WO2022005071A1 - 미세섬유 네트워크 구조체를 함유한 마이크로니들 - Google Patents

미세섬유 네트워크 구조체를 함유한 마이크로니들 Download PDF

Info

Publication number
WO2022005071A1
WO2022005071A1 PCT/KR2021/007700 KR2021007700W WO2022005071A1 WO 2022005071 A1 WO2022005071 A1 WO 2022005071A1 KR 2021007700 W KR2021007700 W KR 2021007700W WO 2022005071 A1 WO2022005071 A1 WO 2022005071A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
drug
network structure
fibers
skin
Prior art date
Application number
PCT/KR2021/007700
Other languages
English (en)
French (fr)
Inventor
송지은
전승현
Original Assignee
주식회사 엘지생활건강
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210055845A external-priority patent/KR102621807B1/ko
Application filed by 주식회사 엘지생활건강 filed Critical 주식회사 엘지생활건강
Priority to JP2022581638A priority Critical patent/JP2023533510A/ja
Priority to CN202180046026.8A priority patent/CN115803078A/zh
Priority to US18/013,828 priority patent/US20230302266A1/en
Publication of WO2022005071A1 publication Critical patent/WO2022005071A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0046Solid microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0061Methods for using microneedles

Definitions

  • the present invention relates to a microneedle patch containing a microfiber network structure.
  • keratin the outermost layer of the skin with a thickness of 10 to 15 micrometers, acts as the most important barrier.
  • Microneedles with a length of several hundred micrometers can physically penetrate the skin with minimal intrusion, and can easily and painlessly deliver drugs to the skin, so they are widely studied in various fields such as cosmetics and biomedicine have.
  • silicon microneedles manufactured by semiconductor processing technology at the Georgia Institute of Technology Frausnitz Group in the United States in 1998 various solid microneedles made of metal, ceramic, or glass create temporary microchannels in the skin to produce needles. Drugs coated on the skin or topically applied to the skin are delivered.
  • a dissolving microneedle made of a water-soluble polymer is manufactured by containing a drug, and the drug is released as the needle dissolves after penetrating into the skin.
  • the active compound that can be loaded is limited to a hydrophilic material.
  • the microneedle since the microneedle has a size of several hundred micrometers and the amount of drug that can be loaded therein is limited, only a small amount of drug can be delivered, which may be insufficient to give efficacy.
  • the process of manufacturing the microneedle there is a problem in that unstable active materials are denatured.
  • Non-Patent Documents 1 and 2 A study in which the same drug was loaded into each of the soluble microneedle and the topical formulation, applied with the topical formulation, and then the needle was applied to increase the drug delivery efficiency compared to the needle alone has been reported (refer to Non-Patent Documents 1 and 2).
  • a system has been reported that simultaneously delivers two phases of a drug and horse oil by applying horse oil to the edge of a soluble microneedle patch containing a hydrophilic drug.
  • the above methods also did not significantly improve the drug delivery amount, and it is very inconvenient to use, such as having to apply the needle after the formulation applied to the skin is properly dried, or applying the oil phase to the needle and then applying it to the skin ham exists
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2017-0103698
  • Non-Patent Document 1 Molecular Pharmaceutics 14 (2017) 2024-2031
  • Non-Patent Document 2 Journal of cosmetic dermatology 18 (2019) 1083-1091
  • Non-Patent Document 3 Journal of cosmetic dermatology 18 (2019) 936-943
  • the present invention provides various kinds of drugs that are additionally supplied after skin perforation by the microneedle patch when a microneedle patch is prepared by adding an insoluble microfiber network structure to the soluble microneedle. It was confirmed that the microfiber structure can be rapidly spread along the network structure formed, and that it can be delivered to the skin in a large amount deep in the skin in the entire patch area, thereby completing the present invention.
  • an object of the present invention relates to a microneedle containing a microfiber network structure, and more particularly, a large amount of an aqueous drug solution through the back of the patch by containing an insoluble microfiber network structure in a soluble microneedle base, and also a drug type This is to provide a microneedle that can be delivered to the skin regardless of the condition.
  • Embodiment 1 A microfiber network structure; and a microneedle-forming material.
  • Embodiment 2 The group of Embodiment 1, wherein the microfibers forming the network structure are cellulose fibers, acrylic fibers, chitosan fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, polyimide fibers, and polyamide fibers.
  • Microneedle characterized in that at least one selected from.
  • Embodiment 3 The microneedle according to any one of the preceding embodiments, wherein the microneedle comprises a needle part having a plurality of needles formed thereon and a substrate part to which the plurality of needles are attached, wherein the microfiber network structure comprises the Microneedle, characterized in that contained in the substrate part.
  • Embodiment 4 The microneedle according to any one of the preceding embodiments, wherein the microfiber network structure is not included in the needle part.
  • Embodiment 5 The microneedle according to any one of the preceding embodiments, wherein the microneedle forming material swells or dissolves in the skin.
  • Embodiment 6 The microneedle according to any one of the preceding embodiments, wherein the microneedle-forming material comprises a water-soluble polymer.
  • Embodiment 7 The material according to any one of the preceding embodiments, wherein the microneedle-forming material is hyaluronic acid or a salt thereof, carboxymethyl cellulose or a salt thereof, vinylpyrrolidone-vinylacetate copolymer, polyvinyl alcohol, polyvinyl.
  • a microneedle comprising at least one selected from the group consisting of pyrillidone and saccharides.
  • Embodiment 8 The microneedle according to any one of the preceding embodiments, wherein the content of the microfiber network structure included in the microneedle is 0.01% by weight or more and less than 13.6% by weight relative to the total weight of the microneedle.
  • Embodiment 9 The microneedle according to any one of the preceding embodiments, wherein a drug injection hole is formed in the substrate portion of the microneedle.
  • Embodiment 10 The method according to any one of the preceding embodiments, wherein when the drug is injected through the drug injection hole, the drug is spread over the entire area of the microneedle patch by the microfiber network structure included in the substrate part.
  • a microneedle characterized in that it exits.
  • Embodiment 11 The microneedle according to any one of the preceding embodiments, wherein the microfiber network structure is an oxidized biocellulose microfiber network aqueous dispersion.
  • Embodiment 12 The microneedle according to any one of the preceding embodiments, wherein in the oxidized biocellulose, 0.8 mmol/g of cellulose or more of the total alcohol groups contained in the biocellulose before oxidation is substituted with a carboxyl group.
  • Embodiment 13 A microneedle kit comprising the microneedle according to any one of the preceding embodiments and a separately provided drug.
  • Embodiment 14 A method comprising: preparing a microneedle according to any one of the preceding embodiments; and injecting an active ingredient through a drug injection hole formed in the substrate portion of the microneedle.
  • One aspect of the present invention is a microfiber network structure; And to provide a microneedle comprising a microneedle forming material.
  • a soluble microneedle forming material was mixed with a microfiber network structure insoluble in water, and a microneedle patch was prepared by a micromolding method, which is a conventional method of manufacturing a soluble microneedle.
  • microfiber network structure Since the microfiber network structure has a three-dimensional intertwined network structure, it cannot enter the mold cavity forming the needle part and is evenly distributed only in the back part of the substrate part, (i) to moisture in the skin
  • a double-layered microneedle patch comprising a needle portion having a plurality of needles swelled or dissolved by the method and (ii) a substrate portion in which an insoluble microfiber network structure is impregnated in a microneedle-forming material is manufactured.
  • the needle part consists only of water-soluble components, while the substrate part does not dissolve in water due to the microfiber network structure and immediately absorbs the drug solution injected through the solution injection hole on the back of the substrate part to form a microneedle. It will act as a reservoir for continuous delivery.
  • the needle part of the lower part of the substrate formed a flow path while simultaneously dissolving into the body fluid in the skin and the aqueous drug solution, and a large amount of drug could quickly penetrate into the skin along the flow path.
  • we developed a system that can deliver a large amount of drug without any effort such as maintaining drug stability and pre-treatment (eg, drug surface modification and coating) for loading the drug into the microneedle.
  • the present invention is a microneedle comprising a needle portion having a plurality of needles formed thereon and a substrate portion to which the plurality of needles are attached, wherein the microfiber network structure is included in the substrate portion, and is included in the needle portion
  • a drug injection hole may be formed in the substrate part of the microneedle.
  • the drug is injected through the drug injection hole, the drug is injected into the microneedle patch by the microfiber network structure included in the substrate part. The effect of spreading over the entire area of
  • the diameter of the microfiber forming the network structure may be 1 nm to 100 nm or less, preferably 20 nm to 80 nm or less.
  • the aspect ratio includes a polymer fiber, carbon fiber, conductive polymer fiber, etc. between 4 and 5000, but is not necessarily limited thereto.
  • the content of the network structure is preferably 0.01 wt% or more and less than 13.6 wt%.
  • the microfibers forming the network structure are preferably water-dispersible or refer to fibers modified to be water-dispersible, for example, cellulose fibers, acrylic fibers, chitosan fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers. , one or more selected from the group consisting of polyimide fibers and polyamide fibers may be used, but the present invention is not limited thereto.
  • the microfiber network structure may be an oxidized bio-cellulose microfiber network water dispersion that is insoluble while having high water absorption capacity and water retention capacity.
  • Bio-cellulose is a cellulose microfiber synthesized from bacteria. Compared with plant-derived cellulose, it has excellent properties such as thinner fiber diameter, high physical strength, and high crystallinity. It was difficult.
  • Patent Document 1 the present inventors have developed an aqueous dispersion of biocellulose microfibers that can be dispersed in water by substituting an alcohol group of biocellulose with a carboxyl group.
  • oxidized biocellulose in which some or all of the alcohol groups are substituted with carboxyl groups should be used, and preferably, the entire biocellulose contained in the biocellulose is used.
  • the alcohol groups 0.8 mmol/g of cellulose or more may be substituted with a carboxyl group.
  • non-oxidized general biocellulose In the case of using non-oxidized general biocellulose, aggregates are formed in the water-soluble material (microneedle-forming material) due to strong hydrogen bonding between fibers, and a network structure cannot be formed. That is, when non-oxidized general bio-cellulose is used, the network structure cannot be formed, so that the needle formation is impossible, or a problem of entering the needle part and leaving a residue on the skin may occur.
  • the microneedle forming material may swell or dissolve in the skin, for example, hyaluronic acid or a salt thereof, carboxymethyl cellulose or a salt thereof, vinylpyrrolidone-vinyl acetate copolymer, water-soluble polymers such as polyvinyl alcohol and polyvinylpyrrolidone; sugars such as xylose, sucrose, maltose, lactose, and trehalose; Or it may include a mixture thereof, but is not limited thereto.
  • the microneedle-forming material is a water-soluble material that can swell or dissolve well in the skin, hyaluronic acid or a salt thereof, sodium-carboxymethyl cellulose, polyvinyl alcohol (Poly(vinyl alcohol)), polyvinylpyrrolidone (Poly(vinyl pyrrolidone)), polyacrylate, saccharides, or a mixture thereof may be included.
  • the microneedle-forming material may additionally include a plasticizer, a surfactant, a preservative, etc. in consideration of the skin penetration strength of the microneedle, the dissolution rate in the skin, and the like.
  • plasticizer for example, a polyol such as ethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, or glycerine is used alone. It can be used as or a mixture.
  • microfiber network structure; And the microneedle of the present invention including the microneedle-forming material may further include a drug therein. That is, the present invention does not exclude the case of including a drug inside the soluble microneedle as in the prior art.
  • the structure or shape of the microneedle of the present invention is a rectangular pyramid shape, a triangular pyramid shape, a stepped pyramid shape, a microblade shape, and a bullet shape, in a shape where the width of the base becomes narrow when viewed from the base to the tip. Any shape is possible, and the length is preferably within the range of 20 ⁇ m to 2 mm, but is not limited thereto.
  • Another aspect of the present invention is to provide a microneedle kit comprising the microneedle and a separately provided liquid drug.
  • Another aspect of the present invention is a microfiber network structure; and preparing a microneedle containing a microneedle-forming material and having a drug injection hole formed in the substrate portion of the microneedle; and injecting a cosmetic drug through a drug injection hole formed in the substrate portion of the microneedle, to provide a method of efficiently injecting a cosmetic drug into the skin for cosmetic purposes.
  • the microfibers In the microneedle patch containing the microfiber network structure provided in the present invention, when a drug (preferably an aqueous drug solution) is injected through a drug injection hole on the back of the patch, the microfibers rapidly absorb the injected drug solution and It serves as a reservoir that continuously delivers to the microneedle, allowing a large amount of drug to be delivered to the skin through the microchannel formed from the microneedle dissolved by the body fluid and drug solution.
  • the drug since the drug is not loaded in the needle, the drug is not denatured during the needle manufacturing process or there is no limitation in the loading amount, so it can be usefully applied to the cosmetic or pharmaceutical industry.
  • the microneedle of the present invention preferably, relevant laws and regulations of Korea, China, the United States, Europe, Japan, etc. (eg, regulations on cosmetic safety standards (Korea), cosmetic safety technical standards (China)) Do not exceed the maximum use value specified in etc. That is, preferably, the microneedle of the present invention, the drug for use according to the present invention, and the microneedle kit including the drug contain the components according to the present invention within the content limit allowed by the relevant laws and regulations of each country. do.
  • microneedle When a microneedle is manufactured by adding a microfiber network structure to a water-soluble microneedle-forming material, since the microfiber structure has a three-dimensionally intertwined network structure, it cannot enter into the mold cavity forming the needle, and the substrate ( Since it is evenly distributed only in the back part of the substrate, a microneedle patch having a dual structure of a water-soluble needle part and an insoluble substrate part can be provided even by one casting using the molding technology, which is the existing microneedle manufacturing method. have.
  • the microfibers quickly absorb the drug and continuously deliver the drug to the microneedle part, which serves as a reservoir for moisture in the skin. A large amount of drug can be delivered to the skin through the microchannel formed from the swollen or dissolved microneedles.
  • a drug injection hole is formed on the back side of the substrate and a drug is injected through it, it is not necessary to include the drug in the needle, so that the drug may be denatured during the manufacturing process of the microneedle, or the drug may be denatured due to the size of the microneedle. It has the effect of solving the problem of limiting the amount of loading.
  • FIG. 1 is a schematic diagram showing a manufacturing process of a microneedle patch containing a microfiber network structure.
  • FIG. 2 is a schematic diagram showing the drug delivery principle of a microneedle patch containing a microfiber network structure.
  • Example 3 is a photograph showing the microstructure of the microfiber network structure and the microneedle patch prepared in Example 1 according to an embodiment of the present invention.
  • Example 5 is a photograph showing the difference in dissolution and structural properties in water of Example 1 and Comparative Example 2.
  • Example 6 is a result of confirming the skin perforation rate of the microneedle by applying Example 1 and Comparative Example 2 to pig skin.
  • Example 7 is a result of confirming the horizontal/vertical delivery of the drug when Example 1 and Comparative Example 2 were attached to pig skin and the model drug aqueous solution was applied.
  • Example 8 is a result of analyzing the skin permeation amount of the drug when Example 1 and Comparative Example 2 were attached to pig skin and the model drug aqueous solution was applied.
  • the composition of the microneedle patch mixture consists of Aqua Cellulose Solution TM provided by The Garden of Natural Solution, a water-insoluble material (bio-cellulose microfiber moisture that can be dispersed in water by replacing the alcohol group of the bio-cellulose with a carboxyl group) Acid 1.5%, distilled water 95.5%, hexanediol 3%) and water-soluble substances hyaluronic acid, carboxymethyl cellulose, trehalose, glycerin, and distilled water (see Table 1) .
  • This mixture was applied to a silicone mold, vacuum was held for 30 minutes, and then dried at 50°C for 3 hours. The dried patch was separated from the mold, and a 6 mm diameter hole for drug injection was drilled in the center of the patch (see FIG. 1).
  • Example 1 Comparative Example 1 Comparative Example 2 hyaluronic acid 2.2 2.2 2.2 Carboxylmethylcellulose 1.8 1.2 2.55 Trehalose 3.0 3.0 3.0 glycerin 2.3 2.3 2.3 Aqua Cellulose Solution TM 50.0 91.4 0 Distilled water up to 100 up to 100 up to 100 Manufactured or not ⁇ X ⁇ Microfiber weight in final patch (%) 7.5 13.6 0
  • Example 1 is a microneedle patch containing a microfiber water dispersion network (7.5% by dry weight).
  • Comparative Example 1 is a microneedle patch containing a microfiber aqueous dispersion network (13.6% by dry weight).
  • Comparative Example 2 is a soluble microneedle patch containing no microfiber water dispersion network.
  • Example 3 shows a scanning electron microscope photograph of the microneedle patch prepared in Example 1, including a scanning electron microscope photograph showing the structure of the biocellulose microfibers used in Example 1 and Comparative Example 1. 3, when the microstructure of the microneedle patch prepared in Example 1 was measured, almost no microfibers were observed on the needle surface and the front surface of the patch, but microfibers were found in the entire area on the rear surface of the patch. It was confirmed that it had a uniformly distributed double structure (see FIG. 3).
  • the weight of the water dispersion of biocellulose microfibers (where the microneedle tip can be well formed) from which the microneedle patch can be prepared should be less than 13.6%, and if more is added, the pointed tip of the needle will not be formed. It was confirmed that it could not be used because it was not used (see Comparative Example 1 and FIG. 4 in Table 1).
  • Example 2 In order to compare the structure and dissolution properties of the microneedle patch containing microfibers prepared in Experimental Example 1 (Example 1) and the microneedle patch without microfibers (Comparative Example 2), each patch before drilling a hole for drug injection A small amount (0.1 mL) of water was dropped to observe the shape change. As a result, it was confirmed that in Comparative Example 2, the entire patch including the needle was dissolved in water and the shape disappeared (see C and D in FIG. 5), whereas in Example 1, only the needle part was melted and the shape of the patch substrate was maintained (FIG. 5 A and B).
  • microneedle patch containing microfibers prepared in Experimental Example 1 (Example 1) and the microneedle patch without microfibers (Comparative Example 2) were respectively attached to the pig skin, and after applying a force of 20 N for 10 seconds, the patch was applied.
  • the skin perforation rate was compared by removing and staining the microchannels created on the skin with an aqueous trypan blue solution. As a result, the skin perforation rate was 90% or more regardless of whether microfibers were included (see FIG. 6 ).
  • microneedle patch containing microfibers prepared in Experimental Example 1 (Example 1) and the microneedle patch without microfibers (Comparative Example 2) prepared in Experimental Example 1 were respectively attached to pig skin, and the model drug, rhodamine B aqueous solution (300 ⁇ g/mL, 100 ⁇ L) was injected into the hole structure of the patch to compare the horizontal distribution of the aqueous drug solution.
  • rhodamine B was evenly distributed over the entire patch area in Example 1 (see FIG. 7), whereas rhodamine B was distributed only in some areas of the microneedle patch. .
  • Example 1 and Comparative Example 2 prepared in Experimental Example 1 were attached to pig skin, and the receptor was mounted on a Franz cell filled with phosphate-buffered saline (pH 7.4, Gibco). Rhodamine B aqueous solution (300 ⁇ g/mL, 100 ⁇ L), a model drug, was injected into the hole structure of each patch to permeate the drug at 37 degrees and 50% relative humidity for 17 hours, and then the patch and unabsorbed solution were removed Thus, the amount of drug permeation into the skin and receptor was analyzed (see FIG. 8A ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 미세섬유 네트워크 구조체를 함유한 마이크로니들에 관한 것으로서, 더욱 상세하게는 용해성 마이크로니들 기반에 불용성 미세섬유 네트워크 구조체를 함유시켜 니들에 약물을 포함하지 않고도 패치 뒷면의 약물주입용 홀을 통해 약물 수용액을 다량으로, 또한 약물 종류에 관계없이 피부로 전달할 수 있는 마이크로니들에 관한 것이다.

Description

미세섬유 네트워크 구조체를 함유한 마이크로니들
본 출원은 2020년 06월 30일 출원된 대한민국출원 제10-2020-0080091호 및 2021년 04월 29일 출원된 대한민국출원 제10-2021-0055845호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
본 발명은 미세섬유 네트워크 구조체를 함유하는 마이크로니들 패치에 관한 것이다.
경피 약물 전달 시스템에서, 10 내지 15 마이크로 미터 두께의 피부의 최외각층인 각질은 가장 중요한 장벽으로 작용한다. 수백 마이크로 미터 이내의 길이를 갖는 마이크로니들(microneedle)은 최소한의 침입으로 피부를 물리적으로 관통할 수 있고, 간편하고 고통없이 피부에 약물을 효과적으로 전달할 수 있어 화장품 및 생의학과 같은 다양한 분야에서 널리 연구되고 있다. 1998년 미국 조지아공대 프라우스니츠 그룹에서 반도체 공정기술로 제조한 실리콘 마이크로니들의 개발로부터 시작하여, 금속, 세라믹 또는 유리로 제조된 다양한 솔리드(solid) 마이크로니들은 피부에 일시적인 미세 채널을 생성시켜 바늘에 코팅된 약물 혹은 피부에 국소적으로 도포한 약물을 전달한다. 그러나 바늘이 피부 안에서 부러지거나, 작은 입자 같은 것이 몸에 남을 경우 염증(inflammation)이 반응을 유발할 수 있는 문제점이 있다. 한편, 수용성 고분자로 만들어진 용해성(dissolving) 마이크로니들은 약물을 함유시켜 제조하며, 피부에 침투한 뒤 니들이 용해되면서 약물이 방출된다. 솔리드 마이크로니들에 비해 쉽게 제조가 가능하고, 피부에 잔여물이 남을 문제가 없는 등 다양한 장점이 있지만, 담지할 수 있는 활성 화합물은 친수성 물질로 제한되어있다. 또한 마이크로니들은 수백마이크로 크기로 내부에 담지할 수 있는 약물량이 제한되어 소량의 약물만 전달 가능하므로, 이는 효능을 주기에 불충분할 수 있다. 뿐만 아니라 마이크로니들을 제조하는 공정에서, 불안정한 활성 물질들의 변성이 일어나는 문제점이 있었다.
따라서, 용해성 마이크로니들의 약물 로딩량 개선을 위한 몇 가지 연구들이 보고되었다. 용해성 마이크로니들과 국소 제제 각각에 동일한 약물을 로딩하여 국소제제를 도포한 뒤 니들을 적용하여 니들 단독사용 대비 약물 전달 효율을 높인 연구가 보고되었다(비특허문헌 1, 2 참조). 또한 친수성 약물을 함유한 용해성 마이크로니들 패치 가장자리에 마유를 도포하여 약물 및 마유의 2가지 상을 동시에 전달하는 시스템이 보고된 바 있다. 그러나, 상기와 같은 방법들 또한 약물 전달량을 크게 개선하지 못하였으며, 피부에 도포한 제제가 적절히 건조된 후 니들을 적용해야하거나, 오일상을 니들에 도포한 뒤 피부에 적용해야하는 등 사용상에 큰 불편함이 존재한다.
본 명세서 전체에 걸쳐 다수의 문헌이 참조되고 그 인용이 표시되어 있다. 인용된 문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
[선행기술문헌]
특허문헌 1: 대한민국 공개특허 제10-2017-0103698호
비특허문헌 1: Molecular pharmaceutics 14 (2017) 2024-2031
비특허문헌 2: Journal of cosmetic dermatology 18 (2019) 1083-1091
비특허문헌 3: Journal of cosmetic dermatology 18 (2019) 936-943
이에, 상기 문제점들을 해결하기 위해, 본 발명은 용해성 마이크로니들에 불용성 미세섬유 네트워크 구조체를 첨가하여 마이크로니들 패치를 제조하는 경우, 마이크로니들 패치에 의한 피부천공 이후 추가로 공급되는 다양한 종류의 약물을 상기 미세섬유 구조체가 형성한 네트워크 구조체를 따라 빠르게 확산시킬 수 있을 뿐만 아니라, 패치 전체 영역에서 피부 깊숙히 다량으로 피부에 전달 가능한 것을 확인하고, 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 미세섬유 네트워크 구조체를 함유한 마이크로니들에 관한 것으로서, 더욱 상세하게는 용해성 마이크로니들 기반에 불용성 미세섬유 네트워크 구조체를 함유시켜 패치 뒷면을 통해 약물 수용액을 다량으로, 또한 약물 종류에 관계없이 피부로 전달할 수 있는 마이크로니들을 제공하기 위한 것이다.
더 상세하게는 본 발명의 목적은 다음의 구현예들을 제공하는 데 있다.
구현예 1. 미세섬유 네트워크 구조체; 및 마이크로니들 형성 물질을 포함하는 마이크로니들.
구현예 2. 구현예 1에 있어서, 상기 네트워크 구조체를 형성하는 미세섬유는 셀룰로오스 섬유, 아크릴 섬유, 키토산 섬유, 폴리에틸렌 섬유, 폴리프로필렌 섬유, 폴리에틸렌테레프탈레이트 섬유, 폴리이미드 섬유 및 폴리아마이드 섬유로 이루어진 군으로부터 선택되는 1 이상인 것을 특징으로 하는 마이크로니들.
구현예 3. 선행하는 구현예들 중 어느 하나에 있어서, 상기 마이크로니들은 복수 개의 바늘이 형성된 니들부 및 상기 복수 개의 바늘이 부착되어 있는 기판(substrate)부를 포함하고, 상기 미세섬유 네트워크 구조체는 상기 기판부 내에 포함되어 있는 것을 특징으로 하는 마이크로니들.
구현예 4. 선행하는 구현예들 중 어느 하나에 있어서, 상기 미세섬유 네트워크 구조체는 상기 니들부 내에는 포함되어 있지 아니한 것을 특징으로 하는 마이크로니들.
구현예 5. 선행하는 구현예들 중 어느 하나에 있어서, 상기 마이크로니들 형성 물질은 피부 내에서 팽윤 또는 용해되는 것을 특징으로 하는 미세바늘.
구현예 6. 선행하는 구현예들 중 어느 하나에 있어서, 상기 마이크로니들 형성 물질은 수용해성 고분자를 포함하는 것을 특징으로 하는 마이크로니들.
구현예 7. 선행하는 구현예들 중 어느 하나에 있어서, 상기 마이크로니들 형성 물질은 히알루론산 또는 그의 염, 카복시메틸 셀룰로오스 또는 그의 염, 비닐피롤리돈-비닐아세테이트 공중합체, 폴리비닐알코올, 폴리비닐피릴리돈 및 당류로 이루어진 군으로부터 선택되는 1 이상을 포함하는 것을 특징으로 하는 마이크로니들.
구현예 8. 선행하는 구현예들 중 어느 하나에 있어서, 상기 마이크로니들 내에 포함된 미세섬유 네트워크 구조체의 함량은 마이크로니들 전체 중량 대비 0.01 중량% 이상 내지 13.6 중량% 미만인 것을 특징으로 하는 마이크로니들.
구현예 9. 선행하는 구현예들 중 어느 하나에 있어서, 상기 마이크로니들의 기판 부에 약물 주입공이 형성되어 있는 것을 특징으로 하는 마이크로니들.
구현예 10. 선행하는 구현예들 중 어느 하나에 있어서, 상기 약물 주입공을 통해 약물을 주입하는 경우, 상기 기판부 내에 포함되어 있는 미세섬유 네트워크 구조체에 의하여 약물이 마이크로니들 패치의 전 면적으로 퍼져나가는 것을 특징으로 하는 마이크로니들.
구현예 11. 선행하는 구현예들 중 어느 하나에 있어서, 상기 미세섬유 네트워크 구조체는 산화된 바이오셀룰로오스 미세섬유 네트워크 수분산체인 것을 특징으로 하는 마이크로니들.
구현예 12. 선행하는 구현예들 중 어느 하나에 있어서, 상기 산화된 바이오셀룰로오스는 산화 전 바이오셀룰로오스에 포함된 전체 알코올기 중 0.8 mmol/g 셀룰로오스 이상이 카복실기로 치환된 것을 특징으로 하는 마이크로니들.
구현예 13. 선행하는 구현예들 중 어느 하나에 따른 마이크로니들 및 별도로 구비되는 약물을 포함하는 마이크로니들 키트.
구현예 14. 선행하는 구현예들 중 어느 하나에 따른 마이크로니들을 준비하는 단계; 및 상기 마이크로니들의 기판 부에 형성된 약물 주입공을 통해 유효성분을 주입하는 단계를 포함하는, 미용 목적을 위하여 피부에 효율적으로 유효성분을 주입하는 방법.
본 발명의 또 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 하나의 관점은 미세섬유 네트워크 구조체; 및 마이크로니들 형성 물질을 포함하는 마이크로니들을 제공하는 것이다.
상기 과제를 해결하기 위한 수단으로서, 물에 불용성인 미세섬유 네트워크 구조체와 함께 용해성 마이크로니들 형성 물질을 혼합하고, 기존의 용해성 마이크로니들의 제조방법인 마이크로몰딩 방법으로 마이크로니들 패치를 제조하였다.
상기 미세섬유 네트워크 구조체는 3차원으로 서로 얽혀있는 네트워크 구조를 갖고 있기 때문에 니들부를 형성하는 몰드 캐비티(cavity) 내로 들어가지 못하고 기판(substrate)부 뒷부분에만 고르게 분산되기 때문에, (i) 피부 내 수분에 의해 팽윤 또는 용해되는 복수의 니들이 형성되어 있는 니들부와 (ii) 불용성의 미세섬유 네트워크 구조체가 마이크로니들 형성 물질 중에 함침되어 있는 기판부를 포함하는 이중층의 마이크로니들 패치가 제조된다.
즉, 니들 부분은 수용성 성분으로만 구성된 반면, 기판(substrate) 부분은 미세섬유 네트워크 구조체에 의해 물에 녹지 않으면서도 기판부 뒷면의 용액 주입용 구멍으로 주입한 약물 수용액을 즉각적으로 흡수하여 마이크로니들로 지속적으로 전달할 수 있는 reservoir 역할을 하게 된다. 또한 기판 하단부의 니들 부는 피부 내 체액과 약물 수용액으로 동시에 용해되면서 유로를 형성하고, 그 유로를 따라 다량의 약물이 피부 내로 빠르게 침투할 수 있음을 확인하였다. 결과적으로, 마이크로니들에 약물을 로딩하기 위한 약물 안정성 유지 및 전처리 공정(예: 약물 표면 개질 및 코팅)과 같은 노력 없이도, 다량의 약물을 전달할 수 있는 시스템을 개발해 내었다.
그리하여, 본 발명은 복수 개의 바늘이 형성된 니들부 및 상기 복수 개의 바늘이 부착되어 있는 기판(substrate)부를 포함하는 마이크로니들로서, 미세섬유 네트워크 구조체는 기판부 내에 포함된 것이고, 니들부 내에는 포함되어 있지 않은 마이크로니들 패치를 제공한다.
바람직한 구현예에서, 상기 마이크로니들의 기판 부에는 약물 주입공이 형성되어 있을 수 있는데, 상기 약물 주입공을 통해 약물을 주입하는 경우, 기판부 내에 포함되어 있는 미세섬유 네트워크 구조체에 의하여 약물이 마이크로니들 패치의 전 면적으로 퍼져나가는 효과를 얻을 수 있다.
본 발명의 마이크로니들 패치에 있어서, 상기 네트워크 구조체를 형성하는 미세섬유의 직경은 1 nm 내지 100 nm 이하, 바람직하게는 20 nm 내지 80 nm 이하인 것을 사용할 수 있다. 또한 종횡비(aspect ratio)가 4에서 5000 사이의 고분자 섬유, 탄소섬유, 전도성 고분자 섬유 등을 포함하며, 반드시 이에 제한되는 것은 아니다.
미세섬유의 함량은 마이크로니들 패치 건조 중량의 0.01 wt% 미만을 사용하면 약물 수용액을 빠르게 흡수할 수 있는 기능이 떨어지고, 13.6% 이상을 첨가할 경우 뾰족한 팁을 지닌 니들의 제조가 어려우므로, 미세섬유 네트워크 구조체의 함량은 0.01 wt% 이상 13.6 wt% 미만으로 포함하는 것이 바람직하다.
상기 네트워크 구조체를 형성하는 미세섬유는 바람직하게는 수분산이 가능하거나 수분산이 가능하도록 개질된 섬유를 의미하며, 예컨대 셀룰로오스 섬유, 아크릴 섬유, 키토산 섬유, 폴리에틸렌 섬유, 폴리프로필렌 섬유, 폴리에틸렌테레프탈레이트 섬유, 폴리이미드 섬유 및 폴리아마이드 섬유로 이루어진 군으로부터 선택되는 1 이상을 사용할 수 있지만 반드시 이에 제한되는 것은 아니다.
바람직하게는, 상기 미세섬유 네트워크 구조체는 수분 흡수력(water absorption capacity) 및 수분보유능(water retention capacity)이 높으면서도 불용성인, 산화된 바이오셀룰로오스 미세섬유 네트워크 수분산체일 수 있다. 바이오셀룰로오스는 박테리아로부터 합성된 셀룰로오스 미세섬유로, 식물 유래 셀룰로오스에 비해 섬유 직경이 얇고, 높은 물리적 강도, 높은 결정화도 등의 우수한 특성을 가지나, 주로 젤이나 시트와 같은 형태를 가져 화장품 제형 등에는 적용이 어려웠다. 본 발명자들은 특허문헌 1에서는 바이오셀룰로오스의 알코올기를 카복실기로 치환하여 수분산이 가능한 바이오셀룰로오스 미세섬유 수분산체를 개발하였다.
따라서, 상기 미세섬유 네트워크 구조체를 형성하는 미세섬유로서 바이오셀룰로오스를 사용하는 경우에는, 알코올기 일부 또는 전부가 카복실기로 치환된 산화된 바이오셀룰로오스를 사용하여야 하며, 바람직하게는 상기 바이오셀룰로오스에 포함된 전체 알코올기 중 0.8 mmol/g 셀룰로오스 이상이 카복실기로 치환된 것을 사용할 수 있다.
산화되지 아니한 일반 바이오셀룰로오스를 사용하는 경우 섬유 사이의 강한 수소결합으로 인해 수용해성 물질(마이크로니들 형성 물질) 중에서 응집체를 형성하고 네트워크 구조체를 형성하지 못한다. 즉, 산화되지 아니한 일반 바이오셀룰로오스를 사용하는 경우 네트워크 구조체를 형성하지 못하여, 니들 형성이 불가하거나, 니들부에 들어가서 피부에 잔여물을 남기는 문제가 발생할 수 있다.
본 발명의 마이크로니들에 있어서, 상기 마이크로니들 형성 물질은 피부 내에서 팽윤 또는 용해되는 것일 수 있는데, 예컨대 히알루로닉산 또는 그의 염, 카르복시메틸 셀룰로오스 또는 그의 염, 비닐피롤리돈-비닐아세테이트 공중합체, 폴리비닐알코올(Poly vinyl alcohol) 및 폴리비닐피릴리돈(Poly vinyl pyrrolidone) 등의 수용성 고분자; 자일로즈(Xylose), 수크로스(Sucrose), 말토오스(Maltose), 락토오스(Lactose), 트레할로스(Trehalose) 등의 당류; 또는 이들의 혼합물을 포함하는 것일 수 있지만 이에 제한되는 것은 아니다.
더 구체적으로는 상기 마이크로니들 형성 물질은 피부 내에서 잘 팽윤 또는 용해될 수 있는 수용성 물질로, 히알루로닉산(Hyaluronic acid) 또는 그의 염, 소디움-카복실메틸 셀룰로오스(Sodium carboxymethyl cellulose), 폴리비닐알콜(Poly(vinyl alcohol)), 폴리비닐피롤리돈(Poly(vinyl pyrrolidone)), 폴리아크릴산(Polyacrylate), 당류 또는 이들의 혼합물을 포함할 수 있다.
또한, 상기 마이크로니들 형성 물질은 마이크로니들의 피부 투과 강도, 피부 내에서의 용해속도 등을 종합적으로 고려하여 가소제, 계면활성제, 보존제 등을 추가적으로 포함할 수 있다.
상기 가소제(plasticizer)로는, 예를 들어, 에틸렌 글리콜(Ethylene glycol), 프로필렌 글리콜(Propylene glycol), 디프로필렌 글리콜(Dipropylene glycole), 뷰틸렌 글리콜(Butylene glycol), 글리세린(Glycerine) 등의 폴리올을 단독으로 또는 혼합하여 사용할 수 있다.
또한, 미세섬유 네트워크 구조체; 및 마이크로니들 형성 물질을 포함하는 본 발명의 마이크로니들은 내부에 약물을 추가로 포함할 수도 있다. 즉 본 발명은 종래와 같이 용해성 마이크로니들 내부에 약물을 포함하는 경우를 배척하지 아니한다.
본 발명의 마이크로니들의 구조나 형태는 기반부로부터 첨단부까지 살펴 보았을 때, 기반의 너비가 넓은 곳에서 좁아지는 형태로 사각형 피라미드 형상, 삼각형 피라미드 형상, 계단형 피라미드 형상, 마이크로블레이드 형상, 총알 형상 등 어떠한 형태라도 모두 가능하며, 길이는 20 ㎛ 내지 2 mm 의 범위 내의 크기를 갖는 것이 바람직하지만, 이에 제한되는 것은 아니다.
본 발명의 다른 관점은 상기 마이크로니들 및 별도로 구비되는 액상의 약물을 포함하는 마이크로니들 키트를 제공하는 것이다.
본 발명의 또 다른 관점은 미세섬유 네트워크 구조체; 및 마이크로니들 형성 물질을 포함하고 마이크로니들의 기판 부에 약물 주입공이 형성되어 있는 마이크로니들을 준비하는 단계; 및 상기 마이크로니들의 기판 부에 형성된 약물 주입공을 통해 미용 약물을 주입하는 단계를 포함하는, 미용 목적을 위하여 피부에 효율적으로 미용 약물을 주입하는 방법을 제공하는 것이다.
본 발명에서 제공되는 미세섬유 네트워크 구조체 함유 마이크로니들 패치는, 패치 뒷면의 약물 주입공(hole)을 통해 약물(바람직하게는 약물 수용액)을 주입하는 경우, 주입된 약물 용액을 미세섬유가 빠르게 흡수하고 지속적으로 마이크로니들부로 전달하는 reservoir 역할을 하여 체액과 약물 용액에 의해 녹은 마이크로니들부터 형성된 마이크로채널을 통해 다량의 약물을 피부로 전달할 수 있다. 또한 니들 내에 약물을 담지하지 않으므로 니들 제조과정에서 약물이 변성되거나 담지량의 제한이 없으므로 화장품이나 의약 산업에 유용하게 적용될 수 있다.
본 발명에 기재된 모든 성분은, 바람직하게는, 한국, 중국, 미국, 유럽, 일본 등의 관련 법규, 규범 (예를 들어, 화장품 안전 기준 등에 관한 규정(한국), 화장품 안전 기술 규범(중국)) 등에서 규정한 최대사용치를 초과하지 않는다. 즉, 바람직하게, 본 발명의 마이크로니들과, 본 발명에 따라 사용되기 위한 약물, 그리고 상기 약물을 포함하는 마이크로니들 키트는 각국의 관련 법규, 규범에서 허용되는 함량 한도로 본 발명에 따른 성분들을 포함한다.
미세섬유 네트워크 구조체를 수용성 마이크로니들 형성 물질에 첨가하여 마이크로니들을 제조하면, 미세섬유 구조체가 3차원으로 서로 얽혀있는 네트워크 구조를 갖고 있기 때문에 니들을 형성하는 몰드 캐비티(cavity) 내로 들어가지 못하고 기판(substrate)부 뒷부분에만 고르게 분산되므로, 기존의 마이크로니들 제조방법인 몰딩 기술을 이용하여 한번의 캐스팅(casting)으로도 수용성 니들부 및 불용성 기판(substrate)부의 이중 구조를 지닌 마이크로니들 패치가 제공될 수 있다.
한편, 본 발명의 마이크로니들의 기판부 뒷면에 약물 주입공을 형성시키고, 이를 통해 약물을 주입하는 경우에는, 약물을 미세섬유가 빠르게 흡수하고 지속적으로 마이크로니들부로 전달하는 reservoir 역할을 하여 피부 내 수분에 의하여 팽윤 또는 용해된 마이크로니들부터 형성된 마이크로채널을 통해 다량의 약물을 피부로 전달할 수 있다.
또한, 기판부 뒷면에 약물 주입공을 형성시키고, 이를 통해 약물을 주입하는 경우, 반드시 니들 내에 약물을 포함시킬 필요가 없어서, 마이크로니들의 제조과정에서 약물이 변성되거나, 마이크로니들의 크기로 인해 약물 로딩양이 제한되는 문제점을 해결하는 효과가 있다.
도 1은 미세섬유 네트워크 구조체를 함유한 마이크로니들 패치의 제조 과정을 보여주는 모식도이다.
도 2는 미세섬유 네트워크 구조체를 함유한 마이크로니들 패치의 약물 전달 원리를 보여주는 모식도이다.
도 3은 본 발명의 일 구현예에 따른 미세섬유 네트워크 구조체 및 실시예 1로 제조된 마이크로니들 패치의 미세구조를 보여주는 사진이다.
도 4는 비교예 1로 제조된 마이크로니들 패치의 형상이다.
도 5은 실시예 1과 비교예 2의 물에 대한 용해 및 구조적 특성 차이를 보여주는 사진이다.
도 6은 실시예 1과 비교예 2를 돼지피부에 적용하여 마이크로니들의 피부 천공율을 확인한 결과이다.
도 7은 실시예 1과 비교예 2를 돼지피부에 부착하여 모델 약물 수용액을 적용했을 때, 약물의 수평적/수직적 전달을 확인한 결과이다.
도 8는 실시예 1와 비교예 2를 돼지피부에 부착하여 모델 약물 수용액을 적용했을 때, 약물의 피부투과량을 분석한 결과이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명 하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예
실험예 1. 미세섬유 수분산체 네트워크를 함유한 마이크로니들 패치의 제조
합성 시 마이크로니들 패치용 혼합물의 구성은 수불용성(water-insoluble) 물질인 더가든오브내추럴솔루션에서 제공받은 Aqua Cellulose SolutionTM(바이오셀룰로오스의 알코올기가 카복실기로 치환되어 수분산이 가능한 바이오셀룰로오스 미세섬유 수분산체 1.5%, 증류수 95.5%, 헥산디올 3%)와 수용성 물질인 히알루로닉산(hyaluronic acid), 카복실메틸셀룰로스(carboxymethyl cellulose), 트레할로스(trehalose), 글리세린(glycerin), 증류수였다(표 1 참조). 이 혼합물을 실리콘 몰드에 도포하여 30분 간 진공을 잡은 후 50도에서 3시간 동안 건조하였다. 건조된 패치를 몰드로부터 분리하여 패치 중앙에 6 mm 직경의 약물 주입용 구멍을 뚫었다(도 1 참조).
물질 실시예 1 비교예 1 비교예 2
히알루론산 2.2 2.2 2.2
카복실메틸셀룰로오스 1.8 1.2 2.55
트레할로스 3.0 3.0 3.0
글리세린 2.3 2.3 2.3
Aqua Cellulose SolutionTM 50.0 91.4 0
증류수 up to 100 up to 100 up to 100
제조 여부 X
최종 패치 내 미세섬유 중량(%) 7.5 13.6 0
상기 표 1에서 실시예 1은 미세섬유 수분산체 네트워크(건조중량 기준 7.5%)를 함유한 마이크로니들 패치이다.
비교예 1은 미세섬유 수분산체 네트워크(건조중량 기준 13.6%)를 함유한 마이크로니들 패치이다.
비교예 2은 미세섬유 수분산체 네트워크를 함유하지 않은 용해성 마이크로니들 패치이다.
상기 실시예 1 및 비교예 1에서 사용된 바이오셀룰로오스 미세섬유의 구조를 보여주는 주사전자현미경 사진을 포함하여, 실시예 1에서 제조된 마이크로니들 패치의 주사전자현미경 사진을 도 3에 나타내었다. 도 3에서 확인되는 바와 같이, 실시예 1에서 제조된 마이크로니들 패치의 미세구조를 측정하였을 때, 니들 표면과 패치의 전면에서는 미세섬유가 거의 관찰되지 않았으나, 패치의 후면에서는 전 영역에서 미세섬유가 균일하게 분포한 이중 구조를 가지고 있음을 확인할 수 있었다(도 3 참조).
또한, 마이크로니들 패치를 제조할 수 있는 (마이크로니들 팁이 잘 형성될 수 있는) 바이오셀룰로오스 미세섬유 수분산체의 중량은 13.6% 미만이 되어야 하며, 그 이상을 첨가할 경우 니들의 뾰족한 팁이 생성되지 않아 사용이 불가능한 것으로 확인되었다(표 1 의 비교예 1 및 도 4 참조).
실험예 2. 미세섬유 함유 마이크로니들 패치의 구조적 특성 확인
상기 실험예 1에서 제조한 미세섬유를 함유한 마이크로니들 패치(실시예 1)와 미세섬유 미포함 마이크로니들 패치(비교예 2)의 구조 및 용해 특성 비교하기 위하여, 약물 주입용 구멍을 뚫기 전의 각 패치에 물을 소량(0.1 mL) 떨어뜨려 형상 변화를 관찰하였다. 그 결과 비교예 2의 경우 니들을 포함한 패치 전체가 물에 녹아 형태가 사라지는 반면(도 5의 다 및 라 참조), 실시예 1은 니들 부분만 녹고 패치 기판부의 형태는 유지되는 것을 확인하였다(도 5의 가 및 나 참조).
실험예 3. 미세섬유 함유 및 미함유 마이크로니들 패치의 피부 천공율 비교
상기 실험예 1에서 제조한 미세섬유를 함유한 마이크로니들 패치(실시예 1)와 미세섬유 미포함 마이크로니들 패치(비교예 2)를 돼지피부에 각각 부착하고 20 N의 힘으로 10초간 적용 후 패치를 제거하고 trypan blue 수용액으로 피부에 생성된 마이크로채널을 염색하여 피부 천공율을 비교하였다. 그 결과 미세섬유 포함 여부와 관계없이 피부 천공율은 90% 이상을 나타내었다(도 6 참조).
실험예 4. 미세섬유를 함유한 마이크로니들 패치의 약물 전달 능력의 가시화(visualization)
상기 실험예 1에서 제조한 미세섬유를 함유한 마이크로니들 패치(실시예 1)와 미세섬유 미포함 마이크로니들 패치(비교예 2)를 돼지피부에 각각 부착하고 모델 약물인 로다민 B(rhodamine B) 수용액(300 μg/mL, 100 μL)을 패치의 홀 구조에 주입하여 약물 수용액의 수평적 분포를 비교하였다. 비교예 2(도 7나 참조)에서 로다민 B가 마이크로니들 패치의 일부 영역에만 분포한 것과 다르게 실시예 1(도 7가 참조)에서는 패치 영역 전체에 로다민 B가 고르게 퍼져있는 것을 확인할 수 있었다. 또한 실시예 1을 적용한 돼지피부와 아무것도 부착하지 않은 돼지피부에 각각 플루오레세인(fluorescein) 수용액 (50 μg/mL, 2 mL) 도포 후 패치와 잔여 용액을 제거하고 피부를 절편하여 약물의 수직적 분포를 확인하였다. 마이크로니들 패치 없이 약물을 도포한 경우 돼지피부 표면에서만 플루오레세인의 약한 형광이 관찰된 반면(도 7의 마 및 바 참조), 실시예 1의 경우 피부 깊숙히 강한 형광이 관찰되었다(도 7의 다 및 라 참조). 그 결과, 미세섬유를 함유한 마이크로니들 패치는 패치 전체 영역에서 피부 깊숙히 약물을 전달할 수 있음을 확인하였다.
실험예 5. 미세섬유를 함유한 마이크로니들 패치를 활용한 약물의 피부 투과량 평가
상기 실험예 1에서 제조한 실시예 1과 비교예 2를 돼지피부에 부착하여 receptor가 phosphate-buffered saline(pH 7.4,Gibco)로 채워진 프란츠셀에 장착하였다. 각 패치의 홀 구조에 모델 약물인 로다민 B 수용액(300 μg/mL, 100 μL)를 주입하여 17시간 동안 37도 및 상대습도 50%에서 약물을 투과시켰고, 이후 패치 및 흡수되지 않은 용액을 제거하여 피부 및 receptor으로의 약물 투과량을 분석하였다(도 8가 참조). 또한 실시예 1을 적용한 돼지피부와 아무것도 부착하지 않은 돼지피부에 각각 플루오레세인(fluorescein) 수용액(50 μg/mL, 2 mL) 도포 후 상기와 동일한 과정을 통해 약물 투과량을 분석하였다(도 8의 나 참조). 그 결과, 니들에 약물을 담지하지 않고도, 패치를 부착하지 않고 모델 약물 수용액만 도포한 것과 비교했을 때 훨씬 더 많은 양의 약물이 피부 내로 전달되었다. 뿐만 아니라, 비교예 2에 비해서도 더 많은 약물이 전달 가능한 것을 확인할 수 있었다.

Claims (14)

  1. 미세섬유 네트워크 구조체; 및 마이크로니들 형성 물질을 포함하는 마이크로니들.
  2. 제1항에 있어서, 상기 네트워크 구조체를 형성하는 미세섬유는 셀룰로오스 섬유, 아크릴 섬유, 키토산 섬유, 폴리에틸렌 섬유, 폴리프로필렌 섬유, 폴리에틸렌테레프탈레이트 섬유, 폴리이미드 섬유 및 폴리아마이드 섬유로 이루어진 군으로부터 선택되는 1 이상인 것을 특징으로 하는 마이크로니들.
  3. 제1항에 있어서, 상기 마이크로니들은 복수 개의 바늘이 형성된 니들부 및 상기 복수 개의 바늘이 부착되어 있는 기판(substrate)부를 포함하고,
    상기 미세섬유 네트워크 구조체는 상기 기판부 내에 포함되어 있는 것을 특징으로 하는 마이크로니들.
  4. 제3항에 있어서, 상기 미세섬유 네트워크 구조체는 상기 니들부 내에는 포함되어 있지 아니한 것을 특징으로 하는 마이크로니들.
  5. 제1항에 있어서, 상기 마이크로니들 형성 물질은 피부 내에서 팽윤 또는 용해되는 것을 특징으로 하는 마이크로니들.
  6. 제1항에 있어서, 상기 마이크로니들 형성 물질은 수용해성 고분자를 포함하는 것을 특징으로 하는 마이크로니들.
  7. 제1항에 있어서, 상기 마이크로니들 형성 물질은 히알루론산 또는 그의 염, 카복시메틸 셀룰로오스 또는 그의 염, 비닐피롤리돈-비닐아세테이트 공중합체, 폴리비닐알코올, 폴리비닐피릴리돈 및 당류로 이루어진 군으로부터 선택되는 1 이상을 포함하는 것을 특징으로 하는 마이크로니들.
  8. 제1항에 있어서, 상기 마이크로니들 내에 포함된 미세섬유 네트워크 구조체의 함량은 마이크로니들 전체 중량 대비 0.01 중량% 이상 내지 13.6 중량% 미만인 것을 특징으로 하는 마이크로니들.
  9. 제3항에 있어서, 상기 마이크로니들의 기판 부에 약물 주입공이 형성되어 있는 것을 특징으로 하는 마이크로니들.
  10. 제9항에 있어서, 상기 약물 주입공을 통해 약물을 주입하는 경우, 상기 기판부 내에 포함되어 있는 미세섬유 네트워크 구조체에 의하여 약물이 마이크로니들 패치의 전 면적으로 퍼져나가는 것을 특징으로 하는 마이크로니들.
  11. 제1항에 있어서 상기 미세섬유 네트워크 구조체는 산화된 바이오셀룰로오스 미세섬유 네트워크 수분산체인 것을 특징으로 하는 마이크로니들.
  12. 제11항에 있어서, 상기 산화된 바이오셀룰로오스는 산화 전 바이오셀룰로오스에 포함된 전체 알코올기 중 0.8 mmol/g 셀룰로오스 이상이 카복실기로 치환된 것을 특징으로 하는 마이크로니들.
  13. 제1항 내지 제12항 중 어느 하나의 항에 따른 마이크로니들 및 별도로 구비되는 약물을 포함하는 마이크로니들 키트.
  14. 제9항에 따른 마이크로니들을 준비하는 단계; 및
    상기 마이크로니들의 기판 부에 형성된 약물 주입공을 통해 유효성분을 주입하는 단계
    를 포함하는, 미용 목적을 위하여 피부에 효율적으로 유효성분을 주입하는 방법.
PCT/KR2021/007700 2020-06-30 2021-06-18 미세섬유 네트워크 구조체를 함유한 마이크로니들 WO2022005071A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022581638A JP2023533510A (ja) 2020-06-30 2021-06-18 微細繊維ネットワーク構造体を含むマイクロニードル
CN202180046026.8A CN115803078A (zh) 2020-06-30 2021-06-18 含有微纤维网络结构体的微针
US18/013,828 US20230302266A1 (en) 2020-06-30 2021-06-18 Microneedle comprising microfiber network structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0080091 2020-06-30
KR20200080091 2020-06-30
KR1020210055845A KR102621807B1 (ko) 2020-06-30 2021-04-29 미세섬유 네트워크 구조체를 함유한 마이크로니들
KR10-2021-0055845 2021-04-29

Publications (1)

Publication Number Publication Date
WO2022005071A1 true WO2022005071A1 (ko) 2022-01-06

Family

ID=79316438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007700 WO2022005071A1 (ko) 2020-06-30 2021-06-18 미세섬유 네트워크 구조체를 함유한 마이크로니들

Country Status (4)

Country Link
US (1) US20230302266A1 (ko)
JP (1) JP2023533510A (ko)
CN (1) CN115803078A (ko)
WO (1) WO2022005071A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114366091A (zh) * 2022-01-17 2022-04-19 礼诚(北京)国际生物医药科技有限公司 一种连续监测或检测体内分析物的微针贴片、其制备方法及相关装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115089862B (zh) * 2022-06-09 2023-11-28 中国科学院理化技术研究所 一种基于三维骨架结构的水凝胶微针贴片及其制备方法和应用
CN117159510A (zh) * 2023-10-16 2023-12-05 中科微针(北京)科技有限公司 一种含透气基底材料的微针膜及其制备方法
CN117442547A (zh) * 2023-11-09 2024-01-26 广州市妇女儿童医疗中心 一种用于血管瘤治疗的微针及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130006259A (ko) * 2011-12-13 2013-01-16 주식회사 스몰랩 섬유를 포함하는 미세돌기 마사지 패치 및 그 제조방법
KR20150005138A (ko) * 2013-07-04 2015-01-14 주식회사 엘지생활건강 이층 구조의 나노 크기 구멍을 가진 마이크로니들 및 이의 제조 방법
US20160129164A1 (en) * 2014-11-10 2016-05-12 SMALL LAB Co., Ltd Micro-needle and micro-needle patch
JP2016189845A (ja) * 2015-03-31 2016-11-10 日本写真印刷株式会社 マイクロニードルシート
KR20170103698A (ko) * 2016-03-03 2017-09-13 주식회사 엘지생활건강 바이오셀룰로오스 미세섬유 수분산체 네트워크 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130006259A (ko) * 2011-12-13 2013-01-16 주식회사 스몰랩 섬유를 포함하는 미세돌기 마사지 패치 및 그 제조방법
KR20150005138A (ko) * 2013-07-04 2015-01-14 주식회사 엘지생활건강 이층 구조의 나노 크기 구멍을 가진 마이크로니들 및 이의 제조 방법
US20160129164A1 (en) * 2014-11-10 2016-05-12 SMALL LAB Co., Ltd Micro-needle and micro-needle patch
JP2016189845A (ja) * 2015-03-31 2016-11-10 日本写真印刷株式会社 マイクロニードルシート
KR20170103698A (ko) * 2016-03-03 2017-09-13 주식회사 엘지생활건강 바이오셀룰로오스 미세섬유 수분산체 네트워크 조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114366091A (zh) * 2022-01-17 2022-04-19 礼诚(北京)国际生物医药科技有限公司 一种连续监测或检测体内分析物的微针贴片、其制备方法及相关装置
CN114366091B (zh) * 2022-01-17 2023-08-22 礼诚(北京)国际生物医药科技有限公司 一种连续监测或检测体内分析物的微针贴片、其制备方法及相关装置

Also Published As

Publication number Publication date
CN115803078A (zh) 2023-03-14
JP2023533510A (ja) 2023-08-03
US20230302266A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
WO2022005071A1 (ko) 미세섬유 네트워크 구조체를 함유한 마이크로니들
WO2014035206A2 (ko) 색전용 마이크로스피어의 제조방법 및 약물 함유 나노수송체가 결합된 마이크로스피어의 제조방법
CN108992432B (zh) 用作药物递送系统的无纺布膜
WO2010024615A2 (ko) 용매교류증발법에 의한 서방출성 미립구의 제조방법
US9180195B2 (en) Controlled release gels
TW201043278A (en) Microneedle array using porous basal disc and method for producing thereof
EP3473242A1 (en) Hyaluronic acid microstructure having excellent solubility characteristics
WO2010106063A2 (de) Mit therapeutika und diagnostika beladene kompositmaterialien umfassend polymernanopartikel und polymerfasern
CN113332588B (zh) 用于口腔黏膜给药的尖端载药可溶性微针贴片及其制备方法
EP1317254B1 (de) Retardpartikeldispersion
WO2016013755A1 (ko) 레티놀 또는 레티놀 유도체를 함유하는 마이크로니들
WO2016089163A1 (ko) 생체친화형 섬유상 매트릭스, 이를 포함하는 마스크 팩 및 그 제조방법
KR100998467B1 (ko) 고분자 마이셀 약물 조성물 및 이의 제조방법
KR102598159B1 (ko) 표면개질 미립구를 포함하는 마이크로니들 및 그 제조방법
DE19929647A1 (de) Oral verabreichbares Nifedipinpellet sowie Verfahren zur Herstellung desselben
WO2000064414A2 (de) Feste pharmazeutische formulierungen von säurelabilen protonenpumpenblockern
US20180000744A1 (en) Nanoencapsulated compositions
KR102621807B1 (ko) 미세섬유 네트워크 구조체를 함유한 마이크로니들
CN108578393B (zh) 一种药物渗透促进型载药电纺纤维膜及其制备方法
WO2023128280A1 (ko) 표면개질 미립구를 포함하는 마이크로니들 및 그 제조방법
KR102553293B1 (ko) 세마글루타이드를 포함하는 마이크로니들 및 이의 제조방법
WO2023128281A1 (ko) 호르몬 함유 표면개질 미립구를 포함하는 마이크로니들 및 그 제조방법
WO2023022217A1 (ja) 高性能マイクロニードルアレイ
Son et al. Electrospining of Nanofibrous Meshes Composed of Hypromellose and Poly (vinyl alcohol) for One-Day Release of Cationic Peptide
Deshpande et al. Microneedle-assisted transdermal delivery of carvedilol nanosuspension for the treatment of hypertension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21833149

Country of ref document: EP

Kind code of ref document: A1