WO2022001174A1 - 一种数码电池隔膜及其制备方法 - Google Patents

一种数码电池隔膜及其制备方法 Download PDF

Info

Publication number
WO2022001174A1
WO2022001174A1 PCT/CN2021/080285 CN2021080285W WO2022001174A1 WO 2022001174 A1 WO2022001174 A1 WO 2022001174A1 CN 2021080285 W CN2021080285 W CN 2021080285W WO 2022001174 A1 WO2022001174 A1 WO 2022001174A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
battery separator
digital battery
resistance
digital
Prior art date
Application number
PCT/CN2021/080285
Other languages
English (en)
French (fr)
Inventor
程跃
黄佳苑
顾挺
何方波
刘倩倩
Original Assignee
珠海恩捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海恩捷新材料科技有限公司 filed Critical 珠海恩捷新材料科技有限公司
Priority to KR1020237003046A priority Critical patent/KR20230028799A/ko
Priority to EP21834465.3A priority patent/EP4175033A1/en
Priority to JP2022576107A priority patent/JP2023530910A/ja
Priority to US18/013,783 priority patent/US20230299423A1/en
Publication of WO2022001174A1 publication Critical patent/WO2022001174A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of diaphragm production, in particular to a digital battery diaphragm and a preparation method thereof.
  • Lithium-ion batteries are composed of four key materials: positive electrode sheet, negative electrode sheet, separator and electrolyte material.
  • the separator is one of the key inner-layer components.
  • the main function of the separator is to separate the positive and negative electrodes of the battery to prevent short circuit due to contact between the two electrodes, while allowing lithium ions to pass through. Its performance directly determines the battery life, use safety, discharge rate, battery internal resistance, porosity, liquid absorption rate and battery capacity, and plays an important role in improving the overall performance of the battery.
  • the thickness of the battery separator is one of the main factors affecting the performance of the battery, and it is also a hot spot of our research.
  • the purpose of the present invention is to provide an ultra-thin digital battery separator with good heat resistance and high ionic conductivity.
  • the technical scheme adopted in the present invention is:
  • a digital battery separator comprising a base film and a polymer coating coated on at least one surface of the base film, characterized in that the separator has a thickness of 3-10 ⁇ m and an ionic conductivity of 0.70-4.70 mS ⁇ cm -1 .
  • the digital battery separator of the present invention Compared with commercial separators, the digital battery separator of the present invention has thinner thickness, takes up less space, and has better heat resistance, can maintain a lower thermal shrinkage rate at high temperature, can provide good safety, and can effectively avoid The occurrence of dangerous accidents such as short circuit inside the battery due to the high temperature thermal shrinkage of the separator being punctured.
  • Another object of the present invention is to provide a method for preparing the above-mentioned digital battery separator.
  • the technical scheme adopted in the present invention is:
  • the digital battery separator obtained by the preparation method of the present invention is thinner than the current commercial separator. In addition to improving the porosity and air permeability of the separator, it also helps to reduce the battery impedance and the bulk resistance of the separator, effectively improve the ionic conductivity of the battery, and further improve the battery capacity and rate capability, as well as battery life.
  • FIG. 1 is a schematic diagram of the structure of the digital battery separator of the present invention.
  • the present invention provides a digital battery separator comprising a base film 1 and a polymer coating 2 coated on one surface of the base film 1 .
  • S1 take the mass fraction of organic-inorganic polymer 99%, the mass fraction of dispersant 0.5%, and the mass fraction of binder 0.5%; at a speed of 800rpm, stir for 1h to obtain a finished slurry with a particle size of 2nm, for use;
  • the thickness of the finished digital battery diaphragm of the present invention is 7 ⁇ m; the air permeability value is 200s/100cc, the porosity is less than or equal to 30%, the thermal shrinkage rate at 200°C is greater than or equal to 8%, and the resistance of the diaphragm body is greater than or equal to 30 ⁇ .
  • the resistance is greater than or equal to 100 ⁇ , and the ionic conductivity is 0.70-1.70mS ⁇ cm -1 .
