CN108760661A - 一种石油废水重金属离子多通道检测芯片 - Google Patents
一种石油废水重金属离子多通道检测芯片 Download PDFInfo
- Publication number
- CN108760661A CN108760661A CN201811047104.2A CN201811047104A CN108760661A CN 108760661 A CN108760661 A CN 108760661A CN 201811047104 A CN201811047104 A CN 201811047104A CN 108760661 A CN108760661 A CN 108760661A
- Authority
- CN
- China
- Prior art keywords
- sample liquid
- tower
- liquid
- main process
- process task
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 23
- 239000002351 wastewater Substances 0.000 title claims abstract description 16
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 15
- 239000003208 petroleum Substances 0.000 title claims abstract description 13
- 239000007788 liquid Substances 0.000 claims abstract description 245
- 238000003756 stirring Methods 0.000 claims abstract description 36
- 238000012545 processing Methods 0.000 claims abstract description 31
- 238000002156 mixing Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 71
- 238000000926 separation method Methods 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 21
- 239000002699 waste material Substances 0.000 claims description 18
- 239000003153 chemical reaction reagent Substances 0.000 claims description 11
- 238000009434 installation Methods 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 210000005239 tubule Anatomy 0.000 claims description 10
- 230000013011 mating Effects 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 6
- 238000003754 machining Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000007613 environmental effect Effects 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 140
- 238000013461 design Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502753—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明提供了,一种石油废水重金属离子多通道检测芯片,由样液处理系统、溶液混合系统、排样系统三部分组成。其特征在于:芯片呈竖直的长方体,高为长边。从上至下依次加工有样液处理系统、收集存储系统、溶液混合系统、排样系统。芯片配套加工有主盖子和比色皿盖。本发明技术特点:微流控芯片利用了可手控进行溶液充分混合的搅拌轮,与S型的混合通道相结合的混合系统,使的溶液充分混合,提高了检测的准确度,而且样液处理塔的设计有利于检测的效果的提升,使得检测更加方便、快捷、准确,整个检测系统具有微型化,适用于科学研究、环境监测等领域。
Description
技术领域
本发明涉及一种多通道检测芯片,具体说是一种具有待检测样液过滤、混合功能的,检测石油废水中重金属离子浓度的微流控芯片。
技术背景
目前,社会环境污染越来越严重,石油废水是当今社会的污染源之一。在石油废水中含有大量的油物质、重金属等有毒有害物质,会间接的对人体健康造成危害,于是重金属的检测受到研究者高度重视。微流控芯片技术不断发展,设计微流控芯片检测多种重金属离子的技术越来越成熟。利用微流控芯片将样品预处理、生物和化学反应、分离检测等多种基本操作单元集成在具有微米或纳米微通道网络的芯片上,通过操控流体完成复杂的分析过程,具有样品和试剂消耗量少、分析时间短、易实现大规模平行测定等优点。
石油废水重金属离子的常规检测,需要实验室进行废水样液的前期处理,操作较为复杂,故,利用微流控芯片技术,设计一种微流控芯片,其能够一次检测重金属离子,根据实际情况结合处理废水样品,实现多种试剂溶液的充分混合,并模拟比色皿结构,利用分光光度计检测多种重金属离子的浓度。
发明内容
本发明的形状结构,目的在于提供一种新型的形状结构、多废水处理系统、混合溶液搅拌系统,能够连接比色皿使用。使废水样液能够得到充分的去杂质处理,混合溶液能够混合均匀,以提高检测的准确性,使得试验检测更加的方便快捷。
本发明的技术方案为:一种石油废水重金属离子多通道检测芯片,由样液处理系统、溶液混合系统、排样系统三部分组成。其特征在于:芯片呈竖直的长方体,高为长方体的最长边。从上至下依次加工有样液处理系统、收集存储系统、溶液混合系统、排样系统。芯片配套加工有主盖子和比色皿盖。在主盖子对应芯片池口微阀和各个微阀的位置,均加工有池口微阀的中间开孔和各个的盖子开孔。比色皿盖加工有方便流液的气孔。
所述样液处理系统由1个样液主处理塔和1个或2个样液辅助处理塔组成。在芯片顶部加工有进样口,进样口向下连通到样液主处理塔。所述样液主处理塔是在芯片上加工出的一个长方体状的空腔,液主处理塔内的最上部、在连接进样口的位置加工安装有一个主滤网。主滤网之下安装有一个挡板,挡板的一侧或两侧、在样液主处理塔的侧壁上加工有主-辅管道。主-辅管道通往加工在样液主处理塔旁边1侧或2侧的同样大小的样液辅助处理塔。每个主-辅管道在样液主处理塔的分流口处都加工安装有一个分流阀门。在挡板之下安装的是上层滤网;上层滤网之下安装的是多个超亲油网和中层滤网。每个超亲油网在其一侧都加工有循环口,保证在塔内或塔之间,样液能够由上到下一层层的流下来。样液主处理塔的下部安装有下层滤网。所述样液辅助处理塔是与样液主处理塔并排加工的,2个样液辅助处理塔是分别在样液主处理塔的左右并排加工的。样液辅助处理塔的内部安装的上层滤网、多个超亲油网、中层滤网和下层滤网的排布以及数量,都与样液主处理塔相同。所述样液辅助处理塔的内部侧壁安装有通往样液主处理塔的辅-主管道;所述样液主处理塔和1个样液辅助处理塔的芯片,其同时处理样液时,样液是从样液主处理塔到样液辅助处理塔从上到下循环流动,最后样液从样液辅助处理塔汇流到样液主处理塔的底部。所述样液主处理塔和左右对称排布2个样液辅助处理塔的芯片,其同时处理样液时,样液是各自在样液主处理塔和2个样液辅助处理塔内从上到下循环流动,最后样液从样液辅助处理塔汇流到样液主处理塔的底部。处理完汇流到样液主处理塔底部的样液,流到下方呈矩形的收集储液池;收集储液池的下方出口加工安装有池口微阀。
所述溶液混合系统由分液通道、搅拌池、混合通道组成。所述分液通道是在收集储液池下方出口的池口微阀下端,加工的3条以上的分流处理好的样液的通道。每条分液通道的下端头通向搅拌池,每条分液通道与搅拌池连接处,加工有添加试剂溶液的试剂口。所述各个搅拌池是加工在一条水平线上,搅拌池的水平中间线上安装有贯穿每个搅拌池的旋转轴,每个搅拌池的旋转轴都安装有一个搅拌轮。所述混合通道呈S型结构,最后混合液经出样口流出。每条混合通道下端在出样口处都安装有混合通道的微阀。
所述排样系统,包括检测用的配套的专用比色皿,和芯片底部加工的连接专用比色皿的凹型卡槽。配套的专用比色皿的顶部加工有比色皿连接用的凸槽和比色皿开口。配套的专用比色皿的尺寸和分光光度计比色皿的规格尺寸相同。
上述技术方案中优选的,所述样液主处理塔还配有分流阀门的开关,能够根据样液实际情况选择样液处理塔的数量。
上述技术方案中优选的,所述样液主处理塔、样液辅助处理塔、收集储液池、搅拌池的深度均大于各种通道的深度。
上述技术方案中优选的,所述微阀由微阀体、微阀体旋转轴组成,微阀体的深度比通道的深度深,保证微阀3的密封性。所述分液通道加工有标尺,分液通道的横向管的两端,各加工有1个利于样液流动的气孔,并在一端加工有排液细管。排液细管的下端连接有废液池。废液池的底部加工有废液排管。所述排液细管的下端伸入废液池一截,端头与废液池上部的气孔平齐。
