WO2023238466A1 - 吸着体および吸着体の製造方法 - Google Patents

吸着体および吸着体の製造方法 Download PDF

Info

Publication number
WO2023238466A1
WO2023238466A1 PCT/JP2023/009234 JP2023009234W WO2023238466A1 WO 2023238466 A1 WO2023238466 A1 WO 2023238466A1 JP 2023009234 W JP2023009234 W JP 2023009234W WO 2023238466 A1 WO2023238466 A1 WO 2023238466A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
electromagnetic wave
heating material
wave heating
metal
Prior art date
Application number
PCT/JP2023/009234
Other languages
English (en)
French (fr)
Inventor
璃奈 近藤
侑也 谷田
真子 宇佐見
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Publication of WO2023238466A1 publication Critical patent/WO2023238466A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating

Definitions

  • the present invention relates to an adsorbent and a method for manufacturing the adsorbent.
  • an evaporated fuel processing device for a vehicle such as an automobile is provided with an adsorber for adsorbing and desorbing evaporated fuel.
  • the adsorber is filled with a porous adsorbent that adsorbs evaporated fuel generated within the fuel tank.
  • the evaporated fuel adsorbed by the adsorbent is desorbed into the purge passage when the vehicle is running, that is, when the internal combustion engine is operating, and is supplied to the intake passage leading to the internal combustion engine.
  • the porous adsorbent includes, for example, organic and inorganic substances such as metal organic frameworks (MOF), inorganic substances such as zeolite, and organic substances such as activated carbon.
  • the porous adsorbent desorbs the adsorbed substance by being heated. As a result, the adsorption function is regenerated and the adsorbed substance can be repeatedly adsorbed.
  • techniques have been devised to heat adsorbents by irradiating them with electromagnetic waves such as microwaves.
  • Adsorbents such as zeolite have low heat generation efficiency when irradiated with electromagnetic waves. Therefore, a technique has been devised in which an electromagnetic wave heating material such as ceramics, metal salt, metal, etc., which generates heat when irradiated with electromagnetic waves is prepared, and the electromagnetic wave heating material is used together with an adsorbent.
  • FIG. 9 is a diagram schematically showing a conventional adsorbent 50 in which an electromagnetic wave heating material 51 and an adsorbent 52 are kneaded.
  • the electromagnetic wave heating material 51 and the adsorbent 52 are randomly distributed inside the adsorbent 50 . Therefore, the adsorbent 52 is not uniformly heated by heat conduction from the electromagnetic wave heating material 51.
  • the desorption efficiency of the adsorbent 52 in areas where heating is not promoted may decrease. Furthermore, if a large proportion of the electromagnetic wave heating material 51 is exposed on the surface of the adsorbent 50, the electromagnetic wave heating material 51 may prevent the adsorbent 52 from adsorbing or desorbing the adsorbed substance.
  • Japanese Patent No. 4872060 discloses an adsorbent in which an electromagnetic wave heating material with high heating efficiency through microwave irradiation is fixed to the surface of an adsorbent (activated carbon) together with water glass.
  • An electromagnetic wave heating material is provided in the outer peripheral area of the adsorbent. Therefore, the heat generated by the electromagnetic wave heating material cannot be sufficiently conducted to the center of the adsorbent, and the desorption efficiency may be low in areas where heating is not promoted. Furthermore, by covering the fine pores of the adsorbent with water glass, the adsorption performance of the adsorbent may be reduced. As described above, in the conventional adsorbent that generates heat by irradiation with electromagnetic waves, the adsorbent cannot be sufficiently heated due to the heat generated, and the desorption efficiency of the adsorbed substance may decrease.
  • the problem to be solved by the technology disclosed in this specification is to improve the desorption efficiency of an adsorbent by promoting heating of the adsorbent in an adsorbent that generates heat by irradiating it with electromagnetic waves.
  • the adsorbent includes an electromagnetic wave heating material that generates heat using electromagnetic waves.
  • the adsorbent includes an adsorbent that can adsorb an adsorbed substance and desorbs the adsorbed substance when heated.
  • the content of the electromagnetic wave heating material increases from the surface of the adsorbent toward the center of the adsorbent.
  • a large amount of the adsorbent to be heated is contained near the surface of the adsorbent, and a large amount of electromagnetic wave heating material, which is a heat generation source, is contained near the center of the adsorbent. Therefore, heat is conducted from the electromagnetic wave heating material, which is more abundant near the center, to the adsorbent, which is more common near the surface. Therefore, insufficient heating of the adsorbent can be suppressed, and heating of the adsorbent can be promoted to enable desorption of the adsorbed substance. This improves the desorption efficiency of the adsorbent. Furthermore, by being able to accelerate the heating of the adsorbent, the adsorbent can be efficiently heated with low energy. Furthermore, since the adsorbent can be heated with low energy, the cooling time of the adsorbent can be shortened.
  • FIG. 2 is a cross-sectional view of the adsorbent according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the initial state of the electromagnetic wave heating material.
  • 2 is a diagram schematically showing the radial structure of the adsorbent shown in FIG. 1.
  • FIG. 2 is a diagram schematically showing the molecular structure of an adsorbent.
  • FIG. 3 is a cross-sectional view of the aggregated adsorbent.
  • 1 is a SEM photograph of a cross section of an adsorbent material according to the present disclosure.
  • FIG. 3 is a cross-sectional view of an adsorbent according to a second embodiment.
  • 8 is a diagram schematically showing the radial structure of the adsorbent shown in FIG. 7.
  • FIG. FIG. 2 is a perspective view showing a conventional adsorbent.
  • FIG. 1 is a cross-sectional view of the adsorbent according to the first embodiment
  • FIG. 2 is a cross-sectional view showing the initial state of the electromagnetic wave heating material
  • FIG. 3 is a diagram schematically showing the radial structure of the adsorbent shown in FIG.
  • FIG. 4 is a diagram schematically showing the molecular structure of the adsorbent.
  • the adsorbent 10 has a substantially spherical shape centered on the center 12.
  • the adsorbent 10 includes an electromagnetic wave heating material 13 and an adsorbent 15 .
  • the electromagnetic wave heating material 13 and the adsorption material 15 are adjacent to each other with the boundary surface 14 in between.
  • the electromagnetic wave heating material 13 generates heat by being irradiated with electromagnetic waves. Heat can be conducted from the electromagnetic wave heating material 13 to the adsorption material 15 via the interface 14.
  • the adsorbent 15 is made of a porous material and is capable of adsorbing substances to be adsorbed. Moreover, the adsorbent 15 desorbs and regenerates the adsorbed substance by being heated.
  • the adsorbent 10 is used in an adsorption device that includes an adsorber that adsorbs adsorbed substances such as evaporated fuel, carbon dioxide, and water vapor, and an electromagnetic wave generator that can reproduce the adsorption performance of the adsorbent 10.
  • the electromagnetic wave heating material 13 is provided in a substantially spherical shape inside a boundary surface 14 located radially intermediate between the surface 11 and the center 12.
  • the electromagnetic wave heating material 13 is not exposed on the surface 11.
  • the adsorbent 15 is provided outside the boundary surface 14 and covers the entire surface 11 of the adsorbent 10 .
  • the electromagnetic wave heating material 13 and the adsorption material 15 are layered in the radial direction.
  • Boundary surface 14 is substantially parallel to surface 11. The maximum distance from the electromagnetic wave heating material 13 to the adsorbent 15 corresponds to the maximum distance from the boundary surface 14 to the surface 11.
  • the content of the electromagnetic wave heating material 13 is approximately 0% from the surface 11 of the adsorbent 10 to the boundary surface 14, and increases to nearly 100% closer to the center 12 of the adsorbent 10 than the boundary surface 14.
  • the average content value of the electromagnetic wave heating material 13 is determined in an internal area on the center 12 side of the adsorbent 10, for example, an internal area inside the boundary surface 14, and in an external area on the surface side of the adsorbent 10, for example, outside the boundary surface 14. larger than the external area of .
