WO2024036528A1 - 箱体组件、电池及用电装置 - Google Patents

箱体组件、电池及用电装置 Download PDF

Info

Publication number
WO2024036528A1
WO2024036528A1 PCT/CN2022/113139 CN2022113139W WO2024036528A1 WO 2024036528 A1 WO2024036528 A1 WO 2024036528A1 CN 2022113139 W CN2022113139 W CN 2022113139W WO 2024036528 A1 WO2024036528 A1 WO 2024036528A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
battery
plate
box assembly
battery cell
Prior art date
Application number
PCT/CN2022/113139
Other languages
English (en)
French (fr)
Inventor
李星
唐彧
金海族
张辰辰
李振华
徐晨怡
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/113139 priority Critical patent/WO2024036528A1/zh
Publication of WO2024036528A1 publication Critical patent/WO2024036528A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case

Definitions

  • the present application relates to the field of batteries, and in particular, to a box assembly, a battery and an electrical device.
  • this application provides a box assembly, a battery and an electrical device, which is beneficial to improving the space utilization of the box assembly while meeting the heat dissipation requirements.
  • the application provides a box assembly, including: a frame, the frame includes a bottom plate and side plates arranged around the bottom plate, the bottom plate and the side plates together form a receiving cavity; at least one heat exchange beam, the heat exchange beam is provided In the accommodation cavity, the accommodation cavity is divided into a plurality of accommodation sub-cavities, and a heat exchange channel for the flow of heat exchange medium is provided in the heat exchange beam.
  • the battery cell after the battery cell is placed in the accommodation cavity, the battery cell can exchange heat with the heat exchange beam to achieve heat dissipation or temperature heating of the battery cell.
  • the heat exchange beam not only The overall rigidity of the frame can be improved, and since the heat exchange beam is provided with a heat exchange channel for the flow of heat exchange medium, the heat exchange beam is integrated with a heat exchange function.
  • this kind of box assembly is applied to a battery, it can improve the internal strength of the battery. space utilization, thereby improving battery energy density.
  • the heat exchange beam includes: a beam body having opposite first side walls and second side walls along its thickness direction; at least one first heat exchange plate, the first heat exchange plate is provided on the first side wall; and/or, at least one second heat exchange plate, the second heat exchange plate is arranged on the second side wall.
  • At least one first receiving groove is formed in the first side wall, and any first heat exchange plate is disposed in a first receiving groove; and/or, the second side wall At least one second receiving groove is formed in the recess of the wall, and any second heat exchange plate is disposed in a second receiving groove.
  • a heat exchange beam includes a beam body and at least one heat exchange plate, wherein an installation cavity is provided in the beam body, and the heat exchange plate is disposed in the installation cavity.
  • the heat exchange beam further includes reinforcing ribs, and the reinforcing ribs are connected between the heat exchange plate and the inner wall of the installation cavity.
  • This structural design can not only increase the structural strength of the heat exchange beam, but also play a thermal conductive role to improve the heat exchange performance between the beam body and the heat exchange plate.
  • a first flow channel for the heat exchange medium to flow is provided in the bottom plate.
  • This structural design allows the bottom plate and heat exchange beam to exchange heat with the battery cells respectively after the battery cells are placed in the accommodation cavity, improving the heat exchange performance.
  • the box assembly further includes at least one first heat dissipation plate, and the first heat dissipation plate is disposed on a surface of the bottom plate facing or facing away from the accommodation cavity.
  • the box assembly further includes at least one first heat dissipation plate, and at least one first accommodation cavity is provided in the bottom plate, and the first heat dissipation plate is disposed in the first accommodation cavity.
  • a structural design can not only reduce the thickness of the bottom plate to improve space utilization when this type of box assembly is used in batteries, but can also improve the assembly efficiency of the bottom plate and the first heat dissipation plate.
  • the frame further includes a cover plate, which is disposed on an end of the side plate away from the bottom plate to seal the accommodation cavity.
  • a second flow channel for the heat exchange medium to flow is provided in the cover plate. This structural design allows the battery cells to exchange heat with the cover, improving the heat exchange performance.
  • the box assembly further includes at least one second heat dissipation plate, and the second heat dissipation plate is disposed on a surface of the cover facing or facing away from the accommodation cavity.
  • the box assembly further includes at least one second heat dissipation plate, and at least one second accommodation cavity is provided in the cover plate, and the second heat dissipation plate is disposed in the second accommodation cavity.
  • a structural design can not only reduce the thickness of the cover plate to improve space utilization when the box assembly is used in batteries, but also improve the assembly efficiency of the cover plate and the second heat dissipation plate.
  • embodiments of the present application provide a battery, including a battery cell and a box assembly as described in any one of the foregoing, wherein the accommodation sub-cavity is used to place the battery cell.
  • the heat exchange beam is configured as a heat exchange cross beam and/or a heat exchange longitudinal beam, and the size of the battery cell along the height direction of the heat exchange beam is smaller than the size of the battery cell along the extension direction of the heat exchange beam.
  • the size of the battery cell along the thickness direction of the heat exchange beam is configured as a heat exchange cross beam and/or a heat exchange longitudinal beam, and the size of the battery cell along the height direction of the heat exchange beam is smaller than the size of the battery cell along the extension direction of the heat exchange beam.
  • the size of the battery cell along the thickness direction of the heat exchange beam This structural design allows the battery cells to be placed flat, and the internal temperature of the battery cells is relatively uniform, which reduces the design requirements for the heat exchange beam in the height direction.
  • the battery cell is provided with a pressure relief mechanism, and the pressure relief mechanism faces the heat exchange beam.
  • This structural design allows the heat exchange beam to exchange heat with high-temperature emissions once the pressure relief mechanism erupts, preventing long-term heat accumulation at the eruption site and causing safety hazards.
  • each battery cell is disposed adjacent to at least one heat exchange beam, and the pressure relief mechanism faces at least one of the adjacent heat exchange beams.
  • This structural design allows each battery cell to exchange heat with one or more adjacent heat exchange beams, improving the heat exchange effect.
  • the battery cell is further provided with electrode terminals, and the electrode terminals and the pressure relief mechanism are respectively provided on two adjacent or opposite surfaces of the battery cell.
  • the pressure relief mechanism erupts, because the electrode terminals and the pressure relief mechanism are on different surfaces of the battery cell, it can reduce the adverse effects of the pressure relief mechanism eruption on the electrical connection area such as short circuits, high-voltage sparks, etc., and, Since the pressure relief mechanism is set toward the heat exchange beam, that is, the electrode terminals are not set toward the heat exchange beam, when the heat exchange beam is damaged and the heat exchange medium leaks, the risk of short circuit caused by the heat exchange medium is reduced.
  • the battery includes a battery row composed of a plurality of battery cells arranged along a first direction, and the heat exchange beam extends along the first direction.
  • This structural design allows the heat exchange beam to extend along the length of the battery row, simplifying the distribution of the heat exchange beam in the accommodation cavity.
  • a discharge cavity is provided in the heat exchange beam, and the discharge cavity is adapted to receive the emissions discharged by the battery cells from the pressure relief mechanism.
  • a structural design can further integrate the heat exchange beam with the function of collecting battery cell emissions, making the internal structure of the battery more compact.
  • the heat exchange beam is provided with at least one butt portion, and the discharge cavity is adapted to receive the emissions discharged by the battery cells from the pressure relief mechanism through the butt portion.
  • the docking portion can be a through-hole structure or a weak portion structure, both of which can be used to receive the discharge into the discharge chamber when the pressure relief mechanism is activated, thereby improving safety.
  • the multiple butt parts are spaced apart along the first direction on the heat exchange beam, wherein any one butt part is configured to communicate with the pressure relief of at least one battery cell.
  • the docking part can be a through hole connected to the discharge chamber, or it can be a weak part structure, through which the exhaust or the air pressure in the box can enter the discharge chamber.
  • the corresponding setting can be such that the two positions are relatively close, or they can be docked.
  • the part and the pressure relief mechanism are arranged opposite each other in a certain direction, so that the emissions discharged from the pressure relief mechanism can quickly enter the discharge chamber through the docking part.
  • This structural design allows multiple rows of battery rows arranged along the height direction of the heat exchange beam and the thickness direction of the heat exchange beam to be installed in any accommodation sub-cavity, which improves the space utilization of the box assembly.
  • the heat exchange beam is provided with a plurality of butt portions spaced apart along its height direction, wherein any one butt portion is configured to correspond to the pressure relief mechanism of at least one battery cell.
  • the docking part can be a through hole connected to the discharge chamber, or it can be a weak part structure, through which the exhaust or the air pressure in the box can enter the discharge chamber.
  • the corresponding setting can be such that the two positions are relatively close, or they can be docked.
  • the part and the pressure relief mechanism are arranged opposite each other in a certain direction, so that the emissions discharged from the pressure relief mechanism can quickly enter the discharge chamber through the docking part.
  • the battery rows have multiple rows, and at least two of the multiple battery rows are arranged side by side along the second direction, and the second direction is perpendicular to the first direction; in the second direction, A heat exchange beam is provided between at least part of two adjacent battery rows.
  • a heat exchange beam can be provided between some adjacent battery rows. , and there are no heat exchange beams between adjacent battery rows, thereby ensuring the heat exchange effect while reducing the number of heat exchange beams and improving the space utilization of the box components.
  • the battery cell is a cylindrical battery cell, and the axial direction of the battery cell is parallel to the height direction of the heat exchange beam; the first side wall is recessed to form a plurality of first limits. groove, the second side wall is concavely formed with a plurality of second limiting grooves, wherein any one of the first limiting grooves is in contact with the outer peripheral surface of a battery cell, and any one of the second limiting grooves is in contact with the outer peripheral surface of a battery cell. The outer peripheral surfaces are in contact.
  • Such a structural design can not only limit the position of the battery cells, but also increase the heat transfer area between the battery cells and the heat exchange beam to improve the heat exchange performance.
  • embodiments of the present application provide an electrical device, including a battery as described in any one of the foregoing items, and the battery is used to provide electrical energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is a schematic diagram of an exploded structure of a battery provided by some embodiments of the present application.
  • Figure 3 is a schematic structural diagram of a box assembly provided by some embodiments of the present application.
  • Figure 4 is a schematic structural diagram of another box assembly provided by some embodiments of the present application.
  • Figure 5 is a schematic structural diagram of a heat exchange beam provided by some embodiments of the present application.
  • Figure 6 is a schematic structural diagram of the heat exchange beam shown in Figure 5 from another angle.
  • Figure 7 is a schematic structural diagram of the beam body of the heat exchange beam shown in Figure 5.
  • Figure 8 is a schematic structural diagram of the beam body shown in Figure 7 from another angle.
  • FIG. 9 is a schematic structural diagram of another heat exchange beam provided by some embodiments of the present application.
  • Figure 10 is a schematic diagram of the assembly relationship between the battery rows and the heat exchange beam in the battery shown in Figure 2.
  • FIG. 11 is another schematic diagram of the assembly relationship between the battery row and the heat exchange beam in the battery shown in FIG. 2 .
  • Figure 12 is a schematic structural diagram of a battery cell provided by some embodiments of the present application.
  • Figure 13 is a partial structural diagram of another battery provided by some embodiments of the present application.
  • Figure 14 is a schematic structural diagram of the heat exchange beam in the battery shown in Figure 13.
  • Figure 15 is a schematic structural diagram of the heat exchange beam shown in Figure 14 from another angle.
  • 21-battery pack ; 211-battery cell; 212-electrode terminal; 213-pressure relief mechanism.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the direction pointed by arrow X in all drawings is the length direction
  • the direction pointed by arrow Y is the width direction
  • the direction pointed by arrow Z is the vertical direction.
  • the horizontal direction is a direction parallel to the horizontal plane, and may be the above-mentioned length direction or the above-mentioned width direction.
  • the horizontal direction not only includes the direction that is absolutely parallel to the horizontal plane, but also includes the direction that is generally parallel to the horizontal plane as commonly recognized in engineering.
  • the vertical direction is the direction perpendicular to the horizontal plane.
  • the vertical direction not only includes the direction absolutely perpendicular to the horizontal plane, but also includes the direction generally perpendicular to the horizontal plane that is conventionally recognized in engineering.
  • directional words such as "upper”, “lower”, “top”, and “bottom” described in this application are understood relative to the vertical direction.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • Power batteries usually include box components and multiple battery cells connected in series, parallel or mixed. Power batteries can be mainly divided into upright batteries, side-standing batteries and flat batteries according to the status of the battery cells in space. Power batteries generally include multiple battery rows, where any battery row includes multiple battery cells arranged in a horizontal direction.
  • thermal management component in order to ensure the safe operation of the power battery, in the existing box assembly, a thermal management component is usually laid at the bottom of the box assembly, and the thermal management component and the battery cell can exchange heat, so as to Improve heat dissipation effect.
