WO2022003856A1 - 耐候性試験方法および装置 - Google Patents
耐候性試験方法および装置 Download PDFInfo
- Publication number
- WO2022003856A1 WO2022003856A1 PCT/JP2020/025805 JP2020025805W WO2022003856A1 WO 2022003856 A1 WO2022003856 A1 WO 2022003856A1 JP 2020025805 W JP2020025805 W JP 2020025805W WO 2022003856 A1 WO2022003856 A1 WO 2022003856A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- temperature
- light
- atmosphere
- water
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
Definitions
- the present invention relates to a weather resistance test method and an apparatus for testing the weather resistance of a polymer material.
- Polymer materials are used in various places. For example, outdoor structures are painted with a polymer material in order to prevent corrosion of steel materials. Polymer materials deteriorate over time due to environmental factors such as oxygen, moisture, heat, and ultraviolet rays in the atmosphere. For example, in an outdoor environment, the surface resin on a painted surface that is exposed to ultraviolet rays, heat, moisture, wind, etc. deteriorates, and the pigment of the color component of the paint becomes powdery like chalk (chalking). ) And deterioration phenomena such as deterioration of gloss. Such deterioration causes, for example, deterioration of coating performance and affects the durability of the structure. Therefore, it is important to evaluate the durability (weather resistance) of the polymer material in the outdoor environment.
- JIS K 7350-1 Typical standards for accelerated weather resistance tests for evaluating the weather resistance of polymer materials are "JIS K 7350-1” to "JIS K 7350-4”, which are test methods for plastics, and "JIS K 7350-4", which is a test method for paints.
- JIS K 5600-7-7 and "JIS K 5600-7-8”.
- JIS K 5600-7-7 is a test method in which a sample to be evaluated is irradiated with light using a test device using a xenon lamp as a light source, and a drying period and a wetting period by water spraying are repeated. be.
- the irradiation amount of light was 60 W / m 2 between 300 nm and 400 nm, and the drying period in which only light irradiation was performed was 102 minutes under the conditions of a black panel temperature of 63 ⁇ 2 ° C. and a relative humidity of 40 to 60%.
- the wet period for spraying water while irradiating with light is 18 minutes.
- Non-Patent Document 1 deterioration phenomena such as chalking and gloss deterioration, which are thought to be affected by water, have not been reproduced.
- the conventional accelerated weather resistance test has a problem that the reproducibility of deterioration affected by water is inferior to that of the outdoor exposure test.
- the present invention has been made to solve the above problems, and an object of the present invention is to be able to reproduce deterioration affected by water without being inferior to an outdoor exposure test.
- a sample to be tested made of a polymer material is sprayed with water while irradiating it with light having a wavelength of 300 nm to 400 nm and an irradiance of 30 to 180 W / m 2.
- the first step of spraying the second step of continuing the high humidity state where the relative humidity of the atmosphere of the sample is 85% or more for 15 minutes or more while continuing the irradiation of the sample with light, and the sample.
- the sample is dried with the relative humidity of the atmosphere set to less than 85% while continuing the irradiation with light.
- the weather resistance test apparatus is a weather resistance test apparatus for carrying out the above-mentioned weather resistance test method, and the temperature Ta of the atmosphere of the sample in the second step, the temperature Tb of the atmosphere of the sample in the third step, and so on.
- a calculation unit for calculating the time tb for continuing the third step is provided.
- the second step of maintaining a high humidity state with a relative humidity of 85% or more in the atmosphere of the sample for 15 minutes or more is carried out. Therefore, deterioration affected by water can be reproduced without being inferior to the outdoor exposure test.
- FIG. 1 is a flowchart illustrating a weathering resistance test method according to an embodiment of the present invention.
- FIG. 2 is a configuration diagram showing a configuration of a weathering resistance test device according to an embodiment of the present invention.
- the first step S101 water is sprayed and sprayed on a sample to be tested, which is made of a polymer material, while irradiating with light.
- the light to be irradiated includes a wavelength of 300 nm to 400 nm, and the total irradiance of the wavelength of 300 nm to 400 nm is in a state of any value in the range of 30 to 180 W / m 2.
- the light to be irradiated shall reproduce the light including the ultraviolet region of sunlight.
- the temperature of the water to be sprayed is 30 ° C. or higher and lower than the temperature of the glass transition point of the sample.
- the atmosphere of the sample is set to a high humidity state while continuing the irradiation of the sample with light, and this state is continued for 15 minutes or more.
- a high humidity state is a state in which the relative humidity is 85% or more.
- the sample is dried with the relative humidity of the atmosphere set to less than 85% while continuing the irradiation of the sample with light.
- the temperature of the sample irradiated with light is higher than that of the atmosphere.
- the above-mentioned first step S101 to third step S103 are repeated a set number of times.
- the time tb for continuing the above-mentioned third step can be determined by the formula shown below.
- the temperature Ta of the atmosphere of the sample in the second step the temperature Tb of the atmosphere of the sample in the third step, the time ta to continue the second step, the time tb to continue the third step, and the time tb in the second step.
- the illuminance Ia of the light irradiation is used, and the illuminance Ib of the light irradiation in the third step is used.
- Tb Ta
- Tb> Ta it is set as “tb ⁇ ⁇ ta ⁇ Ia ⁇ Ib ⁇ 5 ⁇ (Tb-Ta) ⁇ ”.
- Tb ⁇ Ta “tb ⁇ ⁇ ta ⁇ Ia ⁇ Ib ⁇ (Ta—Tb) ⁇ 5 ⁇ ”.
- the weather resistance test device for carrying out the above-mentioned weather resistance test method will be described with reference to FIG.
- This device is placed in a constant temperature bath 101, a sample mounting table 102 on which a sample to be tested is placed, and the inside of the constant temperature bath 101 and a black panel (not shown) at set temperatures.
- a temperature control mechanism 103 for controlling is provided.
- the constant temperature bath 101 has a circulation mechanism such as a blower that circulates the internal air.
- the temperature control mechanism 103 includes a thermometer that measures the internal temperature of the constant temperature bath 101 and the temperature of the black panel, and controls the internal temperature so that the temperature measured by these thermometers becomes a set value. do.
- a thermometer for example, a black panel thermometer can be used.
- a blower or the like is adjusted by the temperature control mechanism 103 to heat the inside of the constant temperature bath 101 and the black panel temperature to a predetermined temperature.
- this device includes a humidity control mechanism 104 that controls the inside of the constant temperature bath 101 to a set humidity.
- the humidity control mechanism 104 includes a hygrometer that measures the humidity in the vicinity of the sample mounting table 102, and is placed on the sample mounting table 102 so that the humidity measured by the hygrometer becomes a set value. Control the humidity of the atmosphere of the sample. By controlling the inside of the constant temperature bath 101 to a predetermined humidity by the humidity control mechanism 104, the atmosphere of the sample placed on the sample mounting table 102 is set to a predetermined humidity.
- this device includes a light source 105 that irradiates a sample placed on the sample mounting table 102 with light.
- a xenon light source is preferably used, and light having a wavelength in the range of 300 nm to 400 nm is irradiated with an irradiance in the range of 30 to 180 W / m 2.
- this device is provided with a water spray mechanism 106 that sprays water onto the sample placed on the sample mounting table 102.
- the water spray mechanism 106 can spray water at a set temperature.
- the water spraying mechanism 106 includes a tank for storing the water to be sprayed, and the water contained in the tank is heated by a heater to spray water at a set temperature.
- the water spraying mechanism 106 may spray water at a set temperature by heating the transported water with a heater in the pipe from the tank to the nozzle for spraying water.
- this device supplies power to each of the temperature control mechanism 103, the humidity control mechanism 104, the light source 105, and the water spray mechanism 106, and also supplies the temperature control mechanism 103, the humidity control mechanism 104, the light source 105, and the water spray mechanism 106.
- a control mechanism 107 for controlling each operation of the above is provided.
- the control mechanism 107 includes a calculation unit 108 that calculates the control value of each control based on the input predetermined condition (numerical value).
- the control mechanism 107 controls the operation of each of the temperature control mechanism 103, the humidity control mechanism 104, the light source 105, and the water spray mechanism 106 based on the control values calculated by the calculation unit 108.
- the time tb for continuing the third step is calculated by tb ⁇ ⁇ ta ⁇ Ia ⁇ Ib ⁇ (Ta—Tb) ⁇ 5 ⁇ .
- the control mechanism 107 can be composed of, for example, a computer device including a CPU (Central Processing Unit), a main storage device, an external storage device, a network connection device, and the like.
- the above-mentioned control and calculation processing can be realized by operating the CPU (execution of the program) by the program expanded in the main storage device.
- the above-mentioned program is a program for a computer to execute the above-mentioned control.
- the network connection device connects to the network.
- each function can be distributed to a plurality of computer devices.
- the internal temperature of the constant temperature bath is set to Tw ° C
- the light irradiation intensity Iw [W / m 2 ] having a wavelength of 300-400 nm is set, and the temperature is WT ° C for the sample for tw minutes.
- the wavelength of the irradiated light including the transition step is nm-400 nm.
- the internal temperature of the constant temperature bath is set to Ta ° C
- the temperature measured by the thermometer is BPTa ° C
- the relative humidity in the tank is RHa% or more
- the internal temperature of the constant temperature bath is set to Tb ° C
- the temperature measured by the thermometer is set to BPTb ° C
- the relative humidity in the tank is set to RHb% or more
- the light irradiation intensity ( Illuminance) Ib [W / m 2 ] is continued for tb minutes.
- Sample No. 1 is the result of the test based on JIS 5600-7-7A for comparison.
- Sample No. 4 is a test result in which the first step and the second step are repeated without carrying out the third step.
- Sample No. As shown in 2, chalking did not occur when the relative humidity RHa in the tank was 80%, but the sample No. 3.
- Sample No. Chalking was confirmed when the relative humidity RHa in the tank was 85% or more as in No. 4.
- the test time can be further shortened by raising the temperature of the water spray.
- the water temperature was 38 ° C., which was lower than the temperature Tg of the glass transition point of the urethane coating film used in the above experiment. This is because, in general, the physical properties of polymer materials change significantly at temperatures exceeding Tg, so the temperature at which the polymer material becomes wet in the assumed usage environment (for example, outdoor use) of the material to be tested is high. If it is less than Tg, it is considered desirable that the temperature at which the test piece becomes wet in the accelerated weather resistance test is also less than Tg.
- urethane resin paint was used as a sample here, it can be applied to paints and plastic materials such as epoxy resin, fluororesin paint, acrylic resin, melamine resin, polyester resin, unsaturated polyester resin, polycarbonate resin, and polyamide resin. be.
- the present invention is a test method characterized in that the second step is carried out immediately after the first step and the process proceeds to the third step.
- the ester bond, urethane bond, urea bond, and the acid anhydride structure generated by these photodegradations contained in the polymer material are cleaved by hydrolysis, resulting in chalking and deterioration of gloss.
- these hydrolysiss do not proceed sufficiently as compared with the deterioration of the outdoor environment, which is a factor that the chalking and the decrease in gloss cannot be reproduced.
- the water spray that causes water to act on the sample, so it is conceivable to extend the water spray time (time of step 1) in order to proceed with the hydrolysis. Be done.
- time of step 1 the water spray time
- the temperature of the sample decreases and the rate of photodegradation also decreases during water spraying
- the extension of the water spraying time leads to a longer test.
- the conventional test also has a problem that the test period requires a long period of time.
- the inventors considered increasing the humidity in the tank during light irradiation in order to promote deterioration due to water without lowering the sample temperature.
- the relative humidity in the tank is generally 40-60%, and the present invention of accelerating deterioration due to water under high humidity after this step is easy. It cannot be inferred from.
- the intensity of light irradiation (illuminance) and the atmospheric temperature of the sample (temperature in the tank) high due to the restrictions of the device.
- the light irradiation intensity and the temperature inside the tank high, and in the present invention, for this purpose, in the third step.
- the relative humidity in the tank was set to 35% or more and less than 85%.
- test method that divides after water spraying into a second step with high humidity aimed at promoting deterioration due to water and a third step without high humidity aimed at promoting photodegradation has been used so far. This is not easy to infer.
- the inventors focused on the time allocation between the second step and the third step as a condition for sufficiently advancing the hydrolysis of the polymer material as a sample, and the light irradiation intensity and the tank. Considering the influence of the internal temperature on the photodegradation rate, an equation for determining the time tb for continuing the third step was obtained.
- the second step of continuing a high humidity state with a relative humidity of 85% or more in the atmosphere of the sample for 15 minutes or more is performed. Since it is carried out, the deterioration affected by water can be reproduced without being inferior to the outdoor exposure test. According to the present invention, deterioration phenomena such as chalking and gloss deterioration in an outdoor environment can be reproduced in the same manner as in an outdoor exposure test, and in addition, can be reproduced in a shorter period of time than in a conventional test.
- 101 constant temperature bath, 102 ... sample mounting table, 103 ... temperature control mechanism, 104 ... humidity control mechanism, 105 ... light source, 106 ... water spray mechanism, 107 ... control mechanism, 108 ... calculation unit.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
第1ステップS101で、高分子材料から構成された試験対象の試料に、光を照射しながら水を噴霧して吹き付ける。引き続いて、ステップS102で、試料に対する光の照射を継続しながら、試料の雰囲気を高湿度状態とし、この状態を15分以上継続する。高湿度状態とは、相対湿度85%以上の状態である。引き続いて、ステップS103で、試料に対する光の照射を継続しながら、試料を加熱して乾燥する。
Description
本発明は、高分子材料の耐候性を試験する耐候性試験方法および装置に関する。
高分子材料は、様々なところで用いられている。例えば、屋外構造物においては、鋼材の腐食を防ぐため、高分子材料による塗装処理がなされている。高分子材料は、大気中の酸素・水分・熱・紫外線などの環境要因によって、経年劣化が生じる。例えば、屋外環境において、紫外線・熱・水分・風などに曝されている塗装面の表層樹脂が劣化し、塗料の色成分の顔料がチョーク(白墨)のような粉状になるチョーキング(白亜化)や光沢低下などの劣化現象がある。このような劣化は、例えば、塗装の性能劣化を招き、構造物の耐久性に影響がでる。このため、高分子材料の屋外環境における耐久性(耐候性)を評価することが重要となっている。
高分子材料の耐候性を評価する促進耐候性試験の代表的な規格としては、プラスチックの試験法である「JIS K 7350-1」~「JIS K 7350-4」、塗料の試験法である「JIS K 5600-7-7」、「JIS K 5600-7-8」がある。例えば、「JIS K 5600-7-7」は、キセノンランプを光源とする試験装置を用いて評価対象のサンプルに対して光を照射し、乾燥期間と水噴霧による濡れ期間とを繰り返す試験法である。この試験において、光の照射量は、300nm~400nm間で60W/m2であり、光照射のみを行う乾燥期間は、ブラックパネル温度63±2℃、相対湿度40~60%の条件で102分であり、光照射を行いながら水噴霧を行う濡れ期間は18分である。
飯田 眞司、「促進耐候性試験(その3)」、塗料の研究、147号、26-34頁、2007年。
しかしながら、従来の促進耐候性試験では、実際の屋外環境における高分子材料の劣化を十分に再現できているとは言えず、試験結果の信頼性は屋外暴露試験に劣っている(非特許文献1)。特に、水が影響すると考えられるチョーキングや光沢低下などの劣化現象が再現できていない。このように、従来の促進耐候性試験は、水が影響する劣化の再現性が、屋外暴露試験に劣っているという問題があった。
本発明は、以上のような問題点を解消するためになされたものであり、屋外暴露試験に劣ることなく、水が影響する劣化が再現できるようにすることを目的とする。
本発明に係る耐候性試験方法は、高分子材料から構成された試験対象の試料に、波長300nm~400nm、放射照度が30~180W/m2である光を照射しながら、水を噴霧して吹き付ける第1ステップと、試料に対する光の照射を継続しながら、第1ステップに引き続き、試料の雰囲気の相対湿度を85%以上とした高湿度状態を15分以上継続する第2ステップと、試料に対する光の照射を継続しながら、第2ステップに引き続き、雰囲気の相対湿度を85%未満として試料を乾燥する第3ステップとを備える。
また、本発明に係る耐候性試験装置は、上述した耐候性試験方法を実施する耐候性試験装置であり、第2ステップにおける試料の雰囲気の温度Ta、第3ステップにおける試料の雰囲気の温度Tb、第2ステップを継続する時間ta、第2ステップにおける光照射の照度Ia、第3ステップにおける光照射の照度Ibを用い、Tb=Taである場合は、tb≦{ta×Ia÷Ib}、Tb>Taである場合は、tb≦{ta×Ia÷Ib×5÷(Tb-Ta)}、Tb<Taである場合、tb≦{ta×Ia÷Ib×(Ta-Tb)÷5}により、第3ステップを継続する時間tbを算出する算出部を備える。
以上説明したように、本発明によれば、水を噴霧して吹き付ける第1ステップに引き続き、試料の雰囲気の相対湿度を85%以上とした高湿度状態を15分以上継続する第2ステップを実施するので、屋外暴露試験に劣ることなく、水が影響する劣化が再現できる。
以下、本発明の実施の形態に係る耐候性試験方法について図1を参照して説明する。
まず、第1ステップS101で、高分子材料から構成された試験対象の試料に、光を照射しながら水を噴霧して吹き付ける。照射する光は、300nm~400nmの波長を含み、300nm~400nmの波長の合計の放射照度が30~180W/m2の範囲のいずれかの値となる状態とする。照射する光は、太陽光の紫外域を含む光を再現するものとする。また、吹き付ける水の温度は、30℃以上、試料のガラス転移点の温度以下とする。
上述した第1ステップS101に引き続いて、第2ステップS102で、試料に対する光の照射を継続しながら、試料の雰囲気を高湿度状態とし、この状態を15分以上継続する。高湿度状態とは、相対湿度85%以上の状態である。
上述した第2ステップS102に引き続いて、第3ステップS103で、試料に対する光の照射を継続しながら、雰囲気の相対湿度を85%未満として試料を乾燥する。なお、光が照射されている試料は、雰囲気より高い温度となっている。上述した第1ステップS101~第3ステップS103を、設定された回数繰り返す。
ここで、上述した第3ステップを継続する時間tbは、以下に示す式により決定することができる。まず、第2ステップにおける試料の雰囲気の温度Taとし、第3ステップにおける試料の雰囲気の温度Tbとし、第2ステップを継続する時間taとし、第3ステップを継続する時間tbとし、第2ステップにおける光照射の照度Iaとし、第3ステップにおける光照射の照度Ibとする。
Tb=Taである場合は、「tb≦{ta×Ia÷Ib}」とし、Tb>Taである場合は、「tb≦{ta×Ia÷Ib×5÷(Tb-Ta)}」とし、Tb<Taである場合、「tb≦{ta×Ia÷Ib×(Ta-Tb)÷5}」とする。
次に、上述した耐候性試験方法を実施するための耐候性試験装置について、図2を参照して説明する。この装置は、恒温槽101と、恒温槽101の中に配置され、試験対象の試料を載置する試料載置台102と、恒温槽101の内部およびブラックパネル(不図示)を設定された温度に制御する温度制御機構103とを備える。恒温槽101は、内部の空気を循環させる送風機などの循環機構を有する。
温度制御機構103は、恒温槽101の内部温度およびブラックパネルの温度を測定する温度計を備え、これらの温度計で測定される温度が、それぞれ設定された値となるように内部の温度を制御する。温度計は、例えば、ブラックパネル温度計を用いることができる。温度制御機構103により送風機などを調節し、恒温槽101の内部およびブラックパネル温度を所定の温度に加熱する。
また、この装置は、恒温槽101の内部を設定された湿度に制御する湿度制御機構104を備える。湿度制御機構104は、試料載置台102の付近の湿度を測定する湿度計を備え、この湿度計で測定される湿度が設定された値となるように、試料載置台102の上に載置された試料の雰囲気の湿度を制御する。湿度制御機構104により恒温槽101の内部を所定の湿度に制御することで、試料載置台102の上に載置された試料の雰囲気を所定の湿度にする。また、この装置は、試料載置台102の上に載置された試料に光を照射する光源105を備える。光源105は、キセノン光源が好適に用いられ、波長300nm~400nmの範囲の波長の光を、30~180W/m2の範囲のいずれかの放射照度で照射する。
また、この装置は、試料載置台102の上に載置された試料に水を噴霧して吹き付ける水噴霧機構106を備える。水噴霧機構106は、設定された温度の水を噴霧することができる。例えば、水噴霧機構106は、噴霧する水を貯めるタンクを備え、タンクに収容している水を、ヒータにより加熱することで、設定された温度の水を噴霧する。あるいは、水噴霧機構106は、タンクから水を噴霧するノズルに至る配管において、輸送されている水をヒータにより加熱することで設定された温度の水を噴霧してもよい。
また、この装置は、温度制御機構103、湿度制御機構104、光源105、水噴霧機構106の各々に電源を供給し、また、温度制御機構103、湿度制御機構104、光源105、水噴霧機構106の各々の動作を制御する制御機構107を備える。制御機構107は、入力された所定の条件(数値)を元に、各制御の制御値を算出する算出部108を備える。制御機構107は、算出部108が算出した制御値を元に、温度制御機構103、湿度制御機構104、光源105、水噴霧機構106の各々の動作を制御する。
算出部108は、例えば、第2ステップにおける試料の雰囲気の温度Ta、第3ステップにおける試料の雰囲気の温度Tb、第2ステップを継続する時間ta、第2ステップにおける光照射の照度Ia、第3ステップにおける光照射の照度Ibを用い、Tb=Taである場合は、tb≦{ta×Ia÷Ib}、Tb>Taである場合は、tb≦{ta×Ia÷Ib×5÷(Tb-Ta)}、Tb<Taである場合、tb≦{ta×Ia÷Ib×(Ta-Tb)÷5}により、第3ステップを継続する時間tbを算出する。
制御機構107は、例えば、CPU(Central Processing Unit;中央演算処理装置)と主記憶装置と外部記憶装置とネットワーク接続装置となどを備えたコンピュータ機器から構成することができる。主記憶装置に展開されたプログラムによりCPUが動作する(プログラムを実行する)ことで、上述した制御や算出処理が実現できる。上記プログラムは、上述した制御をコンピュータが実行するためのプログラムである。ネットワーク接続装置は、ネットワークに接続する。また、各機能は、複数のコンピュータ機器に分散させることもできる。
以下、実験の結果を用いて、より詳細に説明する。板状の鋼材にウレタン樹脂塗料を厚さ50μmで塗布した試料を用いて促進耐候試験を実施した。鋼材は、面積を7cm×15cmとしている。
まず、水を噴霧する第1ステップで、恒温槽の内部温度をTw℃とし、波長300-400nmの光照射強度Iw[W/m2]として、tw分間、試料に対して温度WT℃の水を噴霧する。なお、移行のステップも含め、照射する光の波長は、nm-400nmである。
この第1ステップの直後に、第2ステップで、恒温槽の内部温度をTa℃とし、温度計で測定される温度がBPTa℃の状態で、槽内相対湿度RHa%以上とし、光照射強度(照度)Ia[W/m2]として、この状態をta分間継続する。
