WO2024065785A1 - 电池及用电装置 - Google Patents

电池及用电装置 Download PDF

Info

Publication number
WO2024065785A1
WO2024065785A1 PCT/CN2022/123529 CN2022123529W WO2024065785A1 WO 2024065785 A1 WO2024065785 A1 WO 2024065785A1 CN 2022123529 W CN2022123529 W CN 2022123529W WO 2024065785 A1 WO2024065785 A1 WO 2024065785A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrical connection
end wall
row
same group
Prior art date
Application number
PCT/CN2022/123529
Other languages
English (en)
French (fr)
Inventor
徐晨怡
唐彧
李星
张辰辰
黄小腾
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/123529 priority Critical patent/WO2024065785A1/zh
Publication of WO2024065785A1 publication Critical patent/WO2024065785A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery and an electrical device.
  • the embodiments of the present application provide a battery and an electrical device, which can effectively improve the safety of battery use.
  • an embodiment of the present application provides a battery, comprising at least one battery group, wherein the battery group comprises two battery rows, each of the battery rows comprises at least one battery cell, and each of the battery cells is provided with an electrical connection portion on a side facing another battery row in the same group, and each of the battery cells is also provided with a pressure relief portion, and the pressure relief portion and the electrical connection portion are arranged on different sides of the battery cell.
  • the electrical connection part and the pressure relief part of the battery cell are located on different surfaces of the battery cell, it is beneficial to ensure that there is a large spacing between the electrical connection part and the pressure relief part of the battery cell, so as to effectively avoid the conductive particles in the discharge discharged by the battery cell through its own pressure relief part flowing to its own electrical connection part to cause insulation failure, high voltage sparking and other problems in the case of thermal runaway, etc., and to ensure the creepage clearance between the conductive parts in the battery to avoid short circuit problems.
  • the electrical connection part of the battery cell is not arranged relative to the pressure relief part of another battery row in the same battery pack, so that the electrical connection part of the battery cell is protected from the influence of the discharge discharged by other battery cells through the pressure relief part, that is, the influence of the discharge discharged by the battery cell through the pressure relief part on the electrical connection part of other battery cells is reduced, and the safety and reliability of the battery are ensured.
  • the electrical connection parts of the two battery rows of the same battery pack are arranged relative to each other, it is beneficial to realize the electrical connection of the two battery rows of the same battery pack, thereby improving production efficiency and realizing centralized protection of the electrical connection position. In short, the electrical connection of the battery is convenient, and the influence of thermal runaway on the electrical connection is small.
  • the pressure relief portion is disposed on a side of the battery cell that is away from another battery row in the same group.
  • the distance between electricity and gas is relatively far, and the distance between the electrical connection area and the exhaust area is relatively far, so the influence of thermal runaway on the electrical connection is smaller.
  • the pressure relief portion and the electrical connection portion are placed at both ends of the length of the battery cell.
  • the distance between electricity and gas is relatively far, and the distance between the electrical connection area and the exhaust area is relatively far, so the impact of thermal runaway on the electrical connection is smaller.
  • the pressure relief part and the electrical connection part are placed on both sides of the battery cell in the horizontal direction.
  • the pressure relief part is possible to avoid the pressure relief part being too high relative to the electrical connection part, so as to avoid the emission from the pressure relief part having a strong diffusion ability when it erupts, and easily diffuse to the electrical connection area at the electrical connection part.
  • the space opposite to the electrical connection part is arranged in the horizontal direction, so as to reduce the height of the battery.
  • the side of the battery cell facing the other battery row in the same group is the first end wall
  • the side of the battery cell facing away from the other battery row in the same group is the second end wall
  • the battery cell connected between the first end wall and the second end wall is the peripheral side wall
  • the pressure relief portion is provided on the peripheral side wall.
  • each of the battery rows includes a plurality of battery cells arranged along a first direction, and two battery rows in the same group are arranged along a second direction, and the peripheral side wall includes a first side wall and a second side wall arranged opposite to each other along a third direction, and the pressure relief portion is provided on the first side wall, and the first direction and the second direction are perpendicular to the third direction in pairs.
  • the discharge position can avoid the arrangement direction, that is, the pressure relief is not performed between two adjacent battery cells in the same row, which is conducive to exhaust gas collection, reduces the influence of heat diffusion, and can improve the compactness of the structure.
  • the electrical connection portion is disposed closer to the second side wall relative to the first side wall. In the above technical solution, the distance between the electrical and gas can be extended as far as possible to further reduce the impact of thermal runaway.
  • the pressure relief portion is disposed closer to the second end wall relative to the first end wall. In the above technical solution, the distance between the electric and gas can be extended as far as possible to further reduce the impact of thermal runaway.
  • the thickness direction of the battery cell is perpendicular to the horizontal direction. In the above technical solution, the height of the battery can be effectively reduced.
  • the battery row includes a plurality of battery cells arranged along the width direction of the battery cells.
  • the battery row includes more battery cells and has a higher power.
  • each battery row includes a plurality of battery cells arranged along a first direction, and two battery rows in the same group are arranged along a second direction, and the second direction is perpendicular to the first direction.
  • the battery includes more battery cells and has a higher power.
  • a plurality of the battery packs are arranged along a third direction to form a multi-layer battery pack, and the third direction is perpendicular to the first direction and the second direction.
  • the battery includes more battery cells and has a higher power.
  • the number of battery packs in the multi-layer battery pack is less than the number of battery cells in the battery row.
  • the number of battery packs in the multi-layer battery pack is 2 to 3.
  • it is convenient to reduce the extrusion force borne by the battery row in the height direction, and reduce the impact of the extrusion force on the severity of the battery monomer when it releases pressure and discharges emissions.
  • two battery cells facing each other in the same group constitute an opposing unit, at least one of the opposing units is a first opposing unit, and the electrical connection parts of the two battery cells in the first opposing unit are staggered.
  • the electrical connection parts are staggered, the space required for electrical connection can be reduced, thereby improving the space utilization of the battery.
  • the side of the battery cell facing the other battery row in the same group is a first end wall, and in the first opposing unit, the electrical connection parts are at the same position relative to the first end wall, and the first end walls on the opposite side are staggered.
  • the staggered arrangement of the electrical connection parts can be satisfied when the battery cells are not facing each other.
  • the side of the battery cell facing the other battery row in the same group is a first end wall, and in the first opposing unit, the positions of the electrical connection parts relative to the first end wall are different, and the first end walls on the opposite side are arranged opposite to each other.
  • the staggered arrangement of the electrical connection parts can be satisfied when the battery cells are facing each other.
  • the side of the battery cell facing the other battery row in the same group is a first end wall, and in the first opposing unit, the electrical connection parts on the opposite side are staggered along the length direction of the first end wall.
  • the width of the battery cell can be reduced.
  • the side of the battery cell facing the other battery row in the same group is a first end wall, and in the first opposing unit, the electrical connection parts on the opposite side are staggered along the width direction of the first end wall.
  • the length of the battery cell can be reduced.
  • the side of the battery cell facing the other battery row in the same group is a first end wall, and in the first opposing unit, the electrical connection parts on the opposite side are diagonally staggered.
  • the space utilization rate is good and the layout is easy.
  • the side of the battery cell facing the other battery row in the same group is a first end wall, and in the first opposing unit, the distance between the first end walls on opposite sides is less than or equal to the sum of the heights of the electrical connection portions on opposite sides protruding from the first end walls.
  • two battery cells facing each other in the same group constitute an facing unit, at least one of the facing units is a second facing unit, and the electrical connection parts of the two battery cells in the second facing unit are arranged facing each other.
  • At least one pair of the electrical connection parts facing each other in the second opposing unit abuts against the support.
  • the side of the battery cell facing the other battery row in the same group is a first end wall, and in the second opposing unit, the multiple electrical connection parts on each battery cell protrude from the first end wall at different heights, wherein the electrical connection part with a larger protruding height abuts against the support.
  • the gap between the two can be reduced, the compactness of the structure can be improved, the space utilization rate can be improved, and the overall structural strength of the battery can be improved, and the stability of the battery can be improved.
  • the side of the battery cell facing the other battery row in the same group is a first end wall, and in the second opposing unit, the multiple electrical connection parts on each battery cell protrude from the first end wall at the same height, and the electrical connection parts facing each other are all abutted for support.
  • the gap between the two can be reduced, the compactness of the structure can be improved, the space utilization rate can be improved, and the overall structural strength of the battery can be improved, and the stability of the battery can be improved.
  • two battery cells facing each other in the same group form an opposing unit, and two battery cells in at least one opposing unit are supported by abutting against each other through a supporting structure.
  • the side of the battery cell facing the other battery row in the same group is a first end wall
  • the support structure includes a support platform provided on the first end wall
  • each of the two battery cells supported by the support structure is provided with the support platform, and the support platforms on the opposite sides are supported by the support structure.
  • the support platform is integrally formed on the first end wall. In the above technical solution, the installation process can be reduced, which is convenient for grouping.
  • the support platform is assembled to the first end wall.
  • the support platform can be manufactured separately to facilitate molding.
  • the support structure includes a filler disposed between the battery cells on opposite sides.
  • the structural strength can be enhanced.
  • an insulating member is provided between two battery rows in the battery pack.
  • the insulating member includes an insulating sheet and insulating glue disposed between the two battery rows, the insulating sheet is fixed to the battery row by the insulating glue, and the insulating glue is a filling glue or a double-sided adhesive.
  • At least one of the battery rows in the battery pack is provided with an insulating cover, and the insulating cover covers the electrical connection portion on the corresponding battery row.
  • each of the battery rows includes a plurality of the battery cells, and the electrical connection portions on opposite sides of the same group are not connected.
  • each of the battery rows includes a plurality of battery cells arranged along a first direction, two of the battery rows in the same group are arranged along a second direction, and a plurality of battery groups are arranged along a third direction to form a multilayer battery group, and the battery rows on the same side of the multilayer battery group are electrically connected.
  • each of the battery rows includes a plurality of the battery cells, and the electrical connection portions on opposite sides of the same group are electrically connected.
  • the electrical connection portions on opposite sides of the same group are directly welded or connected via a conductive sheet.
  • the battery further comprises: a heat management component, the heat management component comprising a heat exchange portion and used to exchange heat with the battery cell.
  • a heat management component comprising a heat exchange portion and used to exchange heat with the battery cell.
  • the thermal management component includes: a first beam, the first beam is arranged between two battery rows in the same group, and the first beam has a heat exchange portion on one side facing each battery row.
  • the heat exchange portion is arranged toward the electrical connection portion, and can be used to adjust the temperature of the electrical connection portion, for example, it can be used to cool the overcurrent component, thereby improving the working safety and reliability of the battery.
  • the thermal management component includes: a second beam, the second beam is arranged on opposite sides of the two battery rows in the same group, and the second beam has the heat exchange portion on one side facing the corresponding battery row.
  • the battery further comprises: a box body component, the box body component comprises a side panel and a partition beam, the partition beam is located in the space surrounded by the side panel to divide the space into a plurality of accommodating cavities, the accommodating cavities are used to accommodate the battery row, and the partition beam is configured as the thermal management component.
  • the partition beam is used as a thermal management component to adjust the temperature of the battery cell, which can save space and improve space utilization.
  • the battery further comprises: a discharge component, a discharge cavity is formed in the discharge component, the discharge component is arranged on the side facing the pressure relief part, and the discharge cavity is used to receive the discharge discharged by the pressure relief part.
  • a side of the exhaust component facing the battery row further has a heat exchange portion.
  • an embodiment of the present application further provides an electrical device, comprising the above-mentioned battery, wherein the battery is used to provide electrical energy to the electrical device.
  • FIG1 is a schematic diagram of an electric device in the related art
  • FIG2 is a schematic diagram of a battery in the related art
  • FIG3 is a schematic diagram of a battery provided in some embodiments of the present application.
  • FIG4 is a schematic diagram of a battery cell shown in FIG3 at an angle
  • FIG5 is a schematic diagram of a battery cell shown in FIG4 at an angle
  • FIG6 is a schematic diagram of an opposing unit shown in FIG3 ;
  • FIG7 is a schematic diagram of an opposing unit shown in FIG6 at an angle
  • FIG8 is a schematic diagram of a battery cell provided in some embodiments of the present application.
  • FIG9 is a schematic diagram of a battery cell provided in some embodiments of the present application.
