WO2021253767A1 - 转子组件和具有它的电机 - Google Patents

转子组件和具有它的电机 Download PDF

Info

Publication number
WO2021253767A1
WO2021253767A1 PCT/CN2020/137397 CN2020137397W WO2021253767A1 WO 2021253767 A1 WO2021253767 A1 WO 2021253767A1 CN 2020137397 W CN2020137397 W CN 2020137397W WO 2021253767 A1 WO2021253767 A1 WO 2021253767A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping member
rotor core
rotating shaft
rotor
transmission
Prior art date
Application number
PCT/CN2020/137397
Other languages
English (en)
French (fr)
Inventor
左亚军
李文瑞
王洪晓
李虎
Original Assignee
广东威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010550022.0A external-priority patent/CN111884370B/zh
Priority claimed from CN202010550859.5A external-priority patent/CN111769666A/zh
Application filed by 广东威灵电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Priority to JP2022540759A priority Critical patent/JP7393555B2/ja
Priority to EP20941289.9A priority patent/EP4064525B1/en
Priority to KR1020227019903A priority patent/KR102667263B1/ko
Publication of WO2021253767A1 publication Critical patent/WO2021253767A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the embodiments of the present application relate to the technical field of electric motors, in particular, to a rotor assembly and a motor having the rotor assembly.
  • the damping material is usually filled between the rotor core and the shaft or sleeve to absorb the electromagnetic force wave, so as to reduce the noise of the motor and realize Vibration reduction, however, by filling the damping material between the rotor core and the shaft or sleeve, the effect of noise reduction and vibration reduction is not good and needs to be improved.
  • the vibration damping rotor assembly includes a permanent magnet, an outer core, a rotating shaft, an injection molded body, and a vibration damping ring.
  • a ring-shaped first boss protrudes axially from the lower end plate, the inner iron core is installed on the rotating shaft and embedded in the groove of the ring-shaped first boss, and the vibration damping ring is arranged between the inner iron core and the inner wall of the groove.
  • the material of the injection molded part is different from the damping ring.
  • the damping ring at the end of the outer core is not connected.
  • the boundary surface of the injection molded part and the damping ring is prone to gaps, and it is easy to cause different coefficients such as thermal expansion during operation.
  • the damping of injection molded parts is small, and the suppression effect on electromagnetic vibration and noise is not obvious.
  • the production process of the vibration damping rotor assembly requires two steps of injection molding and placement of the vibration damping ring. The process is complicated and the defect rate is high in mass production.
  • This application aims to solve one of the technical problems in the related technology at least to a certain extent.
  • the embodiment of the present application proposes a rotor assembly that can increase the amount of material of the vibration damping component, has good noise and vibration reduction effects, and is highly reliable.
  • Another embodiment of the present application also proposes a motor.
  • the rotor assembly includes: a rotor iron core having a magnet slot and a rotating shaft hole; a permanent magnet, the permanent magnet is provided in the magnet slot; a rotating shaft, The rotating shaft is arranged in the rotating shaft hole and there is a gap between the rotating shaft and the rotor core, the first end and the second end of the rotating shaft protrude from the rotating shaft hole; the first end is reduced Vibration member, the first end damping member is provided on the first end surface of the rotor core and connected to the rotor core; a first transmission member, the transmission member is provided on the first end In the vibration damping member, the first transmission member is matched with the rotation shaft, and the rotor core at least sequentially drives the rotation shaft through the first end vibration damping member and the first transmission member in sequence.
  • the rotor assembly of the embodiment of the present application by providing a first end damping member that cooperates with the rotating shaft through the first transmission member on the first end surface of the rotor core, the rigid connection between the rotating shaft and the rotor core is avoided, and the first transmission member
  • the rotation effect of the shaft is improved, and the material of the vibration damping part is large, the noise reduction and vibration reduction effect are good, there is no problem of different thermal expansion coefficients, the reliability of the rotor assembly is improved, and only the vibration damping part is required in the production process.
  • the preparation process is relatively simple, and the defect rate of mass production is reduced.
  • a part of the first end damping member is directly matched with the rotating shaft, and the rotor core passes through the part of the first end damping member and sequentially passes through the first end damping member.
  • the end damping member and the first transmission member drive the rotating shaft.
  • the thickness of the part in the axial direction of the rotating shaft is L, where L ⁇ 0.5 mm.
  • the first transmission member includes a first base and a first boss, the first boss protrudes from the first base toward the first end surface of the rotor core, and the rotating shaft Through the first base and the first boss; the minimum distance between the first boss and the first end surface of the rotor core in the axial direction of the rotor core is L1, and L1>0.5 Mm.
  • the smallest gap between the first boss and the permanent magnet in the radial direction of the rotor core is L2, and L2>0.5 mm, and the first substrate and the permanent magnet are in the same position.
  • the minimum gap in the axial direction of the rotor core is L3, and L3>0.5 mm.
  • the rotor assembly further includes a second end damping member, the second end damping member is provided on the second end surface of the rotor core and connected to the rotor core, the The second end damping member is directly matched with the rotating shaft, and the rotor core is driven by the second end damping member and sequentially through the first end damping member and the first transmission member. ⁇ Said the shaft.
  • the materials of the first end damping member and the second end damping member are both viscoelastic materials.
  • the loss factor of the viscoelastic material is greater than or equal to 0.15, and the Shore hardness of the viscoelastic material is 20 degrees to 80 degrees.
  • the rotor assembly further includes an external connection damping member
  • the rotor core has an axial through hole located between adjacent magnet slots, and the external connection damping member is provided in the axial through hole Inside, the first end of the external connection damping member is connected with the first end damping member, and the second end of the external connection damping member is connected with the second end damping member.
  • the rotor assembly further includes: a second end damping member, the second end damping member is provided on the second end surface of the rotor core and connected to the rotor core; Two transmission parts, the second transmission part is arranged in the second end damping part, the second transmission part is matched with the rotating shaft, and the rotor core is also reduced by the second end in turn The vibrating member and the second transmission member drive the rotating shaft.
  • a part of the first end damping member is directly matched with the rotating shaft and a part of the second end damping member is directly matched with the rotating shaft.
  • each of the first end damping member and the second end damping member is provided with an opening for exposing a part of the rotor core.
  • the rotor assembly further includes an external connection damping member
  • the rotor core has an axial through hole located between adjacent magnet slots, and the external connection damping member is provided in the axial through hole Inside, the first end of the external connection damping member is connected with the first end damping member, and the second end of the external connection damping member is connected with the second end damping member.
  • the rotor assembly further includes an inner connection damping member, the inner connection damping member is provided in the gap between the rotating shaft and the rotor core, and the first inner connection damping member The end is connected with the first end damping member, and the second end of the inner connection damping member is connected with the second end damping member.
  • the rotor assembly further includes an intermediate connection damping member, a gap is provided between the inner surface of the permanent magnet and the inner bottom surface of the magnet slot, and the intermediate connection damping member is provided in the gap, The first end of the intermediate connection damping member is connected with the first end damping member, and the second end of the intermediate connection damping member is connected with the second end damping member.
  • the rotor core is formed by stacking a plurality of rotor punching pieces along the axial direction of the rotor core, and the rotor punching piece includes a full-bridge punching piece and a half-bridge punching piece.
  • the rotor core has a first end, a second end, and an intermediate section between the first end and the second end. The first end and the second end are connected by a plurality of the The bridge punching pieces are stacked, and the middle section is formed by stacking a plurality of the semi-connected bridge punching pieces.
  • one half-connected punched piece is along the rotor iron core relative to the other half-connected punched piece.
  • the circumference of the core rotates by one magnetic pole.
  • a part of the inner magnetic bridges of the plurality of inner magnetic bridges of the half-linked punching piece is provided with a magnetic bridge hole that penetrates the inner magnetic bridge along the circumferential direction of the rotor core, and the rotor core Among the inner magnetic bridges of the half-linked punched pieces adjacent in the axial direction of the core, the inner magnetic bridge of one half-linked punched piece is provided with the magnetic bridge hole, and the inner magnetic bridge of the other half-linked punched piece does not have the inner magnetic bridge
  • the magnetic bridge hole is provided with a circumferential connection damping member, and adjacent intermediate connection damping members are connected to each other through the circumferential connection damping member.
  • the first end damper, the second end damper, the inner connection damper, the outer connection damper, the intermediate connection damper, and The material of the circumferentially connected vibration damping member is all viscoelastic material.
  • the first end damper, the second end damper, the inner connection damper, the outer connection damper, the intermediate connection damper, and The circumferential connection damping member is formed by integral injection molding.
  • the loss factor of the viscoelastic material is greater than or equal to 0.15, and the Shore hardness of the viscoelastic material is 20 degrees to 80 degrees.
  • the length of the permanent magnet in the axial direction of the rotor core is greater than the axial length of the magnet slot, and the first end of the permanent magnet protrudes from the magnet slot and fits In the first end damping member, the second end of the permanent magnet protrudes from the magnet slot and fits in the second end damping member.
  • the outer peripheral wall of the first transmission member is provided with a first transmission radial projection and a first transmission radial opening groove located between adjacent first transmission radial projections, and the first transmission radial opening groove
  • One end damping member has a first central hole, and the peripheral wall of the first central hole is provided with a first damping radial projection and a first radial projection located between adjacent first damping radial projections. Damping opening groove, said first transmission radial protrusion is fitted in said first damping radial opening groove, said first damping radial protrusion is fitted in said first transmission radial opening groove .
  • a motor according to an embodiment of another aspect of the present application includes the rotor assembly described in any of the above embodiments.
  • a first end damping member that cooperates with the rotating shaft through the first transmission member is provided on the first end surface of the rotor core, thereby avoiding the rigid connection between the rotating shaft and the rotor core, and the first transmission
  • the component improves the rotation effect of the rotating shaft, and the material of the vibration damping component is large, the noise and vibration reduction effect is good, and the reliability is high.
  • Fig. 1 is an exploded perspective view of a rotor assembly according to an embodiment of the present application.
  • Fig. 2 is a cut-away schematic view of the assembled state of the rotor assembly shown in Fig. 1.
  • Fig. 3 is another schematic diagram of the assembled state of the rotor assembly shown in Fig. 1.
  • Fig. 4 is an axial partial cross-sectional view of the rotor assembly shown in Fig. 1.
  • Fig. 5 is an enlarged schematic view of part A in Fig. 4.
  • Fig. 6 is a cross-sectional view of the vibration-damping rotor shown in Fig. 3.
  • Fig. 7 is a schematic diagram of a rotor core of a rotor assembly according to an embodiment of the present application.
  • Fig. 8 is a three-dimensional schematic diagram of a transmission member of a rotor assembly according to an embodiment of the present application.
  • Fig. 9 is a plan view of a transmission member of a rotor assembly according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a semi-bridged punch of a rotor assembly according to an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a fully connected bridge-type punch of a rotor assembly according to an embodiment of the present application.
  • Fig. 12 is a cross-sectional view of the rotor assembly shown in Fig. 1.
  • Fig. 13 is a side view of the rotor assembly shown in Fig. 1.
  • Fig. 14 is another perspective schematic view of the transmission member of the rotor assembly according to the embodiment of the present application.
  • Fig. 15 is a comparison diagram of the damping ratio of the rotor assembly according to the embodiment of the present application and the prior art.
  • the rotor assembly 100 includes a rotor core 10, a permanent magnet 20, a rotating shaft 30, a vibration damping member 60 and a transmission member 50.
  • the rotor core 10 has a magnet slot 102 and a shaft hole 101. As shown in FIGS. 1 and 7, the shaft hole 101 is provided at a substantially central position of the rotor core 10 and penetrates the rotor core 10 in the axial direction of the rotor core 10 (the left-right direction in FIGS. 1 and 7 ). There are multiple magnet slots 102, and the multiple magnet slots 102 are evenly spaced around the shaft hole 101 along the circumference of the rotor core 10.
  • the permanent magnet 20 is provided in the magnet slot 102. As shown in FIGS. 1 and 7, there are multiple permanent magnets 20, and one permanent magnet 20 is installed in each magnet slot 102 so that the multiple permanent magnets 20 are arranged at intervals along the circumferential direction of the rotor core 10.
  • the rotating shaft 30 is arranged in the rotating shaft hole 101, and there is a gap between the rotating shaft 30 and the rotor core 10. In other words, as shown in FIG. D2.
  • the first end (the left end of the rotating shaft 30 in FIGS. 1 and 2) and the second end (the right end of the rotating shaft 30 in FIGS. 1 and 2) of the rotating shaft 30 protrude from the rotating shaft hole 101.
  • the axial direction of the rotating shaft 30 is substantially the same as the axial direction of the rotor core 10 and is penetrated on the rotor core 10 through the rotating shaft hole 101.
  • the vibration damping member 60 includes a first end vibration damping member 61, which is provided on the first end surface of the rotor core 10 (the left end surface of the rotor core 10 in FIGS. 1 and 2) and is in contact with The rotor core 10 is connected.
  • the transmission member 50 includes a first transmission member 51, the first transmission member 51 is arranged in the first end damping member 61, the first transmission member 51 is matched with the rotating shaft 30, and the rotor core 10 at least sequentially passes through the first end to dampen vibration
  • the member 61 and the first transmission member 51 drive the rotating shaft.
  • the rotor core 10 since there is a gap between the inner peripheral wall of the shaft hole 101 of the rotor core 10 and the shaft 30, the rotor core 10 does not directly drive the shaft 30, but is driven by at least the first end damping member 61 and the first transmission member 51
  • the rotating shaft 30 rotates.
  • the first end damping member 61 is connected to the left end surface of the rotor core 10, the outer circumference of the first end damping member 61 may be substantially circular, and the first end damping member 61 The outer diameter of the member 61 may be substantially the same as the outer diameter of the rotor core 10.
  • the first transmission member 51 is arranged in the first end damping member 61, the rotating shaft 30 penetrates the rotor core 10 and the first transmission member 51 at least in the left-right direction, and the first transmission member 51 is directly matched with the rotating shaft 30, so that the rotor iron
  • the core 10 at least sequentially drives the rotating shaft 30 through the first end damping member 61 and the first transmission member 51.
  • the first transmission member 51 and the rotating shaft 30 can be matched in a variety of ways that can transmit torque.
  • a section where the rotation shaft 30 and the first transmission member 51 are matched has a non-circular cross-section, and it can also be keyed. Therefore, when the rotor core 10 rotates, the first end vibration damping member 61 is driven to rotate and the first transmission member 51 provided in the first end vibration damping member 61 rotates, thereby driving the rotating shaft 30 to rotate.
  • the rotor assembly of the embodiment of the present application by providing a first end damping member that cooperates with the rotating shaft through the first transmission member on the first end surface of the rotor core, the rigid connection between the rotating shaft and the rotor core is avoided, and the first transmission member
  • the rotation effect of the shaft is improved, and the material of the vibration damping part is large, and the noise and vibration reduction effect is good; there is no problem of different thermal expansion coefficients, and the reliability of the rotor assembly is improved, and only the vibration damping part is required in the production process.
  • the preparation process is relatively simple, and the defect rate of mass production is reduced.
  • the material of the first end damping member 61 is a viscoelastic material, such as rubber, thermoplastic material, and the like.
  • viscoelastic materials can be used to greatly absorb the energy generated by resonance to achieve a vibration reduction effect.
  • the present application can greatly improve the rotor damping ratio by designing the end face of the rotor core as a fully viscoelastic material.
  • the end structure adopting a fully viscoelastic material in this application has a greater damping ratio.
  • a part of the first end damping member 61 is directly matched with the rotating shaft 30, and the rotor core 10 passes through a part of the first end damping member 61 and sequentially passes through the first end damping member 61 and the second end damping member 61.
  • a transmission member 51 drives the rotating shaft 30.
  • the first transmission member 51 is located on the left side of a part of the first end damping member 61, and the left end of the rotating shaft 30 sequentially penetrates the rotor core 10 and the first end damping member.
  • a part of 61 and the first transmission member 51 are extended, and a part of the first transmission member 51 and the first end damping member 61 are directly matched with the rotating shaft 30. Therefore, when the rotor core 10 rotates, it drives the first end The vibration damping member 61 rotates, and the rotating shaft 30 is driven to rotate through a part of the first end vibration damping member 61 and the first transmission member 51.
  • the thickness of a part of the first end damping member 61 in the axial direction of the rotating shaft is L, where L ⁇ 0.5 mm.
  • the first transmission member 51 includes a first base 513 and a first boss 514.
  • the first boss 514 protrudes from the first base 513 toward the first end surface of the rotor core 10, and the rotating shaft 30 penetrates the first end surface.
  • the first boss 514 faces the left end surface of the rotor core 10
  • the first base 513 is matched with the first central hole 617 of the first end vibration damping member 61
  • the first boss 514 The damping member 61 located at the first end fits inside.
  • Both the first base 513 and the first boss 514 are provided with a first through hole, and the rotating shaft 30 penetrates the first base 513 and the first boss 514 through the corresponding first through hole.
  • the protrusions can be embedded in the central ring formed by the circumferential arrangement of the permanent magnets along the axial direction of the rotor core, which can improve the torque transmission capacity of the transmission part and the fatigue reliability of the vibration damping part It can further reduce the axial length of the rotor assembly, which is beneficial to the miniaturized design of the motor.
  • the minimum distance between the first boss 514 and the first end surface of the rotor core 10 in the axial direction of the rotor core 10 is L1, and L1>0.5 mm.
  • the smallest gap between the first boss 514 and the permanent magnet 20 in the radial direction of the rotor core 10 is L2, and L2>0.5 mm.
  • the smallest gap between the first base body 513 and the permanent magnet 20 in the axial direction of the rotor core 10 is L3, and L3>0.5 mm.
  • the first transmission member 51 of the present application is not limited to that shown in FIG. 13.
  • the first transmission member 51 has no bosses.
  • the damping member 60 further includes a second end damping member 62, and the second end damping member 62 is provided on the second end surface of the rotor core 10 (the rotor core 10 in FIGS. 1 to 3 On the right end surface) and connected to the rotor core 10.
  • the second end damping member 62 is directly matched with the rotating shaft 30, and the rotor core 10 passes through the second end damping member 62 and sequentially through the first end damping member 61 and the transmission member. 51 drives the shaft.
  • the materials of the first end damping member 61 and the second end damping member 62 are both viscoelastic materials, such as rubber, thermoplastic materials, and the like.
  • viscoelastic materials can be used to greatly absorb the energy generated by resonance to achieve a vibration reduction effect.
  • the rotor damping ratio can be greatly improved.
  • the end structure of the ordinary rotor (rigid connection), injection molded part (end plate) and vibration damping ring are added, this application
  • the end structure adopting fully viscoelastic material has a larger damping ratio.
  • the loss factor of the viscoelastic material is greater than or equal to 0.15, which can ensure that the electromagnetic force waves are effectively absorbed and attenuated when the rotor of the motor is operating.
  • the Shore hardness of the viscoelastic material is 20 degrees to 80 degrees, thereby improving the manufacturability of the motor.
  • the Shore hardness is 30 degrees, 40 degrees, and 50 degrees.
  • the damping member 60 further includes a second end damping member 62, and the second end damping member 62 is provided on the second end surface of the rotor core 10 (the rotor core 10 in FIGS. 1 and 2 On the right end surface) and connected to the rotor core 10.
  • the transmission member 50 also includes a second transmission member 52.
  • the second transmission member 52 is arranged in the second end damping member 62.
  • the second transmission member 52 is matched with the rotating shaft 30.
  • the rotor core 10 is also reduced by the second end in turn.
  • the vibrating member 62 and the second transmission member 52 drive the rotating shaft 30.
  • the second end damping member 62 is connected to the right end surface of the rotor core 10.
  • the general outline and size of the second end damping member 62 and the first end damping member 61 Can be consistent.
  • the second transmission member 52 is provided in the second end damping member 61, the rotating shaft 30 penetrates the rotor core 10 and the second transmission member 52 at least in the left-right direction, and the second transmission member 52 is directly matched with the rotating shaft 30, so that the rotor iron
  • the core 10 can also drive the rotating shaft 30 through the second end damping member 62 and the second transmission member 52 in sequence.
  • the second transmission member 52 and the rotating shaft 30 can be matched in a variety of ways that can transmit torque.
  • a section where the rotating shaft 30 and the second transmission member 52 are matched has a non-circular cross-section, and it can also be keyed. Therefore, when the rotor core 10 rotates, the second end vibration damping member 62 is driven to rotate and the second transmission member 52 disposed in the second end vibration damping member 62 rotates, thereby driving the rotating shaft 30 to rotate.
  • the material of the second end damping member 61 is a viscoelastic material, so that both end faces of the rotor core are provided with viscoelastic materials to further greatly absorb the energy generated by resonance to achieve a vibration damping effect .
  • a part of the first end damping member 61 is directly matched with the rotating shaft 30 and a part of the second end damping member 62 is directly matched with the rotating shaft 30.
  • the rotating shaft 30 passes through the first transmission member 51, a part of the first end damping member 61, the rotor core 10, a part of the second end damping member 62, and
  • the second transmission member 52, the first transmission member 51, a part of the first end damping member 61, the rotor core 10, a part of the second end damping member 62, and the second transmission member 52 are all directly connected to the shaft 30
  • the first end damping member 61 and the second end damping member 62 are driven to rotate, and then pass a part of the first end damping member 61 and the first transmission member 51
  • a part of the second end damping member 62 and the second transmission member 52 drive the shaft 30 to rotate.
  • the two ends of the rotor core are equipped with corresponding damping parts, which further increases the amount of material of the damping parts, and at the same time, it can balance the vibration at both ends of the rotor core and improve the stability of the overall damping of the rotor assembly. , Improve the noise reduction ability and vibration reduction effect, moreover, improve the reliability of the vibration damping parts transmission.
  • the second transmission member 52 includes a second base 523 and a second boss 524.
  • the second boss 524 protrudes from the second base 523 toward the second end surface of the rotor core 10, and the rotating shaft 30 penetrates the second The base 523 and the second boss 524.
  • the second boss 524 faces the right end surface of the rotor core 10
  • the second base body 523 fits with the second central hole 627 of the second end vibration damping member 62
  • the second boss 524 The damping member 62 at the second end is fitted inside.
  • Both the second base 523 and the second boss 524 are provided with a first through hole, and the rotating shaft 30 penetrates the second base 523 and the second boss 524 through the corresponding first through hole.
  • the minimum distance between the second boss 524 and the right end surface of the rotor core 10 in the axial direction of the rotor core 10 is L1, and L1>0.5 mm; the second boss 524 and the permanent magnet 20 are at The smallest gap in the radial direction of the rotor core 10 is L2, and L2>0.5 mm.
  • the smallest gap between the second base body 523 and the permanent magnet 20 in the axial direction of the rotor core 10 is L3, and L3>0.5 mm.
  • the second transmission member 52 of the present application is not limited to that shown in FIG. 13.
  • the second transmission member 52 has no bosses.
  • each of the first end damper 61 and the second end damper 62 is provided with an opening 612 for exposing a part of the rotor core 10.
  • the first end damping member 61 and the second end damping member 62 each include a plate portion 610 and a boss portion 611.
  • the outer peripheral surface of the plate portion 610 is provided with an opening 612, and the number of openings 612 may be more than one.
  • a plurality of openings 612 are arranged at intervals along the circumferential direction of the plate portion 610 to expose the left end of the rotor core, thereby solving the problem of insufficient structural rigidity of the rotor assembly during overall magnetization and ensuring that the rotor assembly is magnetized in the whole No obvious deformation or loosening occurs during the time, so that the overall magnetization of the rotor assembly can be realized, and the magnetization efficiency can be improved.
  • the first end damping member 61 is provided with a plurality of openings 612
  • the second end damping member 62 is provided with a plurality of openings 612
  • the first end damping member 61 and the second end damping member are provided with a plurality of openings 612.
  • the projections formed by the opening 612 provided on the 62 on the end surface of the rotor core 10 overlap, and the positioning member installed through the opening 612 can bear the rotor core 10, so that the rotor core 10 is fixed to the first end vibration damping member 61 And the second end damping member 62.
  • the position of the opening 612 is not limited to the outer peripheral surface of the end damping member.
  • the opening 612 may be provided in the plate portion 610 of the first end damping member 61 and the second end damping member 62. Or, on the boss portion 611, as long as a part of the rotor core 10 can be exposed, so that the positioning member can bear the rotor core 10 easily. In some embodiments, as shown in FIGS.
  • the vibration damping member 60 further includes an external connection vibration damping member 63
  • the rotor core 10 has an axial through hole 103 located between adjacent magnet slots 102, and the external connection
  • the vibration damping member 63 is provided in the axial through hole 103, and the first end of the external connection damping member 63 (the left end of the external connection damping member 63 in FIG. 1) is connected to the first end damping member 61, and the external connection damping member 61
  • the second end of the member 63 (the right end of the external connection damping member 63 in FIG. 1) is connected to the second end damping member 62.
  • the damping member 60 further includes an internal connection damping member 65, which is provided in the gap between the rotating shaft 30 and the rotor core 10, and the internal connection damping member 65
  • the first end of the member 65 (the left end of the inner connection damper 65 in Fig. 4) is connected to the first end damper 61, and the second end of the inner connection damper 65 (the inner connection damper 65 in Fig. 4 The right end) is connected to the second end damping member 62.
  • the inner connecting damping member 65 is connected between the first end damping member 61 and the second end damping member 62, and a plurality of outer connecting damping members 63 surround the inner connecting damping member 65.
  • the internal connection damping member 65 surrounds the rotating shaft 30 and directly matches with the rotating shaft 30. As a result, the amount of material of the vibration damping member is further increased, the noise reduction capability and the vibration damping effect are improved, and the internal connection vibration damping member is directly matched with the rotating shaft, which further improves the reliability of the transmission of the vibration damping member.
  • the damping member 60 further includes an intermediate connecting damping member 64, a gap 105 is provided between the inner surface of the permanent magnet 20 and the inner bottom surface of the magnet groove 102, and the damping member 64 is connected in the middle.
  • the first end of the middle connection damper 64 (the left end of the middle connection damper 64 in FIG. 1) is connected to the first end damper 61
  • the second end of the middle connection damper 64 (The right end of the middle connection damper 64 in FIG. 1) is connected to the second end damper 62.
  • the plurality of intermediate connection damping members 64 are arranged at intervals along the circumferential direction of the rotor core 10, and the intermediate connection damping members 64 are arranged on the outside to connect the damping members 63 and 63.
  • the inner connection is between the damping members 65.
  • the rotor core 10 is formed by stacking a plurality of rotor punching pieces along the axial direction of the rotor core 10.
  • the rotor punching piece 10 includes a full bridge punching piece 110 and a half bridge punching piece 120.
  • the rotor The iron core 10 has a first end, a second end, and an intermediate section between the first end and the second end. The first end and the second end are stacked by a plurality of fully connected punching pieces 110 The middle section is formed by stacking a plurality of half-linked punching pieces 120.
  • the rotor punch includes a punch body 111, an outer magnetic bridge 112, an inner magnetic bridge 113, and magnetic poles 114.
  • a plurality of magnetic poles 114 are arranged at intervals along the circumference of the rotor core 10, at least partially The magnetic pole 114 is connected to the punch body 111 through an inner magnetic bridge 113.
  • the full bridge punches 110 are located at both ends of the rotor core 10, and the half bridge punches
  • the sheet 120 is located in the middle of the rotor core 10.
  • some of the magnetic poles 114 are connected to the punch body 111 through the inner magnetic bridge 113, and the other part of the magnetic poles 114 and the punch body 111 are in the rotor core 10 A part of the magnetic poles 114 and another part of the magnetic poles 114 are alternately arranged along the circumferential direction of the rotor core 10.
  • the outer magnetic bridge 112 of the half-bridge punch 120 is disconnected between adjacent magnetic poles 114.
  • each magnetic pole 114 of the full-bridge punch 110 is connected to the punch body 111 through an inner magnetic bridge 113, and the outer magnetic bridge 112 of the half-bridge punch 110 is closed.
  • the full-connected bridge punching piece at the end of the rotor core, it not only facilitates the mold sealing material of the injection molding process, prevents the injection liquid from leaking out and causes the molded product to have burrs and flashes, but also It can improve the rigidity and strength of the rotor core.
  • a part of the inner magnetic bridge 113 of the plurality of inner magnetic bridges 113 of the half-linked punching piece 120 is provided with a magnetic bridge hole 104 that penetrates the inner magnetic bridge 113 in the circumferential direction of the rotor core 10, and Among the inner magnetic bridges 113 of the half-linked punching pieces 120 adjacent in the axial direction of the core 10, the inner magnetic bridge 113 of one half-linked punching piece 120 is provided with a magnetic bridge hole 104, and the other half-linked punching piece 120 has a magnetic bridge hole 104.
  • There is no magnetic bridge hole 104 in the inner magnetic bridge 113 and a circumferential connection damping member 66 is provided in the magnetic bridge hole 104, and adjacent intermediate connection damping members 64 are connected to each other through the circumferential connection damping member 66.
  • the inner magnetic bridge 113 of one half-linked punching piece 120 is provided with a magnetic bridge hole 104, and the inner magnetic bridge 113 of the other half-linked punching piece 120 has no magnetic bridge hole 104.
  • the half-linked punched pieces 120 and the half-linked punched pieces 120 without the magnetic bridge hole 104 are alternately arranged.
  • the circumferential connection damping members 66 are arranged in multiple rows spaced apart along the axial direction of the rotor core 10, and each row includes a plurality of circumferential connection damping members 66 spaced apart in the circumferential direction of the rotor core 10, wherein each A row of a plurality of circumferential connection damping members 66 connects adjacent intermediate connection damping members 64.
  • one half-bridge punch 110 rotates a magnetic pole 114 in the circumferential direction of the rotor core 10 relative to the other half-bridge punch 110.
  • the inner magnetic bridge of the rotor core forms an alternately connected and disconnected structure in the axial direction, which can improve the electromagnetic performance of the motor, thereby reducing energy consumption.
  • the material of at least one of the inner connection damping member 65, the outer connection damping member 63, the intermediate connection damping member 64, and the circumferential connection damping member 66 is a viscoelastic material, such as rubber, thermoplastic material, etc. .
  • viscoelastic materials can be used to greatly absorb the energy generated by resonance to achieve a vibration reduction effect.
  • the first end damper 61, the second end damper 62, the inner connection damper 65, the outer connection damper 63, the intermediate connection damper 64 and the circumferential connection damper 66 The materials are all viscoelastic materials.
  • the damping characteristics of the rotor core can be improved, and the noise reduction and vibration reduction performance can be further improved.
  • the viscoelastic materials on both sides of the end face of the rotor core (the first end damping member 61 and the second end damping member 62) are connected.
  • a mold can be used to integrally form the ends on both sides to fill Damping material improves the manufacturability of the motor.
  • the damping member 66 is integrally formed by injection molding. Therefore, the connection between the vibration damping member and the rotor core is tight and reliable, and it is not easy to separate, and the stability is improved.
  • the loss factor of the viscoelastic material is greater than or equal to 0.15, which can ensure that the electromagnetic force waves are effectively absorbed and attenuated when the motor rotor is running.
  • the Shore hardness of the viscoelastic material is 20 degrees to 80 degrees, thereby improving the manufacturability of the motor.
  • the Shore hardness is 30 degrees, 40 degrees, and 50 degrees.
  • the length of the permanent magnet 20 in the axial direction of the rotor core 10 is greater than the axial length of the magnet slot 102, and the first end of the permanent magnet 20 protrudes from the magnet slot 102 and is fitted to the first end.
  • the vibration damping member 61 the second end of the permanent magnet 20 protrudes from the magnet slot 102 and fits in the second end vibration damping member 62.
  • the rotor assembly of this embodiment not only improves the electromagnetic performance of the motor, reduces energy consumption, but also enables the vibration damping member of the rotor assembly to withstand greater torque.