  • the digital battery separator shown in Figure 1 was prepared according to the preparation method of Example 1, except that:
  • step S1 the finished slurry is coated on the surface of the PE base film to obtain a diaphragm product
  • step S2 the slitting and winding tension is 10N.
  • the thickness of the diaphragm of the finished digital battery of the present invention is 7 ⁇ m; the air permeability is 200s/100cc, the porosity is 30-60%; the thermal shrinkage rate at 200°C is less than or equal to 3%, and the resistance of the diaphragm body is 0.1-60%. 30 ⁇ , the battery resistance is 10-100 ⁇ , and the ionic conductivity is 2.10-4.70mS ⁇ cm -1 .
  • the preparation was carried out according to the preparation method of Example 1, except that in step S2, the slitting and winding tension was 30N, while in Example 1, it was 0.5N.
  • the thickness of the finished digital battery diaphragm of the present invention is that the thickness of the diaphragm is 7 ⁇ m; the air permeability value is 200s/100cc; The body resistance of the separator is greater than or equal to 30 ⁇ , the battery resistance is greater than or equal to 100 ⁇ , and the ionic conductivity is 0.70-1.70mS ⁇ cm -1 .
  • the thickness of the diaphragm is 3 ⁇ m; the air permeability is 300s/100cc, the porosity is less than or equal to 30%, the thermal shrinkage rate is greater than or equal to 8% at 200°C, the resistance of the diaphragm body is greater than or equal to 30 ⁇ , and the battery resistance is greater than or equal to Equal to 100 ⁇ , the ionic conductivity is 0.70-1.70mS ⁇ cm -1 .
  • step S1 the spraying machine was stirred at a stirring speed of 700 rpm for 0.01 h to obtain a slurry with a particle size of 0.1 nm.
  • step S2 the coating is carried out at the coating temperature of T1 (70°C), the coating stretching speed difference is 0.1%, the winding and unwinding tension is 20N, and the rewinding is performed at T2 (70°C).
  • the thickness of the finished digital battery diaphragm of the present invention is 10 ⁇ m; the air permeability value is 80s/100cc, the porosity is less than or equal to 30%; the thermal shrinkage rate of the diaphragm at 200°C is greater than or equal to 8%, and the resistance of the diaphragm body is greater than or equal to 30 ⁇ , and the battery resistance is greater than or equal to 100 ⁇ , and the ionic conductivity is 0.70-1.70mS ⁇ cm -1 .
  • step S1 the organic-inorganic polymer, dispersant, and binder are stirred at a stirring speed of 1300 rpm on a spraying machine for 7 h to obtain a slurry with a particle size of 10 nm;
  • step 2 the finished slurry is coated on the PE base film at a coating temperature of T1 (60° C.) and a coating stretching speed difference of 6%; Rewinding, at T2 (100°C) rewinding temperature; then slitting, the slitting and unwinding tension is 5N, and the contact pressure is 0.2N.
  • the thickness of the finished digital battery diaphragm of the present invention is 6 ⁇ m
  • the air permeability value is 20s/100cc
  • the porosity of the obtained coating film is 30-60%
  • the thermal shrinkage rate of the diaphragm at 200°C is less than or equal to 3%
  • the diaphragm body The resistance is 0.1-30 ⁇
  • the battery resistance is 10-100 ⁇
  • the ionic conductivity is 2.10-4.70mS ⁇ cm -1 .
  • the coating and stretching speed difference is 4% for coating, and the tension of slitting, winding and unwinding is 15N;
  • the thickness of the finished digital battery separator of the present invention is 8 ⁇ m
  • the air permeability value is 200s/100cc
  • the porosity of the obtained coating film is 30-60s/100cc
  • the thermal shrinkage rate of the separator is less than or equal to 3% at 200°C
  • the body resistance is in the range of 0.1-30 ⁇
  • the battery resistance is in the range of 10-100 ⁇
  • the ionic conductivity is 2.10-4.70mS ⁇ cm -1 .
  • Table 1 is the thermal shrinkage performance, bulk resistance and impedance test, porosity and ionic conductivity data results of the digital battery separator prepared under different cutting tension conditions of the present invention.
  • Table 2 shows the thermal shrinkage performance test, bulk resistance and impedance test, porosity and ionic conductivity data results of the digital battery separator prepared under the conditions of different coating and stretching speed differences of the present invention.