  • the thermal management components will occupy a certain amount of internal space in the box assembly, resulting in reduced space utilization of the box assembly, lowering the battery energy density, and seriously affecting battery performance.
  • the thermal management component can be arranged on the surface or inside the middle beam, so that the middle beam has a heat exchange effect, improves the space utilization of the box assembly, and thereby increases the battery energy density.
  • the box assembly disclosed in the embodiment of the present application can be, but is not limited to, used in electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of the box assembly, battery, etc. disclosed in this application, which is beneficial to improving the space efficiency of the box assembly and thereby increasing the battery energy density.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, and spaceships.
  • an electrical device is a vehicle.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300.
  • the controller 200 is used to control the battery 100 to provide power to the motor 300, for example, for starting, navigating or driving the vehicle 1000 to meet the power requirements.
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or gas to provide driving power for the vehicle 1000 .
  • Figure 2 is a schematic exploded view of a battery 100 provided in some embodiments of the present application
  • Figure 3 is a schematic structural view of a box assembly 1 provided in some embodiments of the present application.
  • the box assembly 1 at least includes a frame 11 and at least one heat exchange beam 12.
  • the frame 11 includes a bottom plate 111 and side plates 112 arranged around the bottom plate 111.
  • the bottom plate 111 and the side plates 112 together form an accommodation cavity 13.
  • the heat exchange beam 12 is provided in the accommodation cavity 13 to divide the accommodation cavity 13 into a plurality of accommodation sub-cavities 131, and a heat exchange channel for the flow of heat exchange medium is provided in the heat exchange beam 12.
  • the frame 11 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the frame 11 is less likely to deform when subjected to extrusion and collision, so that the box assembly 1 can have higher structural strength and better safety performance. Can be improved.
  • the shape of the frame 11 can also be a variety of shapes, such as a cylinder, a cuboid, or a hexahedron.
  • the frame 11 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • the accommodation cavity 13 can be divided into multiple accommodation sub-cavities 131 by the heat exchange beam 12, and any one accommodation sub-cavity 131 can accommodate one or more battery cells 211. .
  • the heat exchange beam 12 is provided with a heat exchange channel for the flow of the heat exchange medium, the heat exchange beam 12 can exchange heat with the battery cells 211, thereby realizing the heating or cooling process of the battery 100 and ensuring the safety of the battery 100. work, and when the battery cell 211 erupts, due to the influence of high-temperature emissions, high temperature accumulation is likely to occur inside the battery 100.
  • the accumulated heat can be continuously evacuated through the flow of the heat exchange medium in the heat exchange beam 12.
  • the heat exchange medium can be any one or more of water, air, tetrafluoroethane, trifluoromethane, difluoroethane, etc.
  • the number of heat exchange channels provided in the heat exchange beam 12 may be one or more.
  • the material of the heat exchange beam 12 may be the same as the material of the frame 11 or may be different from the material of the frame 11. This will not be discussed in the embodiment of this application. Special restrictions.
  • FIG. 4 is a schematic structural diagram of another box assembly 1 provided by some embodiments of the present application.
  • a part of the heat exchange beam 12 extends along the X-axis direction, and the other part of the heat exchange beam 12 extends along the Y-axis direction, so that the accommodation cavity 13 is divided into a plurality of accommodation sub-cavities 131 distributed in a grid shape.
  • multiple surfaces of at least one battery cell 211 are corresponding to one heat exchange beam 12 for heat exchange, that is, the heat exchange area between the battery cell 211 and the heat exchange beam 12 is increased, and the heat exchange effect is improved.
  • all heat exchange beams 12 can only extend along the X-axis direction or the Y-axis direction.
  • the battery cell 211 can exchange heat with the heat exchange beam 12 to dissipate or heat the battery cell 211 .
  • the heat exchange beam 12 can not only lift the frame 11
  • the overall rigidity of the heat exchange beam 12 is provided, and the heat exchange beam 12 is provided with a heat exchange channel for the flow of heat exchange medium, so that the heat exchange beam 12 is integrated with a heat exchange function, which improves the space utilization when this type of box assembly 1 is used in the battery 100 rate, thereby increasing the energy density of the battery by 100%.
  • Figure 5 is a schematic structural diagram of a heat exchange beam 12 provided in some embodiments of the present application
  • Figure 6 is a schematic diagram of the heat exchanger beam 12 shown in Figure 5.
  • the heat exchange beam 12 includes: a beam body 121, which has opposite first side walls 1211 and second side walls 1212 along its thickness direction; at least one first heat exchange plate 1221, the first heat exchange plate 1221 is disposed on the first One side wall 1211; and/or, at least one second heat exchange plate 1222, the second heat exchange plate 1222 is provided on the second side wall 1212.
  • the heat exchange plate 122 can be provided only on the first side wall 1211 or the second side wall 1212; or, a part of the heat exchange plate 122 is provided on the first side wall 1211, and another part of the heat exchange plate 122 is provided on the second side wall 1212, Among them, the heat exchange plate 122 provided on the first side wall 1211 is the first heat exchange plate 1221, and the heat exchange plate 122 provided on the second side wall 1212 is the second heat exchange plate 1222.
  • the number of heat exchange plates 122 provided on the first side wall 1211 and/or the second side wall 1212 may be one or more. Any heat exchange plate 122 can be disposed on the first side wall 1211 or the second heat exchange plate 1222 through welding, adhesion, threaded fitting, plug-in fitting, or any other means. This is not particularly limited in the embodiment of the present application.
  • the beam body 121, the first heat exchange plate 1221 and the second heat exchange plate 1222 can be formed separately and then assembled, which reduces the difficulty of forming the heat exchange beam 12.
  • Figure 7 is a schematic structural diagram of the beam body 121 of the heat exchange beam 12 shown in Figure 5.
  • Figure 8 is a schematic diagram of the beam shown in Figure 7.
  • the first side wall 1211 is concavely formed with at least one first receiving groove 1213, and any first heat exchange plate 1221 is disposed in a first receiving groove 1213; and/or the second side wall 1212 is concavely formed with at least one first receiving groove 1213.
  • a second receiving groove 1214, and any second heat exchange plate 1222 is disposed in a second receiving groove 1214.
  • a first receiving groove 1213 is formed in the first side wall 1211, so that at least part of any first heat exchange plate 1221 can be accommodated in the corresponding third heat exchange plate 1221.
  • the first heat exchange plate 1221 will not protrude relative to the first side wall 1211;
  • the second side wall 1212 is provided with a second heat exchange plate 1222, the second side wall 1212 is concavely formed with
  • the second receiving groove 1214 allows at least part of any second heat exchange plate 1222 to be received in the corresponding second receiving groove 1214 , so that the second heat exchange plate 1222 does not protrude relative to the second side wall 1212 .
  • the thickness of the heat exchange beam 12 can be reduced, thereby reducing the size of the heat exchange beam 12
  • the volume further improves the space utilization when this type of box assembly 1 is applied to the battery 100 .
  • FIG. 9 is a schematic structural diagram of another heat exchange beam 12 provided by some embodiments of the present application.
  • the heat exchange beam 12 includes a beam body 121 and at least one heat exchange plate 122.
  • the beam body 121 is provided with an installation cavity 1215, and the heat exchange plate 122 is provided in the installation cavity 1215.
  • the heat exchange plate 122 can be accommodated in the installation cavity 1215, and the number of the heat exchange plate 122 can be one or more.
  • the number of heat exchange plates 122 is multiple, the number of the installation cavity 1215 may be one, and the multiple heat exchange plates 122 may be disposed in the installation cavity 1215; or, when the number of the heat exchange plates 122 is multiple.
  • the number of installation cavities 1215 may be multiple, and one or more heat exchange plates 122 are provided in any one installation cavity 1215. This is not particularly limited in the embodiment of the present application.
  • the thickness of the heat exchange beam 12 can be reduced to improve space utilization when the box assembly 1 is used in the battery 100.
  • the efficiency can also improve the assembly efficiency of the heat exchange beam 12.
  • the ratio between the total volume of the installation cavity 1215 and the total volume of the heat exchange beam 12 is less than or equal to 90%.
  • the ratio between the total volume of the installation cavity 1215 and the total volume of the heat exchange beam 12 is less than or equal to 80%.
  • the heat exchange beam 12 further includes reinforcing ribs 1216 , and the reinforcing ribs 1216 are connected between the heat exchange plate 122 and the inner wall of the installation cavity 1215 .
  • the reinforcing ribs 1216 can limit the position of the heat exchange plate 122 in the installation cavity 1215, and the heat of the beam body 121 can be transferred to the heat exchange plate 122 through the reinforcing ribs 1216.
  • the reinforcing ribs 1216 are made of the same material as the beam body 121 , and the reinforcing ribs 1216 and the beam body 121 are integrally formed.
  • a part of the reinforcing ribs 1216 may be connected between the inner side of the first side wall 1211 and the surface of the heat exchange plate 122 facing the inner side of the first side wall 1211 , and another part of the reinforcing ribs 1216 may be connected between the inner side of the second side wall 1212 and the heat exchanger plate 122 .
  • all the reinforcing ribs 1216 can be connected between the inner surface of the first side wall 1211 and the inner surface of the heat exchange plate 122 facing the first side wall 1211 or, all reinforcing ribs 1216 may be connected between the inner side of the second side wall 1212 and the surface of the heat exchange plate 122 facing the inner side of the second side wall 1212 .
  • the reinforcing ribs 1216 connect the heat exchange plate 122 and the inner wall of the installation cavity 1215, which not only increases the structural strength of the heat exchange beam 12, but also plays a thermal conductive role to improve the heat exchange performance between the beam body 121 and the heat exchange plate 122.
  • a first flow channel for the heat exchange medium to flow is provided in the bottom plate 111 .
  • the bottom surface of the battery cell 211 facing the bottom plate 111 can exchange heat with the bottom plate 111 , so that after the battery cell 211 is placed in the accommodation cavity 13 , the bottom plate 111 and the bottom plate 111 exchange heat.
  • the beams 12 can exchange heat with the battery cells 211 respectively, thereby improving the heat exchange performance.
  • the box assembly 1 further includes at least one first heat dissipation plate, and the first heat dissipation plate is disposed on the surface of the bottom plate 111 facing or facing away from the accommodation cavity 13 .
  • the structures of the first heat dissipation plate and the heat exchange plate 122 are similar or identical, and the number of the first heat dissipation plates may be one or more.
  • the first heat dissipation plate can be disposed on the surface of the bottom plate 111 facing the accommodating cavity 13 so that the battery cells 211 can directly exchange heat with the first heat dissipation plate; or, the first heat dissipation plate can be disposed on the surface of the bottom plate 111 facing away from the accommodating cavity 13 , so that the heat of the battery cell 211 can be transferred to the first heat dissipation plate through the bottom plate 111, thereby realizing heat exchange between the battery cell 211 and the first heat dissipation plate, and because the first heat dissipation plate is arranged outside the accommodation cavity 13, it It does not occupy the space of the accommodation cavity 13 .
  • the bottom plate 111 and the first heat exchange plate 1221 can be formed separately and then assembled, which reduces the difficulty of forming the bottom plate 111 and the first heat dissipation plate.
  • the box assembly 1 further includes at least one first heat dissipation plate, and at least one first accommodation cavity is provided in the bottom plate 111, and the first heat dissipation plate is disposed in the first accommodation cavity. inside the cavity.
  • the structures of the first heat dissipation plate and the heat exchange plate 122 are similar or identical, and the number of the first heat dissipation plates may be one or more.
  • the number of the first heat dissipation plates is multiple, the number of the first accommodation cavity may be one, and the plurality of first heat dissipation plates may be disposed in the first accommodation cavity; or, when the number of the first heat dissipation plates is When there are multiple first accommodating cavities, there may be multiple first accommodating cavities, and one or more first heat dissipation plates are provided in any first accommodating cavity.
  • the thickness of the bottom plate 111 can be reduced to improve space utilization when the box assembly 1 is used in the battery 100 efficiency, and can also improve the assembly efficiency of the base plate 111 and the first heat dissipation plate.
  • the frame 11 further includes a cover plate 113 , which is disposed on an end of the side plate 112 away from the bottom plate 111 to seal the accommodation cavity 13 .
  • the cover plate 113 is used to seal the accommodating cavity 13.
  • the shape of the cover plate 113 matches the shape of the accommodating cavity 13, such as circular, hexagonal, square, etc.
  • the box assembly 1 can be formed into a closed box structure, which is beneficial to protecting the battery cells 211 after they are placed in the accommodation cavity 13. .
  • a second flow channel for the heat exchange medium to flow is provided in the cover plate 113 .
  • the top surface of the battery cell 211 facing the cover can exchange heat with the cover 113 , so that after the battery cell 211 is placed in the accommodation cavity 13 , the battery cell 211
  • the body 211 can also exchange heat with the cover plate 113, thereby improving the heat exchange performance.
  • the box assembly 1 further includes at least one second heat dissipation plate, and the second heat dissipation plate is disposed on the surface of the cover plate 113 facing or facing away from the accommodation cavity 13 .
  • the structures of the second heat dissipation plate and the heat exchange plate 122 are similar or identical, and the number of the second heat dissipation plate may be one or more.
  • the second heat dissipation plate can be disposed on the surface of the cover plate 113 facing the accommodating cavity 13 so that the battery cells 211 can directly exchange heat with the second heat dissipation plate; or, the second heat dissipation plate can be disposed on the cover plate 113 facing away from the accommodating cavity 13 surface, so that the heat of the battery cell 211 can be transferred to the second heat sink plate through the cover plate 113, thereby realizing heat exchange between the battery cell 211 and the second heat sink plate, and because the second heat sink plate is disposed outside the accommodation cavity 13 , so that it does not occupy the space of the accommodation cavity 13 .
  • the cover plate 113 and the second heat dissipation plate can be formed separately and then assembled, which reduces the difficulty of forming the cover plate 113 and the second heat dissipation plate. .
  • the box assembly 1 further includes at least one second heat dissipation plate, and at least one second accommodation cavity is provided in the cover 113, and the second heat dissipation plate is disposed in the second cavity. Place in the cavity.
  • the structures of the second heat dissipation plate and the heat exchange plate 122 are similar or identical, and the number of the second heat dissipation plate may be one or more.
  • the number of the second heat dissipation plates is multiple, the number of the second accommodation cavity may be one, and the plurality of second heat dissipation plates may be disposed in the second accommodation cavity; or, when the number of the second heat dissipation plates is When there are multiple second accommodating cavities, there may be multiple second accommodating cavities, and one or more second heat dissipation plates are provided in any second accommodating cavity.
  • the thickness of the cover plate 113 can be reduced to improve the efficiency of the box assembly 1 when used in the battery 100
  • the space utilization rate can also improve the assembly efficiency of the cover plate 113 and the second heat dissipation plate.
  • This application provides a box assembly 1, including a frame 11 and a plurality of heat exchange beams 12, wherein the frame 11 includes a bottom plate 111 and surrounding bottom plate 111.
  • the side plates 112 , the bottom plate 111 and the side plates 112 are arranged to surround the accommodation cavity 13 .
  • the heat exchange beam 12 is arranged in the accommodation cavity 13 to divide the accommodation cavity 13 into a plurality of accommodation sub-cavities 131 .
  • a heat exchange channel is provided for the flow of heat exchange medium.
  • a plurality of heat exchange plates 122 are arranged at intervals along the Y-axis direction, and any one of the heat exchange plates 122 extends along the X-axis direction.
  • the heat beam can not only improve the overall rigidity of the frame 11, but also because the heat exchange beam 12 is provided with a heat exchange channel for the flow of heat exchange medium, the heat exchange beam 12 is integrated with a heat exchange function, which improves the application of this type of box assembly 1
  • the space utilization rate of the battery 100 is improved, thereby improving the energy density of the battery 100.
  • the present application also provides a battery 100, including the box assembly 1 described in any of the above solutions.
  • the battery 100 includes a battery cell 211 and a box assembly 1 , wherein the accommodation subcavity 131 is used to place the battery cell 211 .
  • the number of battery cells 211 placed in any one accommodation sub-cavity 131 may be one or more. Multiple battery cells 211 can be electrically connected in series, parallel or mixed connection, where mixed connection means that the multiple battery cells 211 are both connected in series and in parallel.
  • the battery cell 211 may be a primary battery 100 or a secondary battery 100; it may also be a lithium-sulfur battery 100, a sodium-ion battery 100 or a magnesium-ion battery 100, but is not limited thereto.
  • the battery cell 211 can be in the shape of a cylinder, a flat body, a rectangular parallelepiped, or any other shape. That is, the battery cell 211 can be a cylindrical battery cell, a square battery cell, a soft-pack battery cell, or the like.
  • the box assembly 1 is used to provide an accommodation cavity 13 for accommodating a plurality of battery cells 211 .
  • the battery cell 211 will generate heat. If the temperature of the battery cell 211 is too high or too low, the working performance of the battery 100 will be affected and the service life of the battery 100 will be affected.
  • the heat exchange beam 12 can also exchange heat with the battery cells 211 to ensure the safe operation of each battery cell 211.
  • the battery cell 211 can exchange heat with the heat exchange beam 12 to dissipate or heat the battery cell 211 .
  • the heat exchange beam 12 can not only lift the frame 11
  • the overall rigidity of the heat exchange beam 12 is provided with a heat exchange channel for the flow of heat exchange medium, so that the heat exchange beam 12 is integrated with a heat exchange function, which improves the space utilization of the box assembly 1 and thereby improves the battery 100 Energy Density.
  • the heat exchange beam 12 is configured as a heat exchange cross beam and/or a heat exchange longitudinal beam, and the battery cells 211 are arranged along the height direction of the heat exchange beam 12 The size is smaller than the size of the battery cells 211 along the extension direction of the heat exchange beam 12 and the size of the battery cells 211 along the thickness direction of the heat exchange beam 12 .
  • All heat exchange beams 12 may be configured as heat exchange cross beams, that is, the heat exchange beams 12 extend along the length direction of the box assembly 1; or, all heat exchange beams 12 may be configured as heat exchange longitudinal beams, that is, the heat exchange beams 12 may be configured as heat exchange longitudinal beams, that is, the heat exchange beams 12 may The heat beam 12 extends along the width direction of the box assembly 1; alternatively, part of the heat exchange beam 12 is configured as a heat exchange cross beam, and another part of the heat exchange beam 12 is configured as a heat exchange longitudinal beam, so that the heat exchange beam 12 forms a grid. shape distribution.
  • the battery cell 211 Since the size of the battery cell 211 along the height direction of the heat exchange beam 12 is smaller than the size of the battery cell 211 along the extension direction of the heat exchange beam 12 and the size of the battery cell 211 along the thickness direction of the heat exchange beam 12 , the battery cell 211 is The accommodation cavity 13 is placed in a flat position.
  • the design of the heat exchange beam 12 will be more complex and less flexible.
  • the content of the electrolyte in the battery cell 211 in the vertical direction is evenly distributed, so that the temperature of the battery cell 211 in the vertical direction is uniform and heat exchange is reduced.
  • the design requirements of the beam 12 improve the design flexibility of the heat exchange beam 12, and can also extend the service life of the box assembly 1 and the battery 100.
  • the side surface of the battery cell 211 (surface other than the large surface) faces the heat exchange beam 12. Compared with the large surface of the battery cell 211, the expansion degree of the side surface of the battery cell 211 is lower. After a certain deformation, it will not The heat exchange beam 12 will be squeezed and the heat exchange beam 12 may be damaged.
  • the internal temperature of the battery cells 211 is relatively uniform, which reduces the design requirements for the heat exchange beam 12 in the height direction.
  • Figure 10 is a schematic diagram of the assembly relationship between the battery row 2 and the heat exchange beam 12 in the battery 100 shown in Figure 2.
  • Figure 11 is a schematic diagram of the assembly relationship between the battery row 2 and the heat exchange beam 12 in the battery 100 shown in Figure 2.
  • FIG. 12 is a schematic structural diagram of the battery cell 211 provided by some embodiments of the present application.
  • the battery cell 211 is provided with a pressure relief mechanism 213 , and the pressure relief mechanism 213 faces the heat exchange beam 12 .
  • the pressure relief mechanism 213 includes but is not limited to an explosion-proof valve or other components. As long as the pressure relief mechanism 213 can discharge high-temperature emissions to release the internal pressure of the battery cell 211 when the battery cell 211 undergoes thermal runaway, in this application The embodiment does not impose any special restrictions on this.
  • the high-temperature emissions can break through the pressure relief mechanism 213.
  • the broken pressure relief mechanism 213 can discharge the high-temperature emissions to prevent the battery cell 211 from exploding.
  • the pressure relief mechanism 213 is disposed on a surface of the battery cell 211 facing the heat exchange beam 12, so that once the pressure relief mechanism 213 erupts, the heat exchange beam 12 can exchange heat with high-temperature emissions to avoid Long-term heat accumulation occurs at the eruption site, causing safety hazards.
  • each battery cell 211 is disposed adjacent to at least one heat exchange beam 12, and the pressure relief mechanism 213 faces at least one of the adjacent heat exchange beams 12.
  • the battery cells After multiple battery cells 211 are placed in the accommodation sub-cavity 131 , the battery cells have at least one surface close to and facing the heat exchange beam 12 , wherein at least one surface close to and facing the heat exchange beam 12 is provided with a pressure relief mechanism. 213, that is, one or more pressure relief mechanisms 213 can be provided on the battery cell 211, which is beneficial to reducing the distance between the pressure relief mechanism 213 and the heat exchange beam 12, and improving the heat exchange effect.
  • the battery cell 211 is also provided with an electrode terminal 212, and the electrode terminal 212 and the pressure relief mechanism 213 are respectively provided on the battery cell 211. Two adjacent or opposite surfaces.
  • the electrode terminal 212 is used to contact the electrolyte inside the battery cell 211 to input or output electric energy.
  • One battery cell 211 is provided with two electrode terminals 212, which are divided into positive terminals and negative terminals.
  • the material of the electrode terminal 212 includes but is not limited to any one or any alloy of iron, copper, aluminum, gold, silver or any other conductive metal, which is not particularly limited in the embodiment of the present application.
  • the pressure relief mechanism 213 is disposed on a surface of the battery cell 211 facing the heat exchange beam 12, and the electrode terminal 212 is disposed on a surface adjacent or opposite to the surface.
  • the eruption of the pressure relief mechanism 213 can reduce the adverse effects such as short circuiting and high-voltage ignition on the electrical connection area, and , since the pressure relief mechanism 213 is disposed toward the heat exchange beam 12, that is, the electrode terminal 212 is not disposed toward the heat exchange beam 12, when the heat exchange beam 12 is damaged and the heat exchange medium leaks, the risk caused by the heat exchange medium is reduced. Risk of short circuit.
  • the battery 100 includes a battery row 2 composed of a plurality of battery cells 211 arranged along a first direction, and the heat exchange beam 12 extends along the first direction.
  • a plurality of battery cells 211 can be arranged along the first direction (X-axis direction) to form a battery row 2 , and one or more battery rows 2 can be placed in a receiving subcavity 131 .
  • the heat exchange beam 12 extends along the first direction, that is, the length direction of the heat exchange beam 12 is parallel to the length direction of the battery row 2, so that each battery cell 211 in the battery row 12 can exchange heat with the heat exchange beam 12. Improved heat exchange effect.
  • the number of battery cells 211 arranged along the first direction (X-axis direction) in one battery row 2 may be ten.
  • the distribution of the heat exchange beam 12 in the accommodation cavity 13 is simplified, thereby simplifying the structure of the box assembly 1 .
  • a discharge cavity (not shown in the figure) is provided in the heat exchange beam 12 , and the discharge cavity is suitable for receiving the discharge of the battery cells 211 from the pressure relief mechanism 213 of emissions.
  • the heat exchange beam 12 is provided with a discharge cavity, when the pressure relief mechanism 213 erupts, high-temperature emissions can enter the discharge cavity. This further enables the heat exchange beam 12 to be integrated with the function of collecting emissions from the battery cells 211, so that the battery The internal structure of the 100 is more compact.
  • the heat exchange beam 12 is provided with at least one docking part 123 , and the discharge cavity is adapted to receive the battery cells 211 through the docking part 123 and discharge them from the pressure relief mechanism 213 of emissions.
  • the docking portion 123 can be a through-hole structure or a weak portion structure, both of which can be used to receive emissions into the discharge chamber when the pressure relief mechanism 213 erupts, thereby improving safety.
  • the docking part 123 may be a through-hole structure, and the shape of the through-hole structure may be circular, square, rhombus, oval, etc.
  • any one docking part 123 is configured to interact with The pressure relief mechanism 213 of at least one battery cell 211 is provided correspondingly.
  • the docking part 123 can be a through-hole structure connected to the discharge chamber, or it can be a weak part structure, through which the exhaust or the air pressure in the box can enter the discharge chamber.
  • the corresponding setting can be such that the two positions are relatively close, or they can
  • the docking part 123 and the pressure relief mechanism 213 are arranged opposite each other in a certain direction, so that the emissions discharged from the pressure relief mechanism 213 can enter the discharge chamber quickly through the docking part 123 .