この第2ステップの直後に、第3ステップで、恒温槽の内部温度をTb℃とし、温度計で測定される温度がBPTb℃の状態で、槽内相対湿度RHb%以上とし、光照射強度(照度)Ib[W/m2]として、この状態をtb分間継続する。
上述した第1ステップ、第2ステップ、第3ステップを順次に繰り返す促進耐候性試験をt時間実施した。
上述した実験の結果として、試料におけるチョーキングの発生の有無の結果を、以下の表に示す。試料No.1は、比較用のJIS 5600-7-7Aに基づく試験の結果である。試料No.2、試料No.3、試料No.4は、第3ステップを実施せず、第1ステップと第2ステップとを繰り返した試験結果である。試料No.2に示すように、槽内相対湿度RHaが80%ではチョーキングは生じなかったが、試料No.3、試料No.4のように、槽内相対湿度RHaを85%以上とするとチョーキングが確認された。
さらに、試料No.5,試料No.6,試料No.7に示すように、第3ステップを追加した場合、ta=tbであればチョーキングが生じたものの、tbの方が長かった場合には、チョーキングが生じなかった。
以上の実験結果より、第2ステップで生じる光劣化の進行度と、第3ステップで生じる光劣化の進行度とを比較した場合、第2ステップと第3ステップとが同等であるか、第2ステップの方が光劣化の進行度が大きい必要があることが分かった。この条件を満たすように、第3ステップの時間tbを調節すると、No.8-No.10に示すように、試験時間の短縮も可能であることが分かった。なお、これらの結果を基に、光劣化速度は、光照射強度に概ね比例し、槽内温度が10℃上昇すると、光劣化速度が約2倍となることを勘案し、前述した第3ステップを継続する時間を求める式を導いた。
また、実験結果より、水噴霧の温度を上げることで、さらなる試験時間の短縮が可能であることが確認された。この水温は38℃とし、上述した実験で用いたウレタン塗膜のガラス転移点の温度Tgよりも低い温度とした。これは、一般的に、高分子材料ではTgを超えた温度では大きく物性が変わることから、試験対象材料の想定する利用環境(例えば屋外利用)で、高分子材料が濡れた状態となる温度がTg未満であるなら、促進耐候性試験で試験体が濡れた状態となる時の温度もTg未満とすることが望ましいと考えられるためである。また、噴霧する水の温度が低下するほど、試料温度の低下を招き、水による劣化の進行を遅らせることから、噴霧する水温は以上とすることが望ましい。これらは、発明者らの実験により初めて確認された事項であり、容易に類推できるものではない。なお,ここではウレタン樹脂塗料を試料として用いたが、エポキシ樹脂、ふっ素樹脂塗料、アクリル樹脂、メラミン樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂などの塗料やプラスチック材料について適用可能である。
本発明は、第1ステップの直後に、第2ステップを実施し、第3ステップに移行することを特徴とする試験方法である。高分子材料に含まれるエステル結合、ウレタン結合、ウレア結合や、これらの光劣化によって生成する酸無水物構造などは、加水分解によって切断され、チョーキングや光沢低下を招く。従来の促進耐候性試験では、屋外環境劣化と比較して、これらの加水分解が十分に進行せず、チョーキングや光沢低下が再現できていない要因となっていると考えられる。
また、一般的に、促進耐候性試験において、試料に水を作用させるのは水噴霧であることから、加水分解を進行させるには、水噴霧時間(ステップ1の時間)を延長することが考えられる。しかし、水噴霧中は試料の温度が低下し、光劣化の速度も低下することから、水噴霧時間の延伸は、試験の長期化につながる。このように、従来試験は、試験期間に長期間を要するという課題もある。
これらのことに対し、発明者らは、試料温度を下げずに水による劣化を進行させるために、光照射時の槽内湿度を高めることを考えた。高分子材料の促進耐候性試験において、槽内相対湿度は40-60%とすることが一般的であり、水による劣化を、このステップの後の高湿度下で加速させる、という本発明は容易に類推できるものではない。
ところで、第2ステップを実施するためには、装置の制約で、光照射の強度(照度)や、試料の雰囲気温度(槽内温度)を高く設定することができない場合が多い。光(紫外線)の照射による高分子材料の劣化を促進させるためには、光照射強度や槽内温度を高く設定することは効果的であり、本発明では、これを目的として、第3ステップにおいて、槽内相対湿度を35%以上85%未満とした。このように、水噴霧の後で、水による劣化を促進することを目的とした高湿度の第2ステップと、光劣化の促進を狙った高湿度ではない第3ステップに分ける試験法はこれまでになく、これは容易に類推できるものではない。
さらに、発明者らは、第2ステップにおいて、試料となる高分子材料の加水分解を十分に進行させる条件として、第2ステップと第3ステップとの時間の配分に着眼し、光照射強度および槽内温度が光劣化速度に与える影響を考慮して、第3ステップを継続する時間tbを決定する式を得た。
以上に説明したように、本発明によれば、水を噴霧して吹き付ける第1ステップに引き続き、試料の雰囲気の相対湿度を85%以上とした高湿度状態を15分以上継続する第2ステップを実施するので、屋外暴露試験に劣ることなく、水が影響する劣化が再現できるようになる。本発明によれば、屋外環境におけるチョーキングや光沢低下などの劣化現象を、屋外暴露試験と同等に再現でき、加えて、従来試験よりも短期間で再現できるようになる。
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
101…恒温槽、102…試料載置台、103…温度制御機構、104…湿度制御機構、105…光源、106…水噴霧機構、107…制御機構、108…算出部。
Claims (4)
- 高分子材料から構成された試験対象の試料に、波長300nm~400nm、放射照度が30~180W/m2である光を照射しながら、水を噴霧して吹き付ける第1ステップと、
前記試料に対する前記光の照射を継続しながら、前記第1ステップに引き続き、前記試料の雰囲気の相対湿度を85%以上とした高湿度状態を15分以上継続する第2ステップと、
前記試料に対する前記光の照射を継続しながら、前記第2ステップに引き続き、雰囲気の相対湿度を85%未満として前記試料を乾燥する第3ステップと
を備える耐候性試験方法。 - 請求項1記載の耐候性試験方法において、
前記第1ステップは、30℃以上、前記試料のガラス転移点の温度以下の水を噴霧して前記試料に吹き付けることを特徴とする耐候性試験方法。 - 請求項1または2記載の耐候性試験方法において、
前記第2ステップにおける前記試料の雰囲気の温度Taとし、前記第3ステップにおける前記試料の雰囲気の温度Tbとし、前記第2ステップを継続する時間taとし、前記第3ステップを継続する時間tbとし、前記第2ステップにおける光照射の照度Iaとし、前記第3ステップにおける光照射の照度Ibとして、
Tb=Taである場合は、tb≦{ta×Ia÷Ib}とし、
Tb>Taである場合は、tb≦{ta×Ia÷Ib×5÷(Tb-Ta)}とし、
Tb<Taである場合、tb≦{ta×Ia÷Ib×(Ta-Tb)÷5}とする
ことを特徴とする耐候性試験方法。 - 請求項3記載の耐候性試験方法を実施する耐候性試験装置であって、
前記第2ステップにおける前記試料の雰囲気の温度Ta、前記第3ステップにおける前記試料の雰囲気の温度Tb、前記第2ステップを継続する時間ta、前記第2ステップにおける光照射の照度Ia、前記第3ステップにおける光照射の照度Ibを用い、
Tb=Taである場合は、tb≦{ta×Ia÷Ib}、
Tb>Taである場合は、tb≦{ta×Ia÷Ib×5÷(Tb-Ta)}、
Tb<Taである場合、tb≦{ta×Ia÷Ib×(Ta-Tb)÷5}
により、前記第3ステップを継続する時間tbを算出する算出部を備える
ことを特徴とする耐候性試験装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022532913A JP7367875B2 (ja) | 2020-07-01 | 2020-07-01 | 耐候性試験方法および装置 |
PCT/JP2020/025805 WO2022003856A1 (ja) | 2020-07-01 | 2020-07-01 | 耐候性試験方法および装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/025805 WO2022003856A1 (ja) | 2020-07-01 | 2020-07-01 | 耐候性試験方法および装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022003856A1 true WO2022003856A1 (ja) | 2022-01-06 |
Family
ID=79315169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025805 WO2022003856A1 (ja) | 2020-07-01 | 2020-07-01 | 耐候性試験方法および装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7367875B2 (ja) |
WO (1) | WO2022003856A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024214207A1 (ja) * | 2023-04-12 | 2024-10-17 | 日本電信電話株式会社 | 塗膜評価方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102539310A (zh) * | 2011-12-15 | 2012-07-04 | 广东工业大学 | 光伏电缆耐候性试验方法 |
JP2018096733A (ja) * | 2016-12-09 | 2018-06-21 | 日本電信電話株式会社 | 促進耐候性試験方法及び促進耐候性試験装置 |
JP2018096734A (ja) * | 2016-12-09 | 2018-06-21 | 日本電信電話株式会社 | 促進耐候性試験方法及び促進耐候性試験装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6755086B2 (ja) | 2015-11-12 | 2020-09-16 | 日本電信電話株式会社 | 腐食試験方法、および、腐食試験装置 |
JP6475152B2 (ja) | 2015-12-15 | 2019-02-27 | 日本電信電話株式会社 | 試験装置及び試験方法 |
JP6523205B2 (ja) | 2016-04-21 | 2019-05-29 | 日本電信電話株式会社 | 腐食試験方法、および、腐食試験装置 |
JP6891848B2 (ja) | 2018-04-16 | 2021-06-18 | 日本電信電話株式会社 | 腐食試験方法および腐食試験装置 |
-
2020
- 2020-07-01 JP JP2022532913A patent/JP7367875B2/ja active Active
- 2020-07-01 WO PCT/JP2020/025805 patent/WO2022003856A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102539310A (zh) * | 2011-12-15 | 2012-07-04 | 广东工业大学 | 光伏电缆耐候性试验方法 |
JP2018096733A (ja) * | 2016-12-09 | 2018-06-21 | 日本電信電話株式会社 | 促進耐候性試験方法及び促進耐候性試験装置 |
JP2018096734A (ja) * | 2016-12-09 | 2018-06-21 | 日本電信電話株式会社 | 促進耐候性試験方法及び促進耐候性試験装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024214207A1 (ja) * | 2023-04-12 | 2024-10-17 | 日本電信電話株式会社 | 塗膜評価方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7367875B2 (ja) | 2023-10-24 |
JPWO2022003856A1 (ja) | 2022-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5524933B2 (ja) | 低光沢二成分クリアコート、低光沢二成分クリアコートを有する製品及び低光沢クリアコートを適用する方法 | |
WO2022003856A1 (ja) | 耐候性試験方法および装置 | |
US5747572A (en) | Releasable aqueous coating composition and method of temporarily protecting finished coating film on automobile body by use of the same | |
JPH10137675A (ja) | 被覆組成物を硬化させる方法 | |
JP2019184510A (ja) | 腐食試験方法および腐食試験装置 | |
Miklečić et al. | Accelerated weathering of coated and uncoated beech wood modified with citric acid | |
KR20060095952A (ko) | 빛과 부식성분에 대한 물질의 저항성을 측정하기 위한 방법및 장치 | |
JP6475152B2 (ja) | 試験装置及び試験方法 | |
JP6706572B2 (ja) | 促進耐候性試験方法及び促進耐候性試験装置 | |
Anyaogu et al. | Performance of the light emitting diodes versus conventional light sources in the UV light cured formulations | |
JP2020129104A (ja) | レンズを被覆するためのラッカーシステムの使用、レンズのコバを被覆する方法、及びレンズ | |
JP2008185502A (ja) | 塗装鋼板の複合劣化試験方法 | |
US20130306883A1 (en) | Accelerated uv irradiation test on coatings | |
JP7568092B2 (ja) | 試験装置 | |
JP6706573B2 (ja) | 促進耐候性試験方法 | |
Grüll et al. | Weathering indicator for artificial and natural weathering of wood coatings | |
JP2659261B2 (ja) | 促進耐候性試験装置 | |
Shenoy et al. | Studies on synergistic effect of UV absorbers and hindered amine light stabilisers | |
JP2017090304A (ja) | 腐食試験方法、および、腐食試験装置 | |
WO2022230083A1 (ja) | 試験装置および方法 | |
JP5464963B2 (ja) | 押出成形セメント板の表面塗装方法 | |
JP2015102437A (ja) | 促進耐候性試験装置および方法 | |
JP2003279469A (ja) | 複合劣化促進方法 | |
JP2003279468A (ja) | 外装材の複合劣化促進方法 | |
JP2004212380A (ja) | 試験方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20943515 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022532913 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20943515 Country of ref document: EP Kind code of ref document: A1 |