WO2022001054A1 - 一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺 - Google Patents

一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺 Download PDF

Info

Publication number
WO2022001054A1
WO2022001054A1 PCT/CN2020/140812 CN2020140812W WO2022001054A1 WO 2022001054 A1 WO2022001054 A1 WO 2022001054A1 CN 2020140812 W CN2020140812 W CN 2020140812W WO 2022001054 A1 WO2022001054 A1 WO 2022001054A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
waste
solution
parts
process according
Prior art date
Application number
PCT/CN2020/140812
Other languages
English (en)
French (fr)
Inventor
常欢
叶南飚
李成
周沃华
刘鑫鑫
朱秀梅
苏榆钧
唐磊
黄险波
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Priority to KR1020237000631A priority Critical patent/KR20230022220A/ko
Priority to US18/012,988 priority patent/US20230250252A1/en
Priority to JP2022581599A priority patent/JP2023532552A/ja
Priority to EP20943688.0A priority patent/EP4166602A4/en
Publication of WO2022001054A1 publication Critical patent/WO2022001054A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to the technical field of green polymer materials, in particular to a polyamide recycling process and polyamide obtained by the recycling process.
  • Polyamide is one of the four major engineering plastics and is widely used, but after use, polyamide waste is usually discarded directly as garbage, resulting in a huge amount of energy waste and environmental pollution. Therefore, the subject of recycling polyamide recovery has been proposed on a global scale, but the current recovery method is still very simple. Except for part of the re-granulation, which is used in the field of low-end products due to serious performance degradation, the rest are mostly incinerated using combustion. The heat energy released during the combustion process has low energy utilization efficiency on the one hand, and on the other hand, due to the N element contained in the polyamide molecule, the nitrogen-containing compounds released during the combustion process will seriously pollute the environment.
  • the solution method to recover polyamide can maximize the use of the energy of the polymer while ensuring that the performance does not deteriorate, which is green and environmentally friendly, and has little pollution.
  • CN109810284A provides a method for recovering PA12: S1, adding the PA12 waste into the composite solvent system, stirring and dissolving; S2, heating the reaction system to 60-90°C, keeping the water bath constant temperature for 2-5h, so that the PA12 waste is fully dissolved; S3, centrifuging the reacted solution, adding deionized water to the upper supernatant to precipitate PA12 precipitate; S4, vacuum drying the PA12 precipitate to completely remove the solvent to obtain PA12 powder.
  • the solvent system of the invention is 5-28% formic acid, 1-10% hydrochloric acid, 25-35% acetic acid, and the remainder is deionized water, which is a typical strong proton type solvent. The hydrogen bonds formed by the ions dissolve the polyamide.
  • Chinese patent CN101058695A discloses a coating for metal, wherein the main cured product is polyamide (PA), polyamide (PA6), polyamide (PA66), polyamide (PA610), polyamide (PA1010), polyamide Any one in (PA12); Described main solvent is one or more in m-cresol, m-p-cresol, tri-cresol, phenol; Described cosolvent is xylene, toluene, dimethyl One or more of formamide, butanol, ethylene glycol ethyl ether, and ethylene glycol butyl ether. The compound solvent can dissolve the polyamide very well.
  • the amount of the main solvent is greater than the amount of the auxiliary solvent. If it is used to recover polyamide, a small amount of polyamide cannot be precipitated during the precipitation process, which reduces the yield.
  • the object of the present invention is to provide a method for recovering polyamide waste and a polyamide obtained according to the method, using phenol/toluene as the main component of the compound solvent, with low volatility and irritation, low environmental pollution, and corrosion to equipment.
  • the obtained polyamide has good crystallinity, improved end-capping rate (phenol is used as end-capping agent), improved aging resistance and water/alcoholysis resistance, and is conducive to improving the application of recycled polyamide value, expanding the application fields of recycled polyamide.
  • a polyamide recovery process is characterized in that, comprises the following steps:
  • the polyamide waste is added to the compound solvent, heated to 50 ° C to the reflux temperature of the solution and stirred until dissolved, then decolorized and filtered to obtain a polyamide solution; then the polyamide solution is added to deionized water, and the polyamide is deionized. Precipitation in ionized water, separation and recovery of polyamide;
  • the compound solvent in parts by weight, includes 10-30 parts of phenol and 15-40 parts of toluene; the weight ratio of polyamide waste and compound solvent is 1:10-1:2.
  • the next step can be carried out directly, or the temperature can be lowered to room temperature (20°C-40°C) before the next step.
  • the dissolved polyamide in the compound solution will not be affected by the decrease in temperature. Precipitate.
  • the solution was decolorized and filtered.
  • decolorizing agent is used to decolorize, and the decolorized polyamide clear and transparent solution (the state at this time is: there may still be very light other colors, but no suspended particles can be observed with the naked eye) into deionized water, in poor solvent
  • the polyamide was precipitated.
  • the polyamide particles can be precipitated in a state of high crystallinity, which has better crystallinity.
  • the polyamide is added to the compound solvent, it is heated to 100° C. to the reflux temperature of the solution, stirred and dissolved, and then the subsequent decolorization and filtration treatment are performed.
  • the phenol can undergo condensation reaction with the end groups of the polyamide to increase the end-capping rate.
  • a decolorizing agent was added during the decolorization treatment, and the weight ratio range of the decolorizing agent and the polyamide waste was (1:8)-(1:12), and the solution was heated up to 50°C to keep the reflux temperature of the solution for 0.5-2 hours, and then cooled to After the temperature is lower than 50°C, the polyamide solution is obtained by filtration.
  • the decolorizing agent is selected from, but not limited to, activated carbon, activated clay, and the like.
  • the compound solvent may also include one or more of 0-5 parts of methanol, 0-20 parts of o-cresol, or 0-20 parts of benzyl alcohol.
  • Adding other solvents to the phenol/toluene solvent system will improve the properties of polyamide in many aspects: adding a certain amount of methanol can improve the melt index and enhance the fluidity of polyamide; adding a certain amount of o-cresol or benzyl alcohol can improve the performance of polyamide. Hydrolysis resistance, alcoholysis resistance and heat aging resistance.
  • the weight ratio of polyamide solution to deionized water is 1:5-1:50.
  • the temperature range for precipitation of polyamide is 0°C to 50°C.
  • the compound solvent, proportion and dissolving method adopted in the method of the present invention can dissolve almost all polyamide wastes.
  • the polyamide waste is selected from at least one of aliphatic polyamide waste and semi-aromatic polyamide waste; the aliphatic polyamide waste is selected from PA6 waste, PA66 waste, PA12 waste, PA1010 waste, PA1012 waste At least one of; the semi-aromatic polyamide waste is selected from at least one of PA6T waste, PA10T waste, PA10T1010 waste, PA10T1012 waste, PA10T10I, and PA10T6T waste.
  • a pulverizing step is also included.
  • the dissolving speed can be improved by pulverizing the polyamide waste. If the surface of the polyamide waste contains other materials that are insoluble in the compounded solvent of the present invention, the dissolution of the polyamide waste can also be promoted by pulverizing.
  • the range of the content of terminal carboxyl groups in the polyamide can be reduced, and the crystallization performance can be improved.
  • the content of terminal carboxyl groups in the polyamide is 10-40 mol/t
  • the half-peak width of crystallization is 6-12° C.
  • the crystallization enthalpy is in the range of -40-60 J/g.
  • the present invention has the following beneficial effects
  • the present invention uses a phenol/toluene solvent system with low volatility and low irritation, which makes the equipment non-corrosive and environmentally friendly; importantly, the phenol in the solvent can "secondarily" seal the polyamide. It can increase the end capping rate, reduce the content of terminal carboxyl groups, and improve the aging resistance; after the polyamide solution is added to deionized water, the polyamide can be fully precipitated, the precipitation efficiency is high, and the obtained polyamide has good crystallinity.
  • solvent components such as benzyl alcohol, o-cresol, methanol and other solvent components
  • solvent components such as benzyl alcohol, o-cresol, methanol and other solvent components
  • the sources of raw materials used in the present invention are as follows:
  • Polyamide waste PA12 It comes from recycled materials such as plumbing pipes and peripheral parts of automobile engines, and contains a small amount of toner. Theoretically, the PA12 content is about 95%-97%.
  • Polyamide waste PA66 Recycling material from gears, bearings and other parts in mechanical equipment, containing glass fiber reinforcement, the theoretical PA66 content is about 65%-70%.
  • Polyamide waste PA10T Recycling material from parts around the engine, containing glass fiber reinforcement, the theoretical PA10T content is 60-70%.
  • Phenol industrial grade;
  • O-cresol industrial grade.
  • (1) Content of terminal carboxyl groups The content of terminal amino groups and terminal carboxyl groups of the polymer was determined by a potentiometric titrator. Weigh 0.45g of material, add 50mL of preheated and melted o-cresol and heat to reflux until the sample dissolves, put it in a 50°C water tank and cool it to 50°C, add 0.5mL of formaldehyde solution, put it into the magnetic stirring solution, the automatic The electrode test part of the potentiometric titrator is immersed in the solution, and the content of terminal carboxyl groups is titrated with the calibrated KOH-ethanol solution.
  • Crystallization half-peak width refer to the standard ASTM D3418-2003, under the protection of nitrogen atmosphere, the flow rate is 20mL/min, during the test, the temperature is raised from 30°C to 350°C at a heating rate of 10°C/min, and kept at 350°C for 5min , and then cool down to 50°C at a cooling rate of 10°C/min.
  • the crystallization peak temperature is the melting point
  • the crystallization half-peak width is the temperature range when the crystallization peak is at 1/2 of the crystallization peak height.
  • Crystallization enthalpy refer to the standard ASTM D3418-2003, under the protection of nitrogen atmosphere, the flow rate is 20mL/min, the temperature rises from 30°C to 350°C at a heating rate of 10°C/min during the test, and the temperature is maintained at 350°C for 5min, then The temperature was lowered to 50°C at a cooling rate of 10°C/min, and the area of the crystallization peak at this time was the value of the crystallization enthalpy.
  • Alcoholysis resistance The recovered polyamide was injected into standard strips, and the tensile strength and flexural strength of the material strips before and after alcoholysis treatment were tested. In ethanol, heating and soaking for 3 hours, compared with the mechanical properties before alcoholysis treatment, the retention rate of tensile strength and flexural strength was calculated and expressed as a percentage.
  • Heat aging resistance The recovered polyamide was injected into a standard sample bar, and the tensile strength and bending strength of the material sample bar before and after heat aging treatment were tested.
  • the heat aging treatment condition was that the test sample bar was placed in a 100 °C oven. Within 12 hours of thermal baking, compared with the mechanical properties before baking, the retention rate of tensile strength and flexural strength was calculated and expressed as a percentage.
  • Example 2 The difference from Example 1 is that the compound solvent is added with 20 g of methanol.
  • Example 2 The difference from Example 1 is that the compound solvent is 50 g of o-cresol added.
  • Example 1 The difference from Example 1 is that the compound solvent is to add 30 g of benzyl alcohol.
  • Example 1 The difference from Example 1 is that 100 g of polyamide waste PA12 was added to a compound solvent of 100 g of phenol/200 g of toluene, heated to 60° C. and stirred to dissolve.
  • Example 2 The difference from Example 1 is that 15 g of methanol, 50 g of o-cresol and 30 g of benzyl alcohol are added to the compound solvent.
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Carboxyl terminal content, mol/t 79 38 66 Crystallization half width, °C 10.9 10.6 10.7 Crystallization enthalpy, J/g -45 -45 -43 Melt index, g/10min 19 15 16 Hydrolysis resistance, % 87 93 89 Heat aging resistance, % 80 71 85 Alcoholysis resistance, % 83 82 88
  • Example 1/2 It can be seen from Example 1/2 that adding methanol to the recovered solvent for synergy can not only effectively improve the melt index of the recovered polyamide, but also maintain or even improve other properties.
  • Example 1 and Comparative Example 1 It can be known from Example 1 and Comparative Example 1 that the composite acid solvent is used as the recovery solvent, not only the recovered polyacylcarboxyl end group content is high, the crystallization performance is decreased, but also the hydrolysis resistance, thermal aging resistance and alcoholysis resistance are all poor. , the high melt index at this time is due to the breakage of some molecular chains in the process of recycling polyamide.
  • Example 1 and Comparative Example 2 It can be seen from Example 1 and Comparative Example 2 that, using a single phenol as the recovery solvent, the crystallization performance of the recovered polyamide also decreased to a certain extent, and the hydrolysis resistance, heat aging resistance, and alcoholysis resistance were greatly reduced.
  • Example 1 It can be seen from Example 1 and Comparative Example 3 that, using o-cresol/toluene compound solvent, the recovered polyamide has a high content of terminal carboxyl groups, and has poor hydrolysis resistance, thermal aging resistance and alcoholysis resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

一种聚酰胺废料的回收工艺,包括以下步骤:将聚酰胺废料加入复配溶剂中,加热至50℃-溶液回流的温度并搅拌至溶解,再进行脱色处理,过滤,得到聚酰胺溶液;再将聚酰胺溶液加入水中,聚酰胺在去离子水中沉淀析出为固体,分离后得到回收聚酰胺;所述的复配溶剂,按重量份计,包括10-30份苯酚、15-40份甲苯。通过以苯酚/甲苯为主的溶剂体系,具有如下优点:1.溶剂苯酚能够对聚酰胺进行"二次"封端,提升封端率,提升耐水解、耐醇解和耐老化性能;2.保证聚酰胺溶液在加入去离子水中聚酰胺能够充分析出,并且得到的聚酰胺结晶性能好;3.苯酚/甲苯溶剂体系挥发性和刺激性小,高温条件下对设备损伤较小,绿色环保无污染。

Description

一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺 技术领域
本发明涉及绿色高分子材料技术领域,特别是涉及一种聚酰胺回收工艺及通过回收工艺得到的聚酰胺。
背景技术
聚酰胺是四大工程塑料之一,应用广泛,但在使用后,聚酰胺废品通常被当作垃圾直接丢弃,数量庞大,造成能源浪费和环境污染。因此,在全球范围内提出了回收聚酰胺的循环利用课题,但是目前回收方法依然非常简单,除部分重新造粒后由于性能衰减严重被应用在低端产品领域外,其余的多焚烧处理利用燃烧时释放的热能,一方面能量利用效率低,另一方面由于聚酰胺分子中含有N元素,燃烧过程中释放含氮化合物会严重污染环境。而溶液法回收聚酰胺则可以最大程度利用聚合物的能量的同时保证性能不发生衰减,绿色环保,污染小。
CN109810284A提供了一种PA12的回收方法:S1、将PA 12废料加入到复合溶剂体系中,搅拌溶解;S2、加热反应体系至60-90℃,水浴恒温保持2-5h,使PA12废料充分溶解;S3、对反应后溶液进行离心分离,向上层清液中加入去离子水析出PA12沉淀;S4、将PA12沉淀真空干燥彻底去除溶剂得到PA12粉体。该发明的溶剂体系是甲酸5-28%、盐酸1-10%、乙酸25-35%,剩余为去离子水,是典型的强质子型溶剂,利用聚酰胺与强极性的氢离子、酸根离子形成的氢键来溶解聚酰胺。但是,甲酸、盐酸、乙酸均具有极强腐蚀性和挥发性、酸性很强,很容易对设备造成腐蚀;并且,加入去离子水析出聚酰胺步骤中产生的废水具有极强的酸性,需要用碱中和后才能进行污水处理,不利于环保。强酸性环境下溶解会造成部分酰胺键水解,破坏聚酰胺主链,转化成低分子量聚酰胺,极大削弱回收聚酰胺的性能,其分离固体的方式为离心,该工艺不适于大规模生产,成本较高。
中国专利CN101058695A公开了一种用于金属的涂料,其中主体固化物为聚酰胺(PA)、聚酰胺(PA6)、聚酰胺(PA66)、聚酰胺(PA610)、聚酰胺(PA1010)、聚酰胺(PA12)中的任意一种;所述主溶剂为间甲酚、间对甲酚、三混甲酚、苯酚中的一种或几种;所述助溶剂为二甲苯、甲苯、二甲基甲酰胺、丁醇、乙二醇乙醚、乙二醇丁醚中的一种或几种。其复配溶剂能够很好溶解聚酰胺,但是,由于该溶剂不仅要溶解聚酰胺,而且要溶解其他涂料组合物,因此其主溶剂的量要大于助溶剂的量。如果用于回收聚酰胺,在析出过程中还会有少量的聚酰胺不能析出,降低收率。
发明内容
本发明的目的在于,提供一种聚酰胺废料的回收方法以及根据该方法得到的聚酰胺,采用苯酚/甲苯作为复配溶剂主要成分,挥发性和刺激性小、绿色环保污染小、对设备腐蚀性小,而且有利于聚酰胺析出,得到的聚酰胺结晶性能好,封端率提高(苯酚作为封端剂),耐老化和耐水/醇解性能有所提高,有利于提高回收聚酰胺的应用价值,扩大回收聚酰胺的应用领域。
本发明是通过以下技术方案实现的:
一种聚酰胺回收工艺,其特征在于,包括以下步骤:
将聚酰胺废料加入复配溶剂中,加热达到50℃至溶液的回流温度并搅拌至溶解,再进行脱色处理,过滤,得到聚酰胺溶液;再将聚酰胺溶液加入去离子水中,聚酰胺在去离子水中沉淀析出,分离得到回收聚酰胺;
所述的复配溶剂,按重量份计,包括10-30份苯酚、15-40份甲苯;聚酰胺废料与复配溶剂重量比为1:10-1:2。
当聚酰胺废料都溶解之后,可以直接进行下一步,也可以将温度降至室温(20℃-40℃)再进行下一步,已经溶解的聚酰胺在复配溶液中不会因为温度的降低而析出。将溶液进行脱色处理,再过滤。一般的,使用脱色剂脱色,脱色后的聚酰胺澄清透明溶液(此时的状态是:可能还保留有很浅的其他颜色,但是肉眼观察不到悬浮的颗粒)流入去离子水中,在不良溶剂去离子水的作用下,聚酰胺析出。这时,在苯酚/甲苯/水体系下,聚酰胺能够以高结晶度的状态颗粒析出,具有更优良的结晶性能。
优选的,聚酰胺加入复配溶剂后,加热达到100℃至溶液的回流温度搅拌溶解,再进行后续的脱色和过滤处理。在优选的温度下,苯酚能够与聚酰胺的端基发生缩合反应,提高封端率。
脱色处理时加入脱色剂,脱色剂与聚酰胺废料的重量比范围是(1:8)-(1:12),将溶液升温达到50℃至溶液的回流温度保持0.5-2小时,再降温至低于50℃后过滤得到聚酰胺溶液。脱色剂选自但不限于是活性炭、活性白土等。
优选的,按重量份计,所述的复配溶剂还可以包括0-5份的甲醇、或0-20份的邻甲酚、或0-20份的苯甲醇中的一种或几种。
在苯酚/甲苯溶剂体系中加入其他溶剂,将改善聚酰胺多方面性能:添加一定量的甲醇能够提高熔融指数,聚酰胺流动性增强;添加一定量的邻甲酚或苯甲醇能够提升聚酰胺的耐水解性能、耐醇解性能和耐热老化性能。
聚酰胺溶液与去离子水的重量比为1:5-1:50。
析出聚酰胺的温度范围是0℃-50℃。
本发明方法所采用的复配溶剂、比例及溶解方法可以溶解几乎所有的聚酰胺废料。所述的聚酰胺废料选自脂肪族聚酰胺废料、半芳香族聚酰胺废料中的至少一种;所述的脂肪族聚酰胺废料选自PA6废料、PA66废料、PA12废料、PA1010废料、PA1012废料中的至少一种;所述的半芳香族聚酰胺废料选自PA6T废料、PA10T废料、PA10T1010废料、PA10T1012废料、PA10T10I、PA10T6T废料中的至少一种。
在将聚酰胺废料加入复配溶剂前,还包括粉碎步骤。通过将聚酰胺废料粉碎可以提升溶解速度,如果聚酰胺废料表面含有其他不溶于本发明复配溶剂的材料,通过粉碎也可以促进聚酰胺废料的溶解。
通过本发明的回收方法,可降低聚酰胺中端羧基含量的范围,与提升结晶性能。根据上述的聚酰胺回收工艺得到的聚酰胺,聚酰胺中端羧基含量范围是10-40mol/t,结晶半峰宽范围是6-12℃,结晶焓范围是-40-60J/g。
本发明与现有技术相比,就有如下有益效果
与现有技术相比,本发明因为使用了低挥发性低刺激性的苯酚/甲苯溶剂体系,使得对设备无腐蚀、绿色环保;重要的,溶剂中苯酚能够对聚酰胺进行“二次”封端,提升封端率,降低端羧基含量,提高耐老化性能;聚酰胺溶液加入去离子水中后聚酰胺能够充分析出,析出效率较高,并且得到的聚酰胺结晶性较好。进一步的,还考察了添加苯甲醇、邻甲酚、甲醇等溶剂组分给聚酰胺回收料带来其它如高流动性、耐水解性能、耐醇解性能和耐热老化性能等,拓宽聚酰胺回收料应用领域。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明所用原料来源如下:
聚酰胺废料PA12:来自水暖管道、汽车发动机周边零件等回收料,含有少量色粉,理论上PA12含量约为95%-97%。
聚酰胺废料PA66:来自机械设备中齿轮、轴承等零部件的回收料,含有玻纤增强,理论上PA66含量约为65%-70%。
聚酰胺废料PA10T:来自发动机周边零部件回收料,含有玻纤增强,理论上PA10T含量为60-70%。苯酚:工业纯;
甲苯:工业纯;
甲醇:工业纯;
苯甲醇:工业纯;
邻甲酚:工业纯。
各项性能测试方法:
(1)端羧基含量:采用电位滴定仪测定聚合物端氨基和端羧基含量。称样0.45g材料,加50mL已经预热溶化的邻甲酚并加热回流至样品溶解,放置50℃的水槽冷却至50℃后,加入0.5mL甲醛溶液,放入磁子搅拌溶液,将全自动电位滴定仪电极测试部分浸入溶液中,用已标定的KOH-乙醇溶液滴定测试端羧基含量。
(2)结晶半峰宽:参照标准ASTM D3418-2003,在氮气气氛保护下,流速为20mL/min,测试时以10℃/min的升温速率从30℃升温至350℃,在350℃保持5min,然后以10℃/min的降温速率降温到50℃,此时的结晶曲线中结晶峰温度为熔点,结晶半峰宽为结晶峰在1/2结晶峰高时的温度范围。
(3)结晶焓:参照标准ASTM D3418-2003,在氮气气氛保护下,流速为20mL/min,测试时以10℃/min的升温速率从30℃升温至350℃,在350℃保持5min,然后以10℃/min的降温速率降温到50℃,此时结晶峰的面积为结晶焓数值。
(4)熔融指数:参照标准ASTM D1238-2010,使用标准化熔融指数仪,在190℃和1.0kg负重压力下,测试材料在10min内通过标准毛细管流出的熔料质量。
(5)耐水解性能:将回收得到的聚酰胺注塑为标准样条,测试材料样条在水解处理前后的拉伸强度和弯曲强度,水解处理条件为测试样条放置在100℃的水中,水煮3小时,与水煮前的力学性能比较,计算出拉伸强度和弯曲强度的保持率,并以百分比方式表示。
(6)耐醇解性能:将回收得到的聚酰胺注塑为标准样条,测试材料样条在醇解处理前后的拉伸强度和弯曲强度,醇解处理条件为测试样条放置在70℃的乙醇中,加热浸泡处理3小时,与醇解处理前的力学性能比较,计算出拉伸强度和弯曲强度的保持率,并以百分比方式表示。
(7)耐热老化性能:将回收得到的聚酰胺注塑为标准样条,测试材料样条在热老化处理前后的拉伸强度和弯曲强度,热老化处理条件为测试样条放置在100℃烘箱内,热烘烤12小时,与烘烤前的力学性能比较,计算出拉伸强度和弯曲强度的保持率,并以百分比方式表示。
实施例1:
将100g聚酰胺废料PA12加入100g苯酚/200g甲苯的复配溶剂中,加热至100℃搅拌溶解,加入10g活性炭,100℃下保温搅拌0.5小时,降温至40℃后过滤,得到聚酰胺溶液,再将聚酰胺溶液缓慢加入3000g的去离子水中,沉析出聚酰胺。聚酰胺干燥后再进行其他性能的测试。
实施例2:
与实施例1的区别在于,复配溶剂为再加入20g的甲醇。
实施例3:
与实施例1的区别在于,复配溶剂为再加入50g的邻甲酚。
实施例4:
与实施例1的区别在于,复配溶剂为再加入30g的苯甲醇。
实施例5:
与实施例1的区别在于,将100g聚酰胺废料PA12加入100g苯酚/200g甲苯的复配溶剂中,加热至60℃搅拌溶解。
实施例6:
将100g聚酰胺废料PA66加入80g苯酚/160g甲苯的复配溶剂中,加热至80℃搅拌溶解,加入10g活性炭,再升温至100℃保温搅拌0.5小时,降温至30℃后过滤,得到聚酰胺溶液,再将聚酰胺溶液缓慢加入3000g的去离子水中,沉析出聚酰胺。聚酰胺干燥后再进行其他性能的测试。
实施例7:
将100g聚酰胺废料PA10T加入90g苯酚/160g甲苯/20g甲醇的复配溶剂中,加热至80℃搅拌溶解,加入10g活性炭,在80℃下保温搅拌0.5小时,降温至40℃后过滤,得到聚酰胺溶液,再将聚酰胺溶液缓慢加入3000g的去离子水中,沉析出聚酰胺。聚酰胺干燥后再进行其他性能的测试。
实施例8:
与实施例1的区别在于,复配溶剂中再加入15g甲醇、50g的邻甲酚、30g的苯甲醇。
对比例1:
将100g聚酰胺废料PA12加入1500g的复合溶剂中(甲酸15%、盐酸10%、乙酸35%、水40%),在80℃下搅拌溶解4h,后离心分离(转速为4000R/min),上层清液加入1500g的去离子水中,析出PA12沉淀,沉淀干燥后再进行其他性能的测试。
对比例2:
将100g聚酰胺废料PA12加入200g苯酚中,加热至100℃搅拌溶解,加入10g活性炭,保温搅拌0.5小时,降温至60℃后过滤,得到聚酰胺溶液,再将聚酰胺溶液缓慢加入3000g的去离子水中,沉析出聚酰胺。聚酰胺干燥后再进行其他性能的测试。
对比例3:
将100g聚酰胺废料PA12加入100g邻甲酚/200g甲苯复配溶剂中,加热至100℃搅拌溶解,加入10g活性炭,保温搅拌0.5小时,降温至40℃后过滤,得到聚酰胺溶液,再将聚酰胺溶液缓慢加入3000g的去离子水中,沉析出聚酰胺。聚酰胺干燥后再进行其他性能的测试。
表1:实施例和对比例各项测试结果
Figure PCTCN2020140812-appb-000001
续表1:
  对比例1 对比例2 对比例3
端羧基含量,mol/t 79 38 66
结晶半峰宽,℃ 10.9 10.6 10.7
结晶焓,J/g -45 -45 -43
熔融指数,g/10min 19 15 16
耐水解性能,% 87 93 89
耐热老化性能,% 80 71 85
耐醇解性能,% 83 82 88
由实施例1/2可知,在回收溶剂中添加甲醇进行协同,不仅能够有效提升回收聚酰胺的熔融指数,并且其他性能能够得到保持甚至提升。
由实施例1/3/4可知,分别在回收溶剂中分别添加邻甲酚、苯甲醇进行协同,能够明显提升回收聚酰胺耐水解性能、耐热老化性能、耐醇解性能。
由实施例1和对比例1可知,采用复配酸性溶剂作为回收溶剂,不仅回收聚酰羧端基含量高,结晶性能下降,而且耐水解性能、耐热老化性能、耐醇解性能都很差,此时的高熔融指数是由于在回收聚酰胺工艺过程中部分分子链断裂造成的。
由实施例1和对比例2可知,采用单一苯酚作为回收溶剂,回收聚酰胺的结晶性能也有一定的下降,并且耐水解性能、耐热老化性能、耐醇解性能大幅下降。
由实施例1和对比例3可知,采用邻甲酚/甲苯复配溶剂,回收聚酰胺的端羧基含量高, 并且耐水解性能、耐热老化性能、耐醇解性能不好。

Claims (10)

  1. 一种聚酰胺回收工艺,其特征在于,包括以下步骤:将聚酰胺废料加入复配溶剂中,加热达到50℃至溶液的回流温度并搅拌至溶解,再进行脱色处理,过滤,得到聚酰胺溶液;再将聚酰胺溶液加入去离子水中,聚酰胺在去离子水中沉淀析出,分离得到回收聚酰胺;
    所述的复配溶剂,按重量份计,包括10-30份苯酚、15-40份甲苯;聚酰胺废料与复配溶剂重量比为1:10-1:2。
  2. 根据权利要求1所述的聚酰胺回收工艺,其特征在于,聚酰胺加入复配溶剂后,加热达到100℃至溶液的回流温度搅拌溶解,再进行后续的脱色和过滤处理。
  3. 根据权利要求1所述的聚酰胺回收工艺,其特征在于,脱色处理时加入脱色剂脱色剂与聚酰胺废料的重量比范围是(1:8)-(1:12),将溶液升温达到50℃至溶液的回流温度保持0.5-2小时,再降温至低于50℃后过滤得到聚酰胺溶液。
  4. 根据权利要求1所述的聚酰胺回收工艺,其特征在于,聚酰胺溶液与去离子水的重量比为1:5-1:50。
  5. 根据权利要求1所述的聚酰胺回收工艺,其特征在于,按重量份计,所述的复配溶剂还可以包括0-5份的甲醇、0-20份的邻甲酚、0-20份的苯甲醇中的一种或几种。
  6. 根据权利要求1所述的聚酰胺回收工艺,其特征在于,析出聚酰胺的温度范围是0℃-50℃。
  7. 根据权利要求3所述的聚酰胺回收工艺,其特征在于,所述的脱色剂选自活性炭、活性白土中的至少一种。
  8. 根据权利要求1所述的聚酰胺回收工艺,其特征在于,所述的聚酰胺废料选自脂肪族聚酰胺废料、半芳香族聚酰胺废料中的至少一种;所述的脂肪族聚酰胺废料选自PA6废料、PA66废料、PA12废料、PA1010废料、PA1012废料中的至少一种;所述的半芳香族聚酰胺废料选自PA6T废料、PA10T废料、PA10T10I废料、PA10T1010废料、PA10T1012废料、PA10T6T废料中的至少一种。
  9. 根据权利要求1所述的聚酰胺回收工艺,其特征在于,在将聚酰胺废料加入复配溶剂前,还包括粉碎步骤。
  10. 根据权利要求1-9任一项所述的聚酰胺回收工艺得到的聚酰胺,其特征在于,聚酰胺中端羧基含量范围是10-40mol/t,结晶半峰宽范围是6-12℃,结晶焓范围是-40-60J/g。
PCT/CN2020/140812 2020-06-30 2020-12-29 一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺 WO2022001054A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237000631A KR20230022220A (ko) 2020-06-30 2020-12-29 폴리아미드 회수 공정 및 회수 공정을 통해 얻어진 폴리아미드
US18/012,988 US20230250252A1 (en) 2020-06-30 2020-12-29 Polyamide recycling process and polyamide obtained by recycling process
JP2022581599A JP2023532552A (ja) 2020-06-30 2020-12-29 ポリアミドの回収方法及び該回収方法により得られたポリアミド
EP20943688.0A EP4166602A4 (en) 2020-06-30 2020-12-29 POLYAMIDE RECYCLING PROCESS AND POLYAMIDE OBTAINED THROUGH RECYCLING PROCESSES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010611058.5A CN111892743B (zh) 2020-06-30 2020-06-30 一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺
CN202010611058.5 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022001054A1 true WO2022001054A1 (zh) 2022-01-06

Family

ID=73208026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140812 WO2022001054A1 (zh) 2020-06-30 2020-12-29 一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺

Country Status (6)

Country Link
US (1) US20230250252A1 (zh)
EP (1) EP4166602A4 (zh)
JP (1) JP2023532552A (zh)
KR (1) KR20230022220A (zh)
CN (1) CN111892743B (zh)
WO (1) WO2022001054A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149815A1 (ja) * 2020-01-24 2021-07-29 ユニチカ株式会社 ポリアミド樹脂フィルムの製造方法
CN111892743B (zh) * 2020-06-30 2022-02-18 金发科技股份有限公司 一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺
CN114507344B (zh) * 2020-11-16 2024-01-23 华峰集团有限公司 一种耐醇解聚酰胺树脂及其制备方法和应用
CN114133618B (zh) * 2021-10-28 2023-08-22 金发科技股份有限公司 一种从塑料回收料中纯化环烯烃共聚物的方法
CN115558155A (zh) * 2022-10-28 2023-01-03 宁波坚锋新材料有限公司 一种渔网丝回收料制备高纯度pa6再生料的方法、pa6再生料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994417A (en) * 1996-06-04 1999-11-30 Auburn University Process for recovering polymers from commingled materials
CN101058695A (zh) 2007-06-05 2007-10-24 张宝范 用于金属的涂料
CN103642065A (zh) * 2013-12-10 2014-03-19 江南大学 一种选择性溶解-沉淀方法从废旧地毯中再生尼龙6和尼龙66的工艺
CN109810284A (zh) 2019-02-02 2019-05-28 上海泽复环境工程有限公司 一种利用复合溶剂体系溶解尼龙12废料的方法
CN110423377A (zh) * 2019-08-27 2019-11-08 上海松沅环境修复技术有限公司 一种高纯度尼龙再生料的制备方法
CN111892743A (zh) * 2020-06-30 2020-11-06 金发科技股份有限公司 一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603434A1 (de) * 1992-12-18 1994-06-29 Karl Fischer Industrieanlagen Gmbh Polyamid-Rückgewinnung
CA2261304C (en) * 1998-02-06 2008-09-23 Solutia Inc. Process for separating polyamide from colorant
US6919383B2 (en) * 2001-04-10 2005-07-19 North Carolina State University CO2-assisted deploymerization, purification and recycling of step-growth polymers
US20040247837A1 (en) * 2003-06-09 2004-12-09 Howard Enlow Multilayer film
JP4739950B2 (ja) * 2005-01-21 2011-08-03 ダイセル化学工業株式会社 偏光性積層体及びその製造方法
CN101198642A (zh) * 2005-04-15 2008-06-11 宇部兴产株式会社 多孔聚酰胺微粉的精制方法
CN105116077A (zh) * 2015-07-22 2015-12-02 乌鲁木齐谱尼测试科技有限公司 尼龙树脂及其制品中多溴联苯和多溴联苯醚前处理方法
JP2019104861A (ja) * 2017-12-14 2019-06-27 埼玉県 繊維強化樹脂複合材のリサイクル方法及びそのシステム
CN111849152B (zh) * 2020-06-29 2022-02-18 金发科技股份有限公司 一种聚酰胺复合材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994417A (en) * 1996-06-04 1999-11-30 Auburn University Process for recovering polymers from commingled materials
CN101058695A (zh) 2007-06-05 2007-10-24 张宝范 用于金属的涂料
CN103642065A (zh) * 2013-12-10 2014-03-19 江南大学 一种选择性溶解-沉淀方法从废旧地毯中再生尼龙6和尼龙66的工艺
CN109810284A (zh) 2019-02-02 2019-05-28 上海泽复环境工程有限公司 一种利用复合溶剂体系溶解尼龙12废料的方法
CN110423377A (zh) * 2019-08-27 2019-11-08 上海松沅环境修复技术有限公司 一种高纯度尼龙再生料的制备方法
CN111892743A (zh) * 2020-06-30 2020-11-06 金发科技股份有限公司 一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166602A4

Also Published As

Publication number Publication date
JP2023532552A (ja) 2023-07-28
US20230250252A1 (en) 2023-08-10
EP4166602A1 (en) 2023-04-19
CN111892743B (zh) 2022-02-18
EP4166602A4 (en) 2023-12-20
CN111892743A (zh) 2020-11-06
KR20230022220A (ko) 2023-02-14

Similar Documents

Publication Publication Date Title
WO2022001054A1 (zh) 一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺
JP5459842B2 (ja) 架橋可能なアラミドコポリマー
WO2017147940A1 (zh) 一种双酚芴环氧树脂的制备工艺
CN114395216B (zh) 生物基超支化聚合物环氧树脂及其制备方法
CN104447274B (zh) 长碳链二元酸提纯精制结晶母液的回收利用方法
WO2011097832A1 (zh) 一种长碳链半芳香耐高温聚酰胺的均聚物和共聚物及其合成方法
CN114163622B (zh) 一种半芳香族聚酰胺废料回收制备可生物降解材料的方法及其产品
CN110857331B (zh) 一种包括聚酰胺56的共聚物及其制备方法
CN113429782B (zh) 一种透明聚酰胺树脂及其制备方法
JP3143977B2 (ja) ポリアリーレンスルフィドの精製方法
CN114149586B (zh) 一种扩链聚硫酸酯及其制备方法
CN113461932B (zh) 一种聚芳醚酮制备方法
WO2023284285A1 (zh) 一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品
JP2000080199A (ja) ガラス繊維含有ポリアミド成形品からのポリアミドとガラス繊維との分離方法
CN111518276A (zh) 注塑级聚苯硫醚工业产品的洗涤处理方法
CN116903851A (zh) 一种氮磷系共聚阻燃聚酰胺树脂及其制备方法和应用
CN114262519B (zh) 一种聚苯硫醚纤维增强聚苯硫醚复合材料及其制备方法
CN112063151B (zh) 多壁碳纳米管与含呋喃苯侧基聚芳醚酮复合热固型材料及其制备方法
JPH0377216B2 (zh)
CN117430841A (zh) 聚酰胺薄膜、聚酰胺薄膜的制备方法及应用
CN117430945A (zh) 一种聚酰胺薄膜及其制备方法和应用
CN116217963A (zh) 一种聚酰亚胺树脂的纯化方法
CN116284757A (zh) 一种高强度化学稳定的阻燃型闭环回收塑料及其制备和回收方法
CN117883985A (zh) 一种改性聚四氟乙烯复合纳滤膜的制备方法
CN117430947A (zh) 一种耐化学、低内应力的聚酰胺复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581599

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237000631

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020943688

Country of ref document: EP

Effective date: 20230112

NENP Non-entry into the national phase

Ref country code: DE