  • FIG10 is a schematic diagram of an opposing unit provided in some embodiments of the present application.
  • FIG11 is a schematic diagram of a battery cell provided in some embodiments of the present application.
  • FIG12 is a schematic diagram of an opposing unit provided in some embodiments of the present application.
  • FIG13 is a schematic diagram of an opposing unit provided in some embodiments of the present application.
  • FIG14 is a schematic diagram of an opposing unit provided in some embodiments of the present application.
  • FIG15 is a schematic diagram of an opposing unit provided in some embodiments of the present application.
  • FIG16 is a schematic diagram of a battery provided in some embodiments of the present application.
  • FIG17 is a schematic diagram of a partial composition of the battery shown in FIG16 ;
  • FIG18 is an exploded view of a battery provided in some embodiments of the present application.
  • Fig. 19 is an assembly diagram of the battery shown in Fig. 18;
  • Fig. 20 is a schematic diagram of the battery shown in Fig. 18;
  • FIG21 is a schematic diagram of a battery provided in some embodiments of the present application.
  • Fig. 22 is a schematic diagram of the battery shown in Fig. 21;
  • FIG23 is an exploded view of a battery provided in some embodiments of the present application.
  • FIG24 is a schematic diagram of a battery and an exhaust component provided in some embodiments of the present application.
  • Figure 25 is a schematic diagram of a vehicle provided in some embodiments of the present application.
  • Battery 1000 battery pack 100; battery row 10; battery cell 1; electrical connection portion 11; pressure relief portion 12; first end wall 131; second end wall 132; peripheral side wall 133; first side wall 1331; second side wall 1332; opposing unit 20; first opposing unit 21; second opposing unit 22; support structure 30; support platform 31; insulating member 40; insulating cover 41; thermal management component 50; heat exchange portion 501; first beam 51; second beam 52; box component 60; side panel 61; partition beam 62; discharge component 70; discharge chamber 701; conductive sheet 80; electrical device 2000.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • a battery refers to a single physical module that includes one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Some batteries may include a casing for encapsulating one or more battery cells or multiple battery modules. The casing can prevent liquids or other foreign matter from affecting the charging or discharging of the battery cells.
  • some batteries may not include the above-mentioned casing and are directly set in the battery installation compartment of the electrical device.
  • battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries or magnesium-ion batteries, etc., and the embodiments of the present application do not limit this.
  • Battery cells may be cylindrical, flat, rectangular or other shapes, etc., and the embodiments of the present application do not limit this. Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application do not limit this.
  • a battery cell may include a housing, an electrode assembly and an electrolyte, wherein the housing is used to contain the electrode assembly and the electrolyte.
  • the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
  • the positive electrode sheet includes a positive electrode collector and a positive electrode active material layer, wherein the positive electrode active material layer is coated on the surface of the positive electrode collector, and the positive electrode collector not coated with the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer, and the positive electrode collector not coated with the positive electrode active material layer serves as a positive electrode ear.
  • the material of the positive electrode collector may be aluminum, and the positive electrode active material may be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector not coated with the negative electrode active material layer protrudes from the negative electrode current collector coated with the negative electrode active material layer.
  • the negative electrode current collector not coated with the negative electrode active material layer serves as a negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon, etc. In order to ensure that a large current passes without melting, the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film may be PP (polypropylene) or PE (polyethylene), etc.
  • the electrode assembly may be a winding structure or a stacked structure, but the embodiments of the present application are not limited thereto.
  • the battery cell may be provided with a pole or the like connected to the pole lug as the electrical connection part of the battery cell.
  • the battery cell usually has a pressure relief part.
  • the pressure relief part is used to release the internal substances of the battery cell (for example, gas, liquid, particulate matter, etc.) to reduce the internal pressure of the battery cell and avoid the internal pressure of the battery cell being too quickly pressurized, which may lead to dangerous accidents such as explosion of the battery cell.
  • the pressure relief part may be an explosion-proof valve, an explosion-proof plate, etc.
  • battery B is used for power supply.
  • Battery B includes a box body B1 and a battery cell B2.
  • Box body B1 includes an upper shell B11 and a lower shell B12.
  • the battery cell usually sets the electrical connection part and the pressure relief part on the same side surface of the battery cell.
  • the pressure relief part discharges and releases pressure to release the internal pressure of the battery cell, the conductive particles in the discharge of the battery cell are easy to move to the electrical connection part and overlap with it to form an internal short circuit, or reduce the creepage clearance between the electrical connection parts, resulting in insulation failure such as high-voltage sparking.
  • the electrical connection part and the pressure relief part of the battery cell can be respectively arranged on different end faces of the battery cell; however, in the battery, in order to make the battery have a suitable voltage and capacity, multiple battery cells are often arranged, and the multiple battery cells are placed in multiple rows.
  • the above structure can only make the electrical connection part of each battery cell away from its own pressure relief part.
  • the pressure relief part of a battery cell is arranged toward the electrical connection part of the adjacent battery cell, there is still a problem that the conductive particles in the discharge can easily move to the electrical connection part, or reduce the creepage clearance between the conductive parts, resulting in insulation failure phenomena such as high-voltage sparking.
  • the applicant has proposed a battery 1000 after in-depth research, including at least one battery group 100, the battery group 100 includes two battery rows 10, each battery row 10 includes at least one battery cell 1, and each battery cell 1 is provided with an electrical connection portion 11 on the side facing the other battery row 10 of the same group, and each battery cell 1 is also provided with a pressure relief portion 12, and the pressure relief portion 12 and the electrical connection portion 11 are arranged on different sides of the battery cell 1.
  • the pressure relief portion 12 and the electrical connection portion 11 of the battery cell 1 are arranged on different end surfaces of the battery cell 1 respectively, it is effectively prevented that the discharge of the battery cell 1 through the pressure relief portion 12, such as conductive particles, flows to the electrical connection portion 11 to cause insulation failure such as high voltage sparking, thereby ensuring the creepage clearance between the conductive components in the battery 1000 to avoid internal short circuit.
  • the electrical connection portion 11 of the battery cell 1 is not arranged opposite to the pressure relief portion 12 of another battery row 10 in the same battery pack 100, so that the electrical connection portion 11 of the battery cell 1 is protected from the influence of the emissions discharged from other battery cells 1 through the pressure relief portion 12, that is, the influence of the emissions discharged from the battery cell 1 through the pressure relief portion 12 on the electrical connection portions 11 of other battery cells 1 is reduced, thereby ensuring the safety and reliability of the battery 1000.
  • the battery 1000 disclosed in the embodiment of the present application can be used in, but not limited to, an electrical device 2000 such as a vehicle, a ship or an aircraft.
  • the power supply system of the electrical device 2000 composed of the battery 1000 disclosed in the present application can ensure the safety and reliability of the electrical device 2000.
  • the power-consuming device 2000 disclosed in the embodiment of the present application may be, but is not limited to, a vehicle, a mobile phone, a tablet, a laptop computer, a ship, a spacecraft, an electric toy, an electric tool, etc.
  • the vehicle may be a fuel vehicle, a gas vehicle, a new energy vehicle, or a rail vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle, etc.
  • the spacecraft includes an airplane, a rocket, a space shuttle, and a spacecraft, etc.
  • the electric toy includes a fixed or mobile electric toy, such as a game console, an electric vehicle toy, an electric ship toy, and an electric airplane toy, etc.
  • the electric tool includes a metal cutting electric tool, a grinding electric tool, an assembly electric tool, and a railway electric tool, such as an electric drill, an electric grinder, an electric wrench, an electric screwdriver, an electric hammer, an impact drill, a concrete vibrator, and an electric planer, etc.
  • the battery 1000 includes: at least one battery pack 100, the battery pack 100 includes two battery rows 10, each battery row 10 includes at least one battery cell 1, each battery cell 1 is provided with an electrical connection portion 11 on a side facing another battery row 10 in the same group, and each battery cell 1 is also provided with a pressure relief portion 12, and the pressure relief portion 12 and the electrical connection portion 11 are provided on different sides of the battery cell 1.
  • the "same group” mentioned herein refers to the same battery pack 100.
  • a side surface of the battery cell 1 facing another battery row 10 in the same battery pack 100 is a first end wall 131, an electrical connection portion 11 of the battery cell 1 is arranged on the first end wall 131, and a pressure relief portion 12 of the battery cell 1 is arranged on other wall surfaces of the battery cell 1 except the first end wall 131.
  • the electrical connection part 11 and the pressure relief part 12 of the battery cell 1 are respectively located on different surfaces of the battery cell 1, it is beneficial to ensure that there is a large distance between the electrical connection part 11 and the pressure relief part 12 of the battery cell 1, so as to effectively avoid the conductive particles in the emissions discharged by the battery cell 1 through its own pressure relief part 12 flowing to its own electrical connection part 11 in the case of thermal runaway, causing insulation failure, high-voltage sparking and other problems, thereby ensuring the creepage clearance between the conductive components in the battery 1000 to avoid short circuit problems.
  • the electrical connection portion 11 of the battery cell 1 is not arranged opposite to the pressure relief portion 12 of another battery row 10 in the same battery pack 100, so that the electrical connection portion 11 of the battery cell 1 is protected from the influence of the emissions discharged from other battery cells 1 through the pressure relief portion 12, that is, the influence of the emissions discharged from the battery cell 1 through the pressure relief portion 12 on the electrical connection portions 11 of other battery cells 1 is reduced, thereby ensuring the safety and reliability of the battery 1000.
  • the electrical connection parts 11 of the battery cells 1 of the two battery rows 10 in the same battery pack 100 are arranged face to face with the electrical connection parts 11, and the pressure relief part 12 of each battery cell 1 is not arranged toward the electrical connection part 11 of any other battery cell 1, and the pressure relief part 12 of each battery cell 1 in the same battery row 10 does not spray toward any electrical connection part 11 in the battery row 10, nor does it spray toward any electrical connection part 11 of another battery row 10 in the same battery pack 100, thereby effectively ensuring that the electrical connection part 11 of each battery cell 1 is not affected by the emissions discharged from other battery cells 1, thereby ensuring the safety and reliability of the battery 1000.
  • the electrical connection parts 11 of the two battery rows 10 of the same battery pack 100 are arranged relative to each other, it is beneficial to realize the electrical connection of the two battery rows 10 of the same battery pack 100, thereby facilitating the improvement of production efficiency, and realizing centralized protection of the electrical connection positions, etc.
  • the battery 1000 of the embodiment of the present application by arranging the pressure relief portion 12 and the electrical connection portion 11 of the battery cell 1 on different surfaces of the battery cell 1, respectively, it is possible to effectively prevent the conductive particles in the discharge discharged by the battery cell 1 through the pressure relief portion 12 from flowing to the electrical connection portion 11 to cause insulation failure such as high voltage ignition, thereby ensuring the use safety and reliability of the battery 1000.
  • the power supply system of the electric device 2000 can adopt the battery 1000 disclosed in the present application, thereby improving the use safety and reliability of the electric device 2000.
  • the pressure relief portion 12 is disposed on the side of the battery cell 1 facing away from another battery row 10 in the same group.
  • the side of the battery cell 1 facing away from another battery row 10 in the same battery group 100 is the first end wall 131
  • the side of the battery cell 1 facing away from another battery row 10 in the same battery group 100 is the second end wall 132.
  • the electrical connection portion 11 is disposed on the first end wall 131
  • the pressure relief portion 12 is disposed on the second end wall 132.
  • the distance between the electrical connection portion 11 and the pressure relief portion 12 can be further increased, and the electrical connection portion 11 can be better protected from the effects of the discharge discharged by the pressure relief portion 12, that is, the probability of being affected is smaller, and the safety and reliability of the battery 1000 are better.
  • the pressure relief portion 12 and the electrical connection portion 11 are disposed at both ends of the length of the battery cell 1.
  • the length direction of the battery cell 1 points to another battery row 10 in the same battery pack 100
  • the two opposite side walls of the battery cell 1 along its own length direction are respectively the first end wall 131 and the second end wall 132
  • the first end wall 131 faces another battery row 10 in the same battery pack 100
  • the electrical connection portion 11 is disposed on the first end wall 131
  • the pressure relief portion 12 is disposed on the second end wall 132.
  • the distance between the electrical connection portion 11 and the pressure relief portion 12 can be effectively increased, and the electrical connection portion 11 can be better protected from the effects of the discharge discharged by the pressure relief portion 12, that is, the probability of being affected is smaller, and the safety and reliability of the battery 1000 are better.