与现有技术相比,本发明具有下列有益效果:样液处理塔分2致3个,根据样液实际含油量的多少来选择样液处理塔的个数,能够达到除油除杂的最佳效果,而且过滤网和超亲油网是可拆卸的,方便更换;本发明有可手控进行溶液充分混合的搅拌轮,与混合通道相结合的混合系统,使得溶液尽最大化的充分混合,提高了检测准确度;而且替代样品收集池的是可移动的专用比色皿,设计与分光光度计比色皿原理相同,方便实验的外部检测,提高了效率。
附图说明
图1为本发明的一种主视结构示意图。
图2为本发明的一种芯片盖子示意图。
图3为本发明的一种有对称样液辅助处理塔的主视结构示意图。
图4为本发明的一种有对称样液辅助处理塔的局部主视示意图。
图5为本发明的一种有对称样液辅助处理塔的样液主处理塔左视剖面示意图。
图6为本发明的一种有单个样液辅助处理塔的样液主处理塔主视结构示意图。
图7为本发明的一种有单个样液辅助处理塔的样液辅助处理塔主视结构示意图。
图8为本发明的一种有单个样液辅助处理塔的局部主视示意图。
图9为本发明的一种样液搅拌池的侧面示意图。
图10为本发明的一种配套比色皿的主视示意图。
图11为本发明的一种溶液混合系统的主视示意图。
图12为本发明的一种微阀的俯视示意图。
图中:1.专用比色皿;2.凹型卡槽;3.微阀;4.混合通道;5.搅拌池;6.分液通道;7.样液主处理塔;8.进样口;9.样液辅助处理塔;10.收集储液池;11.池口微阀;12.试剂口;13.旋转轴;14.出样口;15.比色皿盖;16.气孔;17.盖子开孔;18.主盖子;19.中间开孔;20.辅-主管道;21.下层滤网;22.超亲油网;23.中层滤网;24.上层滤网;25.主-辅管道;26.主滤网;27.分流阀门;28.挡板;29.分流口;30.循环口;31.搅拌轮;32.凸槽;33.比色皿开口;34.标尺;35.排液细管;36.废液池;37.废液排管;38.微阀体;39.微阀体旋转轴。
具体实施例
参照图1至图12的形状结构,一种石油废水重金属离子多通道检测芯片,由样液处理系统、溶液混合系统、排样系统三部分组成。其特征在于:芯片呈竖直的长方体,高为长方体的最长边。从上至下依次加工有样液处理系统、收集存储系统、溶液混合系统、排样系统。芯片配套加工有主盖子18和比色皿盖15。主盖子18加工有推盖子的摩擦豆。在主盖子18对应芯片池口微阀11和各个微阀3的位置,均加工有池口微阀11的中间开孔19和各个的盖子开孔17,以方便使用。比色皿盖15加工有方便流液的气孔16。
所述样液处理系统由1个样液主处理塔7和1个或2个样液辅助处理塔9组成;在芯片顶部加工有进样口8,进样口8向下连通到样液主处理塔7。所述样液主处理塔7是在芯片上加工出的一个长方体状的空腔,液主处理塔7内的最上部、在连接进样口8的位置加工安装有一个主滤网26。主滤网26之下安装有一个挡板28,挡板28的一侧或两侧在样液主处理塔7的侧壁加工有主-辅管道25。主-辅管道25通往加工在样液主处理塔7旁边1侧或2侧的同样大小的样液辅助处理塔9。每个主-辅管道25在样液主处理塔7的分流口29处都加工安装有一个分流阀门27。在挡板28之下安装的是上层滤网24。上层滤网24之下安装的是多个超亲油网22和中层滤网23。每个超亲油网22在其一侧都加工有循环口30,保证在塔内或塔之间,样液能够由上到下一层层的流下来。样液处理塔的循环口30的设计,有助于样液的循环,达到充分除油的效果。分流阀门27和循环口30的设计保证了样液主处理塔7既能够单独处理样液,又能够与样液辅助处理塔9共同处理样液。样液主处理塔7的下部安装有下层滤网21。所述样液辅助处理塔9是与样液主处理塔7并排加工的,2个样液辅助处理塔9是分别在样液主处理塔7的左右并排加工的。样液辅助处理塔9的内部安装的上层滤网24、多个超亲油网22、中层滤网23和下层滤网21的排布以及数量,都与样液主处理塔7相同。所述样液辅助处理塔9的内部侧壁安装有通往样液主处理塔7的辅-主管道20。所述样液主处理塔7和1个样液辅助处理塔9的芯片,其同时处理样液时,样液是从样液主处理塔7到样液辅助处理塔9从上到下循环流动,最后样液从样液辅助处理塔9汇流到样液主处理塔7的底部。所述样液主处理塔7和左右对称排布2个样液辅助处理塔9的芯片,其同时处理样液时,样液是各自在样液主处理塔7和2个样液辅助处理塔9内从上到下循环流动,最后样液从样液辅助处理塔9汇流到样液主处理塔7的底部。样液辅助处理塔9的作用是,当待检测石油废液中的油物或杂质较多时,打开分流阀门27让样液主处理塔7和样液辅助处理塔9连通,使样液能够更加充分的实现除油除杂处理。过滤网是由铜质网制成,根据实际情况选择目数,挡板28为了分流样液,使样液能够通过分流阀门27进样液辅助处理塔9,提高除油效果。超亲油网的制备,其中一例是由铜网浸泡在三氯化铁溶液中一段时间,取出,在无水乙醇中反复洗两到三次,真空箱干燥;然后在N-十二烷基三甲氧基硅烷溶于无水乙醇的溶液中,浸泡一段时间,取出真空干燥箱干燥后制得的。处理完汇流到样液主处理塔7底部的样液,流到下方呈矩形的收集储液池10。收集储液池10的下方出口加工安装有池口微阀11。