  • Table 3 shows the thermal shrinkage performance test, bulk resistance and impedance test, porosity and ionic conductivity data results of the digital battery separator under the condition of different separator thicknesses of the present invention.
  • Table 4 shows the thermal shrinkage performance test, bulk resistance and impedance test, porosity and ionic conductivity data results of the digital battery separator under different air permeability conditions.
  • the battery impedance and bulk resistance test, porosity and ionic conductivity data of the digital battery separator of the present invention show that the digital battery separator has different properties under different slitting tensions.
  • the thermal shrinkage of the digital battery separator is greater than or equal to 8%, and the battery resistance is greater than or equal to 100 ⁇
  • the body resistance of the separator is greater than or equal to 30 ⁇
  • the porosity is less than or equal to 30%
  • the ionic conductivity 0.70-1.70 mS ⁇ cm -1
  • the thermal shrinkage of the digital battery separator is less than or equal to 3%, and the battery resistance is 10-100 ⁇
  • the bulk resistance is 0.1-30 ⁇
  • the porosity is 30-60%.
  • the ionic conductivity is 2.10-4.70mS ⁇ cm -1 ; in summary, the performance of the digital battery diaphragm when the slitting tension is 0.5-30N is better; the resistance safety of the digital battery diaphragm under the condition that the slitting tension is 10N, Better thermal insulation and heat resistance, as well as lower impedance and higher ionic conductivity, can effectively avoid the occurrence of thermal shrinkage or film rupture of the diaphragm at high temperature, resulting in direct contact between the positive and negative electrodes and the internal battery. Short circuit, causing potential safety hazards, has great development prospects.
  • the digital battery separator has different properties under different coating and stretching speed differences
  • the coating stretching speed difference is 0.1% and 10%
  • the thermal shrinkage rate of the digital battery separator is greater than or equal to 8%
  • the battery resistance is greater than or equal to 100 ⁇
  • the body resistance of the separator is greater than or equal to 30 ⁇
  • the porosity is less than or equal to 30 %
  • the ionic conductivity is 0.70-1.70mS ⁇ cm -1
  • the coating stretching speed difference is 5%
  • the thermal shrinkage rate of the digital battery separator is less than or equal to 3%
  • the battery resistance is 10-100 ⁇
  • the bulk resistance is 0.1-30 ⁇
  • the porosity is 30-60%
  • the ionic conductivity is 2.10-4.70mS ⁇ cm -1 ; in conclusion, the performance of the digital battery separator when the coating stretch rate difference
  • the data results of the battery impedance and bulk resistance test, porosity, air permeability and ionic conductivity of the digital battery separator of the present invention show that the digital battery separator has different properties under different separator thicknesses.
  • the thermal shrinkage rate of the digital battery diaphragm is greater than or equal to 8%, and the battery resistance is greater than or equal to 100 ⁇
  • the bulk resistance is greater than or equal to 30 ⁇
  • the porosity is less than or equal to 30%
  • the ionic conductivity 0.70- 1.70mS ⁇ cm -1
  • the coating thickness is 7 ⁇ m
  • the thermal shrinkage rate of the digital battery separator is less than or equal to 3%
  • the battery resistance is 10-100 ⁇
  • the body resistance of the separator is 0.1-30 ⁇
  • the porosity is 30- 60%
  • the ionic conductivity is 2.10-4.70mS ⁇ cm -1 ;
  • the digital battery separator has different properties under different air permeability values.
  • the thermal shrinkage of the digital battery separator is greater than or equal to 8%, and the battery resistance is greater than or equal to 100 ⁇ , the body resistance is greater than or equal to 30 ⁇ , the porosity is less than or equal to 30%, and the ionic conductivity is 0.70 -1.70mS ⁇ cm -1 ; and when the air permeability of the diaphragm is 200s/100cc, the thermal shrinkage of the digital battery diaphragm is less than or equal to 3%, and the battery resistance is 10-100 ⁇ , the diaphragm body resistance is 0.1-30 ⁇ , and the porosity is 30-60%, and the ionic conductivity is 2.10-4.70mS ⁇ cm -1 ; in conclusion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

一种数码电池隔膜及其制备方法,该数码电池隔膜包括基膜(1)和涂覆在基膜(1)至少一个表面的聚合物涂层(2),所述隔膜的厚度为3~10μm,离子电导率为0.70~4.70mS·cm ‑1。得到的一种更薄的、更安全、电阻更小、孔隙率和透气性更好的、耐热性能更好的电池隔膜。用于解决现有超薄隔膜存在的不安全、电阻大、孔隙率低、透气差、以及耐热性能差等问题。

Description

一种数码电池隔膜及其制备方法 技术领域
本发明涉及隔膜生产技术领域,具体的说,是一种数码电池隔膜及其制备方法。
背景技术
锂离子电池由正极片、负极片、隔离膜和电解质材料四大关键材料组成。在锂电池结构中,隔膜是关键的内层组件之一,隔离膜的主要作用是使电池的正、负极分隔开来,防止两极接触而短路,同时能使锂离子通过。其性能直接决定电池寿命、使用安全性、放电倍率性、电池内阻、孔隙率、吸液率与电池容量的优劣,对提高电池的综合性能具有重要的作用。而电池隔膜的厚度是影响电池性能的主要因素之一,也是我们研究的热点。
随着数码产品的升级换代,隔膜市场需求更倾向于超薄的隔膜,同时也对超薄隔膜在耐热性能、热收缩等方面的性能提出更高的要求。
发明内容
本发明的目的在于提供一种耐热性好、离子电导率高的超薄数码电池隔膜。
为实现上述目的,本发明采用的技术方案为:
一种数码电池隔膜,包括基膜和涂覆在基膜至少一个表面的聚合物涂层,其特征在于,所述隔膜的厚度为3~10μm,离子电导率为0.70~4.70mS·cm -1
与现有技术相比,本发明的积极效果是:
本发明的数码电池隔膜比商业化隔膜具有更薄的厚度,占用空间小,以及更好的耐热性,能够在高温下保持更低的热收缩率,可以提供良好的安全 性,有效的避免因隔膜高温热收缩被刺破而致使电池内部短路等危险事故的发生。
本发明的另一个目的在于,提供上述数码电池隔膜的制备方法。
为实现上述目的,本发明采用的技术方案为:
S1、取所述有机无机聚合物、分散剂、粘结剂搅拌混合得到成品浆料,备用;
S2、将成品浆料于T1温度下涂布在基膜表面得到隔膜产品,涂布拉伸速差为0.1%~10%;接着进行复卷,复卷温度为T2、涂布时收放卷张力为1~20N;最后进行分切,分切收放卷张力为0.5~30N、接触压为0.01~0.2N;分切完成后,得到数码电池隔膜。
与现有技术相比,本发明的积极效果是:
采用本发明制备方法得到的数码电池隔膜比目前商业化隔膜更薄,除了改善隔膜孔隙率和透气性,还有助于降低电池阻抗和隔膜本体电阻,有效提高电池的离子电导率,进而提高电池的容量和倍率性能,以及电池寿命。
附图说明
图1为本发明的数码电池隔膜的结构示意图。
附图中的标记为:
1为基膜
2为聚合物涂层
具体实施方式
以下提供本发明的数码电池隔膜的具体实施方式。
实施例1
如图1所示,本发明提供一种数码电池隔膜包括基膜1和涂覆在基膜1其中一个表面的聚合物涂层2。
上述数码电池隔膜的制备:
S1、取有机无机聚合物质量分数99%、分散剂质量分数0.5%、粘结剂质量分数0.5%;以800rpm的速度,搅拌1h,得到粒径为2nm的成品浆料,备用;
S2、将成品浆料于T1(50℃)下涂布在基膜表面得到隔膜产品,涂布拉伸速差为5%,并于50℃下烘干;紧接着在T2(75℃)复卷温度和收放卷张力为10N下进行复卷;最后进行分切,分切收放卷张力为0.5N、接触压为0.01N分切完成后,得到本发明成品数码电池隔膜。
经过试验检测,本发明成品数码电池隔膜厚度为7μm;透气值为200s/100cc,孔隙率小于或等于30%,200℃下热收缩率大于或等于8%,隔膜本体电阻大于或等于30Ω,电池电阻大于或等于100Ω,离子电导率为0.70-1.70mS·cm -1
实施例2
按照实施例1的制备方法制备如图1所示的数码电池隔膜,不同的是:
在步骤S1中将成品浆料涂布在PE基膜表面得到隔膜产品;
在步骤S2中分切收卷张力为10N。
经过试验检测,本发明成品数码电池隔膜厚度为隔膜厚度为7μm;透气值为200s/100cc,孔隙率为30-60%;200℃下热收缩率小于或等于3%,隔膜本体电阻为0.1-30Ω,且电池电阻为10-100Ω,离子电导率为2.10-4.70mS·cm -1
实施例3
按照实施例1的制备方法进行制备,不同的是:在步骤S2中分切收卷张力为30N,而实施例1中是0.5N。
经过试验检测,本发明成品数码电池隔膜厚度为隔膜厚度为7μm;透气值为200s/100cc,得到的涂布膜孔隙率为小于或等于30%,200℃下热收缩率大于或等于8%,隔膜本体电阻大于或等于30Ω,且电池电阻大于或等于100Ω,离子电导率为0.70-1.70mS·cm -1
实施例4
按照实施例1的制备方法进行制备,不同的是:
在S2中,涂布拉伸速差为10%,接触压为0.1N。
经过试验检测,隔膜厚度为3μm;透气值为300s/100cc,孔隙率小于或等于30%,200℃下,热收缩率大于或等于8%,隔膜本体电阻大于或等于30Ω,且电池电阻大于或等于100Ω,离子电导率为0.70-1.70mS·cm -1
实施例5
按照实施例1的制备方法进行制备,不同的是:
在步骤S1中,在喷涂机上以700rpm的搅拌速度,搅拌0.01h,得到粒径为0.1nm的浆料。
在步骤S2中,以T1(70℃)的涂布温度进行涂布,涂布拉伸速差为0.1%,收放卷张力为20N,在T2(70℃)下复卷。
经过试验检测,本发明成品数码电池隔膜厚度为10μm;透气值为80s/100cc,孔隙率为小于或等于30%;在200℃下隔膜热收缩率大于或等于8%,隔膜本体电阻大于或等于30Ω,且电池电阻大于或等于100Ω,离子电导率为0.70-1.70mS·cm -1
实施例6
按照实施例1的制备方法进行制备,不同的是,
在S1步骤中,将机无机聚合物、分散剂、粘结剂以在喷涂机上以1300rpm的搅拌速度,搅拌7h,得到粒径为10nm的浆料;
在步骤2中,以T1(60℃)的涂布温度、涂布拉伸速差为6%将成品浆料涂布在PE基膜上;涂布时收放卷张力为1N,紧接着进行复卷,以T2(100℃)复卷温度;再进行分切,分切收放卷张力为5N,接触压为0.2N。
经过试验检测,本发明成品数码电池隔膜厚度为6μm,透气值为20s/100cc,得到的涂布膜孔隙率为30-60%;200℃下隔膜的热收缩率小于或等于3%,隔膜本体电阻在0.1-30Ω,且电池电阻在10-100Ω,离子电导率为2.10-4.70mS·cm -1
实施例7
按照实施例1的制备方法进行制备,不同的是:
在S2中,涂布拉伸速差为4%进行涂布,分切收放卷张力为15N;
经过试验检测,本发明成品数码电池隔膜厚度为8μm,透气值为200s/100cc,得到的涂布膜孔隙率为30-60s/100cc,200℃下,隔膜的热收缩率小于等于3%,隔膜本体电阻在0.1-30Ω范围内,且电池电阻在10-100Ω,离子电导率为2.10~4.70mS·cm -1
表1为本发明的不同分切张力条件下制备的数码电池隔膜的热收缩性能、本体电阻和阻抗测试、孔隙率和离子电导率数据结果。
表2为本发明的不同涂布拉伸速差条件下制备的数码电池隔膜的热收缩性能测试、本体电阻和阻抗测试、孔隙率和离子电导率数据结果。
表3为本发明的不同隔膜厚度条件下的数码电池隔膜的热收缩性能测试、本体电阻和阻抗测试、孔隙率和离子电导率数据结果。
表4为本发明的不同透气值条件下的数码电池隔膜的热收缩性能测试、本体电阻和阻抗测试、孔隙率和离子电导率数据结果。
表1
Figure PCTCN2021080285-appb-000001
表2
Figure PCTCN2021080285-appb-000002
表3
Figure PCTCN2021080285-appb-000003
Figure PCTCN2021080285-appb-000004
表4
Figure PCTCN2021080285-appb-000005
如表1所示,本发明的数码电池隔膜的电池阻抗和本体电阻测试、孔隙率和离子电导率数据结果,可以发现数码电池隔膜在不同的分切张力下具有不同的性能,当分切张力为0.5N和30N时,数码电池隔膜的热收缩率大于或等于8%,且电池电阻大于或等于100Ω,隔膜本体电阻大于或等于30Ω,孔隙率小于或等于30%,离子电导率为0.70-1.70mS·cm -1;而当分切张力为10N时,数码电池隔膜的热收缩率小于或等于3%,且电池电阻为10-100Ω,本体电阻为0.1-30Ω,孔隙率为30-60%,离子电导率为2.10-4.70mS·cm -1;综上可知,分切张力为0.5-30N时的数码电池隔膜性能较好;其中分切张力为10N条件下的数码电池隔膜的电阻安全性、隔热和耐热性能更好,以及具有更低的阻抗和更高的离子电导率,可以有效的避免隔膜在高温下出现热收缩 或者破膜现象的发生,致使正负极直接接触导致电池内部短路,引发安全性隐患,具有很大的发展前景。
如表2所示,本发明的数码电池隔膜的电池阻抗和本体电阻测试、孔隙率和离子电导率等数据结果,可以发现数码电池隔膜在不同的涂布拉伸速差下具有不同的性能,当涂布拉伸速差为0.1%和10%时,数码电池隔膜的热收缩率大于或等于8%,且电池电阻大于或等于100Ω,隔膜本体电阻大于或等于30Ω,孔隙率小于或等于30%,离子电导率为0.70-1.70mS·cm -1;而当涂布拉伸速差为5%时,数码电池隔膜的热收缩率小于或等于3%,且电池电阻为10-100Ω,隔膜本体电阻为0.1-30Ω,孔隙率为30-60%,离子电导率为2.10-4.70mS·cm -1;综上可知,涂布拉伸速差为0.1%-10%时的数码电池隔膜性能更好;其中涂布拉伸速差为5%条件下的数码电池隔膜的电阻安全性、隔热和耐热性能更好,以及具有更低的阻抗和更高的离子电导率,可以有效的避免隔膜在高温下出现热收缩或者破膜现象的发生,致使正负极直接接触导致电池内部短路,引发安全性隐患,具有很大的发展前景。
如表3所示,本发明的数码电池隔膜的电池阻抗和本体电阻测试、孔隙率、透气性和离子电导率等数据结果,可以发现数码电池隔膜在不同的隔膜厚度下具有不同的性能,当隔膜厚度为3μm和10μm时,数码电池隔膜的热收缩率大于或等于8%,且电池电阻大于或等于100Ω,本体电阻大于或等于30Ω,孔隙率小于或等于30%,离子电导率为0.70-1.70mS·cm -1;而当涂布厚度为7μm时,数码电池隔膜的热收缩率小于或等于3%,且电池电阻为10-100Ω,隔膜本体电阻为0.1-30Ω,孔隙率为30-60%,离子电导率为2.10-4.70mS·cm -1;综上可知,隔膜厚度为3-10μm时的数码电池隔膜性能更好;其中隔膜厚度为7μm条件下的数码电池隔膜的电阻安全性、隔热和耐热性能 更好,以及具有更低的阻抗和更高的离子电导率,可以有效的避免隔膜在高温下出现热收缩或者破膜现象的发生,致使正负极直接接触导致电池内部短路,引发安全性隐患,具有很大的发展前景。
如表4所示,本发明的数码电池隔膜的电池阻抗和本体电阻测试、孔隙率和离子电导率等数据结果,可以发现数码电池隔膜在不同的透气值下具有不同的性能,当隔膜透气值为80s/100cc和300s/100cc,数码电池隔膜的热收缩率大于或等于8%,且电池电阻大于或等于100Ω,本体电阻大于或等于30Ω,孔隙率小于或等于30%,离子电导率为0.70-1.70mS·cm -1;而当隔膜透气值为200s/100cc时,数码电池隔膜的热收缩率小于或等于3%,且电池电阻为10-100Ω,隔膜本体电阻为0.1-30Ω,孔隙率为30-60%,离子电导率为2.10-4.70mS·cm -1;综上可知,当隔膜透气值为80-300s/100cc时的数码电池隔膜性能更好;其中隔膜透气值为200s/100cc条件下的数码电池隔膜的电阻安全性、隔热和耐热性能更好,以及具有更低的阻抗和更高的离子电导率,可以有效的避免隔膜在高温下出现热收缩或者破膜现象的发生,致使正负极直接接触导致电池内部短路,引发安全性隐患,具有很大的发展前景。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围内。

Claims (7)

  1. 一种数码电池隔膜,包括基膜和涂覆在基膜至少一个表面的聚合物涂层,其特征在于,所述隔膜的厚度为3~10μm,离子电导率为0.70~4.70mS·cm -1
  2. 如权利要求1所述的数码电池隔膜,其特征在于,所述隔膜透气值为80~300s/100cc。
  3. 如权利要求1所述的数码电池隔膜,其特征在于,所述隔膜为6-8μm,离子电导率为2.10~4.70mS·cm -1,所述隔膜在200℃下的热收缩小于或等于3%。
  4. 如权利要求3所述的数码电池隔膜,其特征在于,所述隔膜本身的本体电阻为0.1~30Ω,所述隔膜的孔隙率为30~60%。
  5. 如权利要求1所述的数码电池隔膜,其特征在于,所述聚合物涂层中各原料的质量分数为:有机无机聚合物:98%~99.8%、分散剂:0.1%~1%、粘结剂:0.1%~1%。
  6. 如权利要求1-5任意一项所述的数码电池隔膜的制备方法,其特征在于,包括以下步骤:
    S1、取所述有机无机聚合物、分散剂、粘结剂搅拌混合得到成品浆料,备用;
    S2、将成品浆料于T1温度下涂布在基膜表面得到隔膜产品,涂布拉伸速差为0.1%~10%;接着进行复卷,复卷温度为T2、涂布时收放卷张力为1~20N;最后进行分切,分切收放卷张力为0.5~30N、接触压为0.01~0.2N;分切完成后,得到数码电池隔膜。
  7. 如权利要求6所述的码电池隔膜的制备方法,其特征在于, S1步骤中所述有机无机聚合物、分散剂、粘结剂以700~1300rpm的速度,搅拌0.01~7h,得到粒径为0.1~10nm的成品浆料;S2步骤中的T1为50~70℃,T2为70~100℃。
PCT/CN2021/080285 2020-06-29 2021-03-11 一种数码电池隔膜及其制备方法 WO2022001174A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237003046A KR20230028799A (ko) 2020-06-29 2021-03-11 디지털 배터리 격막 및 그 제조 방법
EP21834465.3A EP4175033A1 (en) 2020-06-29 2021-03-11 Digital battery separator and preparation method therefor
JP2022576107A JP2023530910A (ja) 2020-06-29 2021-03-11 デジタル電池のセパレータ及びその作製方法
US18/013,783 US20230299423A1 (en) 2020-06-29 2021-03-11 Digital battery separator and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010609605.6 2020-06-29
CN202010609605.6A CN111769243B (zh) 2020-06-29 2020-06-29 一种数码电池隔膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2022001174A1 true WO2022001174A1 (zh) 2022-01-06

Family

ID=72722944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080285 WO2022001174A1 (zh) 2020-06-29 2021-03-11 一种数码电池隔膜及其制备方法

Country Status (6)

Country Link
US (1) US20230299423A1 (zh)
EP (1) EP4175033A1 (zh)
JP (1) JP2023530910A (zh)
KR (1) KR20230028799A (zh)
CN (1) CN111769243B (zh)
WO (1) WO2022001174A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769243B (zh) * 2020-06-29 2021-03-19 珠海恩捷新材料科技有限公司 一种数码电池隔膜及其制备方法
CN117239355B (zh) * 2023-11-14 2024-04-09 宁德时代新能源科技股份有限公司 二次电池和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138033A (ja) * 2009-03-06 2013-07-11 Nissan Motor Co Ltd 電池用樹脂シートの加工装置および加工方法
CN104183867A (zh) * 2014-08-12 2014-12-03 中国科学院青岛生物能源与过程研究所 一种单离子导体纳米颗粒增强锂电池隔膜或聚合物电解质的制备方法和应用
CN106784542A (zh) * 2017-02-13 2017-05-31 河北金力新能源科技股份有限公司 一种耐高温多种涂层的锂离子电池隔膜及其制备方法
CN109817865A (zh) * 2018-12-19 2019-05-28 长沙新材料产业研究院有限公司 一种复合隔膜及其制备方法
CN111244374A (zh) * 2019-12-25 2020-06-05 武汉中兴创新材料技术有限公司 一种结构改进的涂层隔膜及其制备方法
CN111769243A (zh) * 2020-06-29 2020-10-13 珠海恩捷新材料科技有限公司 一种数码电池隔膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571395A (zh) * 2019-08-30 2019-12-13 瑞浦能源有限公司 一种锂离子电池隔膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138033A (ja) * 2009-03-06 2013-07-11 Nissan Motor Co Ltd 電池用樹脂シートの加工装置および加工方法
CN104183867A (zh) * 2014-08-12 2014-12-03 中国科学院青岛生物能源与过程研究所 一种单离子导体纳米颗粒增强锂电池隔膜或聚合物电解质的制备方法和应用
CN106784542A (zh) * 2017-02-13 2017-05-31 河北金力新能源科技股份有限公司 一种耐高温多种涂层的锂离子电池隔膜及其制备方法
CN109817865A (zh) * 2018-12-19 2019-05-28 长沙新材料产业研究院有限公司 一种复合隔膜及其制备方法
CN111244374A (zh) * 2019-12-25 2020-06-05 武汉中兴创新材料技术有限公司 一种结构改进的涂层隔膜及其制备方法
CN111769243A (zh) * 2020-06-29 2020-10-13 珠海恩捷新材料科技有限公司 一种数码电池隔膜及其制备方法

Also Published As

Publication number Publication date
CN111769243A (zh) 2020-10-13
CN111769243B (zh) 2021-03-19
KR20230028799A (ko) 2023-03-02
EP4175033A1 (en) 2023-05-03
JP2023530910A (ja) 2023-07-20
US20230299423A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2022012477A1 (zh) 一种掺硅负极极片及包括该负极极片的锂离子电池
CN111969214B (zh) 一种异型结构的正极片及包括该正极片的锂离子电池
WO2022001174A1 (zh) 一种数码电池隔膜及其制备方法
WO2018145666A1 (zh) 耐高温多种涂层的锂离子电池隔膜及其制备方法
WO2022199628A1 (zh) 一种正极片和锂离子电池
CN109755557A (zh) 一种安全的高电压高能量密度锂离子电池及其制备方法
WO2021238629A1 (zh) 一种集流体、集流体的制备方法、极片及锂离子电池
WO2011061818A1 (ja) 電池用電極の製造方法
US20170117524A1 (en) Separator and electrode assembly of lithium secondary battery
CN108183262A (zh) 一种高比能锂离子软包电池的化成方法
WO2023155604A1 (zh) 复合隔膜及电化学装置
WO2012119361A1 (zh) 含有纳米预交联橡胶微粉的共挤复合隔膜以及使用其的锂离子电池
CN108511679A (zh) 一种提高安全性能的极片及其生产装置、制备方法
CN112151851A (zh) 一种能够降低内部温升的叠片式锂离子电池用叠芯
WO2020042684A1 (zh) 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
WO2023040862A1 (zh) 一种电极组件及其应用
WO2013044680A1 (zh) 一种高能镍碳超级电容器的制备方法
TWI686978B (zh) 金屬離子電池
CN111063860A (zh) 电极片及其制备方法和电池
CN111900458A (zh) 一种复合固态电解质及其制备方法
WO2022247687A1 (zh) 一种电芯和电池
CN116111281A (zh) 一种隔膜、电化学装置和电子装置
WO2003077347A1 (fr) Batterie au lithium rechargeable et son procede de fabrication
JP7301082B2 (ja) 二次電池用電極の製造方法および二次電池の製造方法
CN114464770A (zh) 一种电极片及包含该电极片的电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576107

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021834465

Country of ref document: EP

Effective date: 20230130