  • the present application is not limited to this.
  • the width direction of the battery cell 1 can also be directed to another battery row 10 in the same battery pack 100.
  • the electrical connection portion 11 is provided on a side wall surface in the width direction of the battery cell 1.
  • the thickness direction of the battery cell 1 can also be directed to another battery row 10 in the same battery pack 100.
  • the electrical connection portion 11 is provided on a side wall surface in the thickness direction of the battery cell 1. No further details will be given here.
  • the pressure relief portion 12 and the electrical connection portion 11 are disposed on both sides of the battery cell 1 in the horizontal direction. That is, when the battery 1000 is in use, the side wall surface (such as the second end wall 132) where the pressure relief portion 12 is disposed is not higher than the side wall surface (such as the first end wall 131) where the electrical connection portion 11 is disposed. In this way, it is possible to effectively avoid the problem that the pressure relief portion 12 is too high relative to the electrical connection portion 11, and the emission emitted by the pressure relief portion 12 has a strong diffusion ability, causing the emission to diffuse to the relatively low electrical connection portion 11, thereby better avoiding the electrical connection portion 11 from being affected by the emission discharged by the pressure relief portion 12. Moreover, by placing the electrical connection portion 11 and the pressure relief portion 12 opposite to each other in the horizontal direction, the height of the battery row 10 can be reduced, thereby reducing the overall height of the battery 1000.
  • the side of the battery cell 1 facing the other battery row 10 of the same group is the first end wall 131
  • the side of the battery cell 1 facing away from the other battery row 10 of the same group is the second end wall 132.
  • the battery cell 1 is connected between the first end wall 131 and the second end wall 132 to the peripheral side wall 133, and the pressure relief portion 12 is provided on the peripheral side wall 133.
  • the electrical connection portion 11 and the pressure relief portion 12 are respectively located on the adjacent sides of the battery cell 1, so that there is a certain safety distance between the electrical connection portion 11 and the pressure relief portion 12, reducing the influence of the discharge discharged by the pressure relief portion 12 on the electrical connection portion 11, and improving the safety and reliability of the battery 1000.
  • each battery row 10 includes a plurality of battery cells 1 arranged along a first direction F1, and two battery rows 10 in the same group are arranged along a second direction F2.
  • the end walls of the battery cells 1 opposite to each other along the second direction F2 are respectively a first end wall 131 and a second end wall 132, and the first end wall 131 faces the other battery row 10 in the same group (i.e., the same battery group 100), and the second end wall 132 faces away from the other battery row 10 in the same group (i.e., the same battery group 100).
  • the electrical connection portion 11 and the pressure relief portion 12 are arranged on opposite sides, the electrical connection portion 11 is arranged on the first end wall 131, and the pressure relief portion 12 is arranged on the second end wall 132.
  • the peripheral side wall 133 may include a first side wall 1331 and a second side wall 1332 that are relatively arranged along the third direction F3.
  • the pressure relief portion 12 may be arranged on the first side wall 1331, and the first direction F1, the second direction F2 and the third direction F3 are perpendicular to each other.
  • the arrangement of the pressure relief portion 12 can avoid the adjacent positions of multiple battery cells 1 in the same battery row 10, thereby avoiding pressure relief at the position between two adjacent battery cells 1 in the same battery row 10, which is conducive to exhaust gas collection, reduces the influence of heat diffusion, and can improve the compactness of the structure and reduce the space occupied.
  • the electrical connection portion 11 when the pressure relief portion 12 is disposed on the first side wall 1331, the electrical connection portion 11 is disposed close to the second side wall 1332 relative to the first side wall 1331. That is, along the third direction F3, the distance between the electrical connection portion 11 and the first side wall 1331 is greater than the distance between the electrical connection portion 11 and the second side wall 1332.
  • the distance between the electrical connection portion 11 and the pressure relief portion 12 can be further increased, reducing the impact of the discharge discharged from the pressure relief portion 12 on the electrical connection portion 11, thereby improving the safety and reliability of the battery 1000.
  • the pressure relief portion 12 when the pressure relief portion 12 is disposed on the first side wall 1331, the pressure relief portion 12 is disposed close to the second end wall 132 relative to the first end wall 131. That is, along the second direction F2, the distance between the pressure relief portion 12 and the first end wall 131 is greater than the distance between the pressure relief portion 12 and the second end wall 132.
  • the distance between the electrical connection portion 11 and the pressure relief portion 12 can be further increased, reducing the impact of the discharge discharged by the pressure relief portion 12 on the electrical connection portion 11, thereby improving the safety and reliability of the battery 1000.
  • the thickness direction of the battery cell 1 (e.g., the third direction F3 shown in FIG3 ) is perpendicular to the horizontal direction. It is understandable that the thickness of the battery cell 1 is less than the length of the battery cell 1 , and the thickness of the battery cell 1 is less than the width of the battery cell 1 , and the length of the battery cell 1 is greater than or equal to the width of the battery cell 1 .
  • the thickness direction of the battery cell 1 is perpendicular to the horizontal direction, it is equivalent to the thickness direction of the battery cell 1 being the vertical direction.
  • the battery cell 1 is equivalent to being set flat, occupying a smaller vertical space, reducing the overall height of the battery 1000, and can reduce the center of gravity height of the battery cell 1, reducing the splash range of the battery cell 1.
  • the distance that the battery cell 1 can splash is also smaller, which is conducive to improving safety performance.
  • the discharge is discharged through the pressure relief portion 12. Since the battery cell 1 is arranged flat, the height of the pressure relief portion 12 can be reduced, which can effectively reduce the height of the eruption position of the pressure relief portion 12, thereby reducing the diffusion area, reducing the splashing area, and improving the overall safety performance of the battery 1000.
  • the battery row 10 may include a plurality of battery cells 1 arranged along the width direction of the battery cell 1 (e.g., the first direction F1 shown in FIG3 ), and at this time, one side wall surface (e.g., the first end wall 131) in the length direction of the battery cell 1 faces another battery row 10 in the same battery pack 100.
  • the battery row 10 may include a greater number of battery cells 1, thereby increasing the capacity of the battery 1000.
  • the battery row 10 may also include a plurality of battery cells 1 arranged along the length direction of the battery cell 1. In this case, one side surface of the battery cell 1 in the width direction faces another battery row 10 in the same battery pack 100, which will not be elaborated here.
  • each battery row 10 includes a plurality of battery cells 1 arranged along a first direction F1, and two battery rows 10 in the same group are arranged along a second direction F2, and the second direction F2 is perpendicular to the first direction F1.
  • the battery pack 100 includes a large number of battery cells 1 and a high power.
  • a plurality of battery packs 100 are arranged along a third direction F3 to form a multi-layer battery pack, and the third direction F3 is perpendicular to the first direction F1 and the second direction F2.
  • the battery pack 100 includes more battery cells 1 and a higher power capacity.
  • an electrical connection portion 11 is provided on one side of each battery cell 1 facing another battery row 10 in the same group, and the pressure relief portion 12 of each battery cell 1 is provided on a different side of the electrical connection portion 11 from the battery cell 1”
  • the safety and reliability of the multi-layer battery pack can be better guaranteed, and the adverse effect of the battery cell 1 on the electrical connection portion 11 of other battery packs 100 during the pressure relief process can be improved.
  • the number of battery packs 100 in the multi-layer battery pack is less than the number of battery cells 1 in the battery row 10. Therefore, under the premise of ensuring that a certain number of battery rows 10 are arranged, it is convenient to reduce the squeezing force borne by the battery row 10 in the height direction, and reduce the impact of the squeezing force on the severity of the battery cells 1 when the pressure is released and the emissions are discharged.
  • the number of battery packs 100 in a multilayer battery pack is 2 to 3. That is, the number of battery packs 100 included in the multilayer battery pack is two or three.
  • the present application is not limited to this.
  • the number of battery packs 100 in a multilayer battery pack can also be more than three, etc., which will not be elaborated here.
  • two battery cells 1 facing each other in the same group constitute an opposing unit 20
  • at least one opposing unit 20 is a second opposing unit 22
  • the electrical connection parts 11 of the two battery cells 1 in the second opposing unit 22 are arranged opposite to each other, that is, along the opposing direction of the two battery cells 1 in the second opposing unit 22 (for example, the second direction F2 shown in the figure), the orthographic projections of the electrical connection parts 11 of the two battery cells 1 in the second opposing unit 22 overlap.
  • processing is easy, for example, the same specification of battery cells 1 can be mass-produced, thereby reducing costs.
  • the abutting support can be a direct or indirect stop, can constitute an electrical connection, or can be insulated. When electrically connected, it can be in parallel or in series, which is not limited here.
  • the side of the battery cell 1 facing the other battery row 10 of the same group is the first end wall 131.
  • the multiple electrical connection parts 11 on each battery cell 1 protrude from the first end wall 131 at different heights.
  • the electrical connection parts 11 facing each other on both sides and with a larger (relatively larger) protruding height are abutted and supported, and the electrical connection parts 11 facing each other on both sides (i.e., with a relatively smaller protruding height) are clearance-matched. This is conducive to realizing the series connection of two battery rows 10 of the same battery pack 100.
  • the side of the battery cell 1 facing the other battery row 10 of the same group is the first end wall 131, and in the second opposing unit 22, the multiple electrical connection parts 11 on each battery cell 1 protrude from the first end wall 131 at the same height, and the electrical connection parts 11 facing each other are all abutted and supported. This is conducive to connecting two battery rows 10 of the same battery group 100 in parallel.
  • the positive and negative poles of the two battery rows 10 are offset against each other.
  • a high and low pole setting is adopted, with the high poles offsetting each other to enhance the structural strength and the low poles as low as possible to save space between the two battery rows 10.
  • two battery cells 1 facing each other in the same group constitute an opposing unit 20
  • at least one opposing unit 20 is a first opposing unit 21
  • the electrical connection parts 11 of the two battery cells 1 in the first opposing unit 21 are staggered, that is, along the opposing direction of the two battery cells 1 in the first opposing unit 21 (for example, the second direction F2 shown in the figure)
  • the orthographic projections of the electrical connection parts 11 of the two battery cells 1 in the first opposing unit 21 do not overlap and are staggered. Therefore, by setting the electrical connection parts 11 on the opposite side to be staggered, the distance between the two battery rows 10 in the same battery group 100 can be reduced, the space utilization rate of the battery 1000 is improved, and the grouping efficiency of the battery 1000 is improved.
  • the two battery rows 10 in the same battery pack 100 are two battery rows 10 on "opposite sides", the electrical connection portion 11 on one battery row 10 in the same battery pack 100 and the electrical connection portion 11 on another battery row 10 are electrical connection portions 11 on opposite sides; the pressure relief portion 12 on one battery row 10 in the same battery pack 100 and the pressure relief portion 12 on another battery row 10 are pressure relief portions 12 on opposite sides; the first end wall 131 on one battery row 10 in the same battery pack 100 and the first end wall 131 on another battery row 10 are first end walls 131 on opposite sides.
  • the staggered direction of the electrical connection portion 11 is not limited.
  • the side of the battery cell 1 facing the other battery row 10 in the same group is the first end wall 131, and in the first opposing unit 21, the electrical connection portion 11 on the opposite side is staggered along the width direction of the first end wall 131, thereby reducing the length dimension of the battery cell 1.
  • the side of the battery cell 1 facing the other battery row 10 in the same group is a first end wall 131.
  • the electrical connection parts 11 on the opposite side are staggered along the length direction of the first end wall 131, thereby reducing the width dimension of the battery cell 1.
  • the electrical connection parts 11 on the opposite sides are staggered diagonally.
  • the first opposing unit 21 is projected along two arrangement directions (such as the second direction F2 shown in the figure), and the two electrical connection parts 11 of one battery cell 1 are respectively located at the upper left corner and the lower right corner, and the two electrical connection parts 11 of the other battery cell 1 are respectively located at the lower left corner and the upper right corner, so that the space can be fully utilized to achieve a staggered arrangement.
  • a method for staggering the electrical connection parts 11 on the opposite side is optional.
  • the side of the battery cell 1 facing the other battery row 10 in the same group is the first end wall 131, and in the first opposing unit 21, the positions of the electrical connection parts 11 relative to the first end wall 131 are the same, and the first end walls 131 on the opposite side are staggered. In this way, the same specification processing of the battery cells 1 can be achieved, reducing the production cost.
  • the side of the battery cell 1 facing the other battery row 10 in the same group is the first end wall 131.
  • the positions of the electrical connection parts 11 relative to the first end wall 131 are different, and the first end walls 131 on the opposite sides are arranged opposite to each other.
  • the two battery rows 10 in the battery pack 100 can be arranged side by side, avoiding the problem of space waste caused by the overall staggering of the two battery rows 10, and improving the compactness of the structure and saving space.
  • the side of the battery cell 1 facing the other battery row 10 in the same group is the first end wall 131, and in the first opposing unit 21, the distance between the first end walls 131 on the opposite sides is less than or equal to the sum of the heights of the electrical connection portion 11 on the opposite side protruding from the first end wall 131.
  • the compactness of the structure can be further improved, and the space utilization rate can be improved.
  • two battery cells 1 facing each other in the same group constitute an opposing unit 20, and two battery cells 1 in at least one opposing unit 20 are supported by abutting against each other through a support structure 30.
  • the support structure 30 can be used for support, thereby improving the structural strength and the reliability of the battery 1000.
  • the electrical connection portion 11 on the opposite side when the electrical connection portion 11 on the opposite side is arranged opposite to and abuts against the support, the electrical connection portion 11 can serve as the support structure 30 .
  • the support structure 30 may be disposed on only one of the battery cells 1 , or may be disposed directly opposite and separately on two battery cells 1 on opposite sides.
  • the side of the battery cell 1 facing the other battery row 10 in the same group is a first end wall 131
  • the support structure 30 includes a support platform 31 disposed on the first end wall 131, that is, the support platform 31 disposed on the same first end wall 131 and the electrical connection portion 11 are spaced apart, thereby, support can be achieved through the support platform 31 to improve the structural strength.
  • the insulation requirements of the required insulation position between the two battery rows 10 can be easily achieved.
  • the support platform 31 may be located at the edge and arranged in a scattered manner, rather than being an annular structure surrounding the entire circumference of the first end wall 131, so that space can be left to facilitate electrical connection and wiring.
  • each of the two battery cells 1 supported by the support structure 30 is provided with a support platform 31, and the support platforms 31 on the opposite side are supported by abutment.
  • the battery cells 1 can be processed in a uniform specification, which is beneficial to improving production efficiency.
  • only one of the two battery cells 1 supported by the support structure 30 is provided with a support platform 31, and the support platform 31 is supported on the first end wall 131 of the opposite battery cell 1. This can reduce the difficulty of assembly and avoid problems such as unstable support caused by misalignment of the support platform 31 on the opposite side.
  • the processing method of the support platform 31 is not limited.
  • the support platform 31 can be integrally formed on the first end wall 131. In this way, the installation process can be reduced, which is convenient for grouping.
  • the support platform 31 and the first end wall 131 can be separate structures, and the support platform 31 is assembled to the first end wall 131, so that the support platform 31 can be manufactured separately, which is convenient for molding.
  • the support structure 30 may include a filling glue disposed between the battery cells 1 on the opposite side. That is, the two battery cells 1 on the opposite side may also be fixedly supported by the colloid, thereby enhancing the structural strength and simplifying the processing of the battery cells 1. It is worth noting that the support structure 30 may also include a support platform 31 and a filling glue, etc., so as to further improve the structural strength.
  • an insulating member 40 is provided between two battery rows 10 in the battery pack 100.
  • the electrical connection parts 11 of the two battery rows 10 can be insulated and isolated, thereby preventing high-voltage ignition problems from occurring between the electrical connection parts 11 of the two battery rows 10 due to too small creepage distance.
  • it can effectively prevent the discharge of a certain pressure relief part 12 from being conducted between the two battery rows 10, causing high-voltage ignition problems, thereby improving the safety and reliability of the battery 1000.
  • the insulating member 40 may include an insulating sheet and insulating glue disposed between two battery rows 10, and the insulating sheet is fixed to the battery row 10 by the insulating glue, and the insulating glue is a filling glue or a double-sided adhesive.
  • the material of the insulating sheet is not limited, for example, it can be a mica sheet, etc., and it can also have a high-temperature resistant fireproof effect.
  • At least one battery row 10 in the battery pack 100 is provided with an insulating cover 41, and the insulating cover 41 covers the electrical connection portion 11 on the corresponding battery row 10 (i.e., the battery row 10 where the insulating cover 41 is provided).
  • the fixing method of the insulating cover 41 is convenient, and it can play a more effective role in preventing high-voltage ignition.
  • the insulating cover 41 can be provided on one of the battery rows 10, or on two battery rows 10 respectively, which will not be elaborated here.
  • each battery row 10 includes a plurality of battery cells 1, and the electrical connection parts 11 on opposite sides of the same group (same battery group 100) are not connected.
  • the battery rows 10 on one side are electrically connected internally and then output to the outside as a whole. In this way, the electrical connection can be simplified.
  • each battery row 10 includes a plurality of battery cells 1 arranged along a first direction F1, two battery rows 10 in the same group are arranged along a second direction F2, and a plurality of battery packs 100 are arranged along a third direction F3 to form a multi-layer battery pack, for example, the first direction F1, the second direction F2 and the third direction F3 are mutually perpendicular.
  • the battery rows 10 on the same side of the multi-layer battery pack i.e., two battery rows 10 with the electrical connection portion 11 facing the same and adjacent
  • the adjacent battery rows 10 on the same side are electrically connected internally and output to the outside as a whole. In this way, the electrical connection can be simplified.
  • each battery row 10 includes a plurality of battery cells 1, and the electrical connection parts 11 on opposite sides of the same group are electrically connected.
  • the electrical connection parts 11 on opposite sides of the same group are directly butt-welded, thereby improving the compactness of the structure and optimizing the space utilization.
  • the electrical connection parts 11 on opposite sides of the same group are connected through a conductive sheet 80, that is, the two rows of battery rows 10 are electrically connected by a busbar, thereby reducing the process difficulty.
  • the battery 1000 further includes: a thermal management component 50, the thermal management component 50 includes a heat exchange portion 501 and is used to exchange heat with the battery cell 1.
  • the heat exchange portion 501 exchanges heat with the battery cell 1 to take away the heat of the battery cell 1, or the heat exchange portion 501 is used to transfer heat to the battery cell 1 to achieve preheating of the battery cell 1, etc., so that the battery cell 1 has a suitable operating temperature to ensure the service life of the battery cell 1.
  • the thermal management component 50 may include a first beam 51, which is disposed between two battery rows 10 in the same group (the same battery group 100), and the first beam 51 has a heat exchange portion 501 on one side facing each battery row 10.
  • the heat exchange portion 501 is disposed toward the electrical connection portion 11, and can be used to adjust the temperature of the electrical connection portion 11, for example, it can be used to cool overcurrent components, such as poles, busbars, etc., thereby improving the working safety and reliability of the battery 1000.
  • the thermal management component 50 may further include a second beam 52, which is disposed on opposite sides of two battery rows 10 in the same group (the same battery group 100), and the side of the second beam 52 facing the corresponding battery row 10 has a heat exchange portion 501.
  • a second beam 52 is disposed on the side of each battery row 10 away from another battery row 10, and an electrical connection portion 11 is disposed on the side of the second beam 52 facing the battery row 10, thereby adjusting the temperature of the battery row 10.
  • the battery 1000 further includes a box component 60, which includes a side panel 61 and a partition beam 62.
  • the partition beam 62 is located in the space surrounded by the side panel 61 to divide the space into a plurality of accommodating cavities, which are used to accommodate the battery row 10, and the partition beam 62 is configured as a thermal management component 50. Therefore, by using the partition beam 62 as the thermal management component 50 to adjust the temperature of the battery cell 1, the space occupied can be saved and the space utilization rate can be improved.
  • the battery 1000 further includes a discharge component 70, a discharge chamber 701 is formed in the discharge component 70, the discharge component 70 is arranged on the side facing the pressure relief portion 12, and the discharge chamber 701 is used to receive the discharge discharged by the pressure relief portion 12.
  • the discharge component 70 is arranged on the side of the battery cell 1 where the pressure relief portion 12 is arranged, so as to facilitate the collection of the discharge, avoid the adverse effects caused by the disordered diffusion of the discharge, reduce the diffusion effect of thermal runaway, and improve the safety of the battery 1000.
  • the side of the discharge component 70 facing the battery row 10 also has a heat exchange portion 501. Therefore, the discharge component 70 can also serve as a thermal management component 50, such as the second beam 52 described above, so that the two can be combined into one, having the dual functions of heat exchange and collecting emissions, thereby saving space occupation and improving space utilization.
  • the electric device 2000 according to the second embodiment of the present application includes the battery 1000 according to the first embodiment of the present application, and the battery 1000 is used to provide electric energy for the electric device 2000. Therefore, by using the above battery 1000, it is beneficial to improve the safety and reliability of the electric device 2000.
  • the battery 1000 when the battery 1000 is used in a vehicle, the battery 1000 may be disposed at the bottom, head, or tail of the vehicle.
  • the battery 1000 may be used to power the vehicle, for example, the battery 1000 may be used as an operating power source for the vehicle.
  • the vehicle may further include a controller and a motor, and the controller is used to control the battery 1000 to power the motor, for example, for starting, navigating, and operating power requirements of the vehicle during driving.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电池(1000)及用电装置(2000),包括至少一个电池组(100),所述电池组(100)包括两个电池排(10),每个所述电池排(10)均包括至少一个电池单体(1),每个所述电池单体(1)的朝向同组另一所述电池排(10)的一侧设有电连接部(11),每个所述电池单体(1)还设有泄压部(12),所述泄压部(12)与所述电连接部(11)设于所述电池单体(1)的不同侧。

Description

电池及用电装置 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池及用电装置。
背景技术
相关技术中,电池内部压力过高时,通过泄压方式以保证电池的安全使用。然而,电池单体在泄压过程中,电池单体喷出的排放物容易流至电池的电连接区域,造成高压打火、绝缘失效等问题。
发明内容
本申请实施例提供一种电池及用电装置,能够有效提高电池的使用安全性。
第一方面,本申请实施例提供一种电池,包括至少一个电池组,所述电池组包括两个电池排,每个所述电池排均包括至少一个电池单体,每个所述电池单体的朝向同组另一所述电池排的一侧设有电连接部,每个所述电池单体还设有泄压部,所述泄压部与所述电连接部设于所述电池单体的不同侧。
在上述技术方案中,由于电池单体的自身的电连接部和自身的泄压部分别位于电池单体的不同表面上,有利于保证电池单体的电连接部和泄压部之间具有较大的间距,以有效避免在热失控等情况下,电池单体通过自身泄压部排放的排放物中的导电颗粒等流至自身电连接部造成绝缘失效、高压打火等问题,保证电池中各导电部件之间的爬电间隙,以避免发生短路问题。同时,电池单体的电连接部与同一电池组中另一电池排的泄压部并非相对设置,以便使得电池单体的电连接部免受其他电池单体通过泄压部排出的排放物的影响,即减小了电池单体通过泄压部排出的排放物对其他电池单体的电连接部的影响,保证了电池的使用安全性和可靠性。此外,由于同一电池组的两个电池排的电连接部相对设置,有利于实现同一电池组的两个电池排的电连接,从而有利于提高生产效率,并有利于对电连接位置实现集中保护等等。简言之,电池的电连接方便,热失控对电连接的影响较小。
在一些实施例中,所述泄压部设于所述电池单体的背向同组另一所述电池排的一侧。在上述技术方案中,电、气距离较远,电连接区域与排气区距离较远,热失控对电连接的影响更小。
在一些实施例中,所述泄压部与所述电连接部分置于所述电池单体的长度两端。在上述技术方案中,电、气距离较远,电连接区域与排气区距离较远,热失控对电连接的影响更小。
在一些实施例中,所述泄压部与所述电连接部分置于所述电池单体的水平方向上的两侧。在上述技术方案中,可以避免泄压部位置相对于电连接部的位置过高,避免导致泄压部喷发时排放物的扩散能力较强,容易扩散至电连接部处的电连接区域,而且,将电连接部对置的空间设置在水平方向上,可以降低电池的高度。
在一些实施例中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述电池单体的背向同组另一所述电池排的一侧为第二端壁,所述电池单体的连接在所述第一端壁与所述第二端壁之间的为周侧壁,所述泄压部设于所述周侧壁。在上述技术方案中,也可以使得电、气间保持一定的距离,提高电池的安全性。
在一些实施例中,每个所述电池排均包括沿第一方向排列的多个所述电池单体,同组的两个所述电池排沿第二方向排列,所述周侧壁包括沿第三方向相对设置的第一侧壁和第二侧壁,所述泄压部设于所述第一侧壁,所述第一方向、所述第二方向与所述第三方向两两垂直。在上述技术方案中,排放位置可以避开排列方向,即不在同排相邻两个电池单体之间进行泄压,有利于排气收集,降低热扩散影响,且可以提高结构紧凑性。
在一些实施例中,所述电连接部相对所述第一侧壁靠近所述第二侧壁设置。在上述技术方案中,可以尽量拉远电、气距离,进一步降低热失控造成的影响。
在一些实施例中,所述泄压部相对所述第一端壁靠近所述第二端壁设置。在上述技术方案中,可以尽量拉远电、气距离,进一步降低热失控造成的影响。
在一些实施例中,所述电池单体的厚度方向垂直于水平方向。在上述技术方案中,可以有效降低电池的高度。
在一些实施例中,所述电池排包括沿所述电池单体的宽度方向排列的多个所述电池单体。在上述技术方案中,电池排包括的电池单体的数量更多,电量较高。
在一些实施例中,每个所述电池排均包括沿第一方向排列的多个所述电池单体,同组的两个所述电池排沿第二方向排列,所述第二方向垂直于所述第一方向。在上述技术方案中,电池包括的电池单体的数量更多,电量较高。
在一些实施例中,多个所述电池组沿第三方向设置以构成多层电池组,所述第三方向垂直于所述第一方向和所述第二方向。在上述技术方案中,电池包括的电池单体的数量更多,电量较高。
在一些实施例中,所述多层电池组中所述电池组的数量小于所述电池排中所述电池单体的数量。在上述技术方案中,在保证电池排布置一定数量的前提下,便于减小电池排在高度方向上承受的挤压力,降低挤压力对电池单体在泄压排放排放物时的剧烈程度造成的影响。
在一些实施例中,所述多层电池组中所述电池组的数量为2~3。在上述技术方案中,在保证电池排布置一定数量的前提下,便于减小电池排在高度方向上承受的挤压力,降低挤压力对电池单体在泄压排放排放物时的剧烈程度造成的影响。
在一些实施例中,同组中对置的两个所述电池单体构成一个对置单元,至少一个所述对置单元为第一对置单元,所述第一对置单元中的两个所述电池单体的电连接部错开设置。在上述技术方案中,由于电连接部错开设置,可以使得电连接所需要的空间减小,提高电池的空间利用率。
在一些实施例中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第一对置单元中,各所述电连接部相对所述第一端壁的位置相同,且对侧的所述第一端壁错开设置。在上述技术方案中,可以满足电池单体非正对情况下的电连接部错开设置。
在一些实施例中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第一对置单元中,各所述电连接部相对所述第一端壁的位置不同,且对侧的所述第一端壁正对设置。在上述技术方案中,可以满足电池单体正对情况下的电连接部错开设置。
在一些实施例中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第一对置单元中,对侧的所述电连接部沿所述第一端壁的长度方向错开。在上述技术方案中,可以使得电池单体的宽度减小。
在一些实施例中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述 第一对置单元中,对侧的所述电连接部沿所述第一端壁的宽度方向错开。在上述技术方案中,可以使得电池单体的长度减小。
在一些实施例中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第一对置单元中,对侧的所述电连接部呈对角错开。在上述技术方案中,空间利用率好,容易布局。
在一些实施例中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第一对置单元中,对侧的所述第一端壁之间的距离小于或等于对侧的所述电连接部凸出于所述第一端壁的高度之和。在上述技术方案中,空间利用率好。
在一些实施例中,同组中对置的两个所述电池单体构成一个对置单元,至少一个所述对置单元为第二对置单元,所述第二对置单元中的两个所述电池单体的电连接部正对设置。在上述技术方案中,容易加工,便于生产。
在一些实施例中,所述第二对置单元中,至少一对正对的所述电连接部抵接支撑。在上述技术方案中,可以减小两者之间的间隙,提高结构紧凑性,提高空间利用率,并且可以提高电池的整体结构强度,提高电池的稳定性。
在一些实施例中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第二对置单元中,每个所述电池单体上的多个所述电连接部凸出于所述第一端壁的高度不同,其中,凸出高度较大的所述电连接部抵接支撑。在上述技术方案中,可以减小两者之间的间隙,提高结构紧凑性,提高空间利用率,并且可以提高电池的整体结构强度,提高电池的稳定性。
在一些实施例中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第二对置单元中,每个所述电池单体上的多个所述电连接部凸出于所述第一端壁的高度相同,正对的所述电连接部均抵接支撑。在上述技术方案中,可以减小两者之间的间隙,提高结构紧凑性,提高空间利用率,并且可以提高电池的整体结构强度,提高电池的稳定性。
在一些实施例中,同组中对置的两个所述电池单体构成一个对置单元,至少一个所述对置单元中的两个所述电池单体通过支撑结构抵接支撑。在上述技术方案中,可以解决结构强度的问题。
在一些实施例中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述支撑结构包括设于所述第一端壁的支撑台。在上述技术方案中,可以解决结构强度的问题。
在一些实施例中,通过支撑结构抵接支撑的两个所述电池单体中每个均设有所述支撑台,对侧的所述支撑台相对以抵接支撑。在上述技术方案中,可以解决结构强度的问题。
在一些实施例中,所述支撑台一体成型于所述第一端壁。在上述技术方案中,可以减少安装时的工序,便于成组。
在一些实施例中,所述支撑台装配至所述第一端壁。在上述技术方案中,支撑台可以单独制造,便于成型。
在一些实施例中,所述支撑结构包括设于对侧的所述电池单体之间的填充胶。在上述技术方案中,可以增强结构强度。
在一些实施例中,所述电池组中的两个所述电池排之间设有绝缘件。在上述技术方案中,可以提高电池的安全性和可靠性。
在一些实施例中,所述绝缘件包括设于两个所述电池排之间的绝缘片和绝缘胶,所述绝缘片通过所述绝缘胶固定于所述电池排,所述绝缘胶为填充胶或双面胶。在上述技术方 案中,便于实现绝缘,且结构强度好。
在一些实施例中,所述电池组中的至少一个所述电池排上设有绝缘罩,所述绝缘罩罩设相应所述电池排上的所述电连接部。在上述技术方案中,便于生产,绝缘可靠性好。
在一些实施例中,每个所述电池排均包括多个所述电池单体,同组对侧的所述电连接部之间不连接。
在一些实施例中,每个所述电池排均包括沿第一方向排列的多个所述电池单体,同组的两个所述电池排沿第二方向排列,多个所述电池组沿第三方向设置以构成多层电池组,所述多层电池组中位于同侧的所述电池排之间电连接。
在一些实施例中,每个所述电池排均包括多个所述电池单体,同组对侧的所述电连接部之间电连接。
在一些实施例中,同组对侧的所述电连接部直接对焊或者通过导电片连接。
在一些实施例中,所述电池还包括:热管理部件,所述热管理部件包括换热部且用于与所述电池单体换热。在上述技术方案中,便于使得电池单体具有合适的工作温度,以保证电池单体的使用寿命。
在一些实施例中,所述热管理部件包括:第一梁,所述第一梁设于同组两个所述电池排之间,且所述第一梁的朝向每个所述电池排的一侧均具有所述换热部。在上述技术方案中,换热部朝向电连接部设置,可以用于对电连接部调节温度,例如可以用于冷却过电流部件,从而提高电池的工作安全性和可靠性。
在一些实施例中,所述热管理部件包括:第二梁,所述第二梁设于同组两个所述电池排的相背侧,且所述第二梁的朝向相应所述电池排的一侧均具有所述换热部。在上述技术方案中,可以防止热管理部件漏液对电连接区域造成短路。
在一些实施例中,所述电池还包括:箱体部件,所述箱体部件包括侧围板和分隔梁,所述分隔梁位于所述侧围板围绕出的空间内,以将所述空间划分为多个容置腔,所述容置腔用于容纳所述电池排,所述分隔梁构造为所述热管理部件。在上述技术方案中,利用分隔梁作为热管理部件调节电池单体的温度,可以节省对空间的占用,提高空间利用率。
在一些实施例中,所述电池还包括:排放部件,所述排放部件内形成有排放腔,所述排放部件设于所述泄压部朝向的一侧,所述排放腔用于接收所述泄压部排出的排放物。在上述技术方案中,有利于收集排放物,避免排放物无序扩散造成的不良影响,降低热失控的扩散影响,提高电池的安全性。
在一些实施例中,所述排放部件的朝向所述电池排的一侧还具有换热部。
第二方面,本申请实施例还提供一种用电装置,包括上述的电池,所述电池用于为所述用电装置提供电能。
附图说明
图1为相关技术中的用电装置的示意图;
图2为相关技术中的电池的示意图;
图3为本申请一些实施例提供的电池的示意图;
图4为图3中所示的电池单体的一个角度的示意图;
图5为图4中所示的电池单体的一个角度的示意图;
图6为图3中所示的一个对置单元的示意图;
图7为图6中所示的一个对置单元的一个角度的示意图;
图8为本申请一些实施例提供的电池单体的示意图;
图9为本申请一些实施例提供的电池单体的示意图;
图10为本申请一些实施例提供的对置单元的示意图;
图11为本申请一些实施例提供的电池单体的示意图;
图12为本申请一些实施例提供的对置单元的示意图;
图13为本申请一些实施例提供的对置单元的示意图;
图14为本申请一些实施例提供的对置单元的示意图;
图15为本申请一些实施例提供的对置单元的示意图;
图16为本申请一些实施例提供的电池的示意图;
图17为图16中所示的电池的部分组成的示意图;
图18为本申请一些实施例提供的电池的爆炸图;
图19为图18中所示的电池的装配图;
图20为图18中所示的电池的示意图;
图21为本申请一些实施例提供的电池的示意图;
图22为图21中所示的电池的示意图;
图23为本申请一些实施例提供的电池的爆炸图;
图24为本申请一些实施例提供的电池与排放部件的示意图;
图25为本申请一些实施例提供的车辆的示意图。
附图标记:
