WO2021261271A1 - 複合膜構造体ならびに該複合膜構造体を用いたセンサ、ガス吸着フィルタおよびガス除去装置 - Google Patents

複合膜構造体ならびに該複合膜構造体を用いたセンサ、ガス吸着フィルタおよびガス除去装置 Download PDF

Info

Publication number
WO2021261271A1
WO2021261271A1 PCT/JP2021/022101 JP2021022101W WO2021261271A1 WO 2021261271 A1 WO2021261271 A1 WO 2021261271A1 JP 2021022101 W JP2021022101 W JP 2021022101W WO 2021261271 A1 WO2021261271 A1 WO 2021261271A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
organic
metal oxide
gas
oxide layer
Prior art date
Application number
PCT/JP2021/022101
Other languages
English (en)
French (fr)
Inventor
秀明 大江
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022531738A priority Critical patent/JP7452651B2/ja
Publication of WO2021261271A1 publication Critical patent/WO2021261271A1/ja
Priority to US17/972,632 priority patent/US20230068539A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a composite membrane structure, a sensor using the composite membrane structure (particularly a sensor for gas or odor), a gas adsorption filter, and a gas removing device.
  • Patent Documents 1 to 3 Metal-organic frameworks (MOFs), amine compounds and the like are known as adsorbents.
  • Patent Document 1 proposes a method of forming a MOF thin film on a support by using a chemical vapor deposition method.
  • Patent Document 2 proposes a carbon dioxide absorber in which an amine compound is carried on porous particles in which hydrophilic fibers and porous powder are composited with a hydrophilic binder. MOF is used as the porous powder.
  • Patent Document 3 proposes a carbon dioxide adsorption base material in which an amine compound is attached to a porous honeycomb base material obtained by molding alumina or silica powder.
  • Patent Document 1 has a problem that the adhesion of the MOF to the support is poor and the MOF thin film is vulnerable to vibration and physical load.
  • Patent Document 2 In the technique of Patent Document 2, even if the MOF is supported on a support such as a honeycomb by a hydrophilic binder, the adhesion is not sufficient. Therefore, when the amine compound is supported, when the carbon dioxide absorber is attached to the air conditioner, when the air conditioner is used, etc., the MOF is dropped due to vibration or the like, and the carbon dioxide absorption performance is low.
  • Patent Document 3 even if a porous honeycomb base material is used as a support, the surface area is not sufficient, so that the carbon dioxide adsorption capacity is small.
  • An object of the present invention is to provide a composite membrane structure in which a metal-organic framework (MOF) is supported on a support with sufficient adhesion.
  • MOF metal-organic framework
  • Another object of the present invention is to provide a sensor (particularly a sensor for gas or odor) in which a metal-organic framework (MOF) is supported on a support with sufficient adhesion and has sufficiently excellent reliability.
  • MOF metal-organic framework
  • Another object of the present invention is to provide a gas adsorption filter in which a metal-organic framework (MOF) is supported on a support with sufficient adhesion and is sufficiently excellent in adsorptivity of a gas (for example, carbon dioxide gas). do.
  • MOF metal-organic framework
  • the present invention A composite film structure including a metal oxide layer formed on a support and a metal-organic framework thin film formed on the metal oxide layer.
  • a metal atom is shared by the metal oxide and the metal-organic structure at the interface between the metal oxide constituting the metal oxide layer and the metal-organic structure constituting the metal-organic structure thin film.
  • the present invention also A composite film structure including a metal oxide layer formed on a support and a metal-organic framework thin film formed on the metal oxide layer.
  • the metal oxide layer has, at least on its surface, an altered layer in which the metal oxide constituting the metal oxide layer is altered by the metal-organic structure constituting the metal-organic framework thin film. , Concerning composite membrane structures.
  • the present invention also relates to a sensor (particularly a gas or odor sensor) having the above composite membrane structure.
  • the present invention also relates to a gas adsorption filter having the above-mentioned composite membrane structure.
  • the sensor and the gas adsorption filter having the composite membrane structure of the present invention are sufficiently excellent in reliability and gas (for example, carbon dioxide gas) adsorption, respectively.
  • XRD X-ray-diffraction
  • the first embodiment of the present invention provides a composite membrane structure.
  • the composite film structure of the present invention includes a support, a metal oxide layer, and a metal-organic framework thin film.
  • the metal oxide layer functions as an adhesion layer or an adhesive layer, and the metal-organic framework thin film is formed or supported on the support via the metal oxide layer, so that the metal-organic framework thin film is supported. Adhesion to the body is sufficiently improved.
  • the composite film structure 10 of the present invention is formed on the support 1, the metal oxide layer 2 formed on the support 1, and the metal oxide layer 2, for example, as shown in FIGS. 1A and 1B.
  • the metal-organic framework thin film 3 is included.
  • the "metal-organic framework thin film 3 formed on the metal oxide layer 2" means “the metal-organic framework thin film 3 possessed by the metal oxide layer 2".
  • the "metal-organic framework thin film 3 formed on the metal oxide layer 2" includes the following metal-organic framework thin film 3, as will be described in detail later: When the metal oxide layer 2 is a porous layer (FIG.
  • FIG. 1A is a schematic cross-sectional view of an example of a composite membrane structure according to the first embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view of another example of the composite membrane structure according to the first embodiment of the present invention.
  • the metal oxide layer 2 has a alteration layer 30 at least on the surface layer portion thereof.
  • the altered layer 30 is a layer in which the metal oxide 20 constituting the metal oxide layer 2 is altered by the metal-organic structure constituting the metal-organic framework thin film 3.
  • the arrangement and morphology of the altered layer 30 differ depending on the morphology of the metal oxide layer 2.
  • the altered layer 30 is arranged at least on the surface layer inside the metal oxide layer 2 and is a metal-organic framework.
  • the thin film 3 has a form formed on the surface of the metal oxide 20 constituting the porous metal oxide layer 2.
  • the altered layer 30 may be arranged over the entire metal oxide layer 2 as long as it is arranged at least on the surface layer portion of the metal oxide layer 2. Further, for example, when the metal oxide layer 2 is a non-porous layer as described later, as shown in FIG. 1B, the altered layer 30 is arranged on the surface of the metal oxide layer 2 (particularly the outer surface 2a).
  • the metal-organic framework thin film 3 has a form formed on the surface of the non-porous metal oxide layer 2.
  • the non-porous layer means a layer having a non-porous (for example, smooth) surface.
  • the metal-organic structure of the metal-organic framework thin film 3 is configured by utilizing the metal atoms constituting the metal oxide 20 of the metal oxide layer 2. This is the reason why it is called the "altered layer". That is, the alteration of the "altered layer” is the chemical alteration of the metal oxide layer 2 (particularly, the metal oxide 20 constituting the layer), and the alteration of the metal oxide 20 constituting the metal oxide layer 2. It is a layer in which the metal organic structure of the metal organic structure thin film 3 is formed by utilizing the metal atom. Specifically, it is shared by the metal oxide and the metal-organic framework at the interface (or between) between the metal oxide 20 constituting the metal oxide layer 2 and the metal-organic structure constituting the metal-organic framework thin film 3.
  • metal atoms there are metal atoms. For example, at the interface, there are metal atoms that make up both metal oxides and metal-organic frameworks. Further, for example, in the altered layer, the metal-organic framework is formed while containing metal atoms constituting a metal oxide. As a result, metal atoms are shared by both metal oxides and metal-organic frameworks between metal oxides and metal-organic frameworks (eg, interfaces). In the present invention, since the metal-organic framework is formed on the surface of the metal oxide while sharing the metal atom of the metal oxide, the adhesion of the metal-organic structure thin film is sufficiently improved. do.
  • the material constituting the metal oxide layer 2 is not particularly limited as long as it is a metal oxide capable of supplying a metal atom that can form a metal organic structure, and is, for example, zinc oxide, copper oxide, nickel oxide, iron oxide, and the like. Included is one or more metal oxides selected from the group consisting of indium oxide and aluminum oxide.
  • the metal oxide layer 2 is preferably composed of zinc oxide from the viewpoint of obtaining a porous structure.
  • the metal oxide layer 2 may be a porous layer or a non-porous layer having a smooth outer surface 2a (see FIG. 1B).
  • the metal oxide layer 2 is a porous layer from the viewpoint of supporting more metal-organic frameworks based on the increase in the surface area of the metal oxide layer and higher adhesion of the metal oxide layer to the support. Is preferable.
  • the porous layer is a layer having gaps between the metal oxide particles (for example, precipitated particles when formed by a plating method) constituting the metal oxide layer, or irregularities on the surface. It means a film or layer to have.
  • the thickness T of the metal oxide layer 2 is not particularly limited, and is, for example, 0.1 ⁇ m or more and 100 ⁇ m or less. From the viewpoint of higher adhesion to the support, it is preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the average value of the thicknesses at any 50 points in the SEM photograph is used.
  • the metal oxide layer 2 can be formed by, for example, a plating method, a CVD method, a vapor deposition method, a sputtering method, or the like. From the viewpoint of increasing the surface area of the metal oxide layer 2, it is preferable to use a plating method.
  • a plating method As a method for forming the metal oxide layer by the plating method, an electrolytic plating method and an electroless plating method can be used.
  • a conductive material such as a metal mesh filter or an activated carbon kneaded filter can be used as the support. Even if the support has low conductivity, copper, nickel, zinc, etc.
  • a conductive film may be formed on the surface of the support by electroless plating and then a metal oxide layer may be formed by electroplating.
  • the metal oxide layer 2 is a porous layer, it can support more metal organic structures and have higher adhesion to the support of the metal oxide layer based on the increase in the surface area of the metal oxide layer. From the viewpoint of the above, it is preferably formed by a plating method, particularly an electrolytic plating method.
  • the metal-organic framework thin film 3 is composed of a metal-organic framework (that is, MOF: Metal-Organic Framework), and is usually composed of only a metal-organic framework.
  • MOF Metal-Organic Framework
  • the fact that the metal-organic framework thin film 3 is composed only of the metal-organic framework means that substances other than the metal-organic framework are intentionally not contained, and for example, the metal atoms constituting the metal-organic structure and It may contain unintended substances such as organic molecules and impurities.
  • the metal-organic structure constituting the thin film 3 is a metal-organic structure based on a coordinate bond between an organic molecule and a metal atom containing a metal atom derived from the metal oxide of the metal oxide layer 2, and is a metal.
  • the organic structure thin film 3 is configured as a porous film.
  • the metal-organic structure is a crystalline complex formed by cross-linking a metal atom (particularly a metal atom ion) MA with an organic molecule OM as a ligand, and the organic molecule and the metal atom. It is a porous body based on a coordinate bond with (especially a metal atom ion).
  • FIG. 2A is a schematic diagram of a metal-organic framework schematically showing the crystal structure of the metal-organic framework in the composite membrane structure according to the first embodiment of the present invention.
  • a metal-organic framework containing 2-methylimidazole described later as an organic molecule and a zinc atom as a metal atom may have a crystal structure as shown in FIG. 2B.
  • one or more of the 18 zinc atoms MA shown in FIG. 2B may be shared by the metal oxide.
  • FIG. 2B is a schematic diagram of a metal-organic framework that schematically shows the crystal structure of a metal-organic structure using 2-methylimidazole as an organic molecule in the composite membrane structure according to the first embodiment of the present invention. .. This structure is merely a schematic diagram, and the crystal structure is accurately described in, for example, the following documents.
  • a metal-organic framework containing a cyanide compound described later as an organic molecule and containing metal atoms M and M'can have a crystal structure as shown in FIG. 2C.
  • one or more of the 26 metal atoms M and M'excluding the central metal atom M'shown in FIG. 2C may be shared by the metal oxide.
  • M and M' may be the same metal atom (eg, zinc atom), where C is a carbon atom and N is a nitrogen atom.
  • FIG. 2C is a schematic diagram of a metal-organic framework that schematically shows the crystal structure of a metal-organic structure using a cyanide organic molecule as an organic molecule in the composite membrane structure according to the first embodiment of the present invention. ..
  • the organic molecule may be any organic molecule known as an organic molecule that can constitute a metal-organic structure in the field of metal-organic framework.
  • the organic molecule preferably consists of a group consisting of azole-based organic molecules, cyanide-based organic molecules and carboxylic acid-based organic molecules from the viewpoint of higher adhesion of the metal organic structure to the support via the metal oxide layer. Contains one or more selected organic molecules. Sensors using the same viewpoint and the composite film structure of the present invention; gas adsorption filter; and detection (and reliability) of each gas (particularly carbon dioxide gas) of the gas removing device; adsorptivity; removing property; and use.
  • the organic molecule more preferably contains one or more organic molecules selected from the group consisting of azole-based organic molecules and cyan-based organic molecules. More preferably, it contains one or more organic molecules selected from the group consisting of azole-based organic molecules.
  • the azole-based organic molecule (particularly the imidazole-based organic molecule) has a gas (particularly carbon dioxide gas) adsorption rate because the organic molecule and the metal atom are bonded to each other via a nitrogen atom. Is faster.
  • the azole-based organic molecule constituting the metal-organic framework includes an organic molecule selected from the group consisting of imidazole, benzimidazole, triazole and purine. From the viewpoint of further improving the detectability (and reliability) of each gas (particularly carbon dioxide gas); adsorbability; and removability of the sensor using the composite film structure of the present invention; the gas adsorption filter; and the gas removing device. , Preferred are imidazole, benzimidazole, and purine, more preferably imidazole, and benzimidazole, and even more preferably imidazole.
  • the azole-based organic molecule may or may not have a substituent.
  • Substituents that the azole-based organic molecule may have are, for example, hydrophobic groups such as alkyl groups, halogen atoms, nitro groups, phenyl groups, pyridyl groups and cyano groups; and hydrophilic groups such as amino groups and carboxyl groups.
  • the alkyl group is, for example, an alkyl group having 1 or more and 5 or less carbon atoms (particularly 1 or more and 3 or less).
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group and the like.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and the like.
  • the azole-based organic molecules constituting the metal organic structure are from the viewpoint of higher adhesion to the support via the metal oxide layer of the metal organic structure, and the sensor using the composite film structure of the present invention; gas. From the viewpoint of further improving the detectability (and reliability) of each gas (particularly carbon dioxide gas) of the adsorption filter; and the gas removing device; the adsorptivity; and the removing property, azole-based organic substances having no substituent are preferable. It is selected from the group consisting of a molecule and an azole-based organic molecule having only a hydrophobic group (particularly an alkyl group or a nitro group) even if it has a substituent, and more preferably has only a hydrophobic group (particularly an alkyl group). It is selected from the group consisting of azole organic molecules.
  • Examples of the azole-based organic molecule constituting the metal organic structure include an imidazole-based molecule represented by the following general formula (1), a benzimidazole-based molecule represented by the following general formula (2), and the following general formula (3). And the triazole-based molecule represented by (4), and the purine-based molecule represented by the general formula (5) can be mentioned.
  • R 1 to R 3 are independently hydrogen atoms; hydrophobic groups such as an alkyl group, a halogen atom, a nitro group, a phenyl group, a pyridyl group or a cyano group; or an amino group or a carboxyl group.
  • Etc. from the viewpoint of higher adhesion of the metal organic structure to the support via the metal oxide layer, and the sensor using the composite film structure of the present invention; gas adsorption filter; and gas.
  • a hydrogen atom or the above-mentioned hydrophobic group is preferable, and a hydrogen atom is more preferable. It is an alkyl group, a halogen atom, a nitro group or a cyano group.
  • R 1 is a hydrogen atom, an alkyl group, or a nitro group
  • R 2 and R 3 are a hydrogen atom, an alkyl group, a halogen atom, and a nitro group.
  • imidazole-based molecule represented by the general formula (1) include the following compounds. Imidazole, methylimidazole, ethylimidazole, nitroimidazole, aminoimidazole, chloroimidazole, bromoimidazole.
  • R 11 to R 15 are independently hydrogen atoms; an alkyl group, a halogen atom, a nitro group, a phenyl group, a pyridyl group or a hydrophobic group of a cyano group; or an amino group or a carboxyl group, etc. From the viewpoint of higher adhesion of the metal organic structure to the support via the metal oxide layer, and the sensor using the composite film structure of the present invention; gas adsorption filter; and gas removal.
  • each gas (particularly carbon dioxide gas) of each device it is preferably a hydrogen atom or the above-mentioned hydrophobic group, and more preferably a hydrogen atom or an alkyl.
  • R 11 , R 14 and R 15 are hydrogen atoms
  • R 12 and R 13 are independently hydrogen atoms, alkyl groups, halogen atoms, or nitro groups, respectively. be.
  • benzimidazole-based molecule represented by the general formula (2) include the following compounds. Benzimidazole, chlorobenzimidazole, dichlorobenzimidazole, methylbenzimidazole, bromobenzimidazole, nitrobenzimidazole, aminobenzimidazole, benzimidazole carbonitrile.
  • R 21 to R 22 are independently hydrogen atoms; an alkyl group, a halogen atom, a nitro group, a phenyl group, a pyridyl group or a hydrophobic group of a cyano group; or an amino group or a carboxyl group, etc. From the viewpoint of higher adhesion of the metal organic structure to the support via the metal oxide layer, and the sensor using the composite film structure of the present invention; gas adsorption filter; and gas removal.
  • each gas (particularly carbon dioxide gas) of each device it is preferably a hydrogen atom or the above-mentioned hydrophobic group, and more preferably a hydrogen atom. ..
  • triazole-based molecule represented by the general formula (3) include the following compounds. 1,2,3-triazole.
  • R 31 to R 32 are independently hydrogen atoms; an alkyl group, a halogen atom, a nitro group, a phenyl group, a pyridyl group or a hydrophobic group of a cyano group; or an amino group or a carboxyl group, etc. From the viewpoint of higher adhesion of the metal organic structure to the support via the metal oxide layer, and the sensor using the composite film structure of the present invention; gas adsorption filter; and gas removal.
  • each gas (particularly carbon dioxide gas) of each device it is preferably a hydrogen atom or the above-mentioned hydrophobic group, and more preferably a hydrogen atom. ..
  • triazole-based molecule represented by the general formula (4) include the following compounds. 1,2,4-triazole.
  • R 41 to R 43 are independently hydrogen atoms; an alkyl group, a halogen atom, a nitro group, a phenyl group, a pyridyl group or a hydrophobic group of a cyano group; or an amino group or a carboxyl group, etc. From the viewpoint of higher adhesion of the metal organic structure to the support via the metal oxide layer, and the sensor using the composite film structure of the present invention; gas adsorption filter; and gas removal.
  • each gas (particularly carbon dioxide gas) of each device it is preferably a hydrogen atom or the above-mentioned hydrophobic group, and more preferably a hydrogen atom. ..
  • purine-based molecule represented by the general formula (5) include the following compounds. Pudding.
  • cyanide organic molecule for example, potassium ferricyanide, potassium ferrocyanide, hydrocyanic acid and the like are used.
  • carboxylic acid-based organic molecule terephthalic acid, benzenetricarboxylic acid, benzenedicarboxylic acid and the like can be used.
  • the metal atom constituting the metal organic structure is a metal atom containing a metal atom capable of constituting the metal oxide of the metal oxide layer 2, for example, a zinc atom, a copper atom, a nickel atom, an iron atom, an indium atom, and the like. Selected from the group consisting of aluminum atom, cobalt atom, placeodium atom, cadmium atom, mercury atom and manganese atom, from the viewpoint of higher adhesion of the metal organic structure to the support via the metal oxide layer, as well as the present invention.
  • Sensors using the composite film structure of Is selected from the group consisting of zinc atoms, cobalt atoms and iron atoms, more preferably selected from the group consisting of zinc atoms and cobalt atoms, and even more preferably zinc atoms.
  • the combination of the organic molecule and the metal atom in the metal-organic structure is not particularly limited, but from the viewpoint of higher adhesion of the metal-organic structure to the support via the metal oxide layer, and the composite film structure of the present invention.
  • Combination (C2) Combination of imidazole-based molecule represented by general formula (1) and one or more metal atoms selected from the group consisting of zinc atom and cobalt atom;
  • Combination (C3) general formula (2) ) And one or more metal atoms selected from the group consisting of zinc atoms and cobalt atoms;
  • the ratio of the organic molecule to the metal atom in the metal-organic framework is not particularly limited, but is usually determined by the type of the organic molecule and the type of the metal atom constituting the metal-organic framework.
  • an imidazole-based molecule (Im) for example, an imidazole-based molecule represented by the general formula (1)
  • one or more divalent metal atoms selected from the group consisting of a zinc atom, a cobalt atom, and an iron atom for example, one or more divalent metal atoms ().
  • a metallic organic structure containing only M 1 can be represented by the composition formula: M 1 (Im) 2.
  • one or more divalents selected from the group consisting of a benzimidazole-based molecule (bIm) for example, a benzimidazole-based molecule represented by the general formula (2)
  • a zinc atom for example, a benzimidazole-based molecule represented by the general formula (2)
  • M 1 metal atom
  • M 1 triazole-based molecule
  • Tra triazole-based molecule
  • a zinc atom for example, a triazole-based molecule represented by the general formulas (3) and / or (4)
  • an iron atom for example, one selected from the group consisting of a triazole-based molecule (Tra) (for example, a triazole-based molecule represented by the general formulas (3) and / or (4)) and a zinc atom, a cobalt atom, and an iron atom.
  • a triazole-based molecule for example, a triazole-based molecule represented by the general formulas (3) and / or (4)
  • the metal organic structure containing only the above divalent metal atom (M 1 ) can be represented by the composition formula: M 1 (Tra) 2.
  • a metallic organic structure containing only (M 1 ) can be represented by the composition formula: M 1 (Pur) 2.
  • an imidazole-based molecule (for example, an imidazole-based molecule represented by the general formula (1)) and a benzimidazole-based molecule (bIm) (for example, a benzimidazole-based molecule represented by the general formula (2)).
  • the thickness t of the metal-organic framework thin film 3 is not particularly limited, and from the viewpoint of higher adhesion of the metal-organic framework to the support via the metal oxide layer, and the present invention. Sensors using composite membrane structures; gas adsorption filters; and gas removers, each gas (especially carbon dioxide gas) detectability (and reliability); adsorptivity; and removal properties are preferred from the standpoint of further improvement. It is 1 nm or more and 100 nm or less, and more preferably 10 nm or more and 100 nm or less.
  • the average value of the thicknesses at any 50 points in the SEM photograph is used.
  • the metal-organic framework constituting the thin film 3 usually has a pore diameter of 1 ⁇ or more and 50 ⁇ or less.
  • a metal-organic framework having an appropriate pore diameter can be used from the viewpoint of characteristics according to the application and adhesion to the support.
  • a metal-organic structure having a pore diameter close to the size of the target gas molecule is desirable.
  • a metal-organic structure having a pore diameter of 5 ⁇ or more and 20 ⁇ or less, more preferably 10 ⁇ or more and 15 ⁇ or less is preferable from the unit structure of polyamine.
  • the pore diameter depends on the types of organic molecules and metal atoms that make up the metal-organic framework. Therefore, the pore diameter can be adjusted by selecting the types of organic molecules and metal atoms.
  • the pore diameter is defined as "the diameter of the largest sphere that can be contained when each atom in the crystal is a rigid sphere having a van der Waals radius", and the pore contains any molecule.
  • the pore diameter in the absence. Therefore, the pore size can be calculated from the crystal structure.
  • Such pore diameters are listed as d p ( ⁇ ) in Table 1 of the following literature, and the values described in that literature can be used: ANH PHAN et al., “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks” (ACCOUNTS OF CHEMICAL RESEARCH 58 67 January 2010 Vol. 43, No. 1)
  • the metal-organic structure constituting the thin film 3 may be, for example, the metal-organic structure shown below: ZIF-1 (Composition formula: Zn (Im) 2 ); ZIF-4 (Composition formula: Zn (Im) 2 ); ZIF-7 (Composition formula: Zn (bIm) 2 ); ZIF-8 (Composition formula: Zn (mIm) 2 ); ZIF-9 (Composition formula: Co (bIm) 2 ); ZIF-14 (Composition formula: Zn (eIm) 2 ); ZIF-81 (Composition formula: Zn (cbIm) (nIm)); ZIF-75 (Composition formula: Co (mbIm) (nIm)); ZIF-77 (Composition formula: Zn (nIm) 2 ); ZIF-81 (Composition formula: Zn (brbIm) (nIm)).
  • ZIF-1 Composition formula: Zn (Im) 2
  • ZIF-4 Composition formula: Zn (Im) 2
  • composition formula indicates the following compounds.
  • Im imidazole
  • bIm benzimidazole
  • mIm methylimidazole
  • eIm ethylimidazole
  • nIm nitroimidazole
  • cbIm chlorobenzimidazole
  • brbIm bromobenzimidazole.
  • the metal-organic framework thin film 3 may be a thin film (m1) or (m2) formed by the following method: (M1) A thin film produced by immersing the metal oxide layer in a solution containing organic molecules constituting the target metal organic structure; or (m2) a solution containing the target metal organic structure. , A thin film produced by immersing the metal oxide layer, drying it, and then heat-treating it to mix the interface between the metal oxide and the metal organic structure.
  • the organic solvent constituting the solution is not particularly limited as long as it is a solvent capable of dissolving a predetermined organic molecule, and for example, N, N-diethylformamide, N, N-dimethylformamide, and the like.
  • Organic solvents such as methanol; and water and the like.
  • the thin film may be formed (for example, immersed) at room temperature or under heating.
  • Heat and pressure may be applied to thicken the metal-organic framework. Examples of the method of applying heat and pressure include a method of pressurizing by heating while contacting the metal oxide layer and the organic molecular solution in a stainless steel jacket.
  • the organic molecular concentration of the solution is not particularly limited as long as it can form a metal-organic structure, and is, for example, 10 g / L or more, preferably 20 g / L or more and 100 g / L or less, and more preferably 30 g / L or more and 70 g / L. It is as follows.
  • the heating temperature is not particularly limited as long as the metal-organic framework can be formed, and may be, for example, 60 ° C. or higher and 200 ° C. or lower, particularly 130 ° C. or higher and 150 ° C. or lower.
  • the heating time is also not particularly limited as long as the metal-organic framework can be formed, and may be, for example, 1 hour or more and 100 hours or less, particularly 5 hours or more and 24 hours or less.
  • the pressing force is not particularly limited as long as it can form a metal-organic structure, and is, for example, the pressure achieved when the above-mentioned organic solvent is heated at the above-mentioned heating temperature and the above-mentioned heating time in a sealed stainless steel jacket. For example, it may be 1 atm or more and 2 atm or less, particularly 1.2 atm or more and 1.5 atm or less.
  • the heating method is not particularly limited, and heating may be performed by electric heating, or heating by ultrasonic waves or microwaves.
  • a predetermined metal-organic structure is used as the metal-organic structure, and for example, a commercially available metal-organic structure (for example, the above-mentioned one) can be used.
  • the metal-organic framework may be deposited on the metal oxide layer by immersing the metal oxide layer in a solution containing a metal ion component and an organic molecular component of the metal-organic structure.
  • ZIF-8 Zn (mIm) 2
  • zinc nitrate can be used as the metal ion solution
  • 2-methylimidazole solution can be used as the organic molecular solution.
  • the same solvent as the solvent in the above-mentioned (m1) forming method can be used.
  • Mixing is the replacement of metal atoms in a metal-organic framework with metal atoms derived from metal oxides by heating, which can be achieved, for example, by heating with ultrasonic waves or microwaves.
  • the metal-organic framework thin film After forming the metal-organic framework thin film, it is preferable to remove the residual solvent and the adsorbed gas by heating.
  • the heating is preferably performed in vacuum (or in a reduced pressure atmosphere).
  • the support 1 is not particularly limited and may be composed of any substance capable of forming a metal oxide layer.
  • the support is usually composed of one or more materials selected from the group consisting of inorganic materials and organic / polymer materials.
  • the inorganic material is not particularly limited, and examples thereof include silicon, glass, and ceramics.
  • the organic / polymer material is not particularly limited, and is, for example, a polyolefin such as polyethylene, polypropylene, or an ethylene-propylene copolymer; polyvinyl chloride; polyvinylidene chloride; polyvinyl acetate; an ethylene-vinyl acetate copolymer; polyvinyl.
  • a polyolefin such as polyethylene, polypropylene, or an ethylene-propylene copolymer
  • polyvinyl chloride polyvinylidene chloride
  • polyvinyl acetate an ethylene-vinyl acetate copolymer
  • polyvinyl polyvinyl.
  • Polyvinyl acetal Fluorine atom-containing polymers such as polyvinylidene fluoride and polytetrafluoroethylene
  • Polyethylenes such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polylactic acid
  • Polystyrene Polyacrylonitrile; Styrene-acrylonitrile copolymer
  • ABS Resin Polyphenylene ether (PPE); Polyethylene
  • Amid group-containing polymers such as polyamide and polyamideimide
  • Acrylic polymers such as polyacrylic acid, polymethyl acrylate, polymethacrylic acid, and methyl methacrylate
  • Polycarbonate Polyallylate
  • Polyphenylene sulfide Carbon , Carbon nanotubes, carbon materials such as graphene; cellulose nanofibers and the like.
  • the support 1 may be made of a metal material or a semiconductor material.
  • the support 1 may also be made of paper, a non-woven fabric, porous ceramics, a resin film, or the like.
  • the support 1 may further be a crystal oscillator or a transducer using piezoelectric ceramics, or may be an electrode.
  • the shape of the support 1 is not particularly limited, and may be, for example, a fibrous shape, a cloth shape, a plate shape, a film shape, or a porous shape (particularly a honeycomb structure shape).
  • paper, non-woven fabric, porous ceramics, resin film, carbon nanotubes, graphene, cellulose nanofibers, etc. can also be used.
  • the support 1 When the support 1 has a fibrous shape, it is cloth-like after (1) forming a metal oxide layer on the fibrous support and (2) forming a metal organic structure thin film on the metal oxide layer. , Plate-like, film-like, or honeycomb structure may be processed.
  • the second embodiment of the present invention provides a sensor using the composite membrane structure according to the first embodiment.
  • the sensor of the present invention may be a sensor for detecting a gas (particularly carbon dioxide gas) or an odor.
  • the adhesion of the metal-organic framework thin film to the support is sufficiently improved as in the first embodiment. Therefore, the detachment / detachment of the metal-organic framework thin film is reduced to obtain a sensor having high adsorptivity, and as a result, a highly reliable sensor (for example, a gas sensor and an odor sensor) can be realized.
  • the metal-organic framework thin film can adsorb a large amount of gas due to its porous shape, and the adsorbed amount changes depending on the surrounding gas concentration. Therefore, the metal-organic framework thin film can function as a sensitive film of a gas sensor.
  • the weight and electrical characteristics of the metal-organic framework change due to gas adsorption, it is possible to convert the amount of gas adsorption into an electrical signal, that is, it is possible to use it as a gas sensor.
  • the preferred embodiment of the sensor of the present invention is as follows.
  • the support 1 in the first embodiment it is preferable to use a device whose frequency changes depending on the weight, such as a crystal oscillator or an oscillator using piezoelectric ceramics.
  • a device whose frequency changes depending on the weight such as a crystal oscillator or an oscillator using piezoelectric ceramics.
  • the weight is changed by forming the zinc oxide layer (metal oxide layer 2) and the metal-organic framework thin film 3 such as ZIF-8 on the crystal oscillator (support 1) by the method of the first embodiment.
  • a type gas sensor can be manufactured.
  • the constituent material of the metal oxide layer 2 is not limited to zinc oxide, and in the first embodiment, the same metal oxidation as the metal oxide described as the constituent material of the metal oxide layer 2 It may be selected from things.
  • the constituent material of the metal-organic framework thin film 3 can be determined by the target gas and the required sensitivity and selectivity.
  • the metal-organic framework constituting the metal-organic framework thin film 3 imidazole-based MOFs such as ZIF-1, ZIF-4, ZIF-7, and ZIF-8 can be used.
  • a heater (particularly, a heater for heating) may be built in to heat the composite membrane structure.
  • Such a multi-gas sensor can be, in other words, an odor sensor.
  • FIGS. 3A and 3B are a schematic plan view and a schematic cross-sectional view of an example of the gas sensor according to the second embodiment of the present invention, respectively.
  • the gas sensor 40 shown in FIGS. 3A and 3B includes a metal oxide layer (not shown) formed on the piezoelectric vibrator 41 and a metal-organic framework thin film 43 included in the metal oxide layer.
  • the metal oxide layer is omitted in FIG. 3B.
  • the piezoelectric vibrator 41 corresponds to the support 1 in the first embodiment, and includes a lower electrode 411, a piezoelectric thin film 412, and an upper electrode 413.
  • the metal-organic framework thin film 43 corresponds to the metal-organic framework thin film 3 in the first embodiment.
  • the gas sensor 40 usually further includes a silicon substrate 44, a support film 45 formed on the silicon substrate 44, a heater wiring 46 formed on the support film 45, a heater electrode 47a and an oscillator electrode 47b, and the heater. It includes a wire bond contact pad 47c formed on the electrode 47a for the vibrator and the electrode 47b for the vibrator, and an insulating layer 48 for insulating the heater wiring 46 and the piezoelectric vibrator 41.
  • CP1 is a connection terminal with a heater (positive)
  • CP2 is a connection terminal with a heater (negative)
  • CP3 is a connection terminal with an upper electrode of a vibrator
  • CP4 is a connection terminal with a lower electrode of a vibrator.
  • the gas sensor 40 can be manufactured, for example, by the following method. Specifically, first, as shown in FIG. 3C, the support film 45 is formed on the silicon substrate 44 (step (1)). Next, the heater wiring 46, the heater electrode 47a and the oscillator electrode 47b are formed on the support film 45, and the wire bond contact pad 47c is formed on the heater electrode 47a and the oscillator electrode 47b. (Step (2)). Further, an insulating layer 48 is formed to insulate the heater wiring 46 from the piezoelectric vibrator 41 described later (step (3). A lower electrode 411 is formed on the insulating layer 48 (step (4)), and the lower electrode 411 is formed.
  • a piezoelectric thin film 412 is formed on the piezoelectric thin film 412 (step (5)), an upper electrode 413 is formed on the piezoelectric thin film 412 (step (6)), and a metal oxide layer (shown) is formed on the upper electrode 413.
  • a part of the insulating layer 48 is etched to expose the wire bond contact pad 47c (step (7). )).
  • a part of the member (metal organic structure thin film 43, metal oxide layer (not shown), upper electrode 413, piezoelectric thin film 412 and lower electrode 411) on the insulating layer 48 is etched (step (step (not shown)).
  • FIG. 3C shows the gas sensor according to the second embodiment of the present invention. It is a schematic process diagram which shows an example of the manufacturing method.
  • the power consumption of the gas sensor 40 is suppressed.
  • FIGS. 4A and 4B are a schematic plan view and a schematic cross-sectional view of an example of the multi-gas sensor according to the second embodiment of the present invention, respectively.
  • the multi-gas sensor 50 shown in FIGS. 4A and 4B has a plurality of (for example, four) gas sensors 40 shown in FIGS. 3A and 3B, and the four gas sensors 40 are metal-organic frameworks containing different metal-organic structures. It has a structure thin film.
  • the multi-gas sensor 50 simultaneously manufactures a plurality of (for example, four) gas sensors 40 (for example, four) shown in FIGS. 3A and 3B, and the four gas sensors 40 have different metal-organic structures. It is the same as the manufacturing method of the gas sensor 40 except that it has a metal-organic framework thin film containing the gas sensor 40.
  • the metal-organic frameworks of the four gas sensors 40 are different metal-organic structures corresponding to different gases.
  • the power consumption of the multi-gas sensor 50 is suppressed.
  • the multi-sensor 50 can function as an odor sensor.
  • a third embodiment of the present invention provides a gas adsorption filter using the composite membrane structure according to the first embodiment.
  • the gas adsorption filter of the present invention may be a filter for adsorbing carbon dioxide gas.
  • the adhesion of the metal-organic framework thin film to the support is sufficiently improved as in the first embodiment. Therefore, a highly reliable gas adsorption filter can be realized.
  • the gas adsorption filter of the present embodiment is the same as that of the composite membrane structure according to the first embodiment, except that an adsorbent different from the metal-organic framework is attached or supported on the surface of the thin film of the metal-organic framework. Has the structure of.
  • the gas adsorption filter 60 includes a metal oxide layer 62 formed on a support 61 having a honeycomb structure, a metal-organic structure thin film 63 included in the metal oxide layer 62, and the metal-organic structure.
  • the adsorbent 65 contained in the body thin film 63 is included.
  • the metal-organic framework thin film 63 is formed on the outer surface of the metal oxide layer 62 in FIG. 5 (see FIG. 1B), as shown in FIG. 1A of the first embodiment, the metal oxide layer 62 is formed. It may be arranged at least in the surface layer portion (that is, the altered layer (not shown in FIG. 5)) inside the.
  • the metal-organic framework thin film 63 may be formed on the surface of the metal oxide at least in the surface layer portion of the porous metal oxide layer 62.
  • the support 61 having a honeycomb structure corresponds to the support 1 in the first embodiment.
  • the metal oxide layer 62 corresponds to the metal oxide layer 2 in the first embodiment.
  • the metal-organic framework thin film 63 corresponds to the metal-organic framework thin film 3 in the first embodiment.
  • FIG. 5 is a schematic diagram of an example of a gas adsorption filter according to a third embodiment of the present invention.
  • the surface area of the support itself can be made extremely large.
  • the adhesion of the metal-organic framework thin film 63 to the support 61 via the metal oxide layer 62 is improved. Therefore, more metal-organic frameworks can be attached or supported. Therefore, it is possible to attach or support a larger amount of the adsorbent 65 while maintaining the adsorption rate of carbon dioxide gas per unit area. Therefore, the adsorption capacity of carbon dioxide gas is significantly improved.
  • the metal oxide layer 62 acts as an adhesion layer, it is possible to sufficiently prevent the metal-organic framework thin film 63 from falling off, and the durability is improved.
  • the surface area of the support 61 is increased by the honeycomb structure, and the surface area of the metal-organic framework thin film 63 is based on the porosity and the surface area of the metal-organic framework crystal (internal unevenness (that is, pores)). Due to the combined effect of the increase, the effective surface area in contact with carbon dioxide becomes extremely large. As a result, the adsorption capacity of carbon dioxide gas is significantly improved. Moreover, by making the metal oxide layer porous, it is possible to further improve the adsorption capacity of carbon dioxide gas.
  • the adsorbent 65 is not particularly limited as long as it can adsorb gas (particularly carbon dioxide gas), and any adsorbent used in the field of gas adsorption can be used.
  • As the adsorbent 65 it is preferable to use an amine compound from the viewpoint of adsorbing carbon dioxide gas.
  • the amine compound is not particularly limited as long as it is a substance having an amino group, and an amino group-containing organic compound is usually used.
  • the amino group-containing organic substance contains an amino group having a weight average molecular weight of 1,000 or more, preferably 10,000 or more, more preferably 20,000 or more, from the viewpoint of preventing a decrease in the adsorption capacity of carbon dioxide gas due to volatilization. Polymers are preferred.
  • amino group-containing polymer examples include polyethyleneimine, polyamideamine, polyvinylamine and the like.
  • the amino group-containing polymer may be linear or branched, and is preferably branched from the viewpoint of further improving the adsorption capacity of carbon dioxide gas.
  • the adsorbent 65 is preferably polyethyleneimine, particularly branched polyethyleneimine, from the viewpoint of further improving the adsorption capacity of carbon dioxide gas.
  • the amine value of the amine compound is not particularly limited and is usually 15 to 25 mmol / g ⁇ solid, preferably 17 to 17 to 25 from the viewpoint of further improving the gas (particularly carbon dioxide gas) adsorptivity. It is 19 mmol / g ⁇ solid.
  • the amine value uses the value measured by the neutralization method calculated from the amount of hydrochloric acid required to neutralize the amine compound.
  • an azole-based organic molecule particularly an imidazole-based organic molecule
  • a cyanide-based organic molecule as the organic molecule constituting the metal-organic framework thin film
  • the water resistance of the metal-organic framework is improved. Therefore, even if an adsorbent (particularly an amino group-containing polymer) is supported, the reliability is higher.
  • the support 61 By forming the support 61 into a honeycomb structure, it is possible to improve the carbon dioxide adsorption capacity while maintaining the pressure loss.
  • the gas adsorption filter of the present embodiment has a metal oxide layer 62 (“2” in the first embodiment) with respect to the support 61 (“1” in the first embodiment) by the same method as in the first embodiment. ) And the metal-organic framework thin film 63 (“3” in the first embodiment), the residual solvent and the adsorbed gas are removed by heating, and the adsorbent 65 is attached or supported. can.
  • the heating is preferably performed in vacuum (or in a reduced pressure atmosphere).
  • Adsorption or support of the adsorbent 65 can be achieved by impregnating the composite membrane structure on which the metal-organic framework thin film is formed with an aqueous solution of the adsorbent (particularly an amine compound) and then drying it. As a result, a thin film of the adsorbent 65 (particularly the amine compound) may be formed on the thin film of the metal-organic framework.
  • a fourth embodiment of the present invention provides a gas removing device (or gas removing system) including the gas adsorption filter 60 according to the third embodiment.
  • the gas removing device of the present invention may be a device (or system) for removing carbon dioxide gas.
  • the adhesion of the metal-organic framework thin film to the support can be sufficiently improved, and the adsorption capacity of carbon dioxide gas can be significantly improved.
  • the present invention makes it possible to realize a compact, energy-saving, low-cost and highly reliable gas removing device (particularly a carbon dioxide gas removing device).
  • the gas removing device of the present invention can also be used for general air conditioning.
  • FIG. 6 is a schematic diagram of an example of the gas removing device according to the fourth embodiment of the present invention.
  • step (i) carbon dioxide adsorption (step (i)) and emission and discharge (steps (ii) and (iii)) are performed at different positions of the adsorption filter 60. You may use it at the same time.
  • the discharge position can be changed to the discharge position and the discharge position can be changed to the discharge position in the suction filter 60.
  • carbon dioxide gas can be continuously adsorbed, released and discharged.
  • step (i) carbon dioxide adsorption (step (i)) and emission and discharge (steps (ii) and (iii)) are sequentially performed using the same position of the adsorption filter 60. You may.
  • Example 1 [Manufacturing of composite membrane structure] (Example 1) -Formation of metal oxide layer ZnO plating was performed on the non-woven fabric support of glass fiber. Specifically, the glass support was subjected to electroless Cu plating and electrolytic ZnO plating on the entire surface under the following conditions (thickness of metal oxide layer 3 ⁇ m): Full surface electroless Cu plating: OPC H-TEC (Okuno Pharmaceutical Industry Co., Ltd.), 32 ° C., 10 minutes; Electrolytic ZnO plating: Zn (NO 3 ) 2 (Okuno Pharmaceutical Co., Ltd.), concentration 0.1 mol / l, temperature: 60 ° C., current 30 mA / dm, time 2 hours.
  • OPC H-TEC Okuno Pharmaceutical Industry Co., Ltd.
  • Electrolytic ZnO plating Zn (NO 3 ) 2 (Okuno Pharmaceutical Co., Ltd.), concentration 0.1 mol / l, temperature: 60 ° C., current 30
  • ZIF-8 composition formula: Zn (mIm) 2
  • XRD X-ray diffraction
  • FIG. 8 (1) shows the XRD spectrum of the particles of the metal-organic framework (ZIF-8) alone, and (2) is a film in which the metal-organic framework (ZIF-8) is formed on zinc oxide (ZnO). The XRD spectrum of the above is shown, and (3) shows the XRD spectrum of the film of zinc oxide (ZnO) alone.
  • Example 1 (Evaluation of adhesion) The sample obtained in Example 1 or Comparative Example 1 was immersed in pure water, ultrasonic waves were applied at room temperature for 10 minutes, the glass support was removed, and 3 cc of the remaining liquid was collected. Using the liquid, the absorbance (absorbance to a water solvent) of light having a wavelength of 550 nm was measured in an optical cell having an optical path length of 1 cm. No cloudiness was observed in the liquid of Example 1. The absorbance A 550 of the liquid was less than 0.01, and no attenuation of transmitted light was observed. Therefore, no detachment of the MOF thin film was observed. White turbidity was observed in the liquid of Comparative Example 1.
  • the absorbance A 550 of the liquid was 0.80, and attenuation of transmitted light was observed. From this, it was found that the MOF thin film was detached from the support. From the above, it was confirmed that the present invention improved the adhesion of the metal-organic framework thin film to the support.
  • the absorbance is defined by the following formula with reference to the amount of light I 0 of the water solvent alone.
  • I is the amount of light when the solvent is used after the above ultrasonic treatment.
  • is the absorption coefficient
  • L is the optical path length (1 cm)
  • Example 2 [Manufacturing of gas adsorption filter]
  • a metal oxide layer (thickness 3 ⁇ m) and a metal-organic framework thin film (thickness 70 nm) were applied to the surface of the support by the same method as in Example 1 except that a ceramic honeycomb structure filter base material was used as the support. Formed. Polyethyleneimine was dissolved in ethanol to prepare an ethanol solution having a concentration of 60 g / L. A gas adsorption filter was obtained by impregnating the entire filter with polyethyleneimine by dropping 4 mL of an ethanol solution of polyethyleneimine onto a support on which a metal oxide layer and a thin film of a metal-organic framework were formed.
  • Example 2 The gas adsorption filters obtained in each of Example 2 and Reference Examples 1 to 3 were installed in an acrylic case (12L). By monitoring the carbon dioxide gas concentration in the acrylic case, the change over time in the amount of carbon dioxide gas adsorbed was measured and shown in the graph of FIG. 7.
  • -CO2 adsorption measurement After heating at 60 ° C for 60 minutes, the CO2 concentration was monitored at 25 ° C and 40% RH.
  • -CO2 desorption measurement After saturating CO2 adsorption at 25 ° C and 40% RH, the CO2 concentration was monitored at 60 ° C and 10% RH. From the measured value of carbon dioxide gas concentration, the amount of carbon dioxide gas adsorbed was calculated using the following formula and plotted against time.
  • ⁇ C Decrease in carbon dioxide concentration from the start of measurement (difference between carbon dioxide concentration and carbon dioxide concentration at the start of measurement)
  • V Volume of acrylic case
  • w Difference between the weight of the carbon dioxide adsorption filter and the weight of the filter support (that is, the total weight of the metal oxide, the metal-organic framework, and the amine compound)
  • the composite membrane structure of the present invention is useful for sensors (particularly gas or odor sensors), gas adsorption filters and gas removal devices.
  • Support 2 Metal oxide layer 3: Metal-organic framework thin film (MOF thin film) 10: Composite film structure 20: Metal oxide 30: Altered layer 40: Gas sensor 50: Multi-gas sensor 60: Gas adsorption filter 61: Support 62: Metal oxide layer 63: Metal-organic framework thin film (MOF thin film) 65: Adsorbent 70: Gas remover

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、金属有機構造体(MOF)が十分な密着性により支持体に担持されている複合膜構造体を提供する。本発明は、支持体1上に形成された金属酸化物層2および該金属酸化物層2に形成された金属有機構造体薄膜3を含む複合膜構造体10であって、前記金属酸化物層2を構成する金属酸化物20と前記金属有機構造体薄膜3を構成する金属有機構造体との界面で、金属原子が、前記金属酸化物2および前記金属有機構造体に共有されている、複合膜構造体10に関する。

Description

複合膜構造体ならびに該複合膜構造体を用いたセンサ、ガス吸着フィルタおよびガス除去装置
 本発明は複合膜構造体ならびに該複合膜構造体を用いたセンサ(特にガスまたは匂い用センサ)、ガス吸着フィルタおよびガス除去装置に関する。
 従来より、二酸化炭素等のガスを吸着材により回収する試みがなされている。吸着材としては、金属有機構造体(MOF)およびアミン化合物等が知られている(特許文献1~3)。
 例えば、特許文献1においては、支持体上に、化学気相法を用いてMOF薄膜を成膜する方法が提案されている。
 また例えば、特許文献2においては、親水性繊維と多孔質粉末とが親水性バインダーにより複合された多孔質粒子に、アミン化合物を担持させた二酸化炭素吸収剤が提案されている。多孔質粉末としてはMOFが使用される。
 一方、特許文献3においては、アルミナやシリカ粉末を成型した多孔ハニカム基材に、アミン化合物を付けた二酸化炭素吸着基材が提案されている。
特表2017-519896 特開2018-187574 特表2015-508018
 しかしながら、本発明の発明者等は、従来の技術では、以下の新たな問題が生じることを見出した。
(1)特許文献1の技術においては、MOFの支持体に対する密着性が悪く、MOF薄膜が振動や物理的な負荷に弱いという問題点があった。
(2)特許文献2の技術においては、MOFを親水性バインダーによりハニカムなどの支持体に担持しようとしても、密着性が十分ではなかった。このため、アミン化合物を担持させる時、二酸化炭素吸収剤を空調機へ取り付ける時、および空調機を使用する時等において、振動などによりMOFが脱落し、二酸化炭素の吸収性能が低かった。
(3)特許文献3の技術においては、支持体として多孔ハニカム基材を用いても、表面積が十分ではないため、二酸化炭素吸着能が小さかった。
 本発明は、金属有機構造体(MOF)が十分な密着性により支持体に担持されている複合膜構造体を提供することを目的とする。
 本発明はまた、金属有機構造体(MOF)が十分な密着性により支持体に担持され、信頼性に十分に優れているセンサ(特にガスまたは匂い用センサ)を提供することを目的とする。
 本発明はまた、金属有機構造体(MOF)が十分な密着性により支持体に担持され、ガス(例えば二酸化炭素ガス)の吸着性に十分に優れているガス吸着フィルタを提供することを目的とする。
 本発明は、
 支持体上に形成された金属酸化物層および該金属酸化物層に形成された金属有機構造体薄膜を含む複合膜構造体であって、
 前記金属酸化物層を構成する金属酸化物と前記金属有機構造体薄膜を構成する金属有機構造体との界面で、金属原子が、前記金属酸化物および前記金属有機構造体に共有されている、複合膜構造体に関する。
 本発明はまた、
 支持体上に形成された金属酸化物層および該金属酸化物層に形成された金属有機構造体薄膜を含む複合膜構造体であって、
 前記金属酸化物層は、その少なくとも表層部に、該金属酸化物層を構成する金属酸化物が前記金属有機構造体薄膜を構成する金属有機構造体により変質されている変質層を有している、複合膜構造体に関する。
 本発明はまた、上記の複合膜構造体を有する、センサ(特にガスまたは匂い用センサ)に関する。
 本発明はまた、上記の複合膜構造体を有する、ガス吸着フィルタに関する。
 本発明の複合膜構造体は、金属有機構造体(MOF)が十分な密着性により支持体に担持されている。よって、本発明の複合膜構造体を有するセンサおよびガス吸着フィルタはそれぞれ、信頼性およびガス(例えば二酸化炭素ガス)吸着性に十分に優れている。
本発明の第1実施態様に係る複合膜構造体の一例の模式断面図である。 本発明の第1実施態様に係る複合膜構造体の別の一例の模式断面図である。 本発明の第1実施態様に係る複合膜構造体における金属有機構造体の結晶構造を模式的に示す金属有機構造体の模式図である。 本発明の第1実施態様に係る複合膜構造体において、有機分子として2-メチルイミダゾールを用いた金属有機構造体の結晶構造を模式的に示す金属有機構造体の模式図である。 本発明の第1実施態様に係る複合膜構造体において、有機分子としてシアン系有機分子を用いた金属有機構造体の結晶構造を模式的に示す金属有機構造体の模式図である。 本発明の第2実施態様に係るガスセンサの一例の模式的平面図である。 本発明の第2実施態様に係るガスセンサの一例の模式的断面図である。 本発明の第2実施態様に係るガスセンサを製造する方法を示す模式的工程図である。 本発明の第2実施態様に係るマルチガスセンサの一例の模式的平面図である。 本発明の第2実施態様に係るマルチガスセンサの一例の模式的断面図である。 本発明の第3実施態様に係るガス吸着フィルタの一例の模式図である。 本発明の第4実施態様に係るガス除去装置の一例の模式図である。 実施例で製造された複合膜構造体のガス吸着性を示すグラフである。 実施例で製造された複合膜構造体のX線回折(XRD)スペクトルを示す図である。
[第1実施態様]
 本発明の第1実施態様は複合膜構造体を提供する。本発明の複合膜構造体は、支持体、金属酸化物層および金属有機構造体薄膜を含む。本発明において、金属酸化物層は密着層または接着層として機能し、当該金属酸化物層を介して金属有機構造体薄膜は支持体上に形成または担持されるため、金属有機構造体薄膜の支持体に対する密着性が十分に向上する。
 本発明の複合膜構造体10は、例えば、図1Aおよび図1Bに示すように、支持体1、当該支持体1上に形成された金属酸化物層2および該金属酸化物層2に形成された金属有機構造体薄膜3を含む。「金属酸化物層2に形成された金属有機構造体薄膜3」は「金属酸化物層2が有する金属有機構造体薄膜3」という意味である。「金属酸化物層2に形成された金属有機構造体薄膜3」は、後で詳述するように、以下の金属有機構造体薄膜3を包含する:
・金属酸化物層2が多孔質層である場合(図1A)において、当該多孔質金属酸化物層2を構成する当該層内部の金属酸化物20の表面に形成された金属有機構造体薄膜3;および
・金属酸化物層2が非多孔状層である場合(図1B)において、当該非多孔状金属酸化物層2の表面(特に外部表面2a)に形成された金属有機構造体薄膜3。
図1Aは、本発明の第1実施態様に係る複合膜構造体の一例の模式断面図である。図1Bは、本発明の第1実施態様に係る複合膜構造体の別の一例の模式断面図である。本明細書中、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観および寸法比などは実物と異なり得る。本明細書で直接的または間接的に用いる“上下方向”、“左右方向”および“表裏方向”はそれぞれ、特記しない限り、図中における上下方向、左右方向および表裏方向に対応した方向に相当する。同じ符号または記号は、特記しない限り、形状が異なること以外、同じ部材または同じ意味内容を示すものとする。
(金属酸化物層)
 金属酸化物層2は、その少なくとも表層部に、変質層30を有している。変質層30とは、金属酸化物層2を構成する金属酸化物20が金属有機構造体薄膜3を構成する金属有機構造体により変質されている層のことである。変質層30の配置および形態は、金属酸化物層2の形態により異なる。例えば、金属酸化物層2が後述するような多孔質層である場合、図1Aに示すように、変質層30は、金属酸化物層2の内部における少なくとも表層部に配置され、金属有機構造体薄膜3が当該多孔質金属酸化物層2を構成する金属酸化物20の表面に形成されている形態を有する。この場合、変質層30は、金属酸化物層2の少なくとも表層部に配置される限り、金属酸化物層2の全体にわたって配置されていてもよい。また例えば、金属酸化物層2が後述するような非多孔状層である場合、図1Bに示すように、変質層30は、金属酸化物層2の表面(特に外部表面2a)に配置され、金属有機構造体薄膜3が当該非多孔状金属酸化物層2の表面に形成されている形態を有する。なお、非多孔状層とは、表面が非多孔状(例えば平滑)である層という意味である。
 変質層30において、金属有機構造体薄膜3の金属有機構造体は、金属酸化物層2の金属酸化物20を構成する金属原子を利用して構成されている。このことが、「変質層」と称される理由である。すなわち、「変質層」の変質とは、金属酸化物層2(特に当該層を構成する金属酸化物20)の化学的変質のことであり、金属酸化物層2を構成する金属酸化物20の金属原子を利用して、金属有機構造体薄膜3の金属有機構造体が形成された層である。詳しくは、金属酸化物層2を構成する金属酸化物20と金属有機構造体薄膜3を構成する金属有機構造体との界面(または間)で、金属酸化物および金属有機構造体に共有されている金属原子が存在している。例えば、当該界面において、金属酸化物および金属有機構造体のいずれをも構成する金属原子が存在している。また例えば、当該変質層においては、金属有機構造体は、金属酸化物を構成する金属原子を含みながら構成されている。それらの結果として、金属酸化物と金属有機構造体との間(例えば界面)で金属原子は金属酸化物および金属有機構造体の両方に共有されている。本発明においては、このように、金属有機構造体は、金属酸化物の表面において、金属酸化物の金属原子を共有しながら形成されているため、金属有機構造体薄膜の密着性が十分に向上する。
 金属酸化物層2を構成する材料は、金属有機構造体を構成し得る金属原子を供給可能な金属酸化物であれば特に限定されず、例えば、酸化亜鉛、酸化銅、酸化ニッケル、酸化鉄、酸化インジウム、および酸化アルミニウムからなる群から選択される1種以上の金属酸化物が挙げられる。金属酸化物層2は、多孔質構造を得る観点から、酸化亜鉛から構成されていることが好ましい。
 金属酸化物層2は、多孔質層であってもよいし、または外部表面2a(図1B参照)が平滑な非多孔状層であってもよい。金属酸化物層2は、当該金属酸化物層の表面積の増大に基づくより多くの金属有機構造体の担持および金属酸化物層の支持体へのより高い密着性の観点から、多孔質層であることが好ましい。金属酸化物層2について、多孔質層とは、当該金属酸化物層を構成する金属酸化物粒子(例えばめっき法により形成される場合における析出粒子)間に間隙を有する層、あるいは表面に凹凸を有する膜または層という意味である。
 金属酸化物層2の厚みTは特に限定されず、例えば、0.1μm以上100μm以下であり、当該金属酸化物層の表面積の増大に基づくより多くの金属有機構造体の担持および金属酸化物層の支持体へのより高い密着性の観点から、好ましくは1μm以上10μm以下である。
 金属酸化物層2の厚みTはSEM写真における任意の50箇所における厚みの平均値を用いている。
 金属酸化物層2は、例えば、めっき法、CVD法、蒸着法、スパッタリング法などの方法により形成することができる。金属酸化物層2の表面積を大きくする観点から、めっき法を用いることが好ましい。めっき法で金属酸化物層を形成する方法としては、電解めっき法および無電解めっき法を用いることができる。電解めっき法の場合は、支持体として導電性の材料、例えば金属メッシュフィルタ、活性炭練りこみフィルタなどを用いることができる。また導電性が低い支持体であっても、無電解めっき法で銅、ニッケル、亜鉛など(導電性の膜を支持体表面に形成した上で電解めっき法により金属酸化物層を形成することもできる。金属酸化物層2は、多孔質層である場合、当該金属酸化物層の表面積の増大に基づくより多くの金属有機構造体の担持および金属酸化物層の支持体へのより高い密着性の観点から、めっき法、特に電解めっき法により形成されることが好ましい。
(金属有機構造体薄膜)
 金属有機構造体薄膜3は金属有機構造体(すなわち、MOF:Metal-Organic Framework)から構成され、通常は金属有機構造体のみから構成されている。金属有機構造体薄膜3が金属有機構造体のみから構成されるとは、金属有機構造体以外の物質を意図的に含ませないという意味であり、例えば、金属有機構造体を構成する金属原子および有機分子等の意図しない物質および不純物質が含まれてもよい。
 金属有機構造体薄膜3を構成する金属有機構造体は、有機分子と金属酸化物層2の金属酸化物由来の金属原子を含む金属原子との配位結合に基づく金属有機構造体であり、金属有機構造体薄膜3を多孔質膜として構成する。金属有機構造体は、例えば図2Aに示すように、有機分子OMが配位子として金属原子(特に金属原子イオン)MAを架橋して形成された結晶性錯体であって、有機分子と金属原子(特に金属原子イオン)との配位結合に基づく多孔体のことである。金属有機構造体は、当該金属有機構造体を構成する全ての金属原子が、金属酸化物層2を構成する金属酸化物に共有されていなければならないというわけではなく、少なくとも金属酸化物と隣接する金属有機構造体(または少なくとも金属酸化物近傍の金属有機構造体)の金属原子が、当該金属酸化物に共有されていればよい。金属酸化物と隣接する金属有機構造体の金属原子が、当該金属酸化物に共有されている様子は、透過型電子顕微鏡(TEM)の高倍率観察(例えば100万倍以上)により確認することが可能である。図2Aは、本発明の第1実施態様に係る複合膜構造体における金属有機構造体の結晶構造を模式的に示す金属有機構造体の模式図である。
 詳しくは、例えば、有機分子として後述の2-メチルイミダゾールを含み、かつ金属原子として亜鉛原子を含む金属有機構造体は、図2Bに示すような結晶構造を有し得る。このとき、図2Bにおいて示される18個の亜鉛原子MAのうち、いずれか1個以上の亜鉛原子が金属酸化物に共有されていてもよい。図2Bは、本発明の第1実施態様に係る複合膜構造体において、有機分子として2-メチルイミダゾールを用いた金属有機構造体の結晶構造を模式的に示す金属有機構造体の模式図である。この構造はあくまで模式図であり結晶構造は正確には、例えば、以下の文献に記載されたものである。
 ANH PHAN et al., “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks”(ACCOUNTS OF CHEMICAL RESEARCH 58 67 January 2010 Vol. 43, No. 1)
 また例えば、有機分子として後述のシアン系化合物を含み、かつ金属原子MおよびM’を含む金属有機構造体は、図2Cに示すような結晶構造を有し得る。このとき、図2Cにおいて示される、中心の金属原子M’を除く26個の金属原子MおよびM’のうち、いずれか1個以上の金属原子が金属酸化物に共有されていてもよい。図2Cにおいて、MおよびM’は同じ金属原子(例えば亜鉛原子)であってもよく、Cは炭素原子であり、Nは窒素原子である。図2Cは、本発明の第1実施態様に係る複合膜構造体において、有機分子としてシアン系有機分子を用いた金属有機構造体の結晶構造を模式的に示す金属有機構造体の模式図である。
 有機分子は、金属有機構造体の分野で金属有機構造体を構成し得る有機分子として知られているあらゆる有機分子であってもよい。有機分子は、金属有機構造体の金属酸化物層を介した支持体へのより高い密着性の観点から、好ましくは、アゾール系有機分子、シアン系有機分子およびカルボン酸系有機分子からなる群から選択される1種以上の有機分子を含む。同様の観点および本発明の複合膜構造体を用いたセンサ;ガス吸着フィルタ;およびガス除去装置それぞれのガス(特に二酸化炭素ガス)の検知性(および信頼性);吸着性;除去性;および使用環境中に存在する水分に対する構造安定性;のさらなる向上の観点から、有機分子は、より好ましくは、アゾール系有機分子およびシアン系有機分子からなる群から選択される1種以上の有機分子を含み、さらに好ましくはアゾール系有機分子からなる群から選択される1種以上の有機分子を含む。アゾール系有機分子(特にイミダゾール系有機分子)は、図2Bに示すように、窒素原子を介して、当該有機分子と金属原子とが結合しているため、ガス(特に二酸化炭素ガス)の吸着速度がより速い。
 金属有機構造体を構成するアゾール系有機分子は、イミダゾール、ベンズイミダゾール、トリアゾールおよびプリンからなる群から選択される有機分子を含む。本発明の複合膜構造体を用いたセンサ;ガス吸着フィルタ;およびガス除去装置それぞれのガス(特に二酸化炭素ガス)の検知性(および信頼性);吸着性;および除去性のさらなる向上の観点から、好ましくはイミダゾール、ベンズイミダゾール、およびプリンであり、より好ましくはイミダゾール、およびベンズイミダゾールであり、さらに好ましくはイミダゾールである。
 アゾール系有機分子は置換基を有していてもよいし、または有していなくてもよい。
 アゾール系有機分子が有していてもよい置換基は、例えば、アルキル基、ハロゲン原子、ニトロ基、フェニル基、ピリジル基およびシアノ基等の疎水性基;ならびにアミノ基およびカルボキシル基等の親水性基からなる群から選択される1種以上の置換基である。
 アルキル基は、例えば、炭素原子数1以上5以下(特に1以上3以下)のアルキル基である。アルキル基の具体例として、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。
 ハロゲン原子として、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。
 金属有機構造体を構成するアゾール系有機分子は、金属有機構造体の金属酸化物層を介した支持体へのより高い密着性の観点、ならびに本発明の複合膜構造体を用いたセンサ;ガス吸着フィルタ;およびガス除去装置それぞれのガス(特に二酸化炭素ガス)の検知性(および信頼性);吸着性;および除去性のさらなる向上の観点から、好ましくは、置換基を有さないアゾール系有機分子、および置換基を有したとしても疎水性基(特にアルキル基またはニトロ基)のみを有するアゾール系有機分子からなる群から選択され、より好ましくは、疎水性基(特にアルキル基)のみを有するアゾール系有機分子からなる群から選択される。
 金属有機構造体を構成するアゾール系有機分子として、例えば、下記一般式(1)で表されるイミダゾール系分子、下記一般式(2)で表されるベンズイミダゾール系分子、下記一般式(3)および(4)で表されるトリアゾール系分子、ならびに一般式(5)で表されるプリン系分子が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R1~R3は、それぞれ独立して、水素原子;アルキル基、ハロゲン原子、ニトロ基、フェニル基、ピリジル基またはシアノ基等の疎水性基;またはアミノ基もしくはカルボキシル基等の親水性基であり、金属有機構造体の金属酸化物層を介した支持体へのより高い密着性の観点、ならびに本発明の複合膜構造体を用いたセンサ;ガス吸着フィルタ;およびガス除去装置それぞれのガス(特に二酸化炭素ガス)の検知性(および信頼性);吸着性;および除去性のさらなる向上の観点から、好ましく水素原子または上記疎水性基であり、より好ましくは水素原子、アルキル基、ハロゲン原子、ニトロ基またはシアノ基である。同様の観点からより好ましい実施態様においては、R1は水素原子、アルキル基、またはニトロ基であり、R2およびR3は水素原子、アルキル基、ハロゲン原子、ニトロ基である。
 一般式(1)で表されるイミダゾール系分子の具体例として、例えば、以下の化合物が挙げられる。
 イミダゾール、メチルイミダゾール、エチルイミダゾール、ニトロイミダゾール、アミノイミダゾール、クロロイミダゾール、ブロモイミダゾール。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R11~R15は、それぞれ独立して、水素原子;アルキル基、ハロゲン原子、ニトロ基、フェニル基、ピリジル基またはシアノ基の疎水性基;またはアミノ基もしくはカルボキシル基等の親水性基であり、金属有機構造体の金属酸化物層を介した支持体へのより高い密着性の観点、ならびに本発明の複合膜構造体を用いたセンサ;ガス吸着フィルタ;およびガス除去装置それぞれのガス(特に二酸化炭素ガス)の検知性(および信頼性);吸着性;および除去性のさらなる向上の観点から、好ましく水素原子または上記疎水性基であり、より好ましくは水素原子、アルキル基、ハロゲン原子、ニトロ基、またはシアノ基である。同様の観点からより好ましい実施態様においては、R11、R14およびR15は水素原子であり、R12およびR13は、それぞれ独立して、水素原子、アルキル基、ハロゲン原子、またはニトロ基である。
 一般式(2)で表されるベンズイミダゾール系分子の具体例として、例えば、以下の化合物が挙げられる。
 ベンズイミダゾール、クロロベンズイミダゾール、ジクロロベンズイミダゾール、メチルベンズイミダゾール、ブロモベンズイミダゾール、ニトロベンズイミダゾール、アミノベンズイミダゾール、ベンズイミダゾールカルボニトリル。
Figure JPOXMLDOC01-appb-C000003
 式(3)中、R21~R22は、それぞれ独立して、水素原子;アルキル基、ハロゲン原子、ニトロ基、フェニル基、ピリジル基またはシアノ基の疎水性基;またはアミノ基もしくはカルボキシル基等の親水性基であり、金属有機構造体の金属酸化物層を介した支持体へのより高い密着性の観点、ならびに本発明の複合膜構造体を用いたセンサ;ガス吸着フィルタ;およびガス除去装置それぞれのガス(特に二酸化炭素ガス)の検知性(および信頼性);吸着性;および除去性のさらなる向上の観点から、好ましく水素原子または上記疎水性基であり、より好ましくは水素原子である。
 一般式(3)で表されるトリアゾール系分子の具体例として、例えば、以下の化合物が挙げられる。
 1,2,3-トリアゾール。
Figure JPOXMLDOC01-appb-C000004
 式(4)中、R31~R32は、それぞれ独立して、水素原子;アルキル基、ハロゲン原子、ニトロ基、フェニル基、ピリジル基またはシアノ基の疎水性基;またはアミノ基もしくはカルボキシル基等の親水性基であり、金属有機構造体の金属酸化物層を介した支持体へのより高い密着性の観点、ならびに本発明の複合膜構造体を用いたセンサ;ガス吸着フィルタ;およびガス除去装置それぞれのガス(特に二酸化炭素ガス)の検知性(および信頼性);吸着性;および除去性のさらなる向上の観点から、好ましく水素原子または上記疎水性基であり、より好ましくは水素原子である。
 一般式(4)で表されるトリアゾール系分子の具体例として、例えば、以下の化合物が挙げられる。
 1,2,4-トリアゾール。
Figure JPOXMLDOC01-appb-C000005
 式(5)中、R41~R43は、それぞれ独立して、水素原子;アルキル基、ハロゲン原子、ニトロ基、フェニル基、ピリジル基またはシアノ基の疎水性基;またはアミノ基もしくはカルボキシル基等の親水性基であり、金属有機構造体の金属酸化物層を介した支持体へのより高い密着性の観点、ならびに本発明の複合膜構造体を用いたセンサ;ガス吸着フィルタ;およびガス除去装置それぞれのガス(特に二酸化炭素ガス)の検知性(および信頼性);吸着性;および除去性のさらなる向上の観点から、好ましく水素原子または上記疎水性基であり、より好ましくは水素原子である。
 一般式(5)で表されるプリン系分子の具体例として、例えば、以下の化合物が挙げられる。
 プリン。
 シアン系有機分子とし、例えば、フェリシアン化カリウム、フェロシアン化カリウム、青酸などが用いられる。
 カルボン酸系有機分子として、テレフタル酸、ベンゼントリカルボン酸、ベンゼンジカルボン酸などを用いることができる。
 金属有機構造体を構成する金属原子は、金属酸化物層2の金属酸化物を構成し得る金属原子を含む金属原子であり、例えば、亜鉛原子、銅原子、ニッケル原子、鉄原子、インジウム原子、アルミニウム原子、コバルト原子、プラセオジム原子、カドミウム原子、水銀原子、マンガン原子からなる群から選択され、金属有機構造体の金属酸化物層を介した支持体へのより高い密着性の観点、ならびに本発明の複合膜構造体を用いたセンサ;ガス吸着フィルタ;およびガス除去装置それぞれのガス(特に二酸化炭素ガス)の検知性(および信頼性);吸着性;および除去性のさらなる向上の観点から、好ましくは亜鉛原子、コバルト原子および鉄原子からなる群から選択され、より好ましくは亜鉛原子およびコバルト原子からなる群から選択され、さらに好ましくは亜鉛原子である。
 金属有機構造体における有機分子と金属原子との組み合わせは、特に限定されないが、金属有機構造体の金属酸化物層を介した支持体へのより高い密着性の観点、ならびに本発明の複合膜構造体を用いたセンサ;ガス吸着フィルタ;およびガス除去装置それぞれのガス(特に二酸化炭素ガス)の検知性(および信頼性);吸着性;および除去性のさらなる向上の観点から、好ましくは以下の組み合わせである:
 組み合わせ(C1)=一般式(1)で表されるイミダゾール系分子と、亜鉛原子および鉄原子からなる群から選択される1種以上の金属原子との組み合わせ; 
 組み合わせ(C2)=一般式(1)で表されるイミダゾール系分子と、亜鉛原子およびコバルト原子からなる群から選択される1種以上の金属原子との組み合わせ; 組み合わせ(C3)=一般式(2)で表されるベンズイミダゾール系分子と、亜鉛原子およびコバルト原子からなる群から選択される1種以上の金属原子との組み合わせ; 
 金属有機構造体における有機分子と金属原子との比率は、特に限定されないが、通常は、当該金属有機構造体を構成する有機分子の種類および金属原子の種類により決定される。
 例えば、イミダゾール系分子(Im)(例えば、一般式(1)で表されるイミダゾール系分子)と、亜鉛原子、コバルト原子、鉄原子からなる群から選択される1種以上の2価金属原子(M1)のみを含む金属有機構造体は、組成式:M1(Im)2により表され得る;
 また例えば、ベンズイミダゾール系分子(bIm)(例えば、一般式(2)で表されるベンズイミダゾール系分子)と、亜鉛原子、コバルト原子、鉄原子からなる群から選択される1種以上の2価金属原子(M1)のみを含む金属有機構造体は、組成式:M1(bIm)2により表され得る;
 また例えば、トリアゾール系分子(Tra)(例えば、一般式(3)および/または(4)で表されるトリアゾール系分子)と、亜鉛原子、コバルト原子、鉄原子からなる群から選択される1種以上の2価金属原子(M1)のみを含む金属有機構造体は、組成式:M1(Tra)2により表され得る;
 また例えば、プリン系分子(Pur)(例えば、一般式(5)で表されるトリアゾール系分子)と、亜鉛原子、コバルト原子、鉄原子からなる群から選択される1種以上の2価金属原子(M1)のみを含む金属有機構造体は、組成式:M1(Pur)2により表され得る。
 また例えば、イミダゾール系分子(Im)(例えば、一般式(1)で表されるイミダゾール系分子)およびベンズイミダゾール系分子(bIm)(例えば、一般式(2)で表されるベンズイミダゾール系分子)と、亜鉛原子、コバルト原子、鉄原子からなる群から選択される1種以上の2価金属原子(M1)のみを含む金属有機構造体は、組成式:M1(Im)x(bIm)y(式中、x+y=2である)により表され得る。
 金属有機構造体薄膜3の厚みt(図1Aおよび図1B参照)は特に限定されず、金属有機構造体の金属酸化物層を介した支持体へのより高い密着性の観点、ならびに本発明の複合膜構造体を用いたセンサ;ガス吸着フィルタ;およびガス除去装置それぞれのガス(特に二酸化炭素ガス)の検知性(および信頼性);吸着性;および除去性のさらなる向上の観点から、好ましくは1nm以上100nm以下であり、より好ましくは10nm以上100nm以下である。
 金属有機構造体薄膜3の厚みtはSEM写真における任意の50箇所における厚みの平均値を用いている。
 金属有機構造体薄膜3を構成する金属有機構造体は通常、1Å以上50Å以下の細孔径を有する。用途に応じた特性と支持体への密着性の観点で適切な細孔径を有する金属有機構造体を用いることができる。例えば本発明の複合膜構造体を用いたセンサの場合、対象ガス分子のサイズに近い細孔径を有する金属有機構造体が望ましい。二酸化炭素センサの場合二酸化炭素分子の分子径3.3Åに近い2以上5Å以下、さらに好ましくは2以上4Å以下の細孔径を有する金属有機構造体が望ましい。また、ポリアミン例えばポリエチレンイミンを担持させて二酸化炭素吸着フィルタとする場合、ポリアミンの単位構造から5Å以上20Å以下、さらに好ましくは10Å以上15Å以下の細孔径を有する金属有機構造体が好ましい。
 細孔径は、金属有機構造体を構成する有機分子および金属原子の種類に依存する。このため、有機分子および金属原子の種類を選択することにより、細孔径を調整することができる。
 本明細書中、細孔径は、「結晶中の各原子を、ファンデルワールス半径を持つ剛体球としたときに、内包できる最大の球の直径」と定義され、細孔内に分子を何ら含まない状態での細孔径である。従って、細孔径は結晶構造から計算することが可能である。このような細孔径は、以下の文献の表1にdp(Å)として記載されており、当該文献に記載の値を用いることができる:
 ANH PHAN et al., “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks”(ACCOUNTS OF CHEMICAL RESEARCH 58 67 January 2010 Vol. 43, No. 1)
 金属有機構造体薄膜3を構成する金属有機構造体は、例えば、以下に示す金属有機構造体であってもよい:
ZIF-1(組成式:Zn(Im)2);
ZIF-4(組成式:Zn(Im)2);
ZIF-7(組成式:Zn(bIm)2);
ZIF-8(組成式:Zn(mIm)2);
ZIF-9(組成式:Co(bIm)2);
ZIF-14(組成式:Zn(eIm)2);
ZIF-81(組成式:Zn(cbIm)(nIm));
ZIF-75(組成式:Co(mbIm)(nIm));
ZIF-77(組成式:Zn(nIm)2);
ZIF-81(組成式:Zn(brbIm)(nIm))。
 ここで、組成式中の略号は以下の化合物を示す。
Im:イミダゾール、bIm:ベンズイミダゾール、mIm:メチルイミダゾール、eIm:エチルイミダゾール、nIm:ニトロイミダゾール、cbIm:クロロベンズイミダゾール、brbIm:ブロモベンズイミダゾール。
 金属有機構造体薄膜3の形成方法は特に限定されず、詳しくは金属有機構造体薄膜3は、以下の方法によって形成された(m1)または(m2)の薄膜であってもよい:
(m1)目的とする金属有機構造体を構成する有機分子を含む溶液に、前記金属酸化物層を浸漬することにより製造された薄膜;または
(m2)目的とする金属有機構造体を含む溶液に、前記金属酸化物層を浸漬し、乾燥した後、熱処理して前記金属酸化物と前記金属有機構造体との界面をミキシングさせることにより製造された薄膜。
 上記(m1)の形成方法において、溶液を構成する有機溶剤は、所定の有機分子を溶解し得る溶媒であれば特に限定されず、例えば、N,N-ジエチルホルムアミド、N,N-ジメチルホルムアミド、メタノール等の有機溶媒;および水等が挙げられる。薄膜の形成(例えば浸漬)は室温下で行ってもよいし、または加熱下で行ってもよい。金属有機構造体を厚くするために熱および圧を加えてもよい。熱および圧の付与方法としては、例えば、ステンレスジャケットの中で、金属酸化物層と有機分子溶液とを接触させつつ、加熱することにより、加圧する方法が挙げられる。溶液の有機分子濃度は、金属有機構造体を形成できる限り特に限定されず、例えば、10g/L以上であり、好ましくは20g/L以上100g/L以下、より好ましくは30g/L以上70g/L以下である。加熱温度は、金属有機構造体を形成できる限り特に限定されず、例えば、60℃以上200℃以下、特に130℃以上150℃以下であってもよい。加熱時間もまた、金属有機構造体を形成できる限り特に限定されず、例えば、1時間以上100時間以下、特に5時間以上24時間以下であってもよい。加圧力は、金属有機構造体を形成できる限り特に限定されず、例えば、密封されたステンレスジャケット中、上記した有機溶剤を上記した加熱温度で上記した加熱時間にて加熱したときに達成される圧力であり、例えば、1atm以上2atm以下、特に1.2atm以上1.5atm以下であってもよい。加熱方法は特に限定されず、電気的加熱であってもよいし、超音波またはマイクロ波による加熱を行ってもよい。
 上記(m2)の形成方法において、金属有機構造体は所定の金属有機構造体が使用され、例えば、金属有機構造体の市販品(例えば上記したもの)を使用することができる。また例えば、金属有機構造体の金属イオン成分と有機分子成分を含む溶液に金属酸化物層を浸漬することで、金属有機構造遺体を金属酸化物層に堆積させても良い。ここで例えばZIF-8(Zn(mIm)2)を金属有機構造体とする場合、金属イオン溶液として硝酸亜鉛、有機分子溶液として2-メチルイミダゾール溶液を用いることができる。溶液を構成する溶媒は、上記(m1)の形成方法における溶媒と同様の溶媒が使用可能である。ミキシングは、加熱することにより、金属有機構造体における金属原子を、金属酸化物由来の金属原子と置換させることであり、例えば、超音波またはマイクロ波による加熱により達成することができる。
 金属有機構造体薄膜を形成した後は、加熱することにより、残留溶媒および吸着ガスを除去することが好ましい。加熱は真空中(または減圧雰囲気下)で行うことが好ましい。
(支持体)
 支持体1は特に限定されず、金属酸化物層を形成可能なあらゆる物質から構成されていてもよい。支持体は通常、無機材料および有機・高分子材料からなる群から選択される1種以上の材料により構成されている。
 無機材料としては、特に限定されず、シリコン、ガラス、セラミクス等が挙げられる。
 有機・高分子材料としては、特に限定されず、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン;ポリ塩化ビニル;ポリ塩化ビニリデン;ポリ酢酸ビニル;エチレン-酢酸ビニル共重合体;ポリビニルアルコール;ポリビニルアセタール;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素原子含有ポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸等のポリエステル;ポリスチレン;ポリアクリロニトリル;スチレン-アクリロニトリル共重合体;ABS樹脂;ポリフェニレンエーテル(PPE);ポリイミド;ポリアミド、ポリアミドイミド等のアミド基含有ポリマー;ポリアクリル酸、ポリメチルアクリレート、ポリメタクリル酸、メチルメタクリレート等のアクリル系ポリマー;ポリカーボネート;ポリアリレート;ポリフェニレンスルフィド;カーボン、カーボンナノチューブ、グラフェン等の炭素材料;セルロースナノファイバー等が挙げられる。
 支持体1は、金属材料または半導体材料から構成されていてもよい。
 支持体1はまた、紙、不織布、多孔セラミクス、樹脂フィルム等から構成されていてもよい。
 支持体1はさらに、水晶振動子または圧電セラミクスを用いた振動子であってもよいし、または電極であってもよい。
 支持体1の形状は特に限定されず、例えば、繊維状、布状、板状、フィルム状、多孔形状(特にハニカム構造形状)であってもよい。
 支持体1として、紙や不織布、多孔セラミクス、樹脂フィルム、カーボンナノチューブ、グラフェン、セルロースナノファイバーなども用いることができる。
 支持体1が繊維状を有する場合、(1)当該繊維状支持体への金属酸化物層の形成および(2)金属酸化物層への金属有機構造体薄膜の形成を行った後、布状、板状、フィルム状、あるいはハニカム構造に加工しても良い。
[第2実施態様]
 本発明の第2実施態様は第1実施態様に係る複合膜構造体を用いたセンサを提供する。本発明のセンサは、ガス(特に二酸化炭素ガス)または匂いを検知するためのセンサであってもよい。本発明のセンサにおいては、第1実施態様においてと同様に、金属有機構造体薄膜の支持体に対する密着性が十分に向上する。このため、金属有機構造体薄膜の脱離・脱落が低減されて吸着性の高いセンサが得られ、結果として信頼性の高いセンサ(例えば、ガスセンサおよび匂いセンサ)を実現できる。
 本発明のセンサにおいて、金属有機構造体薄膜はその多孔形状によりガスを大量に吸着することが可能であり、その吸着量は周囲のガス濃度によって変化する。したがって、金属有機構造体薄膜はガスセンサの感応膜として機能させることが可能となる。
 詳しくは、ガス吸着により金属有機構造体の重量や電気特性が変化するため、ガス吸着量を電気信号に変換することが可能となり、すなわちガスセンサとすることが可能である。
 本発明のセンサにおける好ましい実施態様は以下の通りである。
 例えば、第1実施態様における支持体1として、水晶振動子や圧電セラミクスを用いた振動子など、重量によって周波数が変化するデバイスを用いることが好ましい。当該支持体1上に、金属酸化物層2および金属有機構造体薄膜3を形成することによって、重量変化型ガスセンサを作製することができる。
 また例えば、水晶振動子(支持体1)上に酸化亜鉛層(金属酸化物層2)とZIF-8などの金属有機構造体薄膜3を第1実施態様の手法により形成することで、重量変化型ガスセンサを作製できる。
 本実施態様において、金属酸化物層2の構成材料は、酸化亜鉛に限定されるものではなく、第1実施態様において、金属酸化物層2の構成材料として説明した金属酸化物と同様の金属酸化物から選択されてもよい。
 金属有機構造体薄膜3の構成材料は対象とするガスならびに必要とする感度および選択性によって決定することができる。例えば、金属有機構造体薄膜3を構成する金属有機構造体として、ZIF-1、ZIF-4、ZIF-7、ZIF-8などのイミダゾール系のMOFを用いることができる。
 湿度の影響を低減しセンサの精度を向上させるため、および応答速度ならびにリカバリー速度を得るため、ヒーター(特に、加熱用ヒータ)を内蔵して、複合膜構造体を加熱しても良い。
 複数種類の金属有機構造体材料を異なる振動子にアレイ化して配置することで、複数種類のガスを同時に検出することができるマルチガスセンサを作製できる。このようなマルチガスセンサはすなわち、においセンサとすることが可能である。
 シリコン基板上に圧電薄膜と電極を形成した上で、ヒーター配線と、上記金属酸化物上の金属有機構造体薄膜を形成した上で、シリコン基板をエッチングすることで、消費電力を抑えたMEMS型ガスセンサ・においセンサを形成できる。
 本発明のガスセンサの一例として、図3Aおよび図3Bに示すMEMS型ガスセンサが挙げられる。図3Aおよび図3Bはそれぞれ、本発明の第2実施態様に係るガスセンサの一例の模式的平面図および模式的断面図である。
 図3Aおよび図3Bに示すガスセンサ40は、圧電振動子41上に形成された金属酸化物層(図示せず)および当該金属酸化物層が有する金属有機構造体薄膜43を含む。なお、図3Bにおいて金属酸化物層は省略されている。圧電振動子41は、第1実施態様における支持体1に対応し、下部電極411、圧電薄膜412および上部電極413を含む。金属有機構造体薄膜43は第1実施態様における金属有機構造体薄膜3に対応する。
 ガスセンサ40は通常、さらに、シリコン基板44、当該シリコン基板44上に形成された支持膜45、当該支持膜45上に形成されたヒーター配線46、ヒーター用電極47aおよび振動子用電極47b、当該ヒーター用電極47aおよび振動子用電極47b上に形成されたワイヤボンド用コンタクトパッド47c、ならびにヒーター配線46と圧電振動子41とを絶縁するための絶縁層48を含む。
 ガスセンサ40において、CP1はヒーターとの接続端子(正)、CP2はヒーターとの接続端子(負)、CP3は振動子の上部電極との接続端子、CP4は振動子の下部電極との接続端子である。ワイヤボンド用コンタクトパッド47cはこのような接続端子として機能している。
 ガスセンサ40は例えば以下の方法により製造することができる。
 詳しくは、まず、図3(C)に示すように、シリコン基板44上に支持膜45を形成する(工程(1))。次いで、支持膜45上に、ヒーター配線46、ヒーター用電極47aおよび振動子用電極47bを形成するとともに、ヒーター用電極47aおよび振動子用電極47bの上にはワイヤボンド用コンタクトパッド47cを形成する(工程(2))。さらに、絶縁層48を形成し、ヒーター配線46を後述の圧電振動子41と絶縁する(工程(3)。絶縁層48の上に下部電極411を形成し(工程(4))、下部電極411の上に圧電薄膜412を形成し(工程(5))、圧電薄膜412の上に上部電極413を形成する(工程(6))。そして、上部電極413の上に金属酸化物層(図示せず)を形成した後、金属酸化物層(図示せず)に金属有機構造体薄膜43を形成し、絶縁層48の一部をエッチングしてワイヤボンド用コンタクトパッド47cを露出させる(工程(7))。その後、絶縁層48上の部材(金属有機構造体薄膜43、金属酸化物層(図示せず)、上部電極413、圧電薄膜412および下部電極411)の一部をエッチングし(工程(8))、シリコン基板43の一部をエッチングする(工程(9))して、センサ40を得ることができる(工程(10))。図3Cは、本発明の第2実施態様に係るガスセンサを製造する方法の一例を示す模式的工程図である。
 ガスセンサ40は消費電力が抑えられている。
 本発明のマルチガスセンサの一例として、図4Aおよび図4Bに示すMEMS型マルチガスセンサが挙げられる。図4Aおよび図4Bはそれぞれ、本発明の第2実施態様に係るマルチガスセンサの一例の模式的平面図および模式的断面図である。
 図4Aおよび図4Bに示すマルチガスセンサ50は、図3Aおよび図3Bに示すガスセンサ40を複数個(例えば4個)で有し、当該4つのガスセンサ40は相互に異なる金属有機構造体を含む金属有機構造体薄膜を有している。
 マルチガスセンサ50は、複数個(例えば4個)の、図3Aおよび図3Bに示すガスセンサ40複数個(例えば4個)を同時に製造すること、当該4つのガスセンサ40は相互に異なる金属有機構造体を含む金属有機構造体薄膜を有すること以外、ガスセンサ40の製造方法と同様である。4個のガスセンサ40の金属有機構造体は相互に異なるガスに対応した相互に異なる金属有機構造体である。
 マルチガスセンサ50は消費電力が抑えられている。マルチセンサ50は匂いセンサとして機能し得る。
[第3実施態様]
 本発明の第3実施態様は第1実施態様に係る複合膜構造体を用いたガス吸着フィルタを提供する。本発明のガス吸着フィルタは、二酸化炭素ガスを吸着するためのフィルタであってもよい。本発明のガス吸着フィルタにおいては、第1実施態様においてと同様に、金属有機構造体薄膜の支持体に対する密着性が十分に向上する。このため、信頼性の高いガス吸着フィルタを実現できる。
 本実施態様のガス吸着フィルタは、金属有機構造体薄膜表面に、当該金属有機構造体とは別の吸着材が添着または担持されていること以外、第1実施態様に係る複合膜構造体と同様の構造を有している。
 本発明のガス吸着フィルタにおける好ましい実施態様は以下の通りである。
 ガス吸着フィルタ60は、図5に示すように、ハニカム構造を有する支持体61上に形成された金属酸化物層62、当該金属酸化物層62が有する金属有機構造体薄膜63および当該金属有機構造体薄膜63が有する吸着材65を含む。なお、図5において金属有機構造体薄膜63は金属酸化物層62の外部表面上に形成されているが(図1B参照)、第1実施態様の図1Aに示すように、金属酸化物層62の内部における少なくとも表層部(すなわち変質層(図5において図示せず))に配置されてもよい。例えば、金属有機構造体薄膜63は多孔質金属酸化物層62の少なくとも表層部における金属酸化物の表面に形成されていてもよい。本実施態様において、ハニカム構造を有する支持体61は、第1実施態様における支持体1に対応する。金属酸化物層62は、第1実施態様における金属酸化物層2に対応する。金属有機構造体薄膜63は第1実施態様における金属有機構造体薄膜3に対応する。図5は、本発明の第3実施態様に係るガス吸着フィルタの一例の模式図である。
 ハニカム構造を有する支持体61を用いることにより、支持体自体の表面積を極めて広くすることができる。しかも、第1実施態様においてと同様に、金属酸化物層62を介した金属有機構造体薄膜63の支持体61への密着性が向上している。このため、より多くの金属有機構造体を添着または担持できる。そのため、単位面積当たりの二酸化炭素ガスの吸着速度を維持したまま、より多くの吸着材65を添着または担持することが可能となる。したがって、二酸化炭素ガスの吸着能力が著しく向上する。本実施態様においても、金属酸化物層62が密着層として働くため、金属有機構造体薄膜63の脱落を十分に防止することができ、耐久性が向上する。
 詳しくは、本実施態様においては、支持体61のハニカム構造による表面積増大、ならびに金属有機構造体薄膜63の多孔性に基づく表面凹凸および金属有機構造体結晶(内部凹凸(すなわち細孔))による表面積増大の複合効果により、二酸化炭素に接触する実効表面積が極めて大きくなる。その結果、二酸化炭素ガスの吸着能力が著しく向上する。しかも、金属酸化物層を多孔質とすることにより、二酸化炭素ガスの吸着能力のさらなる向上を図ることができる。
 吸着材65はガス(特に二酸化炭素ガス)を吸着できる限り特に限定されず、ガス吸着の分野で使用されているあらゆる吸着材が使用可能である。吸着材65として、二酸化炭素ガスの吸着の観点から、アミン化合物を使用することが好ましい。アミン化合物は、アミノ基を有する物質であれば特に限定されず、通常はアミノ基含有有機化合物が使用される。アミノ基含有有機物質は、揮発による二酸化炭素ガスの吸着能力の低下を防止する観点から、重量平均分子量が1,000以上、好ましくは10,000以上、さらに好ましくは20,000以上のアミノ基含有ポリマーが望ましい。アミノ基含有ポリマーの具体例として、例えば、ポリエチレンイミン、ポリアミドアミン、ポリビニルアミン等が挙げられる。アミノ基含有ポリマーは、直鎖状または分枝状であってもよく、二酸化炭素ガスの吸着能力のさらなる向上の観点から、分枝状であることが好ましい。
 吸着材65は、二酸化炭素ガスの吸着能力のさらなる向上の観点から、ポリエチレンイミン、特に分枝状ポリエチレンイミンが好ましい。
 アミン化合物(特にアミノ基含有ポリマー)のアミン価は特に限定されず、通常は15~25mmol/g・solidであり、ガス(特に二酸化炭素ガス)吸着性のさらなる向上の観点から、好ましくは17~19mmol/g・solidである。
 アミン価はアミン化合物を中和するのに必要な塩酸量から算出する中和法により測定された値を用いている。
 金属有機構造体薄膜を構成する有機分子として、アゾール系有機分子(特にイミダゾール系有機分子)またはシアン系有機分子を用いることで、金属有機構造体の耐水性が向上する。そのため、吸着材(特にアミノ基含有ポリマー)を担持しても信頼性がより高い。
 支持体61をハニカム構造にすることで、圧損を保った上で二酸化炭素吸着能を向上させることができる。
 本実施態様のガス吸着フィルタは、第1実施態様と同様の方法により、支持体61(第1実施態様では「1」)に対して、金属酸化物層62(第1実施態様では「2」)および金属有機構造体薄膜63(第1実施態様では「3」)を形成した後、加熱により残留溶媒および吸着ガスを除去し、吸着材65の添着または担持を行うことにより、製造することができる。加熱は真空中(または減圧雰囲気下)で行うことが好ましい。
 吸着材65の添着または担持は、金属有機構造体薄膜が形成された複合膜構造体を、吸着材(特にアミン化合物)の水溶液に含浸させた後、乾燥させることにより達成することができる。これにより、吸着材65(特にアミン化合物)の薄膜が金属有機構造体薄膜上に形成されてもよい。
[第4実施態様]
 本発明の第4実施態様は、第3実施態様に係るガス吸着フィルタ60を含むガス除去装置(またはガス除去システム)を提供する。本発明のガス除去装置は、二酸化炭素ガスを除去するための装置(またはシステム)であってもよい。本発明のガス除去装置においては、第3実施態様においてと同様に、金属有機構造体薄膜の支持体に対する密着性が十分に向上するとともに、二酸化炭素ガスの吸着能力を著しく向上させ得る。本発明は、小型、省エネルギー、低コストかつ高信頼性のガス除去装置(特に二酸化炭素ガス除去装置)を実現することが可能になる。本発明のガス除去装置はまた、一般空調用に使用できる。
 本実施態様のガス除去装置70は、図6に示すように、以下のステップを経て、室内の二酸化炭素ガスを室外に放出することができる。図6は、本発明の第4実施態様に係るガス除去装置の一例の模式図である。
 ステップ(i):
 室内の空気をガス吸着フィルタ60に吹き付け、二酸化炭素ガスを吸着させる。
 ステップ(ii):
 ガス吸着フィルタ60に加温した空気を吹き付けること、またはガス吸着フィルタ60を加熱することにより、吸着した二酸化炭素ガスを放出する。
 ステップ(iii):
 放出された二酸化炭素ガスを室外に排出する。
 ガス除去装置70においては、図6に示すように、二酸化炭素の吸着(ステップ(i))と放出および排出(ステップ(ii)および(iii))とを、吸着フィルタ60の相互に異なる位置を使って同時に行ってもよい。このとき、吸着フィルタ60の回転により、吸着フィルタ60において、放出位置を排出位置に、排出位置を放出位置に変更させることができる。これらの結果、二酸化炭素ガスの吸着、放出および排出を継続的に行うことができる。
 ガス除去装置70においては、別法として、二酸化炭素の吸着(ステップ(i))と放出および排出(ステップ(ii)および(iii))とを、吸着フィルタ60の同じ位置を使って順番に行ってもよい。
<実験例1>
[複合膜構造体の製造]
(実施例1)
・金属酸化物層の形成
 ガラス繊維の不織布支持体にZnOめっきを行った。詳しくは、ガラス製支持体に、以下の条件により、全面無電解Cuめっきおよび電解ZnOめっきを行った(金属酸化物層の厚み3μm):
 全面無電解Cuめっき:OPC H-TEC(奥野製薬工業)、32℃、10分間;
 電解ZnOめっき:Zn(NO32(奥野製薬工業)、濃度0.1mol/l、温度:60℃、電流30mA/dm、時間2時間。
・金属有機構造体薄膜の形成
 有機分子としての2-メチルイミダゾール(シグマアルドリッチ)2.0gをN,N-ジメチルホルムアミド(シグマアルドリッチ)40mlに溶解し、有機分子溶液を得た。
 金属酸化物層が形成されたガラス繊維不織布支持体を、上記有機分子溶液とともに、ステンレスジャケットに入れ、140℃で24時間加熱した。
 その後、支持体を取り出して、メタノールに浸漬し、超音波洗浄を10分間行った。メタノールを交換し超音波洗浄することを5回繰り返し、金属酸化物層に金属有機構造体薄膜(ZIF-8(組成式:Zn(mIm)2))を形成した(金属有機構造体薄膜の厚み70nm)。
 その結果、図1Aに示すような複合膜構造体を得た。
 X線回折(XRD)スペクトルにより、金属酸化物層にZIF-8薄膜が形成されていることを確認した。詳しくは図8に示すように、酸化亜鉛層(ZnO)表面に金属有機構造体薄膜(ZIF-8)を形成したものでは、X線回折(XRD)スペクトルのピークが、ZIF-8単体の粒子のピーク位置およびZnO単体の膜のピーク位置と同じ位置にあり、ZIF-8とZnOの両方を有する複合膜構造体であることを確認した。図8中、(1)は金属有機構造体(ZIF-8)単体の粒子のXRDスペクトルを示し、(2)は酸化亜鉛(ZnO)上に金属有機構造体(ZIF-8)を形成した膜のXRDスペクトルを示し、(3)は酸化亜鉛(ZnO)単体の膜のXRDスペクトルを示す。
(比較例1)
 ガラス繊維の不織布に、50g/L濃度のZIF-8エタノール分散液を4ml滴下した後、乾燥させ、ガラス製支持体表面にZIF-8薄膜を形成した。
(密着性の評価)
 実施例1または比較例1で得られた試料を純水に浸漬し、室温にて超音波を10分間印加した後、ガラス製支持体を除去し、残った液体を3cc採取した。当該液体を用い、光路長1cmの光学セルにて、波長550nm光の吸光度(水溶媒に対する吸光度)を測定した。
 実施例1の液体では白濁は見られなかった。当該液体の吸光度A550は0.01未満であり、透過光の減衰が見られなかった。したがってMOF薄膜の脱離は見られなかった。
 比較例1の液体では白濁が見られた。当該液体の吸光度A550は0.80であり、透過光の減衰が見られた。これより支持体からMOF薄膜が脱離していることがわかった。
 以上のことから、本発明により金属有機構造体薄膜の支持体に対する密着性が向上していることが確認できた。
 ここで吸光度は、水溶媒単独の光量I0を基準として、以下の式で定義される。
Figure JPOXMLDOC01-appb-M000006
 Iは上記超音波処理を行った後の溶媒を用いた際の光量である。(参考:αは吸光係数、Lは光路長(1cm))
<実験例2>
[ガス吸着フィルタの製造]
(実施例2)
 支持体として、セラミック製ハニカム構造フィルタ基材を用いたこと以外、実施例1と同様の方法により、支持体表面に、金属酸化物層(厚み3μm)および金属有機構造体薄膜(厚み70nm)を形成した。
 ポリエチレンイミンをエタノールに溶解し、60g/L濃度のエタノール溶液を調製した。
 金属酸化物層および金属有機構造体薄膜が形成された支持体に、ポリエチレンイミンのエタノール溶液を4mL滴下することでフィルタ全体にポリエチレンイミンを含侵させ、乾燥によりガス吸着フィルタを得た。
(参考例1)
 金属酸化物層を以下の方法により形成したこと、および有機分子としてテレフタル酸を用いて金属有機構造体薄膜(MIL-53(Al))を形成したこと以外、実施例2と同様の方法により、ガス吸着フィルタを得た。
・金属酸化物層の形成
 原子層体積法により酸化アルミニウム薄膜を膜厚100nmで成膜した。前駆体ガスはトリメチルアルミニウム(Al(CH33)、反応ガスは水蒸気(H2O+O2)、余分なガスのパージには窒素(N2)を用いた。チャンバー内の反応温度は200℃,反応圧力は40Pa,サイクル数は1000回と設定した。
(参考例2)
 金属酸化物層を以下の方法により形成したこと、および有機分子としてトリメシン酸を用いて金属有機構造体薄膜(Cu-BTC)を形成したこと以外、実施例2と同様の方法により、ガス吸着フィルタを得た。
・金属酸化物層の形成 全面無電解Cuめっき:OPC H-TEC(奥野製薬工業)、32℃、10分間;
 電解ZnOめっき:CuSO4(シグマアルドリッチ)、濃度0.4mol/l、温度:32℃、電流100mA/dm、時間2時間。
(参考例3)
 有機分子として1,3,5-トリス(4-カルボキシフェニル)ベンゼンを用いて金属有機構造体薄膜(MOF-177(Zn))を形成したこと以外、実施例2と同様の方法により、ガス吸着フィルタを得た。
(二酸化炭素ガス吸着量の評価)
 実施例2および参考例1~3のそれぞれで得られたガス吸着フィルタをアクリルケース(12L)内に設置した。アクリルケース内の二酸化炭素ガス濃度をモニタすることで、二酸化炭素ガスの吸着量の経時的変化を測定し、図7のグラフに示した。
・CO2吸着測定
 60℃で60分間加熱した後、25℃および40%RHでCO2濃度をモニタした。
・CO2脱離測定
 25℃および40%RHでCO2吸着を飽和させた後、60℃および10%RHでCO2濃度をモニタした。
 二酸化炭素ガス濃度の測定値から、以下の式を用いて二酸化炭素ガス吸着量を算出し、時間に対してプロットした。
Figure JPOXMLDOC01-appb-M000007
 数式中、略号は以下を示す:
ΔC:測定開始時からの二酸化炭素濃度の減少量(二酸化炭素濃度と測定開始時の二酸化炭素濃度の差)
V:アクリルケースの容積
w:二酸化炭素吸着フィルタの重量とフィルタ支持体の重量の差(すなわち金属酸化物と金属有機構造体とアミン化合物の重量の総和)
 本発明の複合膜構造体は、センサ(特にガスまたは匂い用センサ)、ガス吸着フィルタおよびガス除去装置に有用である。
 1:支持体
 2:金属酸化物層
 3:金属有機構造体薄膜(MOF薄膜)
 10:複合膜構造体
 20:金属酸化物
 30:変質層
 40:ガスセンサ
 50:マルチガスセンサ
 60:ガス吸着フィルタ
 61:支持体
 62:金属酸化物層
 63:金属有機構造体薄膜(MOF薄膜)
 65:吸着材
 70:ガス除去装置

Claims (20)

  1.  支持体上に形成された金属酸化物層および該金属酸化物層に形成された金属有機構造体薄膜を含む複合膜構造体であって、
     前記金属酸化物層を構成する金属酸化物と前記金属有機構造体薄膜を構成する金属有機構造体との界面で、金属原子が、前記金属酸化物および前記金属有機構造体に共有されている、複合膜構造体。
  2.  支持体上に形成された金属酸化物層および該金属酸化物層に形成された金属有機構造体薄膜を含む複合膜構造体であって、
     前記金属酸化物層は、その少なくとも表層部に、該金属酸化物層を構成する金属酸化物が前記金属有機構造体薄膜を構成する金属有機構造体により変質されている変質層を有している、複合膜構造体。
  3.  前記変質層において、前記金属有機構造体薄膜は前記金属酸化物の表面に形成されている、請求項2に記載の複合膜構造体。
  4.  前記変質層において、前記金属有機構造体は、前記金属酸化物を構成する金属原子を利用して構成されている、請求項2または3に記載の複合膜構造体。
  5.  前記金属有機構造体薄膜は、以下の(m1)または(m2)の薄膜である、請求項1~4のいずれかに記載の複合膜構造体:
    (m1)前記金属有機構造体を構成する有機分子を含む溶液に、前記金属酸化物層を浸漬しつつ熱および圧を付与することにより製造された薄膜;または
    (m2)前記金属有機構造体を含む溶液に、前記金属酸化物層を浸漬し、乾燥した後、熱処理して前記金属酸化物と前記金属有機構造体との界面をミキシングさせることにより製造された薄膜。
  6.  前記金属酸化物層は多孔質層である、請求項1~5のいずれかに記載の複合膜構造体。
  7.  前記金属酸化物層は多孔質めっき層である、請求項1~6のいずれかに記載の複合膜構造体。
  8.  前記金属酸化物層は、酸化亜鉛、酸化銅、酸化ニッケル、酸化鉄、酸化インジウム、および酸化アルミニウムからなる群から選択される1種以上の金属酸化物を含む層である、請求項1~7のいずれかに記載の複合膜構造体。
  9.  前記金属酸化物層は1μm以上10μm以下の厚みを有する、請求項1~8のいずれかに記載の複合膜構造体。
  10.  前記金属有機構造体薄膜は、有機分子と前記金属酸化物由来の金属原子を含む金属原子との配位結合に基づく多孔質膜である、請求項1~9のいずれかに記載の複合膜構造体。
  11.  前記有機分子は、アゾール系有機分子、シアン系有機分子およびカルボン酸系有機分子からなる群から選択される1種以上の有機分子を含む、請求項10に記載の複合膜構造体。
  12.  前記有機分子は、イミダゾール、ベンズイミダゾール、トリアゾールおよびプリンからなる群から選択されるアゾール系有機分子を含む、請求項10に記載の複合膜構造体。
  13.  前記金属有機構造体薄膜は10nm以上100nm以下の厚みを有する、請求項1~12のいずれかに記載の複合膜構造体。
  14.  請求項1~13のいずれかに記載の複合膜構造体を有する、ガスまたは匂い用センサ。
  15.  前記支持体は水晶振動子または圧電セラミクスである、請求項14に記載のガスまたは匂い用センサ。
  16.  請求項1~13のいずれかに記載の複合膜構造体を有する、ガス吸着フィルタ。
  17.  前記金属有機構造体薄膜にアミン化合物が担持され、
     前記ガスが二酸化炭素ガスである、請求項16に記載のガス吸着フィルタ。
  18.  前記アミン化合物は重量平均分子量1000以上のアミノ基含有ポリマーである、請求項17に記載のガス吸着フィルタ。
  19.  前記有機分子は、アゾール系有機分子またはシアン系有機分子である、請求項16~18のいずれかに記載のガス吸着フィルタ。
  20.  請求項16~19のいずれかに記載のガス吸着フィルタを含み、
     前記ガスが二酸化炭素ガスであり、
     以下のステップを経て、室内の前記二酸化炭素ガスを室外に放出する、ガス除去装置:
    (i)室内の空気を前記ガス吸着フィルタに吹き付け、二酸化炭素ガスを吸着させるステップ;
    (ii)前記ガス吸着フィルタに加温した空気を吹き付けること、または前記ガス吸着フィルタを加熱することにより、吸着した二酸化炭素ガスを放出するステップ;および
    (iii)放出された二酸化炭素ガスを室外に排出するステップ。
PCT/JP2021/022101 2020-06-23 2021-06-10 複合膜構造体ならびに該複合膜構造体を用いたセンサ、ガス吸着フィルタおよびガス除去装置 WO2021261271A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022531738A JP7452651B2 (ja) 2020-06-23 2021-06-10 複合膜構造体を用いたガス吸着フィルタおよびガス除去装置
US17/972,632 US20230068539A1 (en) 2020-06-23 2022-10-25 Composite film framework, and sensor, gas adsorption filter, and gas removal device using the composite film framework

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-108055 2020-06-23
JP2020108055 2020-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/972,632 Continuation US20230068539A1 (en) 2020-06-23 2022-10-25 Composite film framework, and sensor, gas adsorption filter, and gas removal device using the composite film framework

Publications (1)

Publication Number Publication Date
WO2021261271A1 true WO2021261271A1 (ja) 2021-12-30

Family

ID=79281150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022101 WO2021261271A1 (ja) 2020-06-23 2021-06-10 複合膜構造体ならびに該複合膜構造体を用いたセンサ、ガス吸着フィルタおよびガス除去装置

Country Status (3)

Country Link
US (1) US20230068539A1 (ja)
JP (1) JP7452651B2 (ja)
WO (1) WO2021261271A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7224518B1 (ja) 2022-06-30 2023-02-17 株式会社エフ・シー・シー 金属有機構造体を備えたシート材
WO2023238466A1 (ja) * 2022-06-08 2023-12-14 愛三工業株式会社 吸着体および吸着体の製造方法
WO2023248967A1 (ja) * 2022-06-20 2023-12-28 日本碍子株式会社 酸性ガス吸着装置の再生方法、および、酸性ガス吸着装置の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156434A (ja) * 2013-02-18 2014-08-28 Kansai Univ 新規な複合粒子含有の機能性金属有機骨格材料
CN106378100A (zh) * 2016-09-09 2017-02-08 广西大学 一种浸渍法蚕沙多孔炭MOFs复合材料及其制备方法与应用
JP2017519896A (ja) * 2014-04-30 2017-07-20 アイメック・ヴェーゼットウェーImec Vzw 気相の前駆体を用いて有機金属構造体薄膜を製造する方法
JP2018187574A (ja) * 2017-05-09 2018-11-29 川崎重工業株式会社 二酸化炭素吸収剤及びその製造方法、並びに、二酸化炭素分離システム
CN109970355A (zh) * 2019-04-04 2019-07-05 重庆大学 制备ZnO@ZIF-8复合物的方法、ZnO@ZIF-8复合物和气敏传感器
JP2020006328A (ja) * 2018-07-10 2020-01-16 住友ベークライト株式会社 複合粒子、複合粒子の製造方法、吸着材、および液体の清浄化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285827A (zh) 2013-05-09 2013-09-11 中国科学院宁波材料技术与工程研究所 一种二氧化碳捕获材料及其制备方法和用途
CN104056598A (zh) 2014-06-20 2014-09-24 浙江大学 一种MOFs基二氧化碳吸附剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156434A (ja) * 2013-02-18 2014-08-28 Kansai Univ 新規な複合粒子含有の機能性金属有機骨格材料
JP2017519896A (ja) * 2014-04-30 2017-07-20 アイメック・ヴェーゼットウェーImec Vzw 気相の前駆体を用いて有機金属構造体薄膜を製造する方法
CN106378100A (zh) * 2016-09-09 2017-02-08 广西大学 一种浸渍法蚕沙多孔炭MOFs复合材料及其制备方法与应用
JP2018187574A (ja) * 2017-05-09 2018-11-29 川崎重工業株式会社 二酸化炭素吸収剤及びその製造方法、並びに、二酸化炭素分離システム
JP2020006328A (ja) * 2018-07-10 2020-01-16 住友ベークライト株式会社 複合粒子、複合粒子の製造方法、吸着材、および液体の清浄化方法
CN109970355A (zh) * 2019-04-04 2019-07-05 重庆大学 制备ZnO@ZIF-8复合物的方法、ZnO@ZIF-8复合物和气敏传感器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238466A1 (ja) * 2022-06-08 2023-12-14 愛三工業株式会社 吸着体および吸着体の製造方法
WO2023248967A1 (ja) * 2022-06-20 2023-12-28 日本碍子株式会社 酸性ガス吸着装置の再生方法、および、酸性ガス吸着装置の製造方法
JP7224518B1 (ja) 2022-06-30 2023-02-17 株式会社エフ・シー・シー 金属有機構造体を備えたシート材
WO2024004659A1 (ja) * 2022-06-30 2024-01-04 株式会社エフ・シー・シー 金属有機構造体を備えたシート材
JP2024005800A (ja) * 2022-06-30 2024-01-17 株式会社エフ・シー・シー 金属有機構造体を備えたシート材

Also Published As

Publication number Publication date
JPWO2021261271A1 (ja) 2021-12-30
US20230068539A1 (en) 2023-03-02
JP7452651B2 (ja) 2024-03-19

Similar Documents

Publication Publication Date Title
WO2021261271A1 (ja) 複合膜構造体ならびに該複合膜構造体を用いたセンサ、ガス吸着フィルタおよびガス除去装置
Zhu et al. ZIF-8@ SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control
Ahmed et al. Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review
KR100428259B1 (ko) 케미컬 필터 및 그 제조방법
TWI414345B (zh) 含有奈米纖維之薄膜、複合薄膜、其製造方法及其用途
Yao et al. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate
JP6325579B2 (ja) 質量交換、分離、および濾過のための膜デバイスおよびプロセス
TWI697357B (zh) 化學濾材
JP2010521763A (ja) ディスクドライブのための改良された吸着性物品
KR101744343B1 (ko) 공기정화 필터용 금속착물형 고분자막 및 이의 제조방법
JP4565092B2 (ja) ガス検知素子及びその製造方法
KR20050085302A (ko) 다공성 소결 복합 재료
US9873092B2 (en) Membrane for filtrating water
CN103402614A (zh) 功能化用于水净化的纳米纤维微滤膜
Yin et al. Multifunctional ZIF-67@ SiO2 membrane for high efficiency removal of particulate matter and toxic gases
JP2019018175A (ja) 複合体、複合体の製造方法、吸着材、および液体の清浄化方法
WO2013066932A1 (en) Composite ptfe membrane hydrophilised using un- cross - linked ethylene - vinyl - alcohol - copolymer
Lai et al. Highly-selective MOF-303 membrane for alcohol dehydration
JP2011183382A (ja) 吸着剤
WO2016140266A1 (ja) 炭素多孔体、その製法及びアンモニア吸着材並びにキャニスタ及びその製造方法
WO2024111176A1 (ja) 金属有機構造体膜およびその製造方法
CN109400937B (zh) 基于纳米纤维的高导电气体传感器材料的制备方法
JP6042922B2 (ja) 炭素多孔体、その製法及びアンモニア吸着材
KR101847454B1 (ko) 물 분리 복합막
WO2021157433A1 (ja) 分離膜及び金属有機構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829591

Country of ref document: EP

Kind code of ref document: A1