WO2021261622A1 - 표준형 오가노이드 제조방법 - Google Patents
표준형 오가노이드 제조방법 Download PDFInfo
- Publication number
- WO2021261622A1 WO2021261622A1 PCT/KR2020/008274 KR2020008274W WO2021261622A1 WO 2021261622 A1 WO2021261622 A1 WO 2021261622A1 KR 2020008274 W KR2020008274 W KR 2020008274W WO 2021261622 A1 WO2021261622 A1 WO 2021261622A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- well
- organoid
- sub
- cells
- cell culture
- Prior art date
Links
- 210000002220 organoid Anatomy 0.000 title claims abstract description 126
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 210000004027 cell Anatomy 0.000 claims description 74
- 238000004113 cell culture Methods 0.000 claims description 58
- 108010082117 matrigel Proteins 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 238000012216 screening Methods 0.000 claims description 16
- 238000012258 culturing Methods 0.000 claims description 10
- 239000000017 hydrogel Substances 0.000 claims description 9
- 206010028980 Neoplasm Diseases 0.000 claims description 8
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 claims description 7
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 claims description 7
- 201000011510 cancer Diseases 0.000 claims description 7
- 210000002744 extracellular matrix Anatomy 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000003384 imaging method Methods 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 16
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 15
- 239000001963 growth medium Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 206010009944 Colon cancer Diseases 0.000 description 8
- 210000000056 organ Anatomy 0.000 description 7
- 229920001296 polysiloxane Polymers 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 239000003814 drug Substances 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 208000029742 colonic neoplasm Diseases 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 101001063456 Homo sapiens Leucine-rich repeat-containing G-protein coupled receptor 5 Proteins 0.000 description 3
- 102100031036 Leucine-rich repeat-containing G-protein coupled receptor 5 Human genes 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000003125 immunofluorescent labeling Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- DEGAKNSWVGKMLS-UHFFFAOYSA-N calcein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(O)=O)CC(O)=O)=C(O)C=C1OC1=C2C=C(CN(CC(O)=O)CC(=O)O)C(O)=C1 DEGAKNSWVGKMLS-UHFFFAOYSA-N 0.000 description 2
- 238000012136 culture method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012757 fluorescence staining Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229960002378 oftasceine Drugs 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008672 reprogramming Effects 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- HIJMSZGHKQPPJS-UHFFFAOYSA-N 3-(6-methylpyridin-2-yl)-n-phenyl-4-quinolin-4-ylpyrazole-1-carbothioamide Chemical compound CC1=CC=CC(C=2C(=CN(N=2)C(=S)NC=2C=CC=CC=2)C=2C3=CC=CC=C3N=CC=2)=N1 HIJMSZGHKQPPJS-UHFFFAOYSA-N 0.000 description 1
- 238000012604 3D cell culture Methods 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102100021022 Gastrin Human genes 0.000 description 1
- 108010052343 Gastrins Proteins 0.000 description 1
- ZWQVYZXPYSYPJD-RYUDHWBXSA-N Glu-Gly-Phe Chemical compound OC(=O)CC[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ZWQVYZXPYSYPJD-RYUDHWBXSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 125000003047 N-acetyl group Chemical group 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 102000044880 Wnt3A Human genes 0.000 description 1
- 108700013515 Wnt3A Proteins 0.000 description 1
- 108010076089 accutase Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- LAQFLZHBVPULPL-UHFFFAOYSA-N methyl(phenyl)silicon Chemical compound C[Si]C1=CC=CC=C1 LAQFLZHBVPULPL-UHFFFAOYSA-N 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 102000045246 noggin Human genes 0.000 description 1
- 108700007229 noggin Proteins 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 101150068520 wnt3a gene Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0679—Cells of the gastro-intestinal tract
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/08—Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/12—Well or multiwell plates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/38—Caps; Covers; Plugs; Pouring means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/14—Scaffolds; Matrices
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0693—Tumour cells; Cancer cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2513/00—3D culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/90—Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
Definitions
- the present invention relates to a standard method for preparing organoids. More specifically, it relates to a method for producing an organoid of a uniform size.
- Organoids also called 'organ analogues' or 'organ-like organs', are organ-specific cell aggregates manufactured by re-aggregating and recombination of cells isolated from stem cells or organ origin cells using a three-dimensional culture method. Organoids contain specific cells of the organ as a model, reproduce the specific function of the organ, and can be spatially organized in a form similar to that of an actual organ. It has been reported that patient-derived tumor organoids represent the characteristics of cancer cells and cancer tissues of the patient as they are, and can also reproduce the genetic variation characteristics of the patient's cancer tissues.
- Organoids can be used in cell therapy, biotissue engineering, drug development, toxicology, and even precision medicine. In order to increase the utilization of organoids, a large amount of comparable quantitative organoids and their analysis methods are needed. However, there is still no method for quantitatively culturing organoids. The reason is that the organoids grow in different ways because matrigel, the most important element of growing organoids, is hardened in a dome shape on the floor and then the organoids are grown in it.
- organoids grown in Matrigel can grow on top of each other in a three-dimensional support, the limitations are clear.
- Patent Document 1 discloses a cell culture chip capable of culturing three-dimensional tissue cells.
- the first culture section, the second culture section, and the third culture section are formed for each layer, and the degree of cell growth can be checked for each layer.
- the cell culture chip of Patent Document 1 has a problem in that organoids cannot be obtained in high yield.
- the present inventors completed the present invention by continuing research on standard organoids having a uniform size while not using or minimizing the use of an extracellular matrix-based hydrogel (eg, Matrigel).
- an extracellular matrix-based hydrogel eg, Matrigel
- Another object of the present invention is to provide a standard type organoid having a uniform size and similar functionality of each organoid prepared by the above method.
- a method for producing an organoid comprising the step of culturing cells in a three-dimensional cell culture plate to form an organoid
- the cell culture plate contains 0 to 2% by volume of an extracellular matrix-based hydrogel
- the three-dimensional cell culture plate The three-dimensional cell culture plate
- a well plate including a plurality of main wells and a plurality of sub wells formed under each of the main wells to inject a cell culture solution and having a recess on the bottom surface; and a connector for high-capacity high-speed HCS (High contents screening) supporting the well plate;
- the large-capacity and high-speed HCS (High contents screening) connector includes a bottom of the well plate and a base provided with a fixing means to be detachable from each other, and a cover positioned on the top of the well plate and coupled to the base, and the main well
- a step is formed so as to be tapered at a predetermined portion, and the step has an inclination angle ( ⁇ ) in the range of 10 to 60° with respect to the wall of the main well.
- the cells may be normal cells or cancer cells.
- the cell may be a single cell.
- the cells can be obtained by isolation from normal tissue, cancer tissue, or already made organoids. Since a method of cellularizing a tissue and separating it into a single cell is a known technique, a detailed description thereof will be omitted.
- the cell culture period is preferably 1 to 14 days.
- the extracellular matrix-based hydrogel may be Matrigel (product name).
- the size of the organoid may be 300-500 ⁇ m in diameter.
- standard organoid refers to an organoid having a uniform organoid size of 300-500 ⁇ m in diameter.
- the size of the organoid prepared in the present invention is in the range of 300-500 ⁇ m, which is a size particularly optimized for cancer diseases.
- standard organoids can be mass-produced using the three-dimensional cell culture plate of the present invention.
- the sub-well of the three-dimensional cell culture plate has an inclined surface that is tapered toward the concave portion, the diameter of the upper end of the sub-well 120 is in the range of 3.0 to 4.5 mm, and the diameter of the upper end of the concave portion 121 is 0.45 to 1.5 mm, a slope ( ⁇ 2 ) of the sub-well and the concave portion may be in a range of 40 to 50°, and a length ratio of the diameter of the sub-well to the diameter of the concave portion may be in the range of 1:0.1 to 0.5.
- the individual volume of the main well of the three-dimensional cell culture plate is in the range of 100 to 300 ⁇ l
- the individual volume of the recess is in the range of 20 to 50 ⁇ l
- the individual volume ratio of the main well and the recess is on average 1: 0.1 to 0.5 days
- the main well includes a space between the step and the sub-well, and the height (a h ) of the space is in the range of 2.0 to 3.0 mm on average, and the height (b h ) of the sub-well is in the range of 1.0 to 2.0 mm on average, , the height ratio (a h :b h ) of the space portion and the sub-well may be in the range of 1:0.3 to 1.
- the cells may be seeded in the cell culture plate at 100 to 300 cells/well.
- Hydrogels are commonly used to serve as an extracellular matrix when culturing organoids. For example, after Metrigel is hardened into a dome shape on the bottom of a cell culture plate, organoids are grown in it. Organoids grow in different sizes and shapes, and as a result, their functions grow differently, making it difficult to standardize. .
- the present invention prepares organoids using a three-dimensional cell culture plate that does not contain an extracellular matrix-based hydrogel or contains a minimal amount.
- a detailed description of the three-dimensional cell culture plate of the present invention is as follows.
- the present invention uses a three-dimensional cell culture plate comprising:
- a well plate including a plurality of main wells and a plurality of sub wells formed under each of the main wells to inject a cell culture solution and having a recess on the bottom surface;
- It includes a connector for high-capacity high-speed HCS (High contents screening) that supports the well plate,
- the large-capacity and high-speed HCS (High contents screening) connector includes a base provided with a fixing means detachably from the bottom of the well plate, and a cover positioned on the top of the well plate and coupled to the base,
- a step is formed in the main well to be tapered at a predetermined portion, and the step has an inclination angle ( ⁇ ) in the range of 10 to 60° with respect to the wall of the main well.
- the present invention is to solve the above-mentioned problems, and it is possible to manufacture spheroids/organoids with high yield by including a plurality of sub-wells in a plurality of main wells formed in a well plate, and high-capacity and high-speed for supporting the plate.
- a connector for HCS High Contents Screening
- the tanteok of the main well the cultured cells are provided with a cell culture plate capable of minimizing the influence of the pipetting operation when replacing the media.
- Figure 1 (a) is a front view of a cell culture plate according to an embodiment of the present invention
- Figure 1 (b) is a cross-sectional view of a cell culture plate according to an embodiment of the present invention
- Figure 2 is a chamber of the present invention It is a view showing in detail the main well formed in the cell culture plate according to the example
- FIG. 3 is a view showing the well plate, the base and the cover of the cell culture plate according to an embodiment of the present invention ((a) cover, (b) ) base, (c) microplate and fixing means of the base).
- FIGS. 1 to 3 a cell culture plate according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3 .
- the cell culture plate 10 is formed under each of a plurality of main wells 110 and the main well 110, so that the cell culture solution is a well plate 100 that is injected and includes a plurality of sub-wells 120 including a recess 121 on the bottom surface; And it is configured to include a high-capacity high-capacity HCS (High contents screening) connector 200 for supporting the well plate (100).
- HCS High contents screening
- the well plate 100 according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2 .
- the well plate 100 is made in a plastic injection-molded plate shape through a mold.
- the main well 110 has a repeating pattern as a well structure so that the production cost can be reduced by using micro-machining for manufacturing a mold for plastic injection and the size can be easily enlarged. Therefore, it is easy to mass-produce the cells, and it is possible to use the cells by modifying them in various sizes according to the needs of the user.
- a plurality of the main wells 110 are formed in the well plate 100 , and each of the main wells 110 includes a step 101 .
- the stepped 101 is formed at a predetermined portion of the main well 110 , and more specifically, the stepped 101 may be formed at 1/3 to 1/2 of the entire length of the main well 110 . In addition, the step 101 may be formed at 1/3 to 1/2 position from the lower end of the main well 110 .
- the step 101 may be a space to which a pipette is applied, and specifically, may have an inclination angle ⁇ in the range of 10 to 60° with respect to the wall of the main well 110 . Alternatively, it may have an inclination angle in the range of 20 to 50°, and preferably may have an inclination angle in the range of 30 to 45°. If the inclination angle of the step 101 is less than 10°, the inclination angle in the main well 110 is too small and there is not enough space to apply the pipette. A spheroid or an organoid may be sucked up by sliding into the sub-well 120 , or a change in position may occur.
- the inclination angle ( ⁇ ) exceeds 60°, a space for applying a pipette is provided, but the inclination angle of the step 101 is too large, so it may be difficult to sufficiently suck the culture solution, and When seeding cells, a problem in that the cells do not enter all the sub-wells 120 and are seeded in the step 101 may occur. Therefore, it is preferable to have an inclination angle in the above-mentioned range.
- the main well 110 may include a space 130 between the stepped 101 and the sub-well 120 to be described later.
- the space 130 is a space into which the culture solution is injected, and is a space in which the cells in the sub-well 120 can share the same culture solution.
- the height (a h ) of the space portion 130 may range from 2.0 to 3.0 mm on average, or from 2.2 to 2.8 mm, or from 2.3 to 2.7 mm on average.
- the height b h of the sub-well 120 may range from 1.0 to 2.0 mm on average, or from 1.2 to 1.8 mm on average.
- the height (a h ) of the space portion 130 may be on average 2.5 mm, and the height (b h ) of the sub-well may be on average 1.5 mm.
- the height ratio (a h :b h ) of the space portion and the sub-well 120 may be in the range of 1:0.3 to 1, and in more detail, the height ratio (a h : b h ) may be 1:0.4 to 0.9 or 1:0.5 to 0.8. If the height of the sub-well 120 is less than 1:0.3 compared to the height of the space, when the media of the sub-well 120 is exchanged, the cells being cultured inside may pop out with even a little force, and the sub-well ( If the height of 120) exceeds 1:1 compared to the height of the space part, the culture medium required for the cells is not sufficiently converted, which may cause cell death. Accordingly, the space 130 and the sub-well 120 preferably have the above-described height range and height ratio.
- the sub-well 120 is formed under each of the main well 110 , and includes a concave portion 121 on the bottom surface.
- the sub-well 120 may include a plurality of sub-wells 120 under the main well 110 .
- Each of the sub-wells 120 included in the lower portion of the main well 110 has the same size and shape, so that spheroids and organoids under uniform conditions can be generated.
- the sub-well 120 may have an inclined surface that is tapered toward the concave portion 121 .
- the horizontal width of the upper end of the sub-well 120 may decrease as it descends in the vertical direction.
- the upper end of the sub-well 120 may have an inverted pyramid shape.
- the upper end of the sub-well 120 has a pyramid shape, but may be configured in a shape in which the horizontal width decreases as it descends in the vertical direction, such as a funnel shape.
- the cell culture plate can produce a large amount of spheroids or organoids under uniform conditions.
- one main well 110 may include 4 to 25 sub-wells 120 of the same size, and 96 to 1,728 sub-wells 120 may be included in the entire microplate 100. have. Accordingly, the same and precise size control is possible.
- the sub-well 120 includes a concave portion 121, and the concave portion 121 has a space formed at the lower end of the concave portion so that 3D spheroids or organoids can be cultured.
- the concave part 121 may have a 'U' shape, a 'V' shape, or a ' ⁇ ' shape.
- the recess 121 may have a 'U' shape. .
- the top diameter of the sub-well 120 may range from 3.0 to 4.5 mm, or from 3.5 to 4.3 mm, or an average of 4 mm.
- the diameter of the upper end of the concave portion 121 may be 0.45 to 1.5 mm, or 0.5 to 1.0 mm, or an average of 0.5 mm.
- the ratio of the diameter of the sub-well 120 to the diameter of the concave portion 121 may be in a range of 1:0.1 to 0.5, and preferably, the diameter of the sub-well 120 and the concave portion 121 are in the range of 1:0.1 to 0.5.
- the ratio of length to diameter may be 1:0.12.
- the cell culture space of the concave portion 121 is not sufficiently provided, Cells may come out, and if the top diameter of the concave portion 121 exceeds 0.5 compared to the top diameter 1 of the sub-well 120, it is impossible to replace the sufficient culture medium required for the cells to stably culture Difficult problems may arise.
- the slopes of relative to the wall of the main-well sub-well 120 and the recess 121 may have an inclination angle ( ⁇ 2) of 40 to 50 °, 42 to 48 ° range of inclination angle of ( ⁇ 2), 43 to the inclination angle of 47 ° range ( ⁇ 2), or the average angle of inclination of 45 ° may have a ( ⁇ 2).
- the above-described sub-well 120 is capable of culturing cells of 100 to 1000 cells/well or less, and has the advantage of stably controlling the size of the spheroid.
- the individual volume of the main well 110 is in the range of 100 to 300 ⁇ l, and the individual volume of the concave portion 121 is in the range of 20 to 50 ⁇ l, and the main well 110 and the concave volume are in the range of 20 to 50 ⁇ l.
- the individual volume ratio of the portion 121 is on average 1: 0.07 to 0.5.
- the individual volume of the main well 110 according to the embodiment is in the range of 250 to 300 ⁇ l, and the individual volume of the concave portion may be in the range of 25 to 35 ⁇ l, and the main well 110 and the recess ( 121) may have an average volume ratio of 1:0.11.
- the individual volume of the main well 110 is less than 100 ⁇ l, there may be a problem that a sufficient culture solution cannot be accommodated during cell culture, and if it exceeds 300 ⁇ l, the culture efficiency may be reduced.
- the recess 121 is a space in which cells are actually cultured, and when the volume is less than 20 ⁇ l, there is not enough cell culture space, which may cause a problem that cells escape, and when it exceeds 50 ⁇ l, cells, etc. Difficulty in culturing stably may occur. Accordingly, it is preferable that the main well 110 and the concave portion 121 have a volume within the above-described range.
- the cells are maintained in a spheroid form even if the hydrogel is not included, that is, even if the hydrogel is not coated on the cell culture plate, and reprogramming to the induced pluripotent stem cells is not possible. It occurs with high efficiency and maintains its form and function continuously after reprogramming.
- the cell culture plate 10 includes a large-capacity high-speed HCS (High contents screening) connector 200 supporting the well plate 100 .
- the high-capacity and high-speed HCS (High contents screening) connector 200 refers to a connector 200 that is seated in the HCS (High contents screening) system.
- the connector 200 is a base in the present invention. It may mean 210 and the cover 220 .
- the large-capacity and high-speed HCS (High contents screening) connector includes a base 210 and a well plate 100 provided with fixing means 140 and 240 so as to be detachable from the lower end of the well plate 100 . It is located on the upper portion, and includes a cover 220 coupled to the base (210). And, the upper end of the base 210 and the lower end of the well plate 100 are characterized in that they include fixing means (140, 240) that can be fixed to each other to be detachable.
- the base may include a convex part 240 for supporting the well plate 100
- the well plate 100 may include a recessed part 140 opposite to the convex part 240 of the base 210 . have.
- the well plate 100 is fixed by the fixing means so that an image can be uniformly taken during screening.
- the base is polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyamide, polyester, polyvinyl chloride, polyurethane, polycarbonate, polyvinylidene chloride, polytetrafluoroethylene, polyetheretherketone or polyetherimide. It may be made of a material, but is not necessarily limited thereto.
- the well plate may be made of polydimethyl silicone, high fat-modified silicone, methylchlorophenyl silicone, alkyl-modified silicone, methylphenyl silicon, silicone polyester, or amino-modified silicone material, but is not necessarily limited thereto.
- the organoid manufacturing method of the present invention is economical because the use of matrigel can be minimized.
- the organoid manufacturing method according to the present invention provides the effect of mass-producing standard type organoids.
- organoids are formed in a uniform size that is comparable to each other, unlike in the past, so that the effect and quantitative analysis of the drug are possible. Through this, it is possible to select a drug suitable for the specificity of each modified gene, and more effective drug treatment is possible.
- Figure 1 (a) is a front view of the cell culture plate according to an embodiment of the present invention
- Figure 1 (b) is a cross-sectional view of the cell culture plate according to an embodiment of the present invention.
- FIG. 2 is a view showing in detail the main well formed in the cell culture plate according to an embodiment of the present invention.
- FIG 3 is a view showing a well plate, a base, and a cover of a cell culture plate according to an embodiment of the present invention ((a) cover, (b) base, (c) fixing means for microplate and base).
- Example 4 is a view showing the high-speed mass imaging results of Example 1 and Comparative Example 1 ((a) Example 1, (b) Comparative Example 1).
- 5 is a culture result of organoids containing 2% by volume of Matrigel and not using Matrigel according to an embodiment of the present invention.
- FIG. 6 is an immunofluorescent staining result of organoids containing 2% by volume of Matrigel and not using Matrigel according to an embodiment of the present invention.
- Figure 7 (a) is a photograph showing the high-speed mass imaging results of Example 1
- Figure 7 (b) is a graph showing the area of the organoid cultured in Example 1.
- FIG. 8(a) is a photograph showing the high-speed mass imaging result of Comparative Example 1
- FIG. 8(b) is a graph showing the area of the organoid cultured in Comparative Example 1.
- FIG 9 shows imaging results (left) and organoid size distribution (right) when colon cancer cells according to an embodiment of the present invention are cultured for 14 days.
- FIG 10 shows an organoid staining image (left) and organoid survival rate (right) in which colon cancer cells were cultured for 14 days according to an embodiment of the present invention.
- FIG 11 and 12 are photographs and graphs showing the high-speed mass imaging results of Examples 1 to 3 ((a) Example 1, (b) Example 2, (c) Example 3).
- the existing colorectal cancer organoids were placed in a 15ml tube with 1ml of culture medium by pipetting from the plate, centrifuged at 2000rpm for 3 minutes, and then the supernatant was removed, followed by a PBS washing process once and centrifuged at 2000rpm for 3 minutes. Thereafter, the cells were completely separated into single cells by treatment with acuutase for 7 minutes. The single cells were seeded at about 100 cells/well in sub-wells of the cell culture plate, and cultured for a total of 14 days to prepare organoids.
- the culture medium is a DMEM/F12-based culture medium, and B27, N2, GlutaMAX, penicillin streptomycin, Nictoiamide, N-acetyl, gastrin, A-83-01, EGF, noggin, R-spondin1, WNT3A enter the culture medium, and culture As for the conditions, organoids were prepared under conditions that did not contain Matrigel or contained 2% by volume.
- the size of the organoids was analyzed using the Image J program. Specifically, by selecting a region of interest from the phase image and applying a threshold with the Image J program, the unnecessary parts are overwritten with white, and the parts not drawn properly are filled with black. The area applied with the threshold filled in black was obtained using the outline.
- the cultured standard-type organoids are taken out, and Live/Dead fluorescence staining is performed.
- Calcein 1mM is 2 ⁇ l per 1ml
- EtdH-1 2mM is 1 ⁇ l per 1ml
- stored in an incubator for 30-60 minutes and then measured with a fluorescence microscope.
- Organoids were prepared by the method mentioned in Experimental Method 1 above. Organoids were prepared under conditions in which 2% by volume of Matrigel was contained in the culture medium (Example 1-1) and under conditions in which Matrigel was not added (Example 1-2).
- Cells were cultured in the same manner as in Example 1-1, except that cells were seeded at about 200 cells/well in sub-wells.
- Cells were cultured in the same manner as in Example 1-1, except that cells were seeded at about 300 cells/well in sub-wells.
- Organoids were cultured inside Matrigel, a method widely used in the past, and high-speed mass imaging was performed.
- a 96-well plate which is a commonly used cell culture plate, was used, and cells were seeded in Matrigel to prepare organoids.
- Example 1-1 and Comparative Example 1 were photographed, and the size of cell spheres was compared. Imaging the spheroids in an automated plate device, and at this time, the device was automatically focused and proceeded. Image size analysis was performed using the macro program of the imageJ program.
- FIG. 4 is a view showing the high-speed mass imaging results of Example 1-1 and Comparative Example 1 ((a) Example 1-1, (b) Comparative Example 1)
- Example 1-1 in the case of Example 1-1, it was confirmed that the diameter of the cells cultured in the cell culture plate of the present invention was almost uniform. Specifically, when cells were seeded at an average of 100 cells/well in each sub-well, a uniform organoid that could be analyzed for comparison could be prepared. At this time, the error range for the organoid size was about 20 ⁇ m. Through this, it can be seen that standard organoid production is possible using the organoid culture method according to the present invention.
- the base and the well plate of the present invention each include a convex part and a recessed part to fix each other, and the convex part and the recessed part are coupled to each other so that the base can firmly fix the well plate, so that images in the well plate can be uniformly taken shows
- Figure 6 shows the expression level was confirmed by staining LGR5, the most important marker for the formation of colorectal cancer organoids, in order to confirm that the cultured organoids were successfully formed. In addition, it was confirmed that a colon-specific structure was present in the colon cancer organoids of the group not using the low concentration Matrigel or Matrigel formed by F-actin staining.
- Example 1-1 The cells cultured in Example 1-1 and Comparative Example 1 were imaged at high speed.
- Example 1-1 and Comparative Example 1 were imaged in an automated plate device, and at this time, the device automatically focused and proceeded. Image size analysis was performed using the macro program of the imageJ program.
- Figure 7 (a) is a photograph showing the high-speed mass imaging result of Example 1-1
- Figure 7 (b) is a graph showing the area of the organoid cultured for a certain period in Example 1
- Figure 8 (a) is a photograph showing the high-speed mass imaging result of Comparative Example 1
- FIG. 8(b) is a graph showing the area of the organoids cultured for a certain period in Comparative Example 1.
- the imaging height is uniform and imaging is possible without a large error.
- the organoid when culturing an organoid using the cell culture plate of the present invention, the organoid is cultured in a uniform size. That is, standardization is possible. As a result of standardization, the focus is automatically set when measuring the image, and the deviation of the measurement height is minimized by the connector structure. Accordingly, when measuring the screening image, the deviation is very small, around 20 ⁇ m.
- organoids when organoids are cultured in a conventional way, organoids grow randomly in Matrigel, making it difficult to uniformly culture a desired organoid, and the measurement height is also variable, making it difficult to apply to organoid screening imaging. Because it has difficult limitations. Therefore, when the area of the organoid cultured for a certain period of time is analyzed, the deviation is very large.
- the diameter of each organoid was measured using the Image J program in the standard organoids made entirely. A total of 864 wells were subjected to high-speed mass imaging, and it was confirmed that uniform diameters were obtained by analyzing each of them with ImageJ.
- Example 9 shows the imaging results and organoid size when the colorectal cancer cells of Example 1-1 were cultured for 14 days. It can be seen that standard organoid production is possible because the organoid size is uniform at 300-50 ⁇ m.
- FIG. 10 is a photograph showing the organoids according to Examples 1-1 and 1-2 over time (left) and the organoid survival rate according to Example 1-1 (right).
- Live/Dead staining of the cultured organoids was performed to confirm how much the cultured organoids were actually maintained.
- the cultured standard organoids were washed with PBS, and then incubated with accutase for about 10 minutes.
- Calcein and EtdH-1 which are Live/Dead reagents, were stored in an incubator for about 30-60 minutes, and then put into C-Chip and checked how much each was present with a fluorescence microscope.
- FIG. 11 is a photograph showing the high-speed mass imaging results of Examples 1-1, 2, and 3, and FIG. 9 is an imaging result when the colon cancer cells in Examples 1-1, 2, and 3 were cultured for 14 days.
- Example 1-1 Example 1-1
- Example 2 Example 2
- Example 3 Example 3
- FIG. 12 is a graph showing the high-speed mass imaging results of Examples 1-1, 2 and 3, and FIG. 12 is a result of culturing colorectal cancer cells in Examples 1-1, 2 and 3 for 7 days or 14 days.
- Example 1-1 Example 1-1
- Example 2 Example 2
- Example 3 Example 3
- FIG. 12 it shows that the most desirable organoids can be produced when cells are cultured on average of 100 cells/well for an average of 14 days. That is, when cells with an average of 100 cells/well or less are cultured for 14 days, it is likely that optimal organoids can be differentiated and grown. On the other hand, when increasing the number of cells seeded in the subwell and reducing the number of culture days, it was confirmed that the organoid performance deteriorated.
- the dotted line in FIG. 12 means the maximum space of the sub-well of the cell culture plate of the present invention, which means a space in which cells can be cultured. This is considered to be capable of culturing cells with an average of 100 cells/well or less.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Cell Biology (AREA)
- Clinical Laboratory Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Oncology (AREA)
- Molecular Biology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
본 발명은 표준형 오가노이드 제조방법을 제공한다.
Description
본 발명은 표준형 오가노이드 제조방법에 관한 것이다. 보다 상세하게는 균일한 크기의 오가노이드를 제조하는 방법에 대한 것이다.
오가노이드(organoid)는 '장기유사체' 또는 '유사장기'라고도 부르는데, 줄기세포나 장기 기원 세포로부터 분리한 세포를 3차원 배양법으로 다시 응집, 재조합하여 제조된 장기 특이적 세포 집합체이다. 오가노이드는 모델로 하는 장기의 특이적 세포를 포함하고, 장기가 지닌 특정 기능을 재현하며, 실제 장기와 유사한 형태로 공간적 조직화가 가능하다. 환자유래 종양 오가노이드(patient-derived tumor organoid)는 환자의 암세포 및 암조직의 특성을 그대로 나타내며 또한 환자 암조직의 유전적 변이 특성을 재현할 수 있다고 보고되었다.
오가노이드는 세포 치료, 생체조직공학, 신약개발, 독성학 그리고, 정밀의료분야까지 이용될 수 있다. 오가노이드 활용도를 높이기 위해서는 많은 양의 비교가능한 정량적 오가노이드 및 그 분석방법이 필요하다. 그러나 아직까지 오가노이드를 정량적으로 배양하는 방법이 없다. 그 이유는 오가노이드를 키우는 요소 중 가장 중요한 요소인 매트리젤을 바닥에 돔 모양으로 굳힌 후 그 안에서 오가노이드를 키우기 떄문에, 오가노이드가 제각각으로 자라게 된다.
또한, 이렇게 매트리젤 안에서 자란 오가노이드들은 3차원 지지체 안에서 서로 겹쳐 자랄 수도 있기 때문에 한계가 명확하다.
또한 최근에는 초기 약물 발견 프로그램 및 독성 스크린에 사용하기 위해 훨씬 더 안정하고 생리적인 환자 유래 오가노이드와 결합한 초고속 스크리닝(high-throughput screening) 기술이 개발되고 있다.
대한민국 등록특허 제10-1756901호(특허문헌 1)에는 3차원의 조직세포를 배양 가능한 세포배양 칩에 대해서 개시되어 있다. 상기 특허문헌 1의 세포배양 칩은 제1 배양부, 제2 배양부 및 제3 배양부를 각각 층별로 형성하고, 각 층별로 세포의 성장 진행 정도를 확인할 수 있다. 그러나, 특허문헌 1의 세포배양 칩은 오가노이드를 고수율로 수득할 수 없는 문제점이 있다.
또한 세포 배양시 배양액을 교체하는 피펫팅 작업을 하는 경우가 있는데, 3차원 세포배양이 가능한 corning spheroid microplate의 경우, 세포 배양 중인 스페로이드 또는 오가노이드가 영향을 받아서, 피펫팅 작업시 빨려 올라가거나, 위치 변화 등이 발생하는 경우가 있어, 세포 배양 환경에 좋지 못한 문제가 있다.
이에 본 발명자들은 세포외 기질 기반 하이드로젤(예, 매트리젤)을 사용하지 않거나 사용을 최소화하면서 균일한 크기를 가지는 표준형 오가노이드에 대한 연구를 계속하여 본 발명을 완성하였다.
[선행기술문헌]
[특허문헌]
1. 대한민국 등록특허 제10-1756901호
본 발명의 목적은 표준형 오가노이드 제조방법을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 방법으로 제조된 크기가 균일하고 각각의 오가노이드의 기능성이 유사한 표준형 오가노이드를 제공하기 위한 것이다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당해 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위하여, 본 발명은
세포를 3차원 세포배양 플레이트에서 배양하여 오가노이드를 형성하는 단계를 포함하는 오가노이드 제조방법으로,
상기 오가노이드 형성 단계에서, 상기 세포배양 플레이트는 세포외 기질 기반 하이드로젤을 0 내지 2 부피% 포함하고,
상기 3차원 세포배양 플레이트는,
복수개의 메인 웰(main well)과, 메인 웰의 각각 하부에 형성되어 세포 배양액이 주입되며, 바닥면에 오목부를 포함하는 복수개의 서브 웰(sub well)을 포함하는 웰 플레이트(well plate); 및 웰 플레이트를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터;를 포함하며,
상기 대용량의 고속 HCS(High contents screening)용 커넥터는, 웰 플레이트의 하단과 서로 착탈 가능하도록 고정수단이 구비된 베이스와 웰 플레이트의 상부에 위치하여, 베이스와 결합되는 커버를 포함하고, 상기 메인 웰은 소정부위 테이퍼지도록 단턱이 형성되며, 상기 단턱은 메인 웰의 벽을 기준으로 10 내지 60° 범위의 경사각(θ)을 갖는 세포배양 플레이트.
상기 세포는 정상세포 또는 암세포일 수 있다.
상기 세포는 단일세포일 수 있다.
상기 세포는 정상 조직, 암 조직 또는 이미 만들어진 오가노이드에서 분리하여 얻을 수 있다. 조직을 세포화하여 단일세포로 분리하는 방법은 공지된 기술이므로 구체적인 설명은 생략한다.
상기 세포 배양 기간은 1 내지 14일이 바람직하다
상기 세포외 기질 기반 하이드로젤은 매트리젤(Matrigel, 제품명)일 수 있다.
상기 오가노이드의 크기는 직경 300-500 ㎛일 수 있다.
본 발명에서 용어 "표준형 오가노이드"란, 오가노이드의 크기가 직경 300-500 ㎛로 균일한 오가노이드를 말한다.
본 발명에서 제조되는 오가노이드의 크기는 300-500 ㎛ 범위인데, 이는 암 질환에 특히 최적화된 크기이다.
이하에서 자세히 설명하겠지만, 본 발명의 3차원 세포배양 플레이트를 이용하면 표준형 오가노이드를 대량생산 할 수 있다.
상기 3차원 세포배양 플레이트의 서브 웰은 오목부를 향하여 테이퍼지도록 경사면이 형성되고, 상기 서브 웰(120)의 상단 직경은 3.0 내지 4.5 mm 범위이고, 상기 오목부(121) 상단의 직경은 0.45 내지 1.5 mm 범위이며, 상기 서브 웰과 오목부의 경사면(θ
2)은 40 내지 50° 범위이고, 상기 서브 웰의 직경과 오목부의 직경에 대한 길이 비가 1:0.1 내지 0.5 범위일 수있다.
상기 3차원 세포배양 플레이트의 상기 메인 웰의 개별 부피는 100 내지 300 ㎕ 범위이며, 상기 오목부의 개별 부피는 20 내지 50 ㎕ 범위이고, 상기 메인 웰과 오목부의 개별 부피비는 평균 1 : 0.1 내지 0.5일 수 있다.
상기 메인 웰은, 단턱과 서브 웰 사이에 공간부를 포함하고, 상기 공간부의 높이(a
h)는 평균 2.0 내지 3.0 mm 범위이며, 상기 서브 웰의 높이(b
h)는 평균 1.0 내지 2.0 mm 범위이고, 상기 공간부와 서브 웰의 높이비(a
h:b
h)는 1:0.3 내지 1 범위일 수 있다.
상기 세포는 상기 세포배양 플레이트에 100 내지 300 cells/well로 시딩될 수 있다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
일반적으로 오가노이드를 배양할 때 세포외 기질의 역할을 제공하기 위해 하이드로젤을 사용한다. 예를 들면, 메트리젤을 세포배양 플레이트 바닥에 돔 모양으로 굳힌 후 그 안에서 오가노이드를 키우게 되는데, 오가노이드가 크기와 모양이 제각으로 자라게 되며, 그로 인해 기능이 제각각으로 자라서 표준화가 어려운 문제점이 있다.
본 발명은 세포외 기질 기반 하이드로젤을 포함하지 않거나 최소한의 양을 포함한 3차원 세포배양 플레이트를 이용하여 오가노이드를 제조한다. 본 발명의 3차원 세포배양 플레이트에 대한 구체적인 설명은 다음과 같다.
본 발명은 일 실시예에서 다음을 포함하는 3차원 세포배양 플레이트를 이용한다:
복수개의 메인 웰(main well)과, 메인 웰의 각각 하부에 형성되어 세포 배양액이 주입되며, 바닥면에 오목부를 포함하는 복수개의 서브 웰(sub well)을 포함하는 웰 플레이트(well plate); 및
웰 플레이트를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터;를 포함하며,
상기 대용량의 고속 HCS(High contents screening)용 커넥터는, 웰 플레이트의 하단과 서로 착탈 가능하도록 고정수단이 구비된 베이스와 웰 플레이트의 상부에 위치하여, 베이스와 결합되는 커버를 포함하며,
상기 메인 웰은 소정부위 테이퍼지도록 단턱이 형성되며, 상기 단턱은 메인 웰의 벽을 기준으로 10 내지 60° 범위의 경사각(θ)을 갖는 세포배양 플레이트.
종래의 96 웰 플레이트의 경우, 고수율의 약물 효능 평가를 위해서는 실험 및 분석을 수차례 이상 진행하여야 하므로, 시간 및 비용이 많이 소요되는 문제가 있었다. 아울러, 세포 배양시 배양액을 교체하는 피펫팅 작업을 수행하는 경우가 종종 있는데, 종래의 corning spheroid microplate 의 경우에는 세포 배양 중인 스페로이드 또는 오가노이드가 영향을 받아서, 피펫팅 작업시 스페로이드 또는 오가노이드가 빨려 올라가거나, 위치 변화 등이 발생하는 경우가 있어, 세포 배양 환경에 좋지 못한 문제가 있었다.
따라서, 본 발명은 상술한 문제점을 해결하기 위한 것으로, 웰 플레이트 내에 형성된 복수개의 메인 웰 내에 복수개의 서브 웰을 포함시켜 고수율의 스페로이드/오가노이드 제작이 가능할 수 있으며, 플레이트를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터를 포함시켜, 대용량의 고속이미지 촬영시 공차를 줄여 웰 플레이트 내의 이미지를 균일하게 촬영할 수 있는 세포배양 플레이트를 제공한다. 나아가, 메인 웰의 탄턱에 의하여, 배양되는 세포는 미디어 교체시 피펫팅 작업에 의한 영향을 최소화할 수 있는 세포배양 플레이트를 제공한다.
이하, 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하도록 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1(a)는 본 발명의 일 실시예에 따른 세포배양 플레이트의 정면도이며, 도 1(b)는 본 발명의 일 실시예에 따른 세포배양 플레이트의 단면도이며, 도 2는 본 발명의 일 실실예에 따른 세포배양 플레이트에 형성된 메인 웰을 상세하게 나타낸 도면이고, 도 3은 본 발명의 일 실실예에 따른 세포배양 플레이트의 웰 플레이트, 베이스 및 커버를 보여주는 도면이다((a) 커버, (b) 베이스, (c) 마이크로 플레이트 및 베이스의 고정수단).
이하, 도 1 내지 도 3을 참조하여 본 발명의 일 실시예에 따른 세포배양 플레이트를 상세히 설명한다.
도 1 내지 3 도시된 바와 같이, 본 발명의 일 실시예에 따른 세포배양 플레이트(10)는 복수개의 메인 웰(main well, 110)과, 메인 웰(110)의 각각 하부에 형성되어 세포 배양액이 주입되며, 바닥면에 오목부(121)를 포함하는 복수개의 서브 웰(sub well, 120)을 포함하는 웰 플레이트(well plate, 100); 및 웰 플레이트(100)를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터(200)를 포함하여 구성된다.
먼저, 도 1과 도 2를 참조하여, 본 발명의 일 실시예에 따른 웰 플레이트(100)를 상세히 설명하도록 한다.
상기 웰 플레이트(100)는 몰드를 통해 플라스틱 사출 성형된 플레이트 형상으로 만들어 진다. 이와 같이 플라스틱 사출을 위한 몰드 제작을 위해 미세 기계가공을 사용하여 생산단가를 낮추고, 쉽게 크기를 확대할 수 있도록 메인 웰(110)은 웰(well) 구조물로서 반복적인 패턴을 갖는다. 따라서, 세포의 대량 생산이 용이하며, 사용자의 요구에 맞추어 다양한 크기로 변형하여 사용이 가능하다.
상기 메인 웰(110)은 웰 플레이트(100)에 복수개 형성되며, 각각의 메인 웰(110)은 단턱(101)을 포함한다. 상기 단턱(101)은 메인 웰(110)의 소정부위에 형성되는 것으로, 보다 상세하게는 상기 단턱(101)은 메인 웰(110)의 전체 길이의 1/3 내지 1/2 위치에 형성될 수 있으며, 상기 단턱(101)은 메인 웰(110)의 하단으로부터 1/3 내지 1/2 위치에 형성될 수 있다.
종래의 마이크로 플레이트에서 세포 배양시에는 배양액을 교체하는 피펫팅 작업을 하는 경우가 있는데, 이러한 경우, 세포 배양 중인 스페로이드 또는 오가노이드가 영향을 받아서, 피펫팅 작업시 스페로이드 또는 오가노이드가 빨려 올라가거나, 위치 변화 등이 발생하는 경우가 있어, 세포 배양 환경에 좋지 못한 문제가 있었으나, 상기 단턱(101)은 이러한 문제를 방지하기 위함이다.
상기 단턱(101)은 피펫이 적용되는 공간일 수 있으며, 구체적으로, 메인 웰(110)의 벽을 기준으로 10 내지 60° 범위의 경사각(θ)을 가질 수 있다. 또는, 20 내지 50° 범위의 경사각을 가질 수 있으며, 바람직하게는 30 내지 45°범위의 경사각을 가질 수 있다. 만일, 상기 단턱(101)의 경사각이 10°미만인 경우에는 메인 웰(110) 내에 경사각이 너무 작아 피펫을 적용할 수 있는 공간이 충분하지 않아, 메인 웰(110) 내의 배양액을 흡입할 때, 피펫이 서브 웰(120) 안쪽으로 미끄러져 스페로이드 또는 오가노이드가 빨려 올라가거나, 위치 변화 등이 발생할 수 있다. 아울러, 상기 경사각(θ)이 60°를 초과하는 경우에는 피펫을 적용할 수 있는 공간은 마련되나, 단턱(101)의 경사각이 너무 커서 배양액을 충분히 흡입하기 어려울 수 있으며, 서브 웰(120)에 세포를 시딩 할 때, 세포가 모든 서브 웰(120)에 들어가지 않고, 단턱(101)에 시딩되는 문제가 발생할 수 있다. 따라서, 상술한 범위의 경사각을 갖는 것이 바람직하다.
한편, 본 발명의 일 실시예에 따른 메인 웰(110)은 단턱(101)과 후술하게 되는 서브 웰(120) 사이에 공간부(130)를 포함할 수 있다. 구체적으로, 상기 공간부(130)는 배양액이 주입되는 공간으로, 서브 웰(120) 내부의 세포들이 동일한 배양액을 공유할 수 있는 공간이다.
보다 구체적으로, 공간부(130)의 높이(a
h)는 평균 2.0 내지 3.0 mm 범위일 수 있으며, 또는 2.2 내지 2.8 mm 범위일 수 있으며, 또는 평균 2.3 내지 2.7 mm 범위일 수 있다. 아울러, 서브 웰(120)의 높이(b
h)는 평균 1.0 내지 2.0 mm 범위일 수 있으며, 또는 평균 1.2 내지 1.8 mm 범위일 수 있다.
예를 들면, 상기 공간부(130)의 높이(a
h)는 평균 2.5 mm 이며, 서브 웰 의 높이(b
h)는 평균 1.5 mm 일 수 있다.
이때, 상기 공간부와 서브 웰(120)의 높이비(a
h:b
h)는 1:0.3 내지 1 범위일 수 있으며, 보다 상세하게 공간부와 서브 웰(120)의 높이비(a
h:b
h)는 1:0.4 내지 0.9 또는 1: 0.5 내지 0.8 일 수 있다. 만일, 서브 웰(120)의 높이가 공간부의 높이 대비 1:0.3 미만일 경우에는 서브 웰(120)의 미디어를 교환 시, 조금의 힘으로도 내부에서 배양 중인 세포들이 튀어나올 수 있으며, 서브 웰(120)의 높이가 공간부의 높이 대비 1:1을 초과하는 경우에는 세포에 필요한 배양액이 충분하게 변환되지 않아, 세포의 죽음을 유발할 수 있다. 따라서, 공간부(130)와 서브 웰(120)은 상술한 높이 범위와 높이비율을 갖는 것이 바람직하다.
다음으로, 서브 웰(120)은 메인 웰(110)의 각각 하부에 형성되는 것으로, 바닥면에 오목부(121)를 포함한다. 특정 양태로서, 상기 서브 웰(120)은 메인 웰(110)의 하부에 복수개를 포함할 수 있다.
메인 웰(110)의 하부에 포함되는 서브 웰(120)은 각각의 크기와 모양이 동일하고, 이에 따라 균일한 조건의 스페로이드 및 오가노이드를 생성할 수 있다.
상기 서브 웰(120)은 오목부(121)를 향하여 테이퍼지도록 경사면이 형성될 수 있다. 구체적으로, 상기 서브 웰(120)의 상단부는 수직 방향을 기준으로 하강할수록 수평 넓이가 줄어들 수 있다. 예를 들면, 상기 서브 웰(120)의 상단부는 역피라미드 형상으로 이루어질 수 있다. 도시된 실시예에서는 서브 웰(120)의 상단부가 피라미드 형상이나, 깔대기 형상과 같이, 수직 방향으로 하강할수록 수평의 넓이가 줄어드는 형상으로 구성될 수 있다.
특히, 상기 서브 웰(120)은 크기와 모양이 동일하도록 복수개를 포함함으로써, 상기 세포배양 플레이트는 균일한 조건에서 대량의 스페로이드 또는 오가노이드를 생성할 수 있다.
특정 양태로서, 하나의 메인 웰(110)에는 동일한 크기의 서브 웰(120)을 4 내지 25개 포함할 수 있으며, 전체 마이크로 플레이트(100)에는 96 내지 1,728 개의 서브 웰(120)을 포함할 수 있다. 이에 따라, 동일하고, 정밀하게 사이즈 컨트롤이 가능하다.
아울러, 서브 웰(120)은 오목부(121)를 포함하며, 상기 오목부의 하단에는 상기 오목부(121)는 3D 스페로이드 또는 오가노이드가 배양될 수 있도록 공간이 형성된다. 구체적으로, 상기 오목부(121)는 'U'자 형태, 'V' 자 형태 또는 'Ц'자 형태일 수 있으며, 예를 들면, 상기 오목부(121)는 'U'자 형태일 수 있다.
상기 서브 웰(120)의 상단 직경은 3.0 내지 4.5 mm 범위일 수 있으며, 또는 3.5 내지 4.3 mm 일 수 있으며, 또는 평균 4 mm 일 수 있다. 아울러, 오목부(121) 상단의 직경은 0.45 내지 1.5 mm 일 수 있으며, 또는 0.5 내지 1.0 mm 또는 평균 0.5 mm 일 수 있다.
아울러, 상기 서브 웰(120)의 직경과 오목부(121)의 직경에 대한 길이 비가 1:0.1 내지 0.5 범위일 수 있으며, 바람직하게는 상기 서브 웰(120)의 직경과 오목부(121)의 직경에 대한 길이 비는 1: 0.12 일 수 있다.
상기 오목부(121)의 상단 직경이 서브 웰(120)의 상단 직경(1) 대비 0.1 미만인 경우에 오목부(121)의 세포 배양 공간을 충분히 마련하지 못해 배양액 교체시에, 조금마한 힘으로도 세포들이 빠져 나오는 문제가 발생할 수 있으며, 오목부(121)의 상단 직경이 서브 웰(120)의 상단 직경(1) 대비 0.5을 초과하는 경우, 세포에게 필요한 충분한 배양액을 교체하지 못하여 안정적으로 배양하기 어려운 문제가 발생할 수 있다.
한편, 메인 웰의 벽을 기준으로 서브 웰(120)과 오목부(121)의 경사면은 40 내지 50 ° 의 경사각(θ
2)을 가질 수 있으며, 42 내지 48° 범위의 경사각(θ
2), 43 내지 47° 범위의 경사각(θ
2), 또는 평균 45°의 경사각(θ
2)을 가질 수 있다.
상술한 서브 웰(120)은 100 내지 1000 cells/well 이하의 세포배양이 가능하며, 안정적으로 스페로이드 크기를 제어할 수 있는 이점이 있다.
나아가, 본 발명의 일 실시예에 따른 메인 웰(110)의 개별 부피는 100 내지 300 ㎕ 범위이며, 오목부(121)의 개별 부피는 20 내지 50 ㎕ 범위이고, 상기 메인 웰(110)과 오목부(121)의 개별 부피비는 평균 1 : 0.07 내지 0.5 인 것을 특징으로 한다. 바람직하게는 상기 일 실시예에 따른 메인 웰(110)의 개별 부피는 250 내지 300 ㎕ 범위이며, 상기 오목부의 개별 부피는 25 내지 35 ㎕ 범위일 수 있으며, 상기 메인 웰(110)과 오목부(121)의 개별 부피비는 평균 1 : 0.11 일 수 있다.
구체적으로, 메인 웰(110)의 개별 부피가 100 ㎕ 미만인 경우, 세포 배양시 충분한 배양액을 수용할 수 없는 문제가 발생할 수 있으며, 300 ㎕ 를 초과하는 경우에는 배양 효율이 떨어질 수 있다.
아울러, 오목부(121)는 실질적인 세포가 배양되는 공간으로, 그 부피가 20 ㎕ 미만인 경우에는 세포 배양 공간이 충분하지 않아 세포들이 빠져 나오는 문제가 발생할 수 있으며, 50 ㎕ 를 초과하는 경우 세포 등을 안정적으로 배양하기 어려운 문제가 발생할 수 있다. 따라서, 상기 메인 웰(110)과 오목부(121)는 상술한 범위의 부피를 갖는 것이 바람직하다.
상기 언급한 본 발명의 세포배양 플레이트의 구성으로 인해, 하이드로젤을 포함하지 않아도, 즉 하이드로젤을 세포배양 플레이트에 코팅하지 않아도 세포가 스페로이드 형태로 유지되며, 유도만능줄기세포로의 리프로그래밍이 고효율로 일어나고 리프로그래밍 이후에 지속적으로 그 형태와 기능이 유지된다.
본 발명의 일 실시예에 따른 세포배양 플레이트(10)는 웰 플레이트(100)를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터(200)를 포함한다. 여기서, 대용량 고속 HCS(High contents screening)용 커넥터(200)라 함은 HCS(High contents screening) 시스템에 안착되는 커넥터(200)를 의미하는 것으로, 구체적으로, 상기 커넥터(200)는 본 발명에서는 베이스(210)와 커버(220)를 의미할 수 있다.
보다 구체적으로, 상기 대용량의 고속 HCS(High contents screening)용 커넥터는, 웰 플레이트(100)의 하단과 서로 착탈 가능하도록 고정수단(140, 240)이 구비된 베이스(210)와 웰 플레이트(100)의 상부에 위치하여, 베이스(210)와 결합되는 커버(220)를 포함한다. 그리고, 상기 베이스(210)의 상단 및 웰 플레이트(100)의 하단은 서로 착탈 가능하도록 고정이 가능한 고정수단(140, 240)을 포함하는 것을 특징으로 한다.
이때, 상기 베이스는, 웰 플레이트(100)를 지지하기 위한 철부(240)를 포함하며, 상기 웰 플레이트(100)는 베이스(210)의 철부(240)에 대향되는 요부(140)를 포함할 수 있다. 상기 고정수단에 의해서 웰 플레이트(100)가 고정되어 스크리닝시 이미지가 균일하게 촬영될 수 있다.
상기 베이스는, 폴리에틸렌, 폴리프로필렌, 폴리스타이렌, 폴리에틸렌 테레프탈레이트, 폴리아미드, 폴리에스터, 폴리염화비닐, 폴리우레탄, 폴리카보네이트, 폴리염화비닐리덴, 폴리테트라플루오로에틸렌, 폴리에테르에테르케톤 또는 폴리에테르이미드 소재로 이루어질 수 있으나, 반드시 이로 제한되는 것은 아니다.
상기 웰 플레이트는, 폴리디메틸실리콘, 고지방 변성 실리콘, 메틸클로로페닐 실리콘, 알킬변성실리콘, 메틸페닐실리콘, 실리콘폴리에스터, 또는 아미노변성실리콘 소재로 이루어질 수 있으나 반드시 이로 제한되는 것은 아니다.
본 발명의 오가노이드 제조방법은 매트리젤 사용을 최소화 할 수 있기에 경제적이다. 또한 본 발명에 따른 오가노이드 제조방법은 표준형 오가노이드를 대량 생산하는 효과를 제공한다.
본 발명을 통하여, 대용량 약물 스크리닝 진행 시, 기존과 달리 서로 비교가능한 균일한 사이즈로 오가노이드가 형성되기 때문에, 약물의 효과 및 정량적 분석이 가능해진다. 이를 통해, 각 변형 유전자 특이에 적합한 약물을 선택해 낼 수 있고, 좀 더 효과적인 약물 치료가 가능하다.
도 1(a)는 본 발명의 일 실시예에 따른 세포배양 플레이트의 정면도이며, 도 1(b)는 본 발명의 일 실시예에 따른 세포배양 플레이트의 단면도이다.
도 2는 본 발명의 일 실시예에 따른 세포배양 플레이트에 형성된 메인 웰을 상세하게 나타낸 도면이다.
도 3은 본 발명의 일 실실예에 따른 세포배양 플레이트의 웰 플레이트, 베이스 및 커버를 보여주는 도면이다((a) 커버, (b) 베이스, (c) 마이크로 플레이트 및 베이스의 고정수단).
도 4는 실시예 1 및 비교예 1의 고속대량 이미징 결과를 보여주는 도면이다((a) 실시예 1, (b) 비교예 1).
도 5는 본 발명의 일 실시예에 따라 매트리젤을 2 부피%로 포함한 것과 매트리젤을 사용하지 않은 오가노이드의 배양 결과이다.
도 6은 본 발명의 일 실시예에 따라 매트리젤을 2 부피%로 포함한 것과 매트리젤을 사용하지 않은 오가노이드의 면역형광염색 결과이다.
도 7(a)는 실시예 1의 고속대량 이미징 결과를 보여주는 사진이며, 도 7(b)는 실시예 1에서 배양한 오가노이드의 면적을 나타내는 그래프이다.
도 8(a)는 비교예 1의 고속대량 이미징 결과를 보여주는 사진이고, 도 8(b) 는 비교예 1에서 배양한 오가노이드의 면적을 나타내는 그래프이다.
도 9는 본 발명의 일 실시예에 따른 대장암 세포를 14일 간 배양하였을 때의 이미징 결과(왼쪽)와 오가노이드 크기 분포(오른쪽)를 보여준다.
도 10은 본 발명의 일 실시예에 따른 대장암 세포를 14일간 배양한 오가노이드 염색 이미지(왼쪽) 및 오가노이드 생존율(오른쪽)을 보여준다.
도 11과 도 12는 실시예 1 내지 3의 고속대량 이미징 결과를 보여주는 사진과 그래프이다((a) 실시예 1, (b) 실시예 2, (c) 실시예 3).
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
[실시예]
<실험 방법>
1: 오가노이드 제조
기존의 대장암 오가노이드를 플레이트에서 피펫팅으로 배양배지 1ml 과 함께 15ml 튜브에 넣고, 2000rpm에서 3분간 원심분리 후 상등액을 제거한 다음, PBS 세척 과정을 한번 진행하고 똑같이 2000rpm에 3분간 원심분리 하였다. 이후, acuutase 로 7분간 처리를 하여 단일세포로 완전하게 분리시켰다. 이 단일세포를 세포배양 플레이트의 서브 웰에 약 100 cells/well씩 시딩 하였으며, 총 14일 동안 배양하여 오가노이드를 제조하였다. 이때, 배양액은 DMEM/F12 기반의 배양액이며, 해당 배양액 안에는 B27, N2, GlutaMAX, penicillin streptomycin, Nictoiamide, N-acetyl, gastrin, A-83-01, EGF, noggin, R-spondin1, WNT3A 들어가며, 배양 조건은 매트리젤을 함유하지 않거나 또는 2 부피% 함유한 조건에서 오가노이드를 제조하였다.
2: 오가노이드 크기 및 개수 측정
오가노이드의 크기 분석은 Image J 프로그램을 이용하였다. 구체적으로 위상 이미지에서 관심 영역을 선택하고 Image J 프로그램으로 threshold를 적용하여 필요 없는 부분은 흰색으로 덮어쓰고 제대로 그려지지 않은 부분은 검은색으로 채운다. 외곽을 이용하여 검은색으로 채워진 threshold 적용된 면적을 구하였다.
3: 면역형광 염색 방법
면역형광염색을 통하여 오가노이드의 줄기세포인 LGR5를 염색하여 확인하였다. 먼저 본 발명에 따른 표준형 오가노이드를 4% 파라포름알데히드 용액에서 상온에 1시간 보관 후 PBS로 염색하였다. 그 후, 15% 수크로스에서 하루, 30% 수크로스에서 하루를 냉장보관 후, 액체질소를 이용하여 동결 블럭(cryo-block)을 만들었다. 만들어진 동결 블럭을 이용해, 10㎛ 두께로 섹션을 진행, 잘린 단면을 슬라이드 글래스에 붙였다. tritonX 0.1%를 10분간 처리 후 PBS로 2번 세척하였다. 3% BSA로 1시간동안 상온에서 보관 후, 2번의 PBS 워싱 후에 LGR5 제1차 항체를 2시간동안 상온에서 유지시킨다. PBS 워싱 후에, 2차 항체를 상온에서 2시간 처리하고, 마운팅 용액을 넣어 형광 현미경으로 측정하였다.
도 10의 경우, 배양된 표준형 오가노이드를 꺼내어, Live/Dead 형광 염색을 진행한다. 형광염색의 경우, Calcein 1mM은 1ml 당 2μl, EtdH-1 2mM은 1ml당 1μl로 30-60분 인큐베이터에 보관 후, 형광현미경으로 측정하도록 한다.
<실시예>
실시예 1.
상기 실험방법 1에서 언급한 방법으로 오가노이드를 제조하였다. 매트리젤을 배양액에 2 부피% 함유한 조건(실시예 1-1)과 매트리젤을 넣지 않은 조건(실시예 1-2)에서 오가노이드를 제조하였다.
실시예 2.
세포를 서브 웰에 약 200 cells/well 에 시딩한 것을 제외하곤, 실시예 1-1과 동일한 방법으로 세포를 배양하였다.
실시예 3.
세포를 서브 웰에 약 300 cells/well 에 시딩한 것을 제외하곤, 실시예 1-1과 동일한 방법으로 세포를 배양하였다.
비교예 1.
기존에 널리 쓰이는 방식인 메트리젤 내부에 오가노이드를 배양하고, 고속대량 이미징을 진행하였다. 다만, 비교예에서는 통상적으로 사용하는 세포배양 플레이트인, 96 웰플레이트를 사용하였으며, 매트리젤 내에 세포를 시딩하여 오가노이드를 제작하였다.
<실험예>
실험예 1. 오가노이드 이미지 분석
실시예 1-1과 비교예 1에서 배양한 세포를 촬영 하였으며, 세포구의 크기를 비교하였다. 스페로이드를 자동화 플레이트 기기에서 이미징을 진행하며, 이때 자동으로 기기가 초점을 잡아 진행하도록 하였다. 이미지의 크기 분석은 imageJ 프로그램의 매크로 프로그램을 이용하여 진행하였다.
그리고, 그 결과를 도 4에 나타내었다. 도 4는 실시예 1-1 및 비교예 1의 고속대량 이미징 결과를 보여주는 도면이다((a) 실시예 1-1, (b) 비교예 1)
도 4를 참조하면, 실시예 1-1의 경우에는 본 발명의 세포배양 플레이트에 배양한 세포의 직경이 거의 균일한 것을 확인하였다. 구체적으로, 세포를 각각의 서브 웰에 평균 100 cell/well씩 시딩하였을 경우, 비교분석 가능한 균일한 오가노이드를 제작할 수 있었다. 이때, 오가노이드 크기에 대한 오차범위는 20 ㎛ 내외였다. 이를 통해 본 발명에 따른 오가노이드 배양 방법을 이용하면 표준 오가노이드 제조가 가능함을 알 수 있다.
반면, 종래의 웰 플레이트를 사용한 비교예 1의 경우 세포구의 크기가 상이하게 형성됨을 확인할 수 있었다. 이는 하나의 매트레젤의 돔(dome) 형태 안에서 여러 개의 세포가 자라기 때문에 생성된 오가노이드 크기의 오차범위가 150 ㎛ 이상의 편차가 나타나고 겹쳐 자라기도 하여 균일한 고속대량 이미징 및 실험이 불가능하였다.
본 발명의 베이스 및 웰 플레이트가 서로 고정하기 위하여 각각 철부와 요부를 포함하는데, 상기 철부와 요부가 서로 결합되어 베이스가 웰 플레이트를 단단하게 고정할 수 있어, 웰 플레이트 내의 이미지를 균일하게 촬영할 수 있음을 보여준다.
반면, 비교예 1에서 배양한 오가노이드의 크기 및 형상이 균일하지 않음을 볼 수 있다. 이는 플레이트 베이스가 없을 경우, 이미징의 초점편차가 커지기 때문에 이미지의 분석이 힘들어지는 것으로 보인다.
또한 도 5를 보면, 매트리젤을 함유하지 않아도 본 발명의 세포배양 플레이트를 이용하면 오가노이드 형성이 잘 이루어짐을 확인하였다.
도 6은 배양한 오가노이드가 성공적으로 형성되었는지 확인하기 위하여 대장암 오가노이드의 형성에 가장 중요한 마커인 LGR5를 염색하여 발현정도 확인한 것이다. 또한 F-actin 염색을 진행하여 형성된 저농도 매트리젤 또는 메트리젤을 사용하지 않는 그룹의 대장암 오가노이드 안에 colon-specific structure가 존재를 확인하였다.
실험예 2. 표준형 오가노이드 제작
실시예 1-1과 비교예 1에서 배양한 세포를 고속대량 이미징하였다.
실시예 1-1과 비교예 1에서 제조한 오가노이드는 자동화 플레이트 기기에서 이미징을 진행하였으며, 이때 자동으로 기기가 초점을 잡아 진행하도록 하였다. 이미지의 크기 분석은 imageJ 프로그램의 매크로 프로그램을 이용하여 진행하였다.
그리고, 그 결과를 도 7과 도 8에 나타내었다.
도 7(a)는 실시예 1-1의 고속대량 이미징 결과를 보여주는 사진이며, 도 7(b)는 실시예 1에서 일정 기간 동안 배양한 오가노이드의 면적을 나타내는 그래프이며, 도 8(a)는 비교예 1의 고속대량 이미징 결과를 보여주는 사진이고, 도 8(b) 는 비교예 1에서 일정 기간 동안 배양한 오가노이드의 면적을 나타내는 그래프이다.
도 7을 참조하면, 실시예 1-1에서 제조한 오가노이드를 자동 이미지 할 경우에 이미징 높이가 균일하여 큰 오차 없이 이미징이 가능하고, 이로 인해 실제 면적을 측정하였을 때 오차범위가 매우 적은 것을 확인할 수 있다.
특히, 본 발명의 세포배양 플레이트를 이용하여 오가노이드를 배양하는 경우, 오가노이드가 균일한 크기로 배양된다. 즉, 표준화가 가능하다. 표준화의 결과, 이미지 측정시 초점이 자동으로 잡히며 커넥터 구조에 의해서 측정 높이에 대한 편차를 최소화하게 되었다. 이에 따라, 스크리닝 이미지 측정시 편차가 20 ㎛ 내외로 아주 적게 나타난다.
도 8을 참조하면, 비교예 1의 경우, 오가노이드가 서로 겹치게 자라는 것을 확인할 수 있으며, 오가노이드의 크기와 분포 위치가 서로 달라 표준화가 불가능함을 알 수 있었다. 그러므로 스크리닝 이미지 측정시 오차범위가 최대 150 ㎛로 내외로 크게 나타났다.
이와 같은 결과는, 종래 방법으로 오가노이드를 배양하게 되면, 오가노이드가 메트리젤 내에서 랜덤으로 자라게되어 원하는 오가노이드를 균일하게 배양하기 힘들며, 또한 측정 높이도 가변적이라서 오가노이드 스크리닝 이미징에 적용하기가 어려운 한계가 있기 때문이다. 따라서 일정 기간 동안 배양된 오가노이드의 면적을 분석해보면 편차가 매우 크게 나타나게 된다.
도 9의 경우, 전체 만들어진 표준형 오가노이드에서, Image J 프로그램을 이용해 각각의 오가노이드의 지름을 측정하였다. 총 864개의 웰을 고속대량이미징을 진행하였고, 이를 ImageJ로 각각 분석을 하여 균일한 지름이 나오는 것을 확인하였다.
도 9는 실시예 1-1의 대장암 세포를 14일 간 배양하였을 때의 이미징 결과와 오가노이드 크기를 보여준다. 오가노이드 크기가 300-50 ㎛로 균일하여 표준 오가노이드 제작이 가능함을 알 수 있다.
도 10은 실시예 1-1 및 1-2에 따른 오가노이드를 시간 경과에 따라 보여주는 이미지 사진(왼쪽)과 실시예 1-1에 따른 오가노이드 생존율이다(오른쪽). 도 10의 경우, 배양된 오가노이드를 Live/Dead 염색을 진행하여, 실제 배양된 오가노이드가 얼마나 유지되는지 확인하였다. 먼저 배양된 표준형 오가노이드를 PBS로 세척한 후, accutase로 10분 가량 인큐베이션을 진행하였다. 그리고 나서, 단일 세포로 조각내어, Live/Dead 시약인 Calcein과 EtdH-1를 인큐베이터에서 약 30-60분 가량 보관 후, C-Chip에 넣어 형광현미경으로 각각 얼마만큼 존재하는지 확인한 결과를 나타낸 것이다.
도 10을 통해 매트리젤이 없어도 오가노이드 형성이 매우 잘 일어남을 알 수 있으며, 14일 동안 배양하는 경우 오가노이드 생존율이 매우 높음을 알 수 있다.
도 11은 실시예 1-1, 2, 및 3의 고속대량 이미징 결과를 보여주는 사진으로, 도 9는 실시예 1-1, 2, 및 3에서 대장암 세포를 14일 간 배양하였을 때의 이미징 결과를 보여준다((a) 실시예 1-1, (b) 실시예 2, (c) 실시예 3).
도 11(a)를 참조하면, 세포를 각각의 서브 웰에 평균 100 cells/well 씩 시당하였을 경우, 비교분석 가능한 균일한 오가노이드를 제작할 수 있었다(오차범위: 20 ㎛ 내외).
반면, 도 11(b) 및 도 11(c) 를 참조하면, 세포를 서브 웰에 100 cells/well 이상 시딩하는 경우, 오가노이드가 상기 서브웰로부터 넘쳐 흘러, 균일하지 않은 오가노이드가 생성되는 것을 확인할 수 있다.
도 12는 실시예 1-1, 2 및 3의 고속대량 이미징 결과를 보여주는 그래프로, 도 12는 실시예 1-1, 2 및 3에서 대장암 세포를 7일 또는 14일 간 배양하였을 때의 결과를 보여준다((a) 실시예 1-1, (b) 실시예 2, (c) 실시예 3).
도 12를 참조하면, 세포를 평균 100 cells/well 평균 14일 배양하였을 때, 가장 바람직한 오가노이드를 제작할 수 있음을 보여준다. 즉, 평균 100cells/well 이하의 세포를 14일 배양하였을 때, 최적의 오가노이드가 분화 및 생장할 수 있을 것으로 보인다. 반면, 서브웰에 시딩하는 세포를 늘리고, 배양일 수를 줄일 경우에는 오가노이드 성능이 떨어지는 것을 확인할 수 있었다.
참고로, 도 12의 점선은 본 발명의 세포배양 플레이트의 서브웰의 최대 공간을 의미하는 것으로, 세포를 배양할 수 있는 공간을 의미한다. 이는 평균 100 cells/well 이하의 세포를 배양할 수 있을 것으로 판단된다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 이 기술분야의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 이 기술분야의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
[부호의 설명]
100: 웰 플레이트
101: 단턱
110: 메인 웰
120: 서브 웰
121: 오목부
130: 공간부
140: 요부
200: 대용량의 고속 HCS용 커넥터
210: 베이스
220: 커버
240: 철부
Claims (10)
- 세포를 3차원 세포배양 플레이트에서 배양하여 오가노이드를 형성하는 단계를 포함하는 오가노이드 제조방법으로,상기 오가노이드 형성 단계에서, 상기 세포배양 플레이트는 세포외 기질 기반 하이드로젤을 0 내지 2 부피% 포함하고,상기 3차원 세포배양 플레이트는,복수개의 메인 웰(main well)과, 메인 웰의 각각 하부에 형성되어 세포 배양액이 주입되며, 바닥면에 오목부를 포함하는 복수개의 서브 웰(sub well)을 포함하는 웰 플레이트(well plate); 및 웰 플레이트를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터;를 포함하며,상기 대용량의 고속 HCS(High contents screening)용 커넥터는, 웰 플레이트의 하단과 서로 착탈 가능하도록 고정수단이 구비된 베이스와 웰 플레이트의 상부에 위치하여, 베이스와 결합되는 커버를 포함하고, 상기 메인 웰은 소정부위 테이퍼지도록 단턱이 형성되며, 상기 단턱은 메인 웰의 벽을 기준으로 10 내지 60° 범위의 경사각(θ)을 갖는 세포배양 플레이트인,오가노이드 제조방법.
- 제1항에 있어서,상기 세포외 기질 기반 하이드로젤은 매트리젤인, 오가노이드 제조방법.
- 제1항에 있어서,상기 세포는 정상세포 또는 암세포이고,상기 배양기간은 1 내지 14일인, 오가노이드 제조방법.
- 제1항에 있어서,상기 오가노이드의 크기는 직경 300-500 ㎛인, 오가노이드 제조방법.
- 제1항에 있어서,상기 서브 웰은 오목부를 향하여 테이퍼지도록 경사면이 형성되는 것을 특징으로 하는 오가노이드 제조방법.
- 제1항에 있어서,상기 서브 웰은 오목부를 향하여 테이퍼지도록 경사면이 형성되고,상기 서브 웰(120)의 상단 직경은 3.0 내지 4.5 mm 범위이고,상기 오목부(121) 상단의 직경은 0.45 내지 1.5 mm 범위이며,상기 서브 웰과 오목부의 경사면(θ 2)은 40 내지 50° 범위이고,상기 서브 웰의 직경과 오목부의 직경에 대한 길이 비가 1:0.1 내지 0.5 범위인 것을 특징으로 하는 오가노이드 제조방법.
- 제1항에 있어서,상기 메인 웰의 개별 부피는 100 내지 300 ㎕ 범위이며,상기 오목부의 개별 부피는 20 내지 50 ㎕ 범위이고,상기 메인 웰과 오목부의 개별 부피비는 평균 1 : 0.1 내지 0.5 인 것을 특징으로 하는 오가노이드 제조방법.
- 제1항에 있어서,상기 메인 웰은, 단턱과 서브 웰 사이에 공간부를 포함하고,상기 공간부의 높이(a h)는 평균 2.0 내지 3.0 mm 범위이며,상기 서브 웰의 높이(b h)는 평균 1.0 내지 2.0 mm 범위이고,상기 공간부와 서브 웰의 높이비(a h:b h)는 1:0.3 내지 1 범위인 것을 특징으로 하는 오가노이드 제조방법.
- 제1항에 있어서,상기 세포는 상기 세포배양 플레이트에 100 내지 300 cells/well로 시딩되는 것인, 오가노이드 제조방법.
- 제1항 내지 제9항 중 어느 한 항에 따라 제조된, 직경 300-500 um 크기를 가지는 오가노이드.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022580503A JP2023538208A (ja) | 2020-06-25 | 2020-06-25 | 標準型オルガノイドの作製方法 |
EP20942249.2A EP4174169A4 (en) | 2020-06-25 | 2020-06-25 | PROCESS FOR PRODUCING STANDARD ORGANOIDS |
US17/628,719 US20220243172A1 (en) | 2020-06-25 | 2020-06-25 | Standard organoid production method |
PCT/KR2020/008274 WO2021261622A1 (ko) | 2020-06-25 | 2020-06-25 | 표준형 오가노이드 제조방법 |
CN202080061308.0A CN114423858A (zh) | 2020-06-25 | 2020-06-25 | 标准型类器官的生产方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2020/008274 WO2021261622A1 (ko) | 2020-06-25 | 2020-06-25 | 표준형 오가노이드 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021261622A1 true WO2021261622A1 (ko) | 2021-12-30 |
Family
ID=79281422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/008274 WO2021261622A1 (ko) | 2020-06-25 | 2020-06-25 | 표준형 오가노이드 제조방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220243172A1 (ko) |
EP (1) | EP4174169A4 (ko) |
JP (1) | JP2023538208A (ko) |
CN (1) | CN114423858A (ko) |
WO (1) | WO2021261622A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI793671B (zh) * | 2021-07-09 | 2023-02-21 | 中國醫藥大學 | 細胞治療用生物晶片及其製造方法 |
WO2024112417A1 (en) * | 2022-11-21 | 2024-05-30 | Corning Incorporated | Microplates with retention structure and method of using the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011167101A (ja) * | 2010-02-17 | 2011-09-01 | Stem Biomethod Corp | 細胞収容装置 |
KR20140113139A (ko) * | 2013-03-15 | 2014-09-24 | 고려대학교 산학협력단 | 세포 스페로이드 배양판 |
KR20160017036A (ko) * | 2013-06-07 | 2016-02-15 | 가부시키가이샤 구라레 | 배양 용기 및 배양 방법 |
KR20170010857A (ko) * | 2014-05-30 | 2017-02-01 | 주식회사 쿠라레 | 배양 방법 및 세포 덩어리 |
KR20170073696A (ko) * | 2014-10-29 | 2017-06-28 | 코닝 인코포레이티드 | 스페로이드 포획 삽입체 |
KR101756901B1 (ko) | 2015-11-13 | 2017-07-12 | 고려대학교 산학협력단 | 세포배양 칩 및 생성방법 |
KR20200081295A (ko) * | 2018-12-26 | 2020-07-07 | 주식회사 넥스트앤바이오 | 표준형 오가노이드 제조방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK2173853T3 (da) * | 2007-06-29 | 2011-07-04 | Unisense Fertilitech As | Indretning, system og fremgangsmåde til at overvåge og/eller dyrke mikroskopiske objekter |
CN102257123B (zh) * | 2008-09-22 | 2014-03-26 | 苏黎世大学研究学部 | 悬滴板 |
JP2012157267A (ja) * | 2011-01-31 | 2012-08-23 | Hitachi Maxell Ltd | 微細パターンを有するプレート部材 |
US20160123960A1 (en) * | 2013-06-10 | 2016-05-05 | Millennium Pharmaceuticals, Inc. | Method for preparing three-dimensional, organotypic cell cultures and uses thereof |
EP2929939A1 (en) * | 2014-04-07 | 2015-10-14 | Yantai AusBio Laboratories Co., Ltd. | Microplate |
ES2858600T3 (es) * | 2014-12-22 | 2021-09-30 | Ecole Polytechnique Fed Lausanne Epfl | Dispositivos para la agregación, de alto rendimiento, y la manipulación de células de mamífero |
US10870830B2 (en) * | 2015-03-26 | 2020-12-22 | EWHA University—Industry Collaboration Foundation | Method for culturing differentiation-promoting and -sustaining spheroid form of tonsil-derived stem cells |
US20190382701A1 (en) * | 2018-06-18 | 2019-12-19 | SageMedic Corporation | System for Obtaining 3D Micro-Tissues |
-
2020
- 2020-06-25 EP EP20942249.2A patent/EP4174169A4/en active Pending
- 2020-06-25 JP JP2022580503A patent/JP2023538208A/ja active Pending
- 2020-06-25 CN CN202080061308.0A patent/CN114423858A/zh active Pending
- 2020-06-25 WO PCT/KR2020/008274 patent/WO2021261622A1/ko unknown
- 2020-06-25 US US17/628,719 patent/US20220243172A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011167101A (ja) * | 2010-02-17 | 2011-09-01 | Stem Biomethod Corp | 細胞収容装置 |
KR20140113139A (ko) * | 2013-03-15 | 2014-09-24 | 고려대학교 산학협력단 | 세포 스페로이드 배양판 |
KR20160017036A (ko) * | 2013-06-07 | 2016-02-15 | 가부시키가이샤 구라레 | 배양 용기 및 배양 방법 |
KR20170010857A (ko) * | 2014-05-30 | 2017-02-01 | 주식회사 쿠라레 | 배양 방법 및 세포 덩어리 |
KR20170073696A (ko) * | 2014-10-29 | 2017-06-28 | 코닝 인코포레이티드 | 스페로이드 포획 삽입체 |
KR101756901B1 (ko) | 2015-11-13 | 2017-07-12 | 고려대학교 산학협력단 | 세포배양 칩 및 생성방법 |
KR20200081295A (ko) * | 2018-12-26 | 2020-07-07 | 주식회사 넥스트앤바이오 | 표준형 오가노이드 제조방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4174169A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4174169A1 (en) | 2023-05-03 |
EP4174169A4 (en) | 2024-03-27 |
US20220243172A1 (en) | 2022-08-04 |
CN114423858A (zh) | 2022-04-29 |
JP2023538208A (ja) | 2023-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102237426B1 (ko) | 표준형 오가노이드 제조방법 | |
WO2021261622A1 (ko) | 표준형 오가노이드 제조방법 | |
WO2019035618A1 (ko) | 3차원 폐암 오가노이드 배양 방법 및 이를 이용한 환자 유래 이종이식 동물모델의 제조 방법 | |
WO2021034107A1 (ko) | 약물의 심장 효능 및 독성 시험을 위한 심근내막 수준 생체모방 심장칩 | |
WO2021101313A1 (ko) | 심근주막 수준 생체모방 심장칩 및 이의 용도 | |
Hartenstein et al. | Sensillum development in the absence of cell division: the sensillum phenotype of the Drosophila mutant string | |
US11150460B2 (en) | Cell culture microscopy slides | |
KR20200081294A (ko) | 뇌 오가노이드 제작방법 | |
WO2021261625A1 (ko) | 암을 가진 대상체의 항암제 및/또는 방사선 내성 진단에 필요한 정보를 제공하는 방법 | |
WO2021261621A1 (ko) | 하이드로젤을 사용하지 않는 줄기세포 대량 증식방법 | |
WO2021261616A1 (ko) | 하이드로젤을 사용하지 않는 유도만능줄기세포 제조방법 | |
WO2021261623A1 (ko) | 뇌 오가노이드 제작방법 | |
US20190345429A1 (en) | Cell Holding Device for Microinjection | |
KR102364925B1 (ko) | 대용량 고속이미지 최적화용 세포배양 플레이트 | |
KR102249181B1 (ko) | 하이드로젤을 사용하지 않는 줄기세포 대량 증식방법 | |
WO2021086136A1 (ko) | 세포 분주 및 배양용 디스크, 실시간 모니터링 시스템 및 세포 분주 및 배양 방법 | |
WO2017105035A1 (ko) | 세포 배양 나노섬유 구조체, 이의 제조 방법 및 세포 배양 나노섬유 구조체를 포함하는 세포 분석 장치 | |
WO2024025278A1 (ko) | 다층 3차원 세포배양체 형성유닛을 이용한 다층 3차원 세포배양체 형성시스템 및 다층 3차원 세포배양체 형성방법 | |
WO2017034316A1 (ko) | 세포 패터닝용 물질, 이의 제조 방법, 및 이의 용도 | |
WO2020204263A1 (ko) | 각각의 수정란을 공동배양 할 수 있는 배양 접시 | |
WO2021075810A1 (ko) | 웰 플레이트유닛 및 이를 이용한 멀티 레이어 스페로이드 배양장치 | |
WO2024177412A1 (ko) | 시상하부-뇌하수체 바이오칩 및 이의 제조방법 | |
WO2024025177A1 (ko) | 역-미세둑 구조가 포함된 장기모사칩 및 이의 용도 | |
US20240182830A1 (en) | Microwells for cellular spheroid assembly | |
CN212533020U (zh) | 胚胎时差监测系统专用培养皿 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20942249 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022580503 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020942249 Country of ref document: EP Effective date: 20230125 |