电池1000;电池组100;电池排10;电池单体1;电连接部11;泄压部12;第一端壁131;第二端壁132;周侧壁133;第一侧壁1331;第二侧壁1332;对置单元20;第一对置单元21;第二对置单元22;支撑结构30;支撑台31;绝缘件40;绝缘罩41;热管理部件50;换热部501;第一梁51;第二梁52;箱体部件60;侧围板61;分隔梁62;排放部件70;排放腔701;导电片80;用电装置2000。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的 实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模组或电池包等。一些电池可以包括用于封装一个或多个电池单体或多个电池模组的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。当然,还有一些电池可以不包括上述箱体,直接设置在用电装置的电池安装舱内。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
例如,电池单体可以包括外壳、电极组件和电解液,外壳用于容纳电极组件和电解液。电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。
负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体上可以设置极柱等与极耳相连,作为电池单体的电连接部。并且,电池单体上通常具有泄压部,在电池单体内压过大(例如热失控)时,泄压部用于释放电池单体内部物质(例如气体、液体、颗粒物等),以降低电池单体的内部压力,避免电池单体内部过快加压,而导致电池单体爆燃等危险事故。例如,泄压部可以为防爆阀、防爆片等等。
例如图1和图2所示,一些用电装置A中,采用电池B进行供电,电池B包括箱体B1和电池单体B2,箱体B1包括上壳B11和下壳B12。传统技术中,电池单体通常将电连接部与泄压部设置于电池单体的同侧表面,然而在泄压部发生排放泄压以使电池单体释放内部压力时,电池单体的排放物中的导电颗粒容易移动至电连接部,并与其搭接形成内短路,或者降低电连接部之间的爬电间隙,导致发生高压打火等绝缘失效现象。
为了避免电池单体在释放内部压力时导致的绝缘失效问题,申请人发现,可以将电池单体的电连接部与泄压部分别设置于电池单体的不同端面上;但是,在电池中,为了使得电池具有合适的电压和容量,往往设置多个电池单体,且将多个电池单体呈多排放置,上述结构也仅能使得单各电池单体自身的电连接部远离自身的泄压部,当一各电池单体的泄压部朝向相邻的电池单体的电连接部设置时,仍然存在排放物中的导电颗粒容易移动至电连接部,或者降低导电部件间的爬电间隙,导致发生高压打火等绝缘失效现象。
基于此,申请人经过深入研究,提出了一种电池1000,包括至少一个电池组100,电池组100包括两个电池排10,每个电池排10均包括至少一各电池单体1,每个电池单体1的朝向同组另一电池排10的一侧设有电连接部11,每个电池单体1还设有泄压部12,泄压部12与电连接部11设于电池单体1的不同侧。
在上述这种结构的电池1000中,通过将电池单体1自身的泄压部12和自身的电连接部11分别设在电池单体1的不同端面上,以有效避免电池单体1通过泄压部12排出的排放物例如导电颗粒等流至电连接部11造成高压打火等绝缘失效现象,保证电池1000中各导电部件之间的爬电间隙,以避免发生内短路。
同时,电池单体1的电连接部11与同一电池组100中另一电池排10的泄压部12并非相对设置,以便使得电池单体1的电连接部11免受其他电池单体1通过泄压部12排出的排放物的影响,即减小了电池单体1通过泄压部12排出的排放物对其他电池单体1的电连接部11的影响,保证了电池1000的使用安全性和可靠性。
本申请实施例公开的电池1000可以用于、但不限用于车辆、船舶或飞行器等用电装置2000中,可以使具备本申请公开的电池1000等组成该用电装置2000的电源系统,以保证用电装置2000的使用安全性和可靠性。
例如,本申请实施例公开的用电装置2000可以是、但不限于是车辆、手机、平板、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油车辆、或燃气车辆、或新能源车辆、或轨道车辆,新能源车辆可以是纯电动车辆、混合动力车辆或增程式车辆等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动车辆玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。
下面,参考附图,描述根据本申请实施例的电池1000。
如图3所示,电池1000包括:至少一个电池组100,电池组100包括两个电池排10,每个电池排10均包括至少一各电池单体1,每个电池单体1的朝向同组另一电池排10的一侧设有电连接部11,每个电池单体1还设有泄压部12,泄压部12与电连接部11设于电池单体1的不同侧。本文所述的“同组”指的是同一电池组100。
结合图3-图6,电池单体1的朝向同一电池组100中另一电池排10的一侧表面为第一端壁131,电池单体1的电连接部11设置在第一端壁131上,而电池单体1的泄压部12设 置在电池单体1的除第一端壁131以外的其他壁面上。
由此,由于电池单体1的自身的电连接部11和自身的泄压部12分别位于电池单体1的不同表面上,有利于保证电池单体1的电连接部11和泄压部12之间具有较大的间距,以有效避免在热失控等情况下,电池单体1通过自身泄压部12排放的排放物中的导电颗粒等流至自身电连接部11造成绝缘失效、高压打火等问题,保证电池1000中各导电部件之间的爬电间隙,以避免发生短路问题。
同时,电池单体1的电连接部11与同一电池组100中另一电池排10的泄压部12并非相对设置,以便使得电池单体1的电连接部11免受其他电池单体1通过泄压部12排出的排放物的影响,即减小了电池单体1通过泄压部12排出的排放物对其他电池单体1的电连接部11的影响,保证了电池1000的使用安全性和可靠性。
更具体地说,同一电池组100中两个电池排10的电池单体1的电连接部11与电连接部11面对面设置,各电池单体1的泄压部12均不朝向其他任一电池单体1的电连接部11设置,同一电池排10中的各电池单体1的泄压部12均不朝向本电池排10中的任一电连接部11喷发,也不朝向同一电池组100中另一电池排10的任一电连接部11喷发,从而可以有效保证各电池单体1的电连接部11免受其他电池单体1排出的排放物的影响,保证了电池1000的使用安全性和可靠性。
此外,由于同一电池组100的两个电池排10的电连接部11相对设置,有利于实现同一电池组100的两个电池排10的电连接,从而有利于提高生产效率,并有利于对电连接位置实现集中保护等等。
根据本申请实施例的电池1000,通过将电池单体1的泄压部12和电连接部11分别设在电池单体1的不同表面上,可以有效避免电池单体1通过泄压部12排出的排放物中的导电颗粒等流至电连接部11造成高压打火等绝缘失效问题,保证了电池1000的使用安全性和可靠性。当本申请实施例公开的电池1000用于用电装置2000中时,用电装置2000的电源系统可以采用本申请公开的电池1000,从而可以提升用电装置2000的使用安全性和可靠性。
在一些实施例中,泄压部12设于电池单体1的背向同组另一电池排10的一侧。例如在图3-图5所示的示例中,电池单体1的朝向同一电池组100中另一电池排10的一侧为第一端壁131,电池单体1的背向同一电池组100中另一电池排10的一侧为第二端壁132,电连接部11设于第一端壁131,泄压部12设于第二端壁132。由此,可以进一步拉远电连接部11与泄压部12之间的距离,可以更好地保证电连接部11免受泄压部12排出的排放物的影响,即受影响概率更小,电池1000的使用安全性和可靠性更好。
在一些实施例中,泄压部12与电连接部11分置于电池单体1的长度两端。例如在图3-图5所示的示例中,电池单体1的长度方向指向同一电池组100中另一电池排10,电池单体1沿自身长度方向相对的两侧壁面分别为第一端壁131和第二端壁132,第一端壁131朝向同一电池组100中另一电池排10,电连接部11设于第一端壁131,泄压部12设于第二端壁132。由此,可以有效拉远电连接部11与泄压部12之间的距离,可以更好地保证电连接部11免受泄压部12排出的排放物的影响,即受影响概率更小,电池1000的使用安全性和可靠性更好。
当然,本申请不限于此,例如在本申请的其他实施例中,也可以将电池单体1的宽度方向指向同一电池组100中另一电池排10,此时,电连接部11则设于电池单体1的宽度方向 上的一侧壁面,或者,还可以将电池单体1的厚度方向指向同一电池组100中另一电池排10,此时,电连接部11则设于电池单体1的厚度方向上的一侧壁面,这里不作赘述。
在一些实施例中,例如图3-图5所示,泄压部12与电连接部11分置于电池单体1的水平方向上的两侧。也就是说,当电池1000在使用场景中,设置泄压部12的一侧壁面(例如第二端壁132)并非高于设置电连接部11的一侧壁面(例如第一端壁131),这样,可以有效地避免泄压部12相对于电连接部11的位置过高,出现泄压部12喷发的排放物的扩散能力较强,引发排放物扩散至相对较低的电连接部11的问题,从而可以更好地避免电连接部11受泄压部12排出的排放物的影响。而且,将电连接部11和泄压部12沿水平方向对置,可以降低电池排10的高度,从而降低电池1000的整体高度。
在另外一些实施例中,例如图8所示,电池单体1的朝向同组(即同一电池组100)另一电池排10的一侧为第一端壁131,电池单体1的背向同组(即同一电池组100)另一电池排10的一侧为第二端壁132,电池单体1的连接在第一端壁131与第二端壁132之间的为周侧壁133,泄压部12设于周侧壁133。由此,电连接部11与泄压部12分别位于电池单体1的相邻侧,可以使得电连接部11与泄压部12之间具有一定的安全距离,降低泄压部12排出的排放物对电连接部11的影响,提高电池1000的使用安全性和可靠性。
在一些可选示例中,如图3-图5所示,每个电池排10均包括沿第一方向F1排列的多个电池单体1,同组的两个电池排10沿第二方向F2排列,电池单体1沿第二方向F2相对的两侧端壁分别为第一端壁131和第二端壁132,第一端壁131朝向同组(即同一电池组100)另一电池排10,第二端壁132背向同组(即同一电池组100)另一电池排10。其中,当电连接部11与泄压部12设于相对两侧时,电连接部11设于第一端壁131,泄压部12设于第二端壁132。
而当电连接部11与泄压部12分别位于电池单体1的相邻侧时,在一些可选示例中,结合图9,周侧壁133可以包括沿第三方向F3相对设置的第一侧壁1331和第二侧壁1332,当电连接部11与泄压部12分别位于电池单体1的相邻侧时,泄压部12可以设于第一侧壁1331,第一方向F1、第二方向F2与第三方向F3两两垂直。由此,泄压部12的设置可以避开同一电池排10多个电池单体1的相邻位置,从而避免在同一电池排10中相邻的两个电池单体1之间的位置进行泄压,有利于排气收集,降低热扩散的影响,而且可以提高结构紧凑性,减小对空间的占用。
在一些实施例中,例如图9所示,当泄压部12设于第一侧壁1331时,电连接部11相对第一侧壁1331靠近第二侧壁1332设置。也就是说,沿着第三方向F3,电连接部11与第一侧壁1331之间的距离大于电连接部11与第二侧壁1332之间的距离。由此,可以进一步拉远电连接部11与泄压部12之间的距离,降低泄压部12排出的排放物对电连接部11的影响,提高电池1000的使用安全性和可靠性。
在一些实施例中,如图9所示,当泄压部12设于第一侧壁1331时,泄压部12相对第一端壁131靠近第二端壁132设置。也就是说,沿着第二方向F2,泄压部12与第一端壁131之间的距离大于,泄压部12与第二端壁132之间的距离。由此,可以进一步拉远电连接部11与泄压部12之间的距离,降低泄压部12排出的排放物对电连接部11的影响,提高电池1000的使用安全性和可靠性。
在一些实施例中,如图3所示,电池单体1的厚度方向(例如图3中所示的第三方向F3)垂直于水平方向。可以理解的是,电池单体1的厚度小于电池单体1的长度,且电池 单体1的厚度小于电池单体1的宽度,电池单体1的长度大于等于电池单体1的宽度。其中,由于电池单体1的厚度方向垂直于水平方向,相当于电池单体1的厚度方向为竖直方向,此时,电池单体1相当于是平躺设置,占用的竖向空间较小,减小电池1000的整体高度,而且可以降低电池单体1的重心高度,缩小电池单体1的喷溅范围。
可以理解的是,电池单体1的重心高度越低,电池单体1通过泄压部12泄压时喷溅的高度也较低,从而可以减小电池单体1喷溅在上下方向上的影响范围,与此同时,电池单体1能够喷溅的距离也就越小,有利于提升安全性能。例如,电池单体1泄压时通过泄压部12排放排放物,由于电池单体1平躺设置,则可以降低泄压部12的高度,能够有效降低泄压部12喷发位置的高度,从而减小扩散区域、减小喷溅区域,提高电池1000整体的安全性能。
进一步地,在一些可选示例中,如图3所示,电池排10可以包括沿电池单体1的宽度方向(例如图3中所示的第一方向F1)排列的多个电池单体1,此时电池单体1的长度方向上的一侧壁面(例如第一端壁131)朝向同一电池组100中的另一电池排10。由此,当电池排10沿电池单体1的宽度方向的尺寸固定时,电池排10可以包括更多数量的电池单体1,从而提高电池1000的容量。
当然,本申请不限于此,例如在本申请的其他实施例中,电池排10还可以包括沿电池单体1的长度方向排列的多个电池单体1,此时电池单体1的宽度方向上的一侧表面朝向同一电池组100中的另一电池排10,这里不作赘述。
在一些实施例中,如图3所示,每个电池排10均包括沿第一方向F1排列的多个电池单体1,同组的两个电池排10沿第二方向F2排列,第二方向F2垂直于第一方向F1。由此,电池组100所包括的电池单体1的数量较多,电量较高。
进一步地,如图3所示,多个电池组100沿第三方向F3设置以构成多层电池组,第三方向F3垂直于第一方向F1和第二方向F2。由此,电池组100所包括的电池单体1的数量更多,电量更高。而且,通过设置“每个电池单体1的朝向同组另一电池排10的一侧设有电连接部11,每个电池单体1的泄压部12与电连接部11设于电池单体1的不同侧”,可以更好地保证多层电池组的安全可靠性,改善电池单体1在泄压过程中,对于其他电池组100的电连接部11的不利影响。
在一些实施例中,如图3所示,多层电池组中电池组100的数量小于电池排10中电池单体1的数量。由此,在保证电池排10布置一定数量的前提下,便于减小电池排10在高度方向上承受的挤压力,降低挤压力对电池单体1在泄压排放排放物时的剧烈程度造成的影响。
在一些实施例中,如图3所示,多层电池组中电池组100的数量为2~3。即多层电池组所包括的电池组100的数量为两个或三个。由此,在保证电池排10布置一定数量的前提下,便于减小电池排10在高度方向上承受的挤压力,降低挤压力对电池单体1在泄压排放排放物时的剧烈程度造成的影响。当然,本申请不限于此,例如在本申请的其他实施例中,多层电池组中电池组100的数量还可以为三个以上等等,这里不作赘述。
在一些实施例中,如图3和图6、图7所示,同组中对置的两个电池单体1构成一个对置单元20,至少一个对置单元20为第二对置单元22,第二对置单元22中的两个电池单体1的电连接部11正对设置,也就是说,沿着第二对置单元22中两个电池单体1的对置方向(例如图中所示的第二方向F2)作正投影,第二对置单元22中两个电池单体1的电连接部 11的正投影重合。由此,容易加工,例如可以实现电池单体1的同规格量产,从而降低成本。
在一些实施例中,如图10所示,第二对置单元22中,至少一对正对的电连接部11抵接支撑。由此,可以减小两者之间的间隙,提高结构紧凑性,提高空间利用率,并且可以提高电池1000的整体结构强度,提高电池1000的稳定性。需要说明的是,抵接支撑可以是直接或间接止抵,可以构成电连接,也可以是绝缘,当电连接时,可以是并联或串联,这里不作限制。
例如在一些可选示例中,电池单体1的朝向同组(同一电池组100)另一电池排10的一侧为第一端壁131,第二对置单元22中,每个电池单体1上的多个电连接部11凸出于第一端壁131的高度不同,两侧正对且凸出高度较大(相对较大)的电连接部11抵接支撑,其余两侧正对的(即凸出高度相对较小的)电连接部11间隙配合。由此,有利于实现同一电池组100的两个电池排10串联。
又例如在一些可选示例中,电池单体1的朝向同组(同一电池组100)另一电池排10的一侧为第一端壁131,第二对置单元22中,每个电池单体1上的多个电连接部11凸出于第一端壁131的高度相同,正对的电连接部11均抵接支撑。由此,有利于实现同一电池组100的两个电池排10并联。
简言之,并联时,两个电池排10正负极柱均相抵,串联时,采用高低极柱设置,高极柱相抵增强结构强度,低极柱尽量低,节省两个电池排10之间的空间。
在一些实施例中,如图11和图12所示,同组中对置的两个电池单体1构成一个对置单元20,至少一个对置单元20为第一对置单元21,第一对置单元21中的两个电池单体1的电连接部11错开设置,也就是说,沿着第一对置单元21中两个电池单体1的对置方向(例如图中所示的第二方向F2)作正投影,第一对置单元21中两个电池单体1的电连接部11的正投影不重合、错开。由此,通过将对侧的电连接部11设置为错开形式,可以使得同一电池组100中两个电池排10之间的距离减小,提高电池1000的空间利用率,提高电池1000的成组效率。
可以理解的是,当对侧的电连接部11错开设置时,相邻两个电池排10也可以通过多样化设计的电连接片实现电连接,这里不作赘述。
此外,可以理解的是,同一电池组100中的两个电池排10为“对侧的”两个电池排10,同一电池组100中一个电池排10上的电连接部11与另一个电池排10上的电连接部11为对侧的电连接部11;同一电池组100中一个电池排10上的泄压部12与另一个电池排10上的泄压部12为对侧的泄压部12;同一电池组100中一个电池排10上的第一端壁131与另一个电池排10上的第一端壁131为对侧的第一端壁131。
此外,电连接部11的错开方向不限。例如在一些实施例中,电池单体1的朝向同组另一电池排10的一侧为第一端壁131,第一对置单元21中,对侧的电连接部11沿第一端壁131的宽度方向错开,由此,可以使得电池单体1的长度尺寸可以减小。
再例如在一些实施例中,电池单体1的朝向同组另一电池排10的一侧为第一端壁131,第一对置单元21中,对侧的电连接部11沿第一端壁131的长度方向错开,由此,可以使得电池单体1的宽度尺寸可以减小。
又例如在一些实施例中,第一对置单元21中,对侧的电连接部11呈对角错开,例如第一对置单元21沿两个的排列方向(例如图中所示的第二方向F2)作正投影,其中一个电池 单体1的两个电连接部11分别位于左上角和右下角,另一个电池单体1的两个电连接部11分别位于左下角和右上角,从而可以充分利用空间,实现错开设置。
另外,使得对侧的电连接部11能够错开的方式可选。例如在一些可选方案中,电池单体1的朝向同组另一电池排10的一侧为第一端壁131,第一对置单元21中,各电连接部11相对第一端壁131的位置相同,且对侧的第一端壁131错开设置。由此,可以实现电池单体1的同规格加工,降低生产成本。
例如在另外一些可选方案中,电池单体1的朝向同组另一电池排10的一侧为第一端壁131,第一对置单元21中,各电连接部11相对第一端壁131的位置不同,且对侧的第一端壁131正对设置。由此,电池组100中的两个电池排10可以达到并排设置的效果,避免两个电池排10整体错开引发的空间浪费问题,可以提高结构紧凑性,节省空间。
在一些实施例中,如图12所示,电池单体1的朝向同组另一电池排10的一侧为第一端壁131,第一对置单元21中,对侧的第一端壁131之间的距离小于或等于对侧的电连接部11凸出于第一端壁131的高度之和。由此,可以进一步提高结构紧凑性,提高空间利用率。
在一些实施例中,如图13所示,同组中对置的两个电池单体1构成一个对置单元20,至少一个对置单元20中的两个电池单体1通过支撑结构30抵接支撑。由此,可以解决结构强度的问题,当对侧的电连接部11正对设置和错开设置时,均可以采用支撑结构30支撑,从而可以提高结构强度,提高电池1000的可靠性。
值得说明的是,当对侧的电连接部11正对设置且抵靠支撑时,电连接部11可以作为支撑结构30。
需要说明的是,当不采用电连接部11作为支撑结构30时,支撑结构30可以仅设置在其中一个电池单体1上,也可以正对且分设在对侧的两个电池单体1上。
例如在一些实施例中,如图13所示,电池单体1的朝向同组另一电池排10的一侧为第一端壁131,支撑结构30包括设于第一端壁131的支撑台31,即设置在同一第一端壁131上的支撑台31与电连接部11是间隔设置的,由此,可以通过支撑台31实现支撑,提高结构强度。而且容易实现两个电池排10之间所需绝缘位置的绝缘要求。
可选地,支撑台31可以位于边缘且零散设置,而非环绕第一端壁131整周的环形结构,从而可以留出空间,方便进行电连接和走线。
可选地,如图13所示,通过支撑结构30抵接支撑的两个电池单体1中每个均设有支撑台31,对侧的支撑台31相对以抵接支撑。由此,电池单体1可以实现统一规格加工,有利于提高生产效率。
或者可选地,通过支撑结构30抵接支撑的两个电池单体1中只有一个设有支撑台31,该支撑台31支撑于对侧的电池单体1的第一端壁131。由此,可以降低装配难度,避免对侧的支撑台31错位导致的支撑不稳等问题。
需要说明的是,支撑台31的加工方式不限,例如在一些实施例中,支撑台31可以一体成型于第一端壁131。由此,可以减少安装时的工序,便于成组。又例如在一些实施例中,支撑台31与第一端壁131可以为分体结构,且支撑台31装配至第一端壁131,从而使得支撑台31可以单独制造,便于成型。
在一些实施例中,支撑结构30可以包括设于对侧的电池单体1之间的填充胶。即通过胶体也可以实现对侧的两个电池单体1的固定支撑,增强结构强度,从而简化电池单体1的加工。值得说明的是,支撑结构30还可以同时包括支撑台31和填充胶等,从而进一步 提高结构强度。
在一些实施例中,电池组100中的两个电池排10之间设有绝缘件40。由此,可以起到绝缘隔离两个电池排10的电连接部11的作用,避免两个电池排10的电连接部11之间由于爬电距离过小出现高压打火问题。而且,热失控时,可以有效避免某个泄压部12排放的排放物在两个电池排10之间导通,引发高压打火问题,从而提高电池1000的安全性与可靠性。
例如在一些可选示例中,如图14所示,绝缘件40可以包括设于两个电池排10之间的绝缘片和绝缘胶,绝缘片通过绝缘胶固定于电池排10,绝缘胶为填充胶或双面胶。由此,可以起到有效的绝缘效果,具有高压防护作用,并且可以提高电池组100的整体结构强度。其中,绝缘片的材质不限,例如可以为云母片等,还可以具有耐高温的防火效果。
例如在另外一些可选示例中,如图15所示,电池组100中的至少一个电池排10上设有绝缘罩41,绝缘罩41罩设相应电池排10(即绝缘罩41所设置的电池排10)上的电连接部11。由此,绝缘罩41的固定方式方便,可以起到较为有效的防高压打火作用。值得说明的是,可以在其中一个电池排10上设置绝缘罩41,也可以在两个电池排10上分别设置绝缘罩41,这里不作赘述。
在本申请的一些实施例中,每个电池排10均包括多个电池单体1,同组(同一电池组100)对侧的电连接部11之间不连接。也就是说,单侧的电池排10内电连接,然后一体对外输出。由此,可以简化电连接。
在本申请的另外一些实施例中,如图16所示,每个电池排10均包括沿第一方向F1排列的多个电池单体1,同组的两个电池排10沿第二方向F2排列,多个电池组100沿第三方向F3设置以构成多层电池组,例如第一方向F1、第二方向F2和第三方向F3两两相互垂直。结合图17,多层电池组中位于同侧的电池排10(即电连接部11朝向相同且相邻的两个电池排10)之间电连接。也就是说,同侧的相邻电池排10之间内电连接,一体对外输出。由此,可以简化电连接。
在本申请的另外一些实施例中,每个电池排10均包括多个电池单体1,同组对侧的电连接部11之间电连接。例如,同组两侧对置的电连接部11直接对焊,由此可以提高结构紧凑性,优化空间利用率。或者,同组对侧的电连接部11通过导电片80连接,即相对两排电池排10用汇流片实现电连接,从而可以降低工艺难度。
在本申请的一些实施例中,如图18所示,电池1000还包括:热管理部件50,热管理部件50包括换热部501且用于与电池单体1换热。例如换热部501与电池单体1换热以带走电池单体1的热量,或者换热部501用于向电池单体1传递热量以实现电池单体1的预热等,便于使得电池单体1具有合适的工作温度,以保证电池单体1的使用寿命。
例如在一些实施例中,如图18-图20所示,热管理部件50可以包括第一梁51,第一梁51设于同组(同一电池组100)两个电池排10之间,且第一梁51的朝向每个电池排10的一侧均具有换热部501。由此,换热部501朝向电连接部11设置,可以用于对电连接部11调节温度,例如可以用于冷却过电流部件,如极柱、汇流片等,从而提高电池1000的工作安全性和可靠性。
例如在一些实施例中,如图21-图22所示,热管理部件50还可以包括第二梁52,第二梁52设于同组(同一电池组100)两个电池排10的相背侧,且第二梁52的朝向相应电池排10的一侧均具有换热部501。也就是说,每个电池排10的远离另一电池排10的一 侧设有第二梁52,第二梁52的朝向电池排10的一侧设有电连接部11,从而对电池排10调节温度。由此,通过将第二梁52远离电连接部11设置,当第二梁52内设有调温液体流路时,在第二梁52发生意外产生漏液时,可以避免漏液对电连接部11造成的短路问题。
在一些实施例中,如图23所示,电池1000还包括箱体部件60,箱体部件60包括侧围板61和分隔梁62,分隔梁62位于侧围板61围绕出的空间内,以将空间划分为多个容置腔,容置腔用于容纳电池排10,分隔梁62构造为热管理部件50。由此,利用分隔梁62作为热管理部件50调节电池单体1的温度,可以节省对空间的占用,提高空间利用率。
在一些实施例中,如图24所示,电池1000还包括排放部件70,排放部件70内形成有排放腔701,排放部件70设于泄压部12朝向的一侧,排放腔701用于接收泄压部12排出的排放物。也就是说,将排放部件70设置在电池单体1的设有泄压部12的一侧,从而有利于收集排放物,避免排放物无序扩散造成的不良影响,降低热失控的扩散影响,提高电池1000的安全性。
可选地,排放部件70的朝向电池排10的一侧还具有换热部501。由此,排放部件70也可以作为热管理部件50,例如上文所述的第二梁52,这样可以使二者合二为一,具有换热和收集排放物双重功能,从而节省对空间的占用,提高空间利用率。
根据本申请第二方面实施例的用电装置2000,包括根据本申请上述第一方面实施例的电池1000,电池1000用于为用电装置2000提供电能。由此,通过采用上述的电池1000,有利于提升用电装置2000的使用安全性和可靠性。
可选地,如图25所示,当电池1000用于车辆时,电池1000可以设置在车辆的底部、或头部、或尾部。电池1000可以用于车辆的供电,例如,电池1000可以作为车辆的操作电源。车辆还可以包括控制器和马达,控制器用来控制电池1000为马达供电,例如,用于车辆的启动、导航和行驶时的工作用电需求。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (45)

  1. 一种电池,其中,包括:
    至少一个电池组,所述电池组包括两个电池排,每个所述电池排均包括至少一个电池单体,每个所述电池单体的朝向同组另一所述电池排的一侧设有电连接部,每个所述电池单体还设有泄压部,所述泄压部与所述电连接部设于所述电池单体的不同侧。
  2. 根据权利要求1所述的电池,其中,所述泄压部设于所述电池单体的背向同组另一所述电池排的一侧。
  3. 根据权利要求2所述的电池,其中,所述泄压部与所述电连接部分置于所述电池单体的长度两端。
  4. 根据权利要求2或3所述的电池,其中,所述泄压部与所述电连接部分置于所述电池单体的水平方向上的两侧。
  5. 根据权利要求1所述的电池,其中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述电池单体的背向同组另一所述电池排的一侧为第二端壁,所述电池单体的连接在所述第一端壁与所述第二端壁之间的为周侧壁,所述泄压部设于所述周侧壁。
  6. 根据权利要求5所述的电池,其中,每个所述电池排均包括沿第一方向排列的多个所述电池单体,同组的两个所述电池排沿第二方向排列,所述周侧壁包括沿第三方向相对设置的第一侧壁和第二侧壁,所述泄压部设于所述第一侧壁,所述第一方向、所述第二方向与所述第三方向两两垂直。
  7. 根据权利要求6所述的电池,其中,所述电连接部相对所述第一侧壁靠近所述第二侧壁设置。
  8. 根据权利要求5-7中任一项所述的电池,其中,所述泄压部相对所述第一端壁靠近所述第二端壁设置。
  9. 根据权利要求1-8中任一项所述的电池,其中,所述电池单体的厚度方向垂直于水平方向。
  10. 根据权利要求9所述的电池,其中,所述电池排包括沿所述电池单体的宽度方向排列的多个所述电池单体。
  11. 根据权利要求1-10中任一项所述的电池,其中,每个所述电池排均包括沿第一方向排列的多个所述电池单体,同组的两个所述电池排沿第二方向排列,所述第二方向垂直于所述第一方向。
  12. 根据权利要求11所述的电池,其中,多个所述电池组沿第三方向设置以构成多层电池组,所述第三方向垂直于所述第一方向和所述第二方向。
  13. 根据权利要求12所述的电池,其中,所述多层电池组中所述电池组的数量小于所述电池排中所述电池单体的数量。
  14. 根据权利要求12或13所述的电池,其中,所述多层电池组中所述电池组的数量为2~3。
  15. 根据权利要求1-14中任一项所述的电池,其中,同组中对置的两个所述电池单体构成一个对置单元,至少一个所述对置单元为第一对置单元,所述第一对置单元中的两个所述电池单体的电连接部错开设置。
  16. 根据权利要求15所述的电池,其中,所述电池单体的朝向同组另一所述电池排的 一侧为第一端壁,所述第一对置单元中,各所述电连接部相对所述第一端壁的位置相同,且对侧的所述第一端壁错开设置。
  17. 根据权利要求15所述的电池,其中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第一对置单元中,各所述电连接部相对所述第一端壁的位置不同,且对侧的所述第一端壁正对设置。
  18. 根据权利要求15-17中任一项所述的电池,其中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第一对置单元中,对侧的所述电连接部沿所述第一端壁的长度方向错开。
  19. 根据权利要求15-17中任一项所述的电池,其中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第一对置单元中,对侧的所述电连接部沿所述第一端壁的宽度方向错开。
  20. 根据权利要求15-17中任一项所述的电池,其中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第一对置单元中,对侧的所述电连接部呈对角错开。
  21. 根据权利要求15-20中任一项所述的电池,其中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第一对置单元中,对侧的所述第一端壁之间的距离小于或等于对侧的所述电连接部凸出于所述第一端壁的高度之和。
  22. 根据权利要求1-21中任一项所述的电池,其中,同组中对置的两个所述电池单体构成一个对置单元,至少一个所述对置单元为第二对置单元,所述第二对置单元中的两个所述电池单体的电连接部正对设置。
  23. 根据权利要求22所述的电池,其中,所述第二对置单元中,至少一对正对的所述电连接部抵接支撑。
  24. 根据权利要求23所述的电池,其中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第二对置单元中,每个所述电池单体上的多个所述电连接部凸出于所述第一端壁的高度不同,其中,凸出高度较大的所述电连接部抵接支撑。
  25. 根据权利要求23所述的电池,其中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述第二对置单元中,每个所述电池单体上的多个所述电连接部凸出于所述第一端壁的高度相同,正对的所述电连接部均抵接支撑。
  26. 根据权利要求1-25中任一项所述的电池,其中,同组中对置的两个所述电池单体构成一个对置单元,至少一个所述对置单元中的两个所述电池单体通过支撑结构抵接支撑。
  27. 根据权利要求26所述的电池,其中,所述电池单体的朝向同组另一所述电池排的一侧为第一端壁,所述支撑结构包括设于所述第一端壁的支撑台。
  28. 根据权利要求27所述的电池,其中,通过所述支撑结构抵接支撑的两个所述电池单体中每个均设有所述支撑台,对侧的所述支撑台相对以抵接支撑。
  29. 根据权利要求27或28所述的电池,其中,所述支撑台一体成型于所述第一端壁。
  30. 根据权利要求27或28所述的电池,其中,所述支撑台装配至所述第一端壁。
  31. 根据权利要求26-30中任一项所述的电池,其中,所述支撑结构包括设于对侧的所述电池单体之间的填充胶。
  32. 根据权利要求1-31中任一项所述的电池,其中,所述电池组中的两个所述电池排之间设有绝缘件。
  33. 根据权利要求32所述的电池,其中,所述绝缘件包括设于两个所述电池排之间的 绝缘片和绝缘胶,所述绝缘片通过所述绝缘胶固定于所述电池排,所述绝缘胶为填充胶或双面胶。
  34. 根据权利要求32所述的电池,其中,所述电池组中的至少一个所述电池排上设有绝缘罩,所述绝缘罩罩设相应所述电池排上的所述电连接部。
  35. 根据权利要求1-34中任一项所述的电池,其中,每个所述电池排均包括多个所述电池单体,同组对侧的所述电连接部之间不连接。
  36. 根据权利要求1-34中任一项所述的电池,其中,每个所述电池排均包括沿第一方向排列的多个所述电池单体,同组的两个所述电池排沿第二方向排列,多个所述电池组沿第三方向设置以构成多层电池组,所述多层电池组中位于同侧的所述电池排之间电连接。
  37. 根据权利要求1-34中任一项所述的电池,其中,每个所述电池排均包括多个所述电池单体,同组对侧的所述电连接部之间电连接。
  38. 根据权利要求37所述的电池,其中,同组对侧的所述电连接部直接对焊或者通过导电片连接。
  39. 根据权利要求1-38中任一项所述的电池,其中,还包括:
    热管理部件,所述热管理部件包括换热部且用于与所述电池单体换热。
  40. 根据权利要求39所述的电池,其中,所述热管理部件包括:
    第一梁,所述第一梁设于同组两个所述电池排之间,且所述第一梁的朝向每个所述电池排的一侧均具有所述换热部。
  41. 根据权利要求39或40所述的电池,其中,所述热管理部件包括:
    第二梁,所述第二梁设于同组两个所述电池排的相背侧,且所述第二梁的朝向相应所述电池排的一侧均具有所述换热部。
  42. 根据权利要求39-41中任一项所述的电池,其中,还包括:
    箱体部件,所述箱体部件包括侧围板和分隔梁,所述分隔梁位于所述侧围板围绕出的空间内,以将所述空间划分为多个容置腔,所述容置腔用于容纳所述电池排,所述分隔梁构造为所述热管理部件。
  43. 根据权利要求1-42中任一项所述的电池,其中,还包括:
    排放部件,所述排放部件内形成有排放腔,所述排放部件设于所述泄压部朝向的一侧,所述排放腔用于接收所述泄压部排出的排放物。
  44. 根据权利要求43所述的电池,其中,所述排放部件的朝向所述电池排的一侧还具有换热部。
  45. 一种用电装置,其中,包括根据权利要求1-44中任一项所述的电池,所述电池用于为所述用电装置提供电能。
PCT/CN2022/123529 2022-09-30 2022-09-30 电池及用电装置 WO2024065785A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123529 WO2024065785A1 (zh) 2022-09-30 2022-09-30 电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123529 WO2024065785A1 (zh) 2022-09-30 2022-09-30 电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024065785A1 true WO2024065785A1 (zh) 2024-04-04

Family

ID=90475705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123529 WO2024065785A1 (zh) 2022-09-30 2022-09-30 电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024065785A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249107A (ja) * 2010-05-26 2011-12-08 Panasonic Corp 蓄電モジュール
CN208819967U (zh) * 2018-09-14 2019-05-03 宁德时代新能源科技股份有限公司 电池模组
CN111668404A (zh) * 2019-03-07 2020-09-15 宁德时代新能源科技股份有限公司 一种电池模块及电池包
CN113270673A (zh) * 2021-05-17 2021-08-17 上汽大众汽车有限公司 动力电池
WO2021208969A1 (zh) * 2020-04-16 2021-10-21 宁波吉利汽车研究开发有限公司 动力电池包及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249107A (ja) * 2010-05-26 2011-12-08 Panasonic Corp 蓄電モジュール
CN208819967U (zh) * 2018-09-14 2019-05-03 宁德时代新能源科技股份有限公司 电池模组
CN111668404A (zh) * 2019-03-07 2020-09-15 宁德时代新能源科技股份有限公司 一种电池模块及电池包
WO2021208969A1 (zh) * 2020-04-16 2021-10-21 宁波吉利汽车研究开发有限公司 动力电池包及车辆
CN113270673A (zh) * 2021-05-17 2021-08-17 上汽大众汽车有限公司 动力电池

Similar Documents

Publication Publication Date Title
WO2024067310A1 (zh) 电池和用电装置
WO2024027005A1 (zh) 转接构件、电池单体、电池以及用电装置
WO2022111199A1 (zh) 安装座、电池及用电设备
WO2023179192A1 (zh) 电池和用电设备
WO2023198012A1 (zh) 电池和用电设备
US20230089208A1 (en) Battery, power consumption apparatus, and method and apparatus for producing battery
WO2024067583A1 (zh) 电池及用电装置
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
US20230411756A1 (en) Battery, electric device, and method and device for manufacturing battery
US20230268588A1 (en) Battery, power consumption device, and method and device for producing battery
WO2024065785A1 (zh) 电池及用电装置
WO2023226201A1 (zh) 箱体组件、电池和用电设备
US20230223641A1 (en) Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
KR20230129053A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
KR20230126176A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
WO2024087100A1 (zh) 电池及用电装置
WO2024044883A1 (zh) 电极组件、电池单体、电池及用电装置
KR102659525B1 (ko) 배터리, 전기 설비, 배터리의 제조 방법 및 제조 설비
WO2024036536A1 (zh) 排放组件、箱体、电池和用电装置
US11973243B2 (en) Battery, power consumption device, and method and device for producing battery
WO2024036533A1 (zh) 电池和用电装置
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2024036537A1 (zh) 排放组件、箱体、电池和用电装置
US20230352769A1 (en) Battery, power consumption apparatus, method and apparatus for preparing battery
WO2024065786A1 (zh) 包装壳、电池单体、电池模组、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960397

Country of ref document: EP

Kind code of ref document: A1