WO2022001351A1 - 一种新能源汽车氢燃料电池的回收方法 - Google Patents

一种新能源汽车氢燃料电池的回收方法 Download PDF

Info

Publication number
WO2022001351A1
WO2022001351A1 PCT/CN2021/091559 CN2021091559W WO2022001351A1 WO 2022001351 A1 WO2022001351 A1 WO 2022001351A1 CN 2021091559 W CN2021091559 W CN 2021091559W WO 2022001351 A1 WO2022001351 A1 WO 2022001351A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen fuel
fuel cell
hydrogen
gas
recovering
Prior art date
Application number
PCT/CN2021/091559
Other languages
English (en)
French (fr)
Inventor
余海军
彭挺
谢英豪
张学梅
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to EP21834298.8A priority Critical patent/EP4164010B1/en
Priority to US18/004,042 priority patent/US11699796B1/en
Publication of WO2022001351A1 publication Critical patent/WO2022001351A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/008Disposal or recycling of fuel cells
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • C22B11/021Recovery of noble metals from waste materials
    • C22B11/026Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/046Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper or baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/048Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/06Chloridising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the field of recovering hydrogen fuel cells, and particularly relates to a method for recovering hydrogen fuel cells for new energy vehicles.
  • Fuel cells do not pollute the environment. It is through electrochemical reaction, rather than the use of combustion (gas, diesel) or energy storage (battery) - the most typical traditional backup power solutions. Combustion releases pollutants like CO x , NO x , SO x gases and dust. As mentioned above, fuel cells only produce water and heat. If the hydrogen is produced through renewable energy sources (photovoltaic panels, wind power, etc.), the entire cycle is a completely non-hazardous process. According to the Energy Storage International Summit, as a truly "zero-emission" clean energy, the application of hydrogen fuel cells in developed countries is accelerating. Fuel cells have gone from laboratory to industrialization. Compared with lithium batteries, they have the advantage of zero pollution.
  • the sodium bromate hydrolysis method and the oxidative carrier hydrolysis method have a large amount of solution and need to stand for a long time for clarification, occupying space and space, and the production cycle is long, and large-scale production cannot be carried out. Therefore, the existing recycling process has the disadvantages of high labor intensity, low production efficiency, inconvenient operation and high energy consumption.
  • the purpose of the present invention is to provide a method for recovering a hydrogen fuel cell for a new energy vehicle, which can efficiently recover the platinum element in the hydrogen fuel cell, and can prepare high-purity Pt by combining the chlorination evaporation method with the chemical reduction method. Precious metal resources are saved, and the recovery process has the advantages of simple operation and high production efficiency.
  • a method for recycling a hydrogen fuel cell comprising the following steps:
  • the hydrogen fuel cell is sequentially discharged and disassembled to obtain a hydrogen supply system, an air supply system, a cooling system and a stack;
  • step (3) (4) adding a reducing agent to the ammonium salt solution after absorbing the tail gas in step (3) to react, filtering, and cleaning the filter residue to obtain Pt.
  • the specific treatment process of the hydrogen supply system in step (1) is as follows: further dismantling the hydrogen supply system to obtain a hydrogen injector, a high-pressure hydrogen sealing valve, a pressure reducing valve, a hydrogen tank, a hydrogen circulation pump, an inverter device, hydrogen concentration sensor, hydrogen temperature sensor, hydrogenation control unit, hydrogen pressure sensor and hydrogen pipeline.
  • step (1) check the tightness of the high-pressure hydrogen sealing valve, the pressure reducing valve, and the hydrogen tank. Use; if the hydrogen tank is well sealed and within its service life, it will be recycled and reused; if the high-pressure hydrogen sealing valve, pressure reducing valve, hydrogen tank and hydrogen pipeline are not well sealed, they will be directly recycled as scrap metal materials. If the hydrogen injector, hydrogen circulation pump, inverter, etc. are in normal operation during the discharge process described in step (1), they will be recycled and reused. Otherwise, they will be further dismantled and classified according to material categories and recycled. The hydrogen concentration sensor, hydrogen temperature sensor, hydrogenation control unit, and hydrogen pressure sensor are directly dismantled and classified by material category and recycled.
  • the specific processing process of the air supply system in step (1) is as follows: the air supply system is further disassembled to obtain an air compressor, a muffler, an air valve module and an air pipeline.
