电部203和防爆部202之间具有较大的间距,以有效避免在热失控等情况下,电池模组1000通过防爆部202排放的排放物中的导电颗粒等流至接电部203造成绝缘失效、高压打火等问题,保证电池模组1000的接电部203之间的爬电间隙,以避免发生短路问题, 提高电池模组1000的工作可靠性。
在一些实施例中,如图8所示,接电部203与防爆部202设于模组壳体200的相对两侧。由此,可以进一步拉远接电部203与防爆部202之间的距离,更好地保证接电部203免受防爆部202排出的排放物的影响,即受影响概率更小,电池模组1000的使用安全性和可靠性更好。当然,本申请不限于此,在本申请的其他实施例中,接电部203与防爆部202还可以分别设于模组壳体200的相邻两侧,甚至设于同侧,从而满足不同实际需求,这里不作赘述。
下面,描述根据本申请实施例的电池10000。
如图9所示,电池10000可以包括:电池模组1000和排放组件2000,电池模组1000为根据本申请实施例的电池模组1000,排放组件2000限定出排放腔2001,电池模组1000的防爆部202朝向排放组件2000设置,防爆部202适于向排放腔2001内喷发。
例如,当电池单体100发生热失控时,电池单体100通过泄压部111排出排放物,排放物如火焰、烟雾或气体等,排放物再通过防爆部202喷出,进入排放腔2001,以存放于排放腔2001,或者经由排放腔2001导走等等。由此,通过设置排放组件2000,在发生热失控时既能满足排气需求,又能避免导电颗粒物四处游走而引发的绝缘失效问题,降低热失控造成的热扩散影响。
例如结合图9,电池模组1000可以设于排放组件2000的外侧,电池模组1000的防爆部202面对排放腔2001的入口2002设置,以便于热失控时朝向排放腔2001快速排放。
结合图10和图11,当排放组件2000同时与多个电池模组1000对应设置时,排放组件2000上可以具有多个入口2002,每个入口2002分别对应一个电池模组1000,即多个电池模组1000与多个入口2002一一对应设置,更为具体地说,每个电池模组1000的防爆部202分别对应一个入口2002设置,从而有利于热失控时的快速泄压排放。
例如在图10所示的具体示例中,排放组件2000的两侧分别设有电池模组1000,其中排放件的两侧中的每一侧均设有多个电池模组1000,且多个电池模组1000沿排放组件2000的长度方向间隔设置,由此,多个电池模组1000可以共用同一个排放组件2000,从而简化结构、减小电池10000的体积。
在一些实施例中,如图10-图12所示,排放组件2000的两侧分别设有电池模组1000,排放腔2001内具有防对喷件2003,防对喷件2003包括颗粒物处理件和/或防火材料件。
例如,当发生热失控时,电池单体100产生的排放物如火焰、烟雾或气体可进入排放腔2001内,通过防对喷件2003的阻挡,能够对排放物中的火焰或导电颗粒有效隔离,避免喷射到对侧,引起对侧的电池模组1000受到热失控造成的二次伤害。
例如,当排放物中的导电颗粒流经颗粒物处理件所在区域、或颗粒物处理件所能处理的区域时,颗粒物处理件可以对颗粒物进行捕捉、收集、限位、或涂覆绝缘层等相关操作,以避免颗粒物中的导电颗粒四处游走而引发的绝缘失效问题。
例如,当排放物向排放腔2001内喷入时,处于防护状态的防火材料件可以阻挡排放物中的火焰直喷,即排放物中的至少火焰部分可以被防火材料件阻挡,起到较为有效的防火效果,以改善由于热失控导致的热扩散问题。
在本申请的一些实施例中,如图10-图12,排放组件2000的朝向电池模组1000的一侧具有换热部2004。换热部2004用于与电池模组1000和排放腔2001中的至少一个交换热量,以为电池模组1000和排放腔2001中的至少一个散热,从而实现冷却的效果,降低热蔓延的概率。由此,排放组件2000在保证排气功能的前提下,还兼具散热功能。
例如,换热部2004可以包括换热腔,换热腔内可以填充可流动的换热流体,换热流体可以在换热腔中流动,依靠流动性不断地与排放腔2001内的排放物进行热量交换,将排放腔2001中聚集的热量带走,降低出现热量集中的概率,提高安全性,降低发生热蔓延的概率。
例如图11-图12所示,排放组件2000可以包括梁体2005和设于梁体2005外的冷板2006,梁体2005与冷板2006之间限定出排放腔2001,冷板2006上形成有与排放腔2001连通的入口2002,冷板2006内形成有换热腔,以使冷板2006作为换热部2004。由此,排放组件2000为分层设置,便于加工制造,而且能够增大换热部2004与电池模组1000热交换的面积,同时,还能够增大换热部2004与排放腔2001的导热面积,有利于提高散热冷却效果。冷板2006还可以将排放腔2001与电池模组1000分隔,避免高温的排放物对电池模组1000造成不良的热影响。