  • the outer peripheral wall of the first transmission member 51 is provided with a first transmission radial protrusion 510 and a first transmission radial opening groove 511, and the first transmission The radial opening groove 511 is located between the adjacent first transmission radial protrusions 510.
  • the first end damping member 61 has a first central hole 617.
  • the peripheral wall of the first central hole 617 is provided with a first damping radial protrusion 616 and a first radial damping inward opening groove 615.
  • the vibration-damping inward opening groove 615 is located between the adjacent first vibration-damping radial protrusions 616.
  • the first transmission radial protrusion 510 is fitted in the first radial damping inward opening groove 615
  • the first damping radial protrusion 616 is fitted in the first transmission radial opening groove 511.
  • the outer peripheral wall of the first transmission member 51 is provided with a plurality of first transmission radial protrusions 510 and a plurality of first transmission radial opening grooves 511.
  • the taper angle of the radial opening groove 511 is ⁇ 5°, and it tapers radially outward.
  • the plurality of first transmission radial protrusions 510 are arranged at intervals along the circumferential direction of the rotor core 10, and a first transmission radial opening slot 511 is formed between every two adjacent first transmission radial protrusions 510.
  • the peripheral wall of the first central hole 617 of the first end damping member 61 is provided with a plurality of first damping radial protrusions 616 and a plurality of first radial damping inward opening grooves 615, and a plurality of first damping
  • the vibration radial protrusions 616 are arranged at intervals along the circumferential direction of the rotor core 10, and a first radial vibration damping inward opening slot 615 is formed between every two adjacent first vibration damping radial protrusions 616.
  • the first transmission member 51 is arranged in the first end damping member 61, and the first transmission radial protrusion 510 is fitted in the first radial damping inward opening groove 615, and the first damping radial protrusion 616 Fits in the first transmission radial opening slot 511.
  • the outer peripheral wall of the second transmission member 52 is provided with a second transmission radial protrusion 520 and a second transmission radial opening groove 521, and the second transmission radial opening groove 521 is located adjacent to the second transmission radial protrusion. Between 520.
  • the second end damping member 62 has a second center hole (not shown), and a second damping radial protrusion (not shown) and a second radial damping opening groove are provided on the peripheral wall of the second center hole. (Not shown), the second radial damping opening groove is located between adjacent second damping radial protrusions.
  • the second transmission radial protrusion 520 is fitted in the second damping radial opening groove, and the second damping radial protrusion is fitted in the second transmission radial opening groove 521.
  • the manner of cooperation between the second transmission member 52 and the second end damping member 62 may refer to the manner of cooperation between the first transmission member 51 and the first end damping member 61.
  • the length of the permanent magnet 20 in the axial direction of the rotor core 10 is greater than the axial length of the magnet slot 102, and the first end of the permanent magnet 20 protrudes from the magnet slot 102 and is fitted to the first end.
  • the vibration damping member 61 the second end of the permanent magnet 20 protrudes from the magnet slot 102 and fits in the second end vibration damping member 62.
  • the rotor assembly of this embodiment not only improves the electromagnetic performance of the motor, reduces energy consumption, but also enables the vibration damping member of the rotor assembly to withstand greater torque.
  • the rotor assembly 100 includes a rotor core 10, a plurality of permanent magnets 20, a rotating shaft 30, a transmission member 50, and a vibration damping member 60.
  • the rotor core 10 has a shaft hole 101, a plurality of magnet slots 102, a plurality of axial through holes 103 and a plurality of magnetic bridge holes 104.
  • the rotating shaft hole 101 is provided at a substantially central position of the rotor core 10 and penetrates the rotor core 10 in the axial direction of the rotor core 10.
  • a plurality of magnet slots 102 are arranged at even intervals around the shaft hole 101 along the circumferential direction of the rotor core 10.
  • An axial through hole 103 is provided between any adjacent magnet slots 102.
  • the rotor core 10 is formed by stacking a plurality of rotor punching pieces along the axial direction of the rotor core 10. Among the plurality of rotor punching pieces, the left end portion and the right end portion are fully connected bridge pieces 110, and the middle portion is Half-bridge punching piece 120.
  • the rotor punch includes a punch body 111, an outer magnetic bridge 112, an inner magnetic bridge 113 and a magnetic pole 114.
  • each magnetic pole 114 is connected to the punch body 111 through an inner magnetic bridge 113.
  • the outer periphery of the punch body 111 is provided with a plurality of spaced protrusions 115, adjacent to each other.
  • a protrusion 115 is provided between the magnetic bridges 113, and the outer magnetic bridge 112 of the half-linked punching piece 110 is closed.
  • the outer magnetic bridge 112 of the half-bridge punch 120 is disconnected between adjacent magnetic poles 114.
  • a part of the magnetic pole 114 is connected to the punch body 111 through the inner magnetic bridge 113, and the other part of the magnetic pole 114 is spaced from the punch body 111 in the radial direction of the rotor core 10.
  • a part of the magnetic poles 114 and another part of the magnetic poles 114 are alternately arranged along the circumferential direction of the rotor core 10.
  • one half-linked punched piece 110 rotates a magnetic pole 114 in the circumferential direction of the rotor core 10 relative to the other half-connected punched piece 110.
  • the inner magnetic bridge of the rotor core forms an alternately connected and disconnected structure in the axial direction, which can improve the electromagnetic performance of the motor, thereby reducing energy consumption.
  • a part of the inner magnetic bridge 113 of the plurality of inner magnetic bridges 113 of the semi-connected bridge die 120 is provided with a magnetic bridge hole 104 that penetrates the inner magnetic bridge 113 along the circumferential direction of the rotor core 10, and is in the axial direction of the rotor core 10
  • the inner magnetic bridge 113 of one half-linked punching piece 120 is provided with a magnetic bridge hole 104
  • the other half-linked punching piece 120 has no inner magnetic bridge 113 ⁇ 104 ⁇ Magnetic bridge hole 104.
  • the plurality of permanent magnets 20 are respectively arranged in the plurality of magnet slots 102 so that the plurality of permanent magnets 20 are arranged at intervals along the circumferential direction of the rotor core 10. There is a gap 105 between the inner surface of each permanent magnet 20 and the inner bottom surface of the corresponding magnet slot 102.
  • the axial direction of the rotating shaft 30 is substantially the same as the axial direction of the rotor core 10 and is penetrated on the rotor core 10 through the rotating shaft hole 101, and there is a gap between the rotating shaft 30 and the rotor core 10.
  • the shock absorber 60 includes a first end shock absorber 61, a second end shock absorber 62, an external connection shock absorber 63, an intermediate connection shock absorber 64, an inner connection shock absorber 65, and a circumferential connection shock absorber 66.
  • the vibration damping member 6 is formed by integral injection molding of a viscoelastic material, and the loss factor of the viscoelastic material is greater than or equal to 0.15, and the Shore hardness of the viscoelastic material is 20°-80°.
  • the first end damping member 61 is connected to the left end surface of the rotor core 10, the second end damping member 62 is connected to the right end surface of the rotor core 10, and the rotating shaft 30 sequentially penetrates the first end in a direction from left to right Part 61, the rotor core 10 and the second end part 62, the inner circumference of the first end part 61 is directly matched with the outer circumference of the rotating shaft 30, and the inner circumference of the second end part 62 The circumference is directly matched with the outer circumference of the rotating shaft 30.
  • Each of the first end damping member 61 and the second end damping member 62 includes a plate portion 610 and a boss portion 611.
  • the outer peripheral surface of the plate portion 610 is provided with openings 612, and there are multiple openings 612, and the multiple openings 612 are arranged at intervals along the circumferential direction of the plate portion 610.
  • the boss portion 611 of the first end damper 61 protrudes to the left from the left end of the first end damper 61, and the boss portion 621 of the second end damper 62 protrudes from the second end damper 61
  • the right end of 62 protrudes to the right.
  • the peripheral wall of the first central hole 617 of the first end damping member 61 is provided with a plurality of first damping radial protrusions 616 and a plurality of first radial damping inward opening grooves 615, and a plurality of first damping
  • the vibration radial protrusions 616 are arranged at intervals along the circumferential direction of the rotor core 10, and a first radial vibration damping inward opening slot 615 is formed between every two adjacent first vibration damping radial protrusions 616.
  • the second end damping member 62 has a second central hole.
  • a plurality of second damping radial protrusions and a plurality of second radial damping opening grooves are provided on the peripheral wall of the second center hole.
  • the vibration radial protrusions are arranged at intervals along the circumferential direction of the rotor core 10, and a second radial vibration damping opening slot is formed between every two adjacent second vibration damping radial protrusions.
  • the inner connecting damping member 65 is arranged in the gap between the rotating shaft 30 and the rotor core 10, and the left end of the inner connecting damping member 65 is connected to the first end damping member 61, and the right end of the inner connecting damping member 65 is connected to The second end damping member 62 is connected.
  • the outer connecting damping member 63 is arranged in the axial through hole 103, and the left end of the outer connecting damping member 63 is connected with the first end damping member 61, and the right end of the outer connecting damping member 63 is connected to the second end for damping Pieces 62 are connected. Therefore, there are multiple external connection damping members 63, and the multiple external connection damping members 63 are arranged at intervals along the circumferential direction of the rotor core 10 and surround the outer side of the inner connection damping member 65.
  • the intermediate connection damping member 64 is arranged in the gap 105, the left end of the intermediate connection damping member 64 is connected with the first end damping member 61, and the right end of the intermediate connection damping member 64 is connected with the second end damping member 62. Therefore, the number of intermediate connection damping members 64 is multiple, and the plurality of intermediate connection damping members 64 are arranged at intervals along the circumferential direction of the rotor core 10, and the intermediate connection damping members 64 are provided on the outer connection damping member 63 and the inner connection damping member. Between 65 pieces.
  • the circumferential connection damping members 66 are arranged in multiple rows spaced apart along the axial direction of the rotor core 10, and each row includes a plurality of circumferential connection damping members 66 spaced apart in the circumferential direction of the rotor core 10, wherein each A row of a plurality of circumferential connection damping members 66 connects adjacent intermediate connection damping members 64.
  • the first end damping member 61, the second end damping member 62, the intermediate connecting damping member 64, the outer connecting damping member 63, the inner connecting damping member 65 and the circumferential connecting damping member 66 are integrally formed by injection molding, And the material is rubber or thermoplastic elastomer.
  • the vibration damping member has low hardness and rigidity, has a good vibration damping effect, and is tightly and reliably connected to the rotor core, and is not easy to separate, thereby improving stability.
  • the transmission member 50 includes a first transmission member 51 and a second transmission member 52.
  • the outer peripheral wall of the first transmission member 51 is provided with a plurality of first transmission radial protrusions 510 and a plurality of first transmission radial opening grooves 511, and the plurality of first transmission radial protrusions 510 extend along the circumference of the rotor core 10. It is arranged at intervals, and a first transmission radial opening slot 511 is formed between every two adjacent first transmission radial protrusions 510.
  • the first transmission member 51 is arranged in the first end damping member 61, and the first transmission radial protrusion 510 is fitted in the first radial damping inward opening groove 615, and the first damping radial protrusion 616 Fits in the first transmission radial opening slot 511.
  • the first boss 514 faces the left end surface of the rotor core 10, the first base body 513 fits with the first central hole 617 of the first end vibration damping member 61, and the first boss 514 is located inside the first end vibration damping member 61 Cooperate. Both the first base 513 and the first boss 514 are provided with a first through hole, and the rotating shaft 30 penetrates the first base 513 and the first boss 514 through the corresponding first through hole.
  • the minimum distance between the first boss 514 and the first end surface of the rotor core 10 in the axial direction of the rotor core 10 is L1, and L1>0.5 mm.
  • the minimum gap between the first boss 514 and the permanent magnet 20 in the radial direction of the rotor core 10 is L2, and L2>0.5 mm; the minimum gap between the first base 513 and the permanent magnet 20 in the axial direction of the rotor core 10 is L3, and L3>0.5 mm.
  • the outer peripheral wall of the second transmission member 52 is provided with a plurality of second transmission radial protrusions 520 and a plurality of second transmission radial opening grooves 521, and the plurality of second transmission radial protrusions 520 extend along the circumference of the rotor core 10 It is arranged at intervals, and a second transmission radial opening slot 521 is formed between every two adjacent second transmission radial protrusions 520.
  • the second transmission member 52 is arranged in the second end damping member 62, and the second transmission radial protrusion 520 is fitted in the second damping radial opening groove, and the second damping radial protrusion is fitted in the second Drive in the radial opening slot 521.
  • the second boss 524 faces the right end surface of the rotor core 10, the second base body 523 fits with the second central hole 627 of the right end vibration damping member 62, and the second boss 524 and the protrusion inside the second end vibration damping member 62
  • the stage interface (not shown) is engaged, and the second transmission member 52 is installed in the second end damping member 62.
  • the minimum distance between the second boss 524 and the right end surface of the rotor core 10 in the axial direction of the rotor core 10 is L1, and L1>0.5 mm; the second boss 524 and the permanent magnet 20 are in the diameter of the rotor core 10
  • the minimum upward gap is L2, and L2>0.5 mm; the minimum gap between the second base body 523 and the permanent magnet 20 in the axial direction of the rotor core 10 is L3, and L3>0.5 mm.
  • the rotating shaft 30 sequentially penetrates the first transmission member 51, a part of the first end vibration damping member 61, the rotor core 10, a part of the second end vibration damping member 62, and the second transmission member 52 in a direction from left to right, And the first transmission member 51, a part of the first end damping member 61, the rotor core 10, a part of the second end damping member 62, and the second transmission member 52 are directly matched with the rotating shaft 30, whereby the rotor When the iron core 10 rotates, it drives the first end damping member 61 and the second end damping member 62 to rotate, and then passes through a part of the first end damping member 61, the first transmission member 51, and the second end damping member. A part of the vibrating member 62 and the second transmission member 52 drive the rotating shaft 30 to rotate.
  • the rotor core, permanent magnets, shaft, and transmission parts are molded into a one-piece overmolded structure with rubber or viscoelastic materials through the injection molding process, and the structure after the rubber or viscoelastic material is molded is the vibration damping part.
  • the electric machine according to the embodiment of the present application includes the rotor assembly 100 of any of the above-mentioned embodiments.
  • the motor of the embodiment of the present application by improving the structure of the rotor assembly, at least the end of the rotor core can be provided with a vibration damping member and a transmission member, and at least part of the vibration damping member can be directly matched with the rotating shaft.
  • the other parts of the motor can be matched with the rotating shaft through the transmission part, which avoids the rigid connection between the rotating shaft and the rotor core, at the same time, increases the amount of material of the vibration damping part, and improves the noise and vibration reduction effect of the entire motor.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected, or it can be electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction relationship between two components, Unless otherwise clearly defined.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected, or it can be electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction relationship between two components, Unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. get in touch with.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the terms “one embodiment”, “some embodiments”, “examples”, “specific examples”, or “some examples” etc. mean specific features, structures, materials, or materials described in conjunction with the embodiment or example. The features are included in at least one embodiment or example of this application. In this specification, the schematic representations of the above-mentioned terms do not necessarily refer to the same embodiment or example. Moreover, the described specific features, structures, materials or characteristics can be combined in any one or more embodiments or examples in a suitable manner. In addition, those skilled in the art can combine and combine the different embodiments or examples and the features of the different embodiments or examples described in this specification without contradicting each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种转子组件(100)和电机,所述转子组件(100)包括转子铁芯(10)、永磁体(20)、转轴(30)、第一端部减振件(61)和第一传动件(51),所述转子铁芯(10)具有磁体槽(102)和转轴孔(101);所述永磁体(20)设在所述磁体槽(102)内;所述转轴(30)设在所述转轴孔(101)内且所述转轴(30)与所述转子铁芯(10)之间具有间隙,所述转轴(30)的第一端和第二端从所述转轴孔(101)内伸出;所述第一端部减振件(61)设在所述转子铁芯(10)的第一端面上且与所述转子铁芯(10)相连;传动件设在所述第一端部减振件(61)内,所述第一传动件(51)与所述转轴(30)配合,所述转子铁芯(10)至少依次通过所述第一端部减振件(61)和所述第一传动件(51)驱动所述转轴(30)。该转子组件(100),减振件的材料量大,降噪和减振效果好,可靠性高。

Description

转子组件和具有它的电机
相关申请的交叉引用
本申请要求申请号为202010550859.5、申请日为2020年6月16日的中国专利申请以及申请号为202010550022.0、申请日为2020年6月16日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本申请的实施例涉及电机技术领域,具体地,涉及一种转子组件和具有该转子组件的电机。
背景技术
随着电机功率密度提高,电机的能量密度提升,电机磁场趋于深度饱和,导致电磁噪音升高。相关技术中,为降低电机运行过程中转矩波动带来的电磁振动和噪音,通常采取在转子铁芯与转轴或轴套之间填充减振材料吸收电磁力波,以降低电机的噪音并实现减振,然而,通过在转子铁芯与转轴或轴套之间填充减振材料,降噪和减振的效果不佳,有待提升。
申请内容
本申请是基于发明人对以下事实和问题的发现和认识做出的:
相关技术中,减振转子组件包括永磁体、外铁心、转轴、注塑体和减振圈,注塑体包括上端板、下端板和连接上端板和下端板的塑封连接部,在上端板和/或下端板上轴向凸出有环形第一凸台,内铁心安装在转轴上且嵌入环形第一凸台的凹槽内,减振圈设在内铁心与凹槽的内壁之间。一方面,由于内铁心和凹槽的内壁之间的间隙有限,减振件的材料量受限制,降噪和减振效果差。另一方面,注塑件与减振圈材料不同,外铁心端部的减振圈无连接,注塑件和减振圈的边界面容易出现间隙,且在运行过程中容易出现热膨胀等系数不同带来的可靠性问题,而且注塑件阻尼较小,对电磁振动噪音的抑制效果不明显。再一方面,减振转子组件在生产过程中需要进行注塑和放置减振圈两个步骤,工艺复杂,大批量生产时不良率高。
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的实施例提出一种能够提高减振件的材料量、降噪和减振效果好且可靠 性高的一种转子组件。
本申请的另一方面的实施例还提出了一种电机。
根据本申请实施例的第一方面的实施例的转子组件包括:转子铁芯,所述转子铁芯具有磁体槽和转轴孔;永磁体,所述永磁体设在所述磁体槽内;转轴,所述转轴设在所述转轴孔内且所述转轴与所述转子铁芯之间具有间隙,所述转轴的第一端和第二端从所述转轴孔内伸出;第一端部减振件,所述第一端部减振件设在所述转子铁芯的第一端面上且与所述转子铁芯相连;第一传动件,所述传动件设在所述第一端部减振件内,所述第一传动件与所述转轴配合,所述转子铁芯至少依次通过所述第一端部减振件和所述第一传动件驱动所述转轴。
根据本申请实施例的转子组件,通过在转子铁芯的第一端面设置与转轴通过第一传动件配合的第一端部减振件,避免了转轴与转子铁芯刚性连接,第一传动件提高了转轴的转动效果,且减振件的材料量大,降噪和减振效果好,不存在热膨胀系数不同的问题,提高了转子组件的可靠性,而且生产过程中只需设置减振件,制备工艺相关简单,降低了大批量生产的不良率。
在一些实施例中,所述第一端部减振件的一部分与所述转轴直接配合,所述转子铁芯通过所述第一端部减振件的所述一部分以及依次通过所述第一端部减振件和所述第一传动件驱动所述转轴。
在一些实施例中,所述一部分在所述转轴的轴向上的厚度为L,其中L≥0.5毫米。
在一些实施例中,所述第一传动件包括第一基体和第一凸台,所述第一凸台从所述第一基体朝向所述转子铁芯的第一端面凸出,所述转轴贯穿所述第一基体和所述第一凸台;所述第一凸台与所述转子铁芯的第一端面在所述转子铁芯的轴向上的最小距离为L1,且L1>0.5毫米。
在一些实施例中,所述第一凸台与所述永磁体在所述转子铁芯的径向上的最小间隙为L2,且L2>0.5毫米,所述第一基体与所述永磁体在所述转子铁芯的轴向上的最小间隙为L3,且L3>0.5毫米。
在一些实施例中,转子组件还包括第二端部减振件,所述第二端部减振件设在所述转子铁芯的第二端面上且与所述转子铁芯相连,所述第二端部减振件与所述转轴直接配合,所述转子铁芯通过所述第二端部减振件以及依次通过所述第一端部减振件和所述第一传动件驱动所述转轴。
在一些实施例中,所述第一端部减振件和所述第二端部减振件的材料均为粘弹性材料。
在一些实施例中,所述粘弹性材料的损耗因子大于等于0.15,所述粘弹性材料的邵氏硬度为20度-80度。
在一些实施例中,转子组件还包括外连接减振件,所述转子铁芯具有位于相邻磁体槽之间的轴向贯通孔,所述外连接减振件设在所述轴向贯通孔内,所述外连接减振件的第一端与所述第一端部减振件相连,所述外连接减振件的第二端与所述第二端部减振件相连。
在一些实施例中,转子组件还包括:第二端部减振件,所述第二端部减振件设在所述转子铁芯的第二端面上且与所述转子铁芯相连;第二传动件,所述第二传动件设在所述第二端部减振件内,所述第二传动件与所述转轴配合,所述转子铁芯还依次通过所述第二端部减振件和所述第二传动件驱动所述转轴。
在一些实施例中,所述第一端部减振件的一部分与所述转轴直接配合且所述第二端部减振件的一部分与所述转轴直接配合。
在一些实施例中,所述第一端部减振件和所述第二端部减振件中的每一个端部减振件设有用于露出所述转子铁芯一部分的开口。
在一些实施例中,转子组件还包括外连接减振件,所述转子铁芯具有位于相邻磁体槽之间的轴向贯通孔,所述外连接减振件设在所述轴向贯通孔内,所述外连接减振件的第一端与所述第一端部减振件相连,所述外连接减振件的第二端与所述第二端部减振件相连。
在一些实施例中,转子组件还包括内连接减振件,所述内连接减振件设在所述转轴与所述转子铁芯之间的间隙内,所述内连接减振件的第一端与所述第一端部减振件相连,所述内连接减振件的第二端与所述第二端部减振件相连。
在一些实施例中,转子组件还包括中间连接减振件,所述永磁体的内表面与所述磁体槽的内底面之间具有空隙,所述中间连接减振件设在所述空隙内,所述中间连接减振件的第一端与所述第一端部减振件相连,所述中间连接减振件的第二端与所述第二端部减振件相连。
在一些实施例中,所述转子铁芯由多个转子冲片沿该转子铁芯的轴向叠置而成,所述转子冲片包括全连桥冲片和半连桥冲片,所述转子铁芯具有第一端部、第二端部和位于所述第一端部和第二端部之间的中间段,所述第一端部和第二端部由多个所述全连桥冲片叠置而成,所述中间段由多个所述半连桥冲片叠置而成。
在一些实施例中,所述中间段中在所述转子铁芯的轴向上相邻的半连桥冲片中,一个半连桥冲片相对另一个半连桥冲片沿所述转子铁芯的周向旋转一个磁极。
在一些实施例中,所述半连桥冲片的多个内磁桥中的一部分内磁桥设有沿所述转子铁芯的周向贯通该内磁桥的磁桥孔,在所述转子铁芯的轴向上相邻的半连桥冲片的内磁桥中,一个半连桥冲片的内磁桥中设有所述磁桥孔,另一个半连桥冲片的内磁桥中没有磁桥孔,所述磁桥孔内设有周向连接减振件,相邻中间连接减振件通过所述周向连接减振件彼此相连。
在一些实施例中,所述第一端部减振件、所述第二端部减振件、所述内连接减振件、所述外连接减振件、所述中间连接减振件和所述周向连接减振件的材料均为粘弹性材料。
在一些实施例中,所述第一端部减振件、所述第二端部减振件、所述内连接减振件、所述外连接减振件、所述中间连接减振件和所述周向连接减振件一体注塑形成。
在一些实施例中,所述粘弹性材料的损耗因子大于等于0.15,所述粘弹性材料的邵氏硬度为20度-80度。
在一些实施例中,所述永磁体在所述转子铁芯的轴向上的长度大于所述磁体槽的轴向长度,所述永磁体的第一端从所述磁体槽内伸出并配合在所述第一端部减振件内,所述永磁体的第二端从所述磁体槽内伸出并配合在所述第二端部减振件内。
在一些实施例中,所述第一传动件的外周壁上设有第一传动径向凸起和位于相邻第一传动径向凸起之间的第一传动径向开口槽,所述第一端部减振件具有第一中心孔,所述第一中心孔的周壁上设有第一减振径向凸起和位于相邻第一减振径向凸起之间的第一径向减振开口槽,所述第一传动径向凸起配合在所述第一减振径向开口槽内,所述第一减振径向凸起配合在所述第一传动径向开口槽内。
根据本申请的另一方面的实施例的电机包括上述任一实施例所述的转子组件。
根据本申请实施例的电机,转子组件中在转子铁芯的第一端面设置与转轴通过第一传动件配合的第一端部减振件,避免了转轴与转子铁芯刚性连接,第一传动件提高了转轴的转动效果,且减振件的材料量大,降噪和减振效果好,可靠性高。
附图说明
图1是根据本申请一个实施例的转子组件的拆分透视图。
图2是图1所示转子组件的组装状态的剖开示意图。
图3是图1所示转子组件的组装状态的另一示意图。
图4是图1所示转子组件的轴向局部剖视图。
图5是图4中的A部的放大示意图。
图6是图3所示的减振转子的截面图。
图7是根据本申请实施例的转子组件的转子铁芯的示意图。
图8是根据本申请实施例的转子组件的传动件的一个立体示意图。
图9是根据本申请实施例的转子组件的传动件的平面图。
图10是根据本申请实施例的转子组件的半连桥式冲片的示意图。
图11是根据本申请实施例的转子组件的全连桥式冲片的示意图。
图12是图1所示转子组件的剖面图。
图13是图1所示转子组件的侧视图。
图14是根据本申请实施例的转子组件的传动件的另一个立体示意图。
图15是根据本申请实施例的转子组件的阻尼比与现有技术的对比图。
附图标记:
转子组件100,转子铁芯10,转轴孔101,磁体槽102,轴向贯通孔103,磁桥孔104,空隙105,全连桥冲片110,半连桥冲片120,冲片本体部111,外磁桥112,内磁桥113,磁极114,突起115,永磁体20,减振件60,第一端部减振件61,板部610,凸台部611,开口612,第一减振径向内开口槽615,第一减振径向内凸起616,第一中心孔617,第二端部减振件62,外连接减振件63,中间连接减振件64,内连接减振件65,周向连接减振件66,第一传动件51,第一传动径向凸起510,第一传动径向开口槽511,第一基体513,第一凸台514,第二传动件52,第二传动径向凸起520,第二传动径向开口槽521第二基体523,第二凸台524。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
如图1-11所示,根据本申请实施例的转子组件100包括转子铁芯10、永磁体20、转轴30、减振件60和传动件50。
转子铁芯10具有磁体槽102和转轴孔101。如图1和图7所示,转轴孔101设在转子铁芯10的大体中心位置且沿转子铁芯10的轴向(图1和图7中左右方向)贯通转子铁芯10。磁体槽102设有多个,多个磁体槽102沿转子铁芯10的周向围绕转轴孔101均匀间隔布置。
永磁体20设在磁体槽102内。如图1和图7所示,永磁体20为多个,每个磁体槽102内安装一个永磁体20,以使多个永磁体20沿转子铁芯10的周向间隔布置。
转轴30设在转轴孔101内,且转轴30与转子铁芯10之间具有间隙,换而言之如图4所示,转子铁芯10的内圆孔直径D1大于转轴直径D2,即D1>D2。转轴30的第一端(图1和2中转轴30的左端)和第二端(图1和图2中转轴30的右端)从转轴孔101内伸出。如图1和图2所示,转轴30的轴向与转子铁芯10的轴向大体一致且通过转轴孔101穿设在转子铁芯10上。
减振件60包括第一端部减振件61,第一端部减振件61设在转子铁芯10的第一端面(图1和图2中转子铁芯10的左端面)上且与转子铁芯10相连。
传动件50包括第一传动件51,第一传动件51设在第一端部减振件61内,第一传动件51与转轴30配合,转子铁芯10至少依次通过第一端部减振件61和第一传动件51驱动转轴。换言之,由于转子铁芯10转轴孔101的内周壁与转轴30之间具有间隙,转子铁芯10 不直接驱动转轴30,而是至少通过第一端部减振件61和第一传动件51驱动转轴30旋转。
如图1至图4所示,第一端部减振件61连接在转子铁芯10的左端面上,第一端部减振件61的外周可以为大体圆形,第一端部减振件61的外径可以与转子铁芯10的外径大体一致。第一传动件51设在第一端部减振件61内,转轴30至少沿左右方向贯穿转子铁芯10和第一传动件51,第一传动件51与转轴30直接配合,由此转子铁芯10至少依次通过第一端部减振件61和第一传动件51驱动转轴30。第一传动件51与转轴30之间可以通过能够传动转矩的多种方式配合,例如转轴30与第一传动件51配合的一段为非圆形截面,也可以键配合。由此,转子铁芯10转动时,带动第一端部减振件61转动和设置在第一端部减振件61内的第一传动件51转动,进而驱动转轴30旋转。
根据本申请实施例的转子组件,通过在转子铁芯的第一端面设置与转轴通过第一传动件配合的第一端部减振件,避免了转轴与转子铁芯刚性连接,第一传动件提高了转轴的转动效果,且减振件的材料量大,降噪和减振效果好;不存在热膨胀系数不同的问题,提高了转子组件的可靠性,而且生产过程中只需设置减振件,制备工艺相关简单,降低了大批量生产的不良率。
在一些实施例中,第一端部减振件61的材料为粘弹性材料,例如橡胶、热塑性材料等。本申请通过采用粘弹性材料可以大幅吸收因共振产生的能量,达到减振效果。
如图15所示,本申请通过在转子铁芯端面设计为全粘弹性材料,可大幅提升转子阻尼比,相比于普通转子(刚性连接)、加入注塑件(端板)和减振环的端部结构,本申请采用全粘弹性材料的端部结构阻尼比更大。
在一些实施例中,第一端部减振件61的一部分与转轴30直接配合,转子铁芯10通过第一端部减振件61的一部分以及依次通过第一端部减振件61和第一传动件51驱动转轴30。
如图1、图2和图4所示,第一传动件51位于第一端部减振件61的一部分的左侧,转轴30的左端依次贯穿转子铁芯10、第一端部减振件61的一部分和第一传动件51并伸出,第一传动件51和第一端部减振件61的一部分均与转轴30直接配合,由此,转子铁芯10转动时,带动第一端部减振件61转动,进而通过第一端部减振件61的一部分和第一传动件51驱动转轴30旋转。
在一些实施例中,如图5所示,第一端部减振件61的一部分在转轴的轴向上的厚度为L,其中L≥0.5毫米。由此,增大减振件的材料量的同时,使减振件与转子铁芯的连接更加可靠。
在一些实施例中,第一传动件51包括第一基体513和第一凸台514,第一凸台514从第一基体513朝向转子铁芯10的第一端面凸出,转轴30贯穿第一基体513和第一凸台514。
如图1、14和12所示,第一凸台514朝向转子铁芯10的左端面,第一基体513与第一端部减振件61的第一中心孔617配合,第一凸台514位于第一端部减振件61内部配合。第一基体513和第一凸台514均设有第一通孔,转轴30通过相应的第一通孔贯通第一基体513和第一凸台514。在永磁体长度伸出转子铁芯端面时,凸起可以沿转子铁芯的轴向嵌入到永磁体周向布置形成的中心环中,可以提升传动件传递扭矩的能力和减振件的疲劳可靠性,更能减小转子组件轴向长度,有利于电机的小型化设计。
第一凸台514与转子铁芯10的第一端面在转子铁芯10的轴向上的最小距离为L1,且L1>0.5毫米。由此,增大减振件的材料量的同时,使减振件与转子铁芯的连接更加可靠。而且,不但有利于提升转子的减振性能,还能有利于注塑填充减振材料时的流动性,提升注塑工艺制作性。
在一些实施例中,如图12所示,第一凸台514与永磁体20在转子铁芯10的径向上的最小间隙为L2,且L2>0.5毫米。由此,增大减振件的材料量的同时,使减振件与转子铁芯的连接更加可靠。而且,不但有利于提升转子的减振性能,还能有利于注塑填充减振材料时的流动性,提升注塑工艺制作性。
在一些实施例中,如图11所示,第一基体513与永磁体20在转子铁芯10的轴向上的最小间隙为L3,且L3>0.5毫米。由此,增大减振件的材料量的同时,使减振件与转子铁芯的连接更加可靠。而且,不但有利于提升转子的减振性能,还能有利于注塑填充减振材料时的流动性,提升注塑工艺制作性。
可以理解的是,本申请的第一传动件51并不限于图13所示,例如在另外一些实施例中,如图8所示,第一传动件51无凸台。
在一些实施例中,减振件60还包括第二端部减振件62,第二端部减振件62设在转子铁芯10的第二端面(图1-图3中转子铁芯10的右端面)上且与转子铁芯10相连。如图1和图3所示,第二端部减振件62与转轴30直接配合,转子铁芯10通过第二端部减振件62以及依次通过第一端部减振件61和传动件51驱动转轴。
在一些实施例中,第一端部减振件61和第二端部减振件62的材料均为粘弹性材料,例如橡胶、热塑性材料等。本申请通过采用粘弹性材料可以大幅吸收因共振产生的能量,达到减振效果。
本申请通过在转子铁芯端面设计为全粘弹性材料,可大幅提升转子阻尼比,相比于普通转子(刚性连接)、加入注塑件(端板)和减振环的端部结构,本申请采用全粘弹性材料的端部结构阻尼比更大。
在一些具体地实施例中,粘弹性材料的损耗因子大于等于0.15,由此可以在电机转子运行时保证电磁力波得到有效吸收及衰减。
进一步地,粘弹性材料的邵氏硬度为20度-80度,由此提高电机的可制造性。例如邵氏硬度为30度、40度、50度。
在一些实施例中,减振件60还包括第二端部减振件62,第二端部减振件62设在转子铁芯10的第二端面(图1和图2中转子铁芯10的右端面)上且与转子铁芯10相连。
传动件50还包括第二传动件52,第二传动件52设在第二端部减振件62内,第二传动件52与转轴30配合,转子铁芯10还依次通过第二端部减振件62和第二传动件52驱动转轴30。
如图1至图4所示,第二端部减振件62连接在转子铁芯10的右端面上,第二端部减振件62与第一端部减振件61的大体轮廓和尺寸可以一致。第二传动件52设在第二端部减振件61内,转轴30至少沿左右方向贯穿转子铁芯10和第二传动件52,第二传动件52与转轴30直接配合,由此转子铁芯10还能够依次通过第二端部减振件62和第二传动件52驱动转轴30。第二传动件52与转轴30之间可以通过能够传动转矩的多种方式配合,例如转轴30与第二传动件52配合的一段为非圆形截面,也可以键配合。由此,转子铁芯10转动时,带动第二端部减振件62转动和设置在第二端部减振件62内的第二传动件52转动,进而驱动转轴30旋转。
在一些实施例中,第二端部减振件61的材料为粘弹性材料,由此在转子铁芯的两个端面均设置粘弹性材料,进一步大幅吸收因共振产生的能量,达到减振效果。
在一些实施例中,如图2所示,第一端部减振件61的一部分与转轴30直接配合且第二端部减振件62的一部分与转轴30直接配合。
如图2所示,转轴30沿从左向右的方向依次贯穿第一传动件51、第一端部减振件61的一部分、转子铁芯10、第二端部减振件62的一部分和第二传动件52,且第一传动件51、第一端部减振件61的一部分、转子铁芯10、第二端部减振件62的一部分和第二传动件52均与转轴30直接配合,由此,转子铁芯10转动时,带动第一端部减振件61和第二端部减振件62转动,进而通过第一端部减振件61的一部分、第一传动件51、第二端部减振件62的一部分和第二传动件52驱动转轴30旋转。
通过转子铁芯的两端部均设置相应的减振件,进一步增大了减振件的材料量的同时,可以对转子铁芯两端的均衡减振,提高了转子组件整体减振的平稳性,提高了降噪能力和减振效果,而且,提高了减振件传动的可靠性。
在一些实施例中,第二传动件52包括第二基体523和第二凸台524,第二凸台524从第二基体523朝向转子铁芯10的第二端面凸出,转轴30贯穿第二基体523和第二凸台524。
如图1、14和12所示,第二凸台524朝向转子铁芯10的右端面,第二基体523与第二端部减振件62的第二中心孔627配合,第二凸台524位于第二端部减振件62内部配合。 第二基体523和第二凸台524均设有第一通孔,转轴30通过相应的第一通孔贯通第二基体523和第二凸台524。
在一些实施例中,第二凸台524与转子铁芯10的右端面在转子铁芯10的轴向上的最小距离为L1,且L1>0.5毫米;第二凸台524与永磁体20在转子铁芯10的径向上的最小间隙为L2,且L2>0.5毫米。由此,增大减振件的材料量的同时,使减振件与转子铁芯的连接更加可靠。
在一些实施例中,第二基体523与永磁体20在转子铁芯10的轴向上的最小间隙为L3,且L3>0.5毫米。由此,增大减振件的材料量的同时,使减振件与转子铁芯的连接更加可靠。
可以理解的是,本申请的第二传动件52并不限于图13所示,例如在另外一些实施例中,如图8所示,第二传动件52无凸台。
在一些实施例中,第一端部减振件61和第二端部减振件62中的每一个端部减振件设有用于露出转子铁芯10一部分的开口612。
如图1所示,第一端部减振件61和第二端部减振件62均包括板部610和凸台部611,板部610的外周面设有开口612,开口612可以为多个,多个开口612沿板部610的周向间隔布置,以使转子铁芯的左端部部分外露,从而解决在整体充磁时转子组件结构刚强度不足的问题,保证转子组件在整体充磁时不会发生明显变形或松脱,从而可实现转子组件的整体充磁,提升充磁效率。
第一端部减振件61上设有多个开口612,第二端部减振件62上设有多个开口612,且第一端部减振件61上和第二端部减振件62上设置的开口612在转子铁芯10的端面上所形成的投影重合,通过开口612安装的定位件可以顶住转子铁芯10,使得转子铁芯10固定在第一端部减振件61和第二端部减振件62之间。
由于,第一端部减振件61上和第二端部减振件62上设置的开口612在转子铁芯10的端面上所形成的投影重合,使得转子铁芯10的第一端面和第二端面的受力点相同,受力更均匀。
开口612的位置并不限于端部减振件的外周面,例如在另外一些实施例中,开口612可以设在第一端部减振件61和第二端部减振件62的板部610或者凸台部611上,只要能使转子铁芯10的一部分露出,便于定位件顶住转子铁芯10即可。在一些实施例中,如图1和图7所示,减振件60还包括外连接减振件63,转子铁芯10具有位于相邻磁体槽102之间的轴向贯通孔103,外连接减振件63设在轴向贯通孔103内,外连接减振件63的第一端(图1中外连接减振件63的左端)与第一端部减振件61相连,外连接减振件63的第二端(图1中外连接减振件63的右端)与第二端部减振件62相连。
如图1和图7所示,外连接减振件63为多个,多个外连接减振件63沿转子铁芯10的周向间隔布置,由此进一步增大减振件的材料量,提高了降噪能力和减振效果,而且还使得第一端部减振件和第二端部减振件与转子铁芯的连接更加可靠。
在一些实施例中,如图4所示,减振件60还包括内连接减振件65,内连接减振件65设在转轴30与转子铁芯10之间的间隙内,内连接减振件65的第一端(图4中内连接减振件65的左端)与第一端部减振件61相连,内连接减振件65的第二端(图4中内连接减振件65的右端)与第二端部减振件62相连。
如图4所示,内连接减振件65连接在第一端部减振件61和第二端部减振件62之间,多个外连接减振件63围绕在内连接减振件65外侧。内连接减振件65环绕转轴30且与转轴30直接配合。由此进一步增大减振件的材料量,提高了降噪能力和减振效果,而且内连接减振件与转轴直接配合,进一步提高了减振件传动的可靠性。
在一些实施例中,如图1所示,减振件60还包括中间连接减振件64,永磁体20的内表面与磁体槽102的内底面之间具有空隙105,中间连接减振件64设在空隙105内,中间连接减振件64的第一端(图1中中间连接减振件64的左端)与第一端部减振件61相连,中间连接减振件64的第二端(图1中中间连接减振件64的右端)与第二端部减振件62相连。
如图1所示,中间连接减振件64为多个,多个中间连接减振件64沿转子铁芯10的周向间隔布置,且中间连接减振件64设在外连接减振件63和内连接减振件65之间。由此,增大减振件的材料量的同时,使减振件与转子铁芯的连接更加可靠。
在一些实施例中,转子铁芯10由多个转子冲片沿该转子铁芯10的轴向叠置而成,转子冲片10包括全连桥冲片110和半连桥冲片120,转子铁芯10具有第一端部、第二端部和位于第一端部和第二端部之间的中间段,第一端部和第二端部由多个全连桥冲片110叠置而成,中间段由多个半连桥冲片120叠置而成。
如图7、10和11所示,转子冲片包括冲片本体部111、外磁桥112、内磁桥113和磁极114,多个磁极114沿转子铁芯10的周向间隔布置,至少部分磁极114通过内磁桥113与冲片本体部111相连。形成转子铁芯10的多个转子冲片中既有全连桥冲片110,又有半连桥冲片120,全连桥冲片110位于转子铁芯10的两端部,半连桥冲片120位于转子铁芯10的中间。
如图10所示,半连桥冲片120的多个磁极114中,一部分磁极114通过内磁桥113与冲片本体部111相连,另一部分磁极114与冲片本体部111在转子铁芯10的径向上间隔开,其中一部分磁极114和另一部分磁极114沿转子铁芯10的周向交替布置。半连桥冲片120的外磁桥112在相邻磁极114之间断开。
如图11所示,全连桥冲片110的多个磁极114中,每个磁极114通过一个内磁桥113与冲片本体部111相连,半连桥冲片110的外磁桥112封闭。
在该实施例中,通过将全连桥冲片设置在转子铁芯的端部,不但有利于注塑成型工艺的模具封料,防止注塑液体渗出导致成型后的产品有毛刺和飞边,还能提升转子铁芯的刚度和强度。
在一些实施例中,半连桥冲片120的多个内磁桥113中的一部分内磁桥113设有沿转子铁芯10的周向贯通该内磁桥113的磁桥孔104,在转子铁芯10的轴向上相邻的半连桥冲片120的内磁桥113中,一个半连桥冲片120的内磁桥113中设有磁桥孔104,另一个半连桥冲片120的内磁桥113中没有磁桥孔104,磁桥孔104内设有周向连接减振件66,相邻中间连接减振件64通过周向连接减振件66彼此相连。
如图7所示,一个半连桥冲片120的内磁桥113中设有磁桥孔104,另一个半连桥冲片120的内磁桥113中没有磁桥孔104,设有磁桥孔104的半连桥冲片120和没有磁桥孔104的半连桥冲片120交替布置。周向连接减振件66布置成沿转子铁芯10的轴向间隔布置的多排,每一排包括多个沿转子铁芯10的周向间隔布置的周向连接减振件66,其中每一排的多个周向连接减振件66连接相邻的中间连接减振件64。
在一些实施例中,中间段中的相邻半连桥冲片110中,一个半连桥冲片110相对另一个半连桥冲片110沿转子铁芯10的周向旋转一个磁极114。由此转子铁芯的内磁桥在轴向上形成交替连接和断开的结构,能提升电机的电磁性能,从而降低能耗。
在一些实施例中,内连接减振件65、外连接减振件63、中间连接减振件64和周向连接减振件66中至少一个的材料为粘弹性材料,例如橡胶、热塑性材料等。本申请通过采用粘弹性材料可以大幅吸收因共振产生的能量,达到减振效果。
具体地,第一端部减振件61、第二端部减振件62、内连接减振件65、外连接减振件63、中间连接减振件64和周向连接减振件66的材料均为粘弹性材料。本申请通过将转子铁芯内部、端部和转子铁芯的磁桥孔内填充粘弹性材料,可以提升转子铁芯的阻尼特性,进一步提高降噪和减振性能。
而且,转子铁芯端面两侧的粘弹性材料(第一端部减振件61和第二端部减振件62)得以连接,在实际制造过程中,可利用模具一体成型两侧端部填充阻尼材料,提升电机的可制造性。
在一些具体地实施例中,第一端部减振件61、第二端部减振件62、内连接减振件65、外连接减振件63、中间连接减振件64和周向连接减振件66一体注塑形成。由此,减振件与转子铁芯的连接紧密可靠,不易脱离,提高了稳定性。
在一些实施例中,粘弹性材料的损耗因子大于等于0.15,由此可以在电机转子运行时 保证电磁力波得到有效吸收及衰减。
进一步地,粘弹性材料的邵氏硬度为20度-80度,由此提高电机的可制造性。例如邵氏硬度为30度、40度、50度。
在一些实施例中,永磁体20在转子铁芯10的轴向上的长度大于磁体槽102的轴向长度,永磁体20的第一端从磁体槽102内伸出并配合在第一端部减振件61内,永磁体20的第二端从磁体槽102内伸出并配合在第二端部减振件62内。本实施例的转子组件,不但提升了电机的电磁性能,降低了能耗,还能使转子组件的减振件承受更大的扭矩。
在一些实施例中,如图1、3、6、8所示,第一传动件51的外周壁上设有第一传动径向凸起510和第一传动径向开口槽511,第一传动径向开口槽511位于相邻第一传动径向凸起510之间。第一端部减振件61具有第一中心孔617,第一中心孔617的周壁上设有第一减振径向凸起616和第一径向减振向内开口槽615,第一径向减振向内开口槽615位于相邻第一减振径向凸起616之间。第一传动径向凸起510配合在第一径向减振向内开口槽615内,第一减振径向凸起616配合在第一传动径向开口槽511内。
如图1、3、6、8、9所示,第一传动件51的外周壁上设有多个第一传动径向凸起510和多个第一传动径向开口槽511,第一传动径向开口槽511的锥形角为α≥5°,且径向向外渐缩。多个第一传动径向凸起510沿转子铁芯10的周向间隔布置,每相邻两个第一传动径向凸起510之间形成一个第一传动径向开口槽511。
第一端部减振件61的第一中心孔617的周壁上设有多个第一减振径向凸起616和多个第一径向减振向内开口槽615,多个第一减振径向凸起616沿转子铁芯10的周向间隔布置,每相邻两个第一减振径向凸起616之间形成一个第一径向减振向内开口槽615。
第一传动件51设在第一端部减振件61内,且第一传动径向凸起510配合在第一径向减振向内开口槽615内,第一减振径向凸起616配合在第一传动径向开口槽511内。
进一步地,第二传动件52的外周壁上设有第二传动径向凸起520和第二传动径向开口槽521,第二传动径向开口槽521位于相邻第二传动径向凸起520之间。第二端部减振件62具有第二中心孔(未示出),第二中心孔的周壁上设有第二减振径向凸起(未示出)和第二径向减振开口槽(未示出),第二径向减振开口槽位于相邻第二减振径向凸起之间。第二传动径向凸起520配合在第二减振径向开口槽内,第二减振径向凸起配合在第二传动径向开口槽521内。具体地,第二传动件52与第二端部减振件62的配合方式可以参考第一传动件51与第一端部减振件61的配合方式。
在一些实施例中,永磁体20在转子铁芯10的轴向上的长度大于磁体槽102的轴向长度,永磁体20的第一端从磁体槽102内伸出并配合在第一端部减振件61内,永磁体20的第二端从磁体槽102内伸出并配合在第二端部减振件62内。本实施例的转子组件,不但提 升了电机的电磁性能,降低了能耗,还能使转子组件的减振件承受更大的扭矩。
下面参考附图1-11描述根据本申请的一些具体示例性的转子组件。
如图1-5所示,根据本申请实施例的转子组件100包括转子铁芯10、多个永磁体20、转轴30、传动件50和减振件60。
转子铁芯10具有转轴孔101、多个磁体槽102、多个轴向贯通孔103和多个磁桥孔104。转轴孔101设在转子铁芯10的大体中心位置且沿转子铁芯10的轴向贯通转子铁芯10。多个磁体槽102沿转子铁芯10的周向围绕转轴孔101均匀间隔布置。任意相邻磁体槽102之间设有一个轴向贯通孔103。
转子铁芯10由多个转子冲片沿该转子铁芯10的轴向叠置而成,其中多个转子冲片中位于左端部分和右端部分的为全连桥片110,位于中间部分的为半连桥冲片120。
转子冲片包括冲片本体部111、外磁桥112、内磁桥113和磁极114。全连桥冲片120的多个磁极114中,每个磁极114通过一个内磁桥113与冲片本体部111相连,冲片本体部111的外周设置多个间隔布置的突起115,相邻内磁桥113之间设有一个突起115,半连桥冲片110的外磁桥112封闭。
半连桥冲片120的外磁桥112在相邻磁极114之间断开。半连桥冲片120的多个磁极114中,一部分磁极114通过内磁桥113与冲片本体部111相连,另一部分磁极114与冲片本体部111在转子铁芯10的径向上间隔开,其中一部分磁极114和另一部分磁极114沿转子铁芯10的周向交替布置。中间部分的相邻半连桥冲片110中,一个半连桥冲片110相对另一个半连桥冲片110沿转子铁芯10的周向旋转一个磁极114。由此转子铁芯的内磁桥在轴向上形成交替连接和断开的结构,能提升电机的电磁性能,从而降低能耗。
半连桥冲片120的多个内磁桥113中的一部分内磁桥113设有沿转子铁芯10的周向贯通该内磁桥113的磁桥孔104,在转子铁芯10的轴向上相邻的半连桥冲片120的内磁桥113中,一个半连桥冲片120的内磁桥113中设有磁桥孔104,另一个半连桥冲片120的内磁桥113中没有磁桥孔104。
多个永磁体20分别对应地设在多个磁体槽102内,以使多个永磁体20沿转子铁芯10的周向间隔布置。每个永磁体20的内表面与对应地磁体槽102的内底面之间具有空隙105。
转轴30的轴向与转子铁芯10的轴向大体一致且通过转轴孔101穿设在转子铁芯10上,转轴30与转子铁芯10之间具有间隙。
减振件60包括第一端部减振件61、第二端部减振件62、外连接减振件63、中间连接减振件64、内连接减振件65和周向连接减振件66。减振件6由粘弹性材料一体注塑形成,且粘弹性材料的损耗因子大于等于0.15,粘弹性材料的邵氏硬度为20度-80度。
第一端部减振件61连接在转子铁芯10的左端面,第二端部减振件62连接在转子铁芯 10的右端面,转轴30沿从左向右的方向依次贯穿第一端部减振件61、转子铁芯10和第二端部减振件62,第一端部减振件61的内周与转轴30的外周直接配合,且第二端部减振件62的内周与转轴30的外周直接配合。
第一端部减振件61和第二端部减振件62均包括板部610和凸台部611。板部610的外周面设有开口612,且开口612为多个,多个开口612沿板部610的周向间隔布置。第一端部减振件61的凸台部611从第一端部减振件61的左端面向左凸出,第二端部减振件62的凸台部621从第二端部减振件62的右端面向右凸出。
第一端部减振件61的第一中心孔617的周壁上设有多个第一减振径向凸起616和多个第一径向减振向内开口槽615,多个第一减振径向凸起616沿转子铁芯10的周向间隔布置,每相邻两个第一减振径向凸起616之间形成一个第一径向减振向内开口槽615。
第二端部减振件62具有第二中心孔,第二中心孔的周壁上设有多个第二减振径向凸起和多个第二径向减振开口槽,多个第二减振径向凸起沿转子铁芯10的周向间隔布置,每相邻两个第二减振径向凸起之间形成一个第二径向减振开口槽。
内连接减振件65设在转轴30与转子铁芯10之间的间隙内,且内连接减振件65的左端与第一端部减振件61相连,内连接减振件65的右端与第二端部减振件62相连。
外连接减振件63设在轴向贯通孔103内,且外连接减振件63的左端与第一端部减振件61相连,外连接减振件63的右端与第二端部减振件62相连。由此外连接减振件63为多个,多个外连接减振件63沿转子铁芯10的周向间隔布置且围绕在内连接减振件65外侧。
中间连接减振件64设在空隙105内,中间连接减振件64的左端与第一端部减振件61相连,中间连接减振件64的右端与第二端部减振件62相连。由此中间连接减振件64为多个,多个中间连接减振件64沿转子铁芯10的周向间隔布置,且中间连接减振件64设在外连接减振件63和内连接减振件65之间。
周向连接减振件66布置成沿转子铁芯10的轴向间隔布置的多排,每一排包括多个沿转子铁芯10的周向间隔布置的周向连接减振件66,其中每一排的多个周向连接减振件66连接相邻的中间连接减振件64。
第一端部减振件61、第二端部减振件62、中间连接减振件64、外连接减振件63、内连接减振件65和周向连接减振件66一体注塑形成,且材料为橡胶或热塑性弹性体。由此,减振件具有较低的硬度和刚度,减振效果良好,且与转子铁芯的连接紧密可靠,不易脱离,提高了稳定性。
传动件50包括第一传动件51和第二传动件52。第一传动件51的外周壁上设有多个第一传动径向凸起510和多个第一传动径向开口槽511,多个第一传动径向凸起510沿转子铁芯10的周向间隔布置,每相邻两个第一传动径向凸起510之间形成一个第一传动径向开 口槽511。第一传动件51设在第一端部减振件61内,且第一传动径向凸起510配合在第一径向减振向内开口槽615内,第一减振径向凸起616配合在第一传动径向开口槽511内。
第一凸台514朝向转子铁芯10的左端面,第一基体513与第一端部减振件61的第一中心孔617配合,第一凸台514位于第一端部减振件61内部配合。第一基体513和第一凸台514均设有第一通孔,转轴30通过相应的第一通孔贯通第一基体513和第一凸台514。第一凸台514与转子铁芯10的第一端面在转子铁芯10的轴向上的最小距离为L1,且L1>0.5毫米。第一凸台514与永磁体20在转子铁芯10的径向上的最小间隙为L2,且L2>0.5毫米;第一基体513与永磁体20在转子铁芯10的轴向上的最小间隙为L3,且L3>0.5毫米。
第二传动件52的外周壁上设有多个第二传动径向凸起520和多个第二传动径向开口槽521,多个第二传动径向凸起520沿转子铁芯10的周向间隔布置,每相邻两个第二传动径向凸起520之间形成一个第二传动径向开口槽521。第二传动件52设在第二端部减振件62内,且第二传动径向凸起520配合在第二减振径向开口槽内,第二减振径向凸起配合在第二传动径向开口槽521内。
第二凸台524朝向转子铁芯10的右端面,第二基体523与右端部减振件62的第二中心孔627配合,第二凸台524与第二端部减振件62内部的凸台接口(未示出)接合,第二传动件52安装在第二端部减振件62内。第二凸台524与转子铁芯10的右端面在转子铁芯10的轴向上的最小距离为L1,且L1>0.5毫米;第二凸台524与永磁体20在转子铁芯10的径向上的最小间隙为L2,且L2>0.5毫米;第二基体523与永磁体20在转子铁芯10的轴向上的最小间隙为L3,且L3>0.5毫米。
转轴30沿从左向右的方向依次贯穿第一传动件51、第一端部减振件61的一部分、转子铁芯10、第二端部减振件62的一部分和第二传动件52,且第一传动件51、第一端部减振件61的一部分、转子铁芯10、第二端部减振件62的一部分和第二传动件52均与转轴30直接配合,由此,转子铁芯10转动时,带动第一端部减振件61和第二端部减振件62转动,进而通过第一端部减振件61的一部分、第一传动件51、第二端部减振件62的一部分和第二传动件52驱动转轴30旋转。
根据本申请实施例的转子组件的具体的工艺过程可以为:
分别制作转子铁芯、永磁体、转轴和传动件;
通过转轴孔将转子铁芯套入到转轴上;
将组装好的转子铁芯、转轴和传动件一起放入到模具中定位好,并将多个永磁体分别对应地插装到转子铁芯的多个磁体槽内;
通过注塑成型工艺用橡胶或粘弹性材料将转子铁芯、永磁体、转轴和传动件成型为一 体包塑结构,其中橡胶或粘弹性材料成型后的结构即为减振件。
根据本申请的实施例的电机包括上述任一实施例的转子组件100。
根据本申请实施例的电机,通过对转子组件的结构进行改进,能够在转子铁芯的至少端部设置减振件和传动件,且减振件的至少部分可与转轴直接配合,减振件的其它部分可通过传动件与转轴配合,避免了转轴与转子铁芯的刚性连接,同时,增大了减振件的材料量,提高整个电机的降噪和减振效果。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本申请中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将 本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (24)

  1. 一种转子组件,其特征在于,包括:
    转子铁芯,所述转子铁芯具有磁体槽和转轴孔;
    永磁体,所述永磁体设在所述磁体槽内;
    转轴,所述转轴设在所述转轴孔内且所述转轴与所述转子铁芯之间具有间隙,所述转轴的第一端和第二端从所述转轴孔内伸出;
    第一端部减振件,所述第一端部减振件设在所述转子铁芯的第一端面上且与所述转子铁芯相连;
    第一传动件,所述传动件设在所述第一端部减振件内,所述第一传动件与所述转轴配合,所述转子铁芯至少依次通过所述第一端部减振件和所述第一传动件驱动所述转轴。
  2. 根据权利要求1所述的所述的转子组件,其特征在于,所述第一端部减振件的一部分与所述转轴直接配合,所述转子铁芯通过所述第一端部减振件的所述一部分以及依次通过所述第一端部减振件和所述第一传动件驱动所述转轴。
  3. 根据权利要求2所述的所述的转子组件,其特征在于,所述一部分在所述转轴的轴向上的厚度为L,其中L≥0.5毫米。
  4. 根据权利要求1所述的转子组件,其特征在于,所述第一传动件包括第一基体和第一凸台,所述第一凸台从所述第一基体朝向所述转子铁芯的第一端面凸出,所述转轴贯穿所述第一基体和所述第一凸台;所述第一凸台与所述转子铁芯的第一端面在所述转子铁芯的轴向上的最小距离为L1,且L1>0.5毫米。
  5. 根据权利要求4所述的所述的转子组件,其特征在于,所述第一凸台与所述永磁体在所述转子铁芯的径向上的最小间隙为L2,且L2>0.5毫米,所述第一基体与所述永磁体在所述转子铁芯的轴向上的最小间隙为L3,且L3>0.5毫米。
  6. 根据权利要求1-5中任一项所述的所述的转子组件,其特征在于,还包括第二端部减振件,所述第二端部减振件设在所述转子铁芯的第二端面上且与所述转子铁芯相连,所述第二端部减振件与所述转轴直接配合,所述转子铁芯通过所述第二端部减振件以及依次通过所述第一端部减振件和所述第一传动件驱动所述转轴。
  7. 根据权利要求6所述的转子组件,其特征在于,所述第一端部减振件和所述第二端部减振件的材料均为粘弹性材料。
  8. 根据权利要求7所述的转子组件,其特征在于,所述粘弹性材料的损耗因子大于等于0.15,所述粘弹性材料的邵氏硬度为20度-80度。
  9. 根据权利要求6所述的转子组件,其特征在于,还包括外连接减振件,所述转子铁 芯具有位于相邻磁体槽之间的轴向贯通孔,所述外连接减振件设在所述轴向贯通孔内,所述外连接减振件的第一端与所述第一端部减振件相连,所述外连接减振件的第二端与所述第二端部减振件相连。
  10. 根据权利要求1-5中任一项所述的转子组件,其特征在于,还包括:
    第二端部减振件,所述第二端部减振件设在所述转子铁芯的第二端面上且与所述转子铁芯相连;
    第二传动件,所述第二传动件设在所述第二端部减振件内,所述第二传动件与所述转轴配合,所述转子铁芯还依次通过所述第二端部减振件和所述第二传动件驱动所述转轴。
  11. 根据权利要求10所述的所述的转子组件,其特征在于,所述第一端部减振件的一部分与所述转轴直接配合且所述第二端部减振件的一部分与所述转轴直接配合。
  12. 根据权利要求10所述的所述的转子组件,其特征在于,所述第一端部减振件和所述第二端部减振件中的每一个端部减振件设有用于露出所述转子铁芯一部分的开口。
  13. 根据权利要求10所述的转子组件,其特征在于,还包括外连接减振件,所述转子铁芯具有位于相邻磁体槽之间的轴向贯通孔,所述外连接减振件设在所述轴向贯通孔内,所述外连接减振件的第一端与所述第一端部减振件相连,所述外连接减振件的第二端与所述第二端部减振件相连。
  14. 根据权利要求9或13所述的转子组件,其特征在于,还包括内连接减振件,所述内连接减振件设在所述转轴与所述转子铁芯之间的间隙内,所述内连接减振件的第一端与所述第一端部减振件相连,所述内连接减振件的第二端与所述第二端部减振件相连。
  15. [根据细则26改正07.01.2021] 
    根据权利要求14所述的转子组件,其特征在于,还包括中间连接减振件,所述永磁体的内表面与所述磁体槽的内底面之间具有空隙,所述中间连接减振件设在所述空隙内,所述中间连接减振件的第一端与所述第一端部减振件相连,所述中间连接减振件的第二端与所述第二端部减振件相连。
  16. 根据权利要求15所述的转子组件,其特征在于,所述转子铁芯由多个转子冲片沿该转子铁芯的轴向叠置而成,所述转子冲片包括全连桥冲片和半连桥冲片,所述转子铁芯具有第一端部、第二端部和位于所述第一端部和第二端部之间的中间段,所述第一端部和第二端部由多个所述全连桥冲片叠置而成,所述中间段由多个所述半连桥冲片叠置而成。
  17. 根据权利要求16所述的转子组件,其特征在于,所述中间段中在所述转子铁芯的轴向上相邻的半连桥冲片中,一个半连桥冲片相对另一个半连桥冲片沿所述转子铁芯的周向旋转一个磁极。
  18. 根据权利要求16所述的转子组件,其特征在于,所述半连桥冲片的多个内磁桥中的一部分内磁桥设有沿所述转子铁芯的周向贯通该内磁桥的磁桥孔,在所述转子铁芯的轴 向上相邻的半连桥冲片的内磁桥中,一个半连桥冲片的内磁桥中设有所述磁桥孔,另一个半连桥冲片的内磁桥中没有磁桥孔,所述磁桥孔内设有周向连接减振件,相邻中间连接减振件通过所述周向连接减振件彼此相连。
  19. 根据权利要求18所述的转子组件,其特征在于,所述第一端部减振件、所述第二端部减振件、所述内连接减振件、所述外连接减振件、所述中间连接减振件和所述周向连接减振件的材料均为粘弹性材料。
  20. 根据权利要求19所述的转子组件,其特征在于,所述第一端部减振件、所述第二端部减振件、所述内连接减振件、所述外连接减振件、所述中间连接减振件和所述周向连接减振件一体注塑形成。
  21. 根据权利要求19所述的转子组件,其特征在于,所述粘弹性材料的损耗因子大于等于0.15,所述粘弹性材料的邵氏硬度为20度-80度。
  22. 根据权利要求10所述的转子组件,其特征在于,所述永磁体在所述转子铁芯的轴向上的长度大于所述磁体槽的轴向长度,所述永磁体的第一端从所述磁体槽内伸出并配合在所述第一端部减振件内,所述永磁体的第二端从所述磁体槽内伸出并配合在所述第二端部减振件内。
  23. 根据权利要求1所述的所述的转子组件,其特征在于,所述第一传动件的外周壁上设有第一传动径向凸起和位于相邻第一传动径向凸起之间的第一传动径向开口槽,所述第一端部减振件具有第一中心孔,所述第一中心孔的周壁上设有第一减振径向凸起和位于相邻第一减振径向凸起之间的第一径向减振开口槽,所述第一传动径向凸起配合在所述第一减振径向开口槽内,所述第一减振径向凸起配合在所述第一传动径向开口槽内。
  24. 一种电机,其特征在于,包括如权利要求1-23中任一项所述转子组件。
PCT/CN2020/137397 2020-06-16 2020-12-17 转子组件和具有它的电机 WO2021253767A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022540759A JP7393555B2 (ja) 2020-06-16 2020-12-17 ロータアセンブリ及びそれを備えるモータ
EP20941289.9A EP4064525B1 (en) 2020-06-16 2020-12-17 Rotor assembly and motor having same
KR1020227019903A KR102667263B1 (ko) 2020-06-16 2020-12-17 로터 어셈블리 및 이를 구비하는 모터

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010550022.0A CN111884370B (zh) 2020-06-16 2020-06-16 一种转子组件和电机
CN202010550022.0 2020-06-16
CN202010550859.5A CN111769666A (zh) 2020-06-16 2020-06-16 转子组件和具有它的电机
CN202010550859.5 2020-06-16

Publications (1)

Publication Number Publication Date
WO2021253767A1 true WO2021253767A1 (zh) 2021-12-23

Family

ID=79269109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137397 WO2021253767A1 (zh) 2020-06-16 2020-12-17 转子组件和具有它的电机

Country Status (4)

Country Link
EP (1) EP4064525B1 (zh)
JP (1) JP7393555B2 (zh)
KR (1) KR102667263B1 (zh)
WO (1) WO2021253767A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206628908U (zh) * 2017-03-17 2017-11-10 广东威灵电机制造有限公司 转子结构及电机
CN208112348U (zh) * 2018-05-17 2018-11-16 珠海凯邦电机制造有限公司 转子组件和永磁电机
US20190123629A1 (en) * 2018-12-17 2019-04-25 Konstantin Hadziristic Tubular linear induction motor suitable for transportation
CN209692451U (zh) * 2019-05-21 2019-11-26 中山大洋电机股份有限公司 一种减震转子组件及其应用的电机
CN111769666A (zh) * 2020-06-16 2020-10-13 广东威灵电机制造有限公司 转子组件和具有它的电机
CN111769664A (zh) * 2020-06-16 2020-10-13 广东威灵电机制造有限公司 一种减振转子组件和电机
CN111769665A (zh) * 2020-06-16 2020-10-13 广东威灵电机制造有限公司 减振转子组件和具有它的电机
CN111884369A (zh) * 2020-06-16 2020-11-03 广东威灵电机制造有限公司 转子组件和电机
CN111884370A (zh) * 2020-06-16 2020-11-03 广东威灵电机制造有限公司 一种转子组件和电机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312852A (ja) * 1994-05-13 1995-11-28 Yaskawa Electric Corp 永久磁石形回転子の製造方法
JPH0819232A (ja) * 1994-06-30 1996-01-19 Shibaura Eng Works Co Ltd 電動機の回転子
JPH114556A (ja) * 1997-06-11 1999-01-06 Fujitsu General Ltd 電動機の回転子
JP4495802B2 (ja) 1999-08-19 2010-07-07 日本電産シバウラ株式会社 永久磁石形回転子
JP2009005477A (ja) 2007-06-20 2009-01-08 Nsk Ltd 電動パワーステアリング装置用ブラシレスモータ
CN102111025B (zh) * 2009-12-25 2013-03-27 中山大洋电机股份有限公司 一种电动机的永磁转子
JP6281147B2 (ja) 2012-08-07 2018-02-21 日本電産株式会社 ロータおよびモータ
CN204481589U (zh) * 2015-04-08 2015-07-15 江苏富天江电子电器有限公司 一种具有减震功能的转子结构
JP6640621B2 (ja) 2016-03-17 2020-02-05 株式会社ミツバ 電動機用ロータ、およびブラシレスモータ
CN107257176B (zh) * 2017-07-31 2024-04-09 威灵(芜湖)电机制造有限公司 转子和具有该转子的电机和压缩机
JP2019122190A (ja) 2018-01-10 2019-07-22 日本電産テクノモータ株式会社 ロータ、モータおよびロータの製造方法
CN109980821B (zh) * 2019-05-21 2024-01-09 中山大洋电机股份有限公司 一种减震转子组件及其应用的电机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206628908U (zh) * 2017-03-17 2017-11-10 广东威灵电机制造有限公司 转子结构及电机
CN208112348U (zh) * 2018-05-17 2018-11-16 珠海凯邦电机制造有限公司 转子组件和永磁电机
US20190123629A1 (en) * 2018-12-17 2019-04-25 Konstantin Hadziristic Tubular linear induction motor suitable for transportation
CN209692451U (zh) * 2019-05-21 2019-11-26 中山大洋电机股份有限公司 一种减震转子组件及其应用的电机
CN111769666A (zh) * 2020-06-16 2020-10-13 广东威灵电机制造有限公司 转子组件和具有它的电机
CN111769664A (zh) * 2020-06-16 2020-10-13 广东威灵电机制造有限公司 一种减振转子组件和电机
CN111769665A (zh) * 2020-06-16 2020-10-13 广东威灵电机制造有限公司 减振转子组件和具有它的电机
CN111884369A (zh) * 2020-06-16 2020-11-03 广东威灵电机制造有限公司 转子组件和电机
CN111884370A (zh) * 2020-06-16 2020-11-03 广东威灵电机制造有限公司 一种转子组件和电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4064525A4 *

Also Published As

Publication number Publication date
KR20220098224A (ko) 2022-07-11
EP4064525C0 (en) 2024-03-13
EP4064525A1 (en) 2022-09-28
EP4064525B1 (en) 2024-03-13
JP7393555B2 (ja) 2023-12-06
EP4064525A4 (en) 2023-07-12
JP2023508742A (ja) 2023-03-03
KR102667263B1 (ko) 2024-05-17

Similar Documents

Publication Publication Date Title
KR101242680B1 (ko) 방수구조를 갖는 스테이터, 이를 이용한 워터펌프 모터 및 워터펌프
CN111769666A (zh) 转子组件和具有它的电机
WO2013121611A1 (ja) ロータコア、モータ、およびモータの製造方法
WO2013121590A1 (ja) 回転電機
CN112771770A (zh) 电动致动器
JP6210006B2 (ja) アキシャルギャップ型回転電機
CN108551219B (zh) 转子总成和电机
CN111769664A (zh) 一种减振转子组件和电机
CN202374067U (zh) 永磁转子及永磁电机
CN111786484B (zh) 转子组件及具有该转子组件的电机
WO2021253767A1 (zh) 转子组件和具有它的电机
CN113381541B (zh) 转子组件和电机
CN111884370B (zh) 一种转子组件和电机
KR20140077556A (ko) 모터
CN111884369B (zh) 转子组件和电机
CN111769665B (zh) 减振转子组件和具有它的电机
CN213243661U (zh) 一种减振转子组件和电机
CN213243662U (zh) 一种转子组件和电机
CN213243659U (zh) 一种减振转子组件和具有它的电机
WO2022142464A1 (zh) 定子、电机、压缩机和制冷设备
CN112615446A (zh) 转子冲片、转子组件和电机
CN113809848A (zh) 减振转子组件和电机
CN215419782U (zh) 转子冲片、转子组件和电机
CN220570374U (zh) 磁钢内嵌式转子组件、电机、风机组件
CN216056489U (zh) 电机的磁环组件和电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227019903

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022540759

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020941289

Country of ref document: EP

Effective date: 20220623

NENP Non-entry into the national phase

Ref country code: DE