CN116515219A - 一种多孔辐射制冷薄膜及其制备方法 - Google Patents

一种多孔辐射制冷薄膜及其制备方法 Download PDF

Info

Publication number
CN116515219A
CN116515219A CN202310663981.7A CN202310663981A CN116515219A CN 116515219 A CN116515219 A CN 116515219A CN 202310663981 A CN202310663981 A CN 202310663981A CN 116515219 A CN116515219 A CN 116515219A
Authority
CN
China
Prior art keywords
film
solvent
porous
radiation refrigeration
microspheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310663981.7A
Other languages
English (en)
Inventor
唐炳涛
杨传鑫
张宇昂
张淑芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202310663981.7A priority Critical patent/CN116515219A/zh
Publication of CN116515219A publication Critical patent/CN116515219A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种多孔辐射制冷薄膜及其制备方法,其属于新材料技术领域。该材料通过溶剂挥发诱导相分离法,在薄膜内部形成孔洞,尺寸较小的微球可均匀地随机分布在多孔薄膜中,建立起由基质、微球、空气三种光学性质不同的介质构成的光学结构,对特定波段的辐射进行有效的反射和吸收。同时,微球作为随机分布在薄膜中的粒子,对投射其表面的辐射存在吸收、反射和散射等作用,薄膜基质和掺入微球的红外吸收,使薄膜在大气窗口波段具有高平均发射率。该薄膜在太阳波段具有高反射率,在大气透明窗口具有高发射率,因而具有很好的辐射制冷效果。该材料制备方法简单,无需金属反射层,且具有良好的机械性能,在物体表面降温、建筑物制冷等方面具有广阔的应用前景。

Description

一种多孔辐射制冷薄膜及其制备方法
技术领域
本发明涉及一种多孔辐射制冷薄膜及其制备方法,其属于新材料技术领域。
背景技术
制冷技术服务于人类的不同领域,为人们的生活带来许多便利,但传统制冷技术,如空调虽然能实现快速降温,但需要消耗大量能源,并排放大量温室气体,因此开发一种资源节约型、环境友好型的制冷方式成为了人们亟待解决的问题。
近年来,辐射制冷技术得到广泛关注,它可以在不消耗任何能量或释放二氧化碳的情况下,通过大气窗口将热量以热辐射的形式发射到低温外太空,自发地降低物体温度。大气窗口定义为8-14μm的波长区域,在这个波段内大气内分子(水、二氧化碳、氧气等)的吸收较弱,电磁波可以有效穿过地球表面大气层来到太空。为了实现日间冷却,辐射制冷材料需要在太阳辐射波段(0.3-2.5μm)具有较高的反射率,同时在大气窗口波段具有较高的发射率。根据基尔霍夫热辐射定律,即在热平衡条件下,物体对热辐射的吸收率恒等于同温度下的发射率,材料在大气窗口波段的高发射率应该通过高吸收率实现。
覆有辐射制冷材料的建筑不需要电能来冷却室内空气,或可以节省制冷所需的能源消耗,因此可被用于建筑、汽车、太阳能电池、户外用品的有效热管理。现有辐射制冷材料包括纳米粒子辐射体、多层膜结构辐射体、超材料、光子晶体等,这些材料往往需要严格精密的制备条件,如电子束光刻、真空沉积等,或制备条件复杂,需要金属反射层。复杂且昂贵的制备技术极大限制了辐射制冷材料的规模化生产,难以满足住房或商业建筑的大面积应用需求,因此开发一种具有优越性能、制备方法简单的辐射制冷材料具有重大意义。