在一些实施例中,如图10所示,电池10000还可以包括箱体3000,箱体3000内设有多个电池模组1000。也就是说,根据本申请一些实施例的电池10000,可以包括用于封装一个或多个电池模组1000的箱体3000,箱体3000可以避免液体或其他异物影响电池模组1000的正常工作。或者,根据本申请另一些实施例的电池10000,电池10000也可以不包括用于封装一个或多个电池模组1000的箱体3000,例如,直接将排放组件2000和电池模 组1000设于用电装置20000内等等。其中,多个电池模组1000之间可串联和/或并联,这里不作限制。
如图10所示,根据本申请实施例的箱体3000,限定出用于容置电池模组1000的容置腔3001,即可以将电池模组1000设置于容置腔3001内,箱体3000包括根据本申请的排放组件2000,例如,排放组件2000可以构成箱体3000的分隔梁和/或边梁。由此,根据本申请实施例的箱体3000,由于设置有排放组件2000,在热失控情况下,可以避免电池模组1000的排放物中的颗粒物中的导电颗粒四处游走而引发绝缘失效问题,提高安全性。
而且,将排放组件2000集成于箱体3000,排放组件2000在实现排气功能的同时,还能够作为箱体3000的一部分加强结构,使得箱体3000可以减少、甚至去除一些梁结构,使得采用该箱体3000的电池10000的空间利用率更高,结构更紧凑,能量密度更高。需要说明的是,排放组件2000在箱体3000的设置位置不限。
例如,如图10所示,箱体3000包括边梁和分隔梁,分隔梁位于边框围绕出的空间内,以将空间划分为多个容置腔3001,边梁和分隔梁中的至少一个构造为排放组件2000,此时电池模组1000可以位于排放组件2000的水平一侧,热失控时电池模组1000可以沿水平方向排放。此外,当在分隔梁的两侧分别设置电池模组1000,且将分隔梁构造为排放组件2000时,两侧电池模组1000可以共用排放组件2000,从而可以减少排放组件2000的数量,降低成本,提高排放效率,而且可以提高结构紧凑性,进而提高能量密度。
如图13所示,根据本申请实施例的用电装置20000,包括根据本申请任一实施例的电池10000,电池10000用于为用电装置20000提供电能。由此,可以提高用电装置20000的安全性。
需要说明的是,根据本申请实施例的用电装置20000的类型不限,例如可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。
例如,如图13所示,当电池10000用于车辆时,电池10000可以设置在车辆的底部或头部或尾部。电池10000可以用于车辆的供电,例如,电池10000可以作为车辆的操作电源。车辆还可以包括控制器和马达,控制器用来控制电池10000为马达供电,例如,用于 车辆的启动、导航和行驶时的工作用电需求。在本申请一些实施例中,电池10000不仅仅可以作为车辆的操作电源,还可以作为车辆的驱动电源,代替或部分地代替燃油或天然气为车辆提供驱动动力。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (25)
- 一种电池单体的包装壳,其中,所述包装壳限定出容纳电极组件的容纳腔,所述包装壳包括层叠设置的薄膜层和金属层,所述金属层具有缺口区域,所述薄膜层覆盖所述缺口区域的部位形成为泄压部。
- 根据权利要求1所述的电池单体的包装壳,其中,所述容纳腔的厚度两侧分别为端面区域,连接两侧的所述端面区域的为侧部区域,所述泄压部设于所述侧部区域。
- 根据权利要求2所述的电池单体的包装壳,其中,所述侧部区域适于设有电连接部,所述泄压部与所述电连接部异侧设置。
- 根据权利要求3所述的电池单体的包装壳,其中,所述泄压部适于与所述电连接部分置于所述容纳腔的长度两侧。
- 根据权利要求1-4中任一项所述的电池单体的包装壳,其中,所述泄压部适于对应所述电极组件为卷绕式电极组件的轴端设置。
- 根据权利要求1-4中任一项所述的电池单体的包装壳,其中,所述泄压部适于对应所述电极组件为叠片式电极组件的周侧设置。
- 根据权利要求1所述的电池单体的包装壳,其中,所述薄膜层包括覆盖于所述金属层内侧的内薄膜层,和/或覆盖于所述金属层外侧的外薄膜层。
- 根据权利要求1所述的电池单体的包装壳,其中,所述包装壳由至少一片热封膜封压热封边形成,所述热封膜包括所述金属层和位于所述金属层内外两侧的所述薄膜层。
- 根据权利要求8所述的电池单体的包装壳,其中,所述泄压部位于所述热封边处。
- 根据权利要求9所述的电池单体的包装壳,其中,所述热封边包括弱封区域,所述弱封区域的密封强度小于所述热封边的其余区域的密封强度,所述泄压部位于所述弱封区域。
- 根据权利要求10所述的电池单体的包装壳,其中,所述弱封区域的密封宽度小于所述其余区域的密封宽度;或者,所述弱封区域的封压压缩量小于所述其余区域的封压压缩量。
- 根据权利要求1-11中任一项所述的电池单体的包装壳,其中,所述缺口区域贯穿所述金属层的边缘。
- 根据权利要求1-11中任一项所述的电池单体的包装壳,其中,所述缺口区域与所述金属层的边缘间隔开。
- 一种电池单体,其中,包括电极组件和根据权利要求1-13中任一项所述的电池单体的包装壳,所述电极组件设于所述容纳腔内。
- 一种电池模组,其中,包括模组壳体和至少一个如权利要求14所述的电池单体,所述电池单体放置于所述模组壳体形成的容纳空间中。
- 根据权利要求15所述的电池模组,其中,所述模组壳体的一侧表面为设定表面,所述设定表面上设有防爆部,所述电池单体的所述泄压部朝向所述设定表面设置。
- 根据权利要求16所述的电池模组,其中,每个所述电池单体的厚度方向均为第一方向,所述模组壳体内的多个所述电池单体沿所述第一方向排列成电池组,所述设定表面设于多个所述电池组在第二方向上的一侧,所述第二方向相交于所述第一方向。
- 根据权利要求17所述的电池模组,其中,所述防爆部对应所述电池组在所述第一方向上的中央位置设置。
- 根据权利要求16-18中任一项所述的电池模组,其中,所述模组壳体上具有接电部,所述接电部与所述防爆部异侧设置。
- 根据权利要求19所述的电池模组,其中,所述接电部与所述防爆部设于所述模组壳体的相对两侧。
- 一种电池,其中,包括:电池模组和排放组件,所述电池模组为根据权利要求15-20中任一项所述的电池模组,所述排放组件限定出排放腔,所述电池模组的所述防爆部朝向所述排放组件设置,所述防爆部适于向所述排放腔内喷发。
- 根据权利要求21所述的电池,其中,所述排放组件的两侧分别设有所述电池模组,所述排放腔内具有防对喷件,所述防对喷件包括颗粒物处理件和/或防火材料件。
- 根据权利要求21或22所述的电池,其中,所述排放组件的朝向所述电池模组的一侧具有换热部。
- 根据权利要求21-23中任一项所述的电池,其中,还包括箱体,所述箱体内设有多个所述电池模组,所述排放组件构成所述箱体的分隔梁和/或边梁。
- 一种用电装置,其中,包括:根据权利要求21-24中任一项所述的电池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/123531 WO2024065786A1 (zh) | 2022-09-30 | 2022-09-30 | 包装壳、电池单体、电池模组、电池及用电装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/123531 WO2024065786A1 (zh) | 2022-09-30 | 2022-09-30 | 包装壳、电池单体、电池模组、电池及用电装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024065786A1 true WO2024065786A1 (zh) | 2024-04-04 |
Family
ID=90475697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/123531 WO2024065786A1 (zh) | 2022-09-30 | 2022-09-30 | 包装壳、电池单体、电池模组、电池及用电装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024065786A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1961438A (zh) * | 2004-03-31 | 2007-05-09 | Nec拉米利翁能源株式会社 | 膜覆盖电子装置、框架部件和用于膜覆盖电子装置的壳体系统 |
KR20090064772A (ko) * | 2007-12-17 | 2009-06-22 | 주식회사 엘지화학 | 파우치형 전지 |
US20140030564A1 (en) * | 2012-07-24 | 2014-01-30 | Samsung Sdi Co., Ltd. | Rechargeable battery |
JP2014022224A (ja) * | 2012-07-19 | 2014-02-03 | Gs Yuasa Corp | 蓄電素子 |
WO2022006895A1 (zh) * | 2020-07-10 | 2022-01-13 | 宁德时代新能源科技股份有限公司 | 电池及其相关装置、制备方法和制备设备 |
WO2022139450A1 (ko) * | 2020-12-23 | 2022-06-30 | 주식회사 엘지에너지솔루션 | 전해액 재주액 방법 및 전해액 재주액이 가능한 이차전지 |
-
2022
- 2022-09-30 WO PCT/CN2022/123531 patent/WO2024065786A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1961438A (zh) * | 2004-03-31 | 2007-05-09 | Nec拉米利翁能源株式会社 | 膜覆盖电子装置、框架部件和用于膜覆盖电子装置的壳体系统 |
KR20090064772A (ko) * | 2007-12-17 | 2009-06-22 | 주식회사 엘지화학 | 파우치형 전지 |
JP2014022224A (ja) * | 2012-07-19 | 2014-02-03 | Gs Yuasa Corp | 蓄電素子 |
US20140030564A1 (en) * | 2012-07-24 | 2014-01-30 | Samsung Sdi Co., Ltd. | Rechargeable battery |
WO2022006895A1 (zh) * | 2020-07-10 | 2022-01-13 | 宁德时代新能源科技股份有限公司 | 电池及其相关装置、制备方法和制备设备 |
WO2022139450A1 (ko) * | 2020-12-23 | 2022-06-30 | 주식회사 엘지에너지솔루션 | 전해액 재주액 방법 및 전해액 재주액이 가능한 이차전지 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230344071A1 (en) | Battery cell, method and system for manufacture same, battery, and power consuming device | |
WO2022006892A1 (zh) | 电池、用电装置、制备电池的方法和装置 | |
US20230006304A1 (en) | Battery cell, battery, and electrical device | |
KR102681020B1 (ko) | 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치 | |
EP4092818B1 (en) | Battery box body, battery, electric device, and method for preparing box body | |
KR102686170B1 (ko) | 전지 및 그 관련장치, 제조방법 및 제조설비 | |
US11784371B2 (en) | Box of battery, battery, power consumption device, and method and device for producing battery | |
WO2023004722A1 (zh) | 电池单体及其制造方法和制造系统、电池以及用电装置 | |
CN115152080A (zh) | 电池、装置、电池的制备方法以及制备装置 | |
US20220320673A1 (en) | Battery, power consumption device, method and device for producing battery | |
EP4184690A1 (en) | Battery module and battery pack comprising same | |
WO2022205080A1 (zh) | 电池、用电装置、制备电池的方法和装置 | |
CN116845473B (zh) | 电池单体、电池及用电设备 | |
EP4009435B1 (en) | Battery, power consuming apparatus and method and apparatus for producing battery | |
WO2024065786A1 (zh) | 包装壳、电池单体、电池模组、电池及用电装置 | |
JP2023540109A (ja) | 電池モジュールおよびそれを含む電池パック | |
WO2023133784A1 (zh) | 电池、用电设备、制备电池的方法和设备 | |
CN221766985U (zh) | 电池单体、电池和用电设备 | |
US20240322356A1 (en) | Battery module and battery pack including the same | |
WO2023070683A1 (zh) | 电池单体、电池、制造电池单体的方法和装置 | |
WO2024065785A1 (zh) | 电池及用电装置 | |
US11888177B2 (en) | Battery, power consumption device, and method and device for producing battery | |
US20240204341A1 (en) | Battery cell, battery cell manufacturing method and equipment, battery, and electrical device | |
WO2023028748A1 (zh) | 电池、用电装置以及制备电池的方法和装置 | |
WO2023133756A1 (zh) | 电池、用电装置、制备电池的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22960398 Country of ref document: EP Kind code of ref document: A1 |