  • the number of docking parts 123 arranged along the first direction (X-axis direction) may be greater than or equal to the number of battery cells 211 in the battery row 2 , so that each battery cell 211 corresponds to one docking part 123 .
  • the number of butt portions 123 arranged along the first direction (X-axis direction) is equal to the number of battery cells 211 in the battery row 2 and is located in the two battery rows 2 on both sides of the heat exchange beam 12
  • the two pressure relief mechanisms 213 provided on the two opposite battery cells 211 correspond to the same docking portion 123 .
  • the docking portion 123 can be a through-hole structure, and the area of the through-hole structure needs to be equal to or larger than the area of the pressure relief mechanism 213.
  • the ratio between the total area of the through hole structures and the surface area of the heat exchange beam 12 is less than or equal to 30%.
  • the ratio between the total area of the plurality of through-hole structures and the surface area of the heat exchange beam 12 may be 25%.
  • the distance between the pressure relief mechanism 213 and the heat exchange beam 12 is equal to or equal to 0.1 mm and equal to or less than 20 mm.
  • the distance between the pressure relief mechanism 213 and the heat exchange beam 12 is equal to or equal to 0.5 mm and equal to or less than 15 mm.
  • the numerical ratio between the total volume of the installation cavity 1215 and the power of the battery 100 is greater than or equal to 0.0004.
  • the numerical ratio between the total volume of the installation cavity 1215 and the power of the battery 100 may be 0.001.
  • the battery rows 2 have multiple rows, and at least two of the multiple rows of battery rows 2 are stacked along the height direction of the heat exchange beam 12 .
  • At least two battery rows 2 are stacked along the height direction of the heat exchange beam 12 to form a battery cell assembly, and at least two battery cells 211 are stacked along the height direction of the heat exchange beam 12 (Z-axis direction) to form a battery.
  • Group 21 a battery cell assembly includes two battery rows 2 stacked along the height direction of the heat exchange beam 12 , that is, a battery group 21 includes two battery cells 211 .
  • multiple rows of battery rows 2 arranged along the height direction of the heat exchange beam 12 and the thickness direction of the heat exchange beam 12 can be provided in any accommodation subcavity 131 , which improves the space utilization when the box assembly 1 is used for the battery 100 Rate.
  • the heat exchange beam 12 is provided with a plurality of docking parts 123 spaced apart along its height direction, wherein any one docking part 123 is configured to connect with at least one battery.
  • the pressure relief mechanism 213 of the unit 211 is provided accordingly.
  • the docking part 123 can be a through-hole structure connected to the discharge chamber, or it can be a weak part structure, through which the exhaust or the air pressure in the box can enter the discharge chamber.
  • the corresponding setting can be such that the two positions are relatively close, or they can
  • the docking part 123 and the pressure relief mechanism 213 are arranged opposite each other in a certain direction, so that the emissions discharged from the pressure relief mechanism 213 can enter the discharge chamber quickly through the docking part 123 .
  • the number of docking parts 123 arranged along the height direction (Z-axis direction) of the heat exchange beam 12 may be greater than or equal to the number of battery rows 2 in a battery cell assembly, so that each battery cell 211 corresponds to one docking part. 123.
  • the number of butt portions 123 arranged along the height direction (Z-axis direction) of the heat exchange beam 12 is equal to the number of battery rows 2 in one battery cell assembly.
  • the battery row 2 has multiple rows, and at least two of the multiple rows of battery rows 2 are arranged side by side along the second direction, and the second direction is perpendicular to the first direction; in the In two directions, a heat exchange beam 12 is provided between at least partially adjacent two battery rows 2 .
  • At least two battery rows 2 are arranged along the second direction (Y-axis direction).
  • a heat exchange beam 12 can be provided between any two adjacent battery rows 2, thereby improving Heat exchange effect.
  • the number of battery rows 12 arranged along the second direction (Y-axis direction) may be four, and the number of heat exchange beams 12 may be three.
  • the three heat exchange beams 12 may divide the accommodation cavity 13 into four separate There is a receiving sub-cavity 131, and one battery row 2 can be placed in one receiving sub-cavity 131, that is, a heat exchange beam 12 is disposed between any two adjacent battery rows 2.
  • some adjacent battery rows 2 are provided with heat exchange beams, while another part of adjacent battery rows are not provided with heat exchange beams.
  • the number of battery rows 12 arranged along the second direction (Y-axis direction) may be eight, and the number of heat exchange beams 12 may be three.
  • the three heat exchange beams 12 may divide the accommodation cavity 13 into four separate
  • the accommodation sub-cavity 131 can contain two battery rows 2 arranged along the second direction (Y-axis direction), that is, only some of the adjacent battery rows 2 are provided with heat exchange beams 12 between them.
  • the heat exchange beam 12 In the second direction (Y-axis direction), by disposing the heat exchange beam 12 between any two adjacent battery rows 2, the heat exchange effect can be improved; by disposing the heat exchange beam 12 between any two adjacent battery rows 2
  • the heat exchange beams 12 ensure the heat exchange effect while reducing the number of the heat exchange beams 12, thereby improving the space utilization when the box assembly 1 is applied to the battery 100.
  • FIG. 13 is a partial structural diagram of another battery 100 provided in some embodiments of the present application.
  • the battery cell 211 is a cylindrical battery cell, and the axial direction of the battery cell 211 is parallel to the height direction of the heat exchange beam 12; the first side wall 1211 is concavely formed with a plurality of first limiting grooves 1217, and the second side wall A plurality of second limiting grooves 1218 are formed in the recess of 1212.
  • any first limiting groove 1217 is in contact with the outer peripheral surface of a battery cell 211
  • any second limiting groove 1218 is in contact with the outer peripheral surface of a battery cell 211.
  • the outer peripheral surfaces are in contact.
  • the shell shape of the battery cell 211 may be a cylinder, and the battery cell 211 is placed upright, that is, the axial direction of the battery cell 211 is parallel to the height direction of the heat exchange beam 12 .
  • One battery row includes at least two battery cells 211 arranged along the first direction (X-axis direction), and at least two rows of battery rows 2 arranged along the second direction (Y-axis direction) are placed in any accommodation sub-cavity 131 .
  • a battery row 2 includes fifteen battery cells arranged along the first direction (X-axis direction), and two rows of battery cells arranged along the second direction (Y-axis direction) are placed in any accommodation sub-cavity 131 Arranged battery row 2.
  • a first limiting groove 1217 is formed in the first side wall 1211 and a second limiting groove 1218 is formed in the second side wall 1212 , so that the outer peripheral surface of the battery cell 211 can be in contact with the first limiting groove 1217 and the first limiting groove 1217 , respectively.
  • the second limiting groove 1218 is in contact.
  • the number of the first limiting grooves 1217 and the second limiting grooves 1218 is the same as the number of battery cells 211 in one battery row 2 .
  • first limiting groove 1217 or the second limiting groove 1218 may be formed on the beam body 121 .
  • the battery cells 211 By placing the battery cells 211 in an upright position, it is conducive to the rapid arrangement of the battery rows 2; by providing a first limiting groove 1217 on the first side wall 1211 and/or a second limiting groove on the second side wall 1212
  • the groove 1218 can not only limit the position of the battery cell 211, but also increase the heat transfer area between the battery cell 211 and the heat exchange beam 12 to improve the heat exchange performance.
  • the ratio between the total volume of the multiple heat exchange beams 12 and the total volume of the box assembly 1 is less than or equal to 15%, And the ratio between the total mass of the plurality of heat exchange beams 12 and the total mass of the box assembly 1 is less than or equal to 10%.
  • the ratio between the total volume of the multiple heat exchange beams 12 and the total volume of the box assembly 1 can be 10%, and the ratio between the total mass of the multiple heat exchange beams 12 and the total mass of the box assembly 1 The ratio can be equal to 5%.
  • the gap between the heat exchange beam 12 and the battery cell 211 is less than or equal to 3 mm, so as to prevent the battery cell 211 from interfacing with the heat exchange beam. 12 is in direct contact, causing the heat exchange beam 12 to deform.
  • the gap between the heat exchange beam 12 and the battery cell 211 may be less than or equal to 1.5 mm.
  • the gap between the battery cell 211 and the heat exchange beam 12 can be filled with thermal conductive glue, which can not only fix the battery cell 211 but also transfer the heat generated by the battery cell 211 to The heat exchange beam 12 is used to improve the heat exchange effect of the box assembly 1.
  • the length of the heat exchange beam 12 is equal to the length of the box assembly 1.
  • the ratio between the lengths is greater than or equal to 0.5 and less than or equal to 1; when the heat exchange beam 12 extends along the width direction of the box component 1, the ratio between the length of the heat exchange beam 12 and the width of the box component 1 is greater than or equal to 0.5 and less than or equal to 1.
  • the ratio between the length of the heat exchange beam 12 and the length of the box assembly 1 can be 0.5;
  • the ratio between the length of the heat exchange beam 12 and the width of the box assembly 1 may be 0.5.
  • the present application provides a battery 100 including a plurality of battery cells 211 and a box assembly 1 .
  • the box assembly 1 includes a frame 11 and a plurality of heat exchange beams 12.
  • the frame 11 includes a bottom plate 111 and side plates 112 arranged around the bottom plate 111.
  • the bottom plate 111 and the side plates 112 together form an accommodation cavity 13.
  • the heat exchange beams 12 It is arranged in the accommodation cavity 13 to divide the accommodation cavity 13 into a plurality of accommodation sub-cavities 131, and a heat exchange channel for the flow of heat exchange medium is provided in the heat exchange beam 12.
  • the plurality of heat exchange plates 122 are spaced apart along the Y-axis direction.
  • any one heat exchange plate 122 extends along the X-axis direction.
  • At least two of the plurality of battery cells 211 are arranged along the X-axis direction to form a battery row.
  • At least two battery rows are placed in a receiving sub-cavity 131 , and the at least two battery rows are arranged along the heat exchange
  • the beams 12 are stacked in the height direction.
  • the heat beam can not only improve the overall rigidity of the frame 11, but also has a heat exchange channel for the flow of heat exchange medium inside the heat exchange beam 12, so that the heat exchange beam 12 is integrated with a heat exchange function, improving the space utilization of the box assembly 1 rate, thereby increasing the energy density of the battery by 100%.
  • the internal temperature of the battery cells 211 is relatively uniform, which reduces the design requirements for the heat exchange beam 12 in the height direction.
  • the present application also provides an electrical device, including the battery 100 described in any of the above solutions, and the battery 100 is used to provide electrical energy for the electrical device.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery 100 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种箱体组件、电池及用电装置,该箱体组件包括:框架,框架包括底板及围绕底板四周设置的侧板,底板和侧板共同围绕形成容纳腔;至少一个换热梁,换热梁设置于容纳腔内,以将容纳腔分隔为多个容纳子腔,且换热梁内设置有供换热介质流动的换热通道,换热梁不仅可以提高框架的整体刚性,由于换热梁内设置有供换热介质流动的换热通道,使得换热梁集成有换热功能,提高了箱体组件的空间利用率,从而提高了电池能量密度。

Description

箱体组件、电池及用电装置 技术领域
本申请涉及电池领域,尤其涉及一种箱体组件、电池及用电装置。
背景技术
目前,动力电池已广泛应用于涉及储能的各个领域,且随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。为了保证动力电池的安全运行,通常需要在箱体组件内设置热管理部件,以提高电池的散热效果。然而,在现有的动力电池中,热管理部件通常设置于箱体组件内的底部,导致箱体组件的空间利用率降低,降低了电池能量密度,严重影响电池性能。
申请内容
鉴于上述问题,本申请提供了一种箱体组件、电池及用电装置,有利于在满足散热需求下提高箱体组件的空间利用率。
第一方面,本申请提供了一种箱体组件,包括:框架,框架包括底板及围绕底板四周设置的侧板,底板和侧板共同围绕形成容纳腔;至少一个换热梁,换热梁设置于容纳腔内,以将容纳腔分隔为多个容纳子腔,且换热梁内设置有供换热介质流动的换热通道。
在本申请实施例的技术方案中,在电池单体被放置于容纳腔内后,电池单体能够与换热梁发生热量交换,以实现对电池单体进行散热或升温处理,换热梁不仅可以提高框架的整体刚性,且由于换热梁内设置有供换热介质流动的换热通道,使得换热梁集成有换热功能,该种箱体组件应用于电池上时,能够提高电池内的空间利用率,从而提高了电池能量密度。
结合第一方面,在一些实施例中,换热梁包括:梁体,梁体沿其厚度方向具有相对的第一侧壁和第二侧壁;至少一个第一换热板,第一换热板设置于第一侧壁;和/或,至少一个第二换热板,第二换热板设置于第二侧壁。这样的结构设计使得梁体、第一换热板及第二换热板可以单独成型后在组装,降低了换热梁的成型难度。
结合第一方面,在一些实施例中,第一侧壁内凹形成有至少一个第一容纳槽,且任意一个第一换热板设置于一个第一容纳槽内;和/或,第二侧壁内凹形成有至少一个第二容纳槽,且任意一个第二换热板设置于一个第二容纳槽内。这样的结构设计能够降低换热梁的厚度,从而可以减小换热梁的体积,进一步地提高了该种箱体组件应用于电池时的空间利用率。
结合第一方面,在一些实施例中,换热梁包括梁体和至少一个换热板,其中,梁体内设置有安装腔,换热板设置于安装腔内。这样的结构设计不仅可以降低换热梁的厚度以提高该种箱体组件应用于电池时的空间利用率,还可以提高换热梁的组装效率。
结合第一方面,在一些实施例中,换热梁还包括加强筋,且加强筋连接于换热板与安装腔的内壁之间。这样的结构设计不仅可以增加换热梁的结构强度,还可以起到 导热作用以提高梁体与换热板之间的换热性能。
结合第一方面,在一些实施例中,底板内设置有供换热介质流动的第一流动通道。这样的结构设计使得在电池单体放置于容纳腔内后,底板和换热梁都可以分别与电池单体进行热量交换,提升了换热性能。
结合第一方面,在一些实施例中,箱体组件还包括至少一个第一散热板,且第一散热板设置于底板面向或背向容纳腔的表面。这样的结构设计使得底板和第一换热板可以单独成型后再组装,降低了底板与第一散热板的成型难度。
结合第一方面,在一些实施例中,箱体组件还包括至少一个第一散热板,且底板内设置有至少一个第一容置腔,第一散热板设置于第一容置腔内。这样的结构设计不仅可以降低底板的厚度以提高该种箱体组件应用于电池时的空间利用率,还可以提高底板与第一散热板的组装效率。
结合第一方面,在一些实施例中,框架还包括盖板,盖板设置于侧板远离底板的一端以密封容纳腔。这样的结构设计使得箱体组件可以形成为一个封闭的箱体结构,在电池单体放置于容纳腔内后,有利于对电池单体进行保护。
结合第一方面,在一些实施例中,盖板内设置有供换热介质流动的第二流动通道。这样的结构设计使得电池单体也可以与盖板发生热量交换,提升了换热性能。
结合第一方面,在一些实施例中,箱体组件还包括至少一个第二散热板,且第二散热板设置于盖板面向或背向容纳腔的表面。这样的结构设计使得盖板与第二散热板可以单独成型后再组装,降低了盖板与第二散热板的成型难度。
结合第一方面,在一些实施例中,箱体组件还包括至少一个第二散热板,且盖板内设置有至少一个第二容置腔,第二散热板设置于第二容置腔内。这样的结构设计不仅可以降低盖板的厚度以提高该箱体组件应用于电池时的空间利用率,还可以提高盖板与第二散热板的组装效率。
第二方面,本申请实施例提供了一种电池,包括电池单体和如前述任一项所述的箱体组件,其中,容纳子腔用于放置电池单体。
结合第二方面,在一些实施例中,换热梁被配置为换热横梁和/或换热纵梁,电池单体沿换热梁的高度方向的尺寸小于电池单体沿换热梁延伸方向的尺寸以及电池单体沿换热梁的厚度方向的尺寸。这样的结构设计使得电池单体呈平躺式放置,电池单体内部温度较为均匀,降低了在高度方向对换热梁的设计要求。
结合第二方面,在一些实施例中,电池单体设置有泄压机构,且泄压机构朝向换热梁。这样的结构设计使得一旦泄压机构喷发后,换热梁能够与高温排放物进行热量交换,避免喷发处出现长时间的热量聚集,造成安全隐患。
结合第二方面,在一些实施例中,每个电池单体与至少一个换热梁相邻设置,且泄压机构朝向与其相邻的换热梁中的至少一个。这样的结构设计使得每个电池单体可以与一个或多个与其相邻的换热梁进行热量交换,提升了换热效果。
结合第二方面,在一些实施例中,电池单体还设置有电极端子,且电极端子和泄压机构分别设置于电池单体上相邻或相对的两个表面。这样的结构设计使得当泄压机构喷发时,由于电极端子与泄压机构处于电池单体的不同表面,能够降低泄压机构喷 发对电连接区域造成短接、高压打火等不利影响,并且,由于泄压机构朝向换热梁设置,也即电极端子并未朝向换热梁设置,当换热梁出现损坏而导致换热介质发生泄漏时,降低了由于换热介质造成短接的风险。
结合第二方面,在一些实施例中,电池包括由多个电池单体沿第一方向排列的电池排,且换热梁沿第一方向延伸。这样的结构设计使得换热梁沿电池排的长度方向延伸,简化了换热梁在容纳腔内的分布。
结合第二方面,在一些实施例中,换热梁内设置有排放腔,排放腔适用接收电池单体自泄压机构排放的排放物。这样的结构设计能够进一步使换热梁集成有收集电池单体排放物的功能,使得电池内部的结构更为紧凑。
结合第二方面,在一些实施例中,换热梁设置有至少一个对接部,排放腔适于通过对接部接收电池单体自泄压机构排放的排放物。对接部可以为通孔结构、也可以为薄弱部结构,均可用于实现在泄压机构致动时接收排放物至排放腔内,提高安全性。
结合第二方面,在一些实施例中,对接部为多个,且多个对接部在换热梁上沿第一方向间隔设置,其中,任意一个对接部被配置为与至少一个电池单体的泄压机构对应设置。对接部可以为连通排放腔的通孔,也可以是薄弱部结构,经排放物或箱体内气压突破后可以经此进入排放腔,对应设置可以是使得两者的位置较为靠近,也可以使得对接部与泄压机构沿某一方向相对设置,便于自泄压机构排放的排放物可以经由对接部较快地进入到排放腔。
结合第二方面,在一些实施例中,电池排有多排,多排电池排中的至少两个沿换热梁的高度方向层叠设置。这样的结构设计使得任意一个容纳子腔内可以设置有多排沿换热梁的高度方向以及换热梁的厚度方向排列的电池排,提升了箱体组件的空间利用率。
结合第二方面,在一些实施例中,换热梁沿其高度方向间隔设置有多个对接部,其中,任意一个对接部被配置为与至少一个电池单体的泄压机构对应设置。对接部可以为连通排放腔的通孔,也可以是薄弱部结构,经排放物或箱体内气压突破后可以经此进入排放腔,对应设置可以是使得两者的位置较为靠近,也可以使得对接部与泄压机构沿某一方向相对设置,便于自泄压机构排放的排放物可以经由对接部较快地进入到排放腔。
结合第二方面,在一些实施例中,电池排有多排,多排电池排中的至少两个沿第二方向并排设置,且在第二方向与第一方向垂直;在第二方向上,至少部分相邻的两个电池排之间设置有换热梁。这样的结构设计使得在第二方向上,任意相邻的两个电池排之间都可以设置有换热梁,从而提升换热效果,或者,部分相邻的电池排之间设置有换热梁,而另一部分相邻的电池排之间未设置有换热梁,从而在保证换热效果的同时减小换热梁的数量,提升了箱体组件的空间利用率。
结合第二方面,在一些实施例中,电池单体为圆柱电池单体,且电池单体的轴向平行于换热梁的高度方向;第一侧壁内凹形成有多个第一限位槽,第二侧壁内凹形成有多个第二限位槽,其中,任意一个第一限位槽与一个电池单体的外周面抵接,任意一个第二限位槽一个电池单体的外周面抵接。这样的结构设计不仅可以对电池单体起 到限位作用,且还可以提高电池单体与换热梁之间的传热面积以提高换热性能。
第三方面,本申请实施例提供了一种用电装置,包括如前述任一项所述的电池,电池用于提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例提供的一种车辆的结构示意图。
图2为本申请一些实施例提供的一种电池的分解结构示意图。
图3为本申请一些实施例提供的一种箱体组件的结构示意图。
图4为本申请一些实施例提供的另一种箱体组件的结构示意图。
图5为本申请一些实施例提供的一种换热梁的结构示意图。
图6为图5所示的换热梁在另一角度的结构示意图。
图7为图5所示的换热梁中梁体的结构示意图。
图8为图7所示的梁体在另一角度的结构示意图。
图9为本申请一些实施例提供的另一种换热梁的结构示意图。
图10为图2所示的电池中电池排与换热梁的组装关系示意图。
图11为图2所示的电池中电池排与换热梁的另一组装关系示意图。
图12为本申请一些实施例提供的电池单体的结构示意图。
图13为本申请一些实施例提供的另一种电池的局部结构示意图。
图14为图13所示的电池中换热梁的结构示意图。
图15为图14所示的换热梁在另一角度的结构示意图。
附图标记:
1000-车辆;
100-电池;200-控制器;300-马达;
1-箱体组件;
11-框架;111-底板;112-侧板;113-盖板;12-换热梁;121-梁体;1211-第一侧壁;1212-第二侧壁;1213-第一容纳槽;1214-第二容纳槽;1215-安装腔;1216-加强筋;1217-第一限位槽;1218-第二限位槽;122-换热板;1221-第一换热板;1222-第二换热板;123-对接部;13-容纳腔;131-容纳子腔;
2-电池排;
21-电池组;211-电池单体;212-电极端子;213-泄压机构。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在申请实施例的描述中,所有附图中箭头X所指方向为长度方向,箭头Y所指方向为宽度方向,箭头Z所指方向为竖直方向。水平方向为平行于水平面的方向,既可以是上述长度方向也可以是上述宽度方向。另外,水平方向不仅包括绝对平行于水平面的方向,也包括了工程上常规认知的大致平行于水平面的方向。竖直方向为垂直于水平面的方向,竖直方向不仅包括绝对垂直于水平面的方向,也包括了工程上常规认知的大致垂直于水平面的方向。此外,本申请描述的“上”、“下”、“顶”、“底”等方位词均是相对于竖直方向来进行理解的。
为了便于理解和说明,下文中会根据附图内的X、Y、Z坐标系进行方向描述。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
动力电池通常包括箱体组件和多个串联、并联或混联的电池单体,动力电池根据电池单体在空间的状态主要可以分为采用直立式电池、侧立式电池和平躺式电池。动力电池一般包括多个电池排,其中,任意一个电池排包括多个沿水平方向排列的电池单体。
本发明人注意到,为了保证动力电池的安全运行,在现有的箱体组件中,通常在箱体组件内的底部铺设有热管理部件,热管理部件与电池单体能够发生热量交换,以提高散热效果。然而,热管理部件将会占据箱体组件一定的内部空间,导致箱体组件的空间利用率降低,降低了电池能量密度,严重影响电池性能。
为了解决前述技术问题,申请人研究发现,现有的箱体组件内通常设置有中间梁,该中间梁可以分隔相邻的两个电池排,并提高箱体组件的结构强度。因此,可以将热管理部件设置于中间梁的表面或内部,使得中间梁集成具有换热作用,提高了箱体组件的空间利用率,从而提高了电池能量密度。
本申请实施例公开的箱体组件可以但不限于用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的箱体组件、电池等组成该用电装置的电源系统,这样,有利于提升箱体组件的空间利率,从而提高电池能量密度。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的一种车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部、头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航或行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分代替燃油或燃气为车辆1000提供驱动动力。
请参照图2和图3,图2为本申请一些实施例提供的一种电池100的分解结构示意图,图3为本申请一些实施例提供的一种箱体组件1的结构示意图。箱体组件1至少包括框架11和至少一个换热梁12,其中,框架11包括底板111及围绕底板111四周设置的侧板112, 底板111和侧板112共同围绕形成容纳腔13,换热梁12设置于容纳腔13内,以将容纳腔13分隔为多个容纳子腔131,且换热梁12内设置有供换热介质流动的换热通道。
由于侧板112围绕底板111的四周设置,使得底板111和侧板112共同围合形成容纳腔13,即框架11用于为电池单体211提供容纳空间,框架11可以采用多种结构。框架11可以由具有一定硬度和强度的材质(如铝合金)制成,这样,框架11在受到挤压碰撞时就不易发生形变,使得箱体组件1能够具备更高的结构强度,安全性能也可以有所提升。框架11的形状也可以是多种形状,比如,圆柱体、长方体或六面体等。框架11的材质也可以是多种的,例如,铜、铁、铝、不锈钢、铝合金、塑胶等,在本申请实施例对此不作特殊限制。
由于换热梁12设置于容纳腔13内,使得容纳腔13可以被换热梁12分隔成多个容纳子腔131,任意一个容纳子腔131内可以容置有一个或多个电池单体211。由于换热梁12内设置有供换热介质流动的换热通道,使得换热梁12可以与电池单体211发生热量交换,从而实现对电池100的升温或降温处理,保证了电池100的安全工作,并且,当电池单体211发生喷发时,由于高温排放物的影响,在电池100内部容易出现高温聚集的情况,可以通过换热梁12内的换热介质的流动持续疏散聚集的热量,避免高温聚集对电池100内部结构造成不良影响。换热介质可以为水、空气、四氟乙烷、三氟甲烷、二氟乙烷等中的任意一种或多种。换热梁12内设置的换热通道的数量可以为一个或多个,换热梁12的材质可以与框架11的材质相同,也可以与框架11的材质不同,在本申请实施例对此不作特殊限制。
可选地,请参照图4,图4为本申请一些实施例提供的另一种箱体组件1的结构示意图。一部分换热梁12沿X轴方向延伸,且另一部分换热梁12沿Y轴方向延伸,使得容纳腔13被分隔为呈网格状分布的多个容纳子腔131。这样使得至少一个电池单体211的多个表面都对应有一个换热梁12能够与之进行热量交换,即增加了电池单体211与换热梁12的换热面积,提升了换热效果。
可以理解的是,所有的换热梁12都可以只沿X轴方向或Y轴方向延伸。
在电池单体211被放置于容纳腔13内后,电池单体211能够与换热梁12发生热量交换,以实现对电池单体211进行散热或升温处理,换热梁12不仅可以提高框架11的整体刚性,且由于换热梁12内设置有供换热介质流动的换热通道,使得换热梁12集成有换热功能,提高了该种箱体组件1应用于电池100时的空间利用率,从而提高了电池100能量密度。
根据本申请的一些实施例中,可选地,请参照图5和图6,图5为本申请一些实施例提供的一种换热梁12的结构示意图,图6为图5所示的换热梁12在另一角度的结构示意图。换热梁12包括:梁体121,梁体121沿其厚度方向具有相对的第一侧壁1211和第二侧壁1212;至少一个第一换热板1221,第一换热板1221设置于第一侧壁1211;和/或,至少一个第二换热板1222,第二换热板1222设置于第二侧壁1212。
换热板122可以仅设置于第一侧壁1211或第二侧壁1212;或者,一部分换热板122设置于第一侧壁1211,且另一部分换热板122设置于第二侧壁1212,其中,设置于第一侧壁1211上的换热板122即为第一换热板1221,设置于第二侧壁1212上的换热板122即 为第二换热板1222。第一侧壁1211和/或第二侧壁1212上设置的换热板122的数量可以为一个或多个。任意一个换热板122可以通过焊接、粘附、螺纹配合、插接配合或其他任意方式设置于第一侧壁1211或第二换热板1222上,在本申请实施例对此不作特殊限制。
通过将第一换热板1221设置于第一侧壁1211和/或将第二换热板1222设置于第二侧壁1212,使得梁体121、第一换热板1221及第二换热板1222可以单独成型后在组装,降低了换热梁12的成型难度。
根据本申请的一些实施例中,可选地,请参照图7和图8,图7为图5所示的换热梁12中梁体121的结构示意图,图8为图7所示的梁体121在另一角度的结构示意图。第一侧壁1211内凹形成有至少一个第一容纳槽1213,且任意一个第一换热板1221设置于一个第一容纳槽1213内;和/或,第二侧壁1212内凹形成有至少一个第二容纳槽1214,且任意一个第二换热板1222设置于一个第二容纳槽1214内。
当第一侧壁1211设置有第一换热板1221时,第一侧壁1211内凹形成有第一容纳槽1213,使得任意一个第一换热板1221的至少部分可以容置于对应的第一容纳槽1213内,从而可以使得第一换热板1221不会相对第一侧壁1211突出;当第二侧壁1212设置有第二换热板1222时,第二侧壁1212内凹形成有第二容纳槽1214,使得任意一个第二换热板1222的至少部分可以容置于对应的第二容纳槽1214内,从而使得第二换热板1222不会相对第二侧壁1212突出。
通过在第一侧壁1211内凹形成第一容纳槽1213和/或在第二侧壁1212内凹形成第二容纳槽1214,能够降低换热梁12的厚度,从而可以减小换热梁12的体积,进一步地提高了该种箱体组件1应用于电池100时的空间利用率。
根据本申请的一些实施例中,可选地,请参照9,图9为本申请一些实施例提供的另一种换热梁12的结构示意图。换热梁12包括梁体121和至少一个换热板122,其中,梁体121内设置有安装腔1215,换热板122设置于安装腔1215内。
由于梁体121内设置有安装腔1215,使得换热板122可以容置于该安装腔1215内,且换热板122的数量可以为一个或多个。当换热板122的数量为多个时,安装腔1215的数量可以为一个,且多个换热板122可以都设置于该安装腔1215内;或者,当换热板122的数量为多个时,安装腔1215的数量可以为多个,任意一个安装腔1215内设置有一个或多个换热板122,在本申请实施例对此不作特殊限制。
通过在梁体121内形成安装腔1215,并将换热板122设置于该安装腔1215内,不仅可以降低换热梁12的厚度以提高该种箱体组件1应用于电池100时的空间利用率,还可以提高换热梁12的组装效率。
根据本申请的一些实施例中,可选地,为了保证换热梁12的结构强度,安装腔1215的总体积与换热梁12的总体积之间的比值小于或等于90%。优选地,安装腔1215的总体积与换热梁12的总体积之间的比值小于或等于80%。
根据本申请的一些实施例中,可选地,请继续参照图9,换热梁12还包括加强筋1216,且加强筋1216连接于换热板122与安装腔1215的内壁之间。
加强筋1216可以限制换热板122在安装腔1215内的位置,且梁体121的热量可以经 加强筋1216传递至换热板122。加强筋1216的材质与梁体121的材质相同,且加强筋1216与梁体121一体成型。一部分加强筋1216可以连接于第一侧壁1211的内侧与换热板122面向第一侧壁1211的内侧的表面之间,且另一部分加强筋1216可以连接于第二侧壁1212的内侧与换热板122面向第二侧壁1212的内侧的表面之间;或者,所有的加强筋1216可以都连接于第一侧壁1211的内侧与换热板122面向第一侧壁1211的内侧的表面之间;或者,所有的加强筋1216可以连接于第二侧壁1212的内侧与换热板122面向第二侧壁1212的内侧的表面之间。
通过加强筋1216连接换热板122与安装腔1215的内壁,不仅可以增加换热梁12的结构强度,还可以起到导热作用以提高梁体121与换热板122之间的换热性能。
根据本申请的一些实施例中,可选地,底板111内设置有供换热介质流动的第一流动通道。
由于底板111内设置有第一流动通道,使得电池单体211的面向底板111的底面可以与底板111发生热量交换,从而使得在电池单体211放置于容纳腔13内后,底板111和换热梁12都可以分别与电池单体211进行热量交换,提升了换热性能。
根据本申请的一些实施例中,可选地,箱体组件1还包括至少一个第一散热板,且第一散热板设置于底板111面向或背向容纳腔13的表面。
第一散热板与换热板122的结构相似或相同,第一散热板的数量可以为一个或多个。第一散热板可以设置于底板111面向容纳腔13的表面,使得电池单体211可以直接于第一散热板进行热量交换;或者,第一散热板可以设置于底板111背向容纳腔13的表面,使得电池单体211的热量可以经底板111传递至第一散热板,从而实现电池单体211与第一散热板进行热量交换,且由于第一散热板设置于容纳腔13的外部,使其不会占据容纳腔13的空间。
通过将第一散热板设置于底板111面向或背向容纳腔13的表面,使得底板111和第一换热板1221可以单独成型后再组装,降低了底板111与第一散热板的成型难度。
根据本申请的一些实施例中,可选地,箱体组件1还包括至少一个第一散热板,且底板111内设置有至少一个第一容置腔,第一散热板设置于第一容置腔内。
第一散热板与换热板122的结构相似或相同,第一散热板的数量可以为一个或多个。当第一散热板的数量为多个时,第一容置腔的数量可以为一个,多个第一散热板可以都设置于该第一容置腔内;或者,当第一散热板的数量为多个时,第一容置腔的数量可以为多个,任意一个第一容置腔内设置有一个或多个第一散热板。
通过在底板111内形成第一容置腔,并将第一散热板设置于第一容置腔内,不仅可以降低底板111的厚度以提高该种箱体组件1应用于电池100时的空间利用率,还可以提高底板111与第一散热板的组装效率。
根据本申请的一些实施例中,可选地,请继续参照图2,框架11还包括盖板113,盖板113设置于侧板112远离底板111的一端以密封容纳腔13。
盖板113用于密封容纳腔13,盖板113的形状与容纳腔13的形状相适配,比如,圆形、六边形、四方形等。通过在侧板112上盖设该盖板113,使得箱体组件1可以形成为一个封闭的箱体结构,在电池单体211放置于容纳腔13内后,有利于对电池单体211进 行保护。
根据本申请的一些实施例中,可选地,盖板113内设置有供换热介质流动的第二流动通道。
由于盖板113内设置有第一流动通道,使得电池单体211的面向盖的顶面可以与盖板113发生热量交换,从而使得在电池单体211放置于容纳腔13内后,使得电池单体211也可以与盖板113发生热量交换,提升了换热性能。
根据本申请的一些实施例中,可选地,箱体组件1还包括至少一个第二散热板,且第二散热板设置于盖板113面向或背向容纳腔13的表面。
第二散热板与换热板122的结构相似或相同,第二散热板的数量可以为一个或多个。第二散热板可以设置于盖板113面向容纳腔13的表面,使得电池单体211可以直接于第二散热板进行热量交换;或者,第二散热板可以设置于盖板113背向容纳腔13的表面,使得电池单体211的热量可以经盖板113传递至第二散热板,从而实现电池单体211与第二散热板进行热量交换,且由于第二散热板设置于容纳腔13的外部,使其不会占据容纳腔13的空间。
通过将第二散热板设置于盖板113面向或背向容纳腔13的表面,使得盖板113与第二散热板可以单独成型后再组装,降低了盖板113与第二散热板的成型难度。
根据本申请的一些实施例中,可选地,箱体组件1还包括至少一个第二散热板,且盖板113内设置有至少一个第二容置腔,第二散热板设置于第二容置腔内。
第二散热板与换热板122的结构相似或相同,第二散热板的数量可以为一个或多个。当第二散热板的数量为多个时,第二容置腔的数量可以为一个,多个第二散热板可以都设置于该第二容置腔内;或者,当第二散热板的数量为多个时,第二容置腔的数量可以为多个,任意一个第二容置腔内设置有一个或多个第二散热板。
通过在盖板113内形成第二容置腔,并将第二散热板设置于第二容置腔内,不仅可以降低盖板113的厚度以提高该种箱体组件1应用于电池100时的空间利用率,还可以提高盖板113与第二散热板的组装效率。
根据本申请的一些实施例,请参照图2和图3,本申请提供了一种箱体组件1,包括框架11和多个换热梁12,其中,框架11包括底板111及围绕底板111四周设置的侧板112,底板111和侧板112共同围绕形成容纳腔13,换热梁12设置于容纳腔13内,以将容纳腔13分隔为多个容纳子腔131,且换热梁12内设置有供换热介质流动的换热通道,多个换热板122沿Y轴方向间隔设置,且任意一个换热板122沿X轴方向延伸。热梁不仅可以提高框架11的整体刚性,且由于换热梁12内设置有供换热介质流动的换热通道,使得换热梁12集成有换热功能,提高了该种箱体组件1应用于电池100时的空间利用率,从而提高了电池100能量密度。
根据本申请的一些实施例,本申请还提供了一种电池100,包括以上任一方案所述的箱体组件1。
根据本申请的一些实施例中,请参照图2,电池100包括电池单体211和箱体组件1,其中,容纳子腔131用于放置电池单体211。
任意一个容纳子腔131内放置的电池单体211的数量可以为一个或多个。多个电池 单体211可以采用串联或并联或混联的方式实现电连接,其中,混联是指多个电池单体211中既有串联又有并联。电池单体211可以为一次电池100或二次电池100;还可以是锂硫电池100、钠离子电池100或镁离子电池100,但不局限于此。电池单体211可以呈圆柱体、扁平体、长方体或其他任意形状等,即电池单体211可以为圆柱电池单体、方形电池单体或软包电池单体等。
箱体组件1用于提供容纳多个电池单体211的容纳腔13。电池单体211在充放电的过程中,会产生热量,若电池单体211的温度过高或过低将会导致电池100的工作性能,并对电池100的使用寿命产生影响。换热梁12还可以与电池单体211进行热量交换,以保证各个电池单体211的安全运行。
在电池单体211被放置于容纳腔13内后,电池单体211能够与换热梁12发生热量交换,以实现对电池单体211进行散热或升温处理,换热梁12不仅可以提高框架11的整体刚性,且由于换热梁12内设置有供换热介质流动的换热通道,使得换热梁12集成有换热功能,提高了箱体组件1的空间利用率,从而提高了电池100能量密度。
根据本申请的一些实施例中,可选地,请继续参照图2,换热梁12被配置为换热横梁和/或换热纵梁,电池单体211沿换热梁12的高度方向的尺寸小于电池单体211沿换热梁12的延伸方向以及电池单体211沿换热梁12的厚度方向的尺寸。
所有的换热梁12可以都被配置为换热横梁,即换热梁12沿箱体组件1的长度方向延伸;或者,所有的换热梁12都可以被配置为换热纵梁,即换热梁12沿箱体组件1的宽度方向延伸;或者,一部分换热梁12被配置为换热横梁,另一部分换热梁12被配置为换热纵梁,以使换热梁12呈网格状分布。
由于电池单体211沿换热梁12的高度方向的尺寸小于电池单体211沿换热梁12的延伸方向以及电池单体211沿换热梁12的厚度方向的尺寸,使得电池单体211在容纳腔13内呈平躺式放置。
若电池单体211呈直立式放置,将会导致电池单体211内的电解液在沿竖直方向的含量不同,从而造成电池单体211在竖直方向上存在较大温差,此外,电池排2中间位置与两侧之间也存在温差。为了使得换热梁12可以充分地与电池排2进行热量交换,将会使得换热梁12的设计较为复杂、灵活性较差。
若将电池单体211呈平躺式放置,使得电池单体211内的电解液在竖直方向上的含量均匀分布,从而使得电池单体211在竖直方向上的温度均匀,降低了换热梁12的设计要求,提高了换热梁12的设计灵活性,并且还可以延长箱体组件1及电池100的使用寿命。电池单体211的侧面(大面以外的表面)面向换热梁12,相较于电池单体211的大面而言,电池单体211的侧面的膨胀程度较低,在发生一定形变后不会挤压换热梁12而造成换热梁12出现损坏等。
通过将电池单体211呈平躺式放置,电池单体211内部温度较为均匀,降低了在高度方向对换热梁12的设计要求。
根据本申请的一些实施例中,可选地,请参照图10至图12,图10为图2所示的电池100中电池排2与换热梁12的组装关系示意图,图11为图2所示的电池100中电池排2与换热梁12的另一组装关系示意图,图12为本申请一些实施例提供的电池单体211的结构示 意图。电池单体211设置有泄压机构213,且泄压机构213朝向换热梁12。
泄压机构213包括但不限于防爆阀或其他部件,只要当电池单体211发生热失控时,该泄压机构213可以排出高温排放物以释放电池单体211的内部压力即可,在本申请实施例对此不作特殊限制。
当电池单体211发生热失控时,高温排放物可以冲破泄压机构213,冲破的泄压机构213能够使得高温排放物排出,避免电池单体211发生爆炸。在本申请实施例中,泄压机构213设置于电池单体211朝向换热梁12的一个表面上,使得一旦泄压机构213喷发后,换热梁12能够与高温排放物进行热量交换,避免喷发处出现长时间的热量聚集而造成安全隐患。
根据本申请的一些实施例中,可选地,每个电池单体211与至少一个换热梁12相邻设置,且泄压机构213朝向与其相邻的换热梁12中的至少一个。
当多个电池单体211被放置于容纳子腔131内后,电池单体具有至少一个表面靠近并面向换热梁12,其中,至少一个靠近并面向换热梁12的表面设置有泄压机构213,即电池单体211上可以设置有一个或多个泄压机构213,有利于缩减泄压机构213与换热梁12之间的距离,提升了换热效果。
根据本申请的一些实施例中,可选地,请继续参照图11和图12,电池单体211还设置有电极端子212,且电极端子212和泄压机构213分别设置于电池单体211上相邻或相对的两个表面。
电极端子212用于与电池单体211内部的电解液接触以输入或输出电能。一个电池单体211上设置有两个电极端子212,分为正极端子和负极端子。电极端子212的材质包括但不限于铁、铜、铝、金、银或其他任意导电金属中的任意一种或任意一种的合金,在本申请实施例对此不作特殊限制。
泄压机构213设置于电池单体211朝向换热梁12的一个表面,电极端子212设置于与该表面相邻或相对的表面。当泄压机构213发生喷发时,由于电极端子212与泄压机构213处于电池单体211的不同表面,能够降低泄压机构213喷发对电连接区域造成短接、高压打火等不利影响,并且,由于泄压机构213朝向换热梁12设置,也即电极端子212并未朝向换热梁12设置,当换热梁12出现损坏而导致换热介质发生泄漏时,降低了由于换热介质造成短接的风险。
根据本申请的一些实施例中,可选地,请继续参照图2,电池100包括由多个电池单体211沿第一方向排列的电池排2,且换热梁12沿第一方向延伸。
多个电池单体211可以沿第一方向(X轴方向)排列形成一个电池排2,一个容纳子腔131内可以放置有一个或多个电池排2。换热梁12沿第一方向延伸,即换热梁12的长度方向与电池排2的长度方向平行,使得电池排12中的每个电池单体211都可以与换热梁12进行热量交换,提升了换热效果。在本申请实施例中,一个电池排2中沿第一方向(X轴方向)排列的电池单体211的数量可以为十个。
通过将换热梁12沿电池排2的长度方向延伸,简化了换热梁12在容纳腔13内的分布,从而简化了箱体组件1的结构。
根据本申请的一些实施例中,可选地,请继续参照图11,换热梁12内设置有排放 腔(图中未示出),排放腔适用接收电池单体211自泄压机构213排放的排放物。
由于换热梁12内设置有排放腔,当泄压机构213喷发时,高温排放物可以进入排放腔内,这样能够进一步使换热梁12集成有收集电池单体211排放物的功能,使得电池100内部的结构更为紧凑。
根据本申请的一些实施例中,可选地,请继续参照图11,换热梁12设置有至少一个对接部123,排放腔适于通过对接部123接收电池单体211自泄压机构213排放的排放物。
对接部123可以为通孔结构,也可以为薄弱部结构,均可用于实现在泄压机构213喷发时接收排放物至排放腔内,提高安全性。在本申请实施例中,对接部123可以为通孔结构,该通孔结构的形状可以为圆形、方形、菱形、椭圆形等。
根据本申请的一些实施例中,可选地,对接部123为多个,且多个对接部123在换热梁12上沿第一方向间隔设置,其中,任意一个对接部123被配置为与至少一个电池单体211的泄压机构213对应设置。
对接部123可以为连通排放腔的通孔结构,也可以是薄弱部结构,经排放物或箱体内气压突破后可以经此进入排放腔,对应设置可以是使得两者的位置较为靠近,也可以使得对接部123与泄压机构213沿某一方向相对设置,便于自泄压机构213排放的排放物可以经由对接部123较快地进入到排放腔。
沿第一方向(X轴方向)排列的对接部123的数量可以大于或等于电池排2中电池单体211的数量,以使每个电池单体211都对应有一个对接部123。在本申请实施例中,沿第一方向(X轴方向)排列的对接部123的数量等于电池排2中电池单体211的数量,且位于换热梁12两侧的两个电池排2中相对的两个电池单体211上设置的两个泄压机构213对应同一个对接部123。
通过将泄压机构213朝向换热梁12上的对接部123设置,使得一旦泄压机构213喷发时,高温排放物可以自对接部123进入排放腔内,避免高温排放物直接冲击换热梁12,提高了泄压效果。
根据本申请的一些实施例中,可选地,为了保证换热梁12的结构强度,对接部123可以为通孔结构,该通孔结构的面积需要等于或大于泄压机构213的面积,多个通孔结构的总面积与换热梁12的表面积之间的比值小于或等于30%。优选地,多个通孔结构的总面积与换热梁12的表面积之间的比值可以为25%。
根据本申请的一些实施例中,可选地,为了保证换热梁12的排气效果,泄压机构213与换热梁12之间的间距等于或等于0.1mm且等于或小于20mm。优选地,泄压机构213与换热梁12之间的间距等于或等于0.5mm且等于或小于15mm。
根据本申请的一些实施例中,为保证换热梁12的换热效果,安装腔1215的总体积与电池100的电量之间的数值比大于或等于0.0004。优选地,安装腔1215的总体积与电池100的电量之间的数值比可以为0.001。
根据本申请的一些实施例中,可选地,请继续参照图2,电池排2有多排,多排电池排2中的至少两个沿换热梁12的高度方向层叠设置。
至少两个电池排2沿换热梁12的高度方向层叠设置以形成一个电池单体组件,沿换 热梁12的高度方向(Z轴方向)层叠设置的至少两个电池单体211形成一个电池组21。在本申请实施例中,一个电池单体组件包括两个沿换热梁12的高度方向层叠设置的电池排2,即一个电池组21包括两个电池单体211。
这样使得任意一个容纳子腔131内可以设置有多排沿换热梁12的高度方向以及换热梁12的厚度方向排列的电池排2,提升了箱体组件1应用于电池100时的空间利用率。
根据本申请的一些实施例中,可选地,请继续参照图11,换热梁12沿其高度方向间隔设置有多个对接部123,其中,任意一个对接部123被配置为与至少一个电池单体211的泄压机构213对应设置。
对接部123可以为连通排放腔的通孔结构,也可以是薄弱部结构,经排放物或箱体内气压突破后可以经此进入排放腔,对应设置可以是使得两者的位置较为靠近,也可以使得对接部123与泄压机构213沿某一方向相对设置,便于自泄压机构213排放的排放物可以经由对接部123较快地进入到排放腔。
沿换热梁12的高度方向(Z轴方向)排列的对接部123的数量可以大于或等于一个电池单体组件中电池排2的数量,以使每个电池单体211都对应有一个对接部123。在本申请实施例中,沿换热梁12的高度方向(Z轴方向)排列的对接部123的数量等于一个电池单体组件中电池排2的数量。
通过将多个对接部123沿换热梁12的高度方向排列,使得一旦泄压机构213喷发时,高温排放物可以流经对接部123进入排放腔内,避免高温排放物直接冲击换热梁12,提高了泄压效果。
根据本申请的一些实施例中,可选地,电池排2有多排,多排电池排2中的至少两个沿第二方向并排设置,且在第二方向与第一方向垂直;在第二方向上,至少部分相邻的两个电池排2之间设置有换热梁12。
至少两个电池排2沿第二方向(Y轴方向)排列,在第二方向(Y轴方向)上,任意相邻的两个电池排2之间都可以设置有换热梁12,从而提升换热效果。例如,沿第二方向(Y轴方向)排列的电池排12的数量可以为四个,换热梁12的数量为三个,该三个换热梁12可以将容纳腔13分隔为四个独立的容纳子腔131,一个容纳子腔131内可以放置有一个电池排2,即任意相邻的两个电池排2之间都设置有一个换热梁12。
或者,部分相邻的电池排2之间设置有换热梁,而另一部分相邻的电池排之间未设置有换热梁。例如,沿第二方向(Y轴方向)排列的电池排12的数量可以为八个,换热梁12的数量为三个,该三个换热梁12可以将容纳腔13分隔为四个独立的容纳子腔131,一个容纳子腔131内可以放置有两个沿第二方向(Y轴方向)排列的电池排2,即仅部分相邻的电池排2之间设置有换热梁12。
在第二方向(Y轴方向)上,通过在任意相邻的两个电池排2之间设置换热梁12,可以提升换热效果;通过在部分相邻的两个电池排2之间设置换热梁12,在保证换热效果的同时减小换热梁12的数量,提升了箱体组件1应用于电池100时的空间利用率。
根据本申请的一些实施例中,可选地,请参照图13,图13为图13为本申请一些实施例提供的另一种电池100的局部结构示意图。电池单体211为圆柱电池单体,且电池单体211的轴向平行于换热梁12的高度方向;第一侧壁1211内凹形成有多个第一限位槽 1217,第二侧壁1212内凹形成有多个第二限位槽1218,其中,任意一个第一限位槽1217与一个电池单体211的外周面抵接,任意一个第二限位槽1218一个电池单体211的外周面抵接。
电池单体211的外壳形状可以为圆柱体,该电池单体211呈直立式放置,即电池单体211的轴向与换热梁12的高度方向平行。一个电池排包括至少两个沿第一方向(X轴方向)排列的电池单体211,且任意一个容纳子腔131内放置有至少两排沿第二方向(Y轴方向)排列的电池排2。
在本申请实施例中,一个电池排2包括沿第一方向(X轴方向)排列的十五个电池单体,任意一个容纳子腔131内放置有两排沿第二方向(Y轴方向)排列的电池排2。第一侧壁1211内凹形成有第一限位槽1217,第二侧壁1212内凹形成有第二限位槽1218,使得电池单体211的外周面可以分别与第一限位槽1217和第二限位槽1218抵接。第一限位槽1217及第二限位槽1218的数量与一个电池排2中的电池单体211的数量相同。
可以理解的是,梁体121上可以仅形成有第一限位槽1217或第二限位槽1218。
通过将电池单体211呈直立式放置,有利于电池排2的快速排列;通过在第一侧壁1211上设置第一限位槽1217和/或在第二侧壁1212上设置第二限位槽1218,不仅可以对电池单体211起到限位作用,且还可以提高电池单体211与换热梁12之间的传热面积以提高换热性能。
根据本申请的一些实施例中,可选地,为了提高换热梁12的集成效率,多个换热梁12的总体积与箱体组件1的总体积之间的比值小于或等于15%,且多个换热梁12的总质量与箱体组件1的总质量的之间的比值小于或等于10%。优选地,多个换热梁12的总体积与箱体组件1的总体积之间的比值可以为10%,多个换热梁12的总质量与箱体组件1的总质量的之间的比值可以等于5%。
根据本申请的一些实施例中,可选地,为了提高换热梁12的结构强度,换热梁12与电池单体211之间的间隙小于或等于3mm,避免电池单体211与换热梁12直接接触而导致换热梁12发生形变。优选地,换热梁12与电池单体211之间的间隙可以小于或等于1.5mm。
需要说明的是,电池单体211与换热梁12之间的间隙可以填充有导热胶,其不仅可以起到固定电池单体211的作用,还可以将电池单体211所产生的热量传递至换热梁12,从而提升箱体组件1的换热效果。
根据本申请的一些实施例中,可选地,为了保证箱体组件1的集成效率,当换热梁12沿箱体组件1的长度方向延伸时,换热梁12的长度与箱体组件1的长度之间的比值大于或等于0.5且小于或等于1;当换热梁12沿箱体组件1的宽度方向延伸时,换热梁12的长度与箱体组件1的宽度之间的比值大于或等于0.5且小于或等于1。优选地,当换热梁12沿箱体组件1的长度方向延伸时,换热梁12的长度与箱体组件1的长度之间的比值可以为0.5;当换热梁12沿箱体组件1的宽度方向延伸时,换热梁12的长度与箱体组件1的宽度之间的比值可以为0.5。
根据本申请的一些实施例,请参照图2和图3,本申请提供了一种电池100,包括多个电池单体211和箱体组件1。箱体组件1包括框架11和多个换热梁12,其中,框架11包 括底板111及围绕底板111四周设置的侧板112,底板111和侧板112共同围绕形成容纳腔13,换热梁12设置于容纳腔13内,以将容纳腔13分隔为多个容纳子腔131,且换热梁12内设置有供换热介质流动的换热通道,多个换热板122沿Y轴方向间隔设置,且任意一个换热板122沿X轴方向延伸。多个电池单体211中的至少两个电池单体211沿X轴方向排列以形成一个电池排,一个容纳子腔131内放置有至少两个电池排,且该至少两个电池排沿换热梁12的高度方向层叠设置。热梁不仅可以提高框架11的整体刚性,且由于换热梁12内设置有供换热介质流动的换热通道,使得换热梁12集成有换热功能,提高了箱体组件1的空间利用率,从而提高了电池100能量密度。此外,通过将电池单体211呈平躺式放置,电池单体211内部温度较为均匀,降低了在高度方向上对换热梁12的设计要求。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一方案所述的电池100,并且电池100用于为用电装置提供电能。
用电装置可以是前述任一应用电池100的设备或系统。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (26)

  1. 一种箱体组件,其特征在于,包括:
    框架,所述框架包括底板及围绕所述底板四周设置的侧板,所述底板和所述侧板共同围绕形成容纳腔;
    至少一个换热梁,所述换热梁设置于所述容纳腔内,以将所述容纳腔分隔为多个容纳子腔,且所述换热梁内设置有供换热介质流动的换热通道。
  2. 根据权利要求1所述的箱体组件,其特征在于,所述换热梁包括:
    梁体,所述梁体沿其厚度方向具有相对的第一侧壁和第二侧壁;
    至少一个第一换热板,所述第一换热板设置于所述第一侧壁;
    和/或,至少一个第二换热板,所述第二换热板设置于所述第二侧壁。
  3. 根据权利要求2所述的箱体组件,其特征在于,所述第一侧壁内凹形成有至少一个第一容纳槽,且任意一个所述第一换热板设置于一个所述第一容纳槽内;
    和/或,所述第二侧壁内凹形成有至少一个第二容纳槽,且任意一个所述第二换热板设置于一个所述第二容纳槽内。
  4. 根据权利要求1所述的箱体组件,其特征在于,所述换热梁包括梁体和至少一个换热板,其中,所述梁体内设置有安装腔,所述换热板设置于所述安装腔内。
  5. 根据权利要求4所述的箱体组件,其特征在于,所述换热梁还包括加强筋,且所述加强筋连接于所述换热板与所述安装腔的内壁之间。
  6. 根据权利要求1-5中任一项所述的箱体组件,其特征在于,所述底板内设置有供换热介质流动的第一流动通道。
  7. 根据权利要求1-5中任一项所述的箱体组件,其特征在于,所述箱体组件还包括至少一个第一散热板,且所述第一散热板设置于所述底板面向或背向所述容纳腔的表面。
  8. 根据权利要求1-5中任一项所述的箱体组件,其特征在于,所述箱体组件还包括至少一个第一散热板,且所述底板内设置有至少一个第一容置腔,所述第一散热板设置于所述第一容置腔内。
  9. 根据权利要求1-5中任一项所述的箱体组件,其特征在于,所述框架还包括盖板,所述盖板设置于所述侧板远离所述底板的一端以密封所述容纳腔。
  10. 根据权利要求9所述的箱体组件,其特征在于,所述盖板内设置有供换热介质流动的第二流动通道。
  11. 根据权利要求9所述的箱体组件,其特征在于,所述箱体组件还包括至少一个第二散热板,且所述第二散热板设置于所述盖板面向或背向所述容纳腔的表面。
  12. 根据权利要求9所述的箱体组件,其特征在于,所述箱体组件还包括至少一个第二散热板,且所述盖板内设置有至少一个第二容置腔,所述第二散热板设置于所述第二容置腔内。
  13. 一种电池,其特征在于,包括电池单体和如权利要求1-12中任一项所述的箱体组件,其中,所述容纳子腔用于放置所述电池单体。
  14. 根据权利要求13所述的电池,其特征在于,所述换热梁被配置为换热横梁和/或换热纵梁,所述电池单体沿所述换热梁的高度方向的尺寸小于所述电池单体沿所述换热梁的延伸方向的尺寸以及所述电池单体沿所述换热梁的厚度方向的尺寸。
  15. 根据权利要求13所述的电池,其特征在于,所述电池单体设置有泄压机构,且所述泄压机构朝向所述换热梁。
  16. 根据权利要求15所述的电池,其特征在于,每个所述电池单体与至少一个所述换热梁相邻设置,且所述泄压机构朝向与其相邻的所述换热梁中的至少一个。
  17. 根据权利要求15或16所述的电池,其特征在于,所述电池单体还设置有电极端子,且所述电极端子和所述泄压机构分别设置于所述电池单体上相邻或相对的两个表面。
  18. 根据权利要求15-17中任一项所述的电池,其特征在于,所述电池包括由多个所述电池单体沿第一方向排列形成的电池排,且所述换热梁沿所述第一方向延伸。
  19. 根据权利要求18所述的电池,其特征在于,所述换热梁内设置有排放腔,所述排放腔,所述排放腔适于接收所述电池单体自所述泄压机构排放的排放物。
  20. 根据权利要求19所述的电池,其特征在于,所述换热梁设置有至少一个对接部,所述排放腔适于通过所述对接部接收所述电池单体自所述泄压机构排放的排放物。
  21. 根据权利要求20所述的电池,其特征在于,所述对接部为多个,且多个所述对接部沿所述第一方向间隔设置,其中,任意一个所述对接部被配置为与至少一个所述电池单体的所述泄压机构对应设置。
  22. 根据权利要求18-21中任一项所述的电池,其特征在于,所述电池排有多排,多排所述电池排中的至少两个沿所述换热梁的高度方向层叠设置。
  23. 根据权利要求22所述的电池,其特征在于,所述换热梁沿其高度方向间隔设置有多个对接部,其中,任意一个所述对接部被配置为与至少一个所述电池单体的所述泄压机构对应设置。
  24. 根据权利要求18-23中任一项所述的电池,其特征在于,所述电池排有多排,多排所述电池排中的至少两个沿第二方向并排设置,且所述第二方向与所述第一方向垂直;在所述第二方向上,至少部分相邻的两个所述电池排之间设置有所述换热梁。
  25. 根据权利要求18所述的电池,其特征在于,所述电池单体为圆柱电池单体,且所述电池单体的轴向平行于所述换热梁的高度方向;
    所述第一侧壁内凹形成有多个第一限位槽,所述第二侧壁内凹形成有多个第二限位槽,其中,任意一个所述第一限位槽与一个所述电池单体的外周面抵接,任意一个所述第二限位槽一个所述电池单体的外周面抵接。
  26. 一种用电装置,其特征在于,包括如权利要求13-25中任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/113139 2022-08-17 2022-08-17 箱体组件、电池及用电装置 WO2024036528A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113139 WO2024036528A1 (zh) 2022-08-17 2022-08-17 箱体组件、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113139 WO2024036528A1 (zh) 2022-08-17 2022-08-17 箱体组件、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024036528A1 true WO2024036528A1 (zh) 2024-02-22

Family

ID=89940432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113139 WO2024036528A1 (zh) 2022-08-17 2022-08-17 箱体组件、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024036528A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331992A (zh) * 2019-11-08 2021-02-05 宁德时代新能源科技股份有限公司 电池包及装置
CN213401373U (zh) * 2020-09-11 2021-06-08 比亚迪股份有限公司 一种电池包和具有该电池包的车辆
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
WO2022006895A1 (zh) * 2020-07-10 2022-01-13 宁德时代新能源科技股份有限公司 电池及其相关装置、制备方法和制备设备
CN216213870U (zh) * 2021-11-08 2022-04-05 长城汽车股份有限公司 动力电池下箱体总成、动力电池包及车辆
CN216251000U (zh) * 2022-02-14 2022-04-08 宁德时代新能源科技股份有限公司 下箱体、电池及用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331992A (zh) * 2019-11-08 2021-02-05 宁德时代新能源科技股份有限公司 电池包及装置
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
WO2022006895A1 (zh) * 2020-07-10 2022-01-13 宁德时代新能源科技股份有限公司 电池及其相关装置、制备方法和制备设备
CN213401373U (zh) * 2020-09-11 2021-06-08 比亚迪股份有限公司 一种电池包和具有该电池包的车辆
CN216213870U (zh) * 2021-11-08 2022-04-05 长城汽车股份有限公司 动力电池下箱体总成、动力电池包及车辆
CN216251000U (zh) * 2022-02-14 2022-04-08 宁德时代新能源科技股份有限公司 下箱体、电池及用电装置

Similar Documents

Publication Publication Date Title
WO2023201923A1 (zh) 水冷板组件、水冷系统、电池及其箱体以及用电装置
WO2023207798A1 (zh) 热管理部件、电池及用电装置
CN217182265U (zh) 电池和用电设备
WO2024021304A1 (zh) 热管理部件、电池以及用电设备
WO2024031413A1 (zh) 电池以及用电装置
WO2024021248A1 (zh) 电池单体、电池及用电设备
CN216720070U (zh) 电池和用电设备
CN216720071U (zh) 电池和用电设备
CN116231200B (zh) 电池及用电装置
US20230268588A1 (en) Battery, power consumption device, and method and device for producing battery
CN216872163U (zh) 箱体、电池以及用电装置
WO2024036528A1 (zh) 箱体组件、电池及用电装置
CN217468578U (zh) 电池壳、电池单体、电池及用电装置
WO2023185244A1 (zh) 一种散热结构、高压盒、电池和用电装置
US20230268586A1 (en) Battery, power consumption device, and method and device for producing battery
WO2023245501A1 (zh) 热管理部件、热管理系统、电池及用电装置
CN217182266U (zh) 电池单体、电池和用电装置
WO2024031418A1 (zh) 电池、用电装置以及电池的成型方法
WO2023220884A1 (zh) 电池及用电装置
WO2023060714A1 (zh) 电池、用电设备、制造电池的方法和设备
EP4358202A1 (en) Battery cell, fabrication method therefor, fabrication device, battery, and electrical apparatus
KR20230129053A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
WO2023245502A1 (zh) 热管理部件、热管理系统、电池及用电装置
WO2024060194A1 (zh) 电池及用电装置
CN218867208U (zh) 电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955309

Country of ref document: EP

Kind code of ref document: A1