  • the air compressor and muffler operate normally during the discharge process described in (1), they will be recycled and reused; the air valve module and air pipeline will be recycled and reused if there is no air leakage during the discharge process described in (1), otherwise they will be treated as waste. Metal material recycling.
  • the specific treatment process of the cooling system in step (1) is as follows: further dismantling the cooling system to obtain a water pump, a radiator, a deionization device, and a thermostat (three-way valve).
  • step (1) If the water pump, radiator, deionization device, and thermostat operate normally during the discharge process of step (1), they will be recycled and reused. Otherwise, they will be further dismantled and classified according to the material category and recycled.
  • the ashing temperature in step (2) is 400°C-600°C, and the time is 30-60 min.
  • the purpose of the above-mentioned ashing is to remove carbon, burn out the carbon cloth, and generate carbon dioxide, so that the catalyst can be directly separated from the carbon cloth.
  • the auxiliary agent in step (3) is one of NaF, CaF 2 , KCl, NaCl or CaCl 2 .
  • auxiliary agents are solid chlorinating agents.
  • the solid chlorinating agent will be decomposed into chlorine gas or HCl and other gas chlorinating agents and then work, that is, the ash will be chlorinated, and enter the ammonium chloride with the chlorine gas. in solution.
  • the weight ratio of the ash to the auxiliary agent is 1:(1-5).
  • the inert gas in step (3) is one of nitrogen, helium or argon.
  • the oxidizing gas in step (3) is one of chlorine gas or bromine gas.
  • the ammonium salt solution described in step (3) is one of ammonium chloride solution or ammonium bromide solution.
  • the flow rate of the inert gas introduced in the step (3) is 1-30 mL ⁇ min -1 , and the time is 5-15 min.
  • the flow rate of introducing the oxidizing gas is 1-30 mL ⁇ min -1 , and the time is 20-60 min.
  • the concentration of the ammonium salt solution in step (3) is 1-5 mol ⁇ L -1 .
  • the temperature of 2-6°C ⁇ min -1 for raising the temperature is 1000°C-1200°C.
  • the reducing agent in step (4) is one of sodium thiosulfate, sodium borohydride or hydrazine.
  • the mass concentration of the reducing agent in step (4) is 40%-100%.
  • the volume ratio of the ammonium chloride solution to the reducing agent in step (4) is 1:(0.1-0.3).
  • the further purification process of Pt after Pt is obtained in step (4) is as follows: adding the leaching solution to Pt, heating, washing, filtering, taking the filtrate, adding a reducing agent to react, filtering, taking the filter residue for cleaning, that is, to obtain pure Pt ;
  • the mass ratio of the Pt and leachate is 1:(10-20).
  • the leachate is aqua regia, and the mass concentration of the aqua regia is 50%-100%.
  • the present invention can efficiently recover the platinum element in the hydrogen fuel cell.
  • high-purity Pt can be prepared, which can effectively save precious metal resources, and the recovery process has the advantages of easy operation and high production efficiency. .
  • the present invention is the first recycling process for hydrogen fuel cells in China, which can safely separate gas cylinders with residual fuel and reduce the safety risk of gas cylinders with residual fuel.
  • the present invention is aimed at the recovery of all components of the hydrogen fuel cell, some of which can be fully utilized in a cascade, saving economic costs; the recovery rate of Pt per ton of hydrogen fuel cells is 99.7%, and the purity of the crude Pt product is 99.7%.
  • the recovery rate of Cu is 98.6%
  • the recovery rate of Fe is 98.7%
  • the recovery rate of Zn is 99.5%
  • the recovery rate of Al is 99.8%
  • the recovery rate of plastic is 99.5%.
  • FIG. 1 is a flow chart of the hydrogen fuel cell recycling process according to Embodiment 1 of the present invention.
  • the raw materials, reagents or devices used in the following examples can be obtained from conventional commercial channels unless otherwise specified, or can be obtained by existing known methods.
  • a method for recycling a hydrogen fuel cell comprising the following specific steps:
  • the hydrogen supply system was further disassembled to obtain a hydrogen injector, a high-pressure hydrogen sealing valve, a pressure reducing valve, a hydrogen tank, a hydrogen circulation pump, an inverter, a hydrogen concentration sensor, a hydrogen temperature sensor, a hydrogenation control unit, a hydrogen pressure Sensor and hydrogen pipeline, air supply system are further disassembled to obtain air compressor, muffler, air valve module and air pipeline, and cooling system is further disassembled to obtain water pump, radiator, deionization device, thermostat (three through valve);