发明内容
针对现有技术中存在的问题,本发明提供一种具有多孔结构、掺有微球散射体的辐射制冷薄膜,此种材料采用溶剂挥发诱导相分离法形成多孔结构,并物理掺入微球,得到具有高太阳反射率和高大气窗口发射率的辐射制冷薄膜。此类材料制备方法简单,无需金属反射层,且具有良好的机械性能,在物体表面降温、建筑物制冷等方面具有广阔的应用前景。
一种多孔辐射制冷薄膜,其特征在于:所述多孔辐射制冷薄膜由多孔的具有大气窗口波段吸收能力的材料和随机分布的微球组成。
本发明所述具有大气窗口波段吸收能力的材料包括聚偏氟乙烯(PVDF)、聚苯乙烯(PS)、聚乳酸纤维(PLA)、醋酸纤维素(CA)、尼龙6、聚甲基丙烯酸甲酯(PMMA)、聚二甲基硅氧烷(PDMS)等中的至少一种。
本发明所述随机分布的微球包括二氧化硅、二氧化钛、二氧化铈、氧化锌、硫化锌、氧化铝、氧化锆、交联聚苯乙烯、交联聚甲基丙烯酸甲酯等中的至少一种;
优选的是,所述随机分布的微球的粒径为200~950nm。
本发明所述多孔辐射制冷薄膜的孔径为0.1~2.92μm,厚度为190~570μm。
一种多孔辐射制冷薄膜的制备方法,包括下述工艺步骤:
(1)将微球加入第一溶剂与第二溶剂的混合溶剂中,超声分散7h,得到均匀分散液,其中,所述第一溶剂与所述第二溶剂互溶;
(2)将具有大气窗口波段吸收能力的材料加入步骤(1)所得分散液中,磁力搅拌,充分溶解,得到铸膜液;
(3)将步骤(2)中的铸膜液滴到清洗干净的基板表面,干燥后揭下,即得多孔辐射制冷薄膜。
上述技术方案中,所述第一溶剂包括丙酮、二氯甲烷、氯仿、甲酸、四氢呋喃等中的至少一种;所述第二溶剂包括去离子水、乙醇、甲醇等中的至少一种。
所述具有大气窗口波段吸收能力的材料与所述微球的质量比为1:0.1~0.4,所述第一溶剂与所述第二溶剂的质量比为8~21:1。
进一步优选地,具有大气窗口波段吸收能力的材料与所述微球的质量比为1:0.2~0.4,第一溶剂(丙酮)与所述第二溶剂(水)的质量比为8~9:1;微球选自二氧化硅、交联聚苯乙烯、交联聚甲基丙烯酸甲酯、硫化锌、氧化锆、氧化铝,微球直径为530~734nm;制得薄膜的厚度为190~380μm。采用以上优选条件得到的多孔辐射制冷薄膜的效果是较好的。微球进一步优选为二氧化硅、交联聚苯乙烯或交联聚甲基丙烯酸甲酯。
进一步优选地,具有大气窗口波段吸收能力的材料与所述微球的质量比为1:0.3,第一溶剂(丙酮)与所述第二溶剂(水)的质量比为9:1;具有大气窗口波段吸收能力的材料选自PVDF;微球选自二氧化硅;微球直径为734nm;制得薄膜的厚度为380μm。采用以上优选条件得到的多孔辐射制冷薄膜的效果是最好的。
本发明的有益效果为:该材料通过溶剂挥发诱导相分离法,在薄膜内部形成孔洞,有效提高其在太阳光波段(0.3-2.5μm)的平均反射率;薄膜基质和掺入微球的红外吸收,使薄膜在大气窗口波段(8-14μm)具有高平均发射率;尺寸较小的微球可均匀地随机分布在多孔薄膜中,建立起由基质、微球、空气三种光学性质不同的介质构成的光学结构,对特定波段的辐射进行有效的反射和吸收。同时,微球作为随机分布在薄膜中的粒子,对投射其表面的辐射存在吸收、反射和散射等作用,粒子的辐射特性与其尺寸大小和投射辐射的波长密切相关,粒子系的光谱辐射特性与粒子浓度和粒子系厚度有关。本发明通过优化溶剂比例、微球粒径、微球添加量和薄膜厚度等参数来控制薄膜对特定波段的吸收、反射及散射。该多孔辐射制冷薄膜在太阳波段具有高反射率,在大气透明窗口具有高发射率(发射率可达95.8%),因而具有很好的辐射制冷效果。该材料制备方法简单,无需金属反射层,且具有良好的机械性能(断裂强度超过10MPa),在物体表面降温、建筑物制冷(比未附制冷薄膜的温度低6.7℃)等方面具有广阔的应用前景。
附图说明
图1为实施例1中薄膜的表面扫描电镜图。
图2为实施例1中薄膜的截面扫描电镜图。
图3为实施例1中薄膜、PVDF和SiO2微球的红外谱图。
图4为实施例4、12-14中薄膜及无孔PVDF薄膜的太阳反射光谱。
图5为实施例4、12-14中薄膜及无孔PVDF薄膜的大气窗口发射光谱。
图6为实施例4、6、8-11中薄膜的太阳反射光谱。
图7为实施例4、6、8-11中薄膜的大气窗口发射光谱。
图8为实施例2、4-7中薄膜的太阳反射光谱。
图9为实施例2、4-7中薄膜的大气窗口发射光谱。
图10为实施例1-3中薄膜的太阳反射光谱。
图11为实施例1-3中薄膜的大气窗口发射光谱。
图12为实施例1-3中薄膜的应力-应变曲线及断裂强度。
图13为实施例1中薄膜应用于珍珠棉密闭小屋降温测试的现场图。
图14为实施例1中薄膜应用于珍珠棉密闭小屋降温测试的房屋模型内部温度、太阳强度和相对湿度及两房屋模型内部温差变化图。
图15为实施例1中薄膜应用于带窗木屋降温测试的现场图。
图16为实施例1中薄膜应用于带窗木屋降温测试的房屋模型内部温度、太阳强度和相对湿度及两房屋模型内部温差变化图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
(1)将粒径为734nm的SiO2微球加入丙酮与去离子水的混合溶剂中,超声分散7h,得到均匀分散液,所述SiO2微球采用法和种子生长法合成。
(2)将步骤(1)中制备的分散液与PVDF混合,磁力搅拌3h,得到铸膜液。其中,PVDF、SiO2微球、丙酮和去离子水的质量比为1:0.3:9:1。
(3)将适量铸膜液滴到清洗干净的玻璃表面,完全干燥后揭下,即得厚度为380μm的多孔PVDF/SiO2薄膜。
实施例2-3
将辐射制冷薄膜的厚度分别改为190μm和570μm,得到相应的多孔辐射制冷薄膜,其他条件与实施例1一致。
实施例4-7
将PVDF与SiO2微球的质量比分别改为1:0、1:0.1、1:0.2和1:0.4,得到相应的多孔辐射制冷薄膜,其他条件与实施例2一致。
实施例8-11
将SiO2微球的粒径分别改为200nm、360nm、530nm和918nm,得到相应的多孔辐射制冷薄膜,其他条件与实施例6一致。
实施例12-14
将丙酮与水的质量比分别改为8:1、10:1和11:1,得到相应的多孔辐射制冷薄膜,其他条件与实施例4一致。
附图1和附图2为实施例1中薄膜的表面和截面扫描电镜图。在实施例1中薄膜、PVDF和SiO2微球的红外谱图(附图3)中,阴影区域对应大气透明窗口(8-14μm),1189cm-1处为C-F伸缩振动吸收峰,1072cm-1、763cm-1处为PVDF结晶相的振动吸收峰,881cm-1、841cm-1处为PVDF无定形相的特征吸收峰,1104cm-1处为Si-O-Si反对称伸缩振动吸收峰,945cm-1处为Si-OH的弯曲振动吸收峰,801cm-1处为Si-O对称伸缩振动吸收峰。可见PVDF和SiO2具有强吸收的官能团大多位于大气窗口内,这保证了PVDF/SiO2辐射制冷薄膜在大气窗口的发射性能。
实施例4、12-14为对溶剂比例的优选。由附图4可以看出,无孔PVDF薄膜的太阳波段反射率很低,仅有7.3%,向丙酮中加入水后,制备的薄膜中产生微小孔洞,有利于增强薄膜对光的散射作用,因此薄膜的太阳反射率得到显著提高。不同的水添加量下产生的孔隙结构不同,对光的散射作用也不同,丙酮与水的质量比为8:1、9:1、10:1和11:1时的太阳波段平均反射率分别为76.2%、75.8%、71.1%和68.1%。由附图5可以看出,由于PVDF本身在大气窗口波段具有强吸收官能团,无孔PVDF薄膜已有较高的大气窗口发射率(0.784),添加水后薄膜中产生的多孔结构可通过多次反射提高红外吸收的概率,从而提高了大气窗口发射率,不同丙酮与水的质量比8:1、9:1、10:1和11:1下制备的辐射制冷薄膜的大气窗口平均发射率分别为0.885、0.914、0.907和0.906。综合考虑溶剂比例对太阳平均反射率和大气窗口平均发射率的影响,9:1是制备辐射制冷薄膜时丙酮与水的最佳比例。
实施例4、6、8-11为对微球粒径的优选。由附图6可知,加入粒径为200nm和360nm的SiO2微球后,薄膜对波长为1100nm以上的近红外光的反射率有所下降,这可能是由于薄膜中的孔隙被粒径过小的微球填充,从而导致薄膜对近红外光的散射作用减弱。未添加微球与添加200nm、360nm、530nm、734nm和918nm微球的辐射制冷薄膜的太阳平均反射率分别为75.8%、78.8%、80.7%、85.2%、87.3%和84.1%,添加粒径734nm的微球对太阳反射率的提升最大。由附图7可知,SiO2微球的加入弥补了PVDF多孔膜的红外吸收缺口,使大气窗口发射率得到显著提高,添加不同粒径微球的辐射制冷薄膜的大气窗口平均发射率均在0.94-0.95之间。综合考虑SiO2微球粒径对太阳平均反射率和大气窗口平均发射率的影响,734nm为SiO2微球的最佳粒径。
实施例2、4-7为对微球添加量的优选。由附图8可知,随着SiO2微球含量的增加,辐射制冷薄膜的太阳平均反射率逐渐提高,在含量为30%时达到最大值91.7%,继续增加微球含量会导致太阳光反射率下降。如附图9所示,随着SiO2微球的加入,薄膜的大气窗口平均发射率同样呈现出先增大再减小的趋势,未添加微球与添加10%、20%、30%和40%微球的辐射制冷薄膜的大气窗口平均发射率分别为0.914、0.936、0.944、0.950和0.942,在含量为30%达到最大值。综合考虑SiO2微球含量对太阳平均反射率和大气窗口平均发射率的影响,30%为SiO2微球的最佳添加量。
实施例1-3为对薄膜厚度的优选。由附图10和附图11可知,随着厚度的增大,辐射制冷薄膜的太阳光反射率提高,但提升幅度变小,厚度为380μm和570μm时薄膜的太阳光平均反射率分别可达93.8%和94.8%;随着薄膜厚度从190μm提高到380μm,大气窗口平均发射率从0.950提升至0.958,厚度继续增大至570μm时,发射率保持0.958不变。薄膜的厚度不仅会影响其光学性能,还会影响其机械强度,辐射制冷薄膜的机械强度对其实际应用具有重大意义,不同厚度多孔PVDF/SiO2膜的应力-应变曲线和断裂强度如附图12所示。随薄膜厚度的增加,其断裂伸长率和断裂强度均逐渐增大,但提升幅度变小,厚度为380μm和570μm的辐射制冷薄膜的断裂强度分别为10.57MPa和10.88MPa。可以看出,厚度为380μm的辐射制冷薄膜已具有较好的光学性能和机械强度,之后的厚度增加对其效果影响较小,同时考虑到辐射制冷薄膜的制备成本,可选择380μm作为最佳厚度。
按实施例1所述方法制备面积为10cm×10cm的辐射制冷薄膜。
采用EPE珍珠棉搭建的密闭小屋作为房屋模型,并在房屋模型顶部覆盖辐射制冷薄膜,以评估房屋模型在太阳直射下的内部温度变化。将K型热电偶分别放置在覆盖与未覆盖辐射制冷薄膜的房屋模型中,测量其内部温度。户外测试地点为大连市,测试时间为2023年4月12日10:00-14:00,当日天气晴朗,太阳强度与湿度变化分别由太阳能功率表和温湿度记录仪记录。测试现场图如附图13所示。
由附图14可知,在相对湿度为11.4%-23.9%,太阳强度最高达到997.0W/m2的午间(10:00-14:00),覆盖辐射制冷薄膜的房屋内部温度比裸露房屋内部温度平均低6.7℃。
利用带窗木屋代替珍珠棉密闭小屋作为房屋模型,其他条件不变,测试时间为2023年4月18日10:00-14:00。测试现场图如附图15所示。
由附图16可知,在相对湿度为50.3%-63.9%,太阳强度最高达到1025W/m2的午间(10:00-14:00),覆盖辐射制冷薄膜的房屋内部温度比裸露房屋内部温度平均低4.4℃。当日风力为南风3-4级,空气对流会带走木屋内的热量,且对流对温度相对较高的裸露木屋影响更大,因此在存在对流的情况下,覆盖辐射制冷薄膜的木屋与裸露的木屋间的温差会减小。同时当日湿度较高,湿度的提高意味着大气中水蒸气增多,水分子会吸收红外辐射,阻碍地表与深空之间的热交换,进一步降低辐射制冷的效果。实验表明,所得多孔辐射制冷薄膜可使房屋模型产生有效的室内降温。
实施例15
利用尼龙6代替PVDF,利用甲酸代替丙酮作为第一溶剂,将第一溶剂和第二溶剂的质量比改为14:1,得到相应的多孔辐射制冷薄膜,其他条件与实施例1一致。
实施例16
利用聚苯乙烯代替PVDF,利用二氯甲烷代替丙酮作为第一溶剂,利用甲醇代替去离子水作为第二溶剂,将第一溶剂与第二溶剂的质量比改为19:1,得到相应的多孔辐射制冷薄膜,其他条件与实施例1一致。
实施例17
利用聚乳酸纤维代替PVDF,利用氯仿代替丙酮作为第一溶剂,利用乙醇代替去离子水作为第二溶剂,将第一溶剂与第二溶剂的质量比改为21:1,得到相应的多孔辐射制冷薄膜,其他条件与实施例1一致。
实施例18
利用醋酸纤维素代替PVDF,得到相应的多孔辐射制冷薄膜,其他条件与实施例1一致。
实施例19
利用聚甲基丙烯酸甲酯代替PVDF,利用四氢呋喃代替丙酮作为第一溶剂,将第一溶剂与第二溶剂的质量比改为10:1,得到相应的多孔辐射制冷薄膜,其他条件与实施例1一致。
实施例20
利用聚二甲基硅氧烷代替PVDF,利用二氯甲烷代替丙酮作为第一溶剂,利用乙醇代替去离子水作为第二溶剂,将第一溶剂与第二溶剂的质量比改为19:1,得到相应的多孔辐射制冷薄膜,其他条件与实施例1一致。
实施例21
利用二氧化钛代替二氧化硅作为掺入的微球,将微球的粒径改为500nm,得到相应的多孔辐射制冷薄膜,其他条件与实施例16一致。
实施例22
利用二氧化铈代替二氧化硅作为掺入的微球,将微球的粒径改为400nm,得到相应的多孔辐射制冷薄膜,其他条件与实施例17一致。
实施例23
利用氧化锌代替二氧化硅作为掺入的微球,将微球的粒径改为800nm,得到相应的多孔辐射制冷薄膜,其他条件与实施例18一致。
实施例24
利用硫化锌代替二氧化硅作为掺入的微球,将微球的粒径改为600nm,得到相应的多孔辐射制冷薄膜,其他条件与实施例19一致。
实施例25
利用氧化铝代替二氧化硅作为掺入的微球,将微球的粒径改为950nm,得到相应的多孔辐射制冷薄膜,其他条件与实施例20一致。
实施例26
利用氧化锆代替二氧化硅作为掺入的微球,将微球的粒径改为700nm,得到相应的多孔辐射制冷薄膜,其他条件与实施例21一致。
实施例27
利用交联聚苯乙烯代替二氧化硅作为掺入的微球,将微球的粒径改为950nm,得到相应的多孔辐射制冷薄膜,其他条件与实施例1一致。
实施例28
利用交联聚甲基丙烯酸甲酯代替二氧化硅作为掺入的微球,将微球的粒径改为950nm,得到相应的多孔辐射制冷薄膜,其他条件与实施例1一致。

Claims (10)

1.一种多孔辐射制冷薄膜,其特征在于:所述多孔辐射制冷薄膜由多孔的具有大气窗口波段吸收能力的材料和随机分布的微球组成;所述多孔辐射制冷薄膜的孔径为0.1~2.92μm,所述随机分布的微球的粒径为200~950nm。
2.根据权利要求1所述的一种多孔辐射制冷薄膜,其特征在于,所述具有大气窗口波段吸收能力的材料包括聚偏氟乙烯、聚苯乙烯、聚乳酸纤维、醋酸纤维素、尼龙6、聚甲基丙烯酸甲酯、聚二甲基硅氧烷中的至少一种。
3.根据权利要求1所述的一种多孔辐射制冷薄膜,其特征在于,所述随机分布的微球包括二氧化硅、二氧化钛、二氧化铈、氧化锌、硫化锌、氧化铝、氧化锆、交联聚苯乙烯、交联聚甲基丙烯酸甲酯中的至少一种。
4.根据权利要求1所述的一种多孔辐射制冷薄膜,其特征在于,所述多孔辐射制冷薄膜的厚度为190~570μm。
5.根据权利要求1-4任一所述的一种多孔辐射制冷薄膜的制备方法,其特征在于,包括下述工艺步骤:
(1)将微球加入第一溶剂与第二溶剂的混合溶剂中,超声分散,得到均匀分散液,其中,所述第一溶剂与所述第二溶剂互溶;
(2)将具有大气窗口波段吸收能力的材料加入步骤(1)所得分散液中,磁力搅拌,充分溶解,得到铸膜液;
(3)将步骤(2)中的铸膜液滴到清洗干净的基板表面,干燥后揭下,即得多孔辐射制冷薄膜。
6.根据权利要求5所述的一种多孔辐射制冷薄膜的制备方法,其特征在于,所述第一溶剂包括丙酮、二氯甲烷、氯仿、甲酸、四氢呋喃中的至少一种。
7.根据权利要求5所述的一种多孔辐射制冷薄膜的制备方法,其特征在于,所述第二溶剂包括去离子水、乙醇、甲醇等中的至少一种。
8.根据权利要求5所述的一种多孔辐射制冷薄膜的制备方法,其特征在于:所述具有大气窗口波段吸收能力的材料与所述微球的质量比为1:0.1~0.4。
9.根据权利要求5所述的一种多孔辐射制冷薄膜的制备方法,其特征在于:所述第一溶剂与所述第二溶剂的质量比为8~21:1。
10.根据权利要求5所述的一种多孔辐射制冷薄膜的制备方法,其特征在于:所述微球选自二氧化硅、交联聚苯乙烯、交联聚甲基丙烯酸甲酯,微球直径为530-734nm;
所述具有大气窗口波段吸收能力的材料与所述微球的质量比为1:0.2~0.4,
所述第一溶剂为丙酮,第二溶剂为水,第一溶剂与所述第二溶剂的质量比为8~9:1。
CN202310663981.7A 2023-06-06 2023-06-06 一种多孔辐射制冷薄膜及其制备方法 Pending CN116515219A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310663981.7A CN116515219A (zh) 2023-06-06 2023-06-06 一种多孔辐射制冷薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310663981.7A CN116515219A (zh) 2023-06-06 2023-06-06 一种多孔辐射制冷薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN116515219A true CN116515219A (zh) 2023-08-01

Family

ID=87392377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310663981.7A Pending CN116515219A (zh) 2023-06-06 2023-06-06 一种多孔辐射制冷薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN116515219A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116813961A (zh) * 2023-08-25 2023-09-29 南京助天中科科技发展有限公司 一种增强大气窗口发射率的辐射制冷薄膜及其制备方法
CN117106225A (zh) * 2023-08-25 2023-11-24 重庆文理学院 一种具有被动辐射制冷功能的复合多孔材料的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327433A (zh) * 2013-10-30 2015-02-04 东莞市长安东阳光铝业研发有限公司 一种聚偏氟乙烯基薄膜的制备方法
CN112250973A (zh) * 2020-09-25 2021-01-22 河北工业大学 一种多孔辐射制冷薄膜及其制备方法
US10927244B1 (en) * 2019-08-21 2021-02-23 Shaanxi University Of Science & Technology Superhydrophobic and self-cleaning radiative cooling film and preparation method thereof
CN114506141A (zh) * 2022-01-30 2022-05-17 浙江大学 一种辐射制冷薄膜
WO2022148401A1 (zh) * 2021-01-07 2022-07-14 华中科技大学 一种湿法纺丝辐射制冷纤维、制备方法及其应用
CN114805941A (zh) * 2022-05-09 2022-07-29 东南大学 一种定向导热多孔辐射制冷薄膜材料及其制备方法
CN114933731A (zh) * 2022-06-02 2022-08-23 哈尔滨工业大学 分级粒径微球与孔复合的聚合物基辐射制冷材料及其制备方法
CN115323801A (zh) * 2022-07-12 2022-11-11 浙江理工大学 一种具有全天高效被动辐射冷却功能的涂层纺织品及其制备方法
US20230012311A1 (en) * 2021-07-09 2023-01-12 The Board Of Trustees Of The University Of Illinois Porous polymer composite for daytime radiative cooling and method of making a porous polymer composite
CN115838490A (zh) * 2022-12-22 2023-03-24 大连理工大学 一种具有自清洁功能的柔性辐射制冷膜及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327433A (zh) * 2013-10-30 2015-02-04 东莞市长安东阳光铝业研发有限公司 一种聚偏氟乙烯基薄膜的制备方法
US10927244B1 (en) * 2019-08-21 2021-02-23 Shaanxi University Of Science & Technology Superhydrophobic and self-cleaning radiative cooling film and preparation method thereof
CN112250973A (zh) * 2020-09-25 2021-01-22 河北工业大学 一种多孔辐射制冷薄膜及其制备方法
WO2022148401A1 (zh) * 2021-01-07 2022-07-14 华中科技大学 一种湿法纺丝辐射制冷纤维、制备方法及其应用
US20230012311A1 (en) * 2021-07-09 2023-01-12 The Board Of Trustees Of The University Of Illinois Porous polymer composite for daytime radiative cooling and method of making a porous polymer composite
CN114506141A (zh) * 2022-01-30 2022-05-17 浙江大学 一种辐射制冷薄膜
CN114805941A (zh) * 2022-05-09 2022-07-29 东南大学 一种定向导热多孔辐射制冷薄膜材料及其制备方法
CN114933731A (zh) * 2022-06-02 2022-08-23 哈尔滨工业大学 分级粒径微球与孔复合的聚合物基辐射制冷材料及其制备方法
CN115323801A (zh) * 2022-07-12 2022-11-11 浙江理工大学 一种具有全天高效被动辐射冷却功能的涂层纺织品及其制备方法
CN115838490A (zh) * 2022-12-22 2023-03-24 大连理工大学 一种具有自清洁功能的柔性辐射制冷膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M QI, 等: "Energy-saving Cooling Coated Fabric with Robust Solar Reflection and Water Repellent Properties", 《FIBERS AND POLYMERS》, vol. 23, no. 7, pages 1881 - 1887, XP037924737, DOI: 10.1007/s12221-022-4984-4 *
孙志能, 等: "纳米二氧化硅填充PVDF聚合物微孔膜的研究", 《精细化工》, no. 2, pages 109 - 113 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116813961A (zh) * 2023-08-25 2023-09-29 南京助天中科科技发展有限公司 一种增强大气窗口发射率的辐射制冷薄膜及其制备方法
CN117106225A (zh) * 2023-08-25 2023-11-24 重庆文理学院 一种具有被动辐射制冷功能的复合多孔材料的制备方法
CN116813961B (zh) * 2023-08-25 2023-12-22 南京助天中科科技发展有限公司 一种增强大气窗口发射率的辐射制冷薄膜及其制备方法

Similar Documents

Publication Publication Date Title
CN116515219A (zh) 一种多孔辐射制冷薄膜及其制备方法
Cheng et al. Efficient radiative cooling coating with biomimetic human skin wrinkle structure
WO2021253580A1 (zh) 一种辐射降温薄膜、其制备方法及其应用
Liu et al. Advances and challenges in commercializing radiative cooling
TWI740202B (zh) 輻射致冷功能塗料及其製備方法與應用、選擇性輻射致冷塗層及複合材料
Farooq et al. Emerging radiative materials and prospective applications of radiative sky cooling-A review
CN111690301B (zh) 具有梯度结构的辐射制冷涂层及其制备方法与应用
CN110274326B (zh) 一种日间辐射制冷器及其制备方法
US20130196140A1 (en) Coated article with antireflection coating including porous nanoparticles, and/or method of making the same
CN107828289B (zh) 疏水自洁净表面温度昼夜低于气温的反思托克斯荧光及辐射制冷涂料及其制备方法
CN105731821B (zh) 在玻璃基板上构造超亲水及增透防湿的复合薄膜的方法
US20150205021A1 (en) Metamaterial for improved energy efficiency
CN110372976A (zh) 一种反射型辐射制冷材料、薄膜、制备方法及应用
Cui et al. Progress of passive daytime radiative cooling technologies towards commercial applications
Chan et al. Potential passive cooling methods based on radiation controls in buildings
CN114957888B (zh) 一种ptfe三维多孔辐射薄膜及其制备方法
CN112500595A (zh) 空气孔光子晶体结构被动辐射冷却薄膜及其制备方法
CN114736566A (zh) 超疏水自清洁温度自适应型辐射降温涂层及涂层制备方法
CN113068406B (zh) 辐射冷却元件及其制作方法
Lei et al. Impact of aging, precipitation, and orientation on performance of radiative cooling for building envelope: A field investigation
US20230383092A1 (en) Durability-enhanced thermochromic film and method of manufacturing same
CN116004114A (zh) 一种光反射保温耐候涂层及其制备方法和应用
CN115232418A (zh) 一种酸洗颗粒制备多孔辐射制冷涂层的方法
CN114621613A (zh) 一种超疏水负碳功能涂层及其制备方法
CN114892417A (zh) 一种含有日间辐射制冷多孔涂层的纺织品及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination