WO2021261621A1 - 하이드로젤을 사용하지 않는 줄기세포 대량 증식방법 - Google Patents

하이드로젤을 사용하지 않는 줄기세포 대량 증식방법 Download PDF

Info

Publication number
WO2021261621A1
WO2021261621A1 PCT/KR2020/008271 KR2020008271W WO2021261621A1 WO 2021261621 A1 WO2021261621 A1 WO 2021261621A1 KR 2020008271 W KR2020008271 W KR 2020008271W WO 2021261621 A1 WO2021261621 A1 WO 2021261621A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
stem cells
cell culture
sub
cells
Prior art date
Application number
PCT/KR2020/008271
Other languages
English (en)
French (fr)
Inventor
정석
양지훈
나규환
전예슬
정용훈
Original Assignee
주식회사 넥스트앤바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 넥스트앤바이오 filed Critical 주식회사 넥스트앤바이오
Priority to CN202080057825.0A priority Critical patent/CN114514312A/zh
Priority to PCT/KR2020/008271 priority patent/WO2021261621A1/ko
Priority to EP23178909.0A priority patent/EP4253516A3/en
Priority to US17/628,710 priority patent/US20220275328A1/en
Priority to CN202310274840.6A priority patent/CN116042398A/zh
Priority to EP20941637.9A priority patent/EP4174171A4/en
Priority to JP2022580485A priority patent/JP2023538207A/ja
Publication of WO2021261621A1 publication Critical patent/WO2021261621A1/ko
Priority to US18/115,985 priority patent/US20230272320A1/en
Priority to JP2023053903A priority patent/JP2023126710A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture

Definitions

  • the present invention relates to a method for mass proliferation of induced pluripotent stem cells without using a hydrogel. More specifically, it relates to a method for mass-proliferating induced pluripotent stem cells from somatic cells without using hydrogel using a three-dimensional cell culture plate.
  • iPSCs Induced pluripotent stem cells
  • iPSCs induced pluripotent stem cells
  • Induced pluripotent stem cells have a wide range of applications, ranging from cell therapy products, biotissue engineering, drug development, toxicology, and precision medicine. For these applications, a large amount of high-efficiency, high-quality induced pluripotent stem cells and embryonic stem cell culture are required, and stem cells of uniform size and of the same efficiency are required. In addition, the efficiency of reprogramming pluripotent induced stem cells is also very low. Recently, a lot of research has been done on methods for clinical application, that is, methods that do not allow DNA integration in which foreign genes are not inserted into them. It is intended to be produced, but this series of manufacturing methods has a problem in that the efficiency of the three-dimensional culture method and the reprogramming efficiency of somatic cells are also low.
  • Patent Document 1 discloses a cell culture chip capable of culturing three-dimensional tissue cells.
  • the first culture section, the second culture section, and the third culture section are formed for each layer, and the degree of cell growth can be checked for each layer.
  • the cell culture chip of Patent Document 1 has a problem in that spheroids and/or organoids cannot be obtained in high yield.
  • Matrigel (product name of BD Bioscience) is a protein complex extracted from EHS (Engelbreth-Holm-Swarm) mouse sarcoma cells. It contains laminin, collagen, heparan sulfate proteoglycan and Same extracellular matrix (ECM) and fibroblast growth factor (FGF), epidermal growth factor (EFG), insulin-like growth factor (IGF), transformation It contains growth factors such as transforming growth factor-beta (TGF- ⁇ ) and platelet-derived growth factor (PDGF).
  • EHS Engelbreth-Holm-Swarm mouse sarcoma cells. It contains laminin, collagen, heparan sulfate proteoglycan and Same extracellular matrix (ECM) and fibroblast growth factor (FGF), epidermal growth factor (EFG), insulin-like growth factor (IGF), transformation It contains growth factors such as transforming growth factor-beta (TGF- ⁇ ) and platelet-derived growth factor (PDGF).
  • EHS Engelbreth-
  • Matrigel is derived from mouse sarcoma, there is a high risk of transmitting immunogens or pathogens. Also, Matrigel is used for cell growth and tissue formation, but there is also criticism that it has a big problem in cell reproducibility because it is a complex material. It is also unclear whether Matrigel simply acts as a passive 3D scaffold providing physical support to growing spheroids, or whether it actively influences spheroid formation by providing biological essentials. Matrigel is also very expensive. Therefore, Matrigel is a material that has contributed to the development of the cell culture technology field, but it is also true that the development of this technology field is hindered by this Matrigel.
  • the present inventors completed the present invention by continuing research on a technology for mass culturing by enhancing the reprogramming efficiency of stem cells without using a hydrogel.
  • the present invention provides a stem cell proliferation method comprising:
  • the three-dimensional cell culture plate The three-dimensional cell culture plate
  • a well plate including a plurality of main wells and a plurality of sub wells formed under each of the main wells to inject a cell culture solution and having a recess on the bottom surface; and a connector for high-capacity high-speed HCS (High contents screening) supporting the well plate;
  • the large-capacity and high-speed HCS (High contents screening) connector includes a bottom of the well plate and a base provided with a fixing means to be detachable from each other, and a cover positioned on the top of the well plate and coupled to the base, and the main well
  • a step is formed so as to be tapered at a predetermined portion, and the step has an inclination angle ( ⁇ ) in the range of 10 to 60° with respect to the wall of the main well.
  • the cell may be a somatic cell or a stem cell.
  • the somatic cell may be a fibroblast, but is not limited thereto, and any somatic cell known in the art may be used.
  • the stem cells may be at least one selected from the group consisting of adult stem cells, embryonic stem cells, mesenchymal stem cells, adipose stem cells, hematopoietic stem cells, umbilical cord blood stem cells, and induced pluripotent stem cells, but not necessarily limited thereto. Any known stem cells in the art can be used.
  • the cells may be cultured in a general two-dimensional well plate, a three-dimensional cell culture plate, or a three-dimensional plate according to the present invention.
  • the hydrogel may be an extracellular matrix-based hydrogel.
  • the extracellular matrix-based hydrogel may be Matrigel (product name).
  • the subculture may be a subculture of 1 to 20 generations, but is not necessarily limited thereto.
  • the spheroids may be separated into single cells and subcultured more than once.
  • the sub-well of the three-dimensional cell culture plate has an inclined surface that is tapered toward the concave portion, the diameter of the upper end of the sub-well 120 is in the range of 3.0 to 4.5 mm, and the diameter of the upper end of the concave portion 121 is 0.45 to 1.5 mm, and the slope ( ⁇ 2 ) of the sub-well and the concave portion may be in the range of 40 to 50°, and the length ratio of the diameter of the sub-well and the diameter of the concave portion may be in the range of 1:0.1 to 0.5.
  • the individual volume of the main well of the three-dimensional cell culture plate is in the range of 100 to 300 ⁇ l
  • the individual volume of the recess is in the range of 20 to 50 ⁇ l
  • the individual volume ratio of the main well and the recess is on average 1: 0.1 to 0.5 days
  • the main well includes a space between the step and the sub-well, and the height of the space (a h ) is in the range of 2.0 to 3.0 mm on average, and the height (b h ) of the sub-well is in the range of 1.0 to 2.0 mm on average, , the height ratio (a h :b h ) of the space portion and the sub-well may be in the range of 1:0.3 to 1.
  • the somatic cells may be seeded at 100 to 1000 cells/well into the subwells of the cell culture plate.
  • hydrogels are used to serve as an extracellular matrix when culturing cells, spheroids, organoids, etc.
  • an extracellular matrix-based hydrogel eg, Matrigel
  • Matrigel extracellular matrix-based hydrogel
  • the present invention provides a method for producing induced pluripotent stem cells using a three-dimensional cell culture plate that does not contain a hydrogel.
  • a detailed description of the three-dimensional cell culture plate of the present invention is as follows.
  • the present invention uses a three-dimensional cell culture plate comprising:
  • a well plate including a plurality of main wells and a plurality of sub wells formed under each of the main wells to inject a cell culture solution and having a recess on the bottom surface;
  • It includes a connector for high-capacity high-speed HCS (High contents screening) that supports the well plate,
  • the large-capacity and high-speed HCS (High contents screening) connector includes a base provided with a fixing means detachably from the bottom of the well plate, and a cover positioned on the top of the well plate and coupled to the base,
  • a step is formed in the main well to be tapered at a predetermined portion, and the step has an inclination angle ( ⁇ ) in the range of 10 to 60° with respect to the wall of the main well.
  • the present invention is to solve the above-mentioned problems, and it is possible to manufacture spheroids/organoids with high yield by including a plurality of sub-wells in a plurality of main wells formed in a well plate, and high-capacity and high-speed for supporting the plate.
  • a connector for HCS High Contents Screening
  • the tanteok of the main well the cultured cells are provided with a cell culture plate capable of minimizing the influence of the pipetting operation when replacing the media.
  • Figure 1 (a) is a front view of a cell culture plate according to an embodiment of the present invention
  • Figure 1 (b) is a cross-sectional view of a cell culture plate according to an embodiment of the present invention
  • Figure 2 is a chamber of the present invention It is a view showing in detail the main well formed in the cell culture plate according to the example
  • FIG. 3 is a view showing the well plate, the base and the cover of the cell culture plate according to an embodiment of the present invention ((a) cover, (b) ) base, (c) microplate and fixing means of the base).
  • FIGS. 1 to 3 a cell culture plate according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3 .
  • the cell culture plate 10 is formed under each of a plurality of main wells 110 and the main well 110, so that the cell culture solution is a well plate 100 that is injected and includes a plurality of sub-wells 120 including a recess 121 on the bottom surface; And it is configured to include a high-capacity high-capacity HCS (High contents screening) connector 200 for supporting the well plate (100).
  • HCS High contents screening
  • the well plate 100 according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2 .
  • the well plate 100 is made in a plastic injection-molded plate shape through a mold.
  • the main well 110 has a repeating pattern as a well structure so that the production cost can be reduced by using micro-machining for manufacturing a mold for plastic injection and the size can be easily enlarged. Therefore, it is easy to mass-produce the cells, and it is possible to use the cells by modifying them in various sizes according to the needs of the user.
  • a plurality of the main wells 110 are formed in the well plate 100 , and each of the main wells 110 includes a step 101 .
  • the stepped 101 is formed at a predetermined portion of the main well 110 , and more specifically, the stepped 101 may be formed at 1/3 to 1/2 of the entire length of the main well 110 . In addition, the step 101 may be formed at 1/3 to 1/2 position from the lower end of the main well 110 .
  • the step 101 may be a space to which a pipette is applied, and specifically, may have an inclination angle ⁇ in the range of 10 to 60° with respect to the wall of the main well 110 . Alternatively, it may have an inclination angle in the range of 20 to 50°, and preferably may have an inclination angle in the range of 30 to 45°. If the inclination angle of the step 101 is less than 10°, the inclination angle in the main well 110 is too small and there is not enough space to apply the pipette. A spheroid or an organoid may be sucked up by sliding into the sub-well 120 , or a change in position may occur.
  • the inclination angle ( ⁇ ) exceeds 60°, a space for applying a pipette is provided, but the inclination angle of the step 101 is too large, so it may be difficult to sufficiently suck the culture solution, and When seeding cells, a problem in that the cells do not enter all the sub-wells 120 and are seeded in the step 101 may occur. Therefore, it is preferable to have an inclination angle in the above-mentioned range.
  • the main well 110 may include a space 130 between the stepped 101 and the sub-well 120 to be described later.
  • the space 130 is a space into which the culture solution is injected, and is a space in which the cells in the sub-well 120 can share the same culture solution.
  • the height (a h ) of the space portion 130 may range from 2.0 to 3.0 mm on average, or from 2.2 to 2.8 mm, or from 2.3 to 2.7 mm on average.
  • the height b h of the sub-well 120 may range from 1.0 to 2.0 mm on average, or from 1.2 to 1.8 mm on average.
  • the height (a h ) of the space portion 130 may be on average 2.5 mm, and the height (b h ) of the sub-well may be on average 1.5 mm.
  • the height ratio (a h :b h ) of the space portion and the sub-well 120 may be in the range of 1:0.3 to 1, and in more detail, the height ratio (a h : b h ) may be 1:0.4 to 0.9 or 1:0.5 to 0.8. If the height of the sub-well 120 is less than 1:0.3 compared to the height of the space, when the media of the sub-well 120 is exchanged, cells being cultured inside may pop out with even a little force, and the sub-well ( If the height of 120) exceeds 1:1 compared to the height of the space part, the culture medium required for the cells is not sufficiently converted, which may cause cell death. Accordingly, the space 130 and the sub-well 120 preferably have the above-described height range and height ratio.
  • the sub-well 120 is formed under each of the main well 110 , and includes a concave portion 121 on the bottom surface.
  • the sub-well 120 may include a plurality of sub-wells 120 under the main well 110 .
  • Each of the sub-wells 120 included in the lower portion of the main well 110 has the same size and shape, so that spheroids and organoids under uniform conditions can be generated.
  • the sub-well 120 may have an inclined surface that is tapered toward the concave portion 121 .
  • the horizontal width of the upper end of the sub-well 120 may decrease as it descends in the vertical direction.
  • the upper end of the sub-well 120 may have an inverted pyramid shape.
  • the upper end of the sub-well 120 has a pyramid shape, but may be configured in a shape such that the horizontal width decreases as it descends in the vertical direction, such as a funnel shape.
  • the cell culture plate can produce a large amount of spheroids or organoids under uniform conditions.
  • one main well 110 may include 4 to 25 sub-wells 120 of the same size, and 96 to 1,728 sub-wells 120 may be included in the entire microplate 100. have. Accordingly, the same and precise size control is possible.
  • the sub-well 120 includes a concave portion 121, and the concave portion 121 has a space formed at the lower end of the concave portion so that 3D spheroids or organoids can be cultured.
  • the concave part 121 may have a 'U' shape, a 'V' shape, or a ' ⁇ ' shape.
  • the recess 121 may have a 'U' shape. .
  • the top diameter of the sub-well 120 may range from 3.0 to 4.5 mm, or from 3.5 to 4.3 mm, or an average of 4 mm.
  • the diameter of the upper end of the concave portion 121 may be 0.45 to 1.5 mm, or 0.5 to 1.0 mm, or an average of 0.5 mm.
  • the ratio of the diameter of the sub-well 120 to the diameter of the concave portion 121 may be in a range of 1:0.1 to 0.5, and preferably, the diameter of the sub-well 120 and the concave portion 121 are in the range of 1:0.1 to 0.5.
  • the ratio of length to diameter may be 1:0.12.
  • the cell culture space of the concave portion 121 is not sufficiently provided. If the top diameter of the concave portion 121 exceeds 0.5 compared to the top diameter 1 of the sub-well 120, it is difficult to stably culture because sufficient culture solution for cells cannot be replaced. Problems can arise.
  • the slopes of relative to the wall of the main-well sub-well 120 and the recess 121 may have an inclination angle ( ⁇ 2) of 40 to 50 °, 42 to 48 ° range of inclination angle of ( ⁇ 2), 43 to the inclination angle of 47 ° range ( ⁇ 2), or the average angle of inclination of 45 ° may have a ( ⁇ 2).
  • the above-described sub-well 120 is capable of culturing cells of 100 to 1000 cells/well or less, and has the advantage of stably controlling the size of the spheroid.
  • the individual volume of the main well 110 is in the range of 100 to 300 ⁇ l, and the individual volume of the concave portion 121 is in the range of 20 to 50 ⁇ l, and the main well 110 and the concave volume are in the range of 20 to 50 ⁇ l.
  • the individual volume ratio of the portion 121 is on average 1: 0.07 to 0.5.
  • the individual volume of the main well 110 according to the embodiment is in the range of 250 to 300 ⁇ l, and the individual volume of the concave portion may be in the range of 25 to 35 ⁇ l, and the main well 110 and the recess ( 121) may have an average volume ratio of 1:0.11.
  • the individual volume of the main well 110 is less than 100 ⁇ l, there may be a problem that a sufficient culture solution cannot be accommodated during cell culture, and if it exceeds 300 ⁇ l, the culture efficiency may be reduced.
  • the recess 121 is a space in which cells are actually cultured, and when the volume is less than 20 ⁇ l, there is not enough cell culture space, which may cause a problem that cells escape, and when it exceeds 50 ⁇ l, cells, etc. Difficulty in culturing stably may occur. Accordingly, it is preferable that the main well 110 and the concave portion 121 have a volume within the above-described range.
  • spheroid formation is very good. Specifically, hundreds to thousands of monoclonal induced pluripotent stem cells can be made by separating the spheroids into single cells and subculturing them.
  • the cell culture plate 10 includes a large-capacity high-speed HCS (High contents screening) connector 200 supporting the well plate 100 .
  • the high-capacity and high-speed HCS (High contents screening) connector 200 refers to a connector 200 that is seated in the HCS (High contents screening) system.
  • the connector 200 is a base in the present invention. It may mean 210 and the cover 220 .
  • the large-capacity and high-speed HCS (High contents screening) connector includes a base 210 and a well plate 100 provided with fixing means 140 and 240 so as to be detachable from the lower end of the well plate 100 . It is located on the upper portion, and includes a cover 220 coupled to the base (210). And, the upper end of the base 210 and the lower end of the well plate 100 are characterized in that they include fixing means (140, 240) that can be fixed to each other to be detachable.
  • the base may include a convex part 240 for supporting the well plate 100
  • the well plate 100 may include a recessed part 140 opposite to the convex part 240 of the base 210 . have.
  • the well plate 100 is fixed by the fixing means so that an image can be uniformly taken during screening.
  • the base is polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyamide, polyester, polyvinyl chloride, polyurethane, polycarbonate, polyvinylidene chloride, polytetrafluoroethylene, polyetheretherketone or polyetherimide. It may be made of a material, but is not necessarily limited thereto.
  • the well plate may be made of polydimethyl silicone, high fat-modified silicone, methylchlorophenyl silicone, alkyl-modified silicone, methylphenyl silicon, silicone polyester, or amino-modified silicone material, but is not necessarily limited thereto.
  • Figure 4 shows a comparison of the method for producing induced pluripotent stem cells using a two-dimensional cell culture plate using Matrigel and a three-dimensional cell culture plate that does not require Matrigel according to the present invention.
  • somatic cells fibroblasts
  • episomal vectors are transfected into fibroblasts by electroporation to induce reprogramming to prepare induced pluripotent stem cells.
  • the process of tearing off the induced pluripotent stem cell colonies is cumbersome and the yield is low.
  • the three-dimensional cell culture plate used in the present invention may include 4 to 25 sub-wells 120 of the same size in one main well 110, and the entire microplate 100 has 96 to 1,728 sub-wells 120 may be included. Accordingly, it is possible to mass-produce the same and precisely size-controllable induced pluripotent stem cells and spheroids thereof.
  • FIG. 10 schematically shows a method for mass proliferation of induced pluripotent stem cell spheroids obtained in the induced pluripotent stem cell reprogramming step. It can be seen that the proliferation rate of the induced pluripotent stem cells of the present invention is very fast compared to the two-dimensional cell culture plate (Matrigel coating). In addition, if the spheroids are separated into single cells and plated again and then subculture is continued, hundreds to thousands of monoclonal spheroids of uniform size are made, so an induced pluripotent stem cell spheroid bank can be made.
  • the manufacturing method of the present invention it is possible to mass proliferate by preparing stem cells with improved reprogramming efficiency without the need for hydrogel. It is also possible to create a monoclonal stem cell spheroid bank.
  • Figure 1 (a) is a front view of the cell culture plate according to an embodiment of the present invention
  • Figure 1 (b) is a cross-sectional view of the cell culture plate according to an embodiment of the present invention.
  • FIG. 2 is a view showing in detail the main well formed in the cell culture plate according to an embodiment of the present invention.
  • FIG 3 is a view showing a well plate, a base, and a cover of a cell culture plate according to an embodiment of the present invention ((a) cover, (b) base, (c) fixing means for microplate and base).
  • Figure 4 (a) schematically shows the production process of induced pluripotent stem cells according to an embodiment and a comparative example of the present invention, (b) is the generation of induced pluripotent stem cells according to an embodiment and a comparative example of the present invention (In all of the drawings below in Fig. 4, for convenience of explanation, the three-dimensional cell culture plate of the present invention is not accurately indicated, but is indicated in a U-shape for convenience.)
  • Example 6 is an Alkaline Phosphatase (AP) staining image of an Example (3D sph-iPSC) and Comparative Example (2D Matrigel) of the present invention.
  • AP Alkaline Phosphatase
  • Figure 8 (a) is a result showing the spheroid (colony) size distribution as a result of the conventional three-dimensional culture and culture according to an embodiment of the present invention, (b) is a reprogramming factor (pluripotency marker) expression results.
  • 9 is a pluripotency marker expression result of iPSCs according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a method for proliferating induced pluripotent stem cells according to an embodiment and a comparative example of the present invention.
  • FIG. 11 is an image showing the induced pluripotent stem cell proliferation process over time according to an embodiment of the present invention.
  • FIG. 12 is a graph showing that the size is uniformly distributed when the induced pluripotent stem cells are subcultured according to an embodiment of the present invention.
  • FIG. 13 is a graph comparing proliferation efficiency according to an embodiment (three-dimensional cell culture) and a comparative example (two-dimensional cell culture) of the present invention.
  • 16 schematically shows the production, proliferation and differentiation process of induced pluripotent stem cells according to the present invention.
  • the human fibroblast cell line F134 (the german federal authorities / RKI: AZ 1710-79-1-4-41 E01) was mixed with 10% FBS (fetal bovine serum, Invitrogen, USA) and 1 mM L-glutamine (Invitrogen, USA). Incubated in 35 mm or 100 mm regular dishes in DMEM containing.
  • Episomal iPSC reprogramming vector (EP5 TM kit: Cat. No. A16960. Invitrogen, Carlsbad, CA, USA) was transfected into cultured fibroblasts by electroporation (Neon TM transfection system) and reprogrammed. Electroporation was performed under the conditions of 1,650 V, 10 ms, and 3 pulses.
  • the transfected fibroblasts were prepared using the three-dimensional cell culture plate of the present invention (without Matrigel, Example) and the two-dimensional 12-well plate (Matrigel-coated, Comparative Example 1) and a commercial product.
  • Addgene Comparative Example 2, Matrigel coating, not shown in FIG. 4a
  • N2B27 medium including bFGF
  • the 3D iPSCs of Example were plated on a 12-well plate, which is a two-dimensional plate, to confirm the number of colonies in Examples and Comparative Examples.
  • the reprogrammed cells were fixed with 4% paraformaldehyde at room temperature for 20 min. After incubating the fixed cells with PBS containing 1% BSA and 0.5% Triton X-100 at room temperature for 1 hour, each of the primary antibodies Oct4 (1:100, SantaCruz, CA, USA), Sox2 (1:100, Cell Signaling, Danvers, MA, USA), Nanog (1:200, Cosmo Bio, Koto-Ku, Japan), E-cadherin (1:200, abcam), FITC-conjugated goat anti-rabbit IgG or anti- Mouse IgG (1:100, Invitrogen, Carlsbad, CA) was reacted with a secondary antibody. Fluorescence images were analyzed with a fluorescence microscope (Olympus, Shinjuku, Tokyo, Japan). DAPI was used as the nuclear staining solution.
  • Pluripotent induced stem cells were seeded with different numbers of cells, and size comparison was performed by date.
  • the number of cells is 0.1, 0.3, 0.5, 1, 2, 4 X 10 5 , respectively, in the multiwell corresponding to the example, so that the size of the cells is maintained and the number of cells is constantly increased regardless of the actual number of cells. was verified (related to FIGS. 12 and 13).
  • 3D iPSC spheroids Example, 3D sph-iPCSs
  • AP Alkaline phosphatase staining
  • FIGS. 6 and 7A when comparing 2D Matrigel (Comparative Example 1) and 3D iPSC spheroids (Example, 3D sph-iPCSs), the image comes out uniformly and clearly, which is a three-dimensional This shows that cell culture plates are capable of large-scale image analysis.
  • the reprogramming efficiency is very good in the three-dimensional cell culture plate. Also, looking at 7d, since the present invention does not use Matrigel, a large number of single cells reprogrammed with iPCSs are gathered to form a spheroid, which is a three-dimensional spherical cell aggregate, and the spheroid is formed into a three-dimensional It can be seen that it can be easily separated from the cell culture plate and replated. That is, the reprogramming efficiency is very high.
  • FIG. 8 is a comparison between the conventional three-dimensional culture of Comparative Example 2 and the three-dimensional culture of the present invention Example (SpheroidFilm of FIG. 8 b).
  • Conventional three-dimensional culture is not uniform in size and the expression level of oct4 is relatively low.
  • the size is very uniform (99.45%) and the expression rate of the reprogramming factor is very high. That is, compared with the conventional three-dimensional culture, the present invention is effective in culturing stem cells and can make the efficiency of reprogramming somatic cells into induced pluripotent stem cells high.
  • the uniform size means that standardized induced pluripotent stem cells and stem cells can be manufactured in large quantities in the form of spheroids in three dimensions.
  • iPSCs prepared according to the present invention have very high expression of pluripotency markers.
  • FIG. 13 is a two-dimensional 12-well plate (Matrigel-coated, Comparative Example 1) reprogrammed induced pluripotent stem cells subcultured in a two-dimensional Matrigel-coated plate, according to an embodiment of the present invention It is a graph comparing the proliferation efficiency when the programmed induced pluripotent stem cells are subcultured in the three-dimensional cell culture plate of the present invention. Referring to FIG. 13 , it can be seen that the proliferation efficiency is increased by about 23 times in the case of the present invention. Judging from the results of Figure 12 above, it is possible to mass-proliferate with a uniform size. 14 and 15 , it can be seen that mass-proliferated iPSCs also have very high expression of pluripotency markers.
  • FIG. 16 schematically shows the present invention.
  • induction Pluripotent stem cells can be proliferated in large quantities.
  • iPSCs develop and proliferate in the wells of the cell culture plate of the present invention. It can be stored as is, and the batch can be frozen at once. Since the well size can be adjusted without using a hydrogel such as Matrigel, it is economical to use less medium. In addition, the mass-proliferated induced pluripotent stem cells can be differentiated into various cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Transplantation (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 하이드로젤을 사용하지 않는 줄기세포 대량 증식방법을 제공한다.

Description

하이드로젤을 사용하지 않는 줄기세포 대량 증식방법
본 발명은 하이드로젤을 사용하지 않는 유도만능줄기세포 대량 증식방법에 관한 것이다. 보다 상세하게는 3차원 세포배양 플레이트를 이용하여 하이드로젤을 이용하지 않아도 체세포로부터 유도만능줄기세포를 제조하여 대량증식하는 방법에 대한 것이다.
분화가 끝난 체세포를 미분화 상태의 세포(예, 줄기세포)로 되돌리는 과정을 리프로그래밍(reprogramming)이라고 한다. 유도만능줄기세포(induced pluripotent stem cell, iPSC)는 역분화 줄기세포, 역분화 만능줄기세포 등으로도 불리는데, 리프로그래밍 인자(Oct4, Klf4, Sox2, c-Myc 등)를 이용하여 체세포를 줄기세포로 바꾸는 것이다(비특허문헌 1 및 2).
유도만능줄기세포는 세포치료제, 생체조직공학, 신약개발, 독성학 그리고, 정밀의료에 이르기까지 그 응용 분야가 다양하다. 이러한 어플리케이션을 위해서는 많은 양의 고효율, 고품질의 유도만능줄기세포 및 배아줄기세포의 배양이 필요하며 균일한 사이즈의 동일한 효율의 줄기세포가 필요하지만, 사실상 이러한 대량생산 기술에 대한 연구는 미흡한 상황이다. 또한, 아직까지 만능유도줄기세포를 리프로그래밍 하는 효율 역시 매우 낮은 편이다. 최근 임상 적용을 위한 방법, 즉, 외래의 유전자가 내부로 삽입되지 않는 DNA integration 이 되지 않는 방법에 대해서 많은 연구가 되고 있으며, 이중에서 에피조멀 벡터(episomal vector)와 같은 방법으로 유도만능줄기세포를 생산하고자 하고 있는데, 이러한 일련의 제조 방법은 3차원 배양 방법의 효율 및 체세포의 리프로그래밍 효율 역시 낮다는 문제점이 있다.
그리고 유도만능줄기세포 리프로그래밍을 위해, 2차원 세포배양 플레이트 바닥을 하이드로젤로 코팅하여 이용하고 있는데, 콜로니가 잘 만들어지지 않고, 세포의 리프로그래밍 이후에 콜로니가 생겨도 이를 분리하기 쉽지 않아 사실상 연구 목적뿐만 아니라, 사업화의 걸림돌로 작용하고 있다. 또한, 기존 방법의 경우 다수의 클론을 만드는 것이 거의 불가능하여, 기존 방법으로는 유도만능줄기세포로 리프로그래밍된 상태의 클론을 안정적으로 확보하기 어렵다. 또한 유도만능줄기세포를 손쉽게 스크리닝할 수 있는 플랫폼도 필요한 실정이다.
한편, 대한민국 등록특허 제10-1756901호(특허문헌 1)에는 3차원의 조직세포를 배양 가능한 세포배양 칩에 대해서 개시되어 있다. 상기 특허문헌 1의 세포배양 칩은 제1 배양부, 제2 배양부 및 제3 배양부를 각각 층별로 형성하고, 각 층별로 세포의 성장 진행 정도를 확인할 수 있다. 그러나, 특허문헌 1의 세포배양 칩은 스페로이드 및/또는 오가노이드를 고수율로 수득할 수 없는 문제점이 있다.
또한 세포 배양시 배양액을 교체하는 피펫팅 작업을 하는 경우가 있는데, 3차원 세포배양이 가능한 corning spheroid microplate의 경우, 세포 배양 중인 스페로이드 또는 오가노이드가 영향을 받아서, 피펫팅 작업시 빨려 올라가거나, 위치 변화 등이 발생하는 경우가 있어, 세포 배양 환경에 좋지 못한 문제가 있다.
매트리젤(Matrigel, BD Bioscience사의 제품명)은 EHS(Engelbreth-Holm-Swarm) 마우스의 육종세포에서 추출된 단백질 복합체로서, 라미닌(laminin), 콜라겐(collagen), 헤파란 설페이트 프로테오글리칸(heparan sulfate proteoglycan)과 같은 세포외 기질(extracellular matrix, ECM)과 섬유아세포 성장인자(fibroblast growth factor, FGF), 상피세포 성장인자(epiderma growth factor, EFG), 인슐린 성장인자(insulin-like growth factor, IGF), 형질전환 성장인자-베타(transforming growth factor-beta, TGF-β), 혈소판 유래 성장인자(platelet-derived growth factor, PDGF)와 같은 성장인자를 함유한다. 매트리젤을 이루고 있는 복합체는 많은 조직에서 발견되는 복잡한 세포외 환경을 제공함으로써 세포 배양을 위한 기질로서 이용되고 있다.
매트리젤은 마우스 육종(sarcoma)에서 유래된 것이기 때문에 면역원이나 병원균을 옮길 위험이 크다. 또한, 매트리젤은 세포 성장과 조직 형성을 위해 사용되고 있지만, 그만큼 복잡한 물질이기에 세포 재현성에 큰 문제가 있다는 비판도 있다. 매트리젤이 단순히 단순히 성장하는 스페로이드에 물리적인 지지를 제공하는 수동적인 3D 스캐폴드로 작용하는지, 아니면 생물학적 필수 요소를 제공하여 스페로이드 형성에 적극적으로 영향을 미치는지의 여부도 불분명하다. 또한 매트리젤은 그 가격도 매우 비싸다. 따라서, 매트리젤은 세포 배양 기술분야의 발전에 기여한 물질이지만, 이 매트리젤 때문에 이 기술분야의 발전이 저해되고 있는 것도 사실이다.
이에 본 발명자들은 하이드로젤을 사용하지 않으면서 줄기세포의 리프로그래밍 효율을 증진시켜서 대량 배양하는 기술에 대해 연구를 계속하여 본 발명을 완성하였다.
[선행기술문헌]
[특허문헌]
1. 대한민국 등록특허 제10-1756901호
[비특허문헌]
1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-676.
2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861-872.
본 발명의 목적은 줄기세포 증식방법을 제공하기 위한 것이다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당해 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위하여, 본 발명은 다음을 포함하는 줄기세포 증식방법을 제공한다:
i) 세포를 배양하는 단계;
ii) 줄기세포 제조를 위해 하이드로젤이 포함되지 않은 3차원 세포배양 플레이트를 준비하는 단계;
iii) 상기 배양된 세포를 상기 하이드로젤이 포함되지 않은 3차원 세포배양 플레이트에서 줄기세포로 리프로그래밍시키는 단계;
iv) 상기 리프로그램된 줄기세포의 스페로이드(spheroid)를 형성하는 단계;
v) 계대배양을 위해 하이드로젤이 포함되지 않은 3차원 세포배양 플레이트를 준비하는 단계; 및
vi) 상기 스페로이드를 분리하여 하이드로젤이 포함되지 않은 3차원 세포배양 플레이트에서 1회 이상 계대배양하는 단계;를 포함하는
줄기세포 증식 방법으로,
상기 3차원 세포배양 플레이트는,
복수개의 메인 웰(main well)과, 메인 웰의 각각 하부에 형성되어 세포 배양액이 주입되며, 바닥면에 오목부를 포함하는 복수개의 서브 웰(sub well)을 포함하는 웰 플레이트(well plate); 및 웰 플레이트를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터;를 포함하며,
상기 대용량의 고속 HCS(High contents screening)용 커넥터는, 웰 플레이트의 하단과 서로 착탈 가능하도록 고정수단이 구비된 베이스와 웰 플레이트의 상부에 위치하여, 베이스와 결합되는 커버를 포함하고, 상기 메인 웰은 소정부위 테이퍼지도록 단턱이 형성되며, 상기 단턱은 메인 웰의 벽을 기준으로 10 내지 60° 범위의 경사각(θ)을 갖는 세포배양 플레이트.
상기 세포는 체세포 또는 줄기세포일 수 있다.
상기 체세포는 섬유아세포일 수 있으나, 반드시 이로 제한되는 것은 아니며, 이 기술분야에 공지된 체세포라면 어느 것이나 사용가능하다.
상기 줄기세포는 성체줄기세포, 배아줄기세포, 중간엽줄기세포, 지방줄기세포, 조혈모세포, 제대혈줄기세포 및 유도만능줄기세포로 구성된 군으로부터 선택된 1종 이상일 수 있으며, 반드시 이로 제한되는 것은 아니고 이 기술분야의 공지된 줄기세포라면 어느 것이나 사용 가능하다.
상기 세포는 일반적인 2차원 웰 플레이트, 3차원 세포배양 플레이트 또는 본 발명에 따른 3차원 플레이트에서 배양할 수 있다.
상기 하이드로젤은 세포외기질(extracellular matrix) 기반 하이드로젤일 수있다.
상기 세포외 기질 기반 하이드로젤은 매트리젤(Matrigel, 제품명)일 수 있다.
상기 계대배양은 1 내지 20세대까지의 계대배양일 수 있으나, 반드시 이로 제한되는 것은 아니다.
상기 vi) 단계에서, 상기 스페로이드를 단일세포로 분리하여 1회 이상 계대배양할 수 있다.
상기 3차원 세포배양 플레이트의 서브 웰은 오목부를 향하여 테이퍼지도록 경사면이 형성되고, 상기 서브 웰(120)의 상단 직경은 3.0 내지 4.5 mm 범위이고, 상기 오목부(121) 상단의 직경은 0.45 내지 1.5 mm 범위이며, 상기 서브 웰과 오목부의 경사면(θ 2)은 40 내지 50° 범위이고, 상기 서브 웰의 직경과 오목부의 직경에 대한 길이 비가 1:0.1 내지 0.5 범위일 수있다.
상기 3차원 세포배양 플레이트의 상기 메인 웰의 개별 부피는 100 내지 300 ㎕ 범위이며, 상기 오목부의 개별 부피는 20 내지 50 ㎕ 범위이고, 상기 메인 웰과 오목부의 개별 부피비는 평균 1 : 0.1 내지 0.5일 수 있다.
상기 메인 웰은, 단턱과 서브 웰 사이에 공간부를 포함하고, 상기 공간부의 높이(a h)는 평균 2.0 내지 3.0 mm 범위이며, 상기 서브 웰의 높이(b h)는 평균 1.0 내지 2.0 mm 범위이고, 상기 공간부와 서브 웰의 높이비(a h:b h)는 1:0.3 내지 1 범위일 수 있다.
상기 체세포는 상기 세포배양 플레이트의 서브웰에 100 내지 1000 cells/well로 시딩될 수 있다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
일반적으로 세포, 스페로이드, 오가노이드 등을 배양할 때 세포외 기질의 역할을 제공하기 위해 하이드로젤을 사용한다. 일반적으로 2차원 플레이트나 3차원 세포배양 플레이트를 이용하여 유도만능줄기세포를 리프로그래밍할 때, 세포외 기질 기반 하이드로젤(예, 매트리젤)을 세포배양 플레이트에 코팅하여 사용한다.
그러나 본 발명은 하이드로젤을 포함하지 않는 3차원 세포배양 플레이트를 이용하여 유도만능줄기세포를 제조하는 방법을 제공한다. 본 발명의 3차원 세포배양 플레이트에 대한 구체적인 설명은 다음과 같다.
본 발명은 일 실시예에서 다음을 포함하는 3차원 세포배양 플레이트를 이용한다:
복수개의 메인 웰(main well)과, 메인 웰의 각각 하부에 형성되어 세포 배양액이 주입되며, 바닥면에 오목부를 포함하는 복수개의 서브 웰(sub well)을 포함하는 웰 플레이트(well plate); 및
웰 플레이트를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터;를 포함하며,
상기 대용량의 고속 HCS(High contents screening)용 커넥터는, 웰 플레이트의 하단과 서로 착탈 가능하도록 고정수단이 구비된 베이스와 웰 플레이트의 상부에 위치하여, 베이스와 결합되는 커버를 포함하며,
상기 메인 웰은 소정부위 테이퍼지도록 단턱이 형성되며, 상기 단턱은 메인 웰의 벽을 기준으로 10 내지 60° 범위의 경사각(θ)을 갖는 세포배양 플레이트.
종래의 96 웰 플레이트의 경우, 고수율의 약물 효능 평가를 위해서는 실험 및 분석을 수차례 이상 진행하여야 하므로, 시간 및 비용이 많이 소요되는 문제가 있었다. 아울러, 세포 배양시 배양액을 교체하는 피펫팅 작업을 수행하는 경우가 종종 있는데, 종래의 corning spheroid microplate 의 경우에는 세포 배양 중인 스페로이드 또는 오가노이드가 영향을 받아서, 피펫팅 작업시 스페로이드 또는 오가노이드가 빨려 올라가거나, 위치 변화 등이 발생하는 경우가 있어, 세포 배양 환경에 좋지 못한 문제가 있었다.
따라서, 본 발명은 상술한 문제점을 해결하기 위한 것으로, 웰 플레이트 내에 형성된 복수개의 메인 웰 내에 복수개의 서브 웰을 포함시켜 고수율의 스페로이드/오가노이드 제작이 가능할 수 있으며, 플레이트를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터를 포함시켜, 대용량의 고속이미지 촬영시 공차를 줄여 웰 플레이트 내의 이미지를 균일하게 촬영할 수 있는 세포배양 플레이트를 제공한다. 나아가, 메인 웰의 탄턱에 의하여, 배양되는 세포는 미디어 교체시 피펫팅 작업에 의한 영향을 최소화할 수 있는 세포배양 플레이트를 제공한다.
이하, 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하도록 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1(a)는 본 발명의 일 실시예에 따른 세포배양 플레이트의 정면도이며, 도 1(b)는 본 발명의 일 실시예에 따른 세포배양 플레이트의 단면도이며, 도 2는 본 발명의 일 실실예에 따른 세포배양 플레이트에 형성된 메인 웰을 상세하게 나타낸 도면이고, 도 3은 본 발명의 일 실실예에 따른 세포배양 플레이트의 웰 플레이트, 베이스 및 커버를 보여주는 도면이다((a) 커버, (b) 베이스, (c) 마이크로 플레이트 및 베이스의 고정수단).
이하, 도 1 내지 도 3을 참조하여 본 발명의 일 실시예에 따른 세포배양 플레이트를 상세히 설명한다.
도 1 내지 3 도시된 바와 같이, 본 발명의 일 실시예에 따른 세포배양 플레이트(10)는 복수개의 메인 웰(main well, 110)과, 메인 웰(110)의 각각 하부에 형성되어 세포 배양액이 주입되며, 바닥면에 오목부(121)를 포함하는 복수개의 서브 웰(sub well, 120)을 포함하는 웰 플레이트(well plate, 100); 및 웰 플레이트(100)를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터(200)를 포함하여 구성된다.
먼저, 도 1과 도 2를 참조하여, 본 발명의 일 실시예에 따른 웰 플레이트(100)를 상세히 설명하도록 한다.
상기 웰 플레이트(100)는 몰드를 통해 플라스틱 사출 성형된 플레이트 형상으로 만들어 진다. 이와 같이 플라스틱 사출을 위한 몰드 제작을 위해 미세 기계가공을 사용하여 생산단가를 낮추고, 쉽게 크기를 확대할 수 있도록 메인 웰(110)은 웰(well) 구조물로서 반복적인 패턴을 갖는다. 따라서, 세포의 대량 생산이 용이하며, 사용자의 요구에 맞추어 다양한 크기로 변형하여 사용이 가능하다.
상기 메인 웰(110)은 웰 플레이트(100)에 복수개 형성되며, 각각의 메인 웰(110)은 단턱(101)을 포함한다. 상기 단턱(101)은 메인 웰(110)의 소정부위에 형성되는 것으로, 보다 상세하게는 상기 단턱(101)은 메인 웰(110)의 전체 길이의 1/3 내지 1/2 위치에 형성될 수 있으며, 상기 단턱(101)은 메인 웰(110)의 하단으로부터 1/3 내지 1/2 위치에 형성될 수 있다.
종래에 마이크로 플레이트에서 세포 배양시에는 배양액을 교체하는 피펫팅 작업을 하는 경우가 있는데, 이러한 경우, 세포 배양 중인 스페로이드 또는 오가노이드가 영향을 받아서, 피펫팅 작업시 스페로이드 또는 오가노이드가 빨려 올라가거나, 위치 변화 등이 발생하는 경우가 있어, 세포 배양 환경에 좋지 못한 문제가 있었으나, 상기 단턱(101)은 이러한 문제를 방지하기 위함이다.
상기 단턱(101)은 피펫이 적용되는 공간일 수 있으며, 구체적으로, 메인 웰(110)의 벽을 기준으로 10 내지 60° 범위의 경사각(θ)을 가질 수 있다. 또는, 20 내지 50° 범위의 경사각을 가질 수 있으며, 바람직하게는 30 내지 45°범위의 경사각을 가질 수 있다. 만일, 상기 단턱(101)의 경사각이 10°미만인 경우에는 메인 웰(110) 내에 경사각이 너무 작아 피펫을 적용할 수 있는 공간이 충분하지 않아, 메인 웰(110) 내의 배양액을 흡입할 때, 피펫이 서브 웰(120) 안쪽으로 미끄러져 스페로이드 또는 오가노이드가 빨려 올라가거나, 위치 변화 등이 발생할 수 있다. 아울러, 상기 경사각(θ)이 60°를 초과하는 경우에는 피펫을 적용할 수 있는 공간은 마련되나, 단턱(101)의 경사각이 너무 커서 배양액을 충분히 흡입하기 어려울 수 있으며, 서브 웰(120)에 세포를 시딩 할 때, 세포가 모든 서브 웰(120)에 들어가지 않고, 단턱(101)에 시딩되는 문제가 발생할 수 있다. 따라서, 상술한 범위의 경사각을 갖는 것이 바람직하다.
한편, 본 발명의 일 실시예에 따른 메인 웰(110)은 단턱(101)과 후술하게 되는 서브 웰(120) 사이에 공간부(130)를 포함할 수 있다. 구체적으로, 상기 공간부(130)는 배양액이 주입되는 공간으로, 서브 웰(120) 내부의 세포들이 동일한 배양액을 공유할 수 있는 공간이다.
보다 구체적으로, 공간부(130)의 높이(a h)는 평균 2.0 내지 3.0 mm 범위일 수 있으며, 또는 2.2 내지 2.8 mm 범위일 수 있으며, 또는 평균 2.3 내지 2.7 mm 범위일 수 있다. 아울러, 서브 웰(120)의 높이(b h)는 평균 1.0 내지 2.0 mm 범위일 수 있으며, 또는 평균 1.2 내지 1.8 mm 범위일 수 있다.
예를 들면, 상기 공간부(130)의 높이(a h)는 평균 2.5 mm 이며, 서브 웰 의 높이(b h)는 평균 1.5 mm 일 수 있다.
이때, 상기 공간부와 서브 웰(120)의 높이비(a h:b h)는 1:0.3 내지 1 범위일 수 있으며, 보다 상세하게 공간부와 서브 웰(120)의 높이비(a h:b h)는 1:0.4 내지 0.9 또는 1: 0.5 내지 0.8 일 수 있다. 만일, 서브 웰(120)의 높이가 공간부의 높이 대비 1:0.3 미만일 경우에는 서브 웰(120)의 미디어를 교환 시, 조금의 힘으로도 내부에서 배양 중인 세포들이 튀어나올 수 있으며, 서브 웰(120)의 높이가 공간부의 높이 대비 1:1을 초과하는 경우에는 세포에 필요한 배양액이 충분하게 변환되지 않아, 세포의 죽음을 유발할 수 있다. 따라서, 공간부(130)와 서브 웰(120)은 상술한 높이 범위와 높이비율을 갖는 것이 바람직하다.
다음으로, 서브 웰(120)은 메인 웰(110)의 각각 하부에 형성되는 것으로, 바닥면에 오목부(121)를 포함한다. 특정 양태로서, 상기 서브 웰(120)은 메인 웰(110)의 하부에 복수개를 포함할 수 있다.
메인 웰(110)의 하부에 포함되는 서브 웰(120)은 각각의 크기와 모양이 동일하고, 이에 따라 균일한 조건의 스페로이드 및 오가노이드를 생성할 수 있다.
상기 서브 웰(120)은 오목부(121)를 향하여 테이퍼지도록 경사면이 형성될 수 있다. 구체적으로, 상기 서브 웰(120)의 상단부는 수직 방향을 기준으로 하강할수록 수평 넓이가 줄어들 수 있다. 예를 들면, 상기 서브 웰(120)의 상단부는 역피라미드 형상으로 이루어질 수 있다. 도시된 실시예에서는 서브 웰(120)의 상단부가 피라미드 형상이나, 깔대기 형상과 같이, 수직 방향으로 하강할 수록 수평의 넓이가 줄어드는 형상으로 구성될 수 있다.
특히, 상기 서브 웰(120)은 크기와 모양이 동일하도록 복수개를 포함함으로써, 상기 세포배양 플레이트는 균일한 조건에서 대량의 스페로이드 또는 오가노이드를 생성할 수 있다.
특정 양태로서, 하나의 메인 웰(110)에는 동일한 크기의 서브 웰(120)을 4 내지 25개 포함할 수 있으며, 전체 마이크로 플레이트(100)에는 96 내지 1,728 개의 서브 웰(120)을 포함할 수 있다. 이에 따라, 동일하고, 정밀하게 사이즈 컨트롤이 가능하다.
아울러, 서브 웰(120)은 오목부(121)를 포함하며, 상기 오목부의 하단에는 상기 오목부(121)는 3D 스페로이드 또는 오가노이드가 배양될 수 있도록 공간이 형성된다. 구체적으로, 상기 오목부(121)는 'U'자 형태, 'V' 자 형태 또는 'Ц'자 형태일 수 있으며, 예를 들면, 상기 오목부(121)는 'U'자 형태일 수 있다.
상기 서브 웰(120)의 상단 직경은 3.0 내지 4.5 mm 범위일 수 있으며, 또는 3.5 내지 4.3 mm 일 수 있으며, 또는 평균 4 mm 일 수 있다. 아울러, 오목부(121) 상단의 직경은 0.45 내지 1.5 mm 일 수 있으며, 또는 0.5 내지 1.0 mm 또는 평균 0.5 mm 일 수 있다.
아울러, 상기 서브 웰(120)의 직경과 오목부(121)의 직경에 대한 길이 비가 1:0.1 내지 0.5 범위일 수 있으며, 바람직하게는 상기 서브 웰(120)의 직경과 오목부(121)의 직경에 대한 길이 비는 1: 0.12 일 수 있다.
상기 오목부(121)의 상단 직경이 서브 웰(120)의 상단 직경(1) 대비 0.1 미만인 경우에 오목부(121)의 세포 배양 공간을 충분히 마련하지 못해 배양액 교체시에, 작은 힘으로도 세포들이 빠져 나오는 문제가 발생할 수 있으며, 오목부(121)의 상단 직경이 서브 웰(120)의 상단 직경(1) 대비 0.5을 초과하는 경우, 세포에게 필요한 충분한 배양액을 교체하지 못하여 안정적으로 배양하기 어려운 문제가 발생할 수 있다.
한편, 메인 웰의 벽을 기준으로 서브 웰(120)과 오목부(121)의 경사면은 40 내지 50 ° 의 경사각(θ 2)을 가질 수 있으며, 42 내지 48° 범위의 경사각(θ 2), 43 내지 47° 범위의 경사각(θ 2), 또는 평균 45°의 경사각(θ 2)을 가질 수 있다.
상술한 서브 웰(120)은 100 내지 1000 cells/well 이하의 세포배양이 가능하며, 안정적으로 스페로이드 크기를 제어할 수 있는 이점이 있다.
나아가, 본 발명의 일 실시예에 따른 메인 웰(110)의 개별 부피는 100 내지 300 ㎕ 범위이며, 오목부(121)의 개별 부피는 20 내지 50 ㎕ 범위이고, 상기 메인 웰(110)과 오목부(121)의 개별 부피비는 평균 1 : 0.07 내지 0.5 인 것을 특징으로 한다. 바람직하게는 상기 일 실시예에 따른 메인 웰(110)의 개별 부피는 250 내지 300 ㎕ 범위이며, 상기 오목부의 개별 부피는 25 내지 35 ㎕ 범위일 수 있으며, 상기 메인 웰(110)과 오목부(121)의 개별 부피비는 평균 1 : 0.11 일 수 있다.
구체적으로, 메인 웰(110)의 개별 부피가 100 ㎕ 미만인 경우, 세포 배양시 충분한 배양액을 수용할 수 없는 문제가 발생할 수 있으며, 300 ㎕ 를 초과하는 경우에는 배양 효율이 떨어질 수 있다.
아울러, 오목부(121)는 실질적인 세포가 배양되는 공간으로, 그 부피가 20 ㎕ 미만인 경우에는 세포 배양 공간이 충분하지 않아 세포들이 빠져 나오는 문제가 발생할 수 있으며, 50 ㎕ 를 초과하는 경우 세포 등을 안정적으로 배양하기 어려운 문제가 발생할 수 있다. 따라서, 상기 메인 웰(110)과 오목부(121)는 상술한 범위의 부피를 갖는 것이 바람직하다.
상기 언급한 본 발명의 세포배양 플레이트의 구성으로 인해, 하이드로젤을 포함하지 않아도, 즉 하이드로젤을 세포배양 플레이트에 코팅하지 않아도 유도만능줄기세포로의 리프로그래밍이 고효율로 일어나고 리프로그래밍 이후에 스페이로드 형성도 잘 일어난다.
또한 이 스페로이드를 분리하여 본 발명의 세포배양 플레이트에서 계대배양하는 경우, 스페로이드 형성이 매우 잘 된다. 구체적으로 스페로이드를 단일세포로 분리하여 계대배양을 하여 단일클론 유도만능줄기세포를 수백 개 내지 수천 개 만들 수 있다.
본 발명의 일 실시예에 따른 세포배양 플레이트(10)는 웰 플레이트(100)를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터(200)를 포함한다. 여기서, 대용량 고속 HCS(High contents screening)용 커넥터(200)라 함은 HCS(High contents screening) 시스템에 안착되는 커넥터(200)를 의미하는 것으로, 구체적으로, 상기 커넥터(200)는 본 발명에서는 베이스(210)와 커버(220)를 의미할 수 있다.
보다 구체적으로, 상기 대용량의 고속 HCS(High contents screening)용 커넥터는, 웰 플레이트(100)의 하단과 서로 착탈 가능하도록 고정수단(140, 240)이 구비된 베이스(210)와 웰 플레이트(100)의 상부에 위치하여, 베이스(210)와 결합되는 커버(220)를 포함한다. 그리고, 상기 베이스(210)의 상단 및 웰 플레이트(100)의 하단은 서로 착탈 가능하도록 고정이 가능한 고정수단(140, 240)을 포함하는 것을 특징으로 한다.
이때, 상기 베이스는, 웰 플레이트(100)를 지지하기 위한 철부(240)를 포함하며, 상기 웰 플레이트(100)는 베이스(210)의 철부(240)에 대향되는 요부(140)를 포함할 수 있다. 상기 고정수단에 의해서 웰 플레이트(100)가 고정되어 스크리닝시 이미지가 균일하게 촬영될 수 있다.
상기 베이스는, 폴리에틸렌, 폴리프로필렌, 폴리스타이렌, 폴리에틸렌 테레프탈레이트, 폴리아미드, 폴리에스터, 폴리염화비닐, 폴리우레탄, 폴리카보네이트, 폴리염화비닐리덴, 폴리테트라플루오로에틸렌, 폴리에테르에테르케톤 또는 폴리에테르이미드 소재로 이루어질 수 있으나, 반드시 이로 제한되는 것은 아니다.
상기 웰 플레이트는, 폴리디메틸실리콘, 고지방 변성 실리콘, 메틸클로로페닐 실리콘, 알킬변성실리콘, 메틸페닐실리콘, 실리콘폴리에스터, 또는 아미노변성실리콘 소재로 이루어질 수 있으나 반드시 이로 제한되는 것은 아니다.
한편, 본 발명의 세포배양 플레이트(100)에서 유도만능줄기세포를 형성할 때 매트리젤을 사용할 필요가 없다.
도 4는, 매트리젤을 사용하는 2차원 세포배양 플레이트 및 본 발명에 따라 매트리젤이 필요없는 3차원 세포배양 플레이트를 이용한 유도만능줄기세포 제조방법을 비교하여 나타낸 것이다. 체세포(섬유아세포)를 배양한 다음, 에피조멀 벡터를 전기천공법으로 섬유아세포에 트랜스팩션시켜서 리프로그래밍을 유도하여 유도만능줄기세포를 제조한다. 2차원 매트리젤 배양의 경우, 유도만능줄기세포 콜로니를 뜯어내는 과정이 번거롭고, 수율이 낮다. 그러나 본 발명의 3차원 배양 플레이트를 이용하면 매트리젤이 없으므로, 유도만능줄기세포로 리프로그래밍된 다수의 단일세포들이 모여서 3차원 구 형태의 세포집합체인 스페로이드(spheroid)를 형성한다. 이 스페로이드는 3차원 세포배양 플레이트에 쉽게 분리할 수 있고 계대배양이 가능하다(도 7d). 즉, 리프로그램 효율이 매우 높다.
또한, 앞서 설명한 것과 같이, 본 발명에서 이용하는 3차원 세포배양 플레이트는 하나의 메인 웰(110)에 동일한 크기의 서브 웰(120)을 4 내지 25개 포함할 수 있으며, 전체 마이크로 플레이트(100)에는 96 내지 1,728 개의 서브 웰(120)을 포함할 수 있다. 이에 따라, 동일하고, 정밀하게 사이즈 컨트롤이 가능한 유도만능줄기세포 및 그 스페로이드를 대량 제조할 수 있다.
도 10은 유도만능줄기세포 리프로그램 단계에서 수득된 유도만능줄기세포 스페로이드의 대량 증식 방법을 모식적으로 나타낸 것이다. 2차원 세포배양 플레이트(매트리젤 코팅)과 비교하여 본 발명의 유도만능줄기세포 증식 속도가 매우 빠르다는 것을 알 수 있다. 또한 스페로이드를 단일세포로 분리하여 다시 플레이팅 한 다음 계대배양을 계속 하면, 균일한 사이즈의 단일클론의 스페로이드가 수백개 내지 수천 개 만들어지므로 유도만능줄기세포 스페로이드 뱅크를 만들 수도 있다.
본 발명의 제조방법을 따르면, 하이드로젤이 필요하지 않고 리프로그래밍 효율이 증진된 줄기세포를 제조하여 대량 증식시킬 수 있다. 또한 단일클론의 줄기세포 스페로이드 뱅크를 만들 수 있다.
도 1(a)는 본 발명의 일 실시예에 따른 세포배양 플레이트의 정면도이며, 도 1(b)는 본 발명의 일 실시예에 따른 세포배양 플레이트의 단면도이다.
도 2는 본 발명의 일 실실예에 따른 세포배양 플레이트에 형성된 메인 웰을 상세하게 나타낸 도면이다.
도 3은 본 발명의 일 실실예에 따른 세포배양 플레이트의 웰 플레이트, 베이스 및 커버를 보여주는 도면이다((a) 커버, (b) 베이스, (c) 마이크로 플레이트 및 베이스의 고정수단).
도 4(a)는 본 발명의 일 실시예와 비교예에 따른 유도만능줄기세포 제조 과정을 모식적으로 나타낸 것이고, (b)는 본 발명의 일 실시예와 비교예에 따른 유도만능줄기세포 발생을 보여주는 이미지이다(도4 이하의 도면 모두에서, 설명의 편의를 위해, 본 발명의 3차원 세포배양 플레이트를 정확하게 표시하지 않고 편의상 U자형으로 표시하였다.)
도 5는 본 발명의 일 실시예 (3D iPSC)와 비교예(2D iPSC) 이미지이다.
도 6은 본 발명의 일 실시예 (3D sph-iPSC)와 비교예(2D Matrigel)의 AP(Alkaline Phosphatase )염색 이미지이다.
도 7(a)는 시간 경과에 따른 AP 이미지(D4, D9, D15, D21)이고, (b)는 콜로니 개수를 비교한 것이고, (c)는 E-cadherin 발현 결과이고, (d)는 iPSCs의 스페로이드 형성 과정을 나타낸 것이다.
도 8(a)는 종래의 3차원 배양과 본 발명의 일 실시예에 따른 배양 결과 스페로이드(콜로니) 크기 분포를 보여주는 결과이고, (b)는 리프로그램인자(전분화능 마커) 발현 결과이다.
도 9는 본 발명의 일 실시예에 따른 iPSCs의 전분화능 마커 발현 결과이다.
도 10은 본 발명의 일 실시예 및 비교예에 따른 유도만능줄기세포 증식방법을 나타낸 모식도이다.
도 11은 본 발명의 일 실시예에 따른 유도만능줄기세포 증식 과정을 시간에 따라 보여주는 이미지이다.
도 12는 본 발명의 일 실시예에 따라 유도만능줄기세포를 계대배양 하였을 때, 크기가 균일하게 분포하는 것을 보여주는 그래프이다.
도 13은 본 발명의 일 실시예(3차원 세포배양) 및 비교예 (2차원 세포배양)에 따른 증식 효율을 비교한 그래프이다.
도 14 및 15는 유도만능줄기세포 증식 시간에 따른 전분화능 마커 발현 결과를 보여준다.
도 16은 본 발명에 따른 유도만능줄기세포의 제조, 증식 및 분화 과정을 모식적으로 나타낸 것이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
[실시예]
실시예 1. 실험 방법
1-1: 섬유아세포 배양 및 유도만능줄기세포 제조
인간 섬유아세포주인 F134(the german federal authorities / RKI: AZ 1710-79-1-4-41 E01)를 10% FBS (fetal bovine serum, Invitrogen, 미국) 및 1 mM L-글루타민 (Invitrogen, 미국)을 포함하는 DMEM에서 35 mm 또는 100 mm 일반 디쉬에서 배양하였다. 배양된 섬유아세포에 Episomal iPSC 리프로그래밍 벡터(EP5 TM kit: Cat. No. A16960. Invitrogen, Carlsbad, CA, USA)를 전기천공법(electroporation)으로 트랜스팩션시켜서(Neon TM transfection system) 리프로그래밍하였다. 전기 천공법은 1,650 V, 10 ms, 3 pulses 조건에서 수행하였다.
도 4a에 나타낸 바와 같이, 트랜스펙션된 섬유아세포를 본 발명의 3차원 세포배양플레이트(매트리젤 없음, 실시예)와 2차원의 12-웰 플레이트(매트리젤 코팅, 비교예 1) 및 상용화 제품인 Addgene(비교예 2, 매트리젤 코팅, 도 4a에 미도시) 에 접종하고 N2B27 배지(bFGF 포함)에서 배양하였다. 15일 동안 배양한 다음 Essential 8 TM 배지로 교체하였다. 15일 이후에 실시예(3차원 세포배양 플레이트)의 3D iPSC 를 2차원 플레이트인 12-웰 플레이트에 플레이팅하여, 실시예와 비교예의 콜로니 수를 확인하였다.
1-2: 섬유아세포의 리프로그래밍 효율 분석
Alkaline Phosphatase Staining kit 매뉴얼에 따라 (System Biosciences, USA), 리프로그램된 세포를 PBS로 2회 세척하고, 4% paraformaldehyde로 고정한 후, Blue-color AP 용액으로 염색하고 PBS로 2회 세척한 후 콜로니 염색 여부를 광학현미경 아래서 관찰하였다. 염색된 콜로니 개수를 세어 정량화하였다.
실시예와 비교예에서 배양한 세포를 촬영하였으며, 세포구의 크기를 비교하였다. 스페로이드를 자동화 플레이트 기기에서 이미징을 진행하며, 이때 자동으로 기기가 초점을 잡아 진행하도록 한다. 이미지의 크기 분석은 imageJ 프로그램의 매크로 프로그램을 이용하여 진행하였다(도 5, 6 및 7 관련).
1-3: 만능유도줄기세포의 3차원 배양 방법의 최적화
실시예와 비교예에서 배양한 3차원 만능유도줄기세포를 촬영하였으며, 이에 따라 세포구의 사이즈를 각각 비교하여 측정하였다(도 8(a)). 이미지에 대한 결과에 대한 테스트를 위해 외부 검사업체(세포 바이오 CEFO, 한국)에 의뢰하였으며, 이 테스트는 블라인드 테스트로 진행되었다.
1-4: 면역염색
리프로그램된 세포들을 4% paraformaldehyde로 상온에서 20min 동안 고정하였다. 고정된 세포를 1% BSA 및 0.5% Triton X-100인 함유된 PBS로 상온에서 1시간 반응시킨 후 각각의 일차 항체들 Oct4 (1:100, SantaCruz, CA, USA), Sox2 (1:100, Cell Signalling, Danvers, MA, USA), Nanog (1:200, Cosmo Bio, Koto-Ku, Japan), E-cadherin(1:200, abcam) 처리하고, FITC-conjugated goat anti-rabbit IgG 또는 anti-mouse IgG (1:100, Invitrogen, Carlsbad, CA)를 이차항체로 반응하였다. 형광이미지는 형광현미경 (Olympus, Shinjuku, Tokyo, Japan)으로 분석하였다. DAPI를 핵 염색 용액으로 사용하였다.
1-5: 줄기세포 또는 만능유도줄기세포의 3차원 대량배양의 효율 검증
만능유도줄기세포를 각기 다른 세포의 수로 시딩하고 날짜별로 사이즈별 비교를 실시하였다. 세포의 수를 각각 0.1, 0.3, 0.5, 1, 2, 4 X 10 5 으로 실시예에 해당하는 멀티웰에 넣어서 사실상 어떤 세포의 수에 상관없이 세포의 사이즈가 유지되고, 세포수가 일정하게 늘어난다는 것을 검증하였다(도 12 및 도 13 관련).
이러한 세포 수의 증을 비교해 본 결과 같은 시기의 2D 배양 된 세포수를 비교해 본 결과 22.9 ± 4.33 % 증가하는 것을 확인 하였다.
1-6: qPCR
섬유아세포와 리프로그램된 세포에서 RNA minikit (Qiagen, Inc.)를 이용해 total RNA를 추출한 다음 Accupower RT mix reagent (Bioneer Corp., Seoul,Korea)를 사용해 cDNA로 만들었다. 실시간 PCR (Real-time PCR) FastStart Essential DNA Green Master (Roche, Indianapolis, IN, USA)를 사용하여 수행하였다. 본 발명에 사용된 프라이머 서열은 표 1과 같다.
Figure PCTKR2020008271-appb-img-000001
실시예 2. 리프로그래밍 효율 확인
도 4b를 보면, 2차원 배양의 경우, D15가 되어서야 콜로니가 조금 형성되지 시작함을 알수 있다. D15까지 iPSC 리프로그래밍 유도 후 3D iPSC 를 2차원 플레이트에 플레이팅 하여 비교예 1과 실시에 1의 콜로니 수를 비교하였더니, 형성되는 콜로니 수 차이가 컸다. iPSC로 잘 분화된 세포가 콜로니를 이루기 때문에 실시예의 iPSC 리프로그래밍 수율이 높음을 알 수 있다. 도 5 및 도 7b를 보면, 2차원 배양(비교예 1)과 3차원 배양시(실시예), 콜로니의 개수 차이가 매우 큼을 알 수 있다. 도 6을 보면, AP (Alkaline phosphatase) 염색 결과 3D iPSC 스페로이드(실시예, 3D sph-iPCSs)에서 리프로그래밍 효율이 매우 높음을 알 수 있다. 또한, 도 6 및 도 7a를 보면, 2D Matrigel(비교예 1)과 3D iPSC 스페로이드(실시예, 3D sph-iPCSs)를 비교하였을 때, 이미지가 균일하고 선명하게 나오는데, 이는 본 발명의 3차원 세포배양 플레이트가 대량 이미지 분석이 가능함을 보여주는 것이다.
도 7c를 보면, 3차원 세포배양 플레이트에서 리프로그래밍 효율이 매우 좋음을 알 수 있다. 또한 7d를 보면, 본 발명은 매트리젤을 사용하지 않으므로 없으므로, iPCSs로 리프로그래밍된 다수의 단일세포들이 모여서 3차원 구 형태의 세포집합체인 스페로이드(spheroid)를 형성하고, 이 스페로이드를 3차원 세포배양 플레이트에서 쉽게 분리하여 재플레이팅할 수 있음을 알 수 있다. 즉, 리프로그램 효율이 매우 높다.
도 8은 비교예 2의 종래의 3차원 배양과 본 발명 실시예의 3차원 배양(도 8 b의 SpheroidFilm)을 비교한 것이다. 종래의 3차원 배양은 사이즈가 균일하지 않고 oct4 발현량이 상대적으로 낮다. 그러나 본 발명은 사이즈가 매우 균일하고(99.45%) 리프로그래밍 인자 발현율이 매우 높다. 즉, 종래의 3차원 배양과 비교하였을때도 본 발명은 줄기세포 배양에 있어서 효과적이며 체세포를 유도만능줄기세포로 리프로그래밍 할 수 있는 효율을 높게 만들어 줄 수 있다. 또한 사이즈가 균일하다는 것은 표준화된 유도만능줄기세포 및 줄기세포를 스페로이드 형태로 3차원 대량으로 제조할 수 있음을 의미한다
실시예 3. 줄기세포 특성 분석
도 9를 보면, 본 발명에 따라 제조된 iPSCs는 전분화능 마커의 발현이 매우 높은 것을 알 수 있다.
실시예 4. 줄기세포 대랑 증식 확인
도 10 및 도 11을 보면, 본 발명에 따라 제조된 iPSCs를 계대배양하는 경우 대량 증식이 가능함을 알 수 있다. 도 13은 2차원의 12-웰 플레이트(매트리젤 코팅, 비교예 1)에서 리프로르램된 유도만능줄기세포를 2차원의 매트리젤 코팅 플레이트에서 계대배양한 것과, 본 발명의 실시예에 따라 리프로그램된 유도만능줄기세포를 본 발명의 3차원 세포배양 플레이트에서 계대배양 하였을때 증식 효율을 비교한 그래프이다. 도 13을 보면, 본 발명의 경우 증식 효율이 약 23배 증가함을 알 수 있다. 앞선 도 12의 결과와 종합하여 판단해 보면, 균일한 사이즈로 대량 증식이 가능한 것이다. 도 14 및 도 15를 보면, 대량 증식된 iPSCs 역시 전분화능 마커 발현이 매우 높음을 알 수 있다.
도 16은 본 발명을 모식적으로 보여준다. 본 발명의 3차원 세포배양 플레이트를 이용하여 하이드로젤을 사용하지 않고 고효율로 체세포를 유도만능줄기세포로 리프로그램시키고, 리프롤그램된 유도만능줄기세포의 스페로이드를 분리하여 계대배양하는 경우, 유도만능줄기세포를 대량 증식할 수 있다.
본 발명의 세포배양 플레이트의 웰 내애서 iPSCs 발생하고 증식한다. 이 상태 그대로 저장도 가능하고 배치를 한 번에 동결시킬수도 있다. 매트리젤과 같은 하이드로젤을 사용하지 않고 웰 사이즈 조정이 가능하므로 배지도 적게 들어가서 경제적이다. 그리고 대량 증식된 유도만능줄기세포를 다양한 세포로 분화시킬 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 이 기술분야의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
[부호의 설명]
100: 웰 플레이트
101: 단턱
110: 메인 웰
120: 서브 웰
121: 오목부
130: 공간부
140: 요부
200: 대용량의 고속 HCS용 커넥터
210: 베이스
220: 커버
240: 철부

Claims (11)

  1. i) 세포를 배양하는 단계;
    ii) 줄기세포 제조를 위해 하이드로젤이 포함되지 않은 3차원 세포배양 플레이트를 준비하는 단계;
    iii) 상기 배양된 세포를 상기 하이드로젤이 포함되지 않은 3차원 세포배양 플레이트에서 줄기세포로 리프로그래밍시키는 단계;
    iv) 상기 리프로그램된 줄기세포의 스페로이드(spheroid)를 형성하는 단계;
    v) 계대배양을 위해 하이드로젤이 포함되지 않은 3차원 세포배양 플레이트를 준비하는 단계; 및
    vi) 상기 스페로이드를 분리하여 하이드로젤이 포함되지 않은 3차원 세포배양 플레이트에서 1회 이상 계대배양하는 단계;를 포함하는
    줄기세포 증식 방법으로,
    상기 3차원 세포배양 플레이트는,
    복수개의 메인 웰(main well)과, 메인 웰의 각각 하부에 형성되어 세포 배양액이 주입되며, 바닥면에 오목부를 포함하는 복수개의 서브 웰(sub well)을 포함하는 웰 플레이트(well plate); 및 웰 플레이트를 지지하는 대용량 고속 HCS(High contents screening)용 커넥터;를 포함하며,
    상기 대용량의 고속 HCS(High contents screening)용 커넥터는, 웰 플레이트의 하단과 서로 착탈 가능하도록 고정수단이 구비된 베이스와 웰 플레이트의 상부에 위치하여, 베이스와 결합되는 커버를 포함하고, 상기 메인 웰은 소정부위 테이퍼지도록 단턱이 형성되며, 상기 단턱은 메인 웰의 벽을 기준으로 10 내지 60° 범위의 경사각(θ)을 갖는 세포배양 플레이트인,
    줄기세포 증식 방법.
  2. 제1항에 있어서,
    상기 세포는 체세포 또는 줄기세포인, 증식방법.
  3. 제2항에 있어서,
    상기 줄기세포는 성체줄기세포, 배아줄기세포, 중간엽줄기세포, 지방줄기세포, 조혈모세포, 제대혈줄기세포 및 유도만능줄기세포로 구성된 군으로부터 선택된 1종 이상인, 증식방법.
  4. 제1항에 있어서,
    상기 하이드로젤은 세포외 기질 기반 하이드로젤인, 증식방법.
  5. 제4항에 있어서,
    상기 세포외 기질 기반 하이드로젤은 매트리젤인, 증식방법.
  6. 제1항에 있어서,
    상기 계대배양은 1 내지 20세대까지의 계대배양인 증식방법.
  7. 제1항에 있어서,
    상기 vi) 단계에서, 상기 스페로이드를 단일세포로 분리하여 1회 이상 계대배양하는 것인, 증식방법.
  8. 제1항에 있어서,
    상기 서브 웰은 오목부를 향하여 테이퍼지도록 경사면이 형성되고,
    상기 서브 웰(120)의 상단 직경은 3.0 내지 4.5 mm 범위이고,
    상기 오목부(121) 상단의 직경은 0.45 내지 1.5 mm 범위이며,
    상기 서브 웰과 오목부의 경사면(θ 2)은 40 내지 50° 범위이고,
    상기 서브 웰의 직경과 오목부의 직경에 대한 길이 비가 1:0.1 내지 0.5 범위인 것을 특징으로 하는 증식방법.
  9. 제1항에 있어서,
    상기 메인 웰의 개별 부피는 100 내지 300 ㎕ 범위이며,
    상기 오목부의 개별 부피는 20 내지 50 ㎕ 범위이고,
    상기 메인 웰과 오목부의 개별 부피비는 평균 1 : 0.1 내지 0.5 인 것을 특징으로 하는 증식방법.
  10. 제1항에 있어서,
    상기 메인 웰은, 단턱과 서브 웰 사이에 공간부를 포함하고,
    상기 공간부의 높이(a h)는 평균 2.0 내지 3.0 mm 범위이며,
    상기 서브 웰의 높이(b h)는 평균 1.0 내지 2.0 mm 범위이고,
    상기 공간부와 서브 웰의 높이비(a h:b h)는 1:0.3 내지 1 범위인 것을 특징으로 하는 증식방법.
  11. 제1항에 있어서,
    상기 세포는 상기 세포배양 플레이트의 서브웰에 100 내지 1000 cells/well로 시딩되는 것인, 증식방법.
PCT/KR2020/008271 2020-06-25 2020-06-25 하이드로젤을 사용하지 않는 줄기세포 대량 증식방법 WO2021261621A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202080057825.0A CN114514312A (zh) 2020-06-25 2020-06-25 不使用水凝胶大量增殖干细胞的方法
PCT/KR2020/008271 WO2021261621A1 (ko) 2020-06-25 2020-06-25 하이드로젤을 사용하지 않는 줄기세포 대량 증식방법
EP23178909.0A EP4253516A3 (en) 2020-06-25 2020-06-25 Method for mass proliferation of stem cells without using hydrogel
US17/628,710 US20220275328A1 (en) 2020-06-25 2020-06-25 Method for mass proliferation of stem cells without using hydrogel
CN202310274840.6A CN116042398A (zh) 2020-06-25 2020-06-25 孔板和包括所述孔板的3d细胞培养板
EP20941637.9A EP4174171A4 (en) 2020-06-25 2020-06-25 METHOD FOR MASS PROLIFERATION OF STEM CELLS WITHOUT USING HYDROGEL
JP2022580485A JP2023538207A (ja) 2020-06-25 2020-06-25 ハイドロゲルを用いない幹細胞の大量増殖方法
US18/115,985 US20230272320A1 (en) 2020-06-25 2023-03-01 Well plate and 3d culture plate comprising the same
JP2023053903A JP2023126710A (ja) 2020-06-25 2023-03-29 ウェルプレート及びそれを備える3次元細胞培養プレート

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/008271 WO2021261621A1 (ko) 2020-06-25 2020-06-25 하이드로젤을 사용하지 않는 줄기세포 대량 증식방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/628,710 A-371-Of-International US20220275328A1 (en) 2020-06-25 2020-06-25 Method for mass proliferation of stem cells without using hydrogel
US18/115,985 Continuation-In-Part US20230272320A1 (en) 2020-06-25 2023-03-01 Well plate and 3d culture plate comprising the same

Publications (1)

Publication Number Publication Date
WO2021261621A1 true WO2021261621A1 (ko) 2021-12-30

Family

ID=79281412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008271 WO2021261621A1 (ko) 2020-06-25 2020-06-25 하이드로젤을 사용하지 않는 줄기세포 대량 증식방법

Country Status (5)

Country Link
US (1) US20220275328A1 (ko)
EP (2) EP4253516A3 (ko)
JP (2) JP2023538207A (ko)
CN (2) CN114514312A (ko)
WO (1) WO2021261621A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024112912A1 (en) * 2022-11-22 2024-05-30 The University Of North Carolina At Chapel Hill Supported gel slabs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140113139A (ko) * 2013-03-15 2014-09-24 고려대학교 산학협력단 세포 스페로이드 배양판
KR20160017036A (ko) * 2013-06-07 2016-02-15 가부시키가이샤 구라레 배양 용기 및 배양 방법
KR20160115764A (ko) * 2015-03-26 2016-10-06 이화여자대학교 산학협력단 분화촉진 및 지속형 스페로이드 형태의 편도 유래 줄기세포의 배양 방법
KR20170040442A (ko) * 2015-10-02 2017-04-13 순천향대학교 산학협력단 스페로이드형 세포집합체를 함유하는 난소기능 개선용 약학조성물 및 이의 제조방법
KR20170073696A (ko) * 2014-10-29 2017-06-28 코닝 인코포레이티드 스페로이드 포획 삽입체
KR101756901B1 (ko) 2015-11-13 2017-07-12 고려대학교 산학협력단 세포배양 칩 및 생성방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103642688B (zh) * 2007-06-29 2018-05-01 尤尼森斯繁殖技术公司 用于监测和/或培养显微对象的设备、系统和方法
JP2012157267A (ja) * 2011-01-31 2012-08-23 Hitachi Maxell Ltd 微細パターンを有するプレート部材
JP2013070636A (ja) * 2011-09-27 2013-04-22 Sumitomo Bakelite Co Ltd iPS細胞用培養容器
EP2929939A1 (en) * 2014-04-07 2015-10-14 Yantai AusBio Laboratories Co., Ltd. Microplate
EP3150704B1 (en) * 2014-05-30 2022-10-12 Corning Incorporated Culture method and cell mass
US11583860B2 (en) * 2014-12-22 2023-02-21 Ecole Polytechnique Federale De Lausanne (Epfl) Microstructured thin hydrogel films
US20190382701A1 (en) * 2018-06-18 2019-12-19 SageMedic Corporation System for Obtaining 3D Micro-Tissues

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140113139A (ko) * 2013-03-15 2014-09-24 고려대학교 산학협력단 세포 스페로이드 배양판
KR20160017036A (ko) * 2013-06-07 2016-02-15 가부시키가이샤 구라레 배양 용기 및 배양 방법
KR20170073696A (ko) * 2014-10-29 2017-06-28 코닝 인코포레이티드 스페로이드 포획 삽입체
KR20160115764A (ko) * 2015-03-26 2016-10-06 이화여자대학교 산학협력단 분화촉진 및 지속형 스페로이드 형태의 편도 유래 줄기세포의 배양 방법
KR20170040442A (ko) * 2015-10-02 2017-04-13 순천향대학교 산학협력단 스페로이드형 세포집합체를 함유하는 난소기능 개선용 약학조성물 및 이의 제조방법
KR101756901B1 (ko) 2015-11-13 2017-07-12 고려대학교 산학협력단 세포배양 칩 및 생성방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP4174171A4
TAKAHASHI KTANABE KOHNUKI MNARITA MICHISAKA TTOMODA KYAMANAKA S: "Induction of pluripotent stem cells from adult human fibroblasts by defined factors", CELL, vol. 131, 2007, pages 861 - 872, XP055547222, DOI: 10.1016/j.cell.2007.11.019
TAKAHASHI KYAMANAKA S: "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors", CELL, vol. 126, 2006, pages 663 - 676

Also Published As

Publication number Publication date
EP4174171A1 (en) 2023-05-03
JP2023126710A (ja) 2023-09-08
CN114514312A (zh) 2022-05-17
EP4253516A3 (en) 2023-12-06
CN116042398A (zh) 2023-05-02
EP4174171A4 (en) 2024-03-27
US20220275328A1 (en) 2022-09-01
JP2023538207A (ja) 2023-09-07
EP4253516A2 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
KR102272708B1 (ko) 뇌 오가노이드 제작방법
Dixon et al. Bioinspired three-dimensional human neuromuscular junction development in suspended hydrogel arrays
US20170107498A1 (en) Novel and efficient method for reprogramming immortalized lymphoblastoid cell lines to induced pluripotent stem cells
WO2021187758A1 (ko) 심장 오가노이드, 이의 제조 방법 및 이를 이용한 약물 독성 평가 방법
WO2021261621A1 (ko) 하이드로젤을 사용하지 않는 줄기세포 대량 증식방법
WO2021261622A1 (ko) 표준형 오가노이드 제조방법
EP3922431A1 (en) Method of manufacturing microdevices for lab-on-chip applications
WO2021261616A1 (ko) 하이드로젤을 사용하지 않는 유도만능줄기세포 제조방법
WO2021261623A1 (ko) 뇌 오가노이드 제작방법
EP3345999A1 (en) Method for producing induced pluripotent stem cells by using synthetic peptide
WO2024010278A1 (ko) 역분화 줄기세포에서 분화된 세포를 이용한 인공피부의 제조방법
Kaini et al. Recombinant xeno-free vitronectin supports self-renewal and pluripotency in protein-induced pluripotent stem cells
KR102328723B1 (ko) 웰 플레이트 및 이를 포함하는 3차원 세포배양 플레이트
KR102221458B1 (ko) 하이드로젤을 사용하지 않는 유도만능줄기세포 제조방법
WO2020111503A1 (ko) 정상 및 암 오가노이드 미세환경 구현을 위한 코어-쉘 구조체 및 그의 제조방법
WO2011126177A1 (ko) 인간 줄기세포의 활성을 증가시키는 방법
WO2019112391A1 (ko) 3차원 세포배양을 위한 삽입형 배양용기, 키트 및 이를 이용한 3차원 세포 공배양방법
US20230272320A1 (en) Well plate and 3d culture plate comprising the same
WO2017034316A1 (ko) 세포 패터닝용 물질, 이의 제조 방법, 및 이의 용도
WO2021112562A1 (ko) 흑색종 모델 및 이의 제조방법
Reid 3D Bioprinting Systems for the Study of Mammary Development and Tumorigenesis
WO2022216132A1 (ko) 세포 집합체 배양을 위한 미세유체 현적배양 디바이스
WO2021261625A1 (ko) 암을 가진 대상체의 항암제 및/또는 방사선 내성 진단에 필요한 정보를 제공하는 방법
Wang et al. Impact of Micro‐and Nano‐Plastics on Human Intestinal Organoid‐Derived Epithelium
Dixon Bioinspired 3D Cocultures of Human Skeletal Myoblasts and Motoneuron-like Cells to Investigate Neuromuscular Function In Vitro

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580485

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020941637

Country of ref document: EP

Effective date: 20230125