  • the stack is further disassembled to obtain metal fixing parts such as screws, alloy bipolar plates and plastic casings for direct recycling, graphite bipolar plates are directly discarded, and membrane electrodes are disassembled in the next step to obtain proton exchange membranes for direct recycling of polymers , the catalyst and carbon were placed in a ceramic crucible, the ceramic crucible was placed in a 400 °C muffle furnace, and ashing was performed for 30min to obtain ash;
  • a method for recycling a hydrogen fuel cell comprising the following specific steps:
  • the hydrogen supply system was further disassembled to obtain a hydrogen injector, a high-pressure hydrogen sealing valve, a pressure reducing valve, a hydrogen tank, a hydrogen circulation pump, an inverter, a hydrogen concentration sensor, a hydrogen temperature sensor, a hydrogenation control unit, a hydrogen pressure Sensor and hydrogen pipeline, air supply system are further disassembled to obtain air compressor, muffler, air valve module and air pipeline, and cooling system is further disassembled to obtain water pump, radiator, deionization device, thermostat (three through valve);
  • the stack is further disassembled to obtain metal fixing parts such as screws, alloy bipolar plates and plastic casings for direct recycling, graphite bipolar plates are directly discarded, and membrane electrodes are disassembled in the next step to obtain proton exchange membranes for direct recycling of polymers , the catalyst and carbon are placed in a ceramic crucible, the ceramic crucible is placed in a 500 °C muffle furnace, and ashing is performed for 45min to obtain ash;
  • a method for recycling a hydrogen fuel cell comprising the following specific steps:
  • the hydrogen supply system was further disassembled to obtain a hydrogen injector, a high-pressure hydrogen sealing valve, a pressure reducing valve, a hydrogen tank, a hydrogen circulation pump, an inverter, a hydrogen concentration sensor, a hydrogen temperature sensor, a hydrogenation control unit, a hydrogen pressure Sensor and hydrogen pipeline, air supply system are further disassembled to obtain air compressor, muffler, air valve module and air pipeline, and cooling system is further disassembled to obtain water pump, radiator, deionization device, thermostat (three through valve);
  • the stack is further disassembled to obtain metal fixing parts such as screws, alloy bipolar plates and plastic casings for direct recycling, graphite bipolar plates are directly discarded, and membrane electrodes are disassembled in the next step to obtain proton exchange membranes for direct recycling of polymers , the catalyst and carbon are placed in a ceramic crucible, the ceramic crucible is placed in a 600 °C muffle furnace, and ashing is performed for 60min to obtain ash;
  • a platinum recovery and refining process comprising the following process steps:
  • step d The dissolved solution in step d is heated to 45-55° C., and then hydrazine hydrate (hydrazine hydrate) is added for reduction, and the reaction time is 0.5-1.5 hours, and the recovery of platinum is completed;
  • the recovery rate of Pt per ton of hydrogen fuel cell in Example 2 of the present invention is 99.7%, and the purity of the crude product of Pt is 99.9%; the recovery rate of Cu is 98.6%, and the purity of the crude product of Cu is 99.9%. 99.6%; the recovery rate of Fe is 98.7%, and the purity of Fe crude product is 98.7%; the recovery rate of Zn is 99.5%, and the purity of Zn crude product is 99.5%; the recovery rate of Al is 99.8%, and the purity of Al crude product is 99.5%. It is 99.8%; the recovery rate of plastic is 99.5%, and the purity of Pt crude product is 99.2%.
  • the recovery rate of Pt per ton of hydrogen fuel cell in Example 3 of the present invention is 99.3%, and the purity of Pt crude product is 99.8%; the recovery rate of Cu is 98.5%, and the purity of Cu crude product is 99.4%; the recovery rate of Fe is 99.4%. It is 98.6%, and the purity of Fe crude product is 98.5%; the recovery rate of Zn is 99.2%, and the purity of Zn crude product is 99.3%; the recovery rate of Al is 99.5%, and the purity of Al crude product is 99.5%; the recovery rate of plastic is 99.5%.
  • the yield was 99.3%, and the purity of the crude Pt product was 99.1%.
  • FIG. 1 is a flow chart of the recycling process of waste hydrogen fuel cells according to Embodiment 1 of the present invention. It can be seen from Figure 1 that the entire recovery process is simple and efficient, and the recovery range includes materials with a specific gravity of more than 99% and can obtain crude products with higher purity.
  • the technical difficulty in the whole process is the recovery method of platinum.
  • the ashing treatment can directly increase the purity of platinum to more than 98%, and then the purification of platinum can be completed through two steps of high temperature chlorination and reduction, and the purity can reach 99.9%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Geochemistry & Mineralogy (AREA)

Abstract

本发明公开了一种新能源汽车氢燃料电池的回收方法,包括以下步骤:(1)将氢燃料电池依次经过放电,拆解,得到氢气供应系统、空气供应系统、冷却系统和电堆;(2)将电堆再拆解为催化剂和碳布,进行灰化,得到灰分;(3)将助剂加入灰分中混合,通入惰性气体,升温,再通入氧化性气体,铵盐溶液吸收尾气;(4)将还原剂加入步骤(3)中吸收尾气后的铵盐溶液中反应,过滤,取滤渣清洗,得到Pt。本发明能高效回收氢燃料电池中的铂元素,通过氯化蒸发法结合化学还原法,能制备出高纯的Pt,有效节约贵金属资源,且回收工艺具有操作简便、生产效率高的优点。

Description

一种新能源汽车氢燃料电池的回收方法 技术领域
本发明属于回收氢燃料电池领域,具体涉及到一种新能源汽车氢燃料电池的回收方法。
背景技术
燃料电池对环境无污染。它是通过电化学反应,而不是采用燃烧(汽、柴油)或储能(蓄电池)方式--最典型的传统后备电源方案。燃烧会释放像CO x、NO x、SO x气体和粉尘等污染物。如上所述,燃料电池只会产生水和热。如果氢是通过可再生能源产生的(光伏电池板、风能发电等),整个循环就是彻底的不产生有害物质排放的过程。据储能国际峰会获悉,作为真正意义上“零排放”的清洁能源,氢燃料电池在发达国家的应用正在提速。燃料电池已从实验室真正走向产业化,与锂电池相比,它更具有零污染优势。
然而,随着氢燃料电池的持续大量使用,一些老旧的氢燃料电池的生命末期即将临近,而在氢燃料电池中有着大量的高价值部件,如各种阀及气体管路、有价金属废料、催化剂中的贵金属铂等。这些高价值废料的可利用性使得回收意义重大。但目前对于催化剂中的贵金属铂的回收,归结起来有氯化羰基铂法、熔盐电解法、区域熔炼法、氯化铵反复沉淀法、溴酸钠水解法、氧化载体水解法等。其中氯化羰基法、熔盐电解法由于工艺过程复杂,操作繁琐,使其大规模生产应用受到限制。溴酸钠水解法、氧化载体水解法溶液处理量大且需要长时间静置澄清,占用空间场地,生成周期长,也无法进行大规模生产。因此,现有的回收工艺具有劳动强度大,生产效率低,操作不便,能耗高的缺点。
发明内容
本发明的目的是提供一种新能源汽车氢燃料电池的回收方法,该方法能高效回收氢燃料电池中的铂元素,通过氯化蒸发法结合化学还原法,能制备出高纯的Pt,有效节约贵金属资源,且回收工艺具有操作简便、生产效率高的优点。
为了实现上述目的,本发明采取以下技术方案:
一种氢燃料电池的回收方法,包括以下步骤:
(1)将氢燃料电池依次经过放电,拆解,得到氢气供应系统、空气供应系统、冷却系 统和电堆;
(2)将电堆再拆解为催化剂和碳布,进行灰化,得到灰分;
(3)将助剂加入灰分中混合,通入惰性气体,升温,再通入氧化性气体,铵盐溶液吸收尾气;
(4)将还原剂加入步骤(3)中吸收尾气后的铵盐溶液中反应,过滤,取滤渣清洗,得到Pt。
优选地,步骤(1)中所述氢气供应系统的具体处理过程为:将氢气供应系统进一步拆解,得到氢气喷射器、高压氢密封阀、减压阀、氢罐、氢气循环泵、逆变器、氢气浓度传感器、氢气温度传感器、加氢控制单元、氢压力传感器及氢气管路。
在步骤(1)所述放电过程中,检查高压氢密封阀、减压阀、氢罐的密封性,若无漏气,高压氢密封阀、减压阀及氢气管路作为旧零件循环回收再利用;氢罐若密封性良好且在使用寿命内,则回收重复利用;若高压氢密封阀、减压阀、氢罐及氢气管路的密封性不好,则直接当做废旧金属材料回收。氢气喷射器、氢气循环泵、逆变器等在步骤(1)所述放电过程中运转正常则回收重复利用,否则进一步拆解按材料类别归类,回收。氢气浓度传感器、氢气温度传感器、加氢控制单元、氢压力传感器直接拆解按材料类别归类,回收。
优选地,步骤(1)中所述空气供应系统的具体处理过程为:将空气供应系统进一步拆解,得到空压机、消音器、空气阀模块和空气管路。
空压机、消音器在(1)所述放电过程中运转正常则回收重复利用;空气阀模块和空气管路在(1)所述放电过程中无漏气现象则回收重复利用,否则当做废旧金属材料回收。
优选地,步骤(1)中所述冷却系统的具体处理过程为:将冷却系统进一步拆解,得到水泵、散热器、去离子装置、节温器(三通阀)。
水泵、散热器、去离子装置、节温器在步骤(1)的放电过程中运转正常则回收重复利用,否则进一步拆解按材料类别归类,回收。
优选地,步骤(2)中所述灰化的温度为400℃-600℃,时间为30-60min。
上述灰化目的是除碳,将碳布烧尽,产生二氧化碳,这样可直接将催化剂与碳布分离。
优选地,步骤(3)中所述助剂为NaF、CaF 2、KCl、NaCl或CaCl 2中的一种。
上述助剂即固体氯化剂,固体氯化剂在反应过程中,会全部或大部分解成氯气或HCl等气体氯化剂再起作用,即灰分会被氯化,随着氯气进入氯化铵溶液中。
优选地,步骤(3)中所述灰分和助剂的重量比为1:(1-5)。
优选地,步骤(3)中所述惰性气体为氮气、氦气或氩气中的一种。
优选地,步骤(3)中所述氧化性气体为氯气或溴气中的一种。
优选地,步骤(3)中所述铵盐溶液为氯化铵溶液或溴化氨溶液中的一种。
优选地,步骤(3)中所述通入惰性气体的流速为1-30mL·min -1,时间为5-15min。
优选地,步骤(3)中所述通入氧化性气体的流速为1-30mL·min -1,时间为20-60min。
优选地,步骤(3)中所述铵盐溶液的浓度为1-5mol·L -1
优选地,步骤(3)中所述升温的2-6℃·min -1,温度为1000℃-1200℃。
优选地,步骤(4)所述还原剂为硫代硫酸钠、硼氢化钠或联氨中的一种。
更优选地,步骤(4)所述还原剂的质量浓度为40%-100%。
优选地,步骤(4)中所述氯化铵溶液和还原剂的体积比为1:(0.1-0.3)。
优选地,步骤(4)中制得Pt后进一步对Pt的提纯过程为:将浸出液加入Pt中,加热,洗涤,过滤,取滤液,加入还原剂反应,过滤,取滤渣清洗,即得纯Pt;所述Pt和浸出液的质量比为1:(10-20)。
更优选地,所述浸出液为王水,所述王水的质量浓度为50%-100%。
有益效果
1、本发明能高效回收氢燃料电池中的铂元素,通过氯化蒸发法结合化学还原法,能制备出高纯的Pt,有效节约贵金属资源,且回收工艺具有操作简便、生产效率高的优点。
2、本发明是国内首次针对氢燃料电池的回收工艺,能够安全分离带有残余燃料的气瓶,减少带有残余燃料的气瓶的安全风险。
3、本发明针对氢燃料电池进行全组分的回收,其中一些零部件能够充分进行梯次利用,节约了经济成本;在每吨氢燃料电池中Pt的回收率为99.7%,Pt粗产品纯度为99.9%;其中Cu的回收率为98.6%,其中Fe的回收率为98.7%;其中Zn的回收率为99.5%;其中Al的回收率为99.8%;其中塑料的回收率为99.5%。
附图说明
图1是本发明实施例1的氢燃料电池回收工艺流程图。
具体实施方式
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。
实施例1
一种氢燃料电池的回收方法,包括以下具体步骤:
(1)将氢燃料电池依次经过放电直至储氢罐中氢燃料彻底耗尽后,进行拆解,得到氢气供应系统、空气供应系统、冷却系统、电控系统和电堆;
(2)氢气供应系统进一步拆解,得到氢气喷射器、高压氢密封阀、减压阀、氢罐、氢气循环泵、逆变器、氢气浓度传感器、氢气温度传感器、加氢控制单元、氢压力传感器及氢气管路,空气供应系统进一步拆解,得到空压机、消音器、空气阀模块和空气管路,冷却系统进一步拆解,得到水泵、散热器、去离子装置、节温器(三通阀);
(3)将电堆进一步拆解,得到螺杆等金属固定件、合金双极板和塑料外壳直接回收,石墨双极板直接废弃,膜电极进行下一步拆解得到质子交换膜为聚合物直接回收,得到催化剂和碳布放于陶瓷坩埚,将陶瓷坩埚置于400℃马弗炉中,进行灰化30min,得到灰分;
(4)将灰分置于研钵中按重量比为1:1加入NaF,研磨均匀,倒入刚玉瓷舟再置于管式炉中部加热区域,以流速1mL·min -1通入氮气,尾气用30mL的1mol·L -1的氯化铵溶液吸收,通入氮气5min后,以2℃·min -1的升温速率升至1000℃,切换气路,通入氯气20min后,再切换回氮气,关闭升温系统,冷却至室温,关闭氯气;
(5)将吸收尾气的氯化铵溶液加入按体积比为1:0.1加入质量浓度为40%的硫代硫酸钠溶液,过滤,清洗,取滤渣得到粗Pt;
(6)将粗Pt按质量比为1:10加入质量浓度为50%的王水,加热至微沸5min,用5mL去离子水冲洗杯壁,过滤,取滤液按体积比为1:0.1加入质量浓度为40%的硫代硫酸钠溶液,过滤,清洗,取滤渣即为纯Pt。
实施例2
一种氢燃料电池的回收方法,包括以下具体步骤:
(1)将氢燃料电池依次经过放电直至储氢罐中氢燃料彻底耗尽后,进行拆解,得到氢气供应系统、空气供应系统、冷却系统、电控系统和电堆;
(2)氢气供应系统进一步拆解,得到氢气喷射器、高压氢密封阀、减压阀、氢罐、氢气循环泵、逆变器、氢气浓度传感器、氢气温度传感器、加氢控制单元、氢压力传感器及氢气管路,空气供应系统进一步拆解,得到空压机、消音器、空气阀模块和空气管路,冷却系统进一步拆解,得到水泵、散热器、去离子装置、节温器(三通阀);
(3)将电堆进一步拆解,得到螺杆等金属固定件、合金双极板和塑料外壳直接回收,石墨双极板直接废弃,膜电极进行下一步拆解得到质子交换膜为聚合物直接回收,得到催化剂和碳布放于陶瓷坩埚,将陶瓷坩埚置于500℃马弗炉中,进行灰化45min,得到灰分;
(4)将灰分置于研钵中按重量比为1:3加入KCl,研磨均匀,倒入刚玉瓷舟再置于管式炉中部加热区域,以流速15mL·min -1通入氮气,尾气用35mL的3mol·L -1的氯化铵溶液吸收,通入氮气10min后,以4℃·min -1的升温速率升至1100℃,切换气路,通入氯气40min后,切换到氮气,关闭升温系统,冷却至室温,关闭氯气;
(5)将吸收尾气的氯化铵溶液加入按体积比为1:0.2加入质量浓度为60%的硼氢化钠,过滤,清洗,取滤渣得到粗Pt;
(6)将粗Pt按质量比为1:15加入质量浓度为75%的王水,加热至微沸7min,用7mL去离子水冲洗杯壁,过滤,取滤液按体积比为1:0.1加入质量浓度为40%的硼氢化钠,过滤,清洗,取滤渣即为纯Pt。
实施例3
一种氢燃料电池的回收方法,包括以下具体步骤:
(1)将氢燃料电池依次经过放电直至储氢罐中氢燃料彻底耗尽后,进行拆解,得到氢气供应系统、空气供应系统、冷却系统、电控系统和电堆;
(2)氢气供应系统进一步拆解,得到氢气喷射器、高压氢密封阀、减压阀、氢罐、氢气循环泵、逆变器、氢气浓度传感器、氢气温度传感器、加氢控制单元、氢压力传感器及氢气管路,空气供应系统进一步拆解,得到空压机、消音器、空气阀模块和空气管路,冷却系统进一步拆解,得到水泵、散热器、去离子装置、节温器(三通阀);
(3)将电堆进一步拆解,得到螺杆等金属固定件、合金双极板和塑料外壳直接回收,石墨双极板直接废弃,膜电极进行下一步拆解得到质子交换膜为聚合物直接回收,得到催化剂和碳布放于陶瓷坩埚,将陶瓷坩埚置于600℃马弗炉中,进行灰化60min,得到灰分;
(4)将灰分置于研钵中按重量比为1:5加入NaCl,研磨均匀,倒入刚玉瓷舟再置于管式炉中部加热区域,以流速30mL·min -1通入氮气,尾气用40mL的5mol·L -1的氯化铵溶液吸收,通入氮气15min后,以6℃·min -1的升温速率升至1200℃,切换气路,通入氯气60min后,切换到氮气,关闭升温系统,冷却至室温,关闭氯气;
(5)将吸收尾气的氯化铵溶液加入按体积比为1:0.3加入质量浓度为100%的联氨,过滤,清洗,取滤渣得到粗Pt;
(6)将粗Pt按质量比为1:20加入质量浓度为100%王水,加热至微沸10min,用10mL去离子水冲洗杯壁,过滤,取滤液按体积比为1:0.3加入质量浓度为100%的联氨,过滤,清洗,取滤渣即为纯Pt。
对比例1(CN104745836A)
一种铂回收精炼工艺:包括以下工艺步骤:
a、将含铂物料在750-850℃下炭化1.5-2.5小时;
b、冷却至室温后加入王水溶解,温度控制在65-75℃之间,直至溶解完;
c、加入氯化铵进行沉淀0.5-1.5小时,沉淀完成后,将氯铂酸铵过滤、洗涤;
d、加入氢氧化钠溶解,20-40分钟后完成溶解,形成溶解液;
e、将步骤d中的溶解液加热至45-55℃后加入水合肼(水合联氨)还原,反应时间为0.5-1.5小时,完成了铂的回收;
f、将还原后的铂粉烘干。
回收效率:
表1实施例2的回收状况和成本
回收对象 回收率(%) 回收量(每吨电池) 粗产品纯度(%) 工艺成本(元)
Pt 99.7 60.56g 99.9 231
Cu 98.6 82.62kg 99.6 36
Fe 98.7 636.5kg 98.7 23
Zn 99.5 1.2kg 99.5 103
Al 99.8 160.9kg 99.8 41
塑料 99.5 67.0kg 99.2 37
表2实施例3的回收状况和成本
回收对象 回收率(%) 回收量(每吨电池) 粗产品纯度(%) 工艺成本(元)
Pt 99.3 58.36g 99.8 246
Cu 98.5 81.99kg 99.4 42
Fe 98.6 631.7kg 98.5 29
Zn 99.2 1.13kg 99.3 125
Al 99.5 159.6kg 99.5 44
塑料 99.3 65.8kg 99.1 39
表3对比例1的回收状况和成本
回收对象 回收率(%) 回收量(每吨电池) 粗产品纯度(%) 工艺成本(元)
Pt 96.7 57.56g 99.8 588
Cu 97.6 76.62kg 99.1 43
Fe 95.7 616.5kg 98.2 35
Zn 96.5 1.1kg 99.3 121
Al 97.8 155.9kg 98.8 57
塑料 96.5 65.0kg 97.2 42
从表1-3可得,本发明实施例2的Pt在每吨氢燃料电池的回收率为99.7%,Pt粗产品纯度为99.9%;其中Cu的回收率为98.6%,Cu粗产品纯度为99.6%;其中Fe的回收率为98.7%,Fe粗产品纯度为98.7%;其中Zn的回收率为99.5%,Zn粗产品纯度为99.5%;其中Al的回收率为99.8%,Al粗产品纯度为99.8%;其中塑料的回收率为99.5%,Pt粗产品纯度为99.2%。本发明实施例3的Pt在每吨氢燃料电池的回收率为99.3%,Pt粗产品纯度为99.8%;其中Cu的回收率为98.5%,Cu粗产品纯度为99.4%;其中Fe的回收率为98.6%,Fe粗产品纯度为98.5%;其中Zn的回收率为99.2%,Zn粗产品纯度为99.3%;其中Al的回收率为99.5%,Al粗产品纯度为99.5%;其中塑料的回收率为99.3%,Pt粗产品纯度为99.1%。而对比例2的Pt的回收率为96.7%,Cu的回收率为97.6%,Fe的回收率为95.7%,Zn的回收率为96.5%,Al的回收率为97.8%,塑料的回收率为96.5%,各组分的回收率均低于实施例2-3的回收率,且回收Pt的工艺成本远高于实施例2。由可知,利用本发明的回收方法,得到纯铂的工艺简单、成本低和可工业化回收。
图1是本发明实施例1的废旧氢燃料电池回收工艺流程图。从图1看出整套回收工艺简单高效,回收范围包含了比重99%以上的材料并能得到纯度较高的粗产品。整套工艺中的工艺难点是铂的回收方法,灰化处理能直接将铂的纯度提高到98%以上,再经过高温氯化和还原两步骤即可完成铂的提纯,纯度可达99.9%。
以上对本发明提供的一种新能源汽车氢燃料电池的回收方法进行了详细的介绍,本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,包括最佳方式,并且也使得本领域的任何技术人员都能够实践本发明,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。本发明专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (10)

  1. 一种氢燃料电池的回收方法,其特征在于,包括以下步骤:
    (1)将氢燃料电池依次经过放电,拆解,得到氢气供应系统、空气供应系统、冷却系统和电堆;
    (2)将电堆再拆解为催化剂和碳布,进行灰化,得到灰分;
    (3)将助剂加入灰分中混合,通入惰性气体,升温,再通入氧化性气体,铵盐溶液吸收尾气;
    (4)将还原剂加入步骤(3)中吸收尾气后的铵盐溶液中反应,过滤,取滤渣清洗,得到Pt。
  2. 根据权利要求1所述的氢燃料电池的回收方法,其特征在于,步骤(2)中所述灰化的温度为400℃-600℃,时间为30-60min。
  3. 根据权利要求1所述的氢燃料电池的回收方法,其特征在于,步骤(3)中所述助剂为NaF、CaF 2、KCl、NaCl或CaCl 2中的一种。
  4. 根据权利要求1所述的氢燃料电池的回收方法,其特征在于,步骤(3)中所述氧化性气体为氯气或溴气中的一种。
  5. 根据权利要求1所述的氢燃料电池的回收方法,其特征在于,步骤(3)中所述惰性气体为氮气、氦气或氩气中的一种。
  6. 根据权利要求1所述的氢燃料电池的回收方法,其特征在于,步骤(3)中所述升温的速率为2-6℃·min -1,温度为1000℃-1200℃。
  7. 根据权利要求1所述的氢燃料电池的回收方法,其特征在于,步骤(4)中所述还原剂为硫代硫酸钠、硼氢化钠或联氨中的一种。
  8. 根据权利要求1所述的氢燃料电池的回收方法,其特征在于,步骤(4)中所述铵盐溶液为氯化铵溶液或溴化氨溶液中的一种。
  9. 根据权利要求1所述的氢燃料电池的回收方法,其特征在于,步骤(4)中制得Pt后进一步对Pt的提纯过程为:将浸出液加入Pt中,加热,洗涤,过滤,取滤液,加入还原剂反应,过滤,取滤渣清洗,即得纯Pt;所述Pt和浸出液的质量比为1:(10-20)。
  10. 根据权利要求9所述的氢燃料电池的回收方法,其特征在于,所述浸出液为王水,所述王水的质量浓度为50%-100%。
PCT/CN2021/091559 2020-07-03 2021-04-30 一种新能源汽车氢燃料电池的回收方法 WO2022001351A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21834298.8A EP4164010B1 (en) 2020-07-03 2021-04-30 Method for recovering platinum from hydrogen fuel cell of new energy vehicle
US18/004,042 US11699796B1 (en) 2020-07-03 2021-04-30 Method for recycling hydrogen fuel cell of new energy vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010637420.6 2020-07-03
CN202010637420.6A CN111900425B (zh) 2020-07-03 2020-07-03 一种新能源汽车氢燃料电池的回收方法

Publications (1)

Publication Number Publication Date
WO2022001351A1 true WO2022001351A1 (zh) 2022-01-06

Family

ID=73191547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091559 WO2022001351A1 (zh) 2020-07-03 2021-04-30 一种新能源汽车氢燃料电池的回收方法

Country Status (5)

Country Link
US (1) US11699796B1 (zh)
EP (1) EP4164010B1 (zh)
CN (1) CN111900425B (zh)
CL (1) CL2022003845A1 (zh)
WO (1) WO2022001351A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900425B (zh) * 2020-07-03 2021-12-17 广东邦普循环科技有限公司 一种新能源汽车氢燃料电池的回收方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212650A (ja) * 2001-01-12 2002-07-31 Furuya Kinzoku:Kk 金属電極からの白金族金属の回収方法
WO2008099747A1 (ja) * 2007-02-16 2008-08-21 Tanaka Kikinzoku Kogyo K.K. 廃棄物からの白金族金属の回収方法
CN106536766A (zh) * 2014-06-19 2017-03-22 耶达研究及发展有限公司 用于从废催化剂中回收铂族金属的方法
CN109088080A (zh) * 2018-07-12 2018-12-25 北京科技大学 一种质子交换膜燃料电池的回收方法
CN111900425A (zh) * 2020-07-03 2020-11-06 广东邦普循环科技有限公司 一种新能源汽车氢燃料电池的回收方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086152B2 (ja) * 1986-12-26 1996-01-24 株式会社徳力本店 燃料電池の電極廃材等からの貴金属回収方法
JP2684171B2 (ja) * 1987-02-25 1997-12-03 株式会社 徳力本店 燃料電池の電極廃材等から貴金属を回収する方法
JPH02301527A (ja) * 1989-05-17 1990-12-13 Tanaka Kikinzoku Kogyo Kk 白金族の回収方法
US5102632A (en) * 1990-12-21 1992-04-07 Metallgesellschaft Aktiengesellschaft Two-step method for recovering dispersed noble metals
US20060147791A1 (en) * 2004-12-30 2006-07-06 Debe Mark K Platinum recovery from fuel cell stacks
JP4604934B2 (ja) * 2005-09-22 2011-01-05 トヨタ自動車株式会社 燃料電池用触媒の回収方法とその装置
CN101036889B (zh) * 2006-03-14 2010-08-04 上海耀华铂制品有限公司 一种含铂催化剂回收方法
CN101130192B (zh) * 2006-08-24 2010-06-16 比亚迪股份有限公司 一种从膜电极中回收催化剂的方法
CN101280362B (zh) * 2008-05-15 2010-06-23 大连交通大学 废旧质子交换膜燃料电池膜电极中的铂催化剂的回收方法
CN101347788A (zh) * 2008-08-28 2009-01-21 新源动力股份有限公司 一种从废弃的膜电极组件中回收炭纸的方法
KR101452809B1 (ko) * 2013-04-22 2014-10-22 (주)알티아이엔지니어링 폐촉매에서 회수한 백금을 이용한 연료전지용 백금 담지 촉매 제조방법
CN106803596A (zh) * 2017-01-22 2017-06-06 东莞佐佑电子科技有限公司 一种回收废旧燃料电池中铂的方法
CN107497420B (zh) * 2017-09-07 2021-03-05 浙江卫星能源有限公司 一种含碳贵金属催化剂的再生方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212650A (ja) * 2001-01-12 2002-07-31 Furuya Kinzoku:Kk 金属電極からの白金族金属の回収方法
WO2008099747A1 (ja) * 2007-02-16 2008-08-21 Tanaka Kikinzoku Kogyo K.K. 廃棄物からの白金族金属の回収方法
CN106536766A (zh) * 2014-06-19 2017-03-22 耶达研究及发展有限公司 用于从废催化剂中回收铂族金属的方法
CN109088080A (zh) * 2018-07-12 2018-12-25 北京科技大学 一种质子交换膜燃料电池的回收方法
CN111900425A (zh) * 2020-07-03 2020-11-06 广东邦普循环科技有限公司 一种新能源汽车氢燃料电池的回收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4164010A4 *

Also Published As

Publication number Publication date
CN111900425A (zh) 2020-11-06
US20230197976A1 (en) 2023-06-22
US11699796B1 (en) 2023-07-11
EP4164010A4 (en) 2023-10-11
EP4164010A1 (en) 2023-04-12
CN111900425B (zh) 2021-12-17
EP4164010B1 (en) 2024-10-09
CL2022003845A1 (es) 2023-06-09

Similar Documents

Publication Publication Date Title
CN101969148A (zh) 一种回收废旧锂离子电池正极材料有价金属预处理的方法
WO2022001351A1 (zh) 一种新能源汽车氢燃料电池的回收方法
WO2023060990A1 (zh) 电池粉浸出渣回收制取活性负极材料的方法
CN115584397B (zh) 一种锂离子半固态电池中锂镧锆钛氧回收方法
CN114678553B (zh) 一种废弃质子交换膜电解水膜电极的回收再利用方法
RU2690012C1 (ru) Система и способ получения электролита высокой чистоты для ванадиевого аккумулятора
CN108987841A (zh) 一种从废旧锂离子电池中回收有价金属的方法
CN102517612A (zh) 铜电解液的制备方法
CN213542535U (zh) 一种具有热量转换功能的锅炉余热利用装置
CN109722541A (zh) 一种从失效汽车尾气净化催化剂中回收稀土及铂族金属的方法
CN114381601A (zh) 一种废旧三元锂离子电池正极材料中有价金属梯级分离的方法
CN115000435B (zh) 一种质子交换膜燃料电池ccm材料全回收工艺
CN106299525A (zh) 一种分离回收废旧磷酸铁锂电池电解液的方法
CN106186090A (zh) 从废炭载钌催化剂中回收三氯化钌的方法
CN213596351U (zh) 三元正极材料的三步连续浸出装置
WO2024146001A1 (zh) 一种电池粉资源化回收方法
CN115786713A (zh) 退役太阳能电池板回收银和铝的方法和系统
CN115472946A (zh) 一种废锂离子电池正极浆料的回收方法及应用
CN114421042A (zh) 从废旧磷酸铁锂材料回收金属铝、碳酸锂和硝酸钠的方法及其应用
CN210805954U (zh) 一种电池包回收处理工作站
CN113381059A (zh) 基于等离子体的废旧三元锂电池中金属回收装置及方法
CN209249588U (zh) 一种氯镁燃料电池电解液再生系统
CN102168284A (zh) 一种插块式锌空气电池锌电极的回收电解方法
CN221191752U (zh) 一种用于有机含重金属废水处理的一体化装置
CN114574708B (zh) 从废旧汽车尾气三元催化器回收金属铂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021834298

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE