WO2021253580A1 - 一种辐射降温薄膜、其制备方法及其应用 - Google Patents

一种辐射降温薄膜、其制备方法及其应用 Download PDF

Info

Publication number
WO2021253580A1
WO2021253580A1 PCT/CN2020/105493 CN2020105493W WO2021253580A1 WO 2021253580 A1 WO2021253580 A1 WO 2021253580A1 CN 2020105493 W CN2020105493 W CN 2020105493W WO 2021253580 A1 WO2021253580 A1 WO 2021253580A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
radiation cooling
template
micro
curing
Prior art date
Application number
PCT/CN2020/105493
Other languages
English (en)
French (fr)
Inventor
周涵
张海文
钱珍莉
范同祥
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2021253580A1 publication Critical patent/WO2021253580A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Definitions

  • the invention belongs to the technical field of functional composite materials, and particularly relates to a radiation cooling film, a preparation method and application thereof.
  • cooling technology With the improvement of people's living standards and the development of urbanization, there is a huge demand for cooling technology and cooling equipment.
  • Commonly used cooling equipment such as refrigerators and air conditioners, rely on vapor compression refrigeration systems to achieve cooling effects.
  • these cooling devices will not only consume a lot of energy, but also the use of refrigerants (such as hydrofluorocarbons) will cause global warming effects, which will further cause serious harm to the environment.
  • refrigerants such as hydrofluorocarbons
  • most refrigeration technologies consume non-renewable fossil resources, they actually generate more heat accumulation, making the earth hotter. Therefore, the large amount of heat generated by the refrigeration equipment during operation will aggravate the greenhouse effect and the urban heat island effect. Studies have shown that the cooling system consumes 15% of the world's electricity and causes 10% of greenhouse gas emissions.
  • Radiant cooling utilizes transparent atmospheric windows to radiate heat to outer space. Under ideal climate conditions, radiant cooling can achieve nearly 70% energy savings. Compared with traditional cooling devices, radiant cooling devices do not require any external energy supply devices, do not consume electricity and energy, and do not emit CO 2 and other greenhouse gases and other harmful substances, resulting in a net cooling effect. It saves energy and has no pollution, conforms to the trend of today's sustainable development, and is a green and environmentally friendly passive refrigeration method.
  • the average temperature of the troposphere is generally around 250K, and the average temperature in most areas throughout the year is much lower than this temperature, and the thermal black body of the cosmic microwave background outside the atmosphere
  • the radiation is around 2.7K, so the two can be used as a "cooling library” for radiation cooling devices on the earth.
  • the Earth’s atmosphere has a high transmittance in the mid-infrared wavelength range of 8-13 ⁇ m, which is called a transparent atmospheric window.
  • the transparent atmosphere window allows objects to exchange heat with the "cooling library" through the thermal radiation of this waveband.
  • a system for radiant cooling may include a top layer, the top layer including one or more polymers, wherein the top layer has a high emissivity in at least a portion of the thermal spectrum and an approximate Is zero electromagnetic extinction coefficient, nearly zero absorptivity and high transmittance, and further includes a reflective layer including one or more metals, wherein the reflective layer has at least a part of the solar spectrum High reflectivity.
  • the preparation of this technology is relatively complicated and the cost is relatively high, and the radiant cooling effect still needs to be further improved.
  • Another example is the Chinese patent CN 109070695 A, titled "Radiant Cooling Structure and System”.
  • the technical feature of this patent is to provide a polymer-based selective radiant cooling structure.
  • the radiant cooling structure includes a polymer or polymer-based composite material. Selective emission layer.
  • Typical selective radiant cooling structures take the form of sheets, films or coatings.
  • this technology is difficult to obtain high visible-near infrared reflectance and atmospheric window emissivity at the same time.
  • it is difficult for the single-layer material of this method to meet the simultaneous increase of visible and near infrared reflectance and infrared emissivity. Therefore, ceramics are needed.
  • a metal layer is required to increase the reflectance in the visible and near-infrared bands, and the preparation requirements are more complicated.
  • the present invention provides a radiation cooling film, which utilizes the high reflectivity of the film itself to reduce the absorption of sunlight, and at the same time, removes excess heat from the main body through the form of heat radiation to the outside, so as to achieve the effect of passive cooling;
  • the invention also provides a method for preparing a radiation cooling film, which utilizes multi-etching micro-nano processing, spin coating, and curing to prepare an organic-inorganic composite radiation cooling film with a micro-nano photonic structure, and construct a surface micro-nano photon structure, and It can prepare low-cost large-area composite radiant cooling film, which has strong universality.
  • a radiation cooling film The raw materials of the film include ceramic particles, an organic solution, and a curing agent.
  • the ceramic particles, organic solution, and curing agent are mixed to form a ceramic particle mixed organic curing precursor, and the film is the ceramic particle mixed organic curing
  • the precursor liquid is cured and formed, and the surface of the film is formed with a micro-nano photonic structure array.
  • the micro-nano photonic structure array includes a plurality of arrayed micro-nano photonic structural elements, forming a uniform array structure on the surface of the film.
  • the morphology of the structural element of the micro-nano photonic structure array is one or more of a pyramidal structure, a prismatic structure, a cone structure, an inverted pyramid structure, an inverted prismatic structure, and an inverted cone structure.
  • the feature width of the structural element is 0.5 ⁇ m to 20 ⁇ m, and the feature height is 0.5 ⁇ m to 20 ⁇ m; the thickness of the film is 100 ⁇ m to 2000 ⁇ m.
  • the ceramic particles are selected from one or more of aluminum oxide, zinc oxide, zirconium oxide, magnesium oxide, boron nitride, yttrium oxide, and titanium oxide.
  • the average particle size of the ceramic particles is 0.2-10 microns
  • the morphology of the ceramic particles is one or more of angular, quasi-spherical, and spherical
  • the ceramic particles are mixed with the organic curing precursor liquid in the ceramic particles.
  • the mass fraction in 5%-80%.
  • the organic solution is an organic polymer, and the organic polymer is selected from one of polydimethylsiloxane, polytetrafluoroethylene, and polyvinyl chloride;
  • the curing agent makes ceramic particles, organic solution ,
  • the ceramic particles formed by mixing the curing agent are mixed with the organic curing precursor liquid to be cured under heating or standing for a long time, and the curing agent includes a resin.
  • the mass ratio of the organic curing precursor liquid mixed with the curing agent and the ceramic particles is 1:5 to 1:20.
  • the present invention also provides a method for preparing the radiation cooling film.
  • the preparation of the radiation cooling film includes the following steps:
  • Step S1 mixing the ceramic particles, organic solution, and curing agent to prepare a ceramic particle mixed organic curing precursor liquid
  • Step S2 Place the template after the multi-etching micro-nano process on the turntable of the homogenizer, and connect it to the vacuum pump, so that the template can be adsorbed by the turntable of the homogenizer;
  • Step S3 Coating the ceramic particle mixed organic curing precursor liquid of step S1 on the template, and uniformly spin-coating the ceramic particle mixed organic curing precursor liquid on the template through a homogenizer;
  • Step S4 Put the template uniformly coated with the ceramic particles mixed with the organic curing precursor liquid on the heating plate for heating and curing, and then cooling to room temperature;
  • Step S5 The cured organic-inorganic composite radiation cooling film with a micro-nano photonic structure is peeled off from the multi-etching micro-nano processing template to obtain a radiation cooling film.
  • Step S6 Repeat the above steps S1 to S5 to prepare a plurality of organic-inorganic composite radiation cooling films with a micro-nano photonic structure, which are laid tightly on a flat plate by cutting;
  • Step S7 coating the ceramic particles mixed with the organic curing precursor liquid on the above-mentioned flat film, and performing a second spin coating;
  • Step S8 placing the above-mentioned plate covered with ceramic particles mixed with the organic solidification precursor liquid on a heating plate for heating and solidification, and then cooling to room temperature;
  • Step S9 The large-area organic-inorganic composite radiation cooling film with a micro-nano photonic structure formed after curing is peeled off from the template to obtain a large-area radiation cooling film.
  • the step S1 to form a ceramic particle mixed organic solidification precursor includes the following steps:
  • Step S11 Put the ceramic particles into the organic solution, and mix the two uniformly through thorough stirring;
  • the ceramic particles are white powders of aluminum oxide, zinc oxide, zirconium oxide, magnesium oxide, boron nitride, yttrium oxide, and titanium oxide
  • the organic solution is an organic polymer, and the organic polymer is selected from one of the components of a transparent solution of polydimethylsiloxane, polytetrafluoroethylene, and polyvinyl chloride;
  • Step S12 adding a curing agent to the solution obtained in step S11, and stirring to make the mixture uniform;
  • Step S13 Put the solution obtained in step S12 in a vacuum drying oven, and evacuate the air from the solution, so that no bubbles will eventually emerge in the solution;
  • Step S14 Open the vent valve of the vacuum box, and allow the air pressure in the vacuum box to slowly return to the same initial state as the outside air pressure after 5 to 10 minutes, that is, a ceramic particle mixed organic solidification precursor liquid is obtained.
  • the time for vacuuming in the vacuum drying oven in step S13 is 5-120 minutes.
  • the processing method of the multi-etching micro-nano processing template includes one or more of ultraviolet lithography, wet chemical etching, dry etching, nanoimprinting, ultra-precision processing, and laser processing;
  • the surface of the template has an ordered array of nanometer or micrometer scales;
  • the material of the template is one of silicon wafers, silicon wafers coated with silicon dioxide on the surface, silicon wafers coated with silicon nitride on the surface, stainless steel, and iron-nickel alloys.
  • the morphology of the surface structure array of the template is one or more of pyramid structure, prismatic structure, conical structure, inverted pyramid structure, inverted prism structure, and inverted cone structure; the surface structure array
  • the feature width of the structural element is 0.5 ⁇ m to 20 ⁇ m, and the feature height is 0.5 ⁇ m to 20 ⁇ m.
  • step S3 the ceramic particles mixed with organic curing precursor liquid described in step S1 are coated on the template, and after standing for 1-20 minutes, the ceramic particles are mixed with the organic curing precursor liquid uniformly by a homogenizer Spin coating onto the template.
  • the rotation speed of the homogenizer is set to a single rotation speed or multiple rotation speeds ranging from 100 rpm to 3000 rpm, and the running time is 10s to 200s.
  • the curing temperature is set to a single temperature or multiple temperature gradients between 50°C and 120°C, and the curing time is 10 minutes to 10 hours.
  • step S6 when tiling, the side with the micro-nano photonic structure peeled off faces the plate, and the choice of the plate is one of polycarbonate plate, glass plate, and metal plate.
  • the above-mentioned film has high reflectivity in the sunlight waveband (0.3-2 microns), high emissivity in the atmospheric window waveband (8-13 microns), can reduce the ambient temperature under direct sunlight, and has a higher average cooling power.
  • the film has good flexibility and strength as well as excellent hydrophobic properties, and has achieved good results in applications such as building roof cooling, human body wearable cooling, cooling umbrellas, and device heat dissipation.
  • the present invention is based on the following principle: In the visible-near infrared band, it mainly includes two mechanisms to enhance reflectivity. First, light irradiating an organic polymer with a specific photonic structure will cause total internal reflection. On the other hand, due to doping The scale of the ceramic particles matches the scale of the light, so the phenomenon of Mie scattering occurs when the light hits the particles. In the mid-infrared band, there are mainly two theoretical mechanisms for enhancing infrared emissivity. One is that a polymer film with a specific photonic structure can produce a graded gradient refractive index on its surface, which has the effect of enhancing emissivity. The other is ceramic particles.
  • the surface of the film of the present invention is formed with an array of micro-nano photonic structures.
  • the micro-nano photonic structure can increase the reflectivity of the film in the visible and near-infrared band, and the infrared emissivity can be enhanced by changing the gradient refractive index in the mid-infrared band, thereby
  • the internal composition of the film is uniformly mixed, which reduces the difficulty of preparation, and at the same time, it can achieve the effect that can only be achieved by the multi-layer structure;
  • the multi-etching micro-nano processing manufacturing process of the present invention obtains micro-nano structure arrays with different anisotropic morphologies, and the surface of the micro-nano structure array enhances the visible and near-infrared reflectivity and the mid-infrared band emissivity
  • the enhancement of the film has played an important role; this application is directly mixed to prepare a film with a micro-nano photonic structure array on the surface, using the surface structure of the film and the properties of the particle-doped material to achieve the multi-layer effect, which can be seen near
  • the infrared band improves the reflectivity, and the mid-infrared band improves the emissivity; the method is simple, the cost is low, and the universality is strong;
  • this invention uses a general production process, adopting a multi-etching double spin coating vacuum thermal curing process, and for the first time, a large-area organic-inorganic composite radiation cooling film with a micro-nano photonic structure is prepared at a low cost. Insufficient strength of splicing joints and reduced optical effects caused by bonding
  • the organic-inorganic composite film with micro-nano photonic structure prepared by the present invention significantly improves the radiation cooling efficiency.
  • the film has good flexibility and tensile strength, and can be used for refrigeration of small electronic devices and for Wearable cooling clothing;
  • the micro-nano photonic structure on the surface of the film can make it have very good hydrophobic properties.
  • the hydrophobic angle is between 100° and 160°, and it can be made into a umbrella surface; in addition, the film can also be used for mobile phones and other devices. Cooling, the excellent cooling effect can ensure the long-lasting and rapid operation of mobile phones and other devices.
  • the organic-inorganic composite radiation cooling film with micro-nano photonic structure prepared by the present invention has a bright white appearance. (8-13 microns) has an emissivity of 96%, which can be up to 10°C lower than the surrounding environment under light conditions, and has a good radiant cooling and heat dissipation effect.
  • FIGS. 1 to 3 are schematic diagrams of the surface microstructure of the organic-inorganic composite radiation cooling film with micro-nano photonic structure according to the present invention.
  • Example 4 is an optical photograph of the organic-inorganic composite radiation cooling film with a micro-nano photonic structure in Example 1 of the present invention
  • Example 5 is an optical photograph of the organic-inorganic composite radiation cooling film with micro-nano photonic structure in Example 2-5 of the present invention.
  • Example 6 is a visible and near infrared reflectance spectrum of an organic-inorganic composite radiation cooling monolithic film with a micro-nano photonic structure in Example 5 of the present invention
  • FIG. 7 is a mid-infrared emissivity spectrum diagram of an organic-inorganic composite radiation cooling monolithic film with a micro-nano photonic structure in Example 5 of the present invention.
  • Example 8 is a scanning electron microscope photograph of the organic-inorganic composite radiation cooling film with a micro-nano photonic structure in Example 6 of the present invention.
  • Example 9 is an infrared spectrum diagram of the organic-inorganic composite radiation cooling film with a micro-nano photonic structure in Example 7 of the present invention.
  • Example 10 is a visible-near-infrared reflectance spectrum of an organic-inorganic composite radiation cooling film with a micro-nano photonic structure in Example 8 of the present invention.
  • FIG. 11 is a mid-infrared radiance spectrum diagram of the organic-inorganic composite radiation cooling film with a micro-nano photonic structure in Example 8 of the present invention.
  • a radiation cooling film The raw materials of the film include ceramic particles, an organic solution, and a curing agent.
  • the ceramic particles, organic solution, and curing agent are mixed to form a ceramic particle mixed organic curing precursor, and the film is the ceramic particle mixed organic curing
  • the precursor liquid is cured and formed, and the surface of the film is formed with a micro-nano photonic structure array.
  • the micro-nano photonic structure array includes a plurality of arrayed micro-nano photonic structural elements, forming a uniform array structure on the surface of the film.
  • the micro-nano photonic structure array may be a conical structure as shown in FIG. 1, or a prismatic structure as shown in FIG. 2, or a pyramid structure as shown in FIG. 3.
  • the surface structure array of the template has one or more of pyramid structure, prismatic structure, conical structure, inverted pyramid structure, inverted prism structure, and inverted cone structure.
  • the surface of the template is composed of a pyramid groove array with a width of 8 microns, a depth of 6 microns, and an interval of 2 microns. It can be shown in Figure 1; the mixed solution is slowly poured onto the template and left for 20 minutes, then adjust the speed of the homogenizer from 0 to 700RPM for 100s, keep the speed of 500RPM for 30s, and then stop.
  • the temperature of the hot plate is adjusted to 80°C for 2 hours, and then cooled to room temperature; in order to obtain a large area of radiant cooling film, the film needs to be spin-coated twice. Cut the film that has been spin-coated many times into a square, and place it neatly on a flat plastic plate, with the structured side facing down to prevent the structure from being contaminated or covered, and then perform another spin-coating operation, thereby Connect the films. Then transfer the plate to the hot stage, and heat and solidify for two hours at a heating temperature of 100°C. After cooling to room temperature, the film on the template is peeled off to obtain an organic-inorganic composite radiation cooling film with a micro-nano prismatic structure array.
  • the 670 ⁇ m-thick radiation cooling film has a reflectivity of 95% in the sunlight waveband, and an emissivity of 96% in the atmospheric window waveband, and is 8°C lower than the surrounding environment under light conditions.
  • the film has good flexibility and tensile strength, after hundreds of twists and can withstand 4 MPa stress.
  • FIG. 4 The optical photograph of the organic-inorganic composite radiation cooling film with a micro-nano photonic structure in this embodiment is shown in FIG. 4, and the film appears white and has a certain degree of flexibility.
  • the surface of the template is composed of an array of pyramid grooves with a width of 2 microns, a depth of 6 microns, and an interval of 3 microns; the mixed solution is slowly poured onto the template and allowed to stand still. Leave it for 5 minutes, then adjust the speed of the homogenizer from 0 to 500RPM for 10s, keep the speed of 500RPM for 30s, and then stop.
  • the radiant cooling film with a thickness of 1090 ⁇ m has a reflectivity of 94% in the sunlight waveband and an emissivity of 97% in the atmospheric window waveband, and can be 7.2°C lower than the surrounding environment under light conditions.
  • the film has good flexibility and tensile strength, without breaking hundreds of times of torsion, and can withstand a stress of 6 MPa at the same time.
  • the surface morphology of the template is an array of elliptical cylindrical grooves with a width of 15 microns, a depth of 10 microns, and an interval of 5 microns; the mixed solution is slowly poured onto the template and allowed to stand still. Leave it for 5 minutes, then adjust the speed of the homogenizer from 0 to 750RPM for 10s, keep the speed of 750RPM for 15s, and then stop.
  • the 480 ⁇ m-thick radiation cooling film has a reflectivity of 93% in the sunlight waveband and an emissivity of 93% in the atmospheric window waveband, and is 5.1°C lower than the surrounding environment under illumination conditions.
  • the film has good flexibility and tensile strength. It has not been broken after hundreds of twists and can withstand a stress of 4 MPa.
  • the surface of the template is composed of an inverted cone array with a width of 10 microns, a depth of 6 microns, and an interval of 4 microns; the mixed solution is slowly poured onto the template and left for 10 minutes , Then adjust the speed of the homogenizer from 0 to 2000RPM for 5s, keep the speed of 500RPM for 60s, and then stop.
  • the 360 ⁇ m-thick radiation cooling film has a reflectivity of 90% in the sunlight waveband, and an emissivity of 86% in the atmospheric window waveband, and is 2.3°C lower than the surrounding environment under light conditions.
  • the film has good flexibility and tensile strength. It has not been broken after hundreds of twists and can withstand a stress of 8 MPa.
  • the surface of the template is composed of an array of elliptical cylindrical grooves with a width of 6 microns, a depth of 2 microns, and an interval of 10 microns; the mixed solution is slowly poured onto the template and allowed to stand still. Leave it for 15 minutes, then adjust the speed of the homogenizer from 0 to 1050RPM for 60s, keep the speed of 1050RPM for 100s, and then stop.
  • the radiant cooling film with a thickness of 1020 ⁇ m has a reflectivity of 95% in the sunlight waveband and an emissivity of 95% in the atmospheric window waveband, and is 7.7°C lower than the surrounding environment under illumination conditions.
  • the film has good flexibility and tensile strength. It has not been broken after hundreds of twists and can withstand a stress of 4 MPa.
  • Example 2-5 The optical photo of the organic-inorganic composite radiation cooling film with micro-nano photonic structure in Example 2-5 is shown in Figure 5, from left to right, from top to bottom, followed by Examples 2-5, and Figure 5 shows the passing
  • the film materials prepared in the examples are white in appearance, and all have a certain degree of flexibility.
  • Fig. 6 The visible-near-infrared reflectance spectrum of the organic-inorganic composite radiation cooling monolithic film with a micro-nano photonic structure in Example 5 is shown in Fig. 6, which shows that the monolithic film has a higher reflectivity in the visible and near-infrared band.
  • the surface of the template is composed of a groove array with a width of 20 microns, a depth of 2 microns, and an interval of 1 micron; the mixed solution is slowly poured onto the template and left for 10 minutes Then adjust the speed of the homogenizer from 0 to 1000RPM for 15s, keep the speed of 1500RPM for 30s, and then stop.
  • the temperature of the hot plate is adjusted to 100°C, kept for 2 hours, and then cooled to room temperature; in order to obtain a large-area radiant cooling film, the film needs to be spin-coated twice. Cut the film that has been spin-coated many times into a square, and place it neatly on a flat plastic plate, with the structured side facing down to prevent the structure from being contaminated or covered, and then perform another spin-coating operation, thereby Connect the films. Then transfer the plate to the hot stage, and heat and solidify for one hour at a heating temperature of 95°C. After cooling to room temperature, the film on the template is peeled off to obtain an organic-inorganic composite radiation cooling film with a micro-nano photonic structure.
  • the 740 ⁇ m-thick radiation cooling film has a reflectivity of 94% in the sunlight waveband and an emissivity of 96% in the atmospheric window waveband, and is 7.1°C lower than the surrounding environment under light conditions.
  • the film has good flexibility and tensile strength. It has not been broken after hundreds of twists and can withstand a stress of 4 MPa.
  • FIG. 8 The scanning electron micrograph of the organic-inorganic composite radiation cooling film with micro-nano photonic structure in Example 6 is shown in Fig. 8, which shows that the surface of the film has an array of neatly arranged micro-nano structures.
  • the surface of the template is composed of an elliptical cylindrical groove array with a width of 10 microns, a depth of 2 microns, and an interval of 10 microns; the mixed solution is slowly poured onto the template, and Let it stand for 10 minutes, then adjust the speed of the homogenizer from 0 to 1550RPM for 5s, keep the speed of 750RPM for 100s, and then stop.
  • the temperature of the hot plate is adjusted to 95°C for 1 hour, and then cooled to room temperature; in order to obtain a large area of radiant cooling film, the film needs to be spin-coated twice. Cut the film that has been spin-coated many times into a square, and place it neatly on a flat plastic plate, with the structured side facing down to prevent the structure from being contaminated or covered, and then perform another spin-coating operation, thereby Connect the films. Then transfer the plate to the hot stage for two hours of heating and curing, and the heating temperature is 80°C. After cooling to room temperature, the film on the template is peeled off to obtain a ceramic particle-organic polymer based radiation cooling film.
  • the 270 ⁇ m-thick radiation cooling film has 88% reflectivity in the sunlight waveband, 82% emissivity in the atmospheric window waveband, and is 1.7°C lower than the surrounding environment under light conditions.
  • the film has good flexibility and tensile strength. It has not been broken after hundreds of twists and can withstand a stress of 6 MPa.
  • Example 7 The infrared spectrogram of the organic-inorganic composite radiation cooling film with micro-nano photonic structure in Example 7 is shown in FIG.
  • the surface of the template is composed of an array of elliptical cylindrical grooves with a width of 16 microns, a depth of 8 microns, and an interval of 6 microns; the mixed solution is slowly poured onto the template and allowed to stand still. Set it for 40 minutes, then adjust the speed of the homogenizer from 0 to 1250RPM for 40s, keep the speed of 350RPM for 70s, and then stop.
  • the temperature of the hot plate is adjusted to 80°C for 60 minutes, and then cooled to room temperature; in order to obtain a large-area radiant cooling film, the film needs to be spin-coated twice. Cut the film that has been spin-coated many times into a square, and place it neatly on a flat plastic plate, with the structured side facing down to prevent the structure from being contaminated or covered, and then perform another spin-coating operation, thereby Connect the films. Then transfer the plate to the hot stage for two hours of heating and curing, and the heating temperature is 80°C. After cooling to room temperature, the film on the template is peeled off to obtain a ceramic particle-organic polymer based radiation cooling film.
  • the 860 ⁇ m-thick radiation cooling film has a reflectivity of 95% in the sunlight waveband and an emissivity of 95% in the atmospheric window waveband, and is 7.8°C lower than the surrounding environment under illumination conditions.
  • the film has good flexibility and tensile strength. It has not been broken after hundreds of twists and turns, and it can withstand a stress of 7 MPa.
  • Example 8 The visible-near-infrared reflectance spectrum of the organic-inorganic composite radiation cooling film with a micro-nano photonic structure in Example 8 is shown in FIG.
  • the mid-infrared emissivity spectrum of the organic-inorganic composite radiation cooling film with a micro-nano photonic structure in Example 8 is shown in Figure 11, indicating that the emissivity of the film in the mid-infrared band is at a relatively high level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种辐射降温薄膜,薄膜为陶瓷颗粒、有机溶液、固化剂混合形成的陶瓷颗粒混合有机固化前驱液固化后形成,所述薄膜的表面形成有微纳米光子结构阵列,微纳米光子结构阵列包括若干个呈阵列的微纳米光子的结构基元。还公开了辐射降温薄膜的制备方法及其应用。该薄膜在太阳光波段具有95%的反射率,在大气窗口波段具有96%的辐射率,光照条件下最多可比周围环境低10℃,且同时具备较好的柔性与强度及优异的疏水性。采用多刻蚀双旋涂真空热固化工艺低成本大面积地制备该辐射冷却薄膜。该辐射冷却薄膜在人体可穿戴降温、可降温晴雨伞以及器件散热方面的应用,通过热辐射形式从主体表面及内部除去热量实现降温的方法。

Description

一种辐射降温薄膜、其制备方法及其应用 技术领域
本发明属于功能复合材料技术领域,特别涉及一种辐射降温薄膜、其制备方法及其应用。
背景技术
随着人们生活水平的提高以及城市化建设的发展,对于冷却技术以及冷却设备方面产生了巨大的需求。常用的冷却设备依靠蒸汽压缩制冷系统实现降温效果,如冰箱以及空调等。然而这些冷却设备不仅会消耗大量的能源,同时制冷剂(如氢氟烃)的使用会造成全球变暖效应影响,这又会进一步对环境产生严重危害。由于制冷技术绝大多数是通过消耗不可再生的化石资源,实际上产生更多的热积累,使得地球变得更加炎热。因而制冷设备在运行过程中产生的大量的热量会加剧温室效应以及城市热岛效应。研究表明,冷却系统消耗了全球15%的电力,引起10%的温室气体排放。每降低1℃,可以节省3-5%的电力。而由于全球变暖、人口增长、工业发展等原因,21世纪世界范围内对制冷和空调的能源需求急剧增加。到2050年,人类对于制冷的需求将增长十倍,因此,对能源形势和环境问题的日益关注,使人们需要尽快做出应对策略,以提高现有冷却系统的效率和寻求新的替代冷却技术。因而开发新型制冷系统这将是新世纪的重大挑战。
辐射制冷利用透明大气窗口向外太空辐射热量,在理想气候条件下,辐射冷却可以实现将近70%的能源节省。相较于传统的冷却器件,辐射冷却器件不需要外界任何的供能装置,无需耗电耗能,且无CO 2等温室气体及其他有害物的排放,产生净冷却效应。既节约能源又没有污染,符合当今可持续发展的趋势,是一种绿色环保的被动式制冷方式。辐射冷却效果的实现主要是基于以下两个方面:首先,对流层的平均温度一般在250K左右,全年大部分地区的平均温度都远低于该温度,并且大气层之外的宇宙微波背景的热黑体辐射在2.7K左右,因此这两者可以作为地球上的辐射冷却器件散热的“冷 却库”。其次,地球的大气层在波长范围8-13μm的中红外波段的透过率很高,称之为透明大气窗口。透明大气窗口允许物体通过该波段的热辐射与“冷却库”进行热量交换。围绕着辐射冷却器件有不少的文献报道,如中国专利CN 107923718 A,名称为“用于辐射冷却和加热的系统和方法”,该专利的技术特点在于提供用于辐射冷却和加热的系统和方法,例如,用于辐射冷却的系统可以包括顶层,所述顶层包括一种或多种聚合物,其中所述顶层在至少一部分热谱中具有高的发射率和在至少一部分太阳光谱中具有近似为零的电磁消光系数、近似为零的吸收率以及高的透射率,并且进一步地包括反射层,所述反射层包括一种或多种金属,其中所述反射层在至少一部分太阳光谱中具有高的反射率。但是该技术制备较为复杂,成本较高,且辐射冷却效果仍需要进一步提升。再如中国专利CN 109070695 A,名称为“辐射冷却结构和系统”,该专利的技术特点为提供了聚合物基的选择性辐射冷却结构,该辐射冷却结构包括聚合物或聚合物基复合材料的选择性发射层。典型选择性辐射冷却结构采取薄片、膜或涂层的形式。但是该技术难以同时获得较高的可见-近红外反射率与大气窗口辐射率,同时,该方法的单层材料难以同时满足可见近红外的反射率以及红外发射率的共同提高,因此,需要陶瓷材料层来提高中红外辐射率,需要金属层增大可见近红外波段的反射率,制备要求较为复杂。
发明内容
本发明提供一种辐射降温薄膜,利用薄膜自身高反射率从而减少对于太阳光的吸收,同时通过向外界进行热辐射的形式,去除主体多余的热量,实现被动降温的效果;
本发明还提供一种辐射降温薄膜的制备方法,利用多刻蚀微纳加工、及旋涂、固化,制备具有微纳光子结构的有机-无机复合辐射冷却薄膜,构筑表面微纳光子结构,并且可以制备出低成本大面积的复合辐射冷却薄膜,有较强的普适性。
本发明的技术方案如下:
一种辐射降温薄膜,薄膜的原料包括陶瓷颗粒、有机溶液、固化剂,所述陶瓷颗粒、有机溶液、固化剂混合形成陶瓷颗粒混合有机固化前驱液,所述薄膜为所述陶瓷颗粒混合有机固化前驱液固化后形成,所述薄膜的表面形成有微纳米光子结构阵列,微纳米光子结构阵列包括若干个呈阵列的微纳米光子的结构基元,在薄膜表面构成均匀阵列结构。
优选的,所述微纳米光子结构阵列的结构基元形貌为金字塔形结构、棱形结构、圆锥结构、倒金字塔结构、倒棱形结构、倒圆锥结构中的一种或几种,所述结构基元特征宽度在0.5μm至20μm,特征高度在0.5μm至20μm;所述薄膜的厚度为100μm至2000μm。
优选的,所述陶瓷颗粒选自氧化铝、氧化锌、氧化锆、氧化镁、氮化硼、氧化钇、氧化钛中的一种或多种。
优选的,所述陶瓷颗粒的平均粒径为0.2-10微米,所述陶瓷颗粒形貌为角形、类球形、球形中的一种或几种,所述陶瓷颗粒在陶瓷颗粒混合有机固化前驱液中的质量分数占比在5%-80%。
优选的,所述有机溶液为有机聚合物,所述有机聚合物选自聚二甲基硅氧烷、聚四氟乙烯、聚氯乙烯中的一种;所述固化剂使得陶瓷颗粒、有机溶液、固化剂混合形成的陶瓷颗粒混合有机固化前驱液在加热或长时间静置条件下固化,所述固化剂包括树脂。
优选的,所述固化剂与陶瓷颗粒混合有机固化前驱液的质量之比为1:5至1:20。
本发明还提供一种辐射降温薄膜的制备方法,制备上述辐射降温薄膜,包括以下步骤:
步骤S1,将所述陶瓷颗粒、有机溶液、固化剂混合制备陶瓷颗粒混合有机固化前驱液;
步骤S2:将多刻蚀微纳加工过后的模板放置在匀胶机转盘上,并连通真空泵,使得模板能够被匀胶机转盘吸附住;
步骤S3:将步骤S1的陶瓷颗粒混合有机固化前驱液涂覆于模板之上,通 过匀胶机将陶瓷颗粒混合有机固化前驱液均匀旋涂至模板上;
步骤S4:将均匀涂覆有陶瓷颗粒混合有机固化前驱液的模板至于加热板上进行升温固化,随后冷却至室温;
步骤S5:将固化之后的具有微纳光子结构的有机-无机复合辐射降温薄膜从多刻蚀微纳加工的模板上剥离下来,得到辐射降温薄膜。
优选的,还包括以下步骤:
步骤S6:重复上述步骤S1至S5,制备多片具有微纳光子结构的有机-无机复合辐射降温薄膜,并通过裁剪紧密平铺在平整的板材上;
步骤S7:将陶瓷颗粒混合有机固化前驱液涂敷于上述平铺的薄膜之上,进行第二次旋涂;
步骤S8:将上述覆有陶瓷颗粒混合有机固化前驱液的板材置于加热板上进行升温固化,随后冷却至室温;
步骤S9:将固化之后形成的大面积微纳光子结构的有机-无机复合辐射冷却薄膜从模板上剥离下来,得到大面积的辐射降温薄膜。
优选的,所述步骤S1形成陶瓷颗粒混合有机固化前驱液包括以下步骤:
步骤S11:将陶瓷颗粒置入有机溶液中,并通过充分搅拌将二者混合均匀;所述陶瓷颗粒从氧化铝、氧化锌、氧化锆、氧化镁、氮化硼、氧化钇和氧化钛白色粉末中选择一种或几种,所述有机溶液为有机聚合物,所述有机聚合物从聚二甲基硅氧烷、聚四氟乙烯、聚氯乙烯透明溶液的组分中选择一种;
步骤S12:向步骤S11得到的溶液中加入固化剂,进行搅拌使其混合均匀;
步骤S13:将步骤S12得到的溶液至于真空干燥箱,抽真空将溶液中空气排出,使溶液中最终无气泡冒出;
步骤S14:打开真空箱的通气阀,使真空箱内气压经过5到10分钟之后缓慢回复至与外界气压相同的初始状态,即获得陶瓷颗粒混合有机固化前驱液。
优选的,步骤S13真空干燥箱中进行抽真空的时间为5-120分钟。
优选的,多刻蚀微纳加工的模板的加工方法包括紫外光刻、湿法化学刻 蚀、干法刻蚀、纳米压印、超精密加工、激光加工中的一种或几种;所述模板的表面具有纳米或者微米尺度有序结构阵列;所述模板的材料为硅片、表面镀有二氧化硅的硅片、表面镀有氮化硅的硅片、不锈钢、铁镍合金中的一种;所述模板的表面结构阵列的形貌为金字塔形结构、棱形结构、圆锥结构、倒金字塔结构、倒棱形结构、倒圆锥结构中的一种或多种;所述表面结构阵列的结构基元特征宽度为0.5μm至20μm,特征高度为0.5μm至20μm。
优选的,步骤S3中将步骤S1所述的陶瓷颗粒混合有机固化前驱液涂覆于模板之上,静置的时间为1-20分钟后,通过匀胶机将陶瓷颗粒混合有机固化前驱液均匀旋涂至模板上。
优选的,匀胶机的转速设置为100转/分钟至3000转/分钟的单一转速或多转速调配,运行时长为10s至200s。
优选的,固化温度设定为50℃到120℃之间的单一温度或多温度梯度,固化时间为10分钟到10小时。
优选的,步骤S6中,平铺时,剥离下来有微纳光子结构的一面朝向板材,板材的选择为聚碳酸酯板、玻璃板、金属板材中的一种。
上述薄膜在太阳光波段(0.3-2微米)具有高反射率,在大气窗口波段(8-13微米)具有高辐射率,太阳直射情况下能够将环境温度降低,具有较高的平均降温功率。此外,薄膜同时具备较好的柔性与强度以及优异的疏水性能,在建筑物屋顶冷却、人体可穿戴降温、可降温晴雨伞以及器件散热等方面的应用,均取得良好效果。
本发明基于以下原理:在可见-近红外波段,主要包括两种增强反射率的作用机制,首先是光线照射具有特定光子结构的有机聚合物会产生全内反射现象,另一方面,由于掺杂的陶瓷颗粒的尺度与光线尺度相匹配,因而光线照射到颗粒上时会产生米氏散射的现象。在中红外波段,也主要包括两种增强红外辐射率的理论机制,一是具有特定光子结构的高分子薄膜在其表面可以产生渐变的梯度折射率,具有增强辐射率的效果,二是陶瓷颗粒自身在中红外波段具有声子极化共振效应,从而能够强烈地吸收红外光,增强辐射率。通过这几种机制的耦合作用使得这种具有特定光子结构的复合薄膜材料在理 论上具备了实现辐射冷却效果的可行性。
与现有技术相比,本发明的有益效果如下:
第一,本发明的薄膜表面形成具有微纳光子结构阵列,微纳光子结构在可见近红外波段能够增大薄膜的反射率,在中红外波段通过梯度折射率的变化可以增强红外发射率,从而达到辐射冷却的目的,并且薄膜内部成分为混合均一,降低了制备难度,同时可以实现到多层结构复合才能达到的效果;
第二,本发明的通过多刻蚀微纳加工的制备工艺获得具有不同各向异性形貌的微纳结构阵列,表面的微纳结构阵列对于可见近红外反射率的增强以及中红外波段辐射率的增强起到了重要的作用;本申请通过直接混合制备的表面具有微纳光子结构阵列的薄膜,利用薄膜的表面结构以及颗粒掺杂的材料的性能,能够实现多层的作用效果,即可见近红外波段提高反射率,中红外波段提高辐射率;方法简单,成本低,普适性强;
第三,本发使用一条通用的生产工艺,采用多刻蚀双旋涂真空热固化工艺,首次低成本地制备出大面积具有微纳光子结构的有机-无机复合辐射冷却薄膜,解决通过将拼接处粘结而导致的拼接处强度不够以及光学效果降低的问题
第四,本发明制备的具有微纳光子结构的有机-无机复合薄膜使得辐射冷却效率得到显著提升,同时,薄膜具有很好的柔性与拉伸强度,可以用于小型电子器件的制冷以及用于可穿戴降温衣物;
第五,薄膜表面的微纳光子结构可以使其拥有非常好的疏水性能,疏水角在100°到160°之间,可以将其制成晴雨伞面;此外薄膜也可以用于手机等器件的降温,降温效果优良可以保障手机等器件持久快速运行。
第六,本发明制备的所述具有微纳光子结构的有机-无机复合辐射冷却薄膜外观呈现亮白色,该薄膜在太阳光波段(0.3-2微米)具有95%的反射率,在大气窗口波段(8-13微米)具有96%的辐射率,光照条件下最多可比周围环境低10℃,具备良好的辐射冷却散热效果。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优 点。
附图说明
图1-图3为本发明所述的具有微纳光子结构的有机-无机复合辐射冷却薄膜的表面微观形貌示意图;
图4为本发明实施例1中具有微纳光子结构的有机-无机复合辐射冷却薄膜的光学照片;
图5为本发明实施例2-5中具有微纳光子结构的有机-无机复合辐射冷却薄膜的光学照片;
图6为本发明实施例5中具有微纳光子结构的有机-无机复合辐射冷却单片薄膜的可见近红外反射率光谱图;
图7为本发明实施例5中具有微纳光子结构的有机-无机复合辐射冷却单片薄膜的中红外发射率光谱图;
图8为本发明实施例6中微纳光子结构的有机-无机复合辐射冷却薄膜的扫描电子显微镜照片;
图9为本发明实施例7中微纳光子结构的有机-无机复合辐射冷却薄膜的红外光谱图;
图10为本发明实施例8中微纳光子结构的有机-无机复合辐射冷却薄膜的可见-近红外反射率光谱图;
图11为本发明实施例8中微纳光子结构的有机-无机复合辐射冷却薄膜的中红外辐射率光谱图。
具体实施方式
下面结合具体附图,进一步阐述本发明。应该理解,这些实施例仅用于说明本发明,而不用于限定本发明的保护范围。在实际应用中本领域技术人员根据本发明做出的改进和调整,仍属于本发明的保护范围。
一种辐射降温薄膜,薄膜的原料包括陶瓷颗粒、有机溶液、固化剂,所 述陶瓷颗粒、有机溶液、固化剂混合形成陶瓷颗粒混合有机固化前驱液,所述薄膜为所述陶瓷颗粒混合有机固化前驱液固化后形成,所述薄膜的表面形成有微纳米光子结构阵列,微纳米光子结构阵列包括若干个呈阵列的微纳米光子的结构基元,在薄膜表面构成均匀阵列结构。
微纳米光子结构阵列可以是如图1所示的圆锥结构,或是如图2所示的棱形结构,或是如图3所示的金字塔形结构。或者,根据需要,所述模板的表面结构阵列的形貌为金字塔形结构、棱形结构、圆锥结构、倒金字塔结构、倒棱形结构、倒圆锥结构中的一种或多种。
下面结合具体实施例,进行进一步的说明。
实施例1
将200g粒径(指平均粒径,下同)为2微米球形氧化铝粉末颗粒与220gPDMS溶液搅拌混合均匀,向上述固化前驱液中加入22g正硅酸乙酯固化剂,进行充分搅拌使其混合均匀;将混合液放入到真空干燥箱中抽真空,保持30min,之后缓慢通入大气至与外界气压相等,将混合溶液取出。
将进行光刻、干刻、湿刻的多刻蚀硅片模板放于匀胶机上,模板表面形貌为宽度8微米,深度6微米,间隔2微米的棱锥凹槽阵列组成,棱锥凹槽阵列可以如图1所示;混合溶液缓慢倒入到模板上,并静置20分钟,之后调节匀胶机的转速,从0升至700RPM,时长为100s,保持500RPM的转速30s,之后停止。
将模板取下放置于热板上,热板的温度调为80℃,保持2h,之后冷却至室温;为了获得大面积的辐射冷却薄膜,需要对薄膜进行二次旋涂操作。将之前多次旋涂完成的薄膜裁剪成正方形,并将其整齐地放置于平整的塑料板上,有结构的一面朝下以防止结构被污染或者掩盖,然后再进行一次旋涂操作,从而把薄膜连接起来。再将板材转移到热台上,进行两个小时的加热固化,加热温度为100℃。冷却至室温后,将模板上的薄膜用剥离下来即获得具有微纳棱形结构阵列的有机-无机复合辐射冷却薄膜。670μm厚的该辐射冷却薄膜在太阳光波段具有95%的反射率,在大气窗口波段具有96%的辐射率,光照条件下比周围环境低8℃。此外,薄膜具有很好的柔性与拉伸强度,经过 几百次的扭转以及能够承受4兆帕的应力。
本实施例中具有微纳光子结构的有机-无机复合辐射冷却薄膜的光学照片如图4所示,薄膜呈现白色,且具有一定的柔性。
实施例2
将30g粒径为5微米的氧化锌粉末颗粒与30gPTFE溶液搅拌混合均匀,向上述固化前驱液中加入3g过氧化二异丙苯固化剂,进行充分搅拌使其混合均匀;将混合液放入到真空干燥箱中抽真空,保持30min,之后缓慢通入大气至与外界气压相等,将混合溶液取出。
将超精密加工之后的镀镍不锈钢模板放于匀胶机上,模板表面形貌为宽度2微米,深度6微米,间隔3微米的棱锥凹槽阵列组成;混合溶液缓慢倒入到模板上,并静置5分钟,之后调节匀胶机的转速,从0升至500RPM,时长为10s,保持500RPM的转速30s,之后停止。
将模板取下放置于热板上,热板的温度调为100℃,保持1h,之后冷却至室温;冷却至室温后,将模板上的薄膜用剥离下来即获得具有微纳棱形结构阵列的有机-无机复合辐射冷却薄膜。1090μm厚的该辐射冷却薄膜在太阳光波段具有94%的反射率,在大气窗口波段具有97%的辐射率,光照条件下可比周围环境低7.2℃。此外,薄膜具有很好的柔性与拉伸强度,数百次的扭转未发生断裂,同时能够承受6兆帕的应力。
实施例3
将8g粒径为0.5微米的球形氧化镁颗粒与16g粒径为2微米的角形氧化锆粉末颗粒加入到30g PDMS液搅拌混合均匀;加入2g过氧化二异丙苯固化剂继续搅拌;将混合液放入到真空干燥箱中抽真空,保持60min,之后缓慢通入大气至与外界气压相等,将混合溶液取出。
将纳米压印之后的IPS模板放于匀胶机上,模板表面形貌为宽度15微米,深度10微米,间隔5微米的椭圆柱形凹槽阵列组成;混合溶液缓慢倒入到模板上,并静置5分钟,之后调节匀胶机的转速,从0升至750RPM,时长为10s,保持750RPM的转速15s,之后停止。
将模板取下放置于热板上,热板的温度调为80℃,保持2h,之后冷却至室温;冷却至室温后,将模板上的薄膜用剥离下来即获得陶瓷颗粒-有机聚合物基辐射冷却薄膜。480μm厚的该辐射冷却薄膜在太阳光波段具有93%的反射率,在大气窗口波段具有93%的辐射率,光照条件下比周围环境低5.1℃。此外,薄膜具有很好的柔性与拉伸强度,数百次的扭转未发生断裂,同时能够承受4兆帕的应力。
实施例4
将20g粒径为2微米的氧化钛粉末颗粒与20gPTFE溶液搅拌混合均匀,向上述固化前驱液中加入4g聚酰胺固化剂,进行充分搅拌使其混合均匀;将混合液放入到真空干燥箱中抽真空,保持60min,之后缓慢通入大气至与外界气压相等,将混合溶液取出。
将激光刻蚀之后的不锈钢模板放于匀胶机上,模板表面形貌为宽度10微米,深度6微米,间隔4微米的倒圆锥阵列组成;混合溶液缓慢倒入到模板上,并静置10分钟,之后调节匀胶机的转速,从0升至2000RPM,时长为5s,保持500RPM的转速60s,之后停止。
将模板取下放置于热板上,热板的温度调为70℃,保持5h,之后冷却至室温;冷却至室温后,将模板上的薄膜用剥离下来即获得具有微纳光子结构的有机-无机复合辐射冷却薄膜。360μm厚的该辐射冷却薄膜在太阳光波段具有90%的反射率,在大气窗口波段具有86%的辐射率,光照条件下比周围环境低2.3℃。此外,薄膜具有很好的柔性与拉伸强度,数百次的扭转未发生断裂,同时能够承受8兆帕的应力。
实施例5
将10g粒径为6微米的球形氧化钇颗粒加入到10g PVC液搅拌混合均匀;加入1g聚酰胺固化剂继续搅拌;将混合液放入到真空干燥箱中抽真空,保持10min,之后缓慢通入大气至与外界气压相等,将混合溶液取出。
将纳米压印之后的IPS模板放于匀胶机上,模板表面形貌为宽度6微米,深度2微米,间隔10微米的椭圆柱形凹槽阵列组成;混合溶液缓慢倒入到模板上,并静置15分钟,之后调节匀胶机的转速,从0升至1050RPM,时长为 60s,保持1050RPM的转速100s,之后停止。
将模板取下放置于热板上,热板的温度调为120℃,保持10分钟,之后冷却至室温;冷却至室温后,将模板上的薄膜用剥离下来即获得陶瓷颗粒-有机聚合物基辐射冷却薄膜。1020μm厚的该辐射冷却薄膜在太阳光波段具有95%的反射率,在大气窗口波段具有95%的辐射率,光照条件下比周围环境低7.7℃。此外,薄膜具有很好的柔性与拉伸强度,数百次的扭转未发生断裂,同时能够承受4兆帕的应力。
实施例2-5中具有微纳光子结构的有机-无机复合辐射冷却薄膜的光学照片如图5所示,由左至右,从上至下,依次为实施例2-5,图5表明通过实施例制备出的薄膜材料外观呈现白色,且均具有一定的柔性。
实施例5中微纳光子结构的有机-无机复合辐射冷却单片薄膜的可见-近红外反射率光谱图如图6所示,表明单片薄膜在可见近红外波段具有较高的反射率。
实施例5中微纳光子结构的有机-无机复合辐射冷却单片薄膜的中红外辐射率光谱图如图7所示,表明单片薄膜在中红外波段的发射率处于较高的水平。
实施例6
将5g粒径为0.5微米的氧化铝粉末颗粒与10gPTFE溶液搅拌混合均匀,向上述固化前驱液中加入2g聚酰胺固化剂,进行充分搅拌使其混合均匀;将混合液放入到真空干燥箱中抽真空,保持20min,之后缓慢通入大气至与外界气压相等,将混合溶液取出。
将激光刻蚀之后的不锈钢模板放于匀胶机上,模板表面形貌为宽度20微米,深度2微米,间隔1微米的凹槽阵列组成;混合溶液缓慢倒入到模板上,并静置10分钟,之后调节匀胶机的转速,从0升至1000RPM,时长为15s,保持1500RPM的转速30s,之后停止。
将模板取下放置于热板上,热板的温度调为100℃,保持2h,之后冷却至室温;为了获得大面积的辐射冷却薄膜,需要对薄膜进行二次旋涂操作。 将之前多次旋涂完成的薄膜裁剪成正方形,并将其整齐地放置于平整的塑料板上,有结构的一面朝下以防止结构被污染或者掩盖,然后再进行一次旋涂操作,从而把薄膜连接起来。再将板材转移到热台上,进行一个小时的加热固化,加热温度为95℃。冷却至室温后,将模板上的薄膜用剥离下来即获得具有微纳光子结构的有机-无机复合辐射冷却薄膜。740μm厚的该辐射冷却薄膜在太阳光波段具有94%的反射率,在大气窗口波段具有96%的辐射率,光照条件下比周围环境低7.1℃。此外,薄膜具有很好的柔性与拉伸强度,数百次的扭转未发生断裂,同时能够承受4兆帕的应力。
实施例6中微纳光子结构的有机-无机复合辐射冷却薄膜的扫描电子显微镜照片如图8所示,表明薄膜的表面具有整齐排列的微纳结构阵列。
实施例7
将15g粒径为2微米的球形氧化钇颗粒与15g粒径为2微米的球形氧化钛粉末颗粒加入到30g PTFE液搅拌混合均匀;加入3g环氧树脂固化剂继续搅拌;将混合液放入到真空干燥箱中抽真空,保持20min,之后缓慢通入大气至与外界气压相等,将混合溶液取出。
将多刻蚀之后的硅片模板放于匀胶机上,模板表面形貌为宽度10微米,深度2微米,间隔10微米的椭圆柱形凹槽阵列组成;混合溶液缓慢倒入到模板上,并静置10分钟,之后调节匀胶机的转速,从0升至1550RPM,时长为5s,保持750RPM的转速100s,之后停止。
将模板取下放置于热板上,热板的温度调为95℃,保持1h,之后冷却至室温;为了获得大面积的辐射冷却薄膜,需要对薄膜进行二次旋涂操作。将之前多次旋涂完成的薄膜裁剪成正方形,并将其整齐地放置于平整的塑料板上,有结构的一面朝下以防止结构被污染或者掩盖,然后再进行一次旋涂操作,从而把薄膜连接起来。再将板材转移到热台上,进行两个小时的加热固化,加热温度为80℃。冷却至室温后,将模板上的薄膜用剥离下来即获得陶瓷颗粒-有机聚合物基辐射冷却薄膜。270μm厚的该辐射冷却薄膜在太阳光波段具有88%的反射率,在大气窗口波段具有82%的辐射率,光照条件下比周围环境低1.7℃。此外,薄膜具有很好的柔性与拉伸强度,数百次的扭转未发 生断裂,同时能够承受6兆帕的应力。
实施例7中微纳光子结构的有机-无机复合辐射冷却薄膜的红外光谱图如图9所示,表明薄膜在中红外波段的反射率较低,因而薄膜的中红外辐射率相应较高。
实施例8
将15g粒径为6微米的球形氧化铝颗粒加入到30g PDMS液搅拌混合均匀;加入5g过氧化二异丙苯固化剂继续搅拌;将混合液放入到真空干燥箱中抽真空,保持40min,之后缓慢通入大气至与外界气压相等,将混合溶液取出。
将纳米压印之后的IPS模板放于匀胶机上,模板表面形貌为宽度16微米,深度8微米,间隔6微米的椭圆柱形凹槽阵列组成;混合溶液缓慢倒入到模板上,并静置40分钟,之后调节匀胶机的转速,从0升至1250RPM,时长为40s,保持350RPM的转速70s,之后停止。
将模板取下放置于热板上,热板的温度调为80℃,保持60分钟,之后冷却至室温;为了获得大面积的辐射冷却薄膜,需要对薄膜进行二次旋涂操作。将之前多次旋涂完成的薄膜裁剪成正方形,并将其整齐地放置于平整的塑料板上,有结构的一面朝下以防止结构被污染或者掩盖,然后再进行一次旋涂操作,从而把薄膜连接起来。再将板材转移到热台上,进行两个小时的加热固化,加热温度为80℃。冷却至室温后,将模板上的薄膜用剥离下来即获得陶瓷颗粒-有机聚合物基辐射冷却薄膜。860μm厚的该辐射冷却薄膜在太阳光波段具有95%的反射率,在大气窗口波段具有95%的辐射率,光照条件下比周围环境低7.8℃。此外,薄膜具有很好的柔性与拉伸强度,数百次的扭转弯折未发生断裂,同时能够承受7兆帕的应力。
实施例8中微纳光子结构的有机-无机复合辐射冷却薄膜的可见-近红外反射率光谱图如图10所示,表明薄膜在可见近红外波段具有较高的反射率。
实施例8中微纳光子结构的有机-无机复合辐射冷却薄膜的中红外辐射率光谱图如图11所示,表明薄膜在中红外波段的发射率处于较高的水平。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并 没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (16)

  1. 一种辐射降温薄膜,其特征在于,薄膜的原料包括陶瓷颗粒、有机溶液、固化剂,所述陶瓷颗粒、有机溶液、固化剂混合形成陶瓷颗粒混合有机固化前驱液,所述薄膜为所述陶瓷颗粒混合有机固化前驱液固化后形成,所述薄膜的表面形成有微纳米光子结构阵列,微纳米光子结构阵列包括若干个呈阵列的微纳米光子的结构基元。
  2. 根据权利要求1所述的辐射降温薄膜,其特征在于,所述微纳米光子结构阵列的结构基元形貌为金字塔形结构、棱形结构、圆锥结构、倒金字塔结构、倒棱形结构、倒圆锥结构中的一种,所述结构基元特征宽度在0.5μm至20μm,特征高度在0.5μm至20μm;所述薄膜的厚度为100μm至2000μm。
  3. 根据权利要求1所述的辐射降温薄膜,其特征在于,所述陶瓷颗粒选自氧化铝、氧化锌、氧化锆、氧化镁、氮化硼、氧化钇、氧化钛中的一种或多种。
  4. 根据权利要求1所述的辐射降温薄膜,其特征在于,所述陶瓷颗粒的平均粒径为0.2-10微米,所述陶瓷颗粒形貌为角形、类球形、球形中的一种或几种,所述陶瓷颗粒在陶瓷颗粒混合有机固化前驱液中的质量分数占比在5%-80%。
  5. 根据权利要求1所述的辐射降温薄膜,其特征在于,所述有机溶液为有机聚合物,所述有机聚合物选自聚二甲基硅氧烷、聚四氟乙烯、聚氯乙烯中的一种;所述固化剂使得陶瓷颗粒、有机溶液、固化剂混合形成的陶瓷颗粒混合有机固化前驱液在加热或长时间静置条件下固化,所述固化剂包括树脂。
  6. 根据权利要求1所述的辐射降温薄膜,其特征在于,所述固化剂与陶瓷颗粒混合有机固化前驱液的质量之比为1:5至1:20。
  7. 一种辐射降温薄膜的制备方法,其特征在于,包括以下步骤:
    步骤S1,将所述陶瓷颗粒、有机溶液、固化剂混合制备陶瓷颗粒混合有机固化前驱液;
    步骤S2:将多刻蚀微纳加工过后的模板放置在匀胶机转盘上,并连通真空泵,使得模板能够被匀胶机转盘吸附住;
    步骤S3:将步骤S1的陶瓷颗粒混合有机固化前驱液涂覆于模板之上,通过匀胶机将陶瓷颗粒混合有机固化前驱液均匀旋涂至模板上;
    步骤S4:将均匀涂覆有陶瓷颗粒混合有机固化前驱液的模板至于加热板上进行升温固化,随后冷却至室温;
    步骤S5:将固化之后的具有微纳光子结构的有机-无机复合辐射降温薄膜从多刻蚀微纳加工的模板上剥离下来,得到辐射降温薄膜。
  8. 根据权利要求7所述的辐射降温薄膜的制备方法,其特征在于,还包括以下步骤:
    步骤S6:重复上述步骤S1至S5,制备多片具有微纳光子结构的有机-无机复合辐射降温薄膜,并通过裁剪紧密平铺在平整的板材上;
    步骤S7:将陶瓷颗粒混合有机固化前驱液涂敷于上述平铺的薄膜之上,进行第二次旋涂;
    步骤S8:将上述覆有陶瓷颗粒混合有机固化前驱液的板材置于加热板上进行升温固化,随后冷却至室温;
    步骤S9:将固化之后形成的大面积微纳光子结构的有机-无机复合辐射冷却薄膜从模板上剥离下来,得到大面积的辐射降温薄膜。
  9. 根据权利要求7或8所述的辐射降温薄膜的制备方法,其特征在于,所述步骤S1形成陶瓷颗粒混合有机固化前驱液包括以下步骤:
    步骤S11:将陶瓷颗粒置入有机溶液中,并通过充分搅拌将二者混合均匀;所述陶瓷颗粒从氧化铝、氧化锌、氧化锆、氧化镁、氮化硼、氧化钇和氧化钛白色粉末中选择一种或几种,所述有机溶液为有机聚合物,所述有机聚合物从聚二甲基硅氧烷、聚四氟乙烯、聚氯乙烯透明溶液的组分中选择一种;
    步骤S12:向步骤S11得到的溶液中加入固化剂,进行搅拌使其混合均匀;
    步骤S13:将步骤S12得到的溶液至于真空干燥箱,抽真空将溶液中空气排出,使溶液中最终无气泡冒出;
    步骤S14:打开真空箱的通气阀,使真空箱内气压经过5到10分钟之后缓慢回复至与外界气压相同的初始状态,即获得陶瓷颗粒混合有机固化前驱液。
  10. 根据权利要求9所述的辐射降温薄膜的制备方法,其特征在于,步骤S13真空干燥箱中进行抽真空的时间为5-120分钟。
  11. 根据权利要求7所述的辐射降温薄膜的制备方法,其特征在于,多刻蚀微纳加工的模板的加工方法包括紫外光刻、湿法化学刻蚀、干法刻蚀、纳米压印、超精密加工、激光加工中的一种或几种;所述模板的表面具有纳米或者微米尺度有序结构阵列;所述模板的材料为硅片、表面镀有二氧化硅的硅片、表面镀有氮化硅的硅片、不锈钢、铁镍合金中的一种;所述模板的表面结构阵列的形貌为金字塔形结构、棱形结构、圆锥结构、倒金字塔结构、倒棱形结构、倒圆锥结构中的一种或多种;所述表面结构阵列的结构基元特征宽度为0.5μm至20μm,特征高度为0.5μm至20μm。
  12. 根据权利要求7所述的辐射降温薄膜的制备方法,其特征在于,步骤S3中将步骤S1所述的陶瓷颗粒混合有机固化前驱液涂覆于模板之上,静置的时间为1-20分钟后,通过匀胶机将陶瓷颗粒混合有机固化前驱液均匀旋涂至模板上。
  13. 根据权利要求7所述的辐射降温薄膜的制备方法,其特征在于,匀胶机的转速设置为100转/分钟至3000转/分钟的单一转速或多转速调配,运行时长为10s至200s。
  14. 根据权利要求7所述的辐射降温薄膜的制备方法,其特征在于,固化温度设定为50℃到120℃之间的单一温度或多温度梯度,固化时间为10分钟到10小时。
  15. 根据权利要求8所述的辐射降温薄膜的制备方法,其特征在于,步骤S6中,平铺时,剥离下来有微纳光子结构的一面朝向板材,板材的选择为聚碳酸酯板、玻璃板、金属板材中的一种。
  16. 根据权利要求1-6任一项所述的辐射降温薄膜或权利要求7-15任一项所述的辐射降温薄膜的制备方法制备得到的辐射降温薄膜,在建筑物屋顶 冷却、人体可穿戴降温、可降温晴雨伞、或器件散热方面中的应用。
PCT/CN2020/105493 2020-06-18 2020-07-29 一种辐射降温薄膜、其制备方法及其应用 WO2021253580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010559925.5A CN111718584A (zh) 2020-06-18 2020-06-18 一种辐射降温薄膜、其制备方法及其应用
CN202010559925.5 2020-06-18

Publications (1)

Publication Number Publication Date
WO2021253580A1 true WO2021253580A1 (zh) 2021-12-23

Family

ID=72567366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105493 WO2021253580A1 (zh) 2020-06-18 2020-07-29 一种辐射降温薄膜、其制备方法及其应用

Country Status (2)

Country Link
CN (1) CN111718584A (zh)
WO (1) WO2021253580A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114801380A (zh) * 2022-03-10 2022-07-29 郑州大学 一种多孔pdms/pva水凝胶复合制冷薄膜的制备方法
CN115304809A (zh) * 2022-08-31 2022-11-08 北京化工大学 一种辐射降温复合膜防护材料及其制备方法和应用
CN115466394A (zh) * 2022-09-26 2022-12-13 中国科学院苏州纳米技术与纳米仿生研究所 辐射降温油性疏水浆料及其制备方法与应用
CN115572399A (zh) * 2022-10-09 2023-01-06 南京特殊教育师范学院 一种被动辐射冷却薄膜及其制备方法
CN115573169A (zh) * 2022-09-26 2023-01-06 中国科学院苏州纳米技术与纳米仿生研究所 辐射降温水性喷剂、其制备方法及应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592498A (zh) * 2020-11-05 2021-04-02 三峡大学 一种掺杂ZrO2粒子的PDMS辐射制冷薄膜的制备方法
CN112503654A (zh) * 2020-11-17 2021-03-16 淮阴工学院 单通道夜间被动式辐射冷却膜
CN112460836A (zh) * 2020-11-17 2021-03-09 淮阴工学院 被动式辐射冷却复合材料薄膜
CN112898777B (zh) * 2021-02-08 2022-06-28 上海交通大学 一种高导热辐射制冷、散热材料及其制备方法和应用
CN113025219B (zh) * 2021-03-10 2022-08-12 南开大学 可拉伸辐射冷却胶带及其制备方法和应用
CN112984858B (zh) * 2021-03-18 2022-07-26 哈尔滨工业大学 一种微结构辐射制冷器件的制备方法及应用
CN113512229B (zh) * 2021-07-02 2022-10-14 中国科学院重庆绿色智能技术研究院 一种微纳多孔陷光结构及其制备方法
CN113956592B (zh) * 2021-11-26 2022-12-02 上海交通大学 一种全氟聚合物膜及其制备方法和应用、航天设备
CN114234791B (zh) * 2021-12-16 2023-03-21 四川大学 一种基于滴液沉积的复合薄膜应变传感器的制备方法
CN114752220B (zh) * 2022-05-16 2023-10-13 西南民族大学 一种用于辐射制冷的聚二甲基硅氧烷基质复合材料
CN115220221A (zh) * 2022-06-27 2022-10-21 上海交通大学 一种非对称光子镜增强辐射热管理器件的设置与制作方法
CN115232345B (zh) * 2022-08-12 2024-01-26 佘乾鹏 一种散射型智能控温膜
CN116218364A (zh) * 2023-04-04 2023-06-06 河北工业大学 一种近红外高反射型辐射制冷涂层及其制备方法
CN116813961B (zh) * 2023-08-25 2023-12-22 南京助天中科科技发展有限公司 一种增强大气窗口发射率的辐射制冷薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923718A (zh) * 2015-06-18 2018-04-17 纽约市哥伦比亚大学理事会 用于辐射冷却和加热的系统和方法
US20190086164A1 (en) * 2016-02-29 2019-03-21 The Regents Of The University Of Colorady, A Body Corporate Radiative cooling structures and systems
CN110030760A (zh) * 2019-03-29 2019-07-19 宁波瑞凌新能源科技有限公司 一种辐射制冷结构
CN110350048A (zh) * 2019-07-05 2019-10-18 电子科技大学 一种光子辐射散热结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098963B (zh) * 2016-07-28 2018-08-07 上海大学 具有随机金字塔形貌绒面的光学薄膜及其制备方法
CN106752516A (zh) * 2016-12-14 2017-05-31 张学健 一种电子器件用的散热涂料及其制备方法
CN109841692B (zh) * 2018-12-29 2021-01-22 西京学院 用于太阳能飞机的热管理系统、太阳能飞机及热管理方法
CN110041809B (zh) * 2019-04-10 2021-01-19 深圳市新纶科技股份有限公司 一种光热双重固化水性辐射散热涂料及其制备方法
CN110320745B (zh) * 2019-06-26 2020-07-07 复旦大学 具有理想发射谱的柔性被动冷却薄膜及其制备方法
CN110552199B (zh) * 2019-09-09 2021-04-02 上海交通大学 一种辐射制冷复合光子结构薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923718A (zh) * 2015-06-18 2018-04-17 纽约市哥伦比亚大学理事会 用于辐射冷却和加热的系统和方法
US20190086164A1 (en) * 2016-02-29 2019-03-21 The Regents Of The University Of Colorady, A Body Corporate Radiative cooling structures and systems
CN110030760A (zh) * 2019-03-29 2019-07-19 宁波瑞凌新能源科技有限公司 一种辐射制冷结构
CN110350048A (zh) * 2019-07-05 2019-10-18 电子科技大学 一种光子辐射散热结构

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JEONG S.Y.; TSO C.Y.; WONG Y.M.; CHAO C.Y.H.; HUANG B.: "Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface", SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM., NL, vol. 206, 20 November 2019 (2019-11-20), NL , XP086059419, ISSN: 0927-0248, DOI: 10.1016/j.solmat.2019.110296 *
WANG XIN, LIU XIANGHUI, LI ZHENYANG, ZHANG HAIWEN, YANG ZHIWEI, ZHOU HAN, FAN TONGXIANG: "Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime Radiative Cooling", ADVANCED FUNCTIONAL MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 30, no. 5, 1 January 2020 (2020-01-01), DE , pages 1907562, XP055790964, ISSN: 1616-301X, DOI: 10.1002/adfm.201907562 *
ZHANG HAIWEN, LY KALLY C. S., LIU XIANGHUI, CHEN ZHIHAN, YAN MAX, WU ZILONG, WANG XIN, ZHENG YUEBING, ZHOU HAN, FAN TONGXIANG: "Biologically inspired flexible photonic films for efficient passive radiative cooling", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 117, no. 26, 30 June 2020 (2020-06-30), pages 14657 - 14666, XP055882125, ISSN: 0027-8424, DOI: 10.1073/pnas.2001802117 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114801380A (zh) * 2022-03-10 2022-07-29 郑州大学 一种多孔pdms/pva水凝胶复合制冷薄膜的制备方法
CN115304809A (zh) * 2022-08-31 2022-11-08 北京化工大学 一种辐射降温复合膜防护材料及其制备方法和应用
CN115466394A (zh) * 2022-09-26 2022-12-13 中国科学院苏州纳米技术与纳米仿生研究所 辐射降温油性疏水浆料及其制备方法与应用
CN115573169A (zh) * 2022-09-26 2023-01-06 中国科学院苏州纳米技术与纳米仿生研究所 辐射降温水性喷剂、其制备方法及应用
CN115466394B (zh) * 2022-09-26 2023-07-25 中国科学院苏州纳米技术与纳米仿生研究所 辐射降温油性疏水浆料及其制备方法与应用
CN115573169B (zh) * 2022-09-26 2023-11-24 中国科学院苏州纳米技术与纳米仿生研究所 辐射降温水性喷剂、其制备方法及应用
CN115572399A (zh) * 2022-10-09 2023-01-06 南京特殊教育师范学院 一种被动辐射冷却薄膜及其制备方法
CN115572399B (zh) * 2022-10-09 2023-07-25 南京特殊教育师范学院 一种被动辐射冷却薄膜及其制备方法

Also Published As

Publication number Publication date
CN111718584A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2021253580A1 (zh) 一种辐射降温薄膜、其制备方法及其应用
Lee et al. Visibly clear radiative cooling metamaterials for enhanced thermal management in solar cells and windows
CN112898777B (zh) 一种高导热辐射制冷、散热材料及其制备方法和应用
Ding et al. Iridescent daytime radiative cooling with no absorption peaks in the visible range
CN111690301B (zh) 具有梯度结构的辐射制冷涂层及其制备方法与应用
CN112500595A (zh) 空气孔光子晶体结构被动辐射冷却薄膜及其制备方法
Zhang et al. Full daytime sub-ambient radiative cooling film with high efficiency and low cost
CN113072737B (zh) 具有日间辐射制冷的多孔聚二甲基硅氧烷及其制备方法
CN112961530A (zh) 一种具有长余辉发光性能的辐射制冷涂层及其制备方法
CN108912572B (zh) 一种具有自清洁功能的辐射致冷膜及其制备方法
CN113025219B (zh) 可拉伸辐射冷却胶带及其制备方法和应用
CN110452668A (zh) 一种透射型辐射制冷材料、薄膜、制备方法及应用
CN112375418A (zh) 一种多级多孔辐射制冷薄膜涂层的制备方法
CN114957888B (zh) 一种ptfe三维多孔辐射薄膜及其制备方法
CN116515219A (zh) 一种多孔辐射制冷薄膜及其制备方法
CN115323626A (zh) 一种聚合物与功能配合物复合热管理材料及其制备方法和应用
CN114702712A (zh) 超疏水pvdf-hfp/氧化硅气凝胶复合膜及其制备方法与应用
Chen et al. Eco‐Friendly Transparent Silk Fibroin Radiative Cooling Film for Thermal Management of Optoelectronics
CN113980316A (zh) 一种彩色被动辐射冷却薄膜的制备方法
CN116004114A (zh) 一种光反射保温耐候涂层及其制备方法和应用
Li et al. Electrospun film composed of pearl-string-like microfibers exhibiting excellent radiative cooling performance, moisture permeability and self-cleaning function
KR102466621B1 (ko) 무전원냉각용 다공성 고분자 및 이의 제조방법
CN210970217U (zh) 一种高反射辐射制冷薄膜
CN117164939A (zh) 一种微纳多孔-颗粒状复合辐射制冷薄膜涂层及其制备方法
CN114801378B (zh) 一种低于室温的柔性彩色辐射制冷器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941078

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20941078

Country of ref document: EP

Kind code of ref document: A1