WO2022004062A1 - 試料精製装置、分析システム - Google Patents

試料精製装置、分析システム Download PDF

Info

Publication number
WO2022004062A1
WO2022004062A1 PCT/JP2021/009167 JP2021009167W WO2022004062A1 WO 2022004062 A1 WO2022004062 A1 WO 2022004062A1 JP 2021009167 W JP2021009167 W JP 2021009167W WO 2022004062 A1 WO2022004062 A1 WO 2022004062A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
sample
pipe
main body
sample purification
Prior art date
Application number
PCT/JP2021/009167
Other languages
English (en)
French (fr)
Inventor
和輝 高橋
雅人 上田
秀文 山形
信介 井上
真二 ▲浜▼▲崎▼
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN202180045654.4A priority Critical patent/CN115989400A/zh
Priority to US18/013,397 priority patent/US20230221225A1/en
Priority to JP2022533681A priority patent/JP7452655B2/ja
Priority to EP21832547.0A priority patent/EP4173719A4/en
Publication of WO2022004062A1 publication Critical patent/WO2022004062A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0006Settling tanks provided with means for cleaning and maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0084Enhancing liquid-particle separation using the flotation principle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2433Discharge mechanisms for floating particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B13/00Control arrangements specially adapted for wet-separating apparatus or for dressing plant, using physical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • B03B5/30Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • B03B5/30Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions
    • B03B5/36Devices therefor, other than using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/16Devices for withdrawing samples in the liquid or fluent state with provision for intake at several levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • This disclosure relates to a sample purification device and an analysis system.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose a method for recovering microplastics contained in a mixed sample by purifying the mixed sample collected from the sea.
  • Non-Patent Document 1 when purifying a mixed sample, a heavy liquid for separating the mixed sample by specific gravity is introduced into a container. Further ingenuity was required regarding the accurate recovery of microplastics from the supernatant liquid produced by the introduction of heavy liquids.
  • the present disclosure has been made to solve such a problem, and an object thereof is to provide a technique for purifying a mixed sample with high accuracy.
  • a sample purification device for purifying a mixed sample is a container for separating the mixed sample by a specific gravity difference using a heavy liquid, and a container for introducing the supernatant liquid discharged from the container to introduce the weight of the mixed sample. It is equipped with a recovery unit for recovering components with a lighter specific gravity than the liquid, and the container has a discharge port provided at the top of the container and a discharge route for guiding the supernatant liquid discharged from the discharge port to the recovery unit.
  • the horizontal cross-sectional area of the container is configured to be continuously smaller in the upward direction from at least a predetermined height of the container to the discharge port.
  • the analysis system includes the above-mentioned sample purification device and an analysis device for analyzing the components recovered by the collection unit of the sample purification device.
  • the horizontal cross-sectional area of the container is configured to be continuously smaller in the upward direction from at least a predetermined height of the container to the discharge port, which is caused by the introduction of heavy liquid.
  • the supernatant liquid is discharged to the outside, it is possible to prevent the components to be recovered from staying in the container as much as possible, so that the mixed sample can be purified with high accuracy.
  • FIG. 1 is a diagram schematically showing a sample purification apparatus 1 according to the present embodiment.
  • the sample purification device 1 according to the present embodiment purifies the mixed sample under the control of the computer 500, and executes a process of recovering the component to be recovered contained in the mixed sample.
  • “Purification” includes turning the mixture into a pure substance, and in the present embodiment, including obtaining a pure substance (ingredient) to be recovered from the collected mixed sample.
  • the “mixed sample” purified by the sample purification apparatus 1 may be any sample as long as it contains the components to be recovered.
  • seawater and sand collected from the sea or the coast as the “mixed sample”.
  • Examples include processed products such as foods and cosmetics.
  • seawater and sand collected from the sea or the coast are exemplified as “mixed samples”.
  • the “mixed sample” is also simply referred to as a "sample”.
  • the “component” to be collected by the sample purification device 1 may be any component as long as it is a component recovered by the sample purification device 1 according to the present embodiment, and for example, microplastic is mentioned as the "component".
  • the microplastic is, for example, fine plastic particles having a length of 5 mm or less.
  • microplastics contained in seawater and sand collected in the sea or from the coast are exemplified as "ingredients”.
  • the sample purification device 1 includes a sample purification device 100 for purifying a sample and a computer 500 for controlling the sample purification device 100.
  • the sample purifier 100 includes a container 50 for accommodating a sample, a plurality of pipes 11 to 15, a plurality of pumps 31 to 34, a plurality of ports 61 to 64, a solenoid valve 41, and a constant temperature stirrer 71. , A stirrer 72, a discharge pipe 25, a detection filter 21, and a container 210.
  • the pipe 11 is an example of the "first pipe”.
  • the pipe 11 is connected to the container 110, and an oxidizing agent for treating impurities is introduced from the container 110 to the port 61 provided in the container 50.
  • a "contaminant” is a foreign substance other than the components to be collected in the mixed sample.
  • the "contaminant” an organic contaminant having the property of an organic substance is exemplified.
  • the “oxidizing agent” may be any as long as it can treat impurities.
  • the “oxidizing agent” decomposes game impurities.
  • examples of the “oxidizing agent” include hydrogen peroxide solution (H 2 O 2 ) and a mixture of hydrogen peroxide solution (H 2 O 2 ) and iron (II) oxide (FeO).
  • H 2 O 2 hydrogen peroxide solution
  • H 2 O 2 hydrogen peroxide solution
  • FeO iron oxide
  • the “organic contaminants” include wood chips and plankton mixed with seawater or sand.
  • the pipe 12 is an example of the "second pipe".
  • the pipe 12 is connected to the container 120, and a heavy liquid for separating a sample due to a difference in specific gravity is introduced from the container 120 to a port 62 provided in the container 50.
  • the “heavy liquid” may be any liquid as long as it separates the sample by the difference in specific gravity.
  • the “heavy liquid” precipitates inorganic impurities having the property of an inorganic substance by a difference in specific gravity.
  • a “heavy liquid” sodium chloride (NaCl), sodium iodide (Nal), zinc chloride (ZnC1 2), and the like.
  • the “inorganic contaminants” include sand, glass, stone and the like.
  • the specific gravity of the "heavy liquid” is set to be larger than the specific density of the "component” to be collected by the sample purification apparatus 1 and smaller than the specific gravity of the "inorganic contaminants”.
  • the specific gravity of the "heavy liquid” is higher than the specific gravity of the microplastic. It may be set to be large and smaller than the specific gravity of sand, glass, stone, and the like. Specifically, the specific gravity of the "heavy liquid” may be set to about 1.5 to about 1.7.
  • the pipe 13 is an example of the "fourth pipe".
  • the pipe 13 is connected to the container 130, and the rinse liquid for cleaning the inside of the container 50 is introduced from the container 130 to the port 63 provided in the container 50.
  • the “rinsing liquid” may be any one as long as it is for cleaning the inside of the container 50, and examples thereof include water as the "rinsing liquid”.
  • the pipe 14 and the pipe 15 are examples of the "third pipe".
  • the pipe 14 is connected to the container 140, and the waste liquid in the container 50 is discharged to the container 140 from the port 64 provided in the container 50.
  • the pipe 15 is connected to the container 150, and the waste liquid in the container 50 is discharged to the container 150 from the port 64 provided in the container 50.
  • the pump 31 is provided between the pipe 11 and the container 50, and the valve 31a operates under the control of the computer 500 to suck in the oxidizing agent contained in the container 110 and introduce it toward the port 61.
  • the pump 32 is provided between the pipe 12 and the container 50, and the valve 32a operates under the control of the computer 500 to suck in the heavy liquid contained in the container 120 and introduce it toward the port 62.
  • the pump 33 is provided between the pipe 13 and the container 50, and the valve 33a operates under the control of the computer 500 to suck in the rinse liquid contained in the container 130 and introduce it toward the port 63.
  • the pump 34 is provided between each of the pipe 14 and the pipe 15 and the container 50, and the valve 34a operates under the control of the computer 500 to suck in the waste liquid in the container 50 and toward the container 140 or the container 150. Discharge from port 64.
  • Each of the valves 31a to 34a is an example of a "switching unit", and the liquid flows in and out by opening and closing the passages provided in each of the pumps 31 to 34.
  • the “switching unit” may be any one as long as it switches the inflow and outflow of the liquid in each of the pipes 11 to 15.
  • the “switching unit” may be one that sucks / discharges by reciprocating movement of a piston or the like, or may be one that sucks / discharges by rotating a gear or the like.
  • “Liquid” includes oxidants, heavy liquids, rinse liquids, waste liquids and the like.
  • Ports 61 to 64 are formed on the outer peripheral portion of the container 50 and are entrances and exits for liquids to enter and exit.
  • a filter (for example, filters 163 and 164 shown in FIG. 16 described later) is provided inside each of the ports 61 to 64 so that the components contained in the sample are not discharged to the outside.
  • the solenoid valve 41 is provided between each of the pipe 14 and the pipe 15 and the pump 34, and operates under the control of the computer 500 to provide a path between the pipe 14 and the pump 34, and the pipe 15 and the pump 34.
  • the route through which the waste liquid passes is switched between the route and the route between.
  • the constant temperature stirrer 71 is an example of a "stirring section" and a "heating section".
  • a container 50 is placed on the constant temperature stirrer 71.
  • the constant temperature stirrer 71 agitates the sample contained in the container 50 by rotating the stirrer 72 provided in the container 50 under the control of the computer 500. Further, the constant temperature stirrer 71 keeps the temperature of the sample contained in the container 50 constant by applying heat to the container 50.
  • the discharge pipe 25 is connected to a discharge port 20 provided at the top of the container 50, and discharges the supernatant liquid of the sample overflowing from the container 50 to the outside.
  • the discharge port 20 is an example of a “discharge unit”.
  • the discharge pipe 25 is an example of a “drainage route”.
  • the detection filter 21 recovers the component to be recovered contained in the supernatant liquid by filtering the supernatant liquid of the sample discharged from the discharge pipe 25.
  • the supernatant liquid that has passed through the detection filter 21 is collected by the container 210.
  • the detection filter 21 is a filter capable of trapping the microplastic to be recovered.
  • a specific example of the filter is a wire mesh made of SUS (stainless steel) or a membrane filter made of PTFE (made of Teflon (registered trademark)).
  • the detection filter 21 is an example of a “collection unit”.
  • the computer 500 may be realized by a general-purpose computer or a dedicated computer for controlling the sample purifier 100.
  • the computer 500 controls each of the valves 31a to 34a, the solenoid valve 41, and the constant temperature stirrer 71 in the sample purifier 100.
  • the computer 500 drives the motor by applying electric power to the motor (not shown) in each of the valves 31a to 34a.
  • the driving force of the motor opens and closes the valves 31a to 34a, whereby the pumps 31 to 34 suck and discharge the liquid.
  • the computer 500 opens and closes the valve (not shown) by passing an electric current through the solenoid (not shown) of the solenoid valve 41, thereby switching the path through which the waste liquid passes.
  • the computer 500 drives the motor by supplying electric power to the motor of the constant temperature stirrer 71 (not shown).
  • the driving force of the motor rotates the stirrer 72, whereby the sample contained in the container 50 is agitated.
  • the computer 500 applies a constant amount of heat to the container 50 by supplying electric power to a heater (not shown) of the constant temperature stirrer 71.
  • FIG. 2 is a diagram schematically showing the internal configuration of the sample purification apparatus 1 according to the present embodiment.
  • the computer 500 has, as main hardware elements, an arithmetic unit 501, a memory 502, a network controller 503, a display device 504, an input device 505, a data reading device 506, and a storage 510. And.
  • the arithmetic unit 501 is an example of a "control unit".
  • the arithmetic unit 501 is an arithmetic unit that executes various processes by executing various programs.
  • the arithmetic unit 501 executes a sample purification process for controlling each of the valves 31a to 34a, the solenoid valve 41, and the constant temperature stirrer 71 in the sample purifier 100 by executing the control program 511 described later (FIG. FIG. 14) will be executed later.
  • the arithmetic unit 501 is composed of, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a GPU (Graphics Processing Unit), and the like.
  • the arithmetic unit 501 may be configured by a processing circuitry that performs arithmetic operations.
  • the arithmetic unit 501 included in the computer 500 is illustrated as an example of the "control unit", and the "control unit” is a PLC (programmable logic controller) that sequentially controls each configuration according to a program created by the user. It may be a controller such as. Further, in the present embodiment, the "control unit” is separate from the sample purifier 100, but the “control unit” may be integrated with the sample purifier 100. For example, the sample purifier 100 may include a device corresponding to the arithmetic unit 501.
  • PLC programmable logic controller
  • the memory 502 provides a storage area for temporarily storing a program code, a work memory, or the like when the arithmetic unit 501 executes an arbitrary program.
  • the memory 502 is composed of, for example, a volatile memory device such as a DRAM (Dynamic Random Access Memory) or a SRAM (Static Random Access Memory).
  • the network controller 503 transmits and receives to and from other devices via a network (not shown).
  • the network controller 503 supports any communication method such as Ethernet (registered trademark), wireless LAN (Local Area Network), and Bluetooth (registered trademark).
  • the display device 504 is composed of, for example, an LCD (Liquid Crystal Display) or the like, and displays a program design screen, an alert screen at the time of abnormality, and the like.
  • LCD Liquid Crystal Display
  • the input device 505 is composed of, for example, a keyboard and a mouse, and is used by the user to input design information and the like when designing a program.
  • the input device 505 may be configured with a start switch for starting execution of the sample purification process by the arithmetic unit 501.
  • the data reading device 506 is a device for reading the data stored in the storage medium 507.
  • the storage medium 507 may be any one that can store various data such as a CD (Compact Disc), a DVD (Digital Versatile Disc), and a USB (Universal Serial Bus) memory.
  • the storage 510 provides a storage area for storing various data necessary for sample purification processing and the like.
  • the storage 510 is composed of, for example, a hard disk or a non-volatile memory device such as an SSD (Solid State Drive).
  • the storage 510 stores the control program 511, the control data 512, and the OS (Operating System) 513.
  • the control program 511 is a program in which the contents of the sample purification process are described, and is executed by the arithmetic unit 501.
  • the control program 511 may be designed by the user using the input device 505, may be read from the storage medium 507 by the data reading device 506, or may be read from the storage medium 507 by the network controller 503 from another device such as a server via the network. May be obtained.
  • the control data 512 is data used when the arithmetic unit 501 executes the control program 511.
  • the control data 512 includes data for controlling the solenoid valve 41 and the constant temperature stirrer 71, respectively, of the valves 31a to 34a.
  • the control data 512 may be input by the user using the input device 505, may be read from the storage medium 507 by the data reading device 506, or may be networked from another device such as a server by the network controller 503. May be obtained via.
  • OS 513 provides basic functions for executing various processes by the arithmetic unit 501.
  • sample purification method A sample purification method using the sample purification apparatus 1 will be described with reference to FIGS. 3 to 13.
  • 3 to 13 are diagrams for explaining a sample purification method using the sample purification apparatus 1 according to the present embodiment.
  • a user such as a worker prepares a container 110, a container 120, a container 130, a container 140, a container 150, a container 210, and a detection filter 21.
  • the user stores the oxidant in the container 110 and inserts the pipe 11 into the container 110.
  • the user stores the heavy liquid in the container 120 and inserts the pipe 12 into the container 120.
  • the user stores the rinse liquid in the container 130 and inserts the pipe 13 into the container 130.
  • the user inserts the pipe 14 into the container 140 and inserts the pipe 15 into the container 150.
  • the container 140 and the container 150 are each empty.
  • the user arranges the detection filter 21 and the container 210 in order from the discharge pipe 25 side near the outlet of the discharge pipe 25.
  • the user introduces a sample (mixed sample) into the container 50 of the sample purification device 1.
  • a sample mixed sample
  • the user opens the inside of the container 50 by separating a part of the container 50 composed of a plurality of members, and pours the sample into the container 50.
  • the user starts the control of the sample purifier 100 by the computer 500 by performing the start operation using the input device 505 of the computer 500.
  • the computer 500 controls the valve 34a and the solenoid valve 41 to discharge the waste liquid in the container 50 to the container 140 via the port 64 and the pipe 14. do.
  • the sample contained in the container 50 contains waste liquid such as seawater, and such waste liquid is discharged to the container 140.
  • the microplastic or the like to be collected contained in the sample is not discharged to the outside by the filter 164 (see FIG. 16) included in the port 64, and remains in the container 50.
  • the computer 500 controls the valve 31a to introduce the oxidizing agent contained in the container 110 into the container 50 via the pipe 11 and the port 61.
  • the computer 500 introduces the oxidizing agent in a preset amount by the user into the container 50 by controlling the suction amount of the pump 31.
  • the computer 500 controls the suction amount of the pump 31 by adjusting the degree of opening of the valve 31a of the pump 31.
  • the computer 500 may control the suction amount of the pump 31 based on the detection value of the liquid level sensor provided in the container 110 or the container 50.
  • the computer 500 controls the constant temperature stirrer 71 to rotate the stirrer 72 provided in the container 50 while applying a constant heat to the container 50.
  • the temperature of the container 50 and the rotation speed and rotation time of the stirrer 72 are preset by the user.
  • the computer 500 controls the constant temperature stirrer 71 to agitate the sample contained in the container 50 for about 3 days while keeping the container 50 at a temperature of about 75 degrees.
  • an oxidation treatment with an oxidizing agent is performed, and organic contaminants contained in the sample are decomposed.
  • heating is not always necessary when the sample is agitated, by keeping the temperature of the sample at a constant temperature by heating, decomposition by the oxidation treatment can be easily promoted.
  • the computer 500 controls the valve 34a and the solenoid valve 41, and the container 50 contained in the sample after the organic contaminants are decomposed through the port 64 and the pipe 14.
  • the waste liquid in the container 140 is discharged.
  • the microplastic or the like to be collected contained in the sample is not discharged to the outside by the filter 164 included in the port 64, but remains in the container 50.
  • the computer 500 controls the pump 33 to introduce the rinse liquid contained in the container 130 into the container 50 via the pipe 13 and the port 63.
  • the computer 500 introduces the rinse liquid in a preset amount by the user into the container 50 by controlling the suction amount of the pump 33.
  • the computer 500 controls the suction amount of the pump 33 by adjusting the degree of opening of the valve 33a.
  • the computer 500 may control the suction amount of the pump 33 based on the detection value of the liquid level sensor provided in the container 130 or the container 50.
  • the computer 500 controls the valve 34a and the solenoid valve 41 to container the waste liquid in the container 50 after the rinse liquid is introduced through the port 64 and the pipe 14. Discharge to 140.
  • the inside of the container 50 is washed with the rinsing liquid.
  • the microplastic or the like to be collected contained in the sample is not discharged to the outside by the filter 164 included in the port 64, but remains in the container 50.
  • the computer 500 dries the sample by leaving the sample as it is for a predetermined time (for example, one day).
  • the computer 500 controls the valve 32a to introduce the heavy liquid contained in the container 120 into the container 50 via the pipe 12 and the port 62.
  • the computer 500 introduces a heavy liquid in a preset amount by the user into the container 50 by controlling the suction amount of the pump 32.
  • the computer 500 controls the suction amount of the pump 32 by adjusting the degree of opening of the valve 32a.
  • the computer 500 may control the suction amount of the pump 32 based on the detection value of the liquid level sensor provided in the container 120 or the container 50.
  • the inorganic contaminants contained in the sample settle near the bottom of the container 50 due to the difference in specific gravity.
  • the liquid level of the sample separated by specific gravity gradually rises in the container 50, and eventually the supernatant liquid of the sample reaches the discharge port 20 of the container 50. Then, the supernatant liquid of the sample is discharged to the outside through the discharge port 20 and the discharge pipe 25.
  • the supernatant liquid of the sample discharged through the discharge pipe 25 is filtered by the detection filter 21, and only the waste liquid is collected by the container 210.
  • Microplastic which is a component having a lighter specific gravity than the heavy liquid, remains in the detection filter 21. Such specific gravity separation takes about one day, during which the computer 500 controls the introduction of heavy liquid into the sample.
  • the sample can be purified by continuous operation using one container 50.
  • the sample purifier 100 is controlled by the computer 500, so that the sample automatically contained in the container 50 at an appropriate timing and for an appropriate time.
  • An oxidizing agent and a heavy liquid are introduced into the container 50, and the waste liquid is discharged from the container 50. Therefore, the user does not need to introduce the oxidizing agent and the heavy liquid into the container 50 by himself / herself and discharge the waste liquid from the container 50.
  • the user there is no possibility that the user has to take time and effort, and the accuracy in collecting the components does not vary depending on the skill of each user, and the user can purify the sample with high accuracy without taking time and effort as much as possible.
  • the container 50 is washed by post-treatment. Specifically, as shown in FIG. 11, the computer 500 controls the valve 34a and the solenoid valve 41 so that the waste liquid in the container 50 after the microplastic is collected through the port 64 and the pipe 15. Is discharged into the container 150.
  • the computer 500 controls the valve 33a to introduce the rinse liquid contained in the container 130 into the container 50 via the pipe 13 and the port 63.
  • the computer 500 introduces the rinse liquid in a preset amount by the user into the container 50 by controlling the suction amount of the pump 33.
  • the computer 500 controls the suction amount of the pump 33 by adjusting the degree of opening of the valve 33a.
  • the computer 500 may control the suction amount of the pump 33 based on the detection value of the liquid level sensor provided in the container 130 or the container 50.
  • the computer 500 controls the valve 34a and the solenoid valve 41 to container the waste liquid in the container 50 after the rinse liquid is introduced through the port 64 and the pipe 15. Discharge to 150. As a result, the inside of the container 50 is washed with the rinsing liquid.
  • the sample purification device 100 is controlled by the computer 500, so that the used container 50 is automatically washed. To. Therefore, the user does not have to clean the container 50 by himself / herself, and saves time and effort as much as possible.
  • FIG. 14 is a flowchart for explaining the sample purification process executed by the sample purification apparatus 1 according to the present embodiment.
  • Each step shown in FIG. 14 is realized by the arithmetic unit 501 of the computer 500 executing the OS 513 and the control program 511.
  • "S" is used as an abbreviation for "STEP".
  • the computer 500 executes the sample purification process shown in FIG. As shown in FIG. 14, the computer 500 first controls the valve 34a and the solenoid valve 41 to discharge the waste liquid in the container 50 to the container 140 (S1).
  • the computer 500 determines whether or not the discharge of the waste liquid is completed (S2). For example, the computer 500 determines whether or not the discharge of the waste liquid is completed based on the degree of opening of the valve 34a or the detection value of the liquid level sensor provided in the container 140 or the container 50.
  • the computer 500 repeats the process of S2 when the discharge of the waste liquid is not completed (NO in S2). On the other hand, when the discharge of the waste liquid is completed (YES in S2), the computer 500 introduces the oxidizing agent contained in the container 110 into the container 50 by controlling the valve 31a (S3).
  • the computer 500 determines whether or not the introduction of the oxidizing agent is completed (S4). For example, the computer 500 determines whether or not the introduction of the oxidant is completed based on the degree of opening of the valve 31a or the detection value of the liquid level sensor provided in the container 110 or the container 50.
  • the computer 500 repeats the process of S4 when the introduction of the oxidizing agent is not completed (NO in S4). On the other hand, when the introduction of the oxidant is completed (YES in S4), the computer 500 controls the constant temperature stirrer 71 to stir the sample with the stirrer 72 while applying a constant heat to the sample (S5).
  • the computer 500 determines whether or not the stirring of the sample is completed (S6). For example, the computer 500 determines whether or not the stirring of the sample is completed based on the measured value by the timer (not shown).
  • the computer 500 repeats the process of S6 when the stirring of the sample is not completed (NO in S6). On the other hand, when the stirring of the sample is completed (YES in S6), the computer 500 controls the valve 34a and the solenoid valve 41 to remove the waste liquid in the container 50 contained in the sample after the organic contaminants are decomposed. Discharge to the container 140 (S7).
  • the computer 500 determines whether or not the discharge of the waste liquid is completed (S8). For example, the computer 500 determines whether or not the discharge of the waste liquid is completed based on the degree of opening of the valve 34a or the detection value of the liquid level sensor provided in the container 140 or the container 50.
  • the computer 500 repeats the process of S8 when the discharge of the waste liquid is not completed (NO in S8). On the other hand, when the discharge of the waste liquid is completed (YES in S8), the computer 500 introduces the rinse liquid contained in the container 130 into the container 50 by controlling the valve 33a (S9).
  • the computer 500 determines whether or not the introduction of the rinsing liquid is completed (S10). For example, the computer 500 determines whether or not the introduction of the rinse liquid is completed based on the degree of opening of the valve 33a or the detection value of the liquid level sensor provided in the container 130 or the container 50.
  • the computer 500 repeats the process of S10 when the introduction of the rinsing liquid is not completed (NO in S10). On the other hand, when the introduction of the rinsing liquid is completed (YES in S10), the computer 500 controls the valve 34a and the solenoid valve 41 to discharge the waste liquid in the container 50 after the rinsing liquid is introduced into the container 140. (S11).
  • the computer 500 determines whether or not the discharge of the waste liquid is completed (S12). For example, the computer 500 determines whether or not the discharge of the waste liquid is completed based on the degree of opening of the valve 34a or the detection value of the liquid level sensor provided in the container 140 or the container 50.
  • the computer 500 repeats the process of S12 when the discharge of the waste liquid is not completed (NO in S12). On the other hand, when the discharge of the waste liquid is completed (YES in S12), the computer 500 introduces the heavy liquid contained in the container 120 into the container 50 by controlling the valve 32a (S13).
  • the computer 500 determines whether or not the introduction of the heavy liquid is completed (S13). For example, the computer 500 determines whether or not the introduction of the heavy liquid is completed based on the degree of opening of the valve 32a or the detection value of the liquid level sensor provided in the container 120 or the container 50.
  • the computer 500 repeats the process of S14 when the introduction of the heavy liquid is not completed (NO in S14).
  • the inorganic contaminants contained in the sample settle near the bottom of the container 50 due to the difference in specific gravity, while the supernatant liquid of the sample is discharged to the outside through the discharge port 20 and the discharge pipe 25. .. Then, the supernatant liquid of the sample discharged through the discharge pipe 25 is filtered by the detection filter 21, and the microplastic is recovered by the detection filter 21.
  • the computer 500 controls the valve 34a and the solenoid valve 41 to control the microplastic.
  • the waste liquid in the container 50 after being collected is discharged to the container 150.
  • the computer 500 determines whether or not the discharge of the waste liquid is completed (S16). For example, the computer 500 determines whether or not the discharge of the waste liquid is completed based on the degree of opening of the valve 34a or the detection value of the liquid level sensor provided in the container 150 or the container 50.
  • the computer 500 repeats the process of S16 when the discharge of the waste liquid is not completed (NO in S16). On the other hand, when the discharge of the waste liquid is completed (YES in S16), the computer 500 introduces the rinse liquid contained in the container 130 into the container 50 by controlling the valve 33a (S17).
  • the computer 500 determines whether or not the introduction of the rinsing liquid is completed (S18). For example, the computer 500 determines whether or not the introduction of the rinse liquid is completed based on the degree of opening of the valve 33a or the detection value of the liquid level sensor provided in the container 130 or the container 50.
  • the computer 500 repeats the process of S18 when the introduction of the rinsing liquid is not completed (NO in S18). On the other hand, when the introduction of the rinsing liquid is completed (YES in S18), the computer 500 controls the valve 34a and the solenoid valve 41 to discharge the waste liquid in the container 50 after the rinsing liquid is introduced into the container 150. (S19), and this process is terminated.
  • the inside of the container 50 is cleaned by such post-treatment such as introduction of rinsing liquid and discharge of waste liquid.
  • the computer 500 is automatically accommodated in the container 50 at an appropriate timing and for an appropriate time by executing the control program 511.
  • An oxidant and a heavy liquid are introduced into the sample, and the waste liquid is discharged from the container 50. Therefore, the user does not need to introduce the oxidizing agent and the heavy liquid into the container 50 by himself / herself and discharge the waste liquid from the container 50.
  • the user there is no possibility that the user has to take time and effort, and the accuracy in collecting the components does not vary depending on the skill of each user, and the user can purify the sample with high accuracy without taking time and effort as much as possible.
  • the computer 500 executes the control program 511 to automatically wash the used container 50 after collecting the microplastic. Therefore, the user does not have to clean the container 50 by himself / herself, and saves time and effort as much as possible.
  • FIGShape of container of sample purification device 15 and 16 are diagrams for explaining the shape of the container 50 of the sample purification apparatus 1 according to the present embodiment.
  • the sample in the sample purification device 1, the sample can be purified by using the container 50 of the sample purification device 100, and the shape of the container 50 is devised to purify the sample with high accuracy.
  • the container 50 includes a main body portion 51 to a main body portion 54.
  • the main body 51 is an example of the “first main body”.
  • the main body 52 is an example of the “second main body”.
  • the main body 53 is an example of the “third main body”.
  • the main body portion 54 is located at the bottom of the container and includes a bottom surface 155 and a side surface 154.
  • the side surface 154 of the main body 54 is formed so as to surround the central axis 160 of the columnar container 50, and a hole 156 connected to the port 63 and a hole 157 connected to the port 64 are formed in a part thereof.
  • a filter 163 is provided inside the port 63.
  • a filter 164 is provided inside the port 64.
  • Each of the port 63 (hole 156) and the port 64 (hole 157) is formed at a position below the central portion of the main body portion 54 and near the bottom surface 155.
  • a filter is also provided inside each of the other ports 61 and 62.
  • the main body 51 is provided above the main body 54 and includes a side surface 151 formed following the side surface 154 of the main body 54.
  • the side surface 151 surrounds the central axis 160 of the container 50 and is formed so as to extend from the upper side (discharge port 20 side) to the lower side (bottom surface 155 side) of the container 50.
  • the main body 52 is provided above the main body 51 and includes a side surface 152 formed following the side surface 151 of the main body 51.
  • the side surface 152 surrounds the central axis 160 of the container 50, and is formed so as to expand from the upper portion 521 and the lower portion 522 of the main body portion 52 toward a portion located between the upper portion 521 and the lower portion 522. ..
  • the side surface 152 is formed so as to expand from the central axis 160 of the container 50 toward the outer peripheral side of the main body 52.
  • the horizontal cross-sectional area (or inner diameter) of the main body 52 is continuous from each of the upper 521 and the lower 522 of the main body 52 toward the portion located between the upper 521 and the lower 522. It is configured to be large.
  • the main body portion 53 is provided above the main body portion 52 and includes a side surface 153 formed following the side surface 152 of the main body portion 52.
  • the side surface 153 surrounds the central axis 160 of the container 50, and is formed in a tapered shape so as to taper from the lower side (bottom surface 155 side) to the upper side (discharge port 20 side) of the container 50.
  • the horizontal cross-sectional area (or inner diameter) of the main body 52 is configured to be continuously smaller as the discharge port 25 is located in the upward direction.
  • the horizontal cross-sectional area (or inner diameter) of the container 50 is above from at least a predetermined height of the container 50 (in this example, the height at which the upper portion 521 of the main body 52 is located) to the discharge port 25. It is continuously smaller in the direction.
  • the side surface 153 of the main body 53 is a straight line, but the side surface 153 may be a curved line, and the horizontal cross-sectional area (or inner diameter) of the main body 53 is such that the discharge port 25 is located. It may be configured to be continuously smaller in the direction.
  • the discharge port 20 is a hole portion connected to the discharge pipe 25, which is formed following the side surface 153 of the container 50 at a position facing the bottom surface 155 of the container 50.
  • the horizontal cross-sectional area (or inner diameter) of the discharge port 20 is smaller than the horizontal cross-sectional area (or inner diameter) of each of the upper portion 521 and the lower portion 522 of the main body 52.
  • the main body portion 53 is integrally formed with the main body portion 52.
  • the main body 52 and the main body 51 can be separated from each other, and the user can open the inside of the container 50 by separating the main body 52 from the main body 51 and pour the sample into the container 50.
  • the side surface 153 of a part of the container 50 is formed in a tapered shape from the bottom surface 155 side toward the discharge port 20 side, in other words.
  • the horizontal cross-sectional area of the container 50 is continuously reduced as it goes upward from at least a predetermined height of the container 50 to the discharge port 25. Therefore, the boundary between the side surface 153 of the container 50 and the discharge port 20 can be made as smooth as possible. As a result, it is possible to prevent the microplastic from staying in the container 50 as much as possible when the supernatant liquid of the sample separated by the heavy liquid is discharged to the outside through the discharge port 20.
  • the boundary between the side surface of the container 50 and the discharge port 20 is not smooth and angular, the supernatant liquid of the sample separated by the heavy liquid hits the angular portion and the microplastic to be collected is inside the container 50. There is a risk that the microplastic will stay in the container 50 without going to the discharge port 25.
  • the boundary between the side surface 153 of the container 50 and the discharge port 20 as smooth as possible as in the container 50 according to the present embodiment, the microplastic adheres to and stays in the container 50. This can be prevented as much as possible. Therefore, the user can purify the sample with high accuracy.
  • the side surface 152 of a part of the container 50 is formed so as to expand from the upper portion 521 and the lower portion 522 toward the portion located between the upper portion 521 and the lower portion 522, the microplastic is formed in the container 50. It is possible to prevent it from adhering and staying as much as possible. Further, the side surface 152 of a part of the container 50 (main body 52) expands once, and above that, the horizontal cross-sectional area of the part of the container 50 (main body 53) continuously decreases toward the discharge port 25. As a result, after the supernatant liquid of the sample raised by the introduction of the heavy liquid is spread by the main body portion 52, the supernatant liquid can be vigorously directed to the discharge port 25 by using the tapered portion of the main body portion 53.
  • the strength of the container 50 can be increased. Further, since there is no boundary between the main body 53 and the main body 52, the supernatant liquid of the sample raised by the introduction of the heavy liquid does not adhere to the boundary between the main body 53 and the main body 52, and the supernatant does not adhere. The liquid can be directed to the discharge port 25 more efficiently.
  • FIG. 17 is a diagram schematically showing the analysis system 1000 according to the present embodiment.
  • the analysis system 1000 includes the sample purification device 1 according to the above-described embodiment, the classification device 600, and the analysis device 700.
  • the classification device 600 separates the microplastics recovered by the sample purification device 1 according to the size of the particles.
  • Examples of the classification device 600 include a field flow fractionation device that separates particles by using centrifugation.
  • the analyzer 700 analyzes the microplastic classified by the rating device 600.
  • the analysis result acquired by the analyzer 700 is acquired by the user by being displayed on a screen (not shown).
  • the sample purification device 1 collects the microplastic, the classifying device 600 then classifies the microplastic, and the analyzer 700 classifies the microplastic. To analyze.
  • a series of operations from the introduction of the sample to the sample purification device 1 to the analysis of the microplastic by the analysis device 700 is controlled by the computer 500. Because it is automated by, the convenience of the user is improved.
  • analysis system 1000 may not include the classification device 600, and the analysis device 700 may acquire and analyze the microplastic recovered by the sample purification device 1 as it is.
  • FIG. 18 is a diagram schematically showing the sample purification device 1A according to the second embodiment. As shown in FIG. 18, in the sample purifier 100A of the sample purifier 1A, even if the pipe 12 for introducing the heavy liquid and the pipe 13 for introducing the rinsing liquid introduce the liquid into the port 62 common to each other. good.
  • a pump 232 (valve 232a) and a solenoid valve 242 are provided between each of the pipe 12 and the pipe 13 and the port 62 of the container 50.
  • the solenoid valve 242 operates under the control of the computer 500A to switch the path through which the liquid passes between the path between the pipe 12 and the pump 232 and the path between the pipe 13 and the pump 232.
  • the heavy liquid sucked from the container 120 via the pipe 12 is introduced into the port 62 via the solenoid valve 242 and the pump 232. Further, the rinse liquid sucked from the container 130 through the pipe 13 is introduced into the port 62 via the solenoid valve 242 and the pump 232.
  • the pump 232 (valve 232a) provided between the pipe 12 and the port 62 of the container 50 is the pipe 13 and the container 50. Since it is shared with the pump 232 (valve 232a) provided between the port 62, the number of parts of the sample purification device 1A can be reduced and the cost can be suppressed.
  • FIG. 19 is a diagram schematically showing the sample purification device 1B according to the third embodiment. As shown in FIG. 19, the sample purifier 100B of the sample purifier 1B may be configured to introduce the sample from above the container 50.
  • the sample purifier 100B includes a discharge pipe 25A for discharging the supernatant liquid of the sample overflowing from the container 50 toward the detection filter 21, and an introduction pipe 25B for introducing the sample containing microplastic into the container 50 from the outside. And prepare.
  • the discharge pipe 25A is an example of the “discharge route”
  • the introduction pipe 25B is an example of the “introduction route”.
  • the solenoid valve 45 is provided between each of the discharge pipe 25A and the introduction pipe 25B and the discharge port 20 of the container 50. The solenoid valve 45 operates under the control of the computer 500B to switch the path through which the liquid passes between the path between the discharge pipe 25A and the discharge port 20 and the path between the introduction pipe 25B and the discharge port 20. ..
  • the supernatant liquid of the sample overflowing from the container 50 is discharged toward the detection filter 21 via the solenoid valve 45 and the discharge pipe 25A. Further, under the control of the computer 500, the sample introduced from the outside is introduced into the container 50 via the introduction tube 25B and the solenoid valve 45.
  • the sample can be introduced from above the container 50 by using the discharge port 20, so that the sample purification device is more convenient to use. 1B can be provided to the user.
  • the sample purification device for purifying the mixed sample introduces a container for separating the mixed sample by a specific gravity difference using a heavy liquid and a supernatant liquid discharged from the container.
  • the container is provided with a recovery unit for recovering a component having a lighter specific gravity than the heavy liquid in the mixed sample, and the container has a discharge port provided at the top of the container and the discharge port discharged from the discharge port.
  • the horizontal cross-sectional area of the container is configured to be continuously smaller in the upward direction from at least a predetermined height of the container to the discharge port, including a discharge path for guiding the supernatant liquid to the recovery section. There is.
  • the horizontal cross-sectional area of the container is continuously reduced as it goes upward from at least a predetermined height of the container to the discharge port.
  • the container has a first main body portion, a second main body portion provided above the first main body portion, and an upper portion of the second main body portion.
  • the horizontal cross-sectional area of the third main body portion includes the third main body portion provided in the above, and the horizontal cross-sectional area of the third main body portion is continuously reduced toward the upward direction where the discharge port is located, and the second main body portion is horizontal.
  • the cross-sectional area is continuously enlarged from each of the upper part and the lower part of the second main body portion toward the portion located between the upper part and the lower part.
  • the sample purification apparatus described in paragraph 2 it is possible to prevent the components to be collected from adhering and staying in the container as much as possible. Further, the second main body portion of the container 50 once expanded, and further, the horizontal cross-sectional area of the third main body portion of the container 50 continuously decreased toward the discharge port above the expansion, and thus increased due to the introduction of the heavy liquid. After spreading the supernatant liquid of the mixed sample in the second main body portion, the supernatant liquid can be vigorously directed toward the discharge port by using the tapered portion of the third main body portion.
  • the third main body portion is integrally formed with the second main body portion.
  • the tapered third main body portion and the second main body portion formed so as to expand are integrally formed, so that the strength of the container is increased. Can be done. Further, since there is no boundary between the third main body and the second main body, the supernatant liquid of the mixed sample raised by the introduction of the heavy liquid adheres to the boundary between the third main body and the second main body. The supernatant liquid can be directed to the discharge port more efficiently without any problem.
  • the sample purification device puts an oxidizing agent for treating impurities contained in the mixed sample into the container.
  • Liquid enters and exits between the fourth pipe for introducing the liquid into the container and each of the first pipe, the second pipe, the third pipe, and the fourth pipe provided in the container. With at least one port.
  • the mixed sample can be purified by continuous operation using one container, so that the mixed sample can be accurately mixed without taking the trouble of a user such as a worker as much as possible. Can be purified.
  • the at least one port corresponding to each of the first pipe, the second pipe, and the fourth pipe corresponds to the third pipe. Different from at least one port.
  • a liquid (oxidant, heavy liquid, or rinse liquid) is introduced into the container, and a liquid is discharged from the container to the outside. Since the port through which the sample passes can be made different, the mixed sample can be purified with higher accuracy.
  • the number of parts of the sample purification device can be reduced to reduce the cost.
  • the at least one port includes a filter.
  • the mixed sample can be introduced from above the container using the discharge port, it is possible to provide the user with a more convenient sample purification device.
  • the sample purification device is provided between each of the introduction path and the discharge path and the discharge port, and switches the inflow and outflow of the liquid. It is provided with at least one switching unit.
  • the mixed sample can be purified by the switching unit, the mixed sample can be purified with high accuracy without taking the trouble of the user as much as possible.
  • the analysis system analyzes the sample purification apparatus according to any one of paragraphs 1 to 9 and the components recovered by the recovery unit of the sample purification apparatus. It is equipped with an analyzer.
  • 1,1A, 1B sample purification device 11,12,13,14,15 piping, 20 discharge part, 21 detection filter, 25,25A discharge pipe, 25B introduction pipe, 31,32,33,34,232 pump, 31a , 32a, 33a, 34a, 232a valve, 41,45,242 electromagnetic valve, 50,110,120,130,140,150,210 container, 51,52,53,54 main body, 61,62,63,64 Port, 71 constant temperature stirrer, 72 stirrer, 100, 100A, 100B sample purifier, 151,152,153,154 side surface, 155 bottom surface, 156,157 hole, 160 central axis, 163,164 filter, 500,500A, 500B computer, 501 arithmetic unit, 502 memory, 503 network controller, 504 display device, 505 input device, 506 data reader, 507 storage medium, 510 storage, 511 control program, 512 control data, 521 upper part, 522 lower part, 600 Classification device, 700 analyzer, 1000 analysis system.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Biotechnology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

試料精製装置(1)は、重液を用いて混合試料を比重差によって分離するための容器(50)と、容器(50)から排出された上澄み液を導入して混合試料のうち重液よりも比重の軽い成分を回収するための回収部(21)とを備え、容器(50)は、当該容器(50)の最上部に設けられた排出口(20)と、排出口(20)から排出された上澄み液を回収部(21)へ導く排出経路(25)とを含み、容器(50)の水平断面積は、当該容器(50)の少なくとも所定の高さから排出口(20)までの間において上方向に向かうにつれて連続的に小さく構成されている。

Description

試料精製装置、分析システム
 本開示は、試料精製装置および分析システムに関する。
 従来、回収対象の成分を回収するために、当該成分が含まれた混合試料を精製することが行われている。たとえば、非特許文献1および非特許文献2には、海中から収集した混合試料を精製することで当該混合試料に含まれるマイクロプラスチックを回収する方法が開示されている。
「GUIDELINES FOR THE MONITORING AND ASSESSMENT OF PLASTIC LITTER IN THE OCEAN」、GESAMP Reports and Studies No.99、米国海洋大気局(NOAA)、[令和2年6月17日検索]、インターネット<URL:https://environmentlive.unep.org/media/docs/marine_plastics/une_science_dvision_gesamp_reports.pdf> 「Guidelines for Harmonizing Ocean Surface Micro plastic Monitoring Methods」、Version 1.0、[online]、2019年5月、環境省、[令和2年6月17日検索]、インターネット<URL:http://www.env.go.jp/en/water/marine_litter/guidelines/guidelines.pdf>
 非特許文献1および非特許文献2に開示された試料精製方法によれば、混合試料を精製する際に、混合試料を比重分離させるための重液を容器に導入するといった作業が行われるが、重液の導入によって生じた上澄み液からマイクロプラスチックを精度良く回収することに関してさらなる工夫が求められていた。
 本開示は、かかる問題を解決するためになされたものであり、その目的は、精度良く混合試料を精製する技術を提供することである。
 本開示のある局面に従う混合試料を精製する試料精製装置は、重液を用いて混合試料を比重差によって分離するための容器と、容器から排出された上澄み液を導入して混合試料のうち重液よりも比重の軽い成分を回収するための回収部とを備え、容器は、当該容器の最上部に設けられた排出口と、排出口から排出された上澄み液を回収部へ導く排出経路とを含み、容器の水平断面積は、当該容器の少なくとも所定の高さから排出口までの間において上方向に向かうにつれて連続的に小さく構成されている。
 本開示のある局面に従う分析システムは、上記の試料精製装置と、試料精製装置の回収部によって回収された成分を分析する分析装置とを備える。
 本開示によれば、容器の水平断面積が当該容器の少なくとも所定の高さから排出口までの間において上方向に向かうにつれて連続的に小さく構成されていることによって、重液の導入によって生じた上澄み液が外部に排出される際に、回収対象の成分が容器内で滞留することを極力防止することができるため、精度良く混合試料を精製することができる。
本実施の形態に係る試料精製装置を模式的に示す図である。 本実施の形態に係る試料精製装置の内部構成を模式的に示す図である。 本実施の形態に係る試料精製装置を用いた試料精製方法を説明するための図である。 本実施の形態に係る試料精製装置を用いた試料精製方法を説明するための図である。 本実施の形態に係る試料精製装置を用いた試料精製方法を説明するための図である。 本実施の形態に係る試料精製装置を用いた試料精製方法を説明するための図である。 本実施の形態に係る試料精製装置を用いた試料精製方法を説明するための図である。 本実施の形態に係る試料精製装置を用いた試料精製方法を説明するための図である。 本実施の形態に係る試料精製装置を用いた試料精製方法を説明するための図である。 本実施の形態に係る試料精製装置を用いた試料精製方法を説明するための図である。 本実施の形態に係る試料精製装置を用いた試料精製方法を説明するための図である。 本実施の形態に係る試料精製装置を用いた試料精製方法を説明するための図である。 本実施の形態に係る試料精製装置を用いた試料精製方法を説明するための図である。 本実施の形態に係る試料精製装置が実行する試料精製処理を説明するためのフローチャートである。 本実施の形態に係る試料精製装置の容器の形状を説明するための図である。 本実施の形態に係る試料精製装置の容器の形状を説明するための図である。 本実施の形態に係る分析システムを模式的に示す図である。 第2の実施の形態に係る試料精製装置を模式的に示す図である。 第3の実施の形態に係る試料精製装置を模式的に示す図である。
 本実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一の符号を付して、その説明は原則的に繰り返さない。
 [試料精製装置の構成]
 図1は、本実施の形態に係る試料精製装置1を模式的に示す図である。本実施の形態に係る試料精製装置1は、コンピュータ500の制御によって混合試料を精製することで、当該混合試料に含まれる回収対象となる成分を回収する処理を実行する。「精製」とは、混合物を純物質にすることを含み、本実施の形態においては、収集された混合試料から、回収対象となる純物質(成分)を取得することを含む。
 試料精製装置1によって精製される「混合試料」は、回収対象となる成分を含むものであればいずれのものでもよく、たとえば、「混合試料」として、海中または海岸から収集される海水および砂、食品および化粧品などの加工品などが挙げられる。本実施の形態においては、「混合試料」として、海中または海岸から収集される海水および砂を例示する。なお、以下では、「混合試料」を単に「試料」とも称する。
 試料精製装置1の回収対象となる「成分」は、本実施の形態に係る試料精製装置1によって回収される成分であればいずれのものでもよく、たとえば、マイクロプラスチックが「成分」として挙げられる。マイクロプラスチックは、たとえば、長さが5mm以下の微細なプラスチック粒子である。本実施の形態においては、「成分」として、海中または海岸から収集される海水および砂に含まれるマイクロプラスチックを例示する。
 図1に示すように、試料精製装置1は、試料を精製するための試料精製器100と、試料精製器100を制御するコンピュータ500とを備える。
 試料精製器100は、試料を収容する容器50と、複数の配管11~配管15と、複数のポンプ31~ポンプ34と、複数のポート61~ポート64と、電磁弁41と、恒温スターラー71と、撹拌子72と、排出管25と、検出フィルタ21と、容器210とを備える。
 配管11は、「第1配管」の一例である。配管11は、容器110に接続されており、夾雑物を処理するための酸化剤を、当該容器110から容器50に設けられたポート61に導入する。「夾雑物」は、混合試料のうち回収対象の成分以外の異物である。本実施の形態においては、「夾雑物」として、有機物の性質を有する有機夾雑物を例示する。
 「酸化剤」は、夾雑物を処理させるものであればいずれのものでもよい。本実施の形態においては、「酸化剤」は、遊技夾雑物を分解する。たとえば、「酸化剤」として、過酸化水素水(H)、過酸化水素水(H)と酸化鉄(II)(FeO)との混合物などが挙げられる。「混合試料」が海水および砂である場合、「有機夾雑物」として、海水または砂に混じった木くずおよびプランクトンなどが挙げられる。
 配管12は、「第2配管」の一例である。配管12は、容器120に接続されており、比重差により試料を分離するための重液を、当該容器120から容器50に設けられたポート62に導入する。
 「重液」は、比重差により試料を分離するものであればいずれのものでもよい。本実施の形態においては、「重液」は、無機物の性質を有する無機夾雑物を比重差で沈降させる。たとえば、「重液」として、塩化ナトリウム(NaCl)、ヨウ化ナトリウム(Nal)、塩化亜鉛(ZnC1)などが挙げられる。「混合試料」が海水および砂である場合、「無機夾雑物」として、砂、ガラス、および石などが挙げられる。「重液」の比重は、試料精製装置1の回収対象となる「成分」の比重よりも大きく、かつ、「無機夾雑物」の比重よりも小さく設定される。たとえば、試料精製装置1の回収対象となる「成分」がマイクロプラスチックであり、「無機夾雑物」が砂、ガラス、および石などの場合、「重液」の比重は、マイクロプラスチックの比重よりも大きく、かつ、砂、ガラス、および石などの比重よりも小さく設定されればよい。具体的には、「重液」の比重は、約1.5~約1.7に設定されればよい。
 配管13は、「第4配管」の一例である。配管13は、容器130に接続されており、容器50内を洗浄するためのリンス液を、当該容器130から容器50に設けられたポート63に導入する。
 「リンス液」は、容器50内を洗浄するためのものであればいずれのものでもよく、たとえば、「リンス液」として、水が挙げられる。
 配管14および配管15は、「第3配管」の一例である。配管14は、容器140に接続されており、容器50内の廃液を、当該容器50に設けられたポート64から当該容器140に排出する。配管15は、容器150に接続されており、容器50内の廃液を、当該容器50に設けられたポート64から当該容器150に排出する。
 ポンプ31は、配管11と容器50との間に設けられ、コンピュータ500の制御によってバルブ31aが動作することで、容器110に収容された酸化剤を吸い込んでポート61に向けて導入する。ポンプ32は、配管12と容器50との間に設けられ、コンピュータ500の制御によってバルブ32aが動作することで、容器120に収容された重液を吸い込んでポート62に向けて導入する。ポンプ33は、配管13と容器50との間に設けられ、コンピュータ500の制御によってバルブ33aが動作することで、容器130に収容されたリンス液を吸い込んでポート63に向けて導入する。ポンプ34は、配管14および配管15の各々と容器50との間に設けられ、コンピュータ500の制御によってバルブ34aが動作することで、容器50内の廃液を吸い込んで容器140または容器150に向けてポート64から排出する。バルブ31a~バルブ34aの各々は、「切替部」の一例であり、ポンプ31~ポンプ34の各々に設けられた通路を開閉することで液体の出入を切り替える。
 「切替部」は、配管11~配管15の各々において液体の出入を切り替えるものであればいずれのものでもよい。たとえば、「切替部」は、ピストンなどの往復動により吸込・吐出を行うものであってもよいし、歯車などを回転運動させて吸込・吐出を行うものであってもよい。「液体」は、酸化剤、重液、リンス液、および廃液などを含む。
 ポート61~ポート64は、容器50の外周部分に形成され、液体が出入りするための出入り口である。ポート61~ポート64の各々の内部には、フィルタ(たとえば、後述する図16に示すフィルタ163,164)が設けられており、試料に含まれる成分が外部に排出されないようになっている。
 電磁弁41は、配管14および配管15の各々とポンプ34との間に設けられ、コンピュータ500の制御によって動作することで、配管14とポンプ34との間の経路と、配管15とポンプ34との間の経路とで、廃液が通る経路を切り替える。
 恒温スターラー71は、「撹拌部」および「加熱部」の一例である。恒温スターラー71には容器50が載せられる。恒温スターラー71は、コンピュータ500の制御に基づき容器50内に設けられた撹拌子72を回転させることで、容器50に収容された試料を撹拌する。さらに、恒温スターラー71は、容器50に熱を加えることで、容器50に収容された試料の温度を一定に保つ。
 排出管25は、容器50の最上部に設けられた排出口20に接続されており、容器50からオーバーフローした試料の上澄み液を外部に排出する。排出口20は、「排出部」の一例である。排出管25は、「排出経路」の一例である。検出フィルタ21は、排出管25から排出された試料の上澄み液を濾過することで、上澄み液に含まれる回収対象の成分を回収する。検出フィルタ21を通過した上澄み液は、容器210によって回収される。好ましい実施形態では、検出フィルタ21は、回収対象のマイクロプラスチックをトラップできるフィルタである。当該フィルタの具体例は、SUS製(ステンレス製)の金網またはPTFE製(テフロン(登録商標)製)のメンブレンフィルタである。検出フィルタ21は、「回収部」の一例である。
 コンピュータ500は、汎用コンピュータで実現されてもよいし、試料精製器100を制御するための専用コンピュータで実現されてもよい。コンピュータ500は、試料精製器100における、バルブ31a~バルブ34aの各々、電磁弁41、および恒温スターラー71を制御する。
 具体的には、コンピュータ500は、バルブ31a~バルブ34aの各々において、モータ(図示は省略する)に電力を与えることで、モータを駆動する。モータの駆動力は、バルブ31a~バルブ34aを開閉させ、これによってポンプ31~ポンプ34が液体の吸込・吐出を行う。
 また、コンピュータ500は、電磁弁41のソレノイド(図示は省略する)に電流を流すことで、弁(図示は省略する)を開閉し、これによって廃液が通る経路を切り替える。
 さらに、コンピュータ500は、恒温スターラー71のモータ(図示は省略する)に電力を与えることで、モータを駆動する。モータの駆動力は、撹拌子72を回転させ、これによって容器50に収容された試料が撹拌される。加えて、コンピュータ500は、恒温スターラー71のヒーター(図示は省略する)に電力を与えることで、容器50に一定の熱を加える。
 図2は、本実施の形態に係る試料精製装置1の内部構成を模式的に示す図である。図2に示すように、コンピュータ500は、主なハードウェア要素として、演算装置501と、メモリ502と、ネットワークコントローラ503と、表示装置504と、入力装置505と、データ読取装置506と、ストレージ510とを備える。
 演算装置501は、「制御部」の一例である。演算装置501は、各種のプログラムを実行することで、各種の処理を実行する演算主体である。たとえば、演算装置501は、後述する制御プログラム511を実行することで、試料精製器100における、バルブ31a~バルブ34aの各々、電磁弁41、および恒温スターラー71を制御するための試料精製処理(図14で後述する)を実行する。
 演算装置501は、たとえば、CPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)、およびGPU(Graphics Processing Unit)などで構成される。なお、演算装置501は、演算を行う演算回路(processing circuitry)で構成されてもよい。
 本実施の形態においては、「制御部」の一例としてコンピュータ500が備える演算装置501を例示するが、「制御部」は、ユーザが作成したプログラムに従って各構成をシーケンス制御するPLC(programmable logic controller)などのコントローラであってもよい。さらに、本実施の形態においては、「制御部」が試料精製器100と別体であったが、「制御部」は、試料精製器100と一体であってもよい。たとえば、試料精製器100に演算装置501に相当する装置が内蔵されてもよい。
 メモリ502は、演算装置501が任意のプログラムを実行するにあたって、プログラムコードやワークメモリなどを一時的に格納する記憶領域を提供する。メモリ502は、たとえば、DRAM(Dynamic Random Access Memory)またはSRAM(Static Random Access Memory)などの揮発性メモリデバイスで構成される。
 ネットワークコントローラ503は、ネットワーク(図示は省略する)を介して、他の装置との間で送受信する。ネットワークコントローラ503は、たとえば、イーサネット(登録商標)、無線LAN(Local Area Network)、Bluetooth(登録商標)などの任意の通信方式に対応する。
 表示装置504は、たとえば、LCD(Liquid Crystal Display)などで構成され、プログラムの設計画面および異常時のアラート画面などを表示する。
 入力装置505は、たとえば、キーボードおよびマウスなどで構成され、プログラムの設計時に、ユーザによって設計情報などの入力に用いられる。入力装置505は、演算装置501による試料精製処理の実行を開始するためのスタートスイッチで構成されてもよい。
 データ読取装置506は、記憶媒体507に格納されているデータを読み出すための装置である。記憶媒体507は、CD(Compact Disc)、DVD(Digital Versatile Disc)、およびUSB(Universal Serial Bus)メモリなど、各種のデータを記憶することができるものであればいずれのものであってもよい。
 ストレージ510は、試料精製処理などに必要な各種のデータを格納する記憶領域を提供する。ストレージ510は、たとえば、ハードディスクまたはSSD(Solid State Drive)などの不揮発性メモリデバイスで構成される。ストレージ510は、制御プログラム511と、制御用データ512と、OS(Operating System)513とを格納する。
 制御プログラム511は、試料精製処理の内容が記述されたプログラムであり、演算装置501によって実行される。制御プログラム511は、入力装置505を用いてユーザによって設計されてもよいし、データ読取装置506によって記憶媒体507から読み取られてもよいし、ネットワークコントローラ503によってサーバなどの他の装置からネットワークを介して取得されてもよい。
 制御用データ512は、演算装置501が制御プログラム511を実行する際に用いるデータである。たとえば、制御用データ512は、バルブ31a~バルブ34aの各々、電磁弁41、および恒温スターラー71を制御するためのデータを含む。制御用データ512は、入力装置505を用いてユーザによって入力されてもよいし、データ読取装置506によって記憶媒体507から読み取られてもよいし、ネットワークコントローラ503によってサーバなどの他の装置からネットワークを介して取得されてもよい。
 OS513は、演算装置501によって各種の処理を実行するための基本的な機能を提供する。
 [試料精製方法]
 図3~図13を参照しながら、試料精製装置1を用いた試料精製方法について説明する。図3~図13は、本実施の形態に係る試料精製装置1を用いた試料精製方法を説明するための図である。
 事前の準備として、作業者などのユーザは、容器110、容器120、容器130、容器140、容器150、容器210、および検出フィルタ21を用意する。ユーザは、容器110に酸化剤を収容するとともに、容器110に配管11を挿入する。ユーザは、容器120に重液を収容するとともに、容器120に配管12を挿入する。ユーザは、容器130にリンス液を収容するとともに、容器130に配管13を挿入する。ユーザは、容器140に配管14を挿入し、容器150に配管15を挿入する。この段階では、容器140および容器150は、各々、空の状態である。ユーザは、排出管25の出口付近に、排出管25側から順に検出フィルタ21および容器210を配置する。
 図3に示すように、ユーザは、試料精製装置1の容器50に試料(混合試料)を導入する。たとえば、ユーザは、複数の部材によって構成された容器50の一部を分離させることで容器50内を開放して、容器50内に試料を流し込む。その後、ユーザは、コンピュータ500の入力装置505を用いて開始操作を行うことで、コンピュータ500による試料精製器100の制御を開始する。
 コンピュータ500による制御が開始すると、図4に示すように、コンピュータ500は、バルブ34aおよび電磁弁41を制御することで、ポート64および配管14を介して、容器50内の廃液を容器140に排出する。容器50内に収容された試料は、海水などの廃液を含んでおり、このような廃液が容器140に排出される。一方、試料に含まれる回収対象となるマイクロプラスチックなどは、ポート64に含まれるフィルタ164(図16参照)によって外部に排出されず、容器50内に残る。
 次に、図5に示すように、コンピュータ500は、バルブ31aを制御することで、配管11およびポート61を介して、容器110に収容された酸化剤を容器50に導入する。このとき、コンピュータ500は、ポンプ31の吸込量を制御することで、ユーザによって予め設定された量の酸化剤を容器50に導入する。たとえば、コンピュータ500は、ポンプ31のバルブ31aの開放度合を調整することで、ポンプ31の吸込量を制御する。あるいは、コンピュータ500は、容器110または容器50に設けられた液面センサの検出値に基づき、ポンプ31の吸込量を制御してもよい。
 次に、図6に示すように、コンピュータ500は、恒温スターラー71を制御することで、容器50に一定の熱を加えながら容器50内に設けられた撹拌子72を回転させる。容器50の温度と、撹拌子72の回転速度および回転時間は、ユーザによって予め設定される。たとえば、コンピュータ500は、恒温スターラー71を制御することで、容器50を約75度の温度に保ちながら、約3日間に亘って容器50に収容された試料を撹拌する。このようにして試料が撹拌されることで、酸化剤による酸化処理が行われ、試料に含まれる有機夾雑物が分解される。なお、試料の撹拌時においては、必ずしも加熱は必要ないが、加熱によって試料の温度を一定温度に保つことで酸化処理による分解が促進し易くなる。
 次に、図7に示すように、コンピュータ500は、バルブ34aおよび電磁弁41を制御することで、ポート64および配管14を介して、有機夾雑物が分解された後の試料に含まれる容器50内の廃液を容器140に排出する。一方、試料に含まれる回収対象となるマイクロプラスチックなどは、ポート64に含まれるフィルタ164によって外部に排出されず、容器50内に残る。
 次に、図8に示すように、コンピュータ500は、ポンプ33を制御することで、配管13およびポート63を介して、容器130に収容されたリンス液を容器50に導入する。このとき、コンピュータ500は、ポンプ33の吸込量を制御することで、ユーザによって予め設定された量のリンス液を容器50に導入する。たとえば、コンピュータ500は、バルブ33aの開放度合を調整することで、ポンプ33の吸込量を制御する。あるいは、コンピュータ500は、容器130または容器50に設けられた液面センサの検出値に基づき、ポンプ33の吸込量を制御してもよい。
 次に、図9に示すように、コンピュータ500は、バルブ34aおよび電磁弁41を制御することで、ポート64および配管14を介して、リンス液が導入された後の容器50内の廃液を容器140に排出する。これにより、リンス液によって容器50内が洗浄される。一方、試料に含まれる回収対象となるマイクロプラスチックなどは、ポート64に含まれるフィルタ164によって外部に排出されず、容器50内に残る。
 その後、コンピュータ500は、所定時間(たとえば、1日間)に亘って試料をそのまま放置することで試料を乾燥させる。次に、図10に示すように、コンピュータ500は、バルブ32aを制御することで、配管12およびポート62を介して、容器120に収容された重液を容器50に導入する。このとき、コンピュータ500は、ポンプ32の吸込量を制御することで、ユーザによって予め設定された量の重液を容器50に導入する。たとえば、コンピュータ500は、バルブ32aの開放度合を調整することで、ポンプ32の吸込量を制御する。あるいは、コンピュータ500は、容器120または容器50に設けられた液面センサの検出値に基づき、ポンプ32の吸込量を制御してもよい。
 このようにして重液が試料に導入されることで、試料に含まれる無機夾雑物が比重差で容器50の底付近に沈降する。一方、比重分離された試料の液面は、容器50内を徐々に上昇し、やがて試料の上澄み液が容器50の排出口20に到達する。そして、試料の上澄み液は、排出口20および排出管25を介して外部に排出される。排出管25を介して排出された試料の上澄み液は、検出フィルタ21によって濾過され、廃液のみが容器210によって回収される。検出フィルタ21には、重液よりも比重の軽い成分であるマイクロプラスチックが残る。このような比重分離は、約1日間を要するため、その間、コンピュータ500は、試料に対する重液の導入を制御する。
 以上のように、本実施の形態に係る試料精製装置1によれば、一の容器50を用いた連続的な作業によって試料を精製することができる。具体的には、図3~図10に示すように、コンピュータ500によって試料精製器100が制御されることで、適切なタイミングおよび適切な時間に亘って自動的に、容器50に収容された試料に対して酸化剤および重液が導入され、また、容器50から廃液が排出される。このため、ユーザは、自ら、容器50に酸化剤および重液を導入し、また、容器50から廃液を排出する必要がない。これにより、ユーザの手間が掛かることも、各ユーザの技量に応じて成分の回収における精度にばらつきが生じる虞もなく、ユーザは、手間を極力掛けることなく精度良く試料を精製することができる。
 試料の精製によってマイクロプラスチックが回収された後、後処理によって容器50が洗浄される。具体的には、図11に示すように、コンピュータ500は、バルブ34aおよび電磁弁41を制御することで、ポート64および配管15を介して、マイクロプラスチックが回収された後の容器50内の廃液を容器150に排出する。
 次に、図12に示すように、コンピュータ500は、バルブ33aを制御することで、配管13およびポート63を介して、容器130に収容されたリンス液を容器50に導入する。このとき、コンピュータ500は、ポンプ33の吸込量を制御することで、ユーザによって予め設定された量のリンス液を容器50に導入する。たとえば、コンピュータ500は、バルブ33aの開放度合を調整することで、ポンプ33の吸込量を制御する。あるいは、コンピュータ500は、容器130または容器50に設けられた液面センサの検出値に基づき、ポンプ33の吸込量を制御してもよい。
 次に、図13に示すように、コンピュータ500は、バルブ34aおよび電磁弁41を制御することで、ポート64および配管15を介して、リンス液が導入された後の容器50内の廃液を容器150に排出する。これにより、リンス液によって容器50内が洗浄される。
 以上のように、本実施の形態に係る試料精製装置1によれば、マイクロプラスチックを回収した後、コンピュータ500によって試料精製器100が制御されることで、使用した容器50が自動的に洗浄される。このため、ユーザは、自ら、容器50を洗浄する必要がなく、手間を極力掛けることがない。
 [試料精製処理]
 図14は、本実施の形態に係る試料精製装置1が実行する試料精製処理を説明するためのフローチャートである。図14に示す各ステップは、コンピュータ500の演算装置501が、OS513および制御プログラム511を実行することで実現される。なお、図中において、「S」は「STEP」の略称として用いられる。
 試料精製装置1の容器50に試料が導入された状態で、入力装置505を用いた開始操作を受け付けると、コンピュータ500は、図14に示す試料精製処理を実行する。図14に示すように、コンピュータ500は、まず、バルブ34aおよび電磁弁41を制御することで、容器50内の廃液を容器140に排出する(S1)。
 次に、コンピュータ500は、廃液の排出が完了したか否かを判断する(S2)。たとえば、コンピュータ500は、バルブ34aの開放度合、あるいは、容器140または容器50に設けられた液面センサの検出値に基づいて、廃液の排出が完了したか否かを判断する。
 コンピュータ500は、廃液の排出が完了していない場合(S2でNO)、S2の処理を繰り返す。一方、コンピュータ500は、廃液の排出が完了した場合(S2でYES)、バルブ31aを制御することで、容器110に収容された酸化剤を容器50に導入する(S3)。
 次に、コンピュータ500は、酸化剤の導入が完了したか否かを判断する(S4)。たとえば、コンピュータ500は、バルブ31aの開放度合、あるいは、容器110または容器50に設けられた液面センサの検出値に基づいて、酸化剤の導入が完了したか否かを判断する。
 コンピュータ500は、酸化剤の導入が完了していない場合(S4でNO)、S4の処理を繰り返す。一方、コンピュータ500は、酸化剤の導入が完了した場合(S4でYES)、恒温スターラー71を制御することで、試料に一定の熱を加えながら撹拌子72によって試料を撹拌する(S5)。
 次に、コンピュータ500は、試料の撹拌が完了したか否かを判断する(S6)。たとえば、コンピュータ500は、タイマ(図示は省略する)による計測値に基づいて、試料の撹拌が完了したか否かを判断する。
 コンピュータ500は、試料の撹拌が完了していない場合(S6でNO)、S6の処理を繰り返す。一方、コンピュータ500は、試料の撹拌が完了した場合(S6でYES)、バルブ34aおよび電磁弁41を制御することで、有機夾雑物が分解された後の試料に含まれる容器50内の廃液を容器140に排出する(S7)。
 次に、コンピュータ500は、廃液の排出が完了したか否かを判断する(S8)。たとえば、コンピュータ500は、バルブ34aの開放度合、あるいは、容器140または容器50に設けられた液面センサの検出値に基づいて、廃液の排出が完了したか否かを判断する。
 コンピュータ500は、廃液の排出が完了していない場合(S8でNO)、S8の処理を繰り返す。一方、コンピュータ500は、廃液の排出が完了した場合(S8でYES)、バルブ33aを制御することで、容器130に収容されたリンス液を容器50に導入する(S9)。
 次に、コンピュータ500は、リンス液の導入が完了したか否かを判断する(S10)。たとえば、コンピュータ500は、バルブ33aの開放度合、あるいは、容器130または容器50に設けられた液面センサの検出値に基づいて、リンス液の導入が完了したか否かを判断する。
 コンピュータ500は、リンス液の導入が完了していない場合(S10でNO)、S10の処理を繰り返す。一方、コンピュータ500は、リンス液の導入が完了した場合(S10でYES)、バルブ34aおよび電磁弁41を制御することで、リンス液が導入された後の容器50内の廃液を容器140に排出する(S11)。
 次に、コンピュータ500は、廃液の排出が完了したか否かを判断する(S12)。たとえば、コンピュータ500は、バルブ34aの開放度合、あるいは、容器140または容器50に設けられた液面センサの検出値に基づいて、廃液の排出が完了したか否かを判断する。
 コンピュータ500は、廃液の排出が完了していない場合(S12でNO)、S12の処理を繰り返す。一方、コンピュータ500は、廃液の排出が完了した場合(S12でYES)、バルブ32aを制御することで、容器120に収容された重液を容器50に導入する(S13)。
 次に、コンピュータ500は、重液の導入が完了したか否かを判断する(S13)。たとえば、コンピュータ500は、バルブ32aの開放度合、あるいは、容器120または容器50に設けられた液面センサの検出値に基づいて、重液の導入が完了したか否かを判断する。
 コンピュータ500は、重液の導入が完了していない場合(S14でNO)、S14の処理を繰り返す。
 このような重液の導入によって、試料に含まれる無機夾雑物が比重差で容器50の底付近に沈降する一方、試料の上澄み液が排出口20および排出管25を介して外部に排出される。そして、排出管25を介して排出された試料の上澄み液は、検出フィルタ21によって濾過され、検出フィルタ21によって、マイクロプラスチックが回収される。
 重液の導入が完了した場合(S14でYES)、すなわち、約1日に亘る比重分離によってマイクロプラスチックが回収された後、コンピュータ500は、バルブ34aおよび電磁弁41を制御することで、マイクロプラスチックが回収された後の容器50内の廃液を容器150に排出する。
 次に、コンピュータ500は、廃液の排出が完了したか否かを判断する(S16)。たとえば、コンピュータ500は、バルブ34aの開放度合、あるいは、容器150または容器50に設けられた液面センサの検出値に基づいて、廃液の排出が完了したか否かを判断する。
 コンピュータ500は、廃液の排出が完了していない場合(S16でNO)、S16の処理を繰り返す。一方、コンピュータ500は、廃液の排出が完了した場合(S16でYES)、バルブ33aを制御することで、容器130に収容されたリンス液を容器50に導入する(S17)。
 次に、コンピュータ500は、リンス液の導入が完了したか否かを判断する(S18)。たとえば、コンピュータ500は、バルブ33aの開放度合、あるいは、容器130または容器50に設けられた液面センサの検出値に基づいて、リンス液の導入が完了したか否かを判断する。
 コンピュータ500は、リンス液の導入が完了していない場合(S18でNO)、S18の処理を繰り返す。一方、コンピュータ500は、リンス液の導入が完了した場合(S18でYES)、バルブ34aおよび電磁弁41を制御することで、リンス液が導入された後の容器50内の廃液を容器150に排出し(S19)、本処理を終了する。
 このようなリンス液の導入および廃液の排出などの後処理によって、容器50内が洗浄される。
 以上のように、本実施の形態に係る試料精製装置1によれば、コンピュータ500が制御プログラム511を実行することで、適切なタイミングおよび適切な時間に亘って自動的に、容器50に収容された試料に対して酸化剤および重液を導入し、また、容器50から廃液を排出する。このため、ユーザは、自ら、容器50に酸化剤および重液を導入し、また、容器50から廃液を排出する必要がない。これにより、ユーザの手間が掛かることも、各ユーザの技量に応じて成分の回収における精度にばらつきが生じる虞もなく、ユーザは、手間を極力掛けることなく精度良く試料を精製することができる。
 さらに、本実施の形態に係る試料精製装置1によれば、コンピュータ500が制御プログラム511を実行することで、マイクロプラスチックを回収した後、使用した容器50を自動的に洗浄する。このため、ユーザは、自ら、容器50を洗浄する必要がなく、手間を極力掛けることがない。
 [試料精製装置の容器の形状]
 図15および図16は、本実施の形態に係る試料精製装置1の容器50の形状を説明するための図である。上述したように、試料精製装置1においては、試料精製器100の容器50を用いて試料精製することができるが、その容器50の形状は精度良く試料を精製するための工夫がなされている。
 具体的には、図15および図16に示すように、容器50は、本体部51~本体部54を含む。本体部51は、「第1本体部」の一例である。本体部52は、「第2本体部」の一例である。本体部53は、「第3本体部」の一例である。
 本体部54は、容器の最下部に位置し、底面155と側面154とを含む。本体部54の側面154は、円柱状の容器50の中心軸160を取り囲むように形成されており、その一部において、ポート63に繋がる孔部156と、ポート64に繋がる孔部157とが形成されている。ポート63の内部には、フィルタ163が設けられている。ポート64の内部には、フィルタ164が設けられている。ポート63(孔部156)およびポート64(孔部157)の各々は、本体部54の中央部分よりも下の位置であって、底面155に近い箇所に形成されている。なお、図示は省略するが、他のポート61および62の各々の内部においても、フィルタが設けられている。
 本体部51は、本体部54の上方に設けられ、本体部54の側面154に続いて形成される側面151を含む。側面151は、容器50の中心軸160を取り囲み、かつ、容器50の上方(排出口20側)から下方(底面155側)に向かって広がるように形成されている。
 本体部52は、本体部51の上方に設けられ、本体部51の側面151に続いて形成される側面152を含む。側面152は、容器50の中心軸160を取り囲み、かつ、本体部52の上部521および下部522から当該上部521と当該下部522との間に位置する部分に向かって膨張するように形成されている。言い換えると、側面152は、容器50の中心軸160から本体部52の外周側に向かって膨張するように形成されている。別の観点からみると、本体部52の水平断面積(または内径)は、本体部52の上部521および下部522の各々から当該上部521と当該下部522との間に位置する部分に向かうにつれて連続的に大きくなるように構成されている。
 本体部53は、本体部52の上方に設けられ、本体部52の側面152に続いて形成される側面153を含む。側面153は、容器50の中心軸160を取り囲み、かつ、容器50の下方(底面155側)から上方(排出口20側)に向かって先細りするようなテーパー状で形成されている。別の観点からみると、本体部52の水平断面積(または内径)は、排出口25が位置する上方向に向かうにつれて連続的に小さくなるように構成されている。このように、容器50の水平断面積(または内径)は、当該容器50の少なくとも所定の高さ(この例では本体部52の上部521が位置する高さ)から排出口25までの間において上方向に向かうにつれて連続的に小さく構成されている。なお、本実施の形態においては、本体部53の側面153が直線であるが、側面153は曲線であってもよく、本体部53の水平断面積(または内径)が排出口25が位置する上方向に向かうにつれて連続的に小さくなるように構成されればよい。
 排出口20は、容器50の底面155と対向する位置において、容器50の側面153に続いて形成された、排出管25に繋がる孔部である。排出口20の水平断面積(または内径)は、本体部52の上部521および下部522の各々の水平断面積(または内径)よりも小さい。
 本体部53は、本体部52と一体的に形成されている。本体部52と本体部51との間は分離可能であり、ユーザは、本体部52を本体部51から分離させることで容器50内を開放して、容器50内に試料を流し込むことができる。
 以上のように、本実施の形態に係る試料精製装置1によれば、容器50の一部の側面153が、底面155側から排出口20側に向かってテーパー状に形成されており、言い換えると、容器50の水平断面積が当該容器50の少なくとも所定の高さから排出口25までの間において上方向に向かうにつれて連続的に小さく構成されている。このため、容器50の側面153と排出口20との境目を極力滑らかにすることができる。これにより、重液によって比重分離された試料の上澄み液が排出口20を介して外部に排出される際に、マイクロプラスチックが容器50内で滞留することを極力防止することができる。たとえば、容器50の側面と排出口20との境目が滑らかでなく角張っているような場合、重液によって比重分離された試料の上澄み液が当該角張った部分に当たって回収対象のマイクロプラスチックが容器50内に付着し、マイクロプラスチックが排出口25へと向かうことなく容器50内で滞留する虞がある。これに対して、本実施の形態に係る容器50のように容器50の側面153と排出口20との境目を極力滑らかにすることで、マイクロプラスチックが容器50内に付着して滞留してしまうことを極力防止することができる。したがって、ユーザは、精度良く試料を精製することができる。
 容器50の一部の側面152が、上部521および下部522から当該上部521と当該下部522との間に位置する部分に向かって膨張するように形成されているため、容器50内でマイクロプラスチックが付着して滞留することを極力防止することができる。さらに、容器50の一部(本体部52)の側面152が一旦膨張し、さらにその上方において容器50の一部(本体部53)の水平断面積が排出口25に向かうにつれて連続的に小さくなることで、重液の導入によって上昇した試料の上澄み液を本体部52で広げた後、本体部53の先細りした部分を利用して上澄み液を勢いよく排出口25に向かわせることができる。
 テーパー状に先細りした本体部53と、膨張するように形成された本体部52とが、一体的に形成されているため、容器50の強度を上げることができる。さらに、本体部53と本体部52との間に境目がないため、重液の導入によって上昇した試料の上澄み液が本体部53と本体部52との間の境目に付着することもなく、上澄み液をより効率良く排出口25に向かわせることができる。
 [分析システム]
 図17は、本実施の形態に係る分析システム1000を模式的に示す図である。分析システム1000は、上述した本実施の形態に係る試料精製装置1と、分級装置600と、分析装置700とを備える。
 分級装置600は、試料精製装置1によって回収されたマイクロプラスチックを、粒子の大きさごとに分ける。分級装置600としては、たとえば、遠心分離を用いて粒子を分けるフィールドフローフラクネーション装置などが挙げられる。
 分析装置700は、分級装置600によって分級されたマイクロプラスチックを分析する。分析装置700によって取得された分析結果は、画面(図示は省略する)に表示されるなどしてユーザによって取得される。
 上述したように構成された分析システム1000においては、コンピュータ500の制御に基づき、試料精製装置1がマイクロプラスチックを回収するとともに、その後、分級装置600がマイクロプラスチックを分級し、分析装置700がマイクロプラスチックを分析する。
 以上のように、本実施の形態に係る分析システム1000によれば、試料精製装置1に試料を導入してから、分析装置700によってマイクロプラスチックを分析するまでの一連の作業が、コンピュータ500の制御によって自動化されるため、ユーザの利便性が向上する。
 なお、分析システム1000は、分級装置600を備えることなく、分析装置700が、試料精製装置1によって回収されたマイクロプラスチックをそのまま取得して分析してもよい。
 [変形例]
 以上、本実施の形態に係る試料精製装置1および分析システム1000について説明したが、これらの構成においては、さらに種々の変形、応用が可能である。以下、変形例について説明する。
 図18は、第2の実施の形態に係る試料精製装置1Aを模式的に示す図である。図18に示すように、試料精製装置1Aの試料精製器100Aにおいては、重液を導入する配管12と、リンス液を導入する配管13とが、互いに共通するポート62に液体を導入してもよい。
 具体的には、ポンプ232(バルブ232a)および電磁弁242が、配管12および配管13の各々と容器50のポート62との間に設けられる。電磁弁242は、コンピュータ500Aの制御によって動作することで、配管12とポンプ232との間の経路と、配管13とポンプ232との間の経路とで、液体が通る経路を切り替える。
 これにより、配管12を介して容器120から吸い取られた重液は、電磁弁242およびポンプ232を介してポート62に導入される。また、配管13を介して容器130から吸い取られたリンス液は、電磁弁242およびポンプ232を介してポート62に導入される。
 以上のように、第2の実施の形態に係る試料精製装置1Aによれば、配管12と容器50のポート62との間に設けられたポンプ232(バルブ232a)が、配管13と容器50のポート62との間に設けられたポンプ232(バルブ232a)と共用されているため、試料精製装置1Aの部品点数を減らしてコストを抑えることができる。
 図19は、第3の実施の形態に係る試料精製装置1Bを模式的に示す図である。図19に示すように、試料精製装置1Bの試料精製器100Bは、容器50の上方から試料を導入するように構成されてもよい。
 具体的には、試料精製器100Bは、容器50からオーバーフローした試料の上澄み液を検出フィルタ21に向けて排出する排出管25Aと、マイクロプラスチックを含む試料を外部から容器50に導入する導入管25Bとを備える。排出管25Aは、「排出経路」の一例であり、導入管25Bは、「導入経路」の一例である。電磁弁45が、排出管25Aおよび導入管25Bの各々と容器50の排出口20との間に設けられる。電磁弁45は、コンピュータ500Bの制御によって動作することで、排出管25Aと排出口20との間の経路と、導入管25Bと排出口20との間の経路とで、液体が通る経路を切り替える。
 これにより、コンピュータ500の制御によって、容器50からオーバーフローした試料の上澄み液は、電磁弁45および排出管25Aを介して検出フィルタ21に向けて排出される。また、コンピュータ500の制御によって、外部から導入された試料は、導入管25Bおよび電磁弁45を介して容器50に導入される。
 以上のように、第3の実施の形態に係る試料精製装置1Bによれば、排出口20を利用して、容器50の上方から試料を導入することができるため、より使い勝手の良い試料精製装置1Bをユーザに提供することができる。
 [態様]
 上述した複数の例示的な実施の形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項) 一態様に係る混合試料を精製する試料精製装置は、重液を用いて前記混合試料を比重差によって分離するための容器と、前記容器から排出された上澄み液を導入して前記混合試料のうち前記重液よりも比重の軽い成分を回収するための回収部とを備え、前記容器は、当該容器の最上部に設けられた排出口と、前記排出口から排出された前記上澄み液を前記回収部へ導く排出経路とを含み、前記容器の水平断面積は、当該容器の少なくとも所定の高さから前記排出口までの間において上方向に向かうにつれて連続的に小さく構成されている。
 第1項に記載の試料精製装置によれば、容器の水平断面積が当該容器の少なくとも所定の高さから排出口までの間において上方向に向かうにつれて連続的に小さく構成されていることによって、重液の導入によって生じた上澄み液が外部に排出される際に、回収対象の成分が容器内で滞留することを極力防止することができるため、精度良く混合試料を精製することができる。
 (第2項) 第1項に記載の試料精製装置において、前記容器は、第1本体部と、当該第1本体部の上方に設けられた第2本体部と、当該第2本体部の上方に設けられた第3本体部とを含み、前記第3本体部の水平断面積は、前記排出口が位置する上方向に向かうにつれて連続的に小さく構成されており、前記第2本体部の水平断面積は、当該第2本体部の上部および下部の各々から当該上部と当該下部との間に位置する部分に向かうにつれて連続的に大きく構成されている。
 第2項に記載の試料精製装置によれば、容器内で回収対象の成分が付着して滞留することを極力防止することができる。さらに、容器50の第2本体部が一旦膨張し、さらにその上方において容器50の第3本体部の水平断面積が排出口に向かうにつれて連続的に小さくなることで、重液の導入によって上昇した混合試料の上澄み液を第2本体部で広げた後、第3本体部の先細りした部分を利用して上澄み液を勢いよく排出口に向かわせることができる。
 (第3項) 第2項に記載の試料精製装置において、前記第3本体部は、前記第2本体部と一体的に形成されている。
 第3項に記載の試料精製装置によれば、先細りした第3本体部と、膨張するように形成された第2本体部とが、一体的に形成されているため、容器の強度を上げることができる。さらに、第3本体部と第2本体部との間に境目がないため、重液の導入によって上昇した混合試料の上澄み液が第3本体部と第2本体部との間の境目に付着することもなく、上澄み液をより効率良く排出口に向かわせることができる。
 (第4項) 第1項~第3項のいずれか1項に記載の試料精製装置において、前記試料精製装置は、前記混合試料に含まれる夾雑物を処理するための酸化剤を前記容器に導入するための第1配管と、前記重液を前記容器に導入するための第2配管と、前記容器内の廃液を排出するための第3配管と、前記容器内を洗浄するためのリンス液を前記容器に導入するための第4配管と、前記容器に設けられ、かつ、前記第1配管、前記第2配管、前記第3配管、および前記第4配管の各々との間で液体が出入する少なくとも1つのポートとを備える。
 第4項に記載の試料精製装置によれば、一の容器を用いた連続的な作業によって混合試料を精製することができるため、作業者などのユーザの手間を極力掛けることなく精度良く混合試料を精製することができる。
 (第5項) 第4項に記載の試料精製装置において、前記第1配管、前記第2配管、および前記第4配管の各々に対応する前記少なくとも1つのポートは、前記第3配管に対応する前記少なくとも1つのポートと異なる。
 第5項に記載の試料精製装置によれば、容器に向けて液体(酸化剤、重液、またはリンス液)を導入する配管と、容器から外部に向けて廃液を排出する配管とで、液体が通過するポートを異ならせることができるため、より精度良く混合試料を精製することができる。
 (第6項) 第4項に記載の試料精製装置において、記第2配管に対応する前記少なくとも1つのポートは、前記第4配管に対応する前記少なくとも1つのポートと共用されている。
 第6項に記載の試料精製装置によれば、試料精製装置の部品点数を減らしてコストを抑えることができる。
 (第7項) 第4項~第6のいずれか1項に記載の試料精製装置において、前記少なくとも1つのポートは、フィルタを含む。
 第7項に記載の試料精製装置によれば、混合試料に含まれる回収対象の成分が外部に排出されることを極力防止することができる。
 (第8項) 第1項~第7のいずれか1項に記載の試料精製装置において、前記排出口は、前記排出経路に接続される一方で、前記混合試料を前記容器に導入するための導入経路に接続される。
 第8項に記載の試料精製装置によれば、排出口を利用して容器の上方から混合試料を導入することができるため、より使い勝手の良い試料精製装置をユーザに提供することができる。
 (第9項) 第8項に記載の試料精製装置において、前記試料精製装置は、前記導入経路および前記排出経路の各々と、前記排出口との間に設けられ、かつ、液体の出入を切り替える少なくとも1つの切替部を備える。
 第9項に記載の試料精製装置によれば、切替部によって混合試料を精製することができるため、ユーザの手間を極力掛けることなく精度良く混合試料を精製することができる。
 (第10項) 一態様に係る分析システムは、第1項~第9項のいずれか1項に記載の前記試料精製装置と、前記試料精製装置の前記回収部によって回収された前記成分を分析する分析装置とを備える。
 第10項に記載の分析システムによれば、試料精製装置に混合試料を導入してから、分析装置によって回収対象の成分を分析するまでの一連の作業が、制御部の制御によって自動化されるため、ユーザの利便性が向上する。
 1,1A,1B 試料精製装置、11,12,13,14,15 配管、20 排出部、21 検出フィルタ、25,25A 排出管、25B 導入管、31,32,33,34,232 ポンプ、31a,32a,33a,34a,232a バルブ、41,45,242 電磁弁、50,110,120,130,140,150,210 容器、51,52,53,54 本体部、61,62,63,64 ポート、71 恒温スターラー、72 撹拌子、100,100A,100B 試料精製器、151,152,153,154 側面、155 底面、156,157 孔部、160 中心軸、163,164 フィルタ、500,500A,500B コンピュータ、501 演算装置、502 メモリ、503 ネットワークコントローラ、504 表示装置、505 入力装置、506 データ読取装置、507 記憶媒体、510 ストレージ、511 制御プログラム、512 制御用データ、521 上部、522 下部、600 分級装置、700 分析装置、1000 分析システム。

Claims (10)

  1.  混合試料を精製する試料精製装置であって、
     重液を用いて前記混合試料を比重差によって分離するための容器と、
     前記容器から排出された上澄み液を導入して前記混合試料のうち前記重液よりも比重の軽い成分を回収するための回収部とを備え、
     前記容器は、
      当該容器の最上部に設けられた排出口と、
      前記排出口から排出された前記上澄み液を前記回収部へ導く排出経路とを含み、
     前記容器の水平断面積は、当該容器の少なくとも所定の高さから前記排出口までの間において上方向に向かうにつれて連続的に小さく構成されている、試料精製装置。
  2.  前記容器は、第1本体部と、当該第1本体部の上方に設けられた第2本体部と、当該第2本体部の上方に設けられた第3本体部とを含み、
     前記第3本体部の水平断面積は、前記排出口が位置する上方向に向かうにつれて連続的に小さく構成されており、
     前記第2本体部の水平断面積は、当該第2本体部の上部および下部の各々から当該上部と当該下部との間に位置する部分に向かうにつれて連続的に大きく構成されている、請求項1に記載の試料精製装置。
  3.  前記第3本体部は、前記第2本体部と一体的に形成されている、請求項2に記載の試料精製装置。
  4.  前記混合試料に含まれる夾雑物を処理するための酸化剤を前記容器に導入するための第1配管と、
     前記重液を前記容器に導入するための第2配管と、
     前記容器内の廃液を排出するための第3配管と、
     前記容器内を洗浄するためのリンス液を前記容器に導入するための第4配管と、
     前記容器に設けられ、かつ、前記第1配管、前記第2配管、前記第3配管、および前記第4配管の各々との間で液体が出入する少なくとも1つのポートとを備える、請求項1~請求項3のいずれか1項に記載の試料精製装置。
  5.  前記第1配管、前記第2配管、および前記第4配管の各々に対応する前記少なくとも1つのポートは、前記第3配管に対応する前記少なくとも1つのポートと異なる、請求項4に記載の試料精製装置。
  6.  前記第2配管に対応する前記少なくとも1つのポートは、前記第4配管に対応する前記少なくとも1つのポートと共用されている、請求項4に記載の試料精製装置。
  7.  前記少なくとも1つのポートは、フィルタを含む、請求項4~請求項6のいずれか1項に記載の試料精製装置。
  8.  前記排出口は、前記排出経路に接続される一方で、前記混合試料を前記容器に導入するための導入経路に接続される、請求項1~請求項7のいずれか1項に記載の試料精製装置。
  9.  前記導入経路および前記排出経路の各々と、前記排出口との間に設けられ、かつ、液体の出入を切り替える少なくとも1つの切替部を備える、請求項8に記載の試料精製装置。
  10.  請求項1~請求項9のいずれか1項に記載の前記試料精製装置と、
     前記試料精製装置の前記回収部によって回収された前記成分を分析する分析装置とを備える、分析システム。
PCT/JP2021/009167 2020-06-29 2021-03-09 試料精製装置、分析システム WO2022004062A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180045654.4A CN115989400A (zh) 2020-06-29 2021-03-09 试样纯化装置、分析系统
US18/013,397 US20230221225A1 (en) 2020-06-29 2021-03-09 Sample purification apparatus and analysis system
JP2022533681A JP7452655B2 (ja) 2020-06-29 2021-03-09 試料精製装置、分析システム
EP21832547.0A EP4173719A4 (en) 2020-06-29 2021-03-09 SAMPLE CLEANING DEVICE AND ANALYTICAL SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-111224 2020-06-29
JP2020111224 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022004062A1 true WO2022004062A1 (ja) 2022-01-06

Family

ID=79315712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009167 WO2022004062A1 (ja) 2020-06-29 2021-03-09 試料精製装置、分析システム

Country Status (5)

Country Link
US (1) US20230221225A1 (ja)
EP (1) EP4173719A4 (ja)
JP (1) JP7452655B2 (ja)
CN (1) CN115989400A (ja)
WO (1) WO2022004062A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079837A1 (ja) * 2022-10-13 2024-04-18 株式会社島津製作所 処理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107382U (ja) * 1977-02-04 1978-08-29
JP2002336679A (ja) * 2001-05-16 2002-11-26 Matsushita Electric Ind Co Ltd 液体吐出装置及び分注装置ならびに検体洗浄装置
JP2003501673A (ja) * 1999-06-10 2003-01-14 プロヴァリス・ダイアグノスティクス・リミテッド 分析を行なうための装置、計器および設備
US20160167061A1 (en) * 2014-12-15 2016-06-16 Akadeum Life Sciences, LLC Method and system for buoyant separation
CN109540641A (zh) * 2018-12-15 2019-03-29 华南理工大学 海洋沉积物中微塑料的分离提纯装置及使用方法
CN109655321A (zh) * 2018-11-07 2019-04-19 天津大学 微塑料的浮选富集装置及其筛选方法
CN210427599U (zh) * 2019-05-17 2020-04-28 舟山巨洋技术开发有限公司 一种微塑料自动分析仪

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3583909A (en) * 1970-02-05 1971-06-08 Grace W R & Co Removal of phosphate ion by flotation with an anionic surfactant
US5935448A (en) * 1997-12-24 1999-08-10 Miller; Jorge Water purification with in situ production of dispersed flocculant
DE10061887A1 (de) * 2000-12-13 2002-06-20 Ticona Gmbh Vorrichtung und Verfahren zur Stofftrennung
US6960294B2 (en) * 2001-06-12 2005-11-01 Hydrotreat, Inc. Apparatus for the separation of solids from liquids by dissolved gas floatation
WO2008092017A1 (en) 2007-01-24 2008-07-31 Seminis Vegetable Seeds, Inc. Liquid density separation system
FR2966819B1 (fr) * 2010-10-29 2013-12-27 Orege Procede et dispositif de clarification des eaux.
CN106801588B (zh) * 2017-01-05 2019-12-06 天地科技股份有限公司 承压水地层钻孔施工半封闭泥浆保压循环工艺
CN108177273B (zh) * 2017-12-27 2021-03-19 南京师范大学 一种微塑料的连续分离富集装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107382U (ja) * 1977-02-04 1978-08-29
JP2003501673A (ja) * 1999-06-10 2003-01-14 プロヴァリス・ダイアグノスティクス・リミテッド 分析を行なうための装置、計器および設備
JP2002336679A (ja) * 2001-05-16 2002-11-26 Matsushita Electric Ind Co Ltd 液体吐出装置及び分注装置ならびに検体洗浄装置
US20160167061A1 (en) * 2014-12-15 2016-06-16 Akadeum Life Sciences, LLC Method and system for buoyant separation
CN109655321A (zh) * 2018-11-07 2019-04-19 天津大学 微塑料的浮选富集装置及其筛选方法
CN109540641A (zh) * 2018-12-15 2019-03-29 华南理工大学 海洋沉积物中微塑料的分离提纯装置及使用方法
CN210427599U (zh) * 2019-05-17 2020-04-28 舟山巨洋技术开发有限公司 一种微塑料自动分析仪

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"PLASTIC LITTER IN THE OCEAN", GESAMP REPORTS AND STUDIES NO. 99, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, 17 June 2020 (2020-06-17), Retrieved from the Internet <URL:URL:https://environmentlive.unep.org/media/docs/marine_plastics/une_science_dvisi>
GUIDELINES FOR HARMONIZING OCEAN SURFACE MICRO PLASTIC MONITORING METHODS, May 2019 (2019-05-01)
See also references of EP4173719A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079837A1 (ja) * 2022-10-13 2024-04-18 株式会社島津製作所 処理装置

Also Published As

Publication number Publication date
JPWO2022004062A1 (ja) 2022-01-06
EP4173719A1 (en) 2023-05-03
JP7452655B2 (ja) 2024-03-19
US20230221225A1 (en) 2023-07-13
EP4173719A4 (en) 2024-07-03
CN115989400A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
Enders et al. When every particle matters: a QuEChERS approach to extract microplastics from environmental samples
WO2022003995A1 (ja) 試料精製装置、分析システム、試料精製方法、制御プログラム
Svarovsky Solid-liquid separation
CN111107917A (zh) 用于树脂提取的设备和方法
WO2022004062A1 (ja) 試料精製装置、分析システム
CN205500945U (zh) 一种杂物破碎污水处理装置
CN108760661A (zh) 一种石油废水重金属离子多通道检测芯片
JPS6051394B2 (ja) 混合イオン交換樹脂分離法及びその装置
RU2015130108A (ru) Способ и устройство разделения жидкость/твердое вещество, такого как обезвоживание твердых частиц и выщелачивание с механическим перемешиванием
WO2023127254A1 (ja) 容器、精製装置
WO2023127258A1 (ja) 精製装置および精製装置の制御方法
WO2023127274A1 (ja) 精製装置
Movahedi et al. New insight into hydrodynamic and cake erosion mechanism during rotating-disk dynamic microfiltration of concentrated bentonite suspensions at different salinity conditions
WO2023119844A1 (ja) 精製装置
WO2024079837A1 (ja) 処理装置
WO2023127259A1 (ja) 精製装置および精製装置の制御方法
WO2024079835A1 (ja) 回収器具および回収システム
WO2024079836A1 (ja) 処理装置、処理方法、および制御プログラム
WO2023127276A1 (ja) 精製装置
US20020133002A1 (en) Computer implemented nucleic acid isolation method and apparatus
CN109476513A (zh) 通过膨胀石墨处理含有烃的水的方法
WO2023090069A1 (ja) 精製装置および制御方法
JP7119415B2 (ja) 吸着材の耐脆化性評価方法、及びその方法に用いる粉体捕捉器
Hmina et al. Designing a Wastewater Screening System Based on the TRIZ Theory Contradiction Matrix
JPWO2023090069A5 (ja) 精製装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021832547

Country of ref document: EP

Effective date: 20230130