  • the radius of the boundary surface 14 may be, for example, 30%, 40%, 50%, 60%, or 70% of the radial distance from the center 12 to the surface 11.
  • the adsorbent 10 has a substantially spherical shape centered on the center 12 and composed only of the electromagnetic wave heating material 13 in an initial state before the adsorbent 15 is formed.
  • the size (diameter) of the adsorbent 10 in this initial state is smaller than the adsorbent 10 after the adsorbent 15 shown in FIG. 1 is formed. Since the adsorbent material 15 is a porous material, its density is lower than that of the electromagnetic wave heating material 13. Therefore, the size of the surface 11 of the adsorbent 10 is larger after the adsorbent 15 is formed than before it is formed.
  • the electromagnetic wave heating material 13 shown in FIG. 1 is, for example, ceramics, other inorganic metal compounds such as metal oxides and metal salts, or metals.
  • the electromagnetic wave heating material 13 includes silicon, one or more metals, or one or more metal ions.
  • metals or metal ions contained in the electromagnetic wave heating material 13 include magnesium, calcium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, copper, zinc, cadmium, aluminum, titanium, zirconium, vanadium, niobium, chromium, Examples include molybdenum and scandium.
  • metal ions such as magnesium, manganese, iron, cobalt, nickel, and copper are more preferred.
  • the number of metals or metal ions may be one, or two or more.
  • Examples of the ceramic electromagnetic wave heating material 13 shown in FIG. 1 include silicon carbide, alumina, copper oxide (CuO), iron nitride (Fe 4 N), and aluminum nitride (AlN).
  • Examples of the metal salt electromagnetic wave heating material 13 include aluminum sulfate and magnesium chloride.
  • Examples of the metal electromagnetic wave heating material 13 include ferromagnetic metals such as iron, cobalt, and nickel.
  • Metals generate heat due to changes in the magnetic field when irradiated with electromagnetic waves. Ceramics, metal oxides, and metal salts generate heat not only due to changes in the magnetic field when irradiated with electromagnetic waves, but also due to changes in the electric field that occur interactively when the magnetic field is generated.
  • the electromagnetic waves irradiated to the adsorbent 10 are, for example, microwaves with a frequency of 300 MHz to 30 GHz.
  • the adsorbent 15 is a porous structure called a metal-organic framework (MOF).
  • the adsorbent 15 has a structure in which organic ligands 22 are bonded between metal atoms 21 arranged in a lattice pattern.
  • the metal atoms 21 are the same type of metal or metal ion contained in the electromagnetic wave heating material 13 (see FIG. 1).
  • anions such as oxide ions, sulfate ions, and chloride ions, or metal atoms 21 of the same type are arranged between the metal atoms 21.
  • the organic ligand 22 has a functional group capable of coordinating with the metal atom 21.
  • the organic ligand 22 reacts with the electromagnetic wave heating material 13 to replace the anion or metal atom 21 originally placed therein.
  • the adsorbent 15 can adsorb the adsorbed substance molecules 23 between the lattice structures. Furthermore, when the adsorbent 15 is heated, the adsorbed substance molecules 23 are desorbed from the lattice structure.
  • the organic ligand 22 has a functional group capable of coordinating with the metal atom 21, such as a carboxyl group, an imidazole group, a hydroxyl group, a sulfonic acid group, a pyridine group, a tertiary amine group, an amide group, and a thioamide group.
  • the organic ligand 22 has a structure in which, for example, two or more coordinating functional groups are substituted with a skeleton having a rigid structure such as an aromatic ring or an unsaturated bond.
  • the process of forming the adsorbent 10 shown in FIG. 1 will be explained.
  • particles of the adsorbent 10 composed only of the electromagnetic wave heating material 13 are used as a starting material and brought into contact with an organic solvent containing an organic substance.
  • the electromagnetic wave heating material 13 located near the surface 11 reacts with organic matter and is replaced by an adsorbent 15 having the structure shown in FIG. As a result, a layer of adsorbent 15 is formed near the surface 11.
  • the substitution with the adsorbent 15 on the surface of the electromagnetic wave heating material 13 progresses from the surface 11 side of the adsorbent 10 toward the center 12.
  • the reaction between the electromagnetic wave heating material 13 and the organic matter is stopped.
  • an adsorbent 10 is formed in which the electromagnetic wave heating material 13 remains inside the boundary surface 14 and the adsorbent 15 covers the surface 11 outside the boundary surface 14.
  • the size of the electromagnetic wave heating material 13 becomes smaller after the adsorption material 15 is formed than when it is the starting material.
  • the density of the adsorbent 15 is smaller than the density of the electromagnetic wave heating material 13, the size of the surface 11 of the adsorbent 10 becomes larger after the adsorbent 15 is formed than when it is the starting material.
  • a plurality of adsorbents 10 may aggregate during formation. Therefore, a plurality of electromagnetic wave heating materials 13 are dispersed and contained in the single adsorbent 15 that has aggregated.
  • the structure is such that the closer to the surface 11 of the adsorber 10 there is, the more the adsorbent 15 is, and the closer to the center of the adsorber 10, the more the electromagnetic wave heating material 13 is.
  • the adsorbent 15 covers the surface 11 of the adsorbent 10, so that the dispersed electromagnetic wave heating materials 13 are not exposed to the surface 11.
  • the dark gray area outside the surface 11 is the enclosing resin 16 that encases the adsorbent 10 in order to observe the cross section of the adsorbent 10.
  • the adsorbent 10 has the electromagnetic wave heating material 13 that generates heat using electromagnetic waves, as shown in FIG.
  • the adsorbent 10 includes an adsorbent 15 that can adsorb an adsorbed substance and desorbs the adsorbed substance by generating heat.
  • the content rate of the electromagnetic wave heating material 13 increases from the surface 11 of the adsorbent 10 toward the center 12 of the adsorbent 10 .
  • the adsorbent 15 which is the object of heating is contained in a large amount near the surface 11 of the adsorbent 10, and the electromagnetic wave heating material 13 which is a heat generation source is contained in a large amount near the center 12 of the adsorbent 10. Therefore, heat is conducted from the electromagnetic wave heating material 13, which is mostly located near the center 12, to the adsorbent material 15, which is mostly located near the surface 11. Therefore, insufficient heating of the adsorbent 15 can be suppressed, and heating of the adsorbent 15 can be promoted so that the adsorbed substance can be desorbed. This improves the desorption efficiency of the adsorbent 15.
  • the adsorbent 15 can be efficiently heated with low energy. Furthermore, since the adsorbent 15 can be heated with low energy, the cooling time of the adsorbent 10 can be shortened.
  • the adsorbent 10 has an electromagnetic wave heating material 13 that generates heat using electromagnetic waves.
  • the adsorbent 10 includes an adsorbent 15 that can adsorb an adsorbed substance and desorbs the adsorbed substance when heated.
  • the average content value of the electromagnetic wave heating material 13 in the inner region on the center 12 side of the adsorbent 10 is larger than the average content value of the electromagnetic wave heating material 13 in the outer region on the surface 11 side of the adsorbent 10 .
  • the adsorbent 15 that is the object of heating is contained in a large amount in the external region of the adsorbent 10, and the electromagnetic wave heating material 13, which is a heat generation source, is contained in a large amount in the internal region of the adsorbent 10. Therefore, heat is conducted from the electromagnetic wave heating material 13, which is present in the inner region of the adsorbent 10, toward the adsorbent 15. Therefore, the heating of the adsorbent 15 in the external region of the adsorbent 10 can be promoted, and the adsorbent 15 located in the internal region of the adsorbent 10, although the content thereof is low, can also be sufficiently heated to be able to desorb the adsorbed substance. This improves the desorption efficiency of the adsorbent 15.
  • the electromagnetic wave heating material 13 generates heat due to changes in the magnetic field or changes in the electric field, or both. Therefore, when irradiating electromagnetic waves, the magnetic field and the electric field change each other while interacting with each other.
  • the heat generation efficiency is improved compared to, for example, an electromagnetic wave heating material that generates heat only due to changes in the magnetic field.
  • the heating efficiency of the adsorbent 15 can be improved, and the desorption efficiency of the adsorbent 15 can be further improved.
  • the ease with which a material generates heat due to changes in the magnetic field is based on the magnetic permeability of that material.
  • the ease with which a material generates heat due to changes in the electric field is based on the dielectric constant of the material.
  • the materials of the electromagnetic wave heating material 13 and the adsorption material 15 are set so that the magnetic permeability and dielectric constant of the electromagnetic wave heating material 13 are larger than the magnetic permeability and dielectric constant of the adsorption material 15. Magnetic permeability and permittivity change depending on temperature and frequency of irradiated electromagnetic waves.
  • the adsorption device is used, for example, at a temperature of 20 to 35°C.
  • the frequencies of the electromagnetic waves emitted from the electromagnetic wave generator of the adsorption device are, for example, 2.45 GHz and 915 MHz.
  • Magnetic permeability and dielectric constant are measured by a method based on the standard described in JIS C2565 or by a coaxial transmission method. More preferably, the magnetic permeability and dielectric constant are measured at a temperature of 20 to 35° C. where the adsorption device is used. According to JIS C2565, the measurement frequency for magnetic permeability is 9 GHz to 10 GHz, and the measurement frequency for dielectric constant is 8.2 GHz to 12.4 GHz. It is more preferable to measure the magnetic permeability and dielectric constant using a measurement frequency in a range including frequencies such as 2.45 GHz and 915 MHz. For example, it is preferable to measure magnetic permeability and dielectric constant at a measurement frequency in the range of 300 MHz to 10 GHz.
  • the adsorbent 15 is a metal-organic structure containing the metal contained in the electromagnetic wave heating material 13. Therefore, the adsorbent 15 of the metal-organic structure can be formed by reacting the electromagnetic wave heating material 13 with an organic substance. Therefore, the electromagnetic wave heating material 13 that has reacted with the organic matter is replaced by the adsorbent 15. As a result, it is possible to easily form an adsorbent 10 in which a large amount of electromagnetic wave heating material 13 is contained near the center 12 and a large amount of adsorbent 15 is contained near the surface 11.
  • the electromagnetic wave heating material 13 includes at least one of a metal and an inorganic metal compound.
  • the adsorbent 15 is a metal-organic structure containing the metal or metal ions contained in the electromagnetic wave heating material 13 . Therefore, the adsorbent 15 can be formed by replacing the anions bonded to metals or metal ions, the metal atoms 21 of the same type, etc. in the electromagnetic wave heating material 13 with organic substances. Therefore, the electromagnetic wave heating material 13 can be easily replaced with the adsorbent material 15.
  • the adsorbent 15 is provided to cover all surfaces 11 of the adsorbent 10.
  • the electromagnetic wave heating material 13 is provided inside the adsorbent 10 . Therefore, heat is uniformly conducted from the electromagnetic wave heating material 13 on the center 12 side of the adsorbent 10 toward the adsorbent 15 on the surface 11 side of the adsorbent 10. Therefore, the adsorbent 15 can be sufficiently heated so that the adsorbed substance can be desorbed.
  • the electromagnetic wave heating material 13 is not exposed on the surface 11. Therefore, a decrease in desorption efficiency due to the presence of the electromagnetic wave heating material 13 can be suppressed.
  • the method for manufacturing the adsorbent 10 involves preparing an electromagnetic wave heating material 13 that contains one of a metal and an inorganic metal compound and generates heat with electromagnetic waves.
  • the electromagnetic wave heating material 13 is reacted with an organic substance to replace the surface of the electromagnetic wave heating material 13 with a metal-organic structure that is the adsorbent 15 .
  • the replacement of the electromagnetic wave heating material 13 with the adsorbent 15 is stopped so that a part of the electromagnetic wave heating material 13 remains.
  • the adsorbent 15 is formed from the surface 11 of the adsorbent 10 toward the center 12 so that the electromagnetic wave heating material 13, which is the original material, replaces the adsorbent 15. Moreover, the adsorbent 10 is formed so that the electromagnetic wave heating material 13 remains inside the adsorbent 15. Therefore, it is possible to provide an adsorbent 10 in which the content of the electromagnetic wave heating material 13 is higher as it is closer to the center 12, and the content of the adsorbent 15 is higher as it is closer to the surface 11. Therefore, heat is conducted from the electromagnetic wave heating material 13, which is mostly located near the center 12, to the adsorbent material 15, which is mostly located near the surface 11. Therefore, heating of the adsorbent 15 can be prevented from becoming insufficient, and heating of the adsorbent 15 can be promoted so that the adsorbed substance can be desorbed. This improves the desorption efficiency of the adsorbent 15.
  • the metal-organic structure that is the adsorbent 15 contains the metal or metal ions contained in the electromagnetic wave heating material 13. Therefore, the adsorbent 15 of the metal-organic structure can be formed by reacting the electromagnetic wave heating material 13 with an organic substance. Therefore, the electromagnetic wave heating material 13 that has reacted with the organic matter is replaced by the adsorbent 15. As a result, it is possible to easily form an adsorbent 10 in which a large amount of electromagnetic wave heating material 13 is contained near the center 12 and a large amount of adsorbent 15 is contained near the surface 11.
  • the electromagnetic wave heating material 13 is replaced with an adsorbent 15 on all surfaces 11 of the adsorbent 10.
  • the electromagnetic wave heating material 13 is left inside the adsorbent 10. Therefore, heat is uniformly conducted from the electromagnetic wave heating material 13 on the center 12 side of the adsorbent 10 toward the adsorbent 15 on the surface 11 side of the adsorbent 10. Therefore, the adsorbent 15 can be sufficiently heated so that the adsorbed substance can be desorbed.
  • the electromagnetic wave heating material 13 is not exposed on the surface 11. Therefore, a decrease in desorption efficiency due to the presence of the electromagnetic wave heating material 13 can be suppressed.
  • FIG. 7 is a cross-sectional view of the adsorbent according to the second embodiment
  • FIG. 8 is a diagram schematically showing the radial structure of the adsorbent shown in FIG. 7.
  • the adsorbent 30 has a substantially spherical shape centered on the center 12.
  • the adsorbent 30 includes an electromagnetic wave heating material 13 and an adsorbent 15 .
  • the electromagnetic wave heating material 13 is provided around the center 12 .
  • a large number of adsorbents 15 are provided around the surface 11 of the adsorbent 30 so as to cover the electromagnetic wave heating material 13 .
  • a portion of the electromagnetic wave heating material 13 is exposed at the surface 11.
  • the boundary surface 14 between the electromagnetic wave heating material 13 and the adsorbent material 15 is generally parallel to the surface 11, but partially intersects with the surface 11.
  • the maximum distance from the electromagnetic wave heating material 13 to the adsorbent 15 corresponds to the maximum distance between the boundary surface 14 and the surface 11 in the radial direction.
  • the content rate of the electromagnetic wave heating material 13 increases from the surface 11 of the adsorbent 30 toward the center 12.
  • the adsorbent 30 has an internal region 31a inside the intermediate surface 31 with respect to a spherical intermediate surface 31 located radially between the surface 11 and the center 12 and centered on the center 12, and an intermediate surface. It can be distinguished into an external region 31b outside of 31.
  • the average content of the electromagnetic wave heating material 13 is larger in the inner region 31a than in the outer region 31b.
  • the radius of the intermediate surface 31 is not necessarily half the radial distance from the center 12 to the surface 11, but is, for example, 30%, 40%, 50%, or 60% of the radial distance from the center 12 to the surface 11. , 70%.
  • the process of forming the adsorbent 30 shown in FIG. 7 will be explained.
  • particles composed only of the electromagnetic wave heating material 13 are used as a starting material and brought into contact with an organic solvent containing an organic substance.
  • the electromagnetic wave heating material 13 located near the surface 11 reacts with organic matter and is replaced by an adsorbent 15 having the structure shown in FIG. As a result, a layer of adsorbent 15 is formed near the surface 11.
  • the substitution of the adsorbent 15 on the surface of the electromagnetic wave heating material 13 progresses from the surface 11 side of the adsorbent 30 toward the center 12.
  • Electromagnetic wave heating material 13 in the form of approximately spherical particles with a diameter of 10 ⁇ m to 50 ⁇ m is used as a starting material and brought into contact with an organic solvent containing an organic ligand (organic substance).
  • organic ligand organic substance
  • oxide ions are substituted with organic ligands to form an adsorbent 15 of a metal-organic structure.
  • the adsorbent 10 is provided in a layered manner in which the electromagnetic wave heating material 13 remains on the center 12 side of the boundary surface 14 and the adsorbent material 15 is formed on the surface 11 side of the boundary surface 14 .
  • Adsorbent material 15 covers all of surface 11 .
  • Alumina (Al 2 O 3 ) was used as the electromagnetic wave heating material 13 shown in FIG.
  • the oxide ions are replaced with organic ligands in the same manner as in Example 1 to form the metal-organic structure adsorbent 15. do.
  • the electromagnetic wave heating material 13 and the adsorbent 15 form a layered adsorbent 10 in the radial direction.
  • the adsorbent bodies 10, 30 are illustrated as being approximately spherical, but the shape of the adsorbent bodies 10, 30 is not limited thereto, and may be, for example, cylindrical, prismatic, or the like.
  • the reaction may be stopped, for example, by separating the adsorbents 10 and 30 from the organic solvent containing the organic substance.
  • the reaction may be stopped by exposing the adsorbents 10 and 30 under conditions that inactivate the substitution of the electromagnetic wave heating material 13 with the adsorbent 15.
  • the adsorbent has an electromagnetic wave heating material that generates heat using electromagnetic waves.
  • the adsorbent includes an adsorbent that can adsorb an adsorbed substance and desorbs the adsorbed substance when heated.
  • the average content value of the electromagnetic wave heating material in the inner region on the center side of the adsorbent is larger than the average content value of the electromagnetic wave heating material in the outer region on the surface side of the adsorbent.
  • a large amount of the adsorbent to be heated is contained in the external region of the adsorbent, and a large amount of the electromagnetic wave heating material, which is a heat generation source, is contained in the internal region of the adsorbent. Therefore, heat is conducted from the electromagnetic wave heating material, which is abundant in the internal region of the adsorbent, toward the adsorbent. Therefore, the heating of the adsorbent in the external region of the adsorbent can be promoted, and even the adsorbent located in the internal region of the adsorbent, although its content is low, can be sufficiently heated to be able to desorb the adsorbed substance. This improves the desorption efficiency of the adsorbent.
  • the electromagnetic wave heating material generates heat due to changes in the magnetic field, changes in the electric field, or both. Therefore, when irradiating electromagnetic waves, the magnetic field and the electric field change each other while interacting with each other.
  • the heat generation efficiency is improved compared to, for example, an electromagnetic wave heating material that generates heat only due to a change in the magnetic field.
  • the heating efficiency of the adsorbent can be improved, and the desorption efficiency of the adsorbent can be further improved.
  • the adsorbent is a metal-organic structure containing the metal contained in the electromagnetic wave heating material. Therefore, an adsorbent of a metal-organic structure can be formed by reacting an electromagnetic wave heating material with an organic substance. Therefore, the electromagnetic wave heating material that has reacted with the organic matter is replaced by the adsorbent. As a result, it is possible to easily form an adsorbent 10 in which a large amount of electromagnetic wave heating material is contained near the center and a large amount of adsorbent is contained near the surface.
  • the electromagnetic wave heating material includes at least one of a metal and an inorganic metal compound.
  • the adsorbent is a metal-organic structure containing metal or metal ions contained in the electromagnetic wave heating material. Therefore, an adsorbent can be formed by replacing metals or ions bonded to metal ions in the electromagnetic wave heating material with organic substances. Therefore, it is possible to easily replace the electromagnetic wave heating material with the adsorbent.
  • the adsorbent is provided to cover the entire surface of the adsorbent.
  • the electromagnetic wave heating material is provided inside the adsorbent. Therefore, heat is uniformly conducted from the electromagnetic wave heating material on the center side of the adsorbent to the adsorbent on the surface side of the adsorbent. Therefore, the adsorbent can be sufficiently heated so that the adsorbed substance can be desorbed. Moreover, the electromagnetic wave heating material is not exposed on the surface. Therefore, a decrease in desorption efficiency due to the presence of the electromagnetic wave heating material can be suppressed.
  • Another aspect of the present disclosure is a method for producing an adsorbent.
  • An electromagnetic wave heating material containing one of a metal and an inorganic metal compound and generating heat by electromagnetic waves is prepared.
  • the electromagnetic wave heating material is reacted with an organic substance to replace the surface of the electromagnetic wave heating material with a metal-organic structure that is an adsorbent.
  • the replacement of the electromagnetic wave heating material with the adsorbent is stopped so that a part of the electromagnetic wave heating material remains.
  • the adsorbent is formed from the surface of the adsorbent toward the center so that the original material, the electromagnetic wave heating material, replaces the adsorbent. Moreover, the adsorbent is formed so that the electromagnetic wave heating material remains inside the adsorbent. Therefore, it is possible to provide an adsorbent in which the content of the electromagnetic wave heating material is higher as it is closer to the center, and the content of the adsorbent is higher as it is closer to the surface. Therefore, heat is conducted from the electromagnetic wave heating material, which is more abundant near the center, to the adsorbent, which is more common near the surface. Therefore, insufficient heating of the adsorbent can be suppressed, and heating of the adsorbent can be promoted so that the adsorbed substance can be desorbed. This improves the desorption efficiency of the adsorbent.
  • the metal-organic structure that is the adsorbent contains the metal or metal ion contained in the electromagnetic wave heating material. Therefore, an adsorbent of a metal-organic structure can be formed by reacting an electromagnetic wave heating material with an organic substance. Therefore, the electromagnetic wave heating material that has reacted with the organic matter is replaced by the adsorbent. As a result, it is possible to easily form an adsorbent in which a large amount of electromagnetic wave heating material is contained near the center and a large amount of adsorbent is contained near the surface.
  • the electromagnetic wave heating material is replaced with an adsorbent on the entire surface of the adsorbent. Electromagnetic wave heating material is left inside the adsorbent. Therefore, heat is uniformly conducted from the electromagnetic wave heating material on the center side of the adsorbent to the adsorbent on the surface side of the adsorbent. Therefore, the adsorbent can be sufficiently heated so that the adsorbed substance can be desorbed. Moreover, the electromagnetic wave heating material is not exposed on the surface. Therefore, a decrease in desorption efficiency due to the presence of the electromagnetic wave heating material can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

吸着体(10)は、電磁波で発熱する電磁波発熱材(13)を有する。吸着体(10)は、被吸着物質を吸着可能でありかつ発熱によって吸着した被吸着物質を脱離する吸着材(15)を有する。電磁波発熱材(13)の含有率は、吸着体(10)の表面(11)から吸着体(10)の中心(12)に向かって増加する。

Description

吸着体および吸着体の製造方法
 本発明は、吸着体およびその吸着体の製造方法に関する。
 例えば自動車等の車両の蒸発燃料処理装置には、蒸発燃料を吸着して脱離するための吸着器が設けられる。吸着器には、燃料タンク内で発生した蒸発燃料を吸着する多孔質の吸着材が充填される。吸着材に吸着された蒸発燃料は、車両の走行時、すなわち内燃機関の稼働時にパージ通路へと脱離され、内燃機関へ通じる吸気通路に供給される。
 多孔質の吸着材は、例えば金属有機構造体(MOF:Metal Organic Framewоrks)等の有機無機物、ゼオライト等の無機物、活性炭等の有機物を材料に含む。多孔質の吸着材は、加熱されることで吸着した被吸着物質を脱離する。これにより吸着機能が再生して繰り返し被吸着物質を吸着することができる。例えばマイクロ波等の電磁波を照射することで吸着材を加熱する技術が従来考案されている。ゼオライト等の吸着材は、電磁波の照射による発熱効率が低い。そのため電磁波の照射によって発熱するセラミックス、金属塩、金属等の電磁波発熱材を準備し、電磁波発熱材を吸着材と共に利用する技術が考案されている。
 特許第5207043号公報には、マイクロ波の照射による発熱効率が高い電磁波発熱材(SiC)を吸着材(ゼオライト)と混錬させ、混錬物を硬化させた繊維状または粒子状の吸着体が開示される。図9は、電磁波発熱材51と吸着材52が混錬される従来の吸着体50を模式的に示す図である。電磁波発熱材51と吸着材52は、吸着体50の内部においてランダムに分布する。そのため吸着材52は、電磁波発熱材51からの熱伝導によって一様には加熱されない。加熱が促進されない領域の吸着材52は、脱離効率が低下する場合がある。また、吸着体50の表面において電磁波発熱材51の露出する比率が多い場合、電磁波発熱材51が吸着材52による被吸着物質の吸着または脱離を妨げるおそれがある。
 特許第4872060号公報には、マイクロ波の照射による発熱効率が高い電磁波発熱材を水ガラスとともに吸着材(活性炭)の表面に固着させる吸着体が開示される。電磁波発熱材が吸着体の外周領域に設けられる。そのため電磁波発熱材の発熱を吸着材の中心まで十分に伝導させることができず、加熱が促進されない領域で脱離効率が低くなる場合がある。また、吸着材の微細な孔を水ガラスで被覆することによって、吸着材の吸着性能が低下する場合が考えられる。上記のように従来の電磁波を照射することで発熱する吸着体では、発熱によって吸着材を十分に加熱できず、被吸着物質の脱離効率が低下する場合があった。
 本明細書に開示の技術が解決しようとする課題は、電磁波を照射することで発熱する吸着体において、吸着材の加熱を促進して吸着材の脱離効率を向上させることにある。
 本開示の一つの態様によると吸着体は、電磁波で発熱する電磁波発熱材を有する。吸着体は、被吸着物質を吸着可能でありかつ加熱されることで吸着した被吸着物質を脱離する吸着材を有する。電磁波発熱材の含有率は、吸着体の表面から吸着体の中心に向かって増加する。
 したがって加熱対象である吸着材を吸着体の表面付近に多く含有し、発熱源である電磁波発熱材を吸着体の中心付近に多く含有する。そのため中心付近に多い電磁波発熱材から、表面付近に多い吸着材に向けて熱が伝導する。そのため吸着材の加熱が不十分になることを抑制し、被吸着物質を脱離可能に吸着材の加熱を促進できる。これにより吸着材の脱離効率が向上する。また、吸着材の加熱を促進できることにより、吸着材を低エネルギーで効率良く加熱できる。さらに吸着材を低エネルギーで加熱できることにより、吸着体の冷却時間を短縮できる。
第1実施形態に係る吸着体の断面図である。 電磁波発熱材の初期状態を示す断面図である。 図1に示す吸着体の径方向の構造を模式的に示した図である。 吸着材の分子構造を模式的に示した図である。 凝集した吸着体の断面図である。 本開示に係る吸着材料の断面のSEM写真である。 第2実施形態に係る吸着体の断面図である。 図7に示す吸着体の径方向の構造を模式的に示した図である。 従来の吸着体を示す斜視図である。
 本開示の好ましい第1の実施形態を、図1~6に基づいて説明する。説明中の同じ参照番号は、重複する説明をしないが、同じ機能を有する同じ要素を意味する。図1は第1実施形態に係る吸着体の断面図、図2は電磁波発熱材の初期状態を示す断面図、図3は図1に示す吸着体の径方向の構造を模式的に示した図、図4は吸着材の分子構造を模式的に示した図である。
 図1に示すように吸着体10は、中心12を中心とする略球形である。吸着体10は、電磁波発熱材13と、吸着材15を有する。電磁波発熱材13と吸着材15は、境界面14を介して隣接する。電磁波発熱材13は、電磁波の照射によって発熱する。電磁波発熱材13から吸着材15へと境界面14を介して熱が伝導可能である。吸着材15は、多孔質材で設けられ、被吸着物質を吸着可能である。また、吸着材15は、加熱されることで吸着した被吸着物質を脱離して再生する。吸着体10は、例えば蒸発燃料や炭酸ガス、水蒸気等の被吸着物質を吸着する吸着器と、吸着体10の吸着性能を再生可能な電磁波発生機を具備する吸着装置に用いられる。
 図1,3に示すように電磁波発熱材13は、表面11と中心12の径方向の中間に位置する境界面14よりも内側で略球形に設けられる。電磁波発熱材13は表面11に露出しない。吸着材15は、境界面14よりも外側に設けられ、かつ吸着体10の表面11全てを覆う。電磁波発熱材13と吸着材15は、径方向に層状に重なっている。境界面14は、表面11に対して略平行である。電磁波発熱材13から吸着材15までの最大距離は、境界面14から表面11までの最大距離に相当する。電磁波発熱材13の含有率は、吸着体10の表面11から境界面14まで略0%であり、境界面14よりも吸着体10の中心12側で100%近くまで増加する。電磁波発熱材13の含有平均値は、吸着体10の中心12側の内部領域、例えば境界面14よりも内側の内部領域において、吸着体10の表面側の外部領域、例えば境界面14よりも外側の外部領域よりも大きい。なお境界面14の半径は、例えば中心12から表面11までの径方向の距離の30%,40%,50%,60%,70%のいずれの大きさであっても良い。
 図1,2に示すように吸着体10は、吸着材15を形成する前の初期状態において中心12を中心としかつ電磁波発熱材13のみで構成される略球形である。この初期状態の吸着体10の大きさ(径)は、図1に示す吸着材15が形成された後の吸着体10よりも小さい。吸着材15は多孔質材料であるため、電磁波発熱材13よりも密度が小さい。そのため吸着体10の表面11の大きさは、吸着材15が形成された後の方が形成される前よりも大きくなる。
 図1に示す電磁波発熱材13は、例えばセラミックス、あるいはその他の金属酸化物や金属塩等の無機金属化合物、あるいは金属である。電磁波発熱材13は、ケイ素、または1種類以上の金属または1種類以上の金属イオンを含む。電磁波発熱材13に含まれる金属または金属イオンとして、例えばマグネシウム、カルシウム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、銅、亜鉛、カドミウム、アルミニウム、チタン、ジルコニウム、バナジウム、ニオブ、クロム、モリブデン、スカンジウム等が挙げられる。例えばマグネシウム、マンガン、鉄、コバルト、ニッケル、銅等の金属イオンがより好ましい。金属または金属イオンは1種類でも良く2種類以上であっても良い。
 図1に示すセラミックスの電磁波発熱材13として、例えば炭化ケイ素、アルミナ、酸化銅(CuO)、窒化鉄(Fe4N)、窒化アルミニウム(AlN)等が挙げられる。金属塩の電磁波発熱材13として、例えば硫酸アルミニウム、塩化マグネシウム等が挙げられる。金属の電磁波発熱材13として、例えば鉄、コバルト、ニッケル等の強磁性の金属が挙げられる。金属は、電磁波を照射する際の磁場の変化で発熱する。セラミックス、金属酸化物、金属塩は、電磁波を照射する際の磁場の変化だけでなく、磁場が発生することで相互作用的に生じる電場の変化によっても発熱する。吸着体10に照射される電磁波は、例えば周波数が300MHz~30GHzのマイクロ波である。
 図4に示すように吸着材15は、いわゆる金属有機構造体(MOF)と呼ばれる多孔質構造体である。吸着材15は、格子状に配列する金属原子21の間に有機配位子22が結合する構造で構成される。金属原子21は、電磁波発熱材13(図1参照)に含まれる金属または金属イオンと同種である。電磁波発熱材13において金属原子21同士の間には、例えば酸化物イオン、硫酸イオン、塩化物イオン等のアニオン、または同種の金属原子21が配置される。有機配位子22は、金属原子21と配位可能な官能基を有する。有機配位子22は、電磁波発熱材13と反応することで元々配置されていたアニオンや金属原子21と置換される。有機配位子22で連結される金属原子21の格子構造の中には、例えば蒸発燃料や炭酸ガス、水蒸気等の被吸着物質分子23を収容可能なスペースが形成される。そのため吸着材15は、被吸着物質分子23を格子構造の間に吸着できる。また、吸着材15が加熱された際には、吸着された被吸着物質分子23が格子構造内から脱離する。有機配位子22は、例えばカルボキシル基、イミダゾール基、水酸基、スルホン酸基、ピリジン基、三級アミン基、アミド基、チオアミド基などの金属原子21と配位可能な官能基を有する。有機配位子22は、例えば2以上の配位性の官能基を芳香環、不飽和結合などの剛直構造を有する骨格に置換した構造である。
 図1に示す吸着体10を形成する過程を説明する。先ず図2に示すように電磁波発熱材13のみで構成される吸着体10の粒子を開始材料として、有機物を含む有機溶媒に接触させる。表面11付近に位置する電磁波発熱材13は、有機物と反応して図4に示す構造の吸着材15に置換される。これにより表面11付近に吸着材15の層が形成される。電磁波発熱材13と有機物との反応を引き続き進めることにより、電磁波発熱材13の表面において吸着材15への置換が吸着体10の表面11側から中心12に向かって進行する。表面11から境界面14までの領域の電磁波発熱材13が吸着材15へと置換された時点で、電磁波発熱材13と有機物との反応を停止させる。これにより境界面14よりも内側で電磁波発熱材13が残り、かつ境界面14の外側で吸着材15が表面11を覆う吸着体10が形成される。電磁波発熱材13の大きさは、吸着材15の形成後の方が開始材料時よりも小さくなる。一方、吸着体10の表面11の大きさは、吸着材15の密度が電磁波発熱材13の密度よりも小さいため、吸着材15の形成後の方が開始材料時よりも大きくなる。
 図5,6に示すように複数の吸着体10が形成途中で凝集する場合がある。そのため1つに凝集した吸着材15の中に複数の電磁波発熱材13が分散して含まれる。この場合も、吸着体10の表面11に近いほど吸着材15が多く、吸着体10の中央に近いほど電磁波発熱材13が多い構造になる。また、吸着材15が吸着体10の表面11を覆っており、分散したそれぞれの電磁波発熱材13は表面11に露出しない構造になる。なお、図6において表面11よりも外側の濃灰色の領域は、吸着体10の断面を観察するために吸着体10を包理する包理樹脂16である。
 上述するように吸着体10は、図1に示すように電磁波で発熱する電磁波発熱材13を有する。吸着体10は、被吸着物質を吸着可能でありかつ発熱によって吸着した被吸着物質を脱離する吸着材15を有する。電磁波発熱材13の含有率は、吸着体10の表面11から吸着体10の中心12に向かって増加する。
 したがって加熱対象である吸着材15が吸着体10の表面11付近に多く含有し、発熱源である電磁波発熱材13が吸着体10の中心12付近に多く含有する。そのため中心12付近に多い電磁波発熱材13から、表面11付近に多い吸着材15に向けて熱が伝導する。そのため吸着材15の加熱が不十分になることを抑制し、被吸着物質を脱離可能に吸着材15の加熱を促進できる。これにより吸着材15の脱離効率が向上する。また、吸着材15の加熱を促進できることにより、吸着材15を低エネルギーで効率良く加熱できる。さらに吸着材15を低エネルギーで加熱できることにより、吸着体10の冷却時間を短縮できる。
 図1に示すように吸着体10は、電磁波で発熱する電磁波発熱材13を有する。吸着体10は、被吸着物質を吸着可能でありかつ加熱されることで吸着した被吸着物質を脱離する吸着材15を有する。吸着体10の中心12側の内部領域における電磁波発熱材13の含有平均値が、吸着体10の表面11側の外部領域における電磁波発熱材13の含有平均値に比べて大きい。
 したがって加熱対象である吸着材15が吸着体10の外部領域に多く含有し、発熱源である電磁波発熱材13が吸着体10の内部領域に多く含有する。そのため吸着体10の内部領域に多い電磁波発熱材13から吸着材15に向けて熱が伝導する。そのため吸着体10の外部領域の吸着材15の加熱を促進でき、かつ含有率が低いものの吸着体10の内部領域に位置する吸着材15も被吸着物質を脱離可能に十分に加熱できる。これにより吸着材15の脱離効率が向上する。
 図1に示すように電磁波発熱材13は、磁場の変化、電場の変化のうちどちらか一方または両方で発熱する。したがって電磁波を照射する際、磁場と電場は相互に作用しながら互いに変化する。磁場の変化と電場の変化のうちどちらか一方または両方で発熱する電磁波発熱材13を用いることにより、例えば磁場の変化でのみ発熱する電磁波発熱材よりも発熱効率が向上する。これにより吸着材15の加熱効率を向上させることができ、吸着材15の脱離効率をさらに向上させることができる。
 磁場の変化による材料の発熱し易さは、その材料の透磁率に基づく。電場の変化による材料の発熱し易さは、その材料の誘電率に基づく。電磁波発熱材13と吸着材15の材料は、電磁波発熱材13の透磁率と誘電率の方が吸着材15の透磁率と誘電率よりも大きくなるように設定される。透磁率と誘電率は、温度や照射される電磁波の周波数によって変化する。吸着装置は、例えば20~35℃の温度条件で使用される。吸着装置の電磁波発生機から照射される電磁波の周波数は、例えば2.45GHz、915MHzである。透磁率と誘電率は、JIS C2565に記載される規格に準拠した方法または同軸透過法によって測定される。透磁率と誘電率は、吸着装置が使用される20~35℃の温度条件で測定するのがより好ましい。JIS C2565では、透磁率の測定周波数を9GHz~10GHzとし、誘電率の測定周波数を8.2GHz~12.4GHzとしている。透磁率と誘電率は、2.45GHz、915MHz等の周波数を含む範囲を測定周波数にして測定するのがより好ましい。例えば測定周波数が300MHz~10GHzの範囲で透磁率と誘電率を測定するのが好ましい。
 図1に示すように吸着材15は、電磁波発熱材13に含まれる金属を含む金属有機構造体である。したがって電磁波発熱材13を有機物と反応させることで金属有機構造体の吸着材15を形成できる。そのため有機物と反応した電磁波発熱材13は、吸着材15に置換される。これにより中心12付近に電磁波発熱材13が多く含まれ、かつ表面11付近に吸着材15が多く含まれる吸着体10を容易に形成できる。
 図1に示すように電磁波発熱材13は、金属、無機金属化合物の少なくとも1つを含む。吸着材15は、電磁波発熱材13に含まれる金属または金属イオンを含む金属有機構造体である。したがって電磁波発熱材13において金属または金属イオンと結合しているアニオンや同種の金属原子21等を有機物と置換することで吸着材15を形成できる。そのため電磁波発熱材13から吸着材15への置換を容易にできる。
 図1に示すように吸着材15は、吸着体10の全ての表面11を覆って設けられる。電磁波発熱材13は、吸着体10の内側に設けられる。したがって吸着体10の中心12側の電磁波発熱材13から、吸着体10の表面11側の吸着材15に向けて均一的に熱が伝導する。そのため被吸着物質が脱離可能となるように吸着材15を十分に加熱できる。しかも電磁波発熱材13は表面11に露出しない。そのため電磁波発熱材13が介在することによる脱離効率の低下を抑制できる。
 図1に示すように吸着体10の製造方法は、金属、無機金属化合物のいずれか1つを含みかつ電磁波で発熱する電磁波発熱材13を準備する。電磁波発熱材13を有機物と反応させて電磁波発熱材13の表面を吸着材15である金属有機構造体に置換する。電磁波発熱材13の吸着材15への置換を電磁波発熱材13の一部が残るように停止させる。
 したがって元の材料である電磁波発熱材13が吸着材15と置換するようにして、吸着材15を吸着体10の表面11から中心12に向かって形成する。しかも吸着材15の内側に電磁波発熱材13が残るように吸着体10を形成する。そのため中心12に近いほど電磁波発熱材13の含有率が多く、かつ表面11に近いほど吸着材15の含有率が多い吸着体10を設けることができる。そのため中心12付近に多い電磁波発熱材13から、表面11付近に多い吸着材15に向けて熱が伝導する。そのため吸着材15の加熱が不十分になることを抑制し、被吸着物質が脱離可能となるように吸着材15の加熱を促進できる。これにより吸着材15の脱離効率が向上する。
 図1に示すように、吸着材15である金属有機構造体は、電磁波発熱材13に含まれる金属または金属イオンを含む。したがって電磁波発熱材13を有機物と反応させることで金属有機構造体の吸着材15を形成できる。そのため有機物と反応した電磁波発熱材13は、吸着材15に置換される。これにより中心12付近に電磁波発熱材13が多く含まれ、表面11付近に吸着材15が多く含まれる吸着体10を容易に形成できる。
 図1に示すように、吸着体10の全ての表面11において電磁波発熱材13を吸着材15に置換する。吸着体10の内側において電磁波発熱材13を残す。したがって吸着体10の中心12側の電磁波発熱材13から、吸着体10の表面11側の吸着材15に向けて均一的に熱が伝導する。そのため被吸着物質が脱離可能となるように吸着材15を十分に加熱できる。しかも電磁波発熱材13は表面11に露出しない。そのため電磁波発熱材13が介在することによる脱離効率の低下を抑制できる。
 図7,8に基づいて本開示の第2の実施形態を説明する。図7は第2実施形態に係る吸着体の断面図、図8は図7に示す吸着体の径方向の構造を模式的に示した図である。吸着体30は、中心12を中心とする略球形である。吸着体30は、電磁波発熱材13と、吸着材15を有する。電磁波発熱材13は、中心12の周囲に設けられる。吸着材15は、電磁波発熱材13を覆うようにして吸着体30の表面11の周囲に多く設けられる。電磁波発熱材13の一部は表面11で露出する。
 図7,8に示すように電磁波発熱材13と吸着材15の境界面14は、表面11に対して概ね平行であるが、一部が表面11と交差する。電磁波発熱材13から吸着材15までの最大距離は、境界面14と表面11との径方向の最大距離に相当する。電磁波発熱材13の含有率は、吸着体30の表面11から中心12に向かうにしたがって増加する。吸着体30は、表面11と中心12の径方向の中間に位置しかつ中心12を中心とする球面状の中間面31を基準にして、中間面31よりも内側の内部領域31aと、中間面31よりも外側の外部領域31bに区別できる。電磁波発熱材13の含有平均値は、内部領域31aにおいて外部領域31bよりも大きい。なお中間面31の半径は、中心12から表面11までの径方向の距離の半分とは限らず、例えば中心12から表面11までの径方向の距離の30%,40%,50%,60%,70%のいずれの大きさであっても良い。
 図7に示す吸着体30を形成する過程を説明する。先ず図2に示すように電磁波発熱材13のみで構成される粒子を開始材料として、有機物を含む有機溶媒に接触させる。表面11付近に位置する電磁波発熱材13は、有機物と反応して図4に示す構造の吸着材15に置換される。これにより表面11付近に吸着材15の層が形成される。電磁波発熱材13と有機物との反応を引き続き進めることにより、電磁波発熱材13の表面において吸着材15への置換が吸着体30の表面11側から中心12に向かって進行する。表面11から所定の径方向の深さまでの領域で電磁波発熱材13が吸着材15へと置換された時点で、電磁波発熱材13と有機物との反応を停止させる。これにより中心12付近で電磁波発熱材13が残り、かつ表面11付近で吸着材15の含有率が多い吸着体30が形成される。
 以下に本開示に係る実施例について具体的に説明する。本開示はこれらの実施例に何ら限定されることはない。
 図1に示す電磁波発熱材13として、酸化銅(CuO)を用いた。径が10μm~50μmである略球形の粒子の電磁波発熱材13を開始材料として、有機配位子(有機物)を含んだ有機溶媒に接触させる。表面11に近い電磁波発熱材13では、酸化物イオンが有機配位子に置換されて金属有機構造体の吸着材15が形成される。表面11よりも内側の境界面14までの領域の電磁波発熱材13が吸着材15に置換された時点で、電磁波発熱材13と有機配位子の反応を停止させる。吸着体10は、境界面14よりも中心12側に電磁波発熱材13が残り、かつ境界面14よりも表面11側に吸着材15が形成される層状で設けられる。吸着材15は、表面11の全てを覆う。
 図1に示す電磁波発熱材13として、アルミナ(Al23)を用いた。径が10μm~50μmである略球形の粒子の電磁波発熱材13を開始材料として、実施例1と同様にして酸化物イオンを有機配位子と置換して金属有機構造体の吸着材15を形成する。実施例1と同様に電磁波発熱材13と吸着材15が径方向において層状の吸着体10を形成する。
 以上、具体的な実施形態について説明したが、本願で開示する技術はその他各種変更を加えた形態でも実施可能なものである。実施形態では、略球形の吸着体10,30を例示したが、吸着体10,30の形状はこれに限定されず、例えば円柱状、角柱状等であっても良い。電磁波発熱材13から吸着材15への置換を停止させる方法として、例えば吸着体10,30を有機物が含まれる有機溶媒から離間させることで反応を停止させても良い。あるいは、電磁波発熱材13から吸着材15への置換が不活性化する条件下に吸着体10,30を晒すことで反応を停止させても良い。
 本開示の他の態様によると吸着体は、電磁波で発熱する電磁波発熱材を有する。吸着体は、被吸着物質を吸着可能でありかつ加熱されることで吸着した被吸着物質を脱離する吸着材を有する。吸着体の中心側の内部領域における電磁波発熱材の含有平均値が、吸着体の表面側の外部領域における電磁波発熱材の含有平均値に比べて大きい。
 したがって加熱対象である吸着材が吸着体の外部領域に多く含有し、発熱源である電磁波発熱材が吸着体の内部領域に多く含有する。そのため吸着体の内部領域に多い電磁波発熱材から吸着材に向けて熱が伝導する。そのため吸着体の外部領域の吸着材の加熱を促進でき、かつ含有率が低いものの吸着体の内部領域に位置する吸着材も被吸着物質を脱離可能に十分に加熱できる。これにより吸着材の脱離効率が向上する。
 本開示の他の態様によると電磁波発熱材は、磁場の変化、電場の変化のうちどちらか一方または両方で発熱する。したがって電磁波を照射する際、磁場と電場は相互に作用しながら互いに変化する。磁場の変化と電場の変化のうちどちらか一方または両方で発熱する電磁波発熱材を用いることにより、例えば磁場の変化でのみ発熱する電磁波発熱材よりも発熱効率が向上する。これにより吸着材の加熱効率を向上させることができ、吸着材の脱離効率をさらに向上させることができる。
 本開示の他の態様によると吸着材は、電磁波発熱材に含まれる金属を含む金属有機構造体である。したがって電磁波発熱材を有機物と反応させることで金属有機構造体の吸着材を形成できる。そのため有機物と反応した電磁波発熱材は、吸着材に置換される。これにより中心付近に電磁波発熱材が多く含まれ、かつ表面付近に吸着材が多く含まれる吸着体10を容易に形成できる。
 本開示の他の態様によると電磁波発熱材は、金属、無機金属化合物の少なくとも1つを含む。吸着材は、電磁波発熱材に含まれる金属または金属イオンを含む金属有機構造体である。したがって電磁波発熱材において金属または金属イオンと結合しているイオン等を有機物と置換することで吸着材を形成できる。そのため電磁波発熱材から吸着材への置換を容易にできる。
 本開示の他の態様によると吸着材は、吸着体の全表面を覆って設けられる。電磁波発熱材は、吸着体の内側に設けられる。したがって吸着体の中心側の電磁波発熱材から、吸着体の表面側の吸着材に向けて均一的に熱が伝導する。そのため被吸着物質が脱離可能となるように吸着材を十分に加熱できる。しかも電磁波発熱材は表面に露出しない。そのため電磁波発熱材が介在することによる脱離効率の低下を抑制できる。
 本開示の他の態様は吸着体の製造方法である。金属、無機金属化合物のいずれか1つを含みかつ電磁波で発熱する電磁波発熱材を準備する。電磁波発熱材を有機物と反応させて電磁波発熱材の表面を吸着材である金属有機構造体に置換する。電磁波発熱材の吸着材への置換を電磁波発熱材の一部が残るように停止させる。
 したがって元の材料である電磁波発熱材が吸着材と置換するようにして、吸着材を吸着体の表面から中心に向かって形成する。しかも吸着材の内側に電磁波発熱材が残るように吸着体を形成する。そのため中心に近いほど電磁波発熱材の含有率が多く、かつ表面に近いほど吸着材の含有率が多い吸着体を設けることができる。そのため中心付近に多い電磁波発熱材から、表面付近に多い吸着材に向けて熱が伝導する。そのため吸着材の加熱が不十分になることを抑制し、被吸着物質が脱離可能となるように吸着材の加熱を促進できる。これにより吸着材の脱離効率が向上する。
 本開示の他の態様によると、吸着材である金属有機構造体は、電磁波発熱材に含まれる金属または金属イオンを含む。したがって電磁波発熱材を有機物と反応させることで金属有機構造体の吸着材を形成できる。そのため有機物と反応した電磁波発熱材は、吸着材に置換される。これにより中心付近に電磁波発熱材が多く含まれ、表面付近に吸着材が多く含まれる吸着体を容易に形成できる。
 本開示の他の態様によると、吸着体の全表面において電磁波発熱材を吸着材に置換する。吸着体の内側において電磁波発熱材を残す。したがって吸着体の中心側の電磁波発熱材から、吸着体の表面側の吸着材に向けて均一的に熱が伝導する。そのため被吸着物質が脱離可能となるように吸着材を十分に加熱できる。しかも電磁波発熱材は表面に露出しない。そのため電磁波発熱材が介在することによる脱離効率の低下を抑制できる。
 添付の図面を参照して詳細に上述した種々の実施例は、本発明の代表例であって本発明を限定するものではありません。詳細な説明は、本教示の様々な態様を作成、使用および/または実施するために、当業者に教示するものであって、本発明の範囲を限定するものではありません。更に、上述した各付加的な特徴および教示は、改良された吸着体および吸着体の製造方法および/またはその使用方法を提供するため、別々にまたは他の特徴および教示と一緒に適用および/または使用され得るものです。

Claims (9)

  1.  吸着体であって、
     電磁波で発熱する電磁波発熱材と、
     被吸着物質を吸着可能でありかつ加熱されることで吸着した前記被吸着物質を脱離する吸着材を有し、
     前記電磁波発熱材の含有率は、前記吸着体の表面から前記吸着体の中心に向かって増加する吸着体。
  2.  吸着体であって、
     電磁波で発熱する電磁波発熱材と、
     被吸着物質を吸着可能でありかつ加熱されることで吸着した前記被吸着物質を脱離する吸着材を有し、
     前記吸着体の中心側の内部領域における前記電磁波発熱材の含有平均値が、前記吸着体の表面側の外部領域における前記電磁波発熱材の含有平均値に比べて大きい吸着体。
  3.  請求項1または2に記載の吸着体であって、
     前記電磁波発熱材は、磁場の変化、電場の変化のうちどちらか一方または両方で発熱する吸着体。
  4.  請求項1または2に記載の吸着体であって、
     前記吸着材は、前記電磁波発熱材に含まれる金属を含む金属有機構造体である吸着体。
  5.  請求項4に記載の吸着体であって、
     前記電磁波発熱材は、金属、無機金属化合物の少なくとも1つを含み、
     前記吸着材は、前記電磁波発熱材に含まれる金属または金属イオンを含む金属有機構造体である吸着体。
  6.  請求項1または2に記載の吸着体であって、
     前記吸着材は、前記吸着体の全表面を覆って設けられ、
     前記電磁波発熱材は、前記吸着体の内側に設けられる吸着体。
  7.  吸着体の製造方法であって、
     金属、無機金属化合物のいずれか1つを含みかつ電磁波で発熱する電磁波発熱材を準備し、
     前記電磁波発熱材を有機物と反応させて前記電磁波発熱材の表面を吸着材である金属有機構造体に置換し、
     前記電磁波発熱材の前記吸着材への置換を前記電磁波発熱材の一部が残るように停止させる、吸着体の製造方法。
  8.  請求項7に記載の吸着体の製造方法であって、
     前記吸着材である前記金属有機構造体は、前記電磁波発熱材に含まれる金属または金属イオンを含む、吸着体の製造方法。
  9.  請求項7または8に記載の吸着体の製造方法であって、
     前記吸着体の全表面において前記電磁波発熱材を前記吸着材に置換し、
     前記吸着体の内側において前記電磁波発熱材を残す、吸着体の製造方法。
PCT/JP2023/009234 2022-06-08 2023-03-10 吸着体および吸着体の製造方法 WO2023238466A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-092946 2022-06-08
JP2022092946A JP2023179958A (ja) 2022-06-08 2022-06-08 吸着体および吸着体の製造方法

Publications (1)

Publication Number Publication Date
WO2023238466A1 true WO2023238466A1 (ja) 2023-12-14

Family

ID=89117937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009234 WO2023238466A1 (ja) 2022-06-08 2023-03-10 吸着体および吸着体の製造方法

Country Status (2)

Country Link
JP (1) JP2023179958A (ja)
WO (1) WO2023238466A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107042087A (zh) * 2017-01-19 2017-08-15 中国石油大学(华东) 一种原位水热制备磁性金属有机骨架核壳材料的方法
CN107159130A (zh) * 2017-05-22 2017-09-15 山东大学 一种金属‑有机骨架纤维膜的制备方法
CN107887180A (zh) * 2017-11-08 2018-04-06 哈尔滨工业大学 一种在泡沫镍上原位生长Ni‑MOF‑74的方法
CN108940217A (zh) * 2018-08-17 2018-12-07 华南协同创新研究院 一种铝基金属有机骨架@γ-氧化铝复合材料及其制备和应用
JP2020508288A (ja) * 2017-02-02 2020-03-19 センター ナショナル デ ラ レシェルシェ サイエンティフィーク Mofカルボキシレートナノ粒子の合成のための低温法
CN112844326A (zh) * 2020-12-09 2021-05-28 南京工业大学 一种磁热复合材料、制备方法及其用途
JP2021533972A (ja) * 2018-08-16 2021-12-09 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション 金属有機構造体ベースの水捕捉装置
WO2021261271A1 (ja) * 2020-06-23 2021-12-30 株式会社村田製作所 複合膜構造体ならびに該複合膜構造体を用いたセンサ、ガス吸着フィルタおよびガス除去装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107042087A (zh) * 2017-01-19 2017-08-15 中国石油大学(华东) 一种原位水热制备磁性金属有机骨架核壳材料的方法
JP2020508288A (ja) * 2017-02-02 2020-03-19 センター ナショナル デ ラ レシェルシェ サイエンティフィーク Mofカルボキシレートナノ粒子の合成のための低温法
CN107159130A (zh) * 2017-05-22 2017-09-15 山东大学 一种金属‑有机骨架纤维膜的制备方法
CN107887180A (zh) * 2017-11-08 2018-04-06 哈尔滨工业大学 一种在泡沫镍上原位生长Ni‑MOF‑74的方法
JP2021533972A (ja) * 2018-08-16 2021-12-09 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション 金属有機構造体ベースの水捕捉装置
CN108940217A (zh) * 2018-08-17 2018-12-07 华南协同创新研究院 一种铝基金属有机骨架@γ-氧化铝复合材料及其制备和应用
WO2021261271A1 (ja) * 2020-06-23 2021-12-30 株式会社村田製作所 複合膜構造体ならびに該複合膜構造体を用いたセンサ、ガス吸着フィルタおよびガス除去装置
CN112844326A (zh) * 2020-12-09 2021-05-28 南京工业大学 一种磁热复合材料、制备方法及其用途

Also Published As

Publication number Publication date
JP2023179958A (ja) 2023-12-20

Similar Documents

Publication Publication Date Title
Cui et al. Synthesis of a novel magnetic Caragana korshinskii biochar/Mg–Al layered double hydroxide composite and its strong adsorption of phosphate in aqueous solutions
Wu et al. Competitive adsorption of naphthalene and phenanthrene on walnut shell based activated carbon and the verification via theoretical calculation
Petit et al. Synthesis, characterization, and ammonia adsorption properties of mesoporous metal–organic framework (MIL (Fe))–graphite oxide composites: exploring the limits of materials fabrication
Li et al. Fabrication of a new MgO/C sorbent for CO 2 capture at elevated temperature
Jia et al. Effective removal of aqueous glyphosate using CuFe2O4@ biochar derived from phragmites
KR100803945B1 (ko) 수분의 흡착을 위한 유무기 다공성 흡착제 및 그의 제조방법
JP2013511385A (ja) 結晶性の多孔性有無機混成体及びその製造方法
Lee et al. A recyclable indoor air filter system based on a photocatalytic metal–organic framework for the removal of harmful volatile organic compounds
Bali et al. Aminosilanes grafted to basic alumina as CO2 adsorbents—role of grafting conditions on CO2 adsorption properties
Lei et al. Sodium alginate-based magnetic carbonaceous biosorbents for highly efficient Cr (VI) removal from water
WO2023238466A1 (ja) 吸着体および吸着体の製造方法
You et al. Tuning the effective utilization of adsorption sites in La-MOFs via a steric hindrance effect towards enhanced As (III) removal
Liu et al. Facile fabrication of ion-imprinted Fe 3 O 4/carboxymethyl cellulose magnetic biosorbent: removal and recovery properties for trivalent La ions
Yekta et al. Adsorption and degradation of methyl parathion (MP), a toxic organophosphorus pesticide, using NaY/Mn 0.5 Zn 0.5 Fe 2 O 4 nanocomposite
Yoon et al. Practical approach of As (V) adsorption by fabricating biochar with low basicity from FeCl3 and lignin
Arshadi et al. Ferrocene functionalized nanoscale mixed-oxides as a potent phosphate adsorbent from the synthetic and real (Persian Gulf) waters
Dai et al. Synthesis of MgAl-LDH@ ZIF-8 composites by in situ growth method for highly efficient phosphate removal
Zhu et al. The effective removal of Pb 2+ by activated carbon fibers modified by l-cysteine: exploration of kinetics, thermodynamics and mechanism
US7825065B2 (en) Particles for catalyst and method for producing same
Ghafil et al. Ti3C2Tx/ZIF-67 hybrid nanocomposite as a highly effective adsorbent for Pb (II) removal from water: Synthesis and DFT calculations
WO2021223901A1 (en) Adsorbent material on the basis of a metal-organic framework, method for the production and use of the same
JPH11503964A (ja) 強化吸着剤および室温触媒粒子ならびにその作成方法および使用方法
Zhang et al. Active Zn Species Nest in Dealumination Zeolite Composite for Propane Dehydrogenation
KR100803964B1 (ko) 철이 포함된 다공성 유무기 혼성체 및 이를 이용한수분흡착제
WO2023216729A1 (zh) 一种回收废水中亚磷酸根离子的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819453

Country of ref document: EP

Kind code of ref document: A1