所述溶液混合系统由分液通道6、搅拌池5、混合通道4组成。所述分液通道6是在收集储液池10下方出口的池口微阀11下端,加工的3条以上的分流处理好的样液的通道。每条分液通道6下端头通向搅拌池5,每条分液通道6与搅拌池5连接处,加工有添加试剂溶液的试剂口12。所述各个搅拌池5是加工在一条水平线上,搅拌池5的水平中间线上安装有贯穿每个搅拌池5的旋转轴13,每个搅拌池5的旋转轴13都安装有一个搅拌轮31。当样液和试剂溶液流量较大时,混合液从分液通道6流下的滤液冲击搅拌轮,带动搅拌轮旋转,目的在于不同种试剂溶液和样液的第一次充分混合;当流量较少时,用手旋转旋转轴带动旋转轮的旋转,达到第一次混合的目的。混合后的滤液流经混合通道完成第二次的混合。所述混合通道4呈S型结构,混合液因重力作用从上而下S形回转流动使溶液混合,最后混合液经出样口14流出。每条混合通道4下端在出样口14处都安装有混合通道的微阀3。微阀3作用在于控制出样量。本发明设有的溶液混合系统,其中混合溶液搅拌系统能够液体流动或手动使其旋转,达到充分混合的目的。
所述排样系统,包括检测用的配套的专用比色皿1,和芯片底部加工的连接专用比色皿1的凹型卡槽2。配套的专用比色皿1的顶部加工有比色皿1连接用的凸槽32和比色皿开口33。配套的专用比色皿1的尺寸和分光光度计比色皿的规格尺寸相同。能够直接放入到分光光度计中进行检测,使得试验更加的方便、快捷。专用比色皿1的材质选择玻璃或石英的,根据发射波的波长而选择不同材质的比色皿。
上述技术方案中优选的,所述样液主处理塔7还配有分流阀门27的开关,由阀门开关和旋转轴组成,控制样液进入样液辅助处理塔9,根据样液实际情况选择样液处理塔的数量。
上述技术方案中优选的,所述样液主处理塔7、样液辅助处理塔9、收集储液池10、搅拌池5的深度均大于各种通道的深度。
上述技术方案中优选的,所述微阀3由微阀体38、微阀体旋转轴39组成,微阀体38的深度比通道的深度深,保证了微阀3的密封性。所述分液通道6加工有标尺34,分液通道6的横向管的两端,各加工有1个利于样液流动的气孔16,并在一端加工有排液细管35,用于排除多余的样液。排液细管35的下端连接有废液池36;废液池36的底部加工有废液排管37。所述排液细管35的下端伸入废液池36一截,端头与废液池36上部的气孔16平齐。当堵住废液池36的气孔16时,排液细管35不会流下样液。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (4)
1.一种石油废水重金属离子多通道检测芯片,由样液处理系统、溶液混合系统、排样系统三部分组成,其特征在于:芯片呈竖直的长方体,高为长方体的最长边;从上至下依次加工有样液处理系统、收集存储系统、溶液混合系统、排样系统;芯片配套加工有主盖子和比色皿盖;在主盖子对应芯片池口微阀和各个微阀的位置,均加工有池口微阀的中间开孔和各个的盖子开孔;比色皿盖加工有方便流液的气孔;
所述样液处理系统由1个样液主处理塔和1个或2个样液辅助处理塔组成;在芯片顶部加工有进样口,进样口向下连通到样液主处理塔;所述样液主处理塔是在芯片上加工出的一个长方体状的空腔,液主处理塔内的最上部、在连接进样口的位置加工安装有一个主滤网;主滤网之下安装有一个挡板,挡板的一侧或两侧、在样液主处理塔的侧壁上加工有主-辅管道;主-辅管道通往加工在样液主处理塔旁边1侧或2侧的、同样大小的样液辅助处理塔;每个主-辅管道在样液主处理塔的分流口处都加工安装有一个分流阀门;在挡板之下安装的是上层滤网;上层滤网之下安装的是多个超亲油网和中层滤网;每个超亲油网在其一侧都加工有循环口,保证在塔内或塔之间,样液能够从上到下,一层层流下来;样液主处理塔的下部安装有下层滤网;所述样液辅助处理塔是与样液主处理塔并排加工的,2个样液辅助处理塔是分别在样液主处理塔的左右并排加工的;样液辅助处理塔的内部安装的上层滤网、多个超亲油网、中层滤网和下层滤网的排布以及数量,都与样液主处理塔相同;所述样液辅助处理塔的内部侧壁安装有通往样液主处理塔的辅-主管道;所述样液主处理塔和1个样液辅助处理塔的芯片,其同时处理样液时,样液是从样液主处理塔到样液辅助处理塔从上到下循环流动,最后样液从样液辅助处理塔汇流到样液主处理塔的底部;所述样液主处理塔和左右对称排布2个样液辅助处理塔的芯片,其同时处理样液时,样液是各自在样液主处理塔和2个样液辅助处理塔内从上到下循环流动,最后样液从样液辅助处理塔汇流到样液主处理塔的底部;处理完汇流到样液主处理塔底部的样液,流到下方呈矩形的收集储液池;收集储液池的下方出口加工安装有池口微阀;
所述溶液混合系统由分液通道、搅拌池、混合通道组成;所述分液通道是在收集储液池下方出口的池口微阀下端,加工的3条以上的分流处理好的样液的通道;每条分液通道下端头通向搅拌池,每条分液通道与搅拌池连接处,加工有添加试剂溶液的试剂口;所述各个搅拌池是加工在一条水平线上,搅拌池的水平中间线上安装有贯穿每个搅拌池的旋转轴,每个搅拌池的旋转轴都安装有一个搅拌轮;所述混合通道呈S型结构,最后混合液经出样口流出;每条混合通道下端在出样口处都安装有混合通道的微阀;
所述排样系统,包括检测用的配套的专用比色皿,和芯片底部加工的连接专用比色皿的凹型卡槽;配套的专用比色皿的顶部加工有比色皿连接用的凸槽和比色皿开口;配套的专用比色皿的尺寸和分光光度计比色皿的规格尺寸相同。
2.根据权利要求1所述的一种石油废水重金属离子多通道检测芯片,其特征在于:所述样液主处理塔还配有分流阀门的开关,能够根据样液实际情况选择样液处理塔的数量。
3.根据权利要求1所述的一种石油废水重金属离子多通道检测芯片,其特征在于:所述样液主处理塔、样液辅助处理塔、收集储液池、搅拌池的深度均大于各种通道的深度。
4.根据权利要求1所述的一种石油废水重金属离子多通道检测芯片,其特征在于:所述微阀由微阀体、微阀体旋转轴组成,微阀体的深度比通道的深度深;所述分液通道加工有标尺,分液通道的横向管的两端,各加工有1个利于样液流动的气孔,并在一端加工有排液细管;排液细管的下端连接有废液池;废液池的底部加工有废液排管;所述排液细管的下端伸入废液池一截,端头与废液池上部的气孔平齐。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811047104.2A CN108760661B (zh) | 2018-09-08 | 2018-09-08 | 一种石油废水重金属离子多通道检测芯片 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811047104.2A CN108760661B (zh) | 2018-09-08 | 2018-09-08 | 一种石油废水重金属离子多通道检测芯片 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108760661A true CN108760661A (zh) | 2018-11-06 |
CN108760661B CN108760661B (zh) | 2023-06-09 |
Family
ID=63967987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811047104.2A Active CN108760661B (zh) | 2018-09-08 | 2018-09-08 | 一种石油废水重金属离子多通道检测芯片 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108760661B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109580507A (zh) * | 2018-11-28 | 2019-04-05 | 国电南瑞科技股份有限公司 | 一种平行质控水质分析装置及方法 |
CN109692718A (zh) * | 2018-11-28 | 2019-04-30 | 浙江警察学院 | 一种可拦截杂质的滤膜可调式双向微流控芯片 |
CN110658166A (zh) * | 2019-09-30 | 2020-01-07 | 重庆科技学院 | 微流控芯片及其体系、水体中重金属离子的检测方法 |
CN110823821A (zh) * | 2019-10-23 | 2020-02-21 | 江苏大学 | 基于微流控芯片的水中重金属离子浓度检测装置与方法 |
CN111983167A (zh) * | 2020-08-25 | 2020-11-24 | 长江大学 | 一种智慧水务水质指标在线检测装置 |
CN113588558A (zh) * | 2021-08-09 | 2021-11-02 | 中国石油大学(华东) | 一种原油快速定量表征的在线式光谱检测系统及其方法 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040018611A1 (en) * | 2002-07-23 | 2004-01-29 | Ward Michael Dennis | Microfluidic devices for high gradient magnetic separation |
US20050041525A1 (en) * | 2003-08-19 | 2005-02-24 | Pugia Michael J. | Mixing in microfluidic devices |
US20050266582A1 (en) * | 2002-12-16 | 2005-12-01 | Modlin Douglas N | Microfluidic system with integrated permeable membrane |
US20070015179A1 (en) * | 2005-04-26 | 2007-01-18 | Trustees Of Boston University | Plastic microfluidic chip and methods for isolation of nucleic acids from biological samples |
US20080014576A1 (en) * | 2006-02-03 | 2008-01-17 | Microchip Biotechnologies, Inc. | Microfluidic devices |
US20120077206A1 (en) * | 2003-07-12 | 2012-03-29 | Accelr8 Technology Corporation | Rapid Microbial Detection and Antimicrobial Susceptibility Testing |
CN103506013A (zh) * | 2013-10-08 | 2014-01-15 | 江苏大学 | 用于多场助滤膜损的实验方法与微流控实验装置 |
US20140132954A1 (en) * | 2011-06-23 | 2014-05-15 | I-Sencs, Inc. | Cell for optical analysis |
CN104502617A (zh) * | 2014-12-24 | 2015-04-08 | 杭州霆科生物科技有限公司 | 一种全自动、高通量农药残留检测的微流控芯片系统及方法 |
CN104498331A (zh) * | 2015-01-08 | 2015-04-08 | 青岛大学 | 一种单通道双浓度梯度微流控芯片的制备方法及其应用 |
CN105424629A (zh) * | 2015-12-11 | 2016-03-23 | 苏州汶颢芯片科技有限公司 | 微流控芯片及铜离子检测系统 |
CN105424784A (zh) * | 2015-12-15 | 2016-03-23 | 哈尔滨工业大学宜兴环保研究院 | 一种水中重金属离子检测微流控芯片与检测方法 |
CN105536899A (zh) * | 2016-01-22 | 2016-05-04 | 苏州汶颢芯片科技有限公司 | 微流控芯片及其在农药检测中的应用 |
WO2016145242A1 (en) * | 2015-03-11 | 2016-09-15 | Agenus Inc. | Methods and compositions for high throughput screening of biomolecules using gel microdrops |
CN106139869A (zh) * | 2016-08-26 | 2016-11-23 | 中山市高超环保通风工程有限公司 | 一体化湿法静电除尘脱硫脱氮系统 |
KR101796920B1 (ko) * | 2016-09-26 | 2017-12-12 | 한국기계연구원 | 유체칩 일체형 큐벳 및 이를 포함하는 분광 분석 장치 |
US20170362339A1 (en) * | 2014-11-19 | 2017-12-21 | Genentech, Inc. | Antibodies against bace1 and use thereof for neural disease immunotherapy |
CN107748157A (zh) * | 2017-10-20 | 2018-03-02 | 中国科学院微电子研究所 | 基于化学改性表面增强拉曼散射芯片的呼吸检测系统和方法 |
CN107941762A (zh) * | 2017-10-16 | 2018-04-20 | 太原理工大学 | 基于智能设备的量子点能量共振转移检测水体中汞、铅和砷离子的装置及方法 |
-
2018
- 2018-09-08 CN CN201811047104.2A patent/CN108760661B/zh active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040018611A1 (en) * | 2002-07-23 | 2004-01-29 | Ward Michael Dennis | Microfluidic devices for high gradient magnetic separation |
US20050266582A1 (en) * | 2002-12-16 | 2005-12-01 | Modlin Douglas N | Microfluidic system with integrated permeable membrane |
US20120077206A1 (en) * | 2003-07-12 | 2012-03-29 | Accelr8 Technology Corporation | Rapid Microbial Detection and Antimicrobial Susceptibility Testing |
US20050041525A1 (en) * | 2003-08-19 | 2005-02-24 | Pugia Michael J. | Mixing in microfluidic devices |
US20070015179A1 (en) * | 2005-04-26 | 2007-01-18 | Trustees Of Boston University | Plastic microfluidic chip and methods for isolation of nucleic acids from biological samples |
US20080014576A1 (en) * | 2006-02-03 | 2008-01-17 | Microchip Biotechnologies, Inc. | Microfluidic devices |
US20140132954A1 (en) * | 2011-06-23 | 2014-05-15 | I-Sencs, Inc. | Cell for optical analysis |
CN103506013A (zh) * | 2013-10-08 | 2014-01-15 | 江苏大学 | 用于多场助滤膜损的实验方法与微流控实验装置 |
US20170362339A1 (en) * | 2014-11-19 | 2017-12-21 | Genentech, Inc. | Antibodies against bace1 and use thereof for neural disease immunotherapy |
CN104502617A (zh) * | 2014-12-24 | 2015-04-08 | 杭州霆科生物科技有限公司 | 一种全自动、高通量农药残留检测的微流控芯片系统及方法 |
CN104498331A (zh) * | 2015-01-08 | 2015-04-08 | 青岛大学 | 一种单通道双浓度梯度微流控芯片的制备方法及其应用 |
WO2016145242A1 (en) * | 2015-03-11 | 2016-09-15 | Agenus Inc. | Methods and compositions for high throughput screening of biomolecules using gel microdrops |
CN105424629A (zh) * | 2015-12-11 | 2016-03-23 | 苏州汶颢芯片科技有限公司 | 微流控芯片及铜离子检测系统 |
CN105424784A (zh) * | 2015-12-15 | 2016-03-23 | 哈尔滨工业大学宜兴环保研究院 | 一种水中重金属离子检测微流控芯片与检测方法 |
CN105536899A (zh) * | 2016-01-22 | 2016-05-04 | 苏州汶颢芯片科技有限公司 | 微流控芯片及其在农药检测中的应用 |
CN106139869A (zh) * | 2016-08-26 | 2016-11-23 | 中山市高超环保通风工程有限公司 | 一体化湿法静电除尘脱硫脱氮系统 |
KR101796920B1 (ko) * | 2016-09-26 | 2017-12-12 | 한국기계연구원 | 유체칩 일체형 큐벳 및 이를 포함하는 분광 분석 장치 |
CN107941762A (zh) * | 2017-10-16 | 2018-04-20 | 太原理工大学 | 基于智能设备的量子点能量共振转移检测水体中汞、铅和砷离子的装置及方法 |
CN107748157A (zh) * | 2017-10-20 | 2018-03-02 | 中国科学院微电子研究所 | 基于化学改性表面增强拉曼散射芯片的呼吸检测系统和方法 |
Non-Patent Citations (1)
Title |
---|
席永清;庄惠生;: "离心式微流控液相萃取法测定水和土壤中油和油脂", 农业环境科学学报 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109580507A (zh) * | 2018-11-28 | 2019-04-05 | 国电南瑞科技股份有限公司 | 一种平行质控水质分析装置及方法 |
CN109692718A (zh) * | 2018-11-28 | 2019-04-30 | 浙江警察学院 | 一种可拦截杂质的滤膜可调式双向微流控芯片 |
CN109580507B (zh) * | 2018-11-28 | 2021-05-14 | 国电南瑞科技股份有限公司 | 一种平行质控水质分析装置及方法 |
CN110658166A (zh) * | 2019-09-30 | 2020-01-07 | 重庆科技学院 | 微流控芯片及其体系、水体中重金属离子的检测方法 |
CN110823821A (zh) * | 2019-10-23 | 2020-02-21 | 江苏大学 | 基于微流控芯片的水中重金属离子浓度检测装置与方法 |
CN110823821B (zh) * | 2019-10-23 | 2022-08-23 | 江苏大学 | 基于微流控芯片的水中重金属离子浓度检测装置与方法 |
CN111983167A (zh) * | 2020-08-25 | 2020-11-24 | 长江大学 | 一种智慧水务水质指标在线检测装置 |
CN111983167B (zh) * | 2020-08-25 | 2023-01-06 | 长江大学 | 一种智慧水务水质指标在线检测装置 |
CN113588558A (zh) * | 2021-08-09 | 2021-11-02 | 中国石油大学(华东) | 一种原油快速定量表征的在线式光谱检测系统及其方法 |
CN113588558B (zh) * | 2021-08-09 | 2024-01-19 | 中国石油大学(华东) | 一种原油快速定量表征的在线式光谱检测系统及其方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108760661B (zh) | 2023-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108760661A (zh) | 一种石油废水重金属离子多通道检测芯片 | |
CN201402266Y (zh) | 一种新型全自动红外测油仪 | |
CN105980028B (zh) | 具有滑动阀的过滤装置以及使用该过滤装置的方法 | |
CN109142299B (zh) | 一种石油废水重金属离子检测芯片使用方法 | |
CN201444157U (zh) | 全自动红外测油仪 | |
CN108872081A (zh) | 一种检测重金属离子的多层微流控芯片 | |
CN107144560A (zh) | 在线化学分析仪 | |
WO2006043900A1 (en) | A water quality testing system | |
CN208902598U (zh) | 检测重金属离子的多层微流控芯片 | |
CN108704684A (zh) | 一种检测用多层微流控芯片的使用方法 | |
CN208902603U (zh) | 石油废水重金属离子多通道检测芯片 | |
CN211877482U (zh) | 一种原位水体微塑料分级采样系统 | |
CN110007102A (zh) | 一种移液精确定量进样装置 | |
CN206057186U (zh) | 营养盐分析仪结构 | |
CN212722597U (zh) | 一种基于光谱分析的污水在线监测装置 | |
CN208505743U (zh) | 一种阵列式超便携浮游生物样品浓缩装置 | |
CN202928848U (zh) | 一种烟气重金属颗粒物吸收系统 | |
CN102564968A (zh) | 一种镀液成分的分析方法 | |
CN109030368B (zh) | 一种与比色皿联用的微流控芯片使用方法 | |
JPH06265555A (ja) | 自動化学分析装置 | |
CN221224576U (zh) | 非均相样品用的轮巡式近红外在线分析系统 | |
CN112630182A (zh) | 一种污水检测系统 | |
CN2798077Y (zh) | 盐雾浓度分析用采样瓶 | |
CN205594014U (zh) | 一种全自动水质分析仪的水供应系统 | |
CN111307526A (zh) | 一种原位水体微塑料分级采样系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared |