WO2022000877A1 - 一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯及其制备方法 - Google Patents

一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯及其制备方法 Download PDF

Info

Publication number
WO2022000877A1
WO2022000877A1 PCT/CN2020/123187 CN2020123187W WO2022000877A1 WO 2022000877 A1 WO2022000877 A1 WO 2022000877A1 CN 2020123187 W CN2020123187 W CN 2020123187W WO 2022000877 A1 WO2022000877 A1 WO 2022000877A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
water
aliphatic amine
modified graphene
preparation
Prior art date
Application number
PCT/CN2020/123187
Other languages
English (en)
French (fr)
Inventor
梁宇
张心悦
陈凯锋
王晶晶
黄从树
Original Assignee
中国船舶重工集团公司第七二五研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国船舶重工集团公司第七二五研究所 filed Critical 中国船舶重工集团公司第七二五研究所
Publication of WO2022000877A1 publication Critical patent/WO2022000877A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/043Drying, calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints

Definitions

  • the invention belongs to the technical field of chemical materials, and in particular relates to aliphatic amine hydrophobically modified graphene oxide suitable for water-based coatings and a preparation method thereof.
  • An effective modification method can utilize the unique two-dimensional sheet structure, hydrophobic effect and small-size filling effect of graphene materials to improve the shielding performance of underwater anti-corrosion coatings.
  • the compatibility of graphene with water-based coating systems is also relatively poor. And it is easy to cause self-agglomeration, and galvanic corrosion will occur with the substrate when the paint film is unevenly distributed; the modified graphene oxide can effectively solve the dispersion problem, but when it is applied in the paint, the surface contains carboxyl groups, hydroxyl groups, etc. Hydrophilic groups provide transport channels for corrosive media such as seawater. Therefore, the hydrophobic modification of graphene oxide is a key problem to be solved in the research and development of water-based graphene anti-corrosion coatings.
  • the commonly used epoxy coatings are functionalized and modified with graphene oxide to introduce hydrophobic groups such as fluorine and silicon elements on the surface of graphene through active groups such as carboxyl groups, hydroxyl groups, and epoxy groups; introduce amino groups, epoxy groups, etc.
  • the active group which is copolymerized with the water-based resin, introduces the graphene into the coating system by covalent bond.
  • the Chinese patent application number is 201910445194.9, and the patent application document with the application publication date on August 6, 2019 discloses a superhydrophobic modified graphene modified Large-area carbonized sponge and preparation method thereof.
  • This patent is specifically for ultrasonically dispersing graphene oxide in deionized water, completely immersing the melamine sponge in the graphene oxide solution, adding sodium chloride and stirring, and then carbonizing the graphene-modified melamine sponge obtained by reduction with hydrazine hydrate, and then spraying again. Polydimethylsiloxane was used to obtain a superhydrophobic modified graphene-modified large-area carbonized sponge.
  • the Chinese patent application number is 201710553953.4
  • the patent application document with the application publication date on November 3, 2017 discloses a method for preparing superhydrophobic graphene oxide by modifying branched chain fatty acids.
  • a certain amount of graphene oxide is dispersed in a reaction solvent, and then an appropriate amount of branched-chain fatty acid is slowly added, and the mixture is refluxed at 110-150° C. for 8-24 hours.
  • the reaction solution was centrifuged, washed, centrifuged, and the supernatant was removed, and then dried for 24 hours to obtain modified superhydrophobic graphene oxide.
  • the modified graphene oxide material prepared by the above invention has excellent hydrophobic properties
  • the super-strong hydrophobic graphene material is not suitable for application in water-based anti-corrosion coating systems due to poor compatibility with water-based resins, and the preparation process is complicated and industrialized. Production is difficult.
  • the Chinese patent application number is 201910537958.7
  • the patent application document whose application publication date is January 10, 2020 discloses a modified Graphene oxide and its preparation method and application.
  • the preparation method of the modified graphene oxide of the patent comprises: mixing graphene oxide dispersion with a solution containing aliphatic amine and reacting to obtain modified graphene oxide; wherein, in the solution containing aliphatic amine, aliphatic amine: solvent
  • the mass ratio is 1:100-1:10000
  • the mass ratio of the graphene oxide in the graphene oxide dispersion liquid to the solution containing aliphatic amine is 1:10-1:200.
  • partially hydrophilic and partially lipophilic amphiphilic graphene oxide nanosheets can be obtained.
  • the modified graphene oxide of the patent is non-hydrophobic and added to the water-based anti-corrosion coating, which will reduce the anti-corrosion performance of the coating.
  • the Chinese patent application number is 201610723166.5, and the patent application document with the application publication date of January 25, 2017 discloses a modified graphene oxide, an engine lubricating oil and its application.
  • graphene oxide (GO) is first prepared by an improved Hummers method, and the graphene oxide is modified with long-chain aliphatic amines and/or organosilicon to obtain modified graphene derivatives.
  • the invention greatly reduces the wear of the engine, extends the oil change period of the automobile engine oil from 5,000 kilometers to 50,000 kilometers, and saves 7-10% of fuel in terms of fuel economy.
  • the reaction of the amino group and the carboxyl group is a reversible reaction to generate amide and water, and the above-mentioned patents all use water as the reaction solvent, and the reaction proceeds in a retrograde manner, the raw material consumption is greatly increased, the yield is low, and the energy consumption is increased.
  • the purpose of the present invention is to develop a kind of aliphatic amine hydrophobically modified graphene oxide material suitable for water-based coatings, the aliphatic segment has the characteristics of hydrophobicity and large action area, and by selecting an appropriate aliphatic amine structure, the hydrophobicity of the graphene oxide material can be improved.
  • the NH bond in the modified graphene oxide structure can form hydrogen bonds with water molecules, which is conducive to the stable dispersion of modified graphene oxide. When compounded with water-based resin, it can significantly improve the shielding performance of the coating and the inhibition effect of corrosive medium transmission, and improve the corrosion resistance of the coating.
  • the invention also provides a preparation method suitable for aliphatic amine hydrophobically modified graphene oxide material for water-based paint, which has simple preparation method, obvious performance improvement and high practical application value.
  • modified graphene oxide suitable for water-based coatings, wherein the modified graphene oxide is a structure in which aliphatic amine segments are grafted on the surface of graphene oxide.
  • the schematic diagram of the structural formula of the modified graphene oxide is as follows, it should be noted that the following structural formula is only a schematic diagram of the grafting reaction, and cannot be understood as the structural formula of the modified graphene oxide of the present invention.
  • n is the carbon chain length of the aliphatic chain.
  • a method for preparing aliphatic amine hydrophobically modified graphene oxide suitable for water-based coatings after the graphene oxide is uniformly dispersed in an organic high-boiling point solvent, a dehydrating agent is used to remove the hydroxyl groups on the surface of the graphene oxide, and the treated The obtained graphene oxide solution is fully reacted with aliphatic amine, and finally the aliphatic amine hydrophobically modified graphene oxide is obtained after filtering, washing and drying.
  • the aliphatic amine is a primary amine compound with a carbon chain length of C 1 to C 16
  • the aliphatic amine includes methylamine, ethylamine, propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine
  • the organic high boiling point solvent is one or more of N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone and dimethylsulfoxide.
  • the dehydrating agent is one or more of molecular sieves, concentrated sulfuric acid, and DCC (dicyclohexylcarbodiimide).
  • each reaction raw material mass fraction is:
  • it includes the following steps: adding graphene oxide to 100-150 mL of an organic high-boiling solvent, ultrasonically pre-dispersing, and then transferring to a reactor to stir until uniformly mixed; then adding a dehydrating agent to treat the surface of graphene oxide, and stirring at room temperature for 0.5 ⁇ 1h to remove the hydroxyl group on the surface of graphene oxide; after the reaction is completed, add aliphatic amine, raise the temperature to 60 ⁇ 80 ° C, filter to obtain a black suspension after 4 ⁇ 6 hours of reaction, and repeatedly wash with the lotion to obtain a black suspension The flocculent solid is dried to obtain modified graphene oxide.
  • the washing solution is one or more of water, ethanol, dioxane, acetone, xylene, and butyl acetate.
  • a preparation method of hydrophobically modified graphene oxide with surface-grafted aliphatic segments comprising the following steps: adding 3-8 parts of graphene oxide into 100-150 mL of organic high-boiling point solvent, ultrasonically pre-dispersing, and then transferring to a reactor for stirring until the mixture is uniform; then add 35-65 parts of dehydrating agent to treat the surface of graphene oxide, and stir at room temperature for 0.5-1 h; after the reaction is completed, in order to ensure the reaction efficiency, add the calculated amount (molar excess) of different chain lengths of aliphatic amines 30-60 parts, raising the temperature to 60-80° C., reacting for 4-6 hours and filtering to obtain a black suspension, repeatedly washing with the lotion for several times to obtain a black flocculent solid, and drying to obtain modified graphene oxide.
  • the present invention prepares a series of modified graphene materials containing aliphatic chains of different lengths by adopting the hydrophobic properties of aliphatic chains, which can effectively improve the hydrophobic properties of graphene oxide while ensuring the dispersibility of graphene in aqueous systems,
  • the modified graphene can be used in the formulation design of water-based anti-corrosion coatings, and its shielding performance and hydrophobic effect can greatly improve the corrosion resistance of the coating compared with traditional water-based anti-corrosion coatings, which has certain economic benefits;
  • the present invention grafts aliphatic amines with different side chain lengths on the surface of graphene oxide through a simple one-step chemical method, adopts the characteristics of aliphatic chain hydrophobicity and large action area, and utilizes the reactivity of amino groups and carboxyl groups on the surface of graphene oxide,
  • a series of modified graphene materials containing aliphatic chains of different lengths were prepared to enhance the hydrophobic properties of graphene oxide while reducing its surface energy and improving graphene dispersion, i.e. ensuring that the hydrophobically modified graphene oxide materials remain in water-based coatings better dispersion;
  • organic high boiling point solvent as the reaction solvent of modified graphene oxide, one is that organic high boiling point solvent has relatively good dispersibility and solubility to graphene oxide and aliphatic amine;
  • the solvent is stable at high temperature and not easily volatile;
  • dehydrating agent preferably uses strong acid, strong acid removes hydroxyl group on graphene oxide surface, graphene oxide is positively charged, and negatively charged after dehydrogenation of fatty amine , so that the two can react quickly; on the other hand, the reaction of amino group and carboxyl group is a reversible reaction, resulting in amide and water, so it is necessary to add a dehydrating agent to the system to make the reaction move toward the product; the mechanism of action of the dehydrating agent is as follows Show:
  • modified graphene oxide shows more obvious lamellar effect, and with the increase of carbon chain length, oxidation The interlayer spacing of graphene gradually increased, and the agglomeration tendency was further reduced. Similarly, the contact angle of modified graphene oxide increases gradually with the increase of carbon chain length, and the hydrophobic effect is obviously improved; due to the hydrogen bond between NH and water molecules, the modified graphene oxide prepared by the present invention can be It maintains good dispersibility in the water phase and can be applied to the design of water-based graphene anti-corrosion coatings
  • Fig. 1 is aliphatic amine hydrophobically modified graphene oxide structural schematic diagram of the present invention
  • Fig. 2 is the detailed synthesis route of the preparation method of aliphatic amine hydrophobically modified graphene oxide of the present invention
  • Fig. 3 is the scanning electron microscope schematic diagram comparing modified graphene oxide and graphene oxide (GO) (a) GO; (b) GO-C 8 ; (c) GO-C 12 ; (d) GO-C 16 ;
  • Fig. 4 is modified graphene oxide and graphene oxide XRD schematic diagram
  • Fig. 5 is the contact angle schematic diagram of modified graphene oxide and graphene oxide
  • FIG. 6 is a schematic diagram of the water dispersion effect of modified graphene oxide and graphene oxide
  • Fig. 7 is the infrared contrast schematic diagram of modified graphene oxide and graphene oxide
  • FIG. 1 The structural formula of the aliphatic amine hydrophobically modified graphene oxide synthesized by the present invention is shown in FIG. 1 , which is prepared by the synthesis mechanism shown in FIG. 2 .
  • modified graphene oxide (respectively denoted as GO-C 8 , GO-C 12 , GO-C 16 ) with carbon chain lengths of C 8 , C 12 and C 16 obtained in Examples 1-3 , XRD, contact angle and water dispersion effect were evaluated. Comparing the SEM schematic diagram of modified graphene oxide and graphene oxide (GO) (Fig. 3), the distance between modified graphene oxide layers increases, and the lamellar effect is more obvious; Graphene oxide XRD schematic diagram (Fig.
  • modified graphene oxide prepared by the present invention has excellent hydrophobic effect, and can maintain good dispersibility in water phase.
  • the graphene oxide modified at 1250cm -1, 1560cm -1 and 3368cm -1, 2920cm -1 and 2850cm -1, respectively, at attributed to the emergence of CN, NH, -CH 2 peaks characteristic of the infrared, It is proved that the modification process is feasible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯,其制备方法为将氧化石墨烯于有机高沸点溶剂中分散均匀后,使用脱水剂将氧化石墨烯表面的羟基脱去,再将处理后的氧化石墨烯溶液与脂肪胺充分反应,最后过滤、洗涤、干燥后得到脂肪胺疏水改性氧化石墨烯。通过简单的一步化学法,采用脂肪链疏水、作用面积大的特性,利用氨基与氧化石墨烯表面羧基的反应活性,制备一系列含不同长度脂肪链的改性石墨烯材料,可有效提高氧化石墨烯的疏水性能,同时保证石墨烯在水性体系中的分散性。

Description

一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯及其制备方法 技术领域
本发明属于化工材料技术领域,具体地说本发明涉及一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯及其制备方法。
背景技术
随着国家环保政策的不断加严,传统溶剂型涂料在船舶领域的使用因其环境污染与资源浪费的缺点而面临一定的限制。水性涂料由于其环保特点,在腐蚀防护领域具有广阔的应用前景;但也正因它以水替代有机溶剂,而水表面张力较大,难以润湿底材,成膜过程中易导致缩孔、开裂等缺陷,直接使用并不能满足海洋环境严苛的使用要求。有效的改性方法可利用石墨烯材料独特的二维片层结构、疏水效应与小尺寸填充效应来提高水下防腐涂层的屏蔽性能,然而石墨烯与水性涂料体系相容性也比较差,且易导致自身团聚,漆膜分布不均匀时也会与基材发生电偶腐蚀;改性过的氧化石墨烯可有效解决分散问题,但其在涂料中应用时又因表面含有羧基、羟基等亲水基团为海水等腐蚀介质提供了传输通道等。因此,针对氧化石墨烯的疏水改性是水性石墨烯防腐涂料研发中需重点解决的问题。
目前常用的环氧涂料用氧化石墨烯功能化改性为通过羧基、羟基、环氧基等活性基团,在石墨烯表面引入含氟、硅元素等疏水基团;引入氨基、环氧基等活性基团,与水性树脂共聚,将石墨烯以共价键的方式引入至涂料体系中。上述研究目前相对比较成熟,也取得了一定的积极效果。
例如,针对疏水性氧化石墨烯的制备方法,经检索,中国专利申请号为201910445194.9,申请公开日为2019年8月6日的专利申请文件公开了一种超疏水改性的石墨烯改性的大面积炭化海绵及其制备方法。该专利具体为将氧化石墨烯超声分散于去离子水中,将三聚氰胺海绵完全浸渍于氧化石墨烯溶液中,加入氯化钠搅拌后经水合肼还原得到的石墨烯改性三聚氰胺海绵炭化后,再次喷涂聚二甲基硅氧烷,便获得超疏水改性的石墨烯改性大面积炭化海绵。再如,中国专利申请号为201710553953.4,申请公开日为2017年11月3日的专利申请文件公开了一种运用含支链脂肪酸改性制备超疏水氧化石墨烯的方法。该专利将一定量的氧化石墨烯分散于反应溶剂中,再缓慢加入适量含支链脂肪酸,110~150℃回流8~24h。反应液经离心、洗涤、离心、除去上层清液后干燥24h,便得到改性超疏水氧化石墨烯。上述发明制备的改性氧化石墨烯材料虽疏水性能优异,但是超强的疏水石墨烯材料因与水性树脂相容性较差,并不适合应用于水性防腐涂料体系,且制备工艺较复杂,工业化生产难度较大。
再如,针对引入氨基、环氧基等活性基团来改性石墨烯的制备方法,中国专利申请号为 201910537958.7,申请公开日为2020年1月10日的专利申请文件公开了一种改性氧化石墨烯及其制备方法和应用。该专利改性氧化石墨烯的制备方法包括:将氧化石墨烯分散液与含有脂肪胺的溶液混合后反应,得到改性氧化石墨烯;其中,在含有脂肪胺的溶液中,脂肪胺:溶剂的质量比为1:100~1:10000;氧化石墨烯分散液中的氧化石墨烯与含有脂肪胺的溶液的质量比为1:10~1:200。在该发明可获得部分亲水,部分亲油的双亲性氧化石墨烯纳米片。但是,该专利的改性氧化石墨烯非疏水性,添加到水性防腐涂料中,会降低涂料的防腐性能。中国专利申请号为201610723166.5,申请公开日为2017年1月25日的专利申请文件公开了一种改性氧化石墨烯、发动机润滑油及其应用。该专利首先采用改进的Hummers法制备了氧化石墨烯(GO),并将氧化石墨烯用长链脂肪胺和/或有机硅进行修饰,得到改性的石墨烯衍生物。该发明通过加入氧化石墨烯改性剂,极大减少发动机的磨损,使汽车发动机油换油期从5000公里延长至5万公里,燃油经济性方面,可以节省燃油7~10%。但是,氨基与羧基的反应是可逆反应,生成酰胺与水,上述专利均采用水作为反应溶剂,反应逆行进行,其原材料用量大幅提高,产率低,能耗增加。
因此,对于开发一种适用于水性涂料用脂肪胺疏水改性氧化石墨烯材料及其制备方法,得到疏水性能、与水性树脂相容性更优的改性氧化石墨烯材料,是目前亟需解决的问题。
发明内容
1.要解决的问题
本发明的目的是为了开发一种适用于水性涂料用脂肪胺疏水改性氧化石墨烯材料,脂肪链段具有疏水与作用面积大的特性,通过选用适当的脂肪胺结构在改善氧化石墨烯材料疏水性的同时可保证其在水性涂料中的分散性;同时改性氧化石墨烯结构中的N-H键可与水分子形成氢键,有利于改性氧化石墨烯的稳定分散。当与水性树脂复配时,能够显著提高涂层的屏蔽性能与腐蚀介质传输抑制效果,提高涂层的耐蚀性能。
本发明还提供一种适用于水性涂料用脂肪胺疏水改性氧化石墨烯材料的制备方法,制备方法简单,性能改善明显,具有较高的实际应用价值。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯,所述的改性氧化石墨烯为氧化石墨烯表面接枝脂肪胺链段的结构。所述的改性氧化石墨烯结构式的示意图如下,应当注意下面的结构式只是接枝反应的示意图,并不能理解为是本发明改性氧化石墨烯的结构式。
Figure PCTCN2020123187-appb-000001
其中,n为脂肪链碳链长度。
一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯的制备方法,将氧化石墨烯于有机高沸点溶剂中分散均匀后,使用脱水剂将氧化石墨烯表面的羟基脱去,再将处理后的氧化石墨烯溶液与脂肪胺充分反应,最后过滤、洗涤、干燥后得到脂肪胺疏水改性氧化石墨烯。
进一步地,所述的脂肪胺为碳链长度C 1~C 16的伯胺型化合物,所述的脂肪胺包括甲胺、乙胺、丙胺、正丁胺、正戊胺、正己胺、正庚胺、正辛胺、正壬胺、正癸胺、正十一胺、正十二胺、正十三胺、正十四胺、正十五胺、正十六胺中的一种或几种。
进一步地,所述的氧化石墨烯为C/O=1~3的二维片层材料。
进一步地,所述的有机高沸点溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜中的一种或几种。
进一步地,所述的脱水剂为分子筛、浓硫酸、DCC(二环己基碳二酰亚胺)中的一种或几种。
进一步地,制备方法中,各反应原料质量份数为:
氧化石墨烯3~8份;
脱水剂35~65份;
脂肪胺30~60份。
进一步地,包括以下步骤:将氧化石墨烯加入100~150mL有机高沸点溶剂中,超声预分散后转至反应器搅拌至混合均匀;然后加入脱水剂对氧化石墨烯表面进行处理,室温下搅拌0.5~1h以脱去氧化石墨烯表面的羟基;反应完毕后加入脂肪胺,升高温度至60~80℃,反应4~6h后过滤得到黑色悬浊液,以洗液反复洗涤多次后得到黑色絮状固体,干燥得到改性氧化石墨烯。
进一步地,所述的洗液为水、乙醇、二氧六环、丙酮、二甲苯、醋酸丁酯中的一种或几种。
一种表面接枝脂肪链段的疏水改性氧化石墨烯的制备方法,包括以下步骤:将氧化石墨烯3~8份加入100~150mL有机高沸点溶剂中,超声预分散后转至反应器搅拌至混合均匀;然后加入脱水剂35~65份对氧化石墨烯表面进行处理,室温下搅拌0.5~1h;反应完毕后,为 确保反应效率,加入计算量(摩尔过量)的不同链长的脂肪胺30~60份,升高温度至60~80℃,反应4~6h后过滤得到黑色悬浊液,以洗液反复洗涤多次后得到黑色絮状固体,干燥得到改性氧化石墨烯。
上述制备方法中利用氨基与氧化石墨烯表面羧基的反应活性,制备一系列含不同长度脂肪链的改性石墨烯材料,合成路线如下所示:
Figure PCTCN2020123187-appb-000002
一种采用上述的制备方法得到的脂肪胺疏水改性氧化石墨烯在制备船舶用水性石墨烯防腐涂料中的应用。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明通过采用脂肪链疏水的特性,制备一系列含不同长度脂肪链的改性石墨烯材料,可有效提高氧化石墨烯的疏水性能的同时保证石墨烯在水性体系中的分散性,该种改性石墨烯能够应用于水性防腐涂料配方设计中,利用其屏蔽性能与疏水效应,相比传统水性防腐涂料可大幅提高涂层的耐蚀性能,具有一定的经济效益;
(2)本发明通过简单的一步化学法,将不同侧链长度脂肪胺接枝于氧化石墨烯表面,采用脂肪链疏水、作用面积大的特性,利用氨基与氧化石墨烯表面羧基的反应活性,制备一系列含不同长度脂肪链的改性石墨烯材料,以增强氧化石墨烯的疏水性能,同时降低其表面能,改善石墨烯分散性,即确保疏水改性氧化石墨烯材料在水性涂料中保持较好的分散性;
(3)本发明的制备方法中使用有机高沸点溶剂作为改性氧化石墨烯的反应溶剂,一是有机高沸点溶剂对氧化石墨烯与脂肪胺具有比较好的分散性和溶解性;二是该溶剂在温度较高时稳定,不易挥发;
(4)本发明的制备方法使用脱水剂先处理氧化石墨烯表面,一方面,脱水剂优选使用强酸,强酸脱去氧化石墨烯表面羟基,氧化石墨烯带正电,脂肪胺脱氢后带负电,使得二者可 快速反应;另一方面,氨基与羧基的反应是可逆反应,生成酰胺与水,所以需在体系中加入脱水剂,使得反应朝生成物方向移动;脱水剂的作用机理如下所示:
Figure PCTCN2020123187-appb-000003
(5)对比改性氧化石墨烯与氧化石墨烯的扫描电镜示意图、XRD、接触角与水分散效果,改性氧化石墨烯呈现更加明显的片层效果,且随着碳链长度的增加,氧化石墨烯层间距逐渐增大,团聚倾向进一步缩小。与之类似的,改性氧化石墨烯接触角随碳链长度增加逐渐增大,疏水效果提升明显;由于N-H与水分子间的氢键作用,本发明所制得的改性氧化石墨烯能够在水相中保持较好的分散性,可应用于水性石墨烯防腐涂料的设计
附图说明
图1为本发明脂肪胺疏水改性氧化石墨烯结构示意图;
图2为本发明脂肪胺疏水改性氧化石墨烯制备方法的详细合成路线;
图3为对比改性氧化石墨烯与氧化石墨烯(GO)的扫描电镜示意图(a)GO;(b)GO-C 8;(c)GO-C 12;(d)GO-C 16
图4为改性氧化石墨烯与氧化石墨烯XRD示意图;
图5为改性氧化石墨烯与氧化石墨烯接触角示意图;
图6为改性氧化石墨烯与氧化石墨烯水分散效果示意图;
图7为改性氧化石墨烯与氧化石墨烯红外对比示意图;
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
本发明合成的脂肪胺疏水改性氧化石墨烯的结构式如图1所示,采用图2所示的合成机理进行制备。
实施例1
将5份氧化石墨烯(C/O=1)加入100mL N,N-二甲基甲酰胺中,超声预分散后转至250mL圆底烧瓶中搅拌至混合均匀;然后加入65份浓硫酸对氧化石墨烯表面进行处理,室温下搅拌1h;反应完毕后,加入30份正辛胺,升高温度至80℃,反应6h后过滤得到黑色悬浊液, 以乙醇反复洗涤多次后得到黑色絮状固体,干燥得到正辛胺改性氧化石墨烯GO-C 8
实施例2
将8份氧化石墨烯(C/O=2)加入100mL N-甲基吡咯烷酮中,超声预分散后转至250mL圆底烧瓶中搅拌至混合均匀;然后加入50份浓硫酸对氧化石墨烯表面进行处理,室温下搅拌1h;反应完毕后,加入45份正十二胺,升高温度至80℃,反应6h后过滤得到黑色悬浊液,以二氧六环反复洗涤多次后得到黑色絮状固体,干燥得到正十二胺改性氧化石墨烯GO-C 12
实施例3
将3份氧化石墨烯(C/O=3)加入100mL二甲基亚砜中,超声预分散后转至250mL圆底烧瓶中搅拌至混合均匀;然后加入37份DCC对氧化石墨烯表面进行处理,室温下搅拌0.5h;反应完毕后,加入60份正十六胺,升高温度至60℃,反应5h后过滤得到黑色悬浊液,以乙醇反复洗涤多次后得到黑色絮状固体,干燥得到正十六胺改性氧化石墨烯GO-C 16
性能测试
分别对实施例1~3得到的脂肪胺碳链长度为C 8、C 12、C 16改性氧化石墨烯(分别记为GO-C 8、GO-C 12、GO-C 16)的扫描电镜、XRD、接触角、水分散效果进行评价。对比改性氧化石墨烯与氧化石墨烯(GO)的扫描电镜示意图(图3),改性氧化石墨烯层与层间距增大,且呈现更加明显的片层效果;对比改性氧化石墨烯与氧化石墨烯XRD示意图(图4),随着碳链长度的增加,2θ逐渐较小,氧化石墨烯层间距逐渐增大,团聚倾向进一步缩小;对比改性石墨烯与氧化石墨烯接触角示意图(图5),随着碳链长度的增加,改性氧化石墨烯接触角逐渐增大,疏水效果提升明显;对比改性氧化石墨烯与氧化石墨烯水分散效果示意图(图6),碳链长度为C 16以下时改性氧化石墨烯在水中仍保持较好的分散性,但是值得说明的是,由于本发明的改性石墨烯应用于水性涂料中,而涂料中存在分散剂,因此GO-C 16可以在此基础上维持石墨烯在涂料中的分散性。
上述结果证明本发明所制得的改性氧化石墨烯具有优良的疏水效果,同时可在水相中保持较好的分散性,同理,于水性涂料中也有较好的分散性,可应用于水性石墨烯防腐涂料的设计。
与氧化石墨烯相比,改性氧化石墨烯在1250cm -1、1560cm -1和3368cm -1、2920cm -1和2850cm -1处分别出现了归属于C-N、N-H、-CH 2的红外特征峰,证明该改性工艺可行。

Claims (10)

  1. 一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯,其特征在于:所述的改性氧化石墨烯为氧化石墨烯表面接枝脂肪胺链段的结构。
  2. 一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯的制备方法,其特征在于:将氧化石墨烯于有机高沸点溶剂中分散均匀后,使用脱水剂将氧化石墨烯表面的羟基脱去,再将处理后的氧化石墨烯溶液与脂肪胺充分反应,最后过滤、洗涤、干燥后得到脂肪胺疏水改性氧化石墨烯。
  3. 根据权利要求2所述的一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯的制备方法,其特征在于:所述的脂肪胺为碳链长度C 1~C 16的伯胺型化合物,所述的脂肪胺包括甲胺、乙胺、丙胺、正丁胺、正戊胺、正己胺、正庚胺、正辛胺、正壬胺、正癸胺、正十一胺、正十二胺、正十三胺、正十四胺、正十五胺、正十六胺中的一种或几种。
  4. 根据权利要求2所述的一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯的制备方法,其特征在于:所述的氧化石墨烯为C/O=1~3的二维片层材料。
  5. 根据权利要求2所述的一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯的制备方法,其特征在于:所述的有机高沸点溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜中的一种或几种。
  6. 根据权利要求2所述的一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯的制备方法,其特征在于:所述的脱水剂为分子筛、浓硫酸、DCC中的一种或几种。
  7. 根据权利要求2~6任意一项所述的一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯的制备方法,其特征在于:制备方法中,各反应原料质量份数为:
    氧化石墨烯3~8份;
    脱水剂35~65份;
    脂肪胺30~60份。
  8. 根据权利要求7所述的一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯的制备方法,其特征在于:包括以下步骤:将氧化石墨烯加入100~150mL有机高沸点溶剂中,超声预分散后转至反应器搅拌至混合均匀;然后加入脱水剂对氧化石墨烯表面进行处理,室温下搅拌0.5~1h以脱去氧化石墨烯表面的羟基;反应完毕后加入脂肪胺,升高温度至60~80℃,反应4~6h后过滤得到黑色悬浊液,以洗液反复洗涤多次后得到黑色絮状固体,干燥得到改性氧化石墨烯。
  9. 根据权利要求8所述的一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯的制备方法,其特征在于:所述的洗液为水、乙醇、二氧六环、丙酮、二甲苯、醋酸丁酯中的一种或几种。
  10. 一种采用权利要求9所述的制备方法得到的脂肪胺疏水改性氧化石墨烯在制备船舶 用水性石墨烯防腐涂料中的应用。
PCT/CN2020/123187 2020-07-01 2020-10-23 一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯及其制备方法 WO2022000877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010619538.6A CN111849216A (zh) 2020-07-01 2020-07-01 一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯及其制备方法
CN202010619538.6 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022000877A1 true WO2022000877A1 (zh) 2022-01-06

Family

ID=72989409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123187 WO2022000877A1 (zh) 2020-07-01 2020-10-23 一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯及其制备方法

Country Status (2)

Country Link
CN (1) CN111849216A (zh)
WO (1) WO2022000877A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162811A (zh) * 2021-12-13 2022-03-11 四川大学 羧基化氧化石墨烯及其制备与应用方法
CN114517046A (zh) * 2022-03-01 2022-05-20 天津职业技术师范大学(中国职业培训指导教师进修中心) 基于二价锌离子改性氧化石墨烯的水性环氧涂层及其制备方法
CN115650225A (zh) * 2022-11-11 2023-01-31 陕西科技大学 一种胺基功能化氧化石墨烯及其制备方法和应用
CN115820091A (zh) * 2022-11-30 2023-03-21 南昌航空大学 一种制备GO-PDA-CeO2/PU耐磨超疏水长效防腐蚀涂层的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539902B (zh) * 2022-03-01 2022-12-20 刘志强 一种用于越野车使用的汽车底盘用涂料
CN114988401B (zh) * 2022-05-16 2023-06-09 南通赛可特电子有限公司 一种pcb板改性氧化石墨烯直接黑孔化的方法
CN115073986A (zh) * 2022-08-11 2022-09-20 马赫 一种弹性防水涂料及其制备方法
CN115975618A (zh) * 2022-12-02 2023-04-18 常州大学 一种改性氧化石墨烯、其制备方法及应用
CN116200067B (zh) * 2023-02-13 2024-03-29 山东京博装备制造安装有限公司 一种用于覆土储罐防腐涂料的石墨烯填料及制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052813A1 (en) * 2008-01-03 2011-03-03 Peter Ho Functionalised graphene oxide
CN104861651A (zh) * 2015-03-27 2015-08-26 华东理工大学 改性氧化石墨烯与聚酰亚胺原位接枝的复合材料的制备方法
CN107089657A (zh) * 2017-06-21 2017-08-25 山东欧铂新材料有限公司 一种氧化石墨烯的活化方法
CN108864485A (zh) * 2018-08-02 2018-11-23 中国船舶重工集团公司第七二五研究所 一种高分散性的大体积链段改性氧化石墨烯的制备方法
CN110408074A (zh) * 2019-08-16 2019-11-05 哈尔滨工业大学 一种烷基化修饰的氧化石墨烯基超疏水材料的制备方法
CN111232967A (zh) * 2020-03-17 2020-06-05 北京化工大学 一种氨基化氧化石墨烯的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105838195B (zh) * 2016-05-13 2018-12-14 江苏科技大学 一种含有氧化石墨烯的水性环氧防腐涂料及其制备方法
CN110237725B (zh) * 2019-06-06 2021-03-26 同济大学 有机胺改性氧化石墨烯/聚合物复合膜及其制备和应用
CN110668435B (zh) * 2019-06-20 2021-07-13 宁波锋成先进能源材料研究院 一种改性氧化石墨烯及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052813A1 (en) * 2008-01-03 2011-03-03 Peter Ho Functionalised graphene oxide
CN104861651A (zh) * 2015-03-27 2015-08-26 华东理工大学 改性氧化石墨烯与聚酰亚胺原位接枝的复合材料的制备方法
CN107089657A (zh) * 2017-06-21 2017-08-25 山东欧铂新材料有限公司 一种氧化石墨烯的活化方法
CN108864485A (zh) * 2018-08-02 2018-11-23 中国船舶重工集团公司第七二五研究所 一种高分散性的大体积链段改性氧化石墨烯的制备方法
CN110408074A (zh) * 2019-08-16 2019-11-05 哈尔滨工业大学 一种烷基化修饰的氧化石墨烯基超疏水材料的制备方法
CN111232967A (zh) * 2020-03-17 2020-06-05 北京化工大学 一种氨基化氧化石墨烯的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162811A (zh) * 2021-12-13 2022-03-11 四川大学 羧基化氧化石墨烯及其制备与应用方法
CN114517046A (zh) * 2022-03-01 2022-05-20 天津职业技术师范大学(中国职业培训指导教师进修中心) 基于二价锌离子改性氧化石墨烯的水性环氧涂层及其制备方法
CN115650225A (zh) * 2022-11-11 2023-01-31 陕西科技大学 一种胺基功能化氧化石墨烯及其制备方法和应用
CN115650225B (zh) * 2022-11-11 2024-05-03 陕西科技大学 一种胺基功能化氧化石墨烯及其制备方法和应用
CN115820091A (zh) * 2022-11-30 2023-03-21 南昌航空大学 一种制备GO-PDA-CeO2/PU耐磨超疏水长效防腐蚀涂层的方法
CN115820091B (zh) * 2022-11-30 2023-08-25 南昌航空大学 一种制备GO-PDA-CeO2/PU耐磨超疏水长效防腐蚀涂层的方法

Also Published As

Publication number Publication date
CN111849216A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2022000877A1 (zh) 一种适用于水性涂料的脂肪胺疏水改性氧化石墨烯及其制备方法
CN110746796B (zh) 一种改性石墨烯和含有该改性石墨烯浆料的制备方法
CN110343455B (zh) 含硅烷偶联剂改性石墨烯的水性重防腐涂料、制法和用途
CN108659671B (zh) 一种木质素/石墨烯基复合防腐涂层及其制备方法与应用
CN109943169B (zh) 一种纳米复合海洋防腐涂料及其制备方法
US20200239708A1 (en) Anticorrosive Grafted Graphene Filler for Organic Coating and Methods of Preparing the Same
CN111717900B (zh) 一种功能化氮化硼纳米片的机械剥离方法
CN111269626B (zh) 一种环氧丙烯酸聚硅氧烷自清洁涂料的制备方法
CN113214680B (zh) 基于氧化石墨烯的纳米协同增强片层材料及其制备方法
CN108821272B (zh) 基于卡宾共价改性石墨烯的方法及其掺杂防腐涂层的制备方法
CN113150654A (zh) 一种包含石墨烯基复合防腐材料的防腐涂料
Uttaravalli et al. Sustainable use of recycled soot (carbon black) for the cleaner production of value-added products: A compendium
CN109651860A (zh) 一种石墨烯/纳米二氧化钛复合材料及其制备方法与应用
CN108373812A (zh) 一种防腐防污抗蛋白水性聚脲接枝石墨烯涂层材料的制备方法
CN112029314A (zh) 一种纳米填料及其制备方法与应用
CN109880488B (zh) 一种二胺类水杨醛西佛碱修饰石墨烯或氧化石墨烯金属防腐涂料
CN111334085A (zh) 酞菁蓝颜料的石墨烯改性方法
CN109054479A (zh) 一种高温设备用防腐涂料及其制备方法
Maity et al. Anhydride-cured epoxidized dehydrated castor oil (EDCO) containing organically modified zinc oxide (ZnO) nanoparticles
CN113637337B (zh) 蓝色荧光碳量子点修饰的超疏水材料及其制备方法和应用
Jin et al. Highly solar-reflective litchis-like core-shell HGM/TiO2 microspheres synthesized by controllable heterogeneous precipitation method
CN116948449B (zh) 一种钕铁硼磁体专用复合溶胶的制备方法
CN114105124B (zh) 石墨烯量子点、聚苯硫醚/石墨烯量子点复合材料的制备方法和应用
CN112391072B (zh) 一种疏水长链改性l-组氨酸缓蚀剂及其制备方法和应用
MOHAN et al. Efficient synthesis of oxygen-studded graphene nanolayers possessing tunable photoluminescence from hearthside waste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943336

Country of ref document: EP

Kind code of ref document: A1