WO2022004851A1 - アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ - Google Patents
アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ Download PDFInfo
- Publication number
- WO2022004851A1 WO2022004851A1 PCT/JP2021/024993 JP2021024993W WO2022004851A1 WO 2022004851 A1 WO2022004851 A1 WO 2022004851A1 JP 2021024993 W JP2021024993 W JP 2021024993W WO 2022004851 A1 WO2022004851 A1 WO 2022004851A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- aluminum electrolytic
- electrolytic capacitor
- pulp
- short
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 137
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 113
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 113
- 229920003043 Cellulose fiber Polymers 0.000 claims abstract description 68
- 239000004627 regenerated cellulose Substances 0.000 claims abstract description 51
- 238000012360 testing method Methods 0.000 claims abstract description 32
- 230000015556 catabolic process Effects 0.000 claims abstract description 10
- 241000196324 Embryophyta Species 0.000 claims description 47
- 240000000982 Malva neglecta Species 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 239000000835 fiber Substances 0.000 description 61
- 239000010410 layer Substances 0.000 description 47
- 230000000052 comparative effect Effects 0.000 description 26
- 239000002994 raw material Substances 0.000 description 24
- 238000000034 method Methods 0.000 description 22
- 230000032683 aging Effects 0.000 description 21
- 239000008151 electrolyte solution Substances 0.000 description 21
- 238000010009 beating Methods 0.000 description 19
- 229920000433 Lyocell Polymers 0.000 description 17
- 238000002156 mixing Methods 0.000 description 14
- 240000000907 Musa textilis Species 0.000 description 13
- 241000209504 Poaceae Species 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000011888 foil Substances 0.000 description 9
- 241000219071 Malvaceae Species 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 6
- 235000017491 Bambusa tulda Nutrition 0.000 description 6
- 241001330002 Bambuseae Species 0.000 description 6
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 6
- 241000209140 Triticum Species 0.000 description 6
- 235000021307 Triticum Nutrition 0.000 description 6
- 239000011425 bamboo Substances 0.000 description 6
- 244000198134 Agave sisalana Species 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- 240000000797 Hibiscus cannabinus Species 0.000 description 4
- 229920000297 Rayon Polymers 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002964 rayon Substances 0.000 description 4
- 230000001603 reducing effect Effects 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000010902 straw Substances 0.000 description 4
- 235000011624 Agave sisalana Nutrition 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 3
- 240000004792 Corchorus capsularis Species 0.000 description 3
- 235000010862 Corchorus capsularis Nutrition 0.000 description 3
- 240000007594 Oryza sativa Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- 235000011777 Corchorus aestuans Nutrition 0.000 description 2
- 229920001407 Modal (textile) Polymers 0.000 description 2
- 229920001131 Pulp (paper) Polymers 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 241000609240 Ambelania acida Species 0.000 description 1
- 229920000875 Dissolving pulp Polymers 0.000 description 1
- 241000945868 Eulaliopsis Species 0.000 description 1
- 240000000018 Gnetum gnemon Species 0.000 description 1
- 235000008612 Gnetum gnemon Nutrition 0.000 description 1
- 241000234295 Musa Species 0.000 description 1
- 241000234615 Musaceae Species 0.000 description 1
- 240000003492 Neolamarckia cadamba Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 235000021015 bananas Nutrition 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/02—Diaphragms; Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/025—Solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/025—Solid electrolytes
- H01G9/032—Inorganic semiconducting electrolytes, e.g. MnO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the present invention relates to a separator for an aluminum electrolytic capacitor suitable for use in an aluminum electrolytic capacitor, and an aluminum electrolytic capacitor using the separator for an aluminum electrolytic capacitor.
- an electrolytic paper is interposed between an anode aluminum foil and a cathode aluminum foil as a separator to prepare a capacitor element, and the capacitor element is impregnated with an electrolytic solution and inserted into a case. , Made by sealing.
- the main role of the separator is to isolate both electrodes and to hold the electrolyte.
- the separator is required to have a high shielding property while having a low resistance.
- the material of the separator is required to have electrical insulation, and is required to have hydrophilicity and lipophilicity in order to retain various kinds of electrolytic solutions. Therefore, a separator made of cellulose, which has these characteristics, is used.
- Short circuits of aluminum electrolytic capacitors related to the separator include (1) compression or breakage of the separator due to the tab part, (2) burr at the end of the electrode foil, or penetration of the separator due to burr at the electrode foil and the lead wire connection part. Or damage, (3) breakage of the separator due to mechanical stress such as vibration or impact, (4) electrical stress such as spark discharge, (5) oxide film derived from the oxide film defect part during aging during capacitor manufacturing. Dielectric breakdown, etc. can be mentioned.
- the uniformity and strength characteristics of the separator affect the resistance to these short-circuit causes, but improving the short-circuit resistance performance is an eternal issue for the separator.
- a separator using the techniques described in Patent Document 1 and Patent Document 2 that is, a circular net multilayer layer composed of Manila hemp pulp and Espart pulp. Separator and the like are generally used.
- Manila hemp pulp is mainly produced in the Philippines
- Espart pulp is mainly produced in Tunisia. in the process of. Therefore, there is an urgent need to develop alternatives using stably available raw materials.
- the separator In aluminum electrolytic capacitors, the separator has a great influence on the impedance characteristics, especially the equivalent series resistance (ESR). It is known that the smaller the cross-sectional shape of the pulp used for the separator and the smaller the diameter, the lower the impedance characteristics. Wood-derived pulp, such as softwood pulp and hardwood pulp, has a large production volume and can be stably obtained. However, since wood pulp has a flat cross-sectional shape and a large size, it is not suitable as a raw material for a low-pressure separator that emphasizes impedance characteristics.
- ESR equivalent series resistance
- Non-wood pulps that are industrially mass-produced and relatively inexpensively available include mallow plant pulps, gramineous plant pulps, and gramineous plant pulps.
- Patent Document 3 proposes a separator using wara fiber and Manila hemp pulp
- Patent Document 4 proposes a separator using bamboo pulp.
- both Patent Document 3 and Patent Document 4 are intended to improve the sound quality of audio equipment.
- the main required characteristics for a separator for audio equipment are the sound quality that humans perceive, which is significantly different from the impedance characteristics required for a general low-voltage separator.
- Mallow plant pulp, Gramineae plant pulp, and Gramineae plant pulp contain a large amount of plant-derived soft cells, and the soft cells are much wider, shorter, and smaller than the pulp. If a large number of soft cells are present in the separator, problems such as a decrease in tensile strength and a decrease in tear strength occur in addition to deterioration of impedance characteristics.
- the average fiber length of the main fiber is shorter in the Aoi family plant pulp, the Gramineae plant pulp, and the Gramineae plant pulp, and the strength characteristics such as tensile strength and tear strength are shorter than those of coniferous tree pulp and Manila hemp pulp. Inferior. Therefore, it has been difficult to realize the short-circuit resistance and impedance performance required for general low-pressure separators with separators mainly composed of mallow plant pulp, tiliaceae plant pulp, and gramineous plant pulp. ..
- Regenerated cellulose fibers that can be beaten have the characteristic that when they are beaten to a high degree, fibrils with high rigidity and a small fiber diameter are generated, and it is known that a separator having excellent short-circuit resistance and impedance characteristics can be produced. Therefore, in recent years, many separators using regenerated cellulose fibers that can be beaten have been proposed. Since the regenerated cellulose fiber that can be beaten is an industrial product, it can be stably obtained.
- Patent Document 5 proposes a method of using regenerated cellulose fiber that can be beaten in order to improve the denseness of the separator and improve the impedance characteristics.
- the separator using the beaten regenerated cellulose fiber has a highly dense and microporous paper quality, and the aluminum electrolytic capacitor produced using this separator has a reduced short-circuit defect rate and improved impedance characteristics.
- Patent Document 5 when a separator made of 100% by mass of regenerated cellulose fiber that can be beaten is used as in Patent Document 5, the tensile strength and tear strength are low, so that the separator breaks in the manufacturing process of the aluminum electrolytic capacitor. was there. Further, since the strength is low, the resistance to stressed parts such as tabs and foil burrs of aluminum electrolytic capacitors is low, and the separator may be torn and a short circuit may occur.
- Patent Document 5 also proposes blending Manila hemp pulp, sisal hemp pulp, or the like with regenerated cellulose fiber that can be beaten.
- Manila hemp pulp or sisal hemp pulp is blended with beatable regenerated cellulose fiber, tensile strength and tear strength are improved, but Manila hemp pulp and sisal hemp pulp, which are rarely beaten and have a high CSF value, have a long fiber length.
- the longer the fiber length the more difficult it is to disperse the fiber uniformly in water, and the more difficult it is to form a uniform paper layer during papermaking.
- it is necessary to beat Manila hemp pulp and sisal pulp to shorten the fiber length but if Manila hemp pulp and sisal pulp are beaten, the impedance characteristics will be greatly deteriorated. Few beats have been made.
- Patent Document 6 natural cellulose fibers A and natural cellulose fibers B are beaten with improved tensile strength and short-circuit resistance while maintaining the denseness and impedance characteristics of a separator made of highly beaten regenerated cellulose.
- a separator made of the regenerated cellulose fiber has been proposed.
- the separator of Patent Document 6 uses a natural cellulose fiber having a short average fiber length by highly beating the regenerated cellulose fiber in order to make a paper having a good texture with a long net paper machine. Therefore, the separator of Patent Document 6 has a relatively short average fiber length, and cannot improve the tear strength as compared with the separator of 100% by mass of regenerated cellulose fiber that can be beaten. In the manufacturing process of an aluminum electrolytic capacitor, if the separator is twisted or the like when tension is applied to the separator, the separator having a low tear strength may break.
- the separator for an aluminum electrolytic capacitor of the present invention is a separator for an aluminum electrolytic capacitor interposed between the anode and the cathode of the aluminum electrolytic capacitor, and is composed of natural cellulose fiber and beaten regenerated cellulose fiber, and the separator insulation is broken.
- the short-circuit rate when 500 V is applied in the test is 10% or less.
- the aluminum electrolytic capacitor of the present invention includes an anode, a cathode, and a separator interposed between the anode and the cathode, and the separator for the aluminum electrolytic capacitor of the present invention is used as the separator.
- the short-circuit rate when 500 V is applied in the separator insulation failure test is 10% or less, inexpensive fibers such as mallow plant pulp, tiliaceae plant pulp and gramineous plant pulp are used. It becomes possible to construct a separator.
- the separator for an aluminum electrolytic capacitor of the present invention is a separator for an aluminum electrolytic capacitor interposed between the anode and the cathode of the aluminum electrolytic capacitor, and the short-circuit rate when 500 V is applied in the separator dielectric breakdown test is 10% or less. It has a certain configuration.
- the aluminum electrolytic capacitor of the present invention includes a separator interposed between the anode and the cathode, and the anode and the cathode, and the separator for the aluminum electrolytic capacitor of the present invention is used as the separator.
- one or more kinds of natural cellulose fibers selected from the group consisting of plant pulp of Aoi family, plant pulp of Shinanoki family, and plant pulp of Rice family are preferably beaten with 50 to 90% by mass.
- the separator is composed of 50 to 10% by mass of the regenerated cellulose fiber. This makes it possible to construct a separator using stably available raw materials.
- the beaten regenerated cellulose fiber is superior in short-circuit resistance and impedance characteristics as compared with one or more kinds of natural cellulose fibers selected from the group consisting of plant pulp of Aoi family, plant pulp of Shinanoki family, and plant pulp of Gramineae family. ..
- a separator composed of only one or more kinds of natural cellulose fibers selected from the group consisting of plant pulp of Aoi family, plant pulp of Shinanoki family, and plant pulp of Gramineae family.
- the strength and tear strength can be improved.
- the degree of beating of the natural cellulose fiber to improve the tensile strength can be reduced, and the impedance characteristic of the separator is further improved. It becomes possible to do.
- the proportion of the beaten regenerated cellulose fiber is less than 10% by mass, it becomes difficult to obtain the effect of improving the short-circuit resistance performance and the strength characteristic and the effect of reducing the impedance.
- a circular net paper machine rotates a netted cylinder (hereinafter abbreviated as "circular net") in a tank containing a pulp suspension, and when water flows into the cylinder through the net due to the difference in water level. It is a paper machine for forming a paper layer on a net.
- pulp accumulates on the net in the initial stage, but the net gradually becomes clogged in the subsequent stage, so even fine pulp and soft cells that flowed out with water in the initial stage It will be included in the paper layer in the middle and later stages. Therefore, the percentage of soft cells present on the front and back of the paper made by the circular net paper machine is generally different.
- Malvaceae plant pulp, Tiliaceae plant pulp, and Gramineae plant pulp contain a large amount of soft cells.
- the materials constituting the separator can be classified into fibrous pulp and soft cells according to their shape. Since soft cells are much wider, shorter and smaller than pulp, they adversely affect the impedance characteristics and tensile strength of the separator. Since the average fiber length of Aoi family plant pulp, Gramineae plant pulp, and Gramineae plant pulp is shorter than that of Manila hemp pulp, it is easy to make the texture of paper uniform and it is easy to produce a separator with excellent fineness. There is a feature. However, since the average fiber length is short, the strength characteristics such as tensile strength and tear strength tend to be inferior. By reducing the number of soft cells in the separator, the average fiber length can be increased and the strength characteristics can be improved.
- the soft cells in the separator are formed by superimposing a plurality of paper layers composed of materials only in the initial stage of paper layer formation, that is, paper layers having a low soft cell content, to form one separator.
- the number can be significantly reduced.
- the beaten regenerated cellulose fibers have fibrils with a small fiber diameter, so they form a dense paper layer.
- the proportion of beaten regenerated cellulose fibers in the separator of the present invention is large, the yield of soft cells of natural fibers is improved, so that it is difficult to reduce the impedance characteristics even if the proportion is increased. Therefore, the proportion of beaten regenerated cellulose fibers in the separator of the present invention needs to be 50% by mass or less.
- the circular net paper machine controls the weight per unit area of paper (hereinafter abbreviated as "basis weight") by changing the pulp suspension concentration and the circular net rotation speed. Can be done. Therefore, when producing paper of the same basis weight at the same speed, the pulp suspension concentration can be halved, for example, by changing from one circular net to two circular nets. The thinner the concentration of the pulp suspension, the less flexible cells in the separator can be. The concentration of the pulp suspension is preferably 0.3% or less.
- the size of the opening of the net is also important.
- the size of general soft cells is about (20 to several tens of ⁇ m) ⁇ (20 to 150 ⁇ m), and the opening of the net is 0.1 mm or more ⁇ 0.1 mm or more in order to promote the outflow of soft cells. Is preferable.
- the impedance characteristics of the separator are improved, and even with the use of Aoi family plant pulp, Shinanoki family plant pulp, and Gramineae plant pulp, Manila hemp pulp and Espart pulp. It is possible to realize the same level of impedance characteristics as the circular net multi-layer separator made of the above.
- the front-to-back ratio (anti-circular net contact surface / circular net contact surface) of the number of soft cells present on the separator surface is 5 or less.
- the number of soft cells it is difficult to make the front-to-back ratio less than 1 because there are few surfaces in contact with the circular net and many surfaces are not in contact with the circular net.
- the front-to-back ratio is larger than 5, the outflow of soft cells becomes insufficient, and the impedance characteristics and tensile strength of the separator tend to deteriorate.
- the ratio of the surface having a large number of soft cells to the surface having a small number of soft cells may be 5 or less.
- the mallow plant pulp, the tiliaceae plant pulp, and the gramineous plant pulp used in the present invention are not particularly limited, and any fiber can be used.
- any fiber can be used.
- Kenaf pulp, jute pulp, rice wara pulp, wheat wara pulp, bamboo pulp, bagus pulp, reed pulp, sabai grass pulp, dragon grass pulp, laran grass pulp and the like are preferably used. These materials may be used alone or in admixture of two or more. Further, these pulps may be bleached, refined pulp such as dissolving pulp, or mercerized pulp.
- the mallow plant pulp, the tiliaceae plant pulp, and the gramineous plant pulp used in the present invention are preferably beaten. However, depending on the density of the separator to be produced, the beating process may not be performed.
- regenerated cellulose fiber used in the present invention examples include solvent-spun rayon and polynosic rayon represented by lyocell.
- the present invention is not limited to these examples, and any regenerated cellulose fiber that can be beaten can be used.
- any fiber diameter of the regenerated cellulose fiber before beating can be used, but if the fiber diameter before beating is too large, the fluidity at the time of beating is poor and problems such as clogging are likely to occur. If the fiber diameter before beating is too small, the amount of fibril generated by beating is small, and it becomes difficult to secure the fineness. Therefore, the fiber diameter before beating is preferably 3 to 18 ⁇ m.
- the degree of beating of the regenerated cellulose fiber is preferably 200 ml or less in terms of CSF value. If the CSF value is higher than 200 ml, the precision of the separator becomes insufficient.
- the average fiber length of the regenerated cellulose fiber is preferably 1.0 mm or more. Further, if the average fiber length is too long, it becomes difficult to uniformly disperse it in water at the time of papermaking, so that the texture of the separator deteriorates and the short circuit resistance performance deteriorates. Therefore, the average fiber length of the regenerated cellulose fiber is preferably 3.5 mm or less.
- a beating machine used for preparing papermaking raw materials such as a disc refiner, a conical refiner, a high-pressure homogenizer, and a beater can be used without particular limitation.
- the beating treatment of the natural cellulose fiber and the regenerated cellulose fiber may be performed individually or may be performed in a mixed manner.
- additives such as a dispersant, an antifoaming agent, and a paper strength enhancer may be used as needed, as long as they do not impair the function as a separator for a capacitor.
- a water-soluble polymer may be applied after the separator is prepared.
- the raw materials used for each layer may be the same, and the degree of beating and the type of raw materials may be changed.
- the process can be simplified.
- the separator of the present invention has a configuration in which the short-circuit rate when 500 V is applied in the separator dielectric breakdown test is 10% or less. If the short-circuit rate when 500 V is applied in the separator dielectric breakdown test exceeds 10%, a short-circuit is likely to occur in the aging test of the aluminum electrolytic capacitor.
- the tensile strength of the separator is preferably 9.8 N / 15 mm or more.
- the separator is liable to break when the element of the aluminum electrolytic capacitor is manufactured.
- the thickness of the separator is preferably 20 to 120 ⁇ m. Since the diameter of the fiber cross section of the mallow plant pulp, the gramineous plant pulp, and the gramineous plant pulp is about 10 to 15 ⁇ m, the thickness is less than 20 ⁇ m when having a plurality of layers formed by a circular net paper machine. If this is the case, it is difficult to maintain the strength required for the separator. If the separator is thicker than 120 ⁇ m, it is disadvantageous for miniaturization of the aluminum electrolytic capacitor.
- the density of the separator is preferably 0.25 to 0.70 g / cm 3. If the density is lower than 0.25 g / cm 3 , the strength of the separator is significantly reduced. Attempting to increase the density above 0.70 g / cm 3 will greatly deteriorate the impedance characteristics of the capacitor.
- the specific tear strength of the separator of the present invention is 20 to 100 mN ⁇ m 2 / g, and the basis weight of the separator is preferably 8 g / m 2 or more.
- the specific tear strength of the separator is less than 20 mN ⁇ m 2 / g, the tear strength per unit basis weight of the separator is weak, and when the separator is twisted in the manufacturing process of the aluminum electrolytic capacitor, the separator is in the width direction. It tears easily and breaks easily.
- the specific tear strength of the separator exceeds 100 mN ⁇ m 2 / g, it means that the fiber length of the fibers constituting the separator is long. If the fiber length is long, the uniformity of the sheet may be lacking, and the fineness of the separator may be locally reduced.
- the basis weight of the separator is preferably 8 g / m 2 or more.
- separator for an aluminum electrolytic capacitor which is composed of natural cellulose fiber and beaten regenerated cellulose fiber and has excellent tear strength, short circuit resistance and impedance characteristics, can be obtained by the above separator configuration.
- the aluminum electrolytic capacitor of the present invention can be manufactured by using the above-mentioned separator for an aluminum electrolytic capacitor of the present invention.
- an aluminum electrolytic capacitor is formed by winding a separator between an anode aluminum foil and a cathode aluminum foil, and then impregnating it with an electrolytic solution, inserting it into a case, and then sealing it. Can be produced.
- CSF value The CSF value is in accordance with JIS P8121-2 "Pulp-Water freshness test method-Part 2: Canadian standard water freshness method” (ISO5267-2 "Pulps-Determination of drainability-Part2:” Canadian Standard “freeens measurement”). It is a measured value.
- the thickness of the separator is specified in "JIS C 2300-2" Electrical Cellulose Paper-Part 2: Test Method "5.1 Thickness", "5.1.1 Measuring Instrument and Measuring Method a) Outside. Using the micrometer of "When using a micrometer", the measurement was performed by the method of folding into 10 sheets of "5.1.3 When the paper is folded and the thickness is measured”.
- the basis weight of the separator was measured by the method specified in "JIS C 2300-2" Cellulose Paper for Electricity-Part 2: Test Method "6 Basis Weight”.
- the density of the separator was measured by the method specified in "JIS C 2300-2" Electrical Cellulose Paper-Part 2: Test Method "7.0A Density B Method”.
- the average fiber length is JIS P 8226-2 "Pulp-Fiber length measurement method by optical automation method Part 2: Non-polarization method” (ISO16065-2 "Pulps-Determination of Fiber longth by automatic analysis-Part2: United”. According to "light method"), Kajani Fiberlab Ver. 4 is the value of the length load average fiber length of the contour length (center line fiber length) measured using 4 (manufactured by Metso Measurement Co., Ltd.).
- the impedance of the manufactured aluminum electrolytic capacitor was measured at a frequency of 100 kHz at 20 ° C. using an LCR meter.
- a double disc refiner is made by mixing 60% by mass of Kenaf pulp, which is a plant pulp of the Aoi family with a CSF value of 550 ml, 30 ml of CSF value, which is a beaten regenerated cellulose fiber, and 40% by mass of lyocell fiber, which has an average fiber length of 1.75 mm.
- DDR is beaten to a CSF value of 150 ml, and a thickness of 50 ⁇ m, a basis mass of 22.5 g / m 2 , and a density of 0.45 g / cm 3 are used using a circular net three-layer paper machine. A three-layer separator was obtained.
- the tensile strength of this separator was 24.5 N / 15 mm, the specific tear strength was 47.9 mN ⁇ m 2 / g, the short-circuit rate when 500 V was applied was 0.2%, and the front-to-back ratio of soft cells was 2.5. .. 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm. This aluminum electrolytic capacitor did not short-circuit in the aging test and had an impedance of 0.18 ⁇ .
- Example 2 Using DDR, a raw material obtained by mixing 80% by mass of Kenaf pulp, which is a plant pulp of the Aoi family with a CSF value of 700 ml, 200 ml of CSF value, which is a beaten regenerated cellulose fiber, and 20% by mass of lyocell fiber having an average fiber length of 3.50 mm. After beating to a CSF value of 400 ml and making paper using a circular net three-layer paper machine, impregnated and coated with a paper strength enhancer which is a water-soluble polymer, the thickness is 60 ⁇ m, the basis weight is 15.0 g / m 2 , and the density is 0. A three-layer separator of .25 g / cm 3 was obtained.
- the tensile strength of this separator was 16.7 N / 15 mm, the specific tear strength was 98.0 mN ⁇ m 2 / g, the short-circuit rate when 500 V was applied was 5.8%, and the front-to-back ratio of soft cells was 1.7. .. 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm. This aluminum electrolytic capacitor did not short-circuit in the aging test and had an impedance of 0.15 ⁇ .
- DDR is a raw material obtained by mixing 50% by mass of jute pulp with a CSF value of 100 ml, which is a plant pulp of the family Corchorus capsularis, 0 ml of CSF value, which is a beaten regenerated cellulose fiber, and 50% by mass of lyocell fiber having an average fiber length of 1.05 mm.
- the fibers were beaten to a CSF value of 20 ml, and a two-layer separator having a thickness of 20 ⁇ m, a basis weight of 9.0 g / m 2 , and a density of 0.45 g / cm 3 was obtained using a circular net double-layer paper machine.
- the tensile strength of this separator was 10.0 N / 15 mm, the specific tear strength was 38.1 mN ⁇ m 2 / g, the short-circuit rate when 500 V was applied was 9.6%, and the front-to-back ratio of soft cells was 3.7. .. 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm. This aluminum electrolytic capacitor did not short-circuit in the aging test and had an impedance of 0.15 ⁇ .
- Example 4 A raw material obtained by mixing 90% by mass of bamboo pulp with a CSF value of 300 ml, which is a gramineous plant pulp, 10 ml of CSF value, which is a beaten regenerated cellulose fiber, and 10% by mass of lyocell fiber having an average fiber length of 1.35 mm, is used as a DDR.
- the fibers were beaten to a CSF value of 200 ml, and a two-layer separator having a thickness of 35 ⁇ m, a basis weight of 21.0 g / m 2 , and a density of 0.60 g / cm 3 was obtained using a circular net double-layer paper machine.
- the tensile strength of this separator was 32.3 N / 15 mm, the specific tear strength was 35.0 mN ⁇ m 2 / g, the short-circuit rate when 500 V was applied was 1.6%, and the front-back ratio of soft cells was 2.8. .. 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm. This aluminum electrolytic capacitor did not short-circuit in the aging test and had an impedance of 0.18 ⁇ .
- DDR is a raw material that is a mixture of 50% by mass of wheat straw pulp with a CSF value of 400 ml, which is a gramineous plant pulp, 100 ml of CSF value, which is a beaten regenerated cellulose fiber, and 50% by mass of lyocell fiber having an average fiber length of 2.55 mm.
- the fibers were beaten to a CSF value of 160 ml, and a two-layer separator having a thickness of 40 ⁇ m, a basis weight of 20.0 g / m 2 , and a density of 0.50 g / cm 3 was obtained using a circular net double-layer paper machine.
- the tensile strength of this separator was 16.7 N / 15 mm, the specific tear strength was 27.0 mN ⁇ m 2 / g, the short-circuit rate when 500 V was applied was 0.8%, and the front-back ratio of soft cells was 4.8. .. 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm. This aluminum electrolytic capacitor did not short-circuit in the aging test and had an impedance of 0.22 ⁇ .
- Example 6 A raw material obtained by mixing 70% by mass of dragon grass pulp having a CSF value of 650 ml, which is a gramineous plant pulp, 70 ml of CSF value, which is a beaten regenerated cellulose fiber, and 30% by mass of polynosic rayon fiber having an average fiber length of 2.20 mm. , A CSF value of 380 ml was beaten using DDR, and a two-layer separator having a thickness of 50 ⁇ m, a basis weight of 25.0 g / m 2 , and a density of 0.50 g / cm 3 was obtained using a rayon double-layer paper machine.
- the tensile strength of this separator was 29.4 N / 15 mm, the specific tear strength was 37.2 mN ⁇ m 2 / g, the short-circuit rate when 500 V was applied was 0.0%, and the front-to-back ratio of soft cells was 4.1. .. 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm. This aluminum electrolytic capacitor did not short-circuit in the aging test, and the impedance was 0.20 ⁇ .
- a three-layer separator of .23 g / cm 3 was obtained.
- the tensile strength of this separator was 10.8 N / 15 mm
- the specific tear strength was 104.9 mN ⁇ m 2 / g
- the short-circuit rate when 500 V was applied was 16.4%
- the front-to-back ratio of soft cells was 1.5.
- 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm.
- This aluminum electrolytic capacitor had a short circuit in the aging test, but the impedance of the capacitor that did not short circuit was 0.16 ⁇ .
- 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm.
- the separator was broken during the manufacturing of the device due to the weak tensile strength.
- This aluminum electrolytic capacitor had a short circuit in the aging test, but the impedance of the capacitor that did not short circuit was 0.13 ⁇ .
- DDR is a raw material obtained by mixing 95% by mass of bamboo pulp with a CSF value of 300 ml, which is a gramineous plant pulp, 10 ml of CSF value, which is a beaten regenerated cellulose fiber, and 5% by mass of lyocell fiber having an average fiber length of 1.35 mm.
- the fibers were beaten to a CSF value of 270 ml, and a two-layer separator having a thickness of 35 ⁇ m, a basis weight of 21.0 g / m 2 , and a density of 0.60 g / cm 3 was obtained using a circular net double-layer paper machine.
- the tensile strength of this separator was 23.5 N / 15 mm, the specific tear strength was 23.3 mN ⁇ m 2 / g, the short-circuit rate when 500 V was applied was 2.6%, and the front-to-back ratio of soft cells was 2.5. .. 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm. This aluminum electrolytic capacitor did not short-circuit in the aging test, and the impedance was 0.20 ⁇ .
- 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm.
- This aluminum electrolytic capacitor did not short-circuit in the aging test, and the impedance was 0.20 ⁇ .
- DDR is a raw material obtained by mixing 40% by mass of wheat straw pulp with a CSF value of 400 ml, which is a gramineous plant pulp, 100 ml of CSF value, which is a beaten regenerated cellulose fiber, and 60% by mass of lyocell fiber having an average fiber length of 2.55 mm.
- the fibers were beaten to a CSF value of 140 ml, and a two-layer separator having a thickness of 40 ⁇ m, a basis weight of 20.0 g / m 2 , and a density of 0.50 g / cm 3 was obtained using a circular net double-layer paper machine.
- the tensile strength of this separator was 18.6 N / 15 mm, the specific tear strength was 28.4 mN ⁇ m 2 / g, the short-circuit rate when 500 V was applied was 0.4%, and the front-back ratio of soft cells was 5.3. .. 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm. This aluminum electrolytic capacitor did not short-circuit in the aging test and had an impedance of 0.27 ⁇ .
- DDR is a raw material obtained by mixing 50% by mass of wheat straw pulp with a CSF value of 200 ml, which is a gramineous plant pulp, 0 ml of CSF value, which is a beaten regenerated cellulose fiber, and 50% by mass of lyocell fiber having an average fiber length of 0.95 mm.
- a three-layer separator having a thickness of 30 ⁇ m, a basis weight of 15.0 g / m 2 , and a density of 0.50 g / cm 3 was obtained by beating to a CSF value of 40 ml using a circular net three-layer paper machine.
- the tensile strength of this separator was 14.7 N / 15 mm, the specific tear strength was 18.3 mN ⁇ m 2 / g, the short-circuit rate when 500 V was applied was 0.4%, and the front-to-back ratio of soft cells was 4.6. .. 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm. Since the tear strength and the specific tear strength are weak, the separator breaks when the capacitor element is manufactured. This aluminum electrolytic capacitor did not short-circuit in the aging test, and the impedance was 0.21 ⁇ .
- 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm.
- This aluminum electrolytic capacitor did not short-circuit in the aging test and had an impedance of 0.26 ⁇ .
- 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm.
- This aluminum electrolytic capacitor did not short-circuit in the aging test, and the impedance was 0.20 ⁇ .
- 500 capacitor elements were manufactured using this separator, impregnated with an EG-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 100 V, a capacity of 100 ⁇ F, a diameter of 12.5 mm and a length of 20 mm.
- This aluminum electrolytic capacitor did not short-circuit in the aging test, and the impedance was 0.31 ⁇ .
- Table 1 shows the evaluation results of the impedances of the separators of Examples 1 to 6, Comparative Examples 1 to 7, Conventional Example 1 and Conventional Example 2 and the capacitors having a rated voltage of 100 V.
- the separator of Example 2 used a lyocell fiber having a CSF value of 200 ml and an average fiber length of 3.50 mm
- the separator of Comparative Example 1 used a lyocell fiber having a CSF value of 230 ml and an average fiber length of 3.70 mm.
- the texture of the separator deteriorated because the average fiber length of the raw material became long, and the density also fell below 0.25 g / cm 3, and as a result, the short-circuit rate when 500 V was applied deteriorated to 16.4%. did.
- the separator of Comparative Example 1 the ratio tear strength exceeds the 100mN ⁇ m 2 / g, was 104.9mN ⁇ m 2 / g.
- the specific tear strength exceeds 100 mN ⁇ m 2 / g, the average fiber length of the raw material becomes too long, which causes the formation to deteriorate and the short-circuit resistance of the separator deteriorates. Further, when the density is lower than 0.25 g / cm 3 , the tensile strength is greatly reduced.
- the separators of Example 3 and Comparative Example 2 are separators made by a circular net two-layer paper machine using the same raw materials, but the separator of Example 3 has a thickness of 20 ⁇ m and a basis weight of 9.0 g / m 2 .
- the separator of Comparative Example 2 has a thickness of 18 ⁇ m and a basis weight of 7.7 g / m 2 .
- the separator of Comparative Example 2 was made with a multi-layer circular net paper machine, but since the thickness was less than 20 ⁇ m, the tensile strength was greatly reduced to 9.0 N / 15 mm due to insufficient number of overlapping fibers, and the capacitor element. Breakage of the separator occurred during production.
- the short circuit rate when 500 V was applied became 23.0%, and an aging short circuit occurred.
- the short-circuit rate when 500V is applied is related to the short-circuit in the aging test of the aluminum electrolytic capacitor.
- the short-circuit rate when 500V is applied to the separator is set to 10. Must be less than or equal to%.
- the separator of the present invention preferably has a thickness of 20 ⁇ m or more and a basis weight of 8.0 g / m 2 or more.
- the separators of Example 4, Comparative Example 3 and Comparative Example 4 are separators having the same thickness and the same density, which are produced by changing the blending ratio of bamboo pulp and lyocell fiber.
- the proportion of the regenerated cellulose fiber of the separator of Example 4 is 10% by mass, that of Comparative Example 3 is 5% by mass and that of Comparative Example 4 is 0% by mass.
- the separator of Example 4 is superior to the separator of Comparative Example 4 in tensile strength, specific tear strength, and short-circuit rate when 500 V is applied.
- the separator of Comparative Example 3 had substantially the same tensile strength, specific tear strength, and short-circuit rate when 500 V was applied as compared with the separator of Comparative Example 4.
- the separators of Example 5 and Comparative Example 5 are separators having the same thickness and the same density, which are produced by changing the blending ratio of wheat straw pulp and lyocell fiber.
- the beaten regenerated cellulose fiber has excellent impedance characteristics as compared with the natural cellulose fiber, so that the impedance of the separator decreases as the blending ratio is increased.
- the impedance of the capacitor using the separator of Comparative Example 5 having a large proportion of lyocell fiber was higher than that of the capacitor using the separator of Example 5 having a small proportion of lyocell fiber.
- the beaten regenerated cellulose fibers have many fibrils with small fiber diameters, which improves the fineness of the separator and naturally flows out into white water when making paper with a circular net paper machine. This is because the soft cells in the fiber were captured and the ratio of soft cells in the separator was improved.
- the ratio of the beaten regenerated cellulose fibers is 50 mass. Must be less than or equal to%.
- the separators of Example 6 and Comparative Example 7 are separators produced by using the same raw material and using a circular net double-layer paper machine or a circular net single-layer paper machine.
- the separator of Comparative Example 7 produced by the circular net single-layer paper machine has a higher ratio of soft cells in the separator than the separator of Example 6 prepared by the circular net double-layer paper machine, and therefore has higher tensile strength and specific tear strength. The impedance became slightly lower, and the impedance of the capacitor deteriorated significantly. It is preferable to use a circular net multi-layer paper machine for paper making of the separator of the present invention.
- Example 7 Using DDR, a raw material obtained by mixing 50% by mass of bagasse pulp having a CSF value of 650 ml, which is a gramineous plant pulp, 200 ml of CSF value, which is a beaten regenerated cellulose fiber, and 50% by mass of lyocell fiber having an average fiber length of 3.50 mm.
- a three-layer separator having a thickness of 120 ⁇ m, a basis weight of 81.6 g / m 2 , and a density of 0.68 g / cm 3 was obtained by beating to a CSF value of 300 ml using a circular net three-layer paper machine.
- the tensile strength of this separator was 73.5 N / 15 mm, the specific tear strength was 30.0 mN ⁇ m 2 / g, the short-circuit rate when 500 V was applied was 0.0%, and the front-back ratio of soft cells was 4.8. .. 500 capacitor elements were manufactured using this separator, impregnated with a GBL-based electrolytic solution, inserted into a case, and sealed to obtain an aluminum electrolytic capacitor having a rated voltage of 400 V, a capacity of 10 ⁇ F, a diameter of 12.5 mm and a length of 20 mm. This aluminum electrolytic capacitor did not short in the aging test. As described above, it was confirmed that the separator of the present invention can also be applied to a so-called medium-high voltage GBL-based aluminum electrolytic capacitor.
- the mallow family plant pulp, the pine tree family plant pulp and the gramineous plant pulp, which are stably available over the medium to long term, and the beaten regenerated cellulose fiber are used. Further, it is possible to provide a separator for an aluminum electrolytic capacitor having excellent tear strength, short circuit resistance and impedance characteristics, and an aluminum electrolytic capacitor using the separator.
- the separator of this embodiment is used for the aluminum electrolytic capacitor has been described above. Although the details of other configurations and manufacturing methods of the aluminum electrolytic capacitor have been omitted, the electrode material and the electrolytic solution material of the aluminum electrolytic capacitor of the present invention do not require any special limitation and are various. Materials can be used. Further, as long as the outer diameter of the element allows, it is possible to use a plurality of separators of the present invention or a plurality of separators of the present invention in combination with other separators by using one or more.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Separators (AREA)
- Paper (AREA)
Abstract
天然セルロース繊維と叩解された再生セルロース繊維とからなり、かつ、引裂強さ、耐ショート性能及びインピーダンス特性に優れたアルミニウム電解コンデンサ用セパレータを提供する。アルミニウム電解コンデンサの陽極と陰極との間に介在し、天然セルロース繊維50~90質量%と叩解された再生セルロース繊維50~10質量%とからなり、比引裂強さが20~100mN・m2/gであって、セパレータ絶縁破壊試験での500V印加時のショート率が10%以下である、アルミニウム電解コンデンサ用セパレータを構成する。
Description
本発明は、アルミニウム電解コンデンサに用いて好適なアルミニウム電解コンデンサ用セパレータ、及び、このアルミニウム電解コンデンサ用セパレータを用いたアルミニウム電解コンデンサに関する。
一般に、アルミニウム電解コンデンサは、陽極アルミ箔と陰極アルミ箔との間に、セパレータとして電解紙を介在させて、コンデンサ素子を作製し、このコンデンサ素子に電解液を含浸させて、ケースに挿入した後、封口することによって、作製されている。
アルミニウム電解コンデンサにおいて、セパレータの主な役割は、両電極の隔離と電解液の保持である。両電極を隔離するために、セパレータは低抵抗でありながらも、高い遮蔽性を有することが求められる。さらに、セパレータの素材には、電気絶縁性が要求され、また様々な種類の電解液の保持のために、親水性、親油性が要求される。従って、これらの特性を併せ持つ、セルロースを原料としたセパレータが使用されている。
これまでに、アルミニウム電解コンデンサを含む電気化学素子用セパレータとして、様々な構成が提案されている(例えば、特許文献1~特許文献6を参照)。
セパレータと関係があるアルミニウム電解コンデンサのショートとしては、(1)タブ部によるセパレータの圧縮や破損、(2)電極箔端部のバリ、あるいは電極箔とリード線接続部のバリ等によるセパレータの貫通や破損、(3)振動や衝撃等の機械的ストレスによるセパレータの破損、(4)火花放電等の電気的ストレス、(5)コンデンサ製造の際のエージング時、酸化皮膜欠陥部に由来する酸化皮膜絶縁破壊、等が挙げられる。これらのショート原因に対する耐性には、セパレータの均一性や強度特性が影響するが、耐ショート性能の向上は、セパレータにとって永遠の課題である。
アルミニウム電解コンデンサの中でも、特に100V以下の電圧域である低圧領域では、特許文献1及び特許文献2に記載されている技術を用いたセパレータ、すなわちマニラ麻パルプとエスパルトパルプとからなる円網複層セパレータ等が、一般的に使用されている。しかし、マニラ麻パルプは主にフィリピンで生産され、エスパルトパルプは主にチュニジアで生産されており、近年の政情不安や一次産業従事者の減少によって年々入手が困難になっており、また価格高騰も続いている。そのため、安定的に入手可能な原材料を用いた代替品の開発が急務となっている。
アルミニウム電解コンデンサにおいて、セパレータは、インピーダンス特性、特に等価直列抵抗(ESR)に、大きな影響を与える。セパレータに用いるパルプの断面形状が円形に近く、また径が細いほど、インピーダンス特性が低くなることが知られている。
針葉樹パルプや広葉樹パルプ等、木材由来のパルプは、生産量が多く、安定して入手することが可能である。しかし、木材パルプは、断面形状が扁平で、かつサイズも大きいため、インピーダンス特性を重視する低圧用セパレータの原材料としては適さない。
針葉樹パルプや広葉樹パルプ等、木材由来のパルプは、生産量が多く、安定して入手することが可能である。しかし、木材パルプは、断面形状が扁平で、かつサイズも大きいため、インピーダンス特性を重視する低圧用セパレータの原材料としては適さない。
工業的に大量生産されていて比較的安価に入手可能な非木材パルプとして、アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプが挙げられる。
エスパルト以外のイネ科植物パルプを使用したアルミニウム電解コンデンサ用セパレータとして、特許文献3ではワラ繊維とマニラ麻パルプを用いたセパレータが、特許文献4では竹パルプを用いたセパレータが、それぞれ提案されている。
しかしながら、特許文献3及び特許文献4は、いずれも音響機器の音質向上を目的としたものである。音響用機器向けセパレータに対する主な要求特性は、人間が感じる音質であり、一般的な低圧用セパレータで要求されるインピーダンス特性とは大きく異なる。
エスパルト以外のイネ科植物パルプを使用したアルミニウム電解コンデンサ用セパレータとして、特許文献3ではワラ繊維とマニラ麻パルプを用いたセパレータが、特許文献4では竹パルプを用いたセパレータが、それぞれ提案されている。
しかしながら、特許文献3及び特許文献4は、いずれも音響機器の音質向上を目的としたものである。音響用機器向けセパレータに対する主な要求特性は、人間が感じる音質であり、一般的な低圧用セパレータで要求されるインピーダンス特性とは大きく異なる。
アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプ中には、植物由来の柔細胞が多く含まれており、柔細胞はパルプと比較すると非常に幅広短小である。セパレータ中に柔細胞が多く存在すると、インピーダンス特性が悪化することに加え、引張強さや引裂強さが低下する等の問題が生じる。また、アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプは、針葉樹パルプやマニラ麻パルプ等と比較して、主体繊維の平均繊維長が短く、引張強さや引裂強さ等の強度特性が劣る。そのため、一般的な低圧用セパレータで要求される、耐ショート性能とインピーダンス性能を、アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプを主体とするセパレータで実現することは困難であった。
叩解可能な再生セルロース繊維は、高度に叩解すると、剛性が高く繊維径の小さいフィブリルが発生するという特徴があり、耐ショート性能及びインピーダンス特性に優れるセパレータを作製できることが知られている。そのため、叩解可能な再生セルロース繊維を用いたセパレータが近年では多く提案されている。なお、叩解可能な再生セルロース繊維は工業製品であるため、安定して入手することが可能である。
特許文献5において、セパレータの緻密性を向上させ、かつインピーダンス特性を改善するために、叩解可能な再生セルロース繊維を使用する方法が提案されている。叩解された再生セルロース繊維を使用したセパレータは、緻密性が高くかつ微多孔質状の紙質となり、このセパレータを用いて作製したアルミニウム電解コンデンサは、ショート不良率が低減し、インピーダンス特性が向上する。
しかしながら、特許文献5のように、叩解可能な再生セルロース繊維100質量%のセパレータを用いた場合、引張強さや引裂強さが低いため、アルミニウム電解コンデンサの製造工程において、セパレータの破断が発生することがあった。また、強度が低いため、例えばアルミニウム電解コンデンサのタブ部や箔バリ等のストレスがかかる箇所に対する耐性が低く、セパレータが破れてショートが発生することもあった。
特許文献5では、叩解可能な再生セルロース繊維に、マニラ麻パルプやサイザル麻パルプ等を配合することも提案されている。叩解可能な再生セルロース繊維にマニラ麻パルプやサイザル麻パルプを配合すると、引張強さや引裂強さは向上するものの、ほとんど叩解されていないCSF値が高いマニラ麻パルプやサイザル麻パルプは繊維長が長いため、セパレータの地合が悪くなるという問題があった。繊維長が長いほど、水中に均一に繊維を分散させることが難しくなり、抄紙時に均一な紙層を形成することが難しくなる。地合を改善するためには、マニラ麻パルプやサイザル麻パルプの叩解を進めて繊維長を短くする必要があるが、マニラ麻パルプやサイザル麻パルプを叩解すると、インピーダンス特性が大きく悪化してしまうため、叩解はほとんど行われてこなかった。
特許文献6では、高度に叩解された再生セルロースからなるセパレータ並の緻密性及びインピーダンス特性を維持したまま、引張強さ及び耐ショート性を向上させた、天然セルロース繊維Aと天然セルロース繊維Bと叩解された再生セルロース繊維とからなるセパレータが提案されている。特許文献6のセパレータは、長網抄紙機で地合のよいセパレータを抄紙するために、再生セルロース繊維の叩解を高度に進め、平均繊維長が短い天然セルロース繊維を使用している。そのため、特許文献6のセパレータは、平均繊維長が比較的短く、叩解可能な再生セルロース繊維100質量%のセパレータと比較して、引裂強さを改善することはできなかった。アルミニウム電解コンデンサの製造工程において、セパレータに張力をかけた際、セパレータにネジレ等があると、引裂強さが低いセパレータは破断する場合がある。
本発明は、天然セルロース繊維と叩解された再生セルロース繊維とからなり、かつ、引裂強さ、耐ショート性能及びインピーダンス特性に優れたアルミニウム電解コンデンサ用セパレータを提供することを目的とする。
また、本発明は、このアルミニウム電解コンデンサ用セパレータを備え、耐ショート性能及びインピーダンス特性に優れたアルミニウム電解コンデンサを提供することを目的とする。
また、本発明は、このアルミニウム電解コンデンサ用セパレータを備え、耐ショート性能及びインピーダンス特性に優れたアルミニウム電解コンデンサを提供することを目的とする。
本発明のアルミニウム電解コンデンサ用セパレータは、アルミニウム電解コンデンサの陽極と陰極との間に介在する、アルミニウム電解コンデンサ用セパレータであって、天然セルロース繊維と叩解された再生セルロース繊維とからなり、セパレータ絶縁破壊試験での500V印加時のショート率が10%以下であるものである。
本発明のアルミニウム電解コンデンサは、陽極、陰極、陽極と陰極との間に介在するセパレータ、を備え、セパレータに、上記本発明のアルミニウム電解コンデンサ用セパレータを用いたものである。
上述の本発明によれば、引裂強さ、耐ショート性能及びインピーダンス特性に優れるアルミニウム電解コンデンサ用セパレータ及び該セパレータを用いるアルミニウム電解コンデンサを提供することができる。
また、本発明によれば、セパレータ絶縁破壊試験での500V印加時のショート率が10%以下であることにより、アオイ科植物パルプ、シナノキ科植物パルプ及びイネ科植物パルプ等の安価な繊維を用いてセパレータを構成することが可能になる。
以下、本発明の一実施の形態例について詳細に説明する。
本発明のアルミニウム電解コンデンサ用セパレータは、アルミニウム電解コンデンサの陽極と陰極との間に介在する、アルミニウム電解コンデンサ用セパレータであって、セパレータ絶縁破壊試験での500V印加時のショート率が10%以下である構成とする。
本発明のアルミニウム電解コンデンサは、陽極と陰極と、陽極と陰極との間に介在するセパレータを備え、セパレータに、本発明のアルミニウム電解コンデンサ用セパレータを用いている。
本発明のアルミニウム電解コンデンサ用セパレータにおいて、好ましくは、アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプからなる群より選択された1種類以上の天然セルロース繊維50~90質量%と、叩解された再生セルロース繊維50~10質量%とでセパレータを構成する。これにより、安定的に入手可能な原材料を用いて、セパレータを構成することができる。
叩解された再生セルロース繊維は、アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプからなる群より選択された1種類以上の天然セルロース繊維と比較して、耐ショート性能やインピーダンス特性に優れる。また、叩解度と平均繊維長を制御することで、アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプからなる群より選択された1種類以上の天然セルロース繊維のみからなるセパレータより、引張強さ及び引裂強さを向上することができる。そのため、特に0.45g/cm3以下の低密度セパレータを作製する際において、引張強さを向上させるために行う天然セルロース繊維の叩解の程度を軽くすることができ、更にセパレータのインピーダンス特性を改善することが可能となる。叩解された再生セルロース繊維の割合が10質量%を下回ると、耐ショート性能や強度特性の向上効果や、インピーダンスの低減効果が得られづらくなる。
本発明のセパレータの抄紙には、円網多層抄紙機を使用することが好ましい。円網抄紙機は、網を張った円筒(以下「円網」と略する)をパルプ懸濁液が入った槽の中で回転させ、水位差によって網を通して水が円筒内に流れ込む際に、網の上に紙層を形成する方法の抄紙機である。紙層を形成する際、初期段階では網の上にパルプが堆積するが、その後の段階で網が徐々に目詰まりするため、初期段階では水と共に流出していた微細なパルプや柔細胞も、中期以降の段階では紙層内に含まれるようになる。そのため、円網抄紙機で抄紙された紙は、一般的に表裏に存在する柔細胞の割合が異なる。
アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプは、柔細胞を多く含む。セパレータを構成する材料は、その形状から繊維状のパルプと、柔細胞とに分類できる。柔細胞は、パルプと比較すると、非常に幅広短小であるため、セパレータのインピーダンス特性や引張強さに悪影響を及ぼす。アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプは、マニラ麻パルプと比較して平均繊維長が短いため、紙の地合を均一にしやすく、緻密性に優れたセパレータを製造しやすいという特徴がある。しかし、平均繊維長が短いため、引張強さや引裂強さといった強度特性が劣る傾向がある。セパレータ中の柔細胞の数を少なくすることで、平均繊維長を長くすることができ、強度特性を改善することができる。
本発明では、セパレータ中に残る柔細胞の数を少なくするため、複数の円網を使用することが好ましい。つまり、紙層形成の初期段階のみの材料で構成された紙層、すなわち柔細胞含有率が低い紙層を複数重ね合わせて、1枚のセパレータが形成されることで、セパレータ中の柔細胞の数を大幅に減少させることができる。セパレータ中の柔細胞の数を制御することで、アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプを多く含むセパレータであっても、アルミニウム電解コンデンサ用セパレータとして使用可能な耐ショート性能及びインピーダンス特性を実現できる。
叩解された再生セルロース繊維は、繊維径の小さいフィブリルを有するため、緻密な紙層を形成する。しかし、本発明のセパレータ中において、叩解された再生セルロース繊維の割合が多くなると、天然繊維の柔細胞の歩留りが向上してしまうため、配合割合を増やしてもインピーダンス特性が低減しづらくなる。そのため、本発明のセパレータ中の叩解された再生セルロース繊維の割合は、50質量%以下にする必要がある。
同一原料を抄紙する場合、円網抄紙機は、パルプ懸濁液濃度と円網回転速度を変更することにより、紙の単位面積当たりの重量(以下「坪量」と略する)を制御することができる。したがって、同じ坪量の紙を同じ速度で生産する場合、例えば1つの円網から2つの円網に変更することで、パルプ懸濁液濃度を約半分にすることができる。パルプ懸濁液の濃度を薄くするほど、セパレータ中の柔細胞を減少させることができる。パルプ懸濁液の濃度は、0.3%以下にすることが好ましい。
また本発明において、網の開口部のサイズも重要である。一般的な柔細胞のサイズは、(20~数十μm)×(20~150μm)程度であり、柔細胞の流出を促進させるために、網の開口部は0.1mm以上×0.1mm以上とすることが好ましい。
セパレータ中の柔細胞の数を大幅に減少させることで、セパレータのインピーダンス特性が改善され、アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプを使用しても、マニラ麻パルプ及びエスパルトパルプ等からなる円網複層セパレータと同等レベルのインピーダンス特性が実現できる。
セパレータ中に含まれる柔細胞の数の指標としては、セパレータ表面に存在する柔細胞の数の表裏比率(反円網接触面/円網接触面)を、5以下にすることが好ましい。なお、柔細胞の数は、円網に接した面が少なく、円網に接していない面が多くなるため、表裏比率を1未満にすることは難しい。一方、表裏比率が5より大きくなると、柔細胞の流出が不十分となり、セパレータのインピーダンス特性や引張強さが悪化しやすい。また、表裏比率が5を超過したセパレータを、アルミニウム電解コンデンサに供した際には、引張強さの低下等に伴い、ショート率が悪化しやすい。
なお、円網接触面と反円網接触面の判別が困難な場合は、柔細胞の数の多い面/少ない面の比率を5以下としてもよい。
なお、円網接触面と反円網接触面の判別が困難な場合は、柔細胞の数の多い面/少ない面の比率を5以下としてもよい。
本発明に使用する、アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプは、特に限定されず、いずれの繊維でも用いることができる。例えば、ケナフパルプ、ジュートパルプ、稲ワラパルプ、麦ワラパルプ、竹パルプ、バガスパルプ、葦パルプ、サバイ草パルプ、竜鬚草パルプ、ララン草パルプ等が好適に用いられる。これらの材料は、1種類を使用してもよく、あるいは2種類以上を混合して使用してもよい。また、これらのパルプは、漂白処理されていてもよく、また、溶解パルプのように精製されたものや、マーセル化パルプであってもよい。
本発明に使用する、アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプは、叩解処理されることが好ましい。ただし、作製するセパレータの密度によっては、叩解処理を行わなくてもよい。
本発明に使用する再生セルロース繊維としては、例えばリヨセルを代表とする溶剤紡糸レーヨンやポリノジックレーヨン等が挙げられる。しかし、これらの例に限定されるものではなく、叩解可能な再生セルロース繊維であれば、いずれも使用することができる。
叩解前の再生セルロース繊維の繊維径は任意のものが使用できるが、叩解前の繊維径が太すぎると、叩解時の流動性が悪く、詰まり等の不具合が発生しやすい。叩解前の繊維径が細すぎると、叩解によって発生するフィブリル量が少なくなるため、緻密性を確保することが難しくなる。このため、叩解前の繊維径は3~18μmが好ましい。
再生セルロース繊維の叩解度は、CSF値で200ml以下が好ましい。CSF値が200mlより高いと、セパレータの緻密性が不十分となる。
平均繊維長が短すぎると、引裂強さが弱くなるため、再生セルロース繊維の平均繊維長は、1.0mm以上が好ましい。また、平均繊維長が長すぎると、抄紙時に水中に均一分散することが難しくなるため、セパレータの地合が悪化して耐ショート性能が悪化する。このため、再生セルロース繊維の平均繊維長は、3.5mm以下が好ましい。
天然セルロース繊維と再生セルロース繊維の叩解処理には、ディスクリファイナーやコニカルリファイナー、高圧ホモジナイザ、ビーター等、製紙原料の調成に用いられる叩解機が、特に限定なく使用できる。天然セルロース繊維と再生セルロース繊維の叩解処理は、個別に行ってもよく、混合して行ってもよい。
セパレータを製造する際、コンデンサ用セパレータとしての機能を阻害しないものであれば、必要に応じて、分散剤や消泡剤、紙力増強剤等の添加剤を使用してもよい。なお、紙力増強加工処理は、セパレータを作製した後に水溶性ポリマーを塗布してもよい。
円網多層抄紙機で抄紙する際に、各層に使用する原料は同一であってもよく、叩解度や原料の種類を変更してもよい。同一原料を使用する場合、工程が簡略化できる。
本発明のセパレータは、上述したように、セパレータ絶縁破壊試験での500V印加時のショート率が10%以下である構成とする。
セパレータ絶縁破壊試験での500V印加時のショート率が10%を超過すると、アルミニウム電解コンデンサのエージング試験でショートが発生しやすくなる。
セパレータ絶縁破壊試験での500V印加時のショート率が10%を超過すると、アルミニウム電解コンデンサのエージング試験でショートが発生しやすくなる。
本発明に係るセパレータにおいて、セパレータの引張強さは、9.8N/15mm以上であることが好ましい。引張強さが9.8N/15mm未満の場合、アルミニウム電解コンデンサの素子作製時等にセパレータの破断が発生しやすくなる。
セパレータの厚さは、20~120μmが好ましい。
アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプの繊維断面の直径は10~15μm程度であるため、円網抄紙機で形成された層を複数有した場合に、厚さを20μm未満にすると、セパレータに必要な強度を維持することが難しい。
セパレータが120μmより厚くなると、アルミニウム電解コンデンサの小型化に不利となる。
アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプの繊維断面の直径は10~15μm程度であるため、円網抄紙機で形成された層を複数有した場合に、厚さを20μm未満にすると、セパレータに必要な強度を維持することが難しい。
セパレータが120μmより厚くなると、アルミニウム電解コンデンサの小型化に不利となる。
セパレータの密度は、0.25~0.70g/cm3が好ましい。
密度を0.25g/cm3より低くすると、セパレータの強度が著しく低下する。
密度を0.70g/cm3より高くしようとすると、コンデンサのインピーダンス特性が大きく悪化する。
密度を0.25g/cm3より低くすると、セパレータの強度が著しく低下する。
密度を0.70g/cm3より高くしようとすると、コンデンサのインピーダンス特性が大きく悪化する。
本発明のセパレータの比引裂強さは、20~100mN・m2/gであり、セパレータの坪量は、8g/m2以上が好ましい。
セパレータの比引裂強さが20mN・m2/g未満の場合、セパレータの単位坪量当りの引裂強さが弱く、アルミニウム電解コンデンサの製造工程でセパレータにネジレ等があったとき、セパレータが幅方向に裂け、破断が発生しやすくなる。
一方、セパレータの比引裂強さが100mN・m2/gを超過した場合は、セパレータを構成する繊維の繊維長が長いことを意味する。繊維長が長いと、シートの均一性が欠け、局所的にセパレータの緻密性が低下している箇所を含む場合がある。
セパレータの比引裂強さが20mN・m2/g未満の場合、セパレータの単位坪量当りの引裂強さが弱く、アルミニウム電解コンデンサの製造工程でセパレータにネジレ等があったとき、セパレータが幅方向に裂け、破断が発生しやすくなる。
一方、セパレータの比引裂強さが100mN・m2/gを超過した場合は、セパレータを構成する繊維の繊維長が長いことを意味する。繊維長が長いと、シートの均一性が欠け、局所的にセパレータの緻密性が低下している箇所を含む場合がある。
坪量が8g/m2未満の場合、上述した通り、セパレータを構成する繊維本数が少なく、アルミニウム電解コンデンサのショート不良が増加するおそれがある。また、坪量が8g/m2未満では、比引裂強さは高くても、引裂強さが弱く、アルミニウム電解コンデンサの生産性を大幅に向上させられない場合がある。このことからも、セパレータの坪量は、8g/m2以上が好ましい。
以上のセパレータの構成により、天然セルロース繊維と叩解された再生セルロース繊維とからなり、引裂強さ、耐ショート性能及びインピーダンス特性に優れた、アルミニウム電解コンデンサ用セパレータが得られることを見出した。
上記の本発明のアルミニウム電解コンデンサ用セパレータを用いて、本発明のアルミニウム電解コンデンサを作製することができる。
例えば、陽極アルミニウム箔と陰極アルミニウム箔との間にセパレータを介在させて巻回することによって素子を形成し、その後電解液を含浸させて、ケースに挿入した後に、封口することにより、アルミニウム電解コンデンサを作製することができる。
例えば、陽極アルミニウム箔と陰極アルミニウム箔との間にセパレータを介在させて巻回することによって素子を形成し、その後電解液を含浸させて、ケースに挿入した後に、封口することにより、アルミニウム電解コンデンサを作製することができる。
以下、本発明に係るアルミニウム電解コンデンサ用セパレータ及び、当該アルミニウム電解コンデンサ用セパレータを備えたアルミニウム電解コンデンサの具体的な各種実施例、比較例について、詳細に説明する。
〔セパレータ及びアルミニウム電解コンデンサの特性の測定方法〕
本実施の形態のセパレータ及びアルミニウム電解コンデンサの各特性の具体的な測定は、以下の条件及び方法で行った。
本実施の形態のセパレータ及びアルミニウム電解コンデンサの各特性の具体的な測定は、以下の条件及び方法で行った。
〔CSF値〕
CSF値は、JIS P8121-2『パルプ-ろ水度試験法-第2部:カナダ標準ろ水度法』(ISO5267-2『Pulps-Determination of drainability-Part2:“Canadian Standard”freeness method』)に従って測定した値である。
CSF値は、JIS P8121-2『パルプ-ろ水度試験法-第2部:カナダ標準ろ水度法』(ISO5267-2『Pulps-Determination of drainability-Part2:“Canadian Standard”freeness method』)に従って測定した値である。
〔厚さ、坪量及び密度〕
セパレータの厚さは、「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 5.1 厚さ」に規定された、「5.1.1 測定器及び測定方法 a) 外側マイクロメータを用いる場合」のマイクロメータを用いて、「5.1.3 紙を折り重ねて厚さを測る場合」の10枚に折り重ねる方法で、測定した。
セパレータの坪量は、「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 6 坪量」に規定された方法で、絶乾状態のセパレータの坪量を測定した。 セパレータの密度は、「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 7.0A 密度 B法」に規定された方法で、絶乾状態のセパレータの密度を測定した。
セパレータの厚さは、「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 5.1 厚さ」に規定された、「5.1.1 測定器及び測定方法 a) 外側マイクロメータを用いる場合」のマイクロメータを用いて、「5.1.3 紙を折り重ねて厚さを測る場合」の10枚に折り重ねる方法で、測定した。
セパレータの坪量は、「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 6 坪量」に規定された方法で、絶乾状態のセパレータの坪量を測定した。 セパレータの密度は、「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 7.0A 密度 B法」に規定された方法で、絶乾状態のセパレータの密度を測定した。
〔引張強さ〕
「JIS P 8113 『紙及び板紙-引張特性の試験方法-第2部:定速伸張法』」(ISO1924-2『Paper and board-Determination of tensile properties-Part2:Constant rate of elongation method』)に規定された方法で、試験幅15mmで、セパレータの縦方向(製造方向)の最大引張荷重を測定し、引張強さとした。
「JIS P 8113 『紙及び板紙-引張特性の試験方法-第2部:定速伸張法』」(ISO1924-2『Paper and board-Determination of tensile properties-Part2:Constant rate of elongation method』)に規定された方法で、試験幅15mmで、セパレータの縦方向(製造方向)の最大引張荷重を測定し、引張強さとした。
〔平均繊維長〕
平均繊維長は、JIS P 8226-2『パルプ-光学的自動分析法による繊維長測定方法 第2部:非偏光法』(ISO16065-2『Pulps-Determination of Fibre length by automated optical analysis-Part2:Unpolarized light method』)に準じて、Kajaani Fiberlab Ver.4(Metso Automation社製)を用いて測定したContour length(中心線繊維長)の長さ荷重平均繊維長の値である。
平均繊維長は、JIS P 8226-2『パルプ-光学的自動分析法による繊維長測定方法 第2部:非偏光法』(ISO16065-2『Pulps-Determination of Fibre length by automated optical analysis-Part2:Unpolarized light method』)に準じて、Kajaani Fiberlab Ver.4(Metso Automation社製)を用いて測定したContour length(中心線繊維長)の長さ荷重平均繊維長の値である。
〔比引裂強さ〕
「JIS P 8116 『紙-引裂強さ試験方法-エルメンドルフ形引裂試験機法』」(ISO1974『Paper-Determination of tearing resistance-Elmendorf method』)に規定された方法で、セパレータの横方向(幅方向)の引裂強さを測定した。次に、得られた引裂強さの値をセパレータの坪量で除して、セパレータの比引裂強さを算出した。
「JIS P 8116 『紙-引裂強さ試験方法-エルメンドルフ形引裂試験機法』」(ISO1974『Paper-Determination of tearing resistance-Elmendorf method』)に規定された方法で、セパレータの横方向(幅方向)の引裂強さを測定した。次に、得られた引裂強さの値をセパレータの坪量で除して、セパレータの比引裂強さを算出した。
〔セパレータ絶縁破壊試験での500V印加時のショート率〕
「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 24 絶縁破壊の強さ 24.2.2 直流の場合 B法 24.1.2.1 方法2」に規定された方法で、セパレータの絶縁破壊電圧を計100ヶ所測定し、500V未満の電圧でショートした割合を、セパレータ絶縁破壊試験での500V印加時のショート率(以下、「500V印加時のショート率」と略する)とした。
「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 24 絶縁破壊の強さ 24.2.2 直流の場合 B法 24.1.2.1 方法2」に規定された方法で、セパレータの絶縁破壊電圧を計100ヶ所測定し、500V未満の電圧でショートした割合を、セパレータ絶縁破壊試験での500V印加時のショート率(以下、「500V印加時のショート率」と略する)とした。
〔セパレータ表面に存在する柔細胞の数の表裏比率〕
走査型電子顕微鏡(以下「SEM」と略する)を用いて、200倍の倍率で1000μm(縦方向)×5000μm(横方向)のセパレータの表裏の表面に存在する柔細胞の数を測定した。反円網側の柔細胞の数を円網側の柔細胞の数で除して、セパレータ表面に存在する柔細胞の表裏比率(以下、「柔細胞の表裏比率」と略する)とした。
走査型電子顕微鏡(以下「SEM」と略する)を用いて、200倍の倍率で1000μm(縦方向)×5000μm(横方向)のセパレータの表裏の表面に存在する柔細胞の数を測定した。反円網側の柔細胞の数を円網側の柔細胞の数で除して、セパレータ表面に存在する柔細胞の表裏比率(以下、「柔細胞の表裏比率」と略する)とした。
〔セパレータを使用したアルミニウム電解コンデンサの作製〕
以下、本実施の形態例のセパレータを用いたアルミニウム電解コンデンサの作製方法を説明する。
上記構成のセパレータを用いて、陽極アルミニウム箔と陰極アルミニウム箔との間にセパレータを介在させて巻回して素子を形成した後、電解液を含浸させ、ケースに挿入した後、封口することにより、アルミニウム電解コンデンサを作製した。
以下、本実施の形態例のセパレータを用いたアルミニウム電解コンデンサの作製方法を説明する。
上記構成のセパレータを用いて、陽極アルミニウム箔と陰極アルミニウム箔との間にセパレータを介在させて巻回して素子を形成した後、電解液を含浸させ、ケースに挿入した後、封口することにより、アルミニウム電解コンデンサを作製した。
〔インピーダンス〕
作製したアルミニウム電解コンデンサのインピーダンスを、LCRメータを用いて、20℃で100kHzの周波数で測定した。
作製したアルミニウム電解コンデンサのインピーダンスを、LCRメータを用いて、20℃で100kHzの周波数で測定した。
〔実施例1〕
アオイ科植物パルプであるCSF値550mlのケナフパルプ60質量%と、叩解された再生セルロース繊維であるCSF値30ml、平均繊維長1.75mmのリヨセル繊維40質量%とを混合した原料を、ダブルディスクリファイナー(以下「DDR」と略する)を用いてCSF値150mlまで叩解し、円網三層抄紙機を用いて、厚さ50μm、坪量22.5g/m2、密度0.45g/cm3の三層セパレータを得た。このセパレータの引張強さは24.5N/15mm、比引裂強さは47.9mN・m2/g、500V印加時のショート率は0.2%、柔細胞の表裏比率は2.5だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.18Ωだった。
アオイ科植物パルプであるCSF値550mlのケナフパルプ60質量%と、叩解された再生セルロース繊維であるCSF値30ml、平均繊維長1.75mmのリヨセル繊維40質量%とを混合した原料を、ダブルディスクリファイナー(以下「DDR」と略する)を用いてCSF値150mlまで叩解し、円網三層抄紙機を用いて、厚さ50μm、坪量22.5g/m2、密度0.45g/cm3の三層セパレータを得た。このセパレータの引張強さは24.5N/15mm、比引裂強さは47.9mN・m2/g、500V印加時のショート率は0.2%、柔細胞の表裏比率は2.5だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.18Ωだった。
〔実施例2〕
アオイ科植物パルプであるCSF値700mlのケナフパルプ80質量%と、叩解された再生セルロース繊維であるCSF値200ml、平均繊維長3.50mmのリヨセル繊維20質量%とを混合した原料を、DDRを用いてCSF値400mlまで叩解し、円網三層抄紙機を用いて抄紙した後、水溶性ポリマーである紙力増強剤を含浸塗布し、厚さ60μm、坪量15.0g/m2、密度0.25g/cm3の三層セパレータを得た。このセパレータの引張強さは16.7N/15mm、比引裂強さは98.0mN・m2/g、500V印加時のショート率は5.8%、柔細胞の表裏比率は1.7だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.15Ωだった。
アオイ科植物パルプであるCSF値700mlのケナフパルプ80質量%と、叩解された再生セルロース繊維であるCSF値200ml、平均繊維長3.50mmのリヨセル繊維20質量%とを混合した原料を、DDRを用いてCSF値400mlまで叩解し、円網三層抄紙機を用いて抄紙した後、水溶性ポリマーである紙力増強剤を含浸塗布し、厚さ60μm、坪量15.0g/m2、密度0.25g/cm3の三層セパレータを得た。このセパレータの引張強さは16.7N/15mm、比引裂強さは98.0mN・m2/g、500V印加時のショート率は5.8%、柔細胞の表裏比率は1.7だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.15Ωだった。
〔実施例3〕
シナノキ科植物パルプであるCSF値100mlのジュートパルプ50質量%と、叩解された再生セルロース繊維であるCSF値0ml、平均繊維長1.05mmのリヨセル繊維50質量%とを混合した原料を、DDRを用いてCSF値20mlまで叩解し、円網二層抄紙機を用いて、厚さ20μm、坪量9.0g/m2、密度0.45g/cm3の二層セパレータを得た。このセパレータの引張強さは10.0N/15mm、比引裂強さは38.1mN・m2/g、500V印加時のショート率は9.6%、柔細胞の表裏比率は3.7だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.15Ωだった。
シナノキ科植物パルプであるCSF値100mlのジュートパルプ50質量%と、叩解された再生セルロース繊維であるCSF値0ml、平均繊維長1.05mmのリヨセル繊維50質量%とを混合した原料を、DDRを用いてCSF値20mlまで叩解し、円網二層抄紙機を用いて、厚さ20μm、坪量9.0g/m2、密度0.45g/cm3の二層セパレータを得た。このセパレータの引張強さは10.0N/15mm、比引裂強さは38.1mN・m2/g、500V印加時のショート率は9.6%、柔細胞の表裏比率は3.7だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.15Ωだった。
〔実施例4〕
イネ科植物パルプであるCSF値300mlの竹パルプ90質量%と、叩解された再生セルロース繊維であるCSF値10ml、平均繊維長1.35mmのリヨセル繊維10質量%とを混合した原料を、DDRを用いてCSF値200mlまで叩解し、円網二層抄紙機を用いて、厚さ35μm、坪量21.0g/m2、密度0.60g/cm3の二層セパレータを得た。このセパレータの引張強さは32.3N/15mm、比引裂強さは35.0mN・m2/g、500V印加時のショート率は1.6%、柔細胞の表裏比率は2.8だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.18Ωだった。
イネ科植物パルプであるCSF値300mlの竹パルプ90質量%と、叩解された再生セルロース繊維であるCSF値10ml、平均繊維長1.35mmのリヨセル繊維10質量%とを混合した原料を、DDRを用いてCSF値200mlまで叩解し、円網二層抄紙機を用いて、厚さ35μm、坪量21.0g/m2、密度0.60g/cm3の二層セパレータを得た。このセパレータの引張強さは32.3N/15mm、比引裂強さは35.0mN・m2/g、500V印加時のショート率は1.6%、柔細胞の表裏比率は2.8だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.18Ωだった。
〔実施例5〕
イネ科植物パルプであるCSF値400mlの麦ワラパルプ50質量%と、叩解された再生セルロース繊維であるCSF値100ml、平均繊維長2.55mmのリヨセル繊維50質量%とを混合した原料を、DDRを用いてCSF値160mlまで叩解し、円網二層抄紙機を用いて、厚さ40μm、坪量20.0g/m2、密度0.50g/cm3の二層セパレータを得た。このセパレータの引張強さは16.7N/15mm、比引裂強さは27.0mN・m2/g、500V印加時のショート率は0.8%、柔細胞の表裏比率は4.8だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.22Ωだった。
イネ科植物パルプであるCSF値400mlの麦ワラパルプ50質量%と、叩解された再生セルロース繊維であるCSF値100ml、平均繊維長2.55mmのリヨセル繊維50質量%とを混合した原料を、DDRを用いてCSF値160mlまで叩解し、円網二層抄紙機を用いて、厚さ40μm、坪量20.0g/m2、密度0.50g/cm3の二層セパレータを得た。このセパレータの引張強さは16.7N/15mm、比引裂強さは27.0mN・m2/g、500V印加時のショート率は0.8%、柔細胞の表裏比率は4.8だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.22Ωだった。
〔実施例6〕
イネ科植物パルプであるCSF値650mlの竜鬚草パルプ70質量%と、叩解された再生セルロース繊維であるCSF値70ml、平均繊維長2.20mmのポリノジックレーヨン繊維30質量%とを混合した原料を、DDRを用いてCSF値380mlまで叩解し、円網二層抄紙機を用いて、厚さ50μm、坪量25.0g/m2、密度0.50g/cm3の二層セパレータを得た。このセパレータの引張強さは29.4N/15mm、比引裂強さは37.2mN・m2/g、500V印加時のショート率は0.0%、柔細胞の表裏比率は4.1だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.20Ωだった。
イネ科植物パルプであるCSF値650mlの竜鬚草パルプ70質量%と、叩解された再生セルロース繊維であるCSF値70ml、平均繊維長2.20mmのポリノジックレーヨン繊維30質量%とを混合した原料を、DDRを用いてCSF値380mlまで叩解し、円網二層抄紙機を用いて、厚さ50μm、坪量25.0g/m2、密度0.50g/cm3の二層セパレータを得た。このセパレータの引張強さは29.4N/15mm、比引裂強さは37.2mN・m2/g、500V印加時のショート率は0.0%、柔細胞の表裏比率は4.1だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.20Ωだった。
〔比較例1〕
アオイ科植物パルプであるCSF値700mlのケナフパルプ80質量%と、叩解された再生セルロース繊維であるCSF値230ml、平均繊維長3.70mmのリヨセル繊維20質量%とを混合した原料を、DDRを用いてCSF値460mlまで叩解し、円網三層抄紙機を用いて抄紙した後、水溶性ポリマーである紙力増強剤を含浸塗布し、厚さ65μm、坪量15.0g/m2、密度0.23g/cm3の三層セパレータを得た。このセパレータの引張強さは10.8N/15mm、比引裂強さは104.9mN・m2/g、500V印加時のショート率は16.4%、柔細胞の表裏比率は1.5だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートが発生したが、ショートしなかったコンデンサのインピーダンスは0.16Ωだった。
アオイ科植物パルプであるCSF値700mlのケナフパルプ80質量%と、叩解された再生セルロース繊維であるCSF値230ml、平均繊維長3.70mmのリヨセル繊維20質量%とを混合した原料を、DDRを用いてCSF値460mlまで叩解し、円網三層抄紙機を用いて抄紙した後、水溶性ポリマーである紙力増強剤を含浸塗布し、厚さ65μm、坪量15.0g/m2、密度0.23g/cm3の三層セパレータを得た。このセパレータの引張強さは10.8N/15mm、比引裂強さは104.9mN・m2/g、500V印加時のショート率は16.4%、柔細胞の表裏比率は1.5だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートが発生したが、ショートしなかったコンデンサのインピーダンスは0.16Ωだった。
〔比較例2〕
実施例3と同じ原料を使用し、円網二層抄紙機を用いて、厚さ18μm、坪量7.7g/m2、密度0.43g/cm3の二層セパレータを得た。このセパレータの引張強さは9.0N/15mm、比引裂強さは38.0mN・m2/g、500V印加時のショート率は23.0%、柔細胞の表裏比率は3.3だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。コンデンサ素子を作製する際、引張強さが弱い影響で、素子作製時にセパレータの破断が発生した。このアルミニウム電解コンデンサは、エージング試験でショートが発生したが、ショートしなかったコンデンサのインピーダンスは0.13Ωだった。
実施例3と同じ原料を使用し、円網二層抄紙機を用いて、厚さ18μm、坪量7.7g/m2、密度0.43g/cm3の二層セパレータを得た。このセパレータの引張強さは9.0N/15mm、比引裂強さは38.0mN・m2/g、500V印加時のショート率は23.0%、柔細胞の表裏比率は3.3だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。コンデンサ素子を作製する際、引張強さが弱い影響で、素子作製時にセパレータの破断が発生した。このアルミニウム電解コンデンサは、エージング試験でショートが発生したが、ショートしなかったコンデンサのインピーダンスは0.13Ωだった。
〔比較例3〕
イネ科植物パルプであるCSF値300mlの竹パルプ95質量%と、叩解された再生セルロース繊維であるCSF値10ml、平均繊維長1.35mmのリヨセル繊維5質量%とを混合した原料を、DDRを用いてCSF値270mlまで叩解し、円網二層抄紙機を用いて、厚さ35μm、坪量21.0g/m2、密度0.60g/cm3の二層セパレータを得た。このセパレータの引張強さは23.5N/15mm、比引裂強さは23.3mN・m2/g、500V印加時のショート率は2.6%、柔細胞の表裏比率は2.5だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.20Ωだった。
イネ科植物パルプであるCSF値300mlの竹パルプ95質量%と、叩解された再生セルロース繊維であるCSF値10ml、平均繊維長1.35mmのリヨセル繊維5質量%とを混合した原料を、DDRを用いてCSF値270mlまで叩解し、円網二層抄紙機を用いて、厚さ35μm、坪量21.0g/m2、密度0.60g/cm3の二層セパレータを得た。このセパレータの引張強さは23.5N/15mm、比引裂強さは23.3mN・m2/g、500V印加時のショート率は2.6%、柔細胞の表裏比率は2.5だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.20Ωだった。
〔比較例4〕
イネ科植物パルプである竹パルプを、DDRを用いてCSF値300mlまで叩解し、円網二層抄紙機を用いて、厚さ35μm、坪量21.0g/m2、密度0.60g/cm3の二層セパレータを得た。このセパレータの引張強さは23.5N/15mm、比引裂強さは22.4mN・m2/g、500V印加時のショート率は2.8%、柔細胞の表裏比率は2.4だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.20Ωだった。
イネ科植物パルプである竹パルプを、DDRを用いてCSF値300mlまで叩解し、円網二層抄紙機を用いて、厚さ35μm、坪量21.0g/m2、密度0.60g/cm3の二層セパレータを得た。このセパレータの引張強さは23.5N/15mm、比引裂強さは22.4mN・m2/g、500V印加時のショート率は2.8%、柔細胞の表裏比率は2.4だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.20Ωだった。
〔比較例5〕
イネ科植物パルプであるCSF値400mlの麦ワラパルプ40質量%と、叩解された再生セルロース繊維であるCSF値100ml、平均繊維長2.55mmのリヨセル繊維60質量%とを混合した原料を、DDRを用いてCSF値140mlまで叩解し、円網二層抄紙機を用いて、厚さ40μm、坪量20.0g/m2、密度0.50g/cm3の二層セパレータを得た。このセパレータの引張強さは18.6N/15mm、比引裂強さは28.4mN・m2/g、500V印加時のショート率は0.4%、柔細胞の表裏比率は5.3だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.27Ωだった。
イネ科植物パルプであるCSF値400mlの麦ワラパルプ40質量%と、叩解された再生セルロース繊維であるCSF値100ml、平均繊維長2.55mmのリヨセル繊維60質量%とを混合した原料を、DDRを用いてCSF値140mlまで叩解し、円網二層抄紙機を用いて、厚さ40μm、坪量20.0g/m2、密度0.50g/cm3の二層セパレータを得た。このセパレータの引張強さは18.6N/15mm、比引裂強さは28.4mN・m2/g、500V印加時のショート率は0.4%、柔細胞の表裏比率は5.3だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.27Ωだった。
〔比較例6〕
イネ科植物パルプであるCSF値200mlの麦ワラパルプ50質量%と、叩解された再生セルロース繊維であるCSF値0ml、平均繊維長0.95mmのリヨセル繊維50質量%とを混合した原料を、DDRを用いてCSF値40mlまで叩解し、円網三層抄紙機を用いて、厚さ30μm、坪量15.0g/m2、密度0.50g/cm3の三層セパレータを得た。このセパレータの引張強さは14.7N/15mm、比引裂強さは18.3mN・m2/g、500V印加時のショート率は0.4%、柔細胞の表裏比率は4.6だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。引裂強さ及び比引裂強さが弱いため、コンデンサ素子作製時に、セパレータの破断が発生した。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.21Ωだった。
イネ科植物パルプであるCSF値200mlの麦ワラパルプ50質量%と、叩解された再生セルロース繊維であるCSF値0ml、平均繊維長0.95mmのリヨセル繊維50質量%とを混合した原料を、DDRを用いてCSF値40mlまで叩解し、円網三層抄紙機を用いて、厚さ30μm、坪量15.0g/m2、密度0.50g/cm3の三層セパレータを得た。このセパレータの引張強さは14.7N/15mm、比引裂強さは18.3mN・m2/g、500V印加時のショート率は0.4%、柔細胞の表裏比率は4.6だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。引裂強さ及び比引裂強さが弱いため、コンデンサ素子作製時に、セパレータの破断が発生した。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.21Ωだった。
〔比較例7〕
実施例6と同じ原料を、円網一層抄紙機を用いて、厚さ50μm、坪量25.0g/m2、密度0.50g/cm3の一層セパレータを得た。このセパレータの引張強さは28.4N/15mm、比引裂強さは36.8mN・m2/g、500V印加時のショート率は2.4%、柔細胞の表裏比率は6.8だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.26Ωだった。
実施例6と同じ原料を、円網一層抄紙機を用いて、厚さ50μm、坪量25.0g/m2、密度0.50g/cm3の一層セパレータを得た。このセパレータの引張強さは28.4N/15mm、比引裂強さは36.8mN・m2/g、500V印加時のショート率は2.4%、柔細胞の表裏比率は6.8だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.26Ωだった。
〔従来例1〕
バショウ科植物パルプであるマニラ麻パルプと、イネ科植物パルプであるエスパルトパルプを半量ずつ混合し、CSF値550mlまでDDRを用いて叩解し、円網二層抄紙機を用いて、厚さ50μm、坪量25.0g/m2、密度0.50g/cm3の二層セパレータを得た。このセパレータの引張強さは29.4N/15mm、比引裂強さは32.9mN・m2/g、500V印加時のショート率は4.0%、柔細胞の表裏比率は1.9だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.20Ωだった。
バショウ科植物パルプであるマニラ麻パルプと、イネ科植物パルプであるエスパルトパルプを半量ずつ混合し、CSF値550mlまでDDRを用いて叩解し、円網二層抄紙機を用いて、厚さ50μm、坪量25.0g/m2、密度0.50g/cm3の二層セパレータを得た。このセパレータの引張強さは29.4N/15mm、比引裂強さは32.9mN・m2/g、500V印加時のショート率は4.0%、柔細胞の表裏比率は1.9だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.20Ωだった。
〔従来例2〕
バショウ科植物パルプであるマニラ麻パルプと、イネ科植物パルプである麦ワラパルプを半量ずつ混合し、CSF値600mlまでDDRを用いて叩解し、円網三層抄紙機を用いて、厚さ60μm、坪量30.0g/m2、密度0.50g/cm3の三層セパレータを得た。このセパレータの引張強さは34.3N/15mm、比引裂強さは24.2mN・m2/g、500V印加時のショート率は3.7%、柔細胞の表裏比率は5.5だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.31Ωだった。
バショウ科植物パルプであるマニラ麻パルプと、イネ科植物パルプである麦ワラパルプを半量ずつ混合し、CSF値600mlまでDDRを用いて叩解し、円網三層抄紙機を用いて、厚さ60μm、坪量30.0g/m2、密度0.50g/cm3の三層セパレータを得た。このセパレータの引張強さは34.3N/15mm、比引裂強さは24.2mN・m2/g、500V印加時のショート率は3.7%、柔細胞の表裏比率は5.5だった。
このセパレータを用いてコンデンサ素子を500個作製し、EG系電解液を含浸後、ケースに挿入、封口し、定格電圧100V、容量100μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートせず、インピーダンスは0.31Ωだった。
実施例1乃至実施例6、比較例1乃至比較例7、従来例1及び従来例2のそれぞれのセパレータ及び定格電圧100Vのコンデンサのインピーダンスの評価結果を、表1に示す。
実施例2のセパレータにはCSF値200ml、平均繊維長3.50mmのリヨセル繊維を使用したが、比較例1のセパレータにはCSF値230ml、平均繊維長3.70mmのリヨセル繊維を使用した。比較例1のセパレータは、原料の平均繊維長が長くなったためセパレータの地合が悪化し、密度も0.25g/cm3を下回った結果、500V印加時のショート率は16.4%まで悪化した。また、比較例1のセパレータは、比引裂強さが100mN・m2/gを超えて、104.9mN・m2/gであった。
比引裂強さが100mN・m2/gを超えると、原料の平均繊維長が長くなりすぎて地合悪化を招き、セパレータの耐ショート性能が低下する。また、密度が0.25g/cm3を下回ると、引張強さは大きく低下する。
比引裂強さが100mN・m2/gを超えると、原料の平均繊維長が長くなりすぎて地合悪化を招き、セパレータの耐ショート性能が低下する。また、密度が0.25g/cm3を下回ると、引張強さは大きく低下する。
実施例3と比較例2のセパレータは、同じ原料を使用して円網二層抄紙機で抄紙したセパレータであるが、実施例3のセパレータは厚さ20μm、坪量9.0g/m2、比較例2のセパレータは厚さ18μm、坪量7.7g/m2である。比較例2のセパレータは複層の円網抄紙機で抄紙したが、厚さが20μm未満となったため、繊維の重なり本数不足により引張強さは大きく低下して9.0N/15mmとなり、コンデンサ素子作製時にセパレータの破断が発生した。また、耐ショート性能が低下した結果、500V印加時のショート率は23.0%となり、エージングショートが発生した。500V印加時のショート率と、アルミニウム電解コンデンサのエージング試験でのショートとは、関連があり、アルミニウム電解コンデンサのエージング試験でのショートを抑制するためには、セパレータの500V印加時のショート率を10%以下にする必要がある。加えて、本発明のセパレータは、厚さ20μm以上、坪量8.0g/m2以上であることが好ましい。
実施例4、比較例3、比較例4のセパレータは、竹パルプとリヨセル繊維の配合比率を変更して作製した、同じ厚さ、同じ密度のセパレータである。実施例4のセパレータの再生セルロース繊維の割合は10質量%であるが、比較例3は5質量%、比較例4は0質量%である。
実施例4のセパレータは、比較例4のセパレータと比較して、引張強さや比引裂強さ、500V印加時のショート率に優れる。
一方、比較例3のセパレータは、比較例4のセパレータと比較して、引張強さや比引裂強さ、500V印加時のショート率はほぼ同じ値であった。
叩解された再生セルロース繊維を添加し、耐ショート性能や強度特性の向上効果、インピーダンスの低減効果等を得るためには、叩解された再生セルロース繊維の割合を10質量%以上にする必要がある。
実施例4のセパレータは、比較例4のセパレータと比較して、引張強さや比引裂強さ、500V印加時のショート率に優れる。
一方、比較例3のセパレータは、比較例4のセパレータと比較して、引張強さや比引裂強さ、500V印加時のショート率はほぼ同じ値であった。
叩解された再生セルロース繊維を添加し、耐ショート性能や強度特性の向上効果、インピーダンスの低減効果等を得るためには、叩解された再生セルロース繊維の割合を10質量%以上にする必要がある。
実施例5と比較例5のセパレータは、麦ワラパルプとリヨセル繊維の配合比率を変更して作製した、同じ厚さ、同じ密度のセパレータである。一般的に叩解された再生セルロース繊維は、天然セルロース繊維と比較してインピーダンス特性に優れるため、配合比率を増やすほどセパレータのインピーダンスは低減する。しかしながら、リヨセル繊維の割合が少ない実施例5のセパレータを用いたコンデンサより、リヨセル繊維の割合が多い比較例5のセパレータを用いたコンデンサのインピーダンスが高くなった。これは、叩解された再生セルロース繊維が繊維径の小さいフィブリルを多く有するため、セパレータの緻密性が向上して、円網抄紙機で抄紙する際に本来は白水中に流出するはずだった天然セルロース繊維中の柔細胞を捕捉し、セパレータ中の柔細胞割合が向上したためである。
柔細胞が多い天然セルロース繊維、特にアオイ科植物パルプ、シナノキ科植物パルプ、イネ科植物パルプと、叩解された再生セルロース繊維を混合して抄紙する場合、叩解された再生セルロース繊維の割合を50質量%以下にする必要がある。
柔細胞が多い天然セルロース繊維、特にアオイ科植物パルプ、シナノキ科植物パルプ、イネ科植物パルプと、叩解された再生セルロース繊維を混合して抄紙する場合、叩解された再生セルロース繊維の割合を50質量%以下にする必要がある。
実施例6と比較例7のセパレータは同じ原料を使用し、円網二層抄紙機あるいは円網一層抄紙機を用いてそれぞれ作製したセパレータである。円網一層抄紙機で作製した比較例7のセパレータは、円網二層抄紙機で作製した実施例6のセパレータと比較して、セパレータ中の柔細胞割合が高いため、引張強さや比引裂強さが若干低くなり、コンデンサのインピーダンスは大きく悪化した。本発明のセパレータの抄紙には、円網多層抄紙機を使用することが好ましい。
〔実施例7〕
イネ科植物パルプであるCSF値650mlのバガスパルプ50質量%と、叩解された再生セルロース繊維であるCSF値200ml、平均繊維長3.50mmのリヨセル繊維50質量%とを混合した原料を、DDRを用いてCSF値300mlまで叩解し、円網三層抄紙機を用いて、厚さ120μm、坪量81.6g/m2、密度0.68g/cm3の三層セパレータを得た。このセパレータの引張強さは73.5N/15mm、比引裂強さは30.0mN・m2/g、500V印加時のショート率は0.0%、柔細胞の表裏比率は4.8だった。
このセパレータを用いてコンデンサ素子を500個作製し、GBL系電解液を含浸後、ケースに挿入、封口し、定格電圧400V、容量10μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートしなかった。
このように、本発明のセパレータは、いわゆる中高圧GBL系のアルミニウム電解コンデンサにも適用できることが確認された。
イネ科植物パルプであるCSF値650mlのバガスパルプ50質量%と、叩解された再生セルロース繊維であるCSF値200ml、平均繊維長3.50mmのリヨセル繊維50質量%とを混合した原料を、DDRを用いてCSF値300mlまで叩解し、円網三層抄紙機を用いて、厚さ120μm、坪量81.6g/m2、密度0.68g/cm3の三層セパレータを得た。このセパレータの引張強さは73.5N/15mm、比引裂強さは30.0mN・m2/g、500V印加時のショート率は0.0%、柔細胞の表裏比率は4.8だった。
このセパレータを用いてコンデンサ素子を500個作製し、GBL系電解液を含浸後、ケースに挿入、封口し、定格電圧400V、容量10μF、直径12.5mm×長さ20mmのアルミニウム電解コンデンサとした。このアルミニウム電解コンデンサは、エージング試験でショートしなかった。
このように、本発明のセパレータは、いわゆる中高圧GBL系のアルミニウム電解コンデンサにも適用できることが確認された。
以上、本実施の形態によれば、中長期に渡って安定的に入手可能である、アオイ科植物パルプ、シナノキ科植物パルプ及びイネ科植物パルプと、叩解された再生セルロース繊維とを用いて、かつ引裂強さ、耐ショート性能及びインピーダンス特性に優れるアルミニウム電解コンデンサ用セパレータ及び該セパレータを用いるアルミニウム電解コンデンサを提供できる。
以上、本実施の形態のセパレータをアルミニウム電解コンデンサに用いた例を説明した。
アルミニウム電解コンデンサの他の構成、製造方法の詳細についての説明は省略したが、本発明のアルミニウム電解コンデンサにおいて、電極材料及び電解液材料については、特別に限定を必要とすることはなく、種々の材料を用いることができる。また、素子外径が許容する限り、本発明のセパレータを複数枚、または本発明のセパレータを一枚以上用いて他のセパレータとともに複数枚重ねて使用することも可能である。
アルミニウム電解コンデンサの他の構成、製造方法の詳細についての説明は省略したが、本発明のアルミニウム電解コンデンサにおいて、電極材料及び電解液材料については、特別に限定を必要とすることはなく、種々の材料を用いることができる。また、素子外径が許容する限り、本発明のセパレータを複数枚、または本発明のセパレータを一枚以上用いて他のセパレータとともに複数枚重ねて使用することも可能である。
Claims (4)
- アルミニウム電解コンデンサの陽極と陰極との間に介在する、アルミニウム電解コンデンサ用セパレータであって、
前記アルミニウム電解コンデンサ用セパレータが、天然セルロース繊維50~90質量%と叩解された再生セルロース繊維50~10質量%とからなり、
比引裂強さが20~100mN・m2/gであって、
セパレータ絶縁破壊試験での500V印加時のショート率が10%以下である
ことを特徴とするアルミニウム電解コンデンサ用セパレータ。 - 前記天然セルロース繊維が、アオイ科植物パルプ、シナノキ科植物パルプ、及びイネ科植物パルプからなる群より選択された1種類以上の材料で構成されていることを特徴とする請求項1に記載のアルミニウム電解コンデンサ用セパレータ。
- 前記アルミニウム電解コンデンサ用セパレータは、厚さが20~120μmであり、密度が0.25~0.70g/cm3であることを特徴とする請求項1又は請求項2に記載のアルミニウム電解コンデンサ用セパレータ。
- 陽極、陰極、前記陽極と前記陰極との間に介在するセパレータ、を備え、
前記セパレータに、請求項1乃至請求項3のいずれか1項に記載のアルミニウム電解コンデンサ用セパレータを用いた
ことを特徴とするアルミニウム電解コンデンサ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21834592.4A EP4177915A1 (en) | 2020-07-01 | 2021-07-01 | Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor |
US17/927,826 US20230290580A1 (en) | 2020-07-01 | 2021-07-01 | Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor |
KR1020227041953A KR20230027005A (ko) | 2020-07-01 | 2021-07-01 | 알루미늄 전해 컨덴서용 세퍼레이터 및 알루미늄 전해 컨덴서 |
CN202180045868.1A CN115777132A (zh) | 2020-07-01 | 2021-07-01 | 铝电解电容器用分隔件和铝电解电容器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-114400 | 2020-07-01 | ||
JP2020114400A JP7554590B2 (ja) | 2020-07-01 | 2020-07-01 | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022004851A1 true WO2022004851A1 (ja) | 2022-01-06 |
Family
ID=79315350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024993 WO2022004851A1 (ja) | 2020-07-01 | 2021-07-01 | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230290580A1 (ja) |
EP (1) | EP4177915A1 (ja) |
JP (1) | JP7554590B2 (ja) |
KR (1) | KR20230027005A (ja) |
CN (1) | CN115777132A (ja) |
WO (1) | WO2022004851A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53142652A (en) | 1977-05-17 | 1978-12-12 | Nippon Kodoshi Kogyo Kk | Paper for electrolytic capacitor |
JPH03222315A (ja) | 1990-01-26 | 1991-10-01 | Nippon Koudoshi Kogyo Kk | 電解コンデンサ用電解紙 |
JPH05267103A (ja) | 1992-03-19 | 1993-10-15 | Nippon Koudoshi Kogyo Kk | 電解コンデンサ |
JPH05315193A (ja) | 1991-04-19 | 1993-11-26 | Nichicon Corp | 電解コンデンサ |
JPH08250376A (ja) | 1995-03-07 | 1996-09-27 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JP2016134425A (ja) * | 2015-01-16 | 2016-07-25 | ニッポン高度紙工業株式会社 | セパレータ及びアルミニウム電解コンデンサ |
WO2017047699A1 (ja) | 2015-09-17 | 2017-03-23 | ニッポン高度紙工業株式会社 | 電気化学素子用セパレータおよび電気化学素子 |
JP2018073856A (ja) * | 2016-10-24 | 2018-05-10 | ニッポン高度紙工業株式会社 | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4304384B2 (ja) * | 1998-07-02 | 2009-07-29 | 日本ケミコン株式会社 | 電解コンデンサ |
JP2014123607A (ja) * | 2012-12-20 | 2014-07-03 | Nippon Kodoshi Corp | アルミ電解コンデンサ用セパレータ及びアルミ電解コンデンサ |
JP6775130B2 (ja) * | 2014-07-18 | 2020-10-28 | ニッポン高度紙工業株式会社 | 蓄電デバイス用セパレータおよび該セパレータを用いた蓄電デバイス |
JP6359676B2 (ja) * | 2014-09-26 | 2018-07-18 | 旭化成株式会社 | セルロース微細繊維層を含む薄膜シート |
JP6649022B2 (ja) * | 2015-09-28 | 2020-02-19 | ニッポン高度紙工業株式会社 | 電気化学素子用セパレータ及び電気化学素子 |
KR20170047699A (ko) | 2015-10-23 | 2017-05-08 | 송화섭 | 왕겨를 접착. 성형한 판넬. |
JP6932534B2 (ja) | 2017-04-19 | 2021-09-08 | ニッポン高度紙工業株式会社 | 電気化学素子用セパレータ及び電気化学素子 |
-
2020
- 2020-07-01 JP JP2020114400A patent/JP7554590B2/ja active Active
-
2021
- 2021-07-01 CN CN202180045868.1A patent/CN115777132A/zh active Pending
- 2021-07-01 KR KR1020227041953A patent/KR20230027005A/ko unknown
- 2021-07-01 EP EP21834592.4A patent/EP4177915A1/en active Pending
- 2021-07-01 US US17/927,826 patent/US20230290580A1/en active Pending
- 2021-07-01 WO PCT/JP2021/024993 patent/WO2022004851A1/ja unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53142652A (en) | 1977-05-17 | 1978-12-12 | Nippon Kodoshi Kogyo Kk | Paper for electrolytic capacitor |
JPH03222315A (ja) | 1990-01-26 | 1991-10-01 | Nippon Koudoshi Kogyo Kk | 電解コンデンサ用電解紙 |
JPH05315193A (ja) | 1991-04-19 | 1993-11-26 | Nichicon Corp | 電解コンデンサ |
JPH05267103A (ja) | 1992-03-19 | 1993-10-15 | Nippon Koudoshi Kogyo Kk | 電解コンデンサ |
JPH08250376A (ja) | 1995-03-07 | 1996-09-27 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JP2016134425A (ja) * | 2015-01-16 | 2016-07-25 | ニッポン高度紙工業株式会社 | セパレータ及びアルミニウム電解コンデンサ |
WO2017047699A1 (ja) | 2015-09-17 | 2017-03-23 | ニッポン高度紙工業株式会社 | 電気化学素子用セパレータおよび電気化学素子 |
JP2018073856A (ja) * | 2016-10-24 | 2018-05-10 | ニッポン高度紙工業株式会社 | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ |
Also Published As
Publication number | Publication date |
---|---|
EP4177915A1 (en) | 2023-05-10 |
KR20230027005A (ko) | 2023-02-27 |
CN115777132A (zh) | 2023-03-10 |
JP2022012525A (ja) | 2022-01-17 |
US20230290580A1 (en) | 2023-09-14 |
JP7554590B2 (ja) | 2024-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10508389B2 (en) | Separator for electrochemical element and electrochemical element | |
JP6412805B2 (ja) | セパレータ及びアルミニウム電解コンデンサ | |
JP3466206B2 (ja) | 電解コンデンサ | |
US10964485B2 (en) | Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor | |
JP2010239094A (ja) | 電解コンデンサ用セパレータおよび電解コンデンサ | |
WO2022004851A1 (ja) | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ | |
JP7012425B2 (ja) | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ | |
JP7333694B2 (ja) | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ | |
JP6850921B1 (ja) | 電気化学素子用セパレータおよび電気化学素子 | |
JPH03222315A (ja) | 電解コンデンサ用電解紙 | |
US20220059291A1 (en) | Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21834592 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021834592 Country of ref document: EP Effective date: 20230201 |