WO2021253562A1 - 无刷电机无位置传感器换相误差补偿系统及方法 - Google Patents

无刷电机无位置传感器换相误差补偿系统及方法 Download PDF

Info

Publication number
WO2021253562A1
WO2021253562A1 PCT/CN2020/103426 CN2020103426W WO2021253562A1 WO 2021253562 A1 WO2021253562 A1 WO 2021253562A1 CN 2020103426 W CN2020103426 W CN 2020103426W WO 2021253562 A1 WO2021253562 A1 WO 2021253562A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
brushless motor
commutation
sampling
error compensation
Prior art date
Application number
PCT/CN2020/103426
Other languages
English (en)
French (fr)
Inventor
刘刚
金浩
郑世强
李海涛
文通
何莎
Original Assignee
北京航空航天大学宁波创新研究院
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学宁波创新研究院, 北京航空航天大学 filed Critical 北京航空航天大学宁波创新研究院
Priority to US17/995,410 priority Critical patent/US20230179127A1/en
Publication of WO2021253562A1 publication Critical patent/WO2021253562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present disclosure relates to the technical field of brushless motors, and in particular to a position sensorless commutation error compensation system and method for brushless motors.
  • the technical problem to be solved by the present disclosure is to solve the existing problem of how to realize the position sensorless commutation error compensation of the brushless motor.
  • the embodiments of the present disclosure provide a position sensorless commutation error compensation system and method of a brushless motor.
  • an embodiment of the present disclosure proposes a position sensorless commutation error compensation system for a brushless motor, which includes: a brushless motor and a commutation logic module circuit;
  • the commutation logic module circuit is connected to the three-way virtual Hall signal output terminal of the brushless motor, and is used to receive the three-way virtual Hall signal output by the brushless motor, and is based on the three-way virtual Hall signal output terminal. Signal to obtain three error compensation angle signals, and superimpose the three error compensation angle signals and the three virtual Hall signals respectively to form a superposition result, and control the brushless motor to adjust the commutation timing based on the superposition result , In order to realize the commutation error compensation.
  • the embodiment of the present disclosure also proposes a position sensorless commutation error compensation method for a brushless motor.
  • the position sensorless commutation error compensation method for a brushless motor is applicable to any of the above-mentioned brushless motor position sensorless commutation errors. Error compensation system;
  • the position sensorless commutation error compensation method of the brushless motor includes:
  • the commutation logic module circuit receives three virtual Hall signals output by the brushless motor, and obtains three error compensation angle signals based on the three virtual Hall signals;
  • the commutation logic module circuit superimposes the three-way error compensation angle signal and the three-way virtual Hall signal respectively to form a superimposed result, and based on the superimposed result, controls the brushless motor to adjust the commutation timing to realize commutation Phase error compensation.
  • the commutation logic module circuit is connected to the three virtual Hall signal output terminals of the brushless motor for receiving the Three virtual Hall signals output by the brushless motor, and based on the three virtual Hall signals, three error compensation angle signals are obtained, and the three error compensation angle signals are combined with the three virtual Hall signals Respectively superimpose to form a superimposed result, and then control the brushless motor to adjust the commutation timing based on the superimposed result to achieve commutation error compensation.
  • the essence is to control the commutation error based on the three-phase current and back electromotive force, rather than just based on The current and back electromotive force of one of the three phases are used to control the commutation error, which can reduce the torque ripple of the brushless DC motor and improve the working efficiency of the motor.
  • FIG. 1 is a structural block diagram of a position sensorless commutation error compensation system for a brushless motor provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a position sensorless commutation error compensation system for a brushless motor provided by an embodiment of the present disclosure
  • Fig. 3 is an enlarged view of the feedback signal construction circuit in Fig. 2;
  • FIG. 4 is a waveform diagram of three virtual Hall signals and three basic signals during operation of the brushless motor position sensorless commutation error compensation system provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a sampling time determination provided by an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a method for compensating a position sensorless commutation error of a brushless motor according to an embodiment of the disclosure.
  • Fig. 1 is a structural block diagram of a position sensorless commutation error compensation system for a brushless motor provided by an embodiment of the present disclosure.
  • the brushless motor position sensorless commutation error compensation system includes: a brushless motor 200 and a commutation logic module circuit 100; the commutation logic module circuit 100 and three virtual Hall signal output terminals of the brushless motor 200 Connection, used to receive three virtual hall signals output by the brushless motor 200, and based on the three virtual hall signals, obtain three error compensation angle signals, and combine the three error compensation angle signals with the three virtual hall signals They are superimposed separately to form superimposed results, and based on the superimposed results, the brushless motor 100 is controlled to adjust the commutation timing to realize the commutation error compensation.
  • the above technical solution is essentially based on three-phase feedback information (such as current and back electromotive force, etc.) to control the commutation error, rather than only based on the feedback information of one of the three phases to control the commutation error, which can reduce the brushless DC
  • the torque pulsation of the motor improves the working efficiency of the motor.
  • the commutation logic module circuit 100 includes a sampling circuit 10, a feedback signal construction circuit 20, a commutation error controller 30, a commutation logic module 40 and a full bridge circuit 50.
  • the input terminal of the feedback signal construction circuit 20 is connected to the three virtual Hall signal output terminals of the brushless motor 200; the output terminal of the feedback signal construction circuit 20, the three virtual Hall signal output terminals of the brushless motor 200, and the commutation error
  • the three output terminals of the controller 30 are all connected to the input terminals of the sampling circuit 10; the three output terminals of the sampling circuit 10 are connected to the three input terminals of the commutation error controller 30, and the three outputs of the commutation error controller 30
  • the terminal is also electrically connected to the three input terminals of the commutation logic module 40 in a one-to-one correspondence.
  • the input terminal of the commutation error controller 30 is connected to the three virtual Hall signal output terminals of the brushless motor 200;
  • the output terminal is connected to the input terminal of the full bridge circuit 50, and the output terminal of the full bridge circuit 50 is connected to the input terminal of the brushless motor 200.
  • the three virtual Hall signals output by the brushless motor 200 cannot directly reflect the commutation error, when the commutation error compensation system is working, the three virtual Hall signals of the brushless motor 200 are output to the feedback signal construction circuit 20, and feedback
  • the signal construction circuit 20 recombines the three virtual Hall signals (in the following for ease of description, the signal obtained after the feedback signal construction circuit 20 recombines the virtual Hall signals is called the basic signal) to make the commutation error Can stand out.
  • the sampling circuit 10 determines the sampling time and the sampling object according to the operating condition of the brushless motor (which can be determined by three virtual Hall signals), performs sampling, and outputs the sampling result.
  • the sampling result is three feedback quantities, and the three feedback quantities correspond one-to-one with the three virtual Hall signals.
  • commutation error controllers 30 which use three feedback quantities to eliminate the commutation errors of the three virtual Hall sensors. Specifically, the commutation error controller 30 obtains three error compensation angles respectively based on the three feedback quantities, and superimposes the three error compensation angles with the time series of the three virtual Hall signals corresponding to them, respectively, to generate the compensated Commutation signal.
  • the commutation logic module 40 generates a digital signal that can control the on and off of the full bridge circuit 50 based on the compensated commutation signal.
  • the full-bridge circuit 50 Based on the digital signal output by the commutation logic module 40, the full-bridge circuit 50 adjusts the on-off state of its internal MOS tube, thereby controlling the internal winding current and voltage of the brushless motor, and adjusting the commutation timing of the brushless motor to achieve commutation error compensation the goal of.
  • the full bridge circuit is the prior art, and will not be described in detail in the present disclosure.
  • Fig. 2 is a schematic structural diagram of a position sensorless commutation error compensation system for a brushless motor provided by an embodiment of the present disclosure.
  • Fig. 3 is an enlarged view of the feedback signal construction circuit in Fig. 2.
  • the feedback signal construction circuit 20 includes a first operational amplifier A1, a second operational amplifier A2, a third operational amplifier A3, a fourth operational amplifier A4, a fifth operational amplifier A5, a sixth operational amplifier A6, First resistor R1, second resistor R2, third resistor R3, fourth resistor R4, fifth resistor R5, sixth resistor R6, seventh resistor R7, eighth resistor R8, ninth resistor R9, tenth resistor R10, The eleventh resistor R11, the twelfth resistor R12, the thirteenth resistor R13, the fourteenth resistor R14, and the fifteenth resistor R15.
  • the first virtual Hall signal output terminal B1 of the brushless motor is electrically connected to the first terminal of the third resistor R3 and the first terminal of the fifteenth resistor R15, and the second terminal of the third resistor R3 is electrically connected to the second operational amplifier A2
  • the non-inverting input terminal of the second resistor R2 is electrically connected to the first terminal of the second resistor R2
  • the second terminal of the second resistor R2 is electrically connected to the first terminal of the first resistor R1 and the output terminal of the second operational amplifier A2.
  • the second terminal of the resistor R1 is electrically connected to the output terminal of the first operational amplifier A1 and the non-inverting input terminal of the first operational amplifier A1, and the output terminal of the first operational amplifier A1 serves as the first output terminal C1 of the feedback signal construction circuit ;
  • the negative phase input terminal of the first operational amplifier A1 is grounded;
  • the negative phase input terminal of the second operational amplifier A2 is electrically connected to the first terminal of the fourth resistor R4.
  • the second virtual Hall signal output terminal B2 of the brushless motor is electrically connected to the first terminal of the seventh resistor R7 and the first terminal of the fourteenth resistor R14, and the second terminal of the seventh resistor R7 is electrically connected to the fourth operational amplifier A4.
  • the non-inverting input end of the sixth resistor R6 is electrically connected to the first end of the sixth resistor R6, and the second end of the sixth resistor R6 is electrically connected to the first end of the fifth resistor R5 and the output end of the fourth operational amplifier A4.
  • the second terminal of the resistor R5 is electrically connected to the output terminal of the third operational amplifier A3 and the non-inverting input terminal of the third operational amplifier A3, and the output terminal of the third operational amplifier A3 serves as the second output terminal C2 of the feedback signal construction circuit ;
  • the negative phase input end of the third operational amplifier A3 is grounded;
  • the negative phase input end of the fourth operational amplifier A4 is electrically connected to the first end of the eighth resistor R8.
  • the third virtual Hall signal output terminal B3 of the brushless motor is electrically connected to the first end of the eleventh resistor R11 and the first end of the thirteenth resistor R13, and the second end of the eleventh resistor R11 is connected to the sixth operation
  • the non-inverting input end of the amplifier A6 and the first end of the tenth resistor R10 are electrically connected, and the second end of the tenth resistor R10 is electrically connected to the first end of the ninth resistor R9 and the output end of the sixth operational amplifier A6,
  • the second terminal of the ninth resistor R9 is electrically connected to the output terminal of the fifth operational amplifier A5 and the non-inverting input terminal of the fifth operational amplifier A5, and the output terminal of the fifth operational amplifier A5 serves as the third output of the feedback signal construction circuit Terminal C3; the negative phase input terminal of the fifth operational amplifier A5 is grounded; the negative phase input terminal of the sixth operational amplifier A6 is electrically connected to the first terminal of the twelfth resistor R12.
  • FIG. 4 is a waveform diagram of three virtual Hall signals and three basic signals during the operation of the brushless motor position sensorless commutation error compensation system provided by an embodiment of the present disclosure.
  • Sa, Sb, and Sc represent the three virtual Hall signals output by the brushless DC motor.
  • C01, C02 and C03 represent three basic signals.
  • the virtual Hall signal Sa is input to the feedback signal construction circuit 20 through the first virtual Hall signal output terminal B1 of the brushless motor, and then obtained by recombining with other virtual Hall signals
  • the first basic signal C01 is output through the first output terminal C1 of the feedback signal construction circuit 20.
  • the virtual hall signal Sb is input to the feedback signal construction circuit 20 through the second virtual hall signal output terminal B2 of the brushless motor, and then recombined with other virtual hall signals to obtain the second basic signal C02 , And output the second basic signal C02 through the second output terminal C2 of the feedback signal construction circuit 20.
  • the virtual hall signal Sc is input to the feedback signal construction circuit 20 through the third virtual hall signal output terminal B3 of the brushless motor, and then recombined with other virtual hall signals to obtain the third basic signal C03, and The third basic signal C03 is output through the third output terminal C3 of the feedback signal construction circuit 20.
  • the sampling circuit 10 includes an analog switch 11, an analog-to-digital converter (ADC converter) 12, and a field programmable gate array (FPGA) 13;
  • the three input terminals connected to the three output terminals of the feedback signal construction circuit 20 are all the first type input terminals of the sampling circuit;
  • the analog switch 11 is electrically connected to the three first type input terminals, It can independently control each input terminal of the first type;
  • the analog-to-digital converter 12 is electrically connected to the analog switch 11;
  • the input terminal of the field programmable gate array 13 is connected to the three virtual Hall signal output terminals of the brushless motor 200 and
  • the three output terminals of the phase error controller 30 are all electrically connected;
  • the output terminal of the field programmable gate array 13 is connected to the three input terminals of the commutation error controller 30; Determine the sampling time and the sampling object, and control the opening and closing of the analog switch 11 for sampling, and output the
  • the field programmable gate array 13 determines the sampling time and the sampling object according to the operating condition of the brushless motor 100, and performs sampling by controlling the opening and closing of the analog switch 11, and outputs the sampling result.
  • the following exemplarily gives two specific implementation methods, but they do not constitute a limitation to the present disclosure
  • the field programmable gate array is specifically used for:
  • the sampling time and the sampling object are determined.
  • the sampling time includes the first sampling time t 1 and the second sampling time t 2 .
  • the first sampling time t 1 is located before the rising edge of the virtual Hall signal
  • the second sampling time t 2 is located after the rising edge of the virtual Hall signal.
  • the sampling time can be determined according to the virtual Hall signal back-EMF zero-crossing time and the error compensation angle output by the commutation error controller in the previous cycle.
  • the low level is 0 and the high level is 1.
  • the three virtual hall signals can be expressed as 000 in the order of Sa, Sb, and Sc.
  • the three virtual hall signals can be expressed as 100 in the order of Sa, Sb, and Sc.
  • the three virtual hall signals can be expressed as 101.
  • the three virtual hall signals can be expressed as 111.
  • the three virtual hall signals Before the rising edge of the virtual hall signal Sc, in the order of Sa, Sb, and Sc, the three virtual hall signals can be expressed as 100. After the rising edge of the virtual hall signal Sb, in the order of Sa, Sb, and Sc, the three virtual hall signals can be expressed as 101. That is, before and after the rising edge of the virtual hall signal Sa, the three virtual hall signals change from 000 to 100. Before and after the rising edge of the virtual hall signal Sb, the three virtual hall signals change from 101 to 111. Before and after the rising edge of the virtual hall signal Sc, the three virtual hall signals change from 100 to 101.
  • the corresponding relationship between the virtual Hall signal changes before and after the rising edge and the sampling object can be preset, and the corresponding relationship can be stored in the field programmable gate array.
  • the field programmable gate array obtains the three virtual hall signals directly input from the brushless motor into the field programmable gate array, and based on the changes of the three virtual hall signals, the sampling time and the corresponding relationship, determine The corresponding relationship between the sampling time and the sampling object is shown.
  • the switching state of the analog switch is controlled so that at a certain sampling time, only the signal of the corresponding sampling object is allowed to be input into the field programmable gate array.
  • the sampling result ⁇ u u a. before and after the rising edge of the virtual Hall signal Sa.
  • the second implementation method, the field programmable gate array is specifically used for,
  • the sampling time includes the first sampling time t 1 , the third sampling time t 3 and the fourth sampling time t 4 ; for the same virtual Hall signal, the first sampling time t 1 is located before the rising edge of the virtual Hall signal, and the first sampling time t 1 is located before the rising edge of the virtual Hall signal.
  • the third sampling time t 3 and the fourth sampling time t 4 are both located after the rising edge of the virtual Hall signal; time 2t 3 -t 4 are located after the rising edge of the virtual Hall signal; t 4 -t 3 is greater than the brushless motor Freewheeling time, and less than or equal to 1.5 times the freewheeling time of the brushless motor.
  • control the opening and closing state of the analog switch perform sampling, obtain and output the sampling result;
  • the voltage collected at the first sampling time t 1 is u 1
  • the voltage collected at the third sampling time t 3 is u 3
  • the fourth sampling The voltage collected at time t 4 is u 4
  • Fig. 5 is a schematic diagram of a sampling time determination provided by an embodiment of the present disclosure.
  • the waveform of the basic signal will change suddenly, causing "burrs" to appear on the waveform.
  • the first implementation method if the determined second sampling time t 2 happens to be within the freewheeling period of the brushless motor, the deviation of u 2 collected at the second sampling time t 2 is smaller than big.
  • the second method does not directly implement the second sampling time t 2 to be employed, but sampling t 4 to time t 3 a third and a fourth sampling time sampling, then 2u 3 -u 4 is the voltage value of the sampling object at the second sampling time t 2. This can reduce the impact of the brushless motor's freewheeling process on the commutation error compensation.
  • the commutation error controller 30 includes a PID controller 31 and a first calculation module 32.
  • the input terminal of the PID controller 31 is electrically connected with the output terminal of the sampling circuit 20, the output terminal of the PID controller 31 is electrically connected with the input terminal of the first arithmetic module 32, and the PID controller 31 is used to determine the commutation error according to the sampling result Compensate the angle signal.
  • the output terminal of the first arithmetic module 32 is electrically connected to the commutation logic module 40, and the input terminal of the first arithmetic circuit 32 is also connected to the three virtual Hall signal output terminals of the brushless motor 200; the first arithmetic module 32 also receives Correction amount.
  • the PID controller is used to determine the commutation error compensation angle signal according to the sampling result and the following formula;
  • is the commutation error compensation angle
  • k p , k i , and k d are the PID controller parameters.
  • the position sensorless commutation error compensation system of the brushless motor may further include a current measurement circuit 61 and a current controller 62.
  • the current measurement circuit 61 is connected to the brushless motor 200, the input end of the current controller 62 is connected to the current measurement circuit 61, and the output end of the current controller 62 is connected to the commutation logic module 40.
  • the current measurement circuit 61 is used to measure the current of the brushless motor 200 and deliver it to the current controller 62 for current loop control.
  • the brushless motor position sensorless commutation error compensation system may further include a speed measurement circuit 71 and a speed controller 72.
  • the speed measurement circuit 71 is connected to the brushless motor 200, the input end of the speed controller 72 is connected to the speed measurement circuit 71, and the output end of the speed controller 72 is connected to the commutation logic module 40.
  • the speed measurement circuit 71 is used to measure the speed of the brushless motor 200 and send it to the speed controller 72 for speed loop control.
  • the position sensorless commutation error compensation system for brushless motors described above can be applied to three-phase symmetrical brushless motors as well as three-phase asymmetric brushless motors.
  • the above brushless motor position sensorless commutation error compensation system can be applied to non-ideal back-EMF brushless motors, and also applicable to ideal back-EMF brushless motors.
  • the brushless motor is a three-phase asymmetric brushless motor.
  • the three opposite electromotive force and current are no longer symmetrical, which makes the error angles of the virtual Hall signals used for three-way commutation no longer consistent.
  • the technical solution provided by the present disclosure can fundamentally eliminate the commutation error due to the use of three-phase feedback information for commutation error compensation.
  • FIG. 6 is a flowchart of a method for compensating a position sensorless commutation error of a brushless motor according to an embodiment of the disclosure.
  • the position sensorless commutation error compensation method of the brushless motor is applicable to any position sensorless commutation error compensation system of the brushless motor provided by the embodiments of the present disclosure.
  • the position sensorless commutation error compensation method of the brushless motor includes:
  • the commutation logic module circuit receives three virtual Hall signals output by the brushless motor, and obtains three error compensation angle signals based on the three virtual Hall signals;
  • the commutation logic module circuit superimposes the three-channel error compensation angle signal and the three-channel virtual Hall signal respectively to form a superimposed result, and based on the superimposed result, controls the brushless motor to adjust the commutation timing to realize the commutation error compensation.
  • the position sensorless commutation error compensation method of a brushless motor provided by the present disclosure is applicable to any position sensorless commutation error compensation system of a brushless motor provided by the embodiments of the present disclosure, it has a positionless brushless motor to which it is applicable.
  • the sensor commutation error compensation system has the same or corresponding beneficial effects, which will not be repeated here.
  • the position sensorless commutation error compensation system of the brushless motor controls the commutation error based on three-phase current and back electromotive force, which can effectively realize the commutation error compensation, reduce the torque ripple of the brushless DC motor, and improve The working efficiency of the motor has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种无刷电机无位置传感器换相误差补偿系统,包括:无刷电机(200)以及换相逻辑模块电路(100);所述换相逻辑模块电路(100)与所述无刷电机(200)的三路虚拟霍尔信号输出端连接,用于接收所述无刷电机(200)输出的三路虚拟霍尔信号,并基于所述三路虚拟霍尔信号,得到三路误差补偿角度信号,并将所述三路误差补偿角度信号与所述三路虚拟霍尔信号分别叠加,形成叠加结果,基于叠加结果控制所述无刷电机(200)调整换向时机,以实现换相误差补偿。该系统基于三相的电流以及反电动势等来控制换相误差,而不是仅基于三相中的某一相的电流以及反电动势等来控制换相误差,可以降低无刷直流电机的转矩脉动,提高电机的工作效率。

Description

无刷电机无位置传感器换相误差补偿系统及方法
本公开要求于2020年06月17日提交中国专利局、申请号为202010556838.4发明名称为“无刷电机无位置传感器换相误差补偿系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及无刷电机技术领域,尤其涉及一种无刷电机无位置传感器换相误差补偿系统及方法。
背景技术
现有无刷直流电机换相方法多采用三路霍尔信号或者编码器,通过电平高低组合,形成六路换相信号。但是位置传感器的安装不仅增加了系统的功耗,还降低了系统的可靠性,因此无位置传感器换相方法近年来成为研究热点。
针对于无刷电机无位置传感器的情况,最为经典的换相方法为反电动势过零点法,由于其简单可靠,在工业上被广泛应用。但是由于处理电路会造成检测信号的滞后,影响换相精度,降低了电机工作性能。因此,如何实现无刷电机无位置传感器换相误差补偿仍然是目前亟待解决的问题。
发明内容
(一)要解决的技术问题
本公开要解决的技术问题是解决现有的如何实现无刷电机无位置传感器换相误差补偿的问题。
(二)技术方案
为了解决上述技术问题,本公开实施例提供了一种无刷电机无位置传感器换相误差补偿系统及方法。
第一方面,本公开实施例提出一种无刷电机无位置传感器换相误差补偿系统,包括:无刷电机以及换相逻辑模块电路;
所述换相逻辑模块电路与所述无刷电机的三路虚拟霍尔信号输出端连接,用于接收所述无刷电机输出的三路虚拟霍尔信号,并基于所述三路虚拟霍尔信号,得到三路误差补偿角度信号,并将所述三路误差补偿角度信号与所述三路虚拟霍尔信号分别叠加,形成叠加结果,并基于叠加结果控制所述无刷电机调整换向时机,以实现换相误差补偿。
第二方面,本公开实施例还提出一种无刷电机无位置传感器换相误差补偿方法,所述无刷电机无位置传感器换相误差补偿方法适用于上述任一无刷电机无位置传感器换相误差补偿系统;
所述无刷电机无位置传感器换相误差补偿方法包括:
所述换相逻辑模块电路接收所述无刷电机输出的三路虚拟霍尔信号,并基于所述三路虚拟霍尔信号,得到三路误差补偿角度信号;
所述换相逻辑模块电路将所述三路误差补偿角度信号与所述三路虚拟霍尔信号分别叠加,形成叠加结果,并基于叠加结果控制所述无刷电机调整换向时机,以实现换相误差补偿。
(三)有益效果
本公开实施例提供的上述技术方案与现有技术相比具有如下优点:
本公开实施例中提供的无刷电机无位置传感器换相误差补偿系统,通过设置所述换相逻辑模块电路与所述无刷电机的三路虚拟霍尔信号输出端连接,用于接收所述无刷电机输出的三路虚拟霍尔信号,并基于所述三路虚拟霍尔信号,得到三路误差补偿角度信号,并将所述三路误差补偿角度信号与所述三路虚拟霍尔信号分别叠加,形成叠加结果,然后基于叠加结果控制所述无刷电机调整换向时机,以实现换相误差补偿,实质是基于三相的电流以及反电动势等来控制换相误差,而不是仅基于三相中的某一相的电流以及反电动势等来控制换相 误差,可以降低无刷直流电机的转矩脉动,提高电机的工作效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种无刷电机无位置传感器换相误差补偿系统的结构框图;
图2是本公开实施例提供的一种无刷电机无位置传感器换相误差补偿系统的结构示意图;
图3为图2中反馈信号构造电路的放大图;
图4是本公开实施例提供的无刷电机无位置传感器换相误差补偿系统运行过程中三路虚拟霍尔信号以及三个基础信号的波形图;
图5是本公开实施例提供的一种采样时刻确定的原理图;
图6为本公开实施例提供的一种无刷电机无位置传感器换相误差补偿方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是本公开实施例提供的一种无刷电机无位置传感器换相误差补偿系统的结构框图。参见图1,该无刷电机无位置传感器换相误差补 偿系统包括:无刷电机200以及换相逻辑模块电路100;换相逻辑模块电路100与无刷电机200的三路虚拟霍尔信号输出端连接,用于接收无刷电机200输出的三路虚拟霍尔信号,并基于三路虚拟霍尔信号,得到三路误差补偿角度信号,并将三路误差补偿角度信号与三路虚拟霍尔信号分别叠加,形成叠加结果,基于叠加结果控制无刷电机100调整换向时机,以实现换相误差补偿。
由于仅采用一相的反馈信息难以反映换相误差情况,换相误差不会从根本上消除。上述技术方案实质是基于三相的反馈信息(如电流以及反电动势等)来控制换相误差,而不是仅基于三相中的某一相的反馈信息来控制换相误差,可以降低无刷直流电机的转矩脉动,提高电机的工作效率。
图1中各箭头方向表示箭头两端模块进行数据交互时的数据传输方向。继续参见图1,换相逻辑模块电路100包括采样电路10、反馈信号构造电路20、换相误差控制器30、换相逻辑模块40以及全桥电路50。反馈信号构造电路20的输入端与无刷电机200的三路虚拟霍尔信号输出端连接;反馈信号构造电路20的输出端、无刷电机200的三路虚拟霍尔信号输出端、换相误差控制器30的三个输出端均与采样电路10的输入端连接;采样电路10的三个输出端与换相误差控制器30的三个输入端连接,换相误差控制器30的三个输出端还与换相逻辑模块40的三个输入端一一对应电连接,换相误差控制器30的输入端与无刷电机200的三路虚拟霍尔信号输出端连接;换相逻辑模块40的输出端与全桥电路50的输入端连接,全桥电路50的输出端与无刷电机200的输入端连接。
由于无刷电机200输出的三路虚拟霍尔信号无法直接反应换向误差,在该换相误差补偿系统工作时,无刷电机200的三路虚拟霍尔信号输出至反馈信号构造电路20,反馈信号构造电路20对三路虚拟霍尔信号进行重新组合(下文中为了便于说明,将反馈信号构造电路20对虚拟霍尔信号进行重新组合后得到的信号称为基础信号),以使换向误 差能够凸显出来。
采样电路10根据所述无刷电机的运行情况(可通过三路虚拟霍尔信号确定),确定采样时刻以及采样对象,并进行采样,输出采样结果。采样结果为三个反馈量,三个反馈量与三个虚拟霍尔信号一一对应。
换相误差控制器30共有三路,分别利用三个反馈量,消除三路虚拟霍尔传感器的换相误差。具体地,换相误差控制器30基于三个反馈量分别得到三个误差补偿角度,并将这三个误差补偿角度分别与与其对应的三个虚拟霍尔信号的时间序列相叠加,生成补偿后的换相信号。
换相逻辑模块40基于补偿后的换相信号生成可以控制全桥电路50通断的数字信号。
全桥电路50基于换相逻辑模块40输出的数字信号,调整其内部MOS管通断状态,进而控制无刷电机内部绕组电流、电压,调整无刷电机换向时机,以达到实现换相误差补偿的目的。在本公开中全桥电路为现有技术,本公开中不再赘述。
本公开中,反馈信号构造电路的具体设置方案有多种,本公开对此不作限制,只要能够使换向误差凸显出来即可。图2是本公开实施例提供的一种无刷电机无位置传感器换相误差补偿系统的结构示意图。图3为图2中反馈信号构造电路的放大图。参见图2和图3,该反馈信号构造电路20包括第一运算放大器A1、第二运算放大器A2、第三运算放大器A3、第四运算放大器A4、第五运算放大器A5、第六运算放大器A6、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10、第十一电阻R11、第十二电阻R12、第十三电阻R13、第十四电阻R14以及第十五电阻R15。
无刷电机的第一路虚拟霍尔信号输出端B1与第三电阻R3的第一端和第十五电阻R15的第一端电连接,第三电阻R3的第二端与第二运算放大器A2的正相输入端和第二电阻R2的第一端均电连接,第二电阻R2的第二端与第一电阻R1的第一端以及第二运算放大器A2的输 出端均电连接,第一电阻R1的第二端与第一运算放大器A1的输出端和第一运算放大器A1的正相输入端均电连接,且第一运算放大器A1的输出端作为反馈信号构造电路的第一输出端C1;第一运算放大器A1的负相输入端接地;第二运算放大器A2的负相输入端与第四电阻R4的第一端电连接。
无刷电机的第二路虚拟霍尔信号输出端B2与第七电阻R7的第一端和第十四电阻R14的第一端电连接,第七电阻R7的第二端与第四运算放大器A4的正相输入端和第六电阻R6的第一端均电连接,第六电阻R6的第二端与第五电阻R5的第一端以及第四运算放大器A4的输出端均电连接,第五电阻R5的第二端与第三运算放大器A3的输出端和第三运算放大器A3的正相输入端均电连接,且第三运算放大器A3的输出端作为反馈信号构造电路的第二输出端C2;第三运算放大器A3的负相输入端接地;第四运算放大器A4的负相输入端与第八电阻R8的第一端电连接。
无刷电机的第三路虚拟霍尔信号输出端B3与第十一电阻R11的第一端和第十三电阻R13的第一端电连接,第十一电阻R11的第二端与第六运算放大器A6的正相输入端和第十电阻R10的第一端均电连接,第十电阻R10的第二端与第九电阻R9的第一端以及第六运算放大器A6的输出端均电连接,第九电阻R9的第二端与第五运算放大器A5的输出端和第五运算放大器A5的正相输入端均电连接,且第五运算放大器A5的输出端作为反馈信号构造电路的第三输出端C3;第五运算放大器A5的负相输入端接地;第六运算放大器A6的负相输入端与第十二电阻R12的第一端电连接。
第四电阻R4的第二端与第八电阻R8的第二端、第十二电阻R12的第二端、第十三电阻R13的第二端、第十四电阻R14的第二端和第十五电阻R15的第二端均电连接。
图4是本公开实施例提供的无刷电机无位置传感器换相误差补偿系统运行过程中三路虚拟霍尔信号以及三个基础信号的波形图。在图4 中,Sa、Sb和Sc代表无刷直流电机输出的三路虚拟霍尔信号。C01、C02和C03代表三个基础信号。
继续参见图2-图4,虚拟霍尔信号Sa通过无刷电机的第一路虚拟霍尔信号输出端B1输入到反馈信号构造电路20中,后经与其他虚拟霍尔信号进行重新组合后得到第一基础信号C01,并将该第一基础信号C01通过反馈信号构造电路20的第一输出端C1输出。
类似地,虚拟霍尔信号Sb通过无刷电机的第二路虚拟霍尔信号输出端B2输入到反馈信号构造电路20中,后经与其他虚拟霍尔信号进行重新组合后得到第二基础信号C02,并将该第二基础信号C02通过反馈信号构造电路20的第二输出端C2输出。
虚拟霍尔信号Sc通过无刷电机的第三路虚拟霍尔信号输出端B3输入到反馈信号构造电路20中,后经与其他虚拟霍尔信号进行重新组合后得到第三基础信号C03,并将该第三基础信号C03通过反馈信号构造电路20的第三输出端C3输出。
继续参见图2,可选地,该无刷电机无位置传感器换相误差补偿系统中,采样电路10包括模拟开关11、模数转换器(ADC转化器)12以及现场可编程门阵列(FPGA)13;采样电路10中,与反馈信号构造电路20的三个输出端相连的三个输入端均为采样电路的第一类输入端;模拟开关11与三个第一类输入端均电连接,并可对各第一类输入端进行独立控制;模数转换器12与模拟开关11电连接;现场可编程门阵列13的输入端与无刷电机200的三路虚拟霍尔信号输出端以及换相误差控制器30的三个输出端均电连接;现场可编程门阵列13的输出端与换相误差控制器30的三个输入端连接;现场可编程门阵列13用于根据无刷电机100的运行情况,确定采样时刻以及采样对象,并通过控制模拟开关11的开合进行采样,输出采样结果。
“现场可编程门阵列13根据无刷电机100的运行情况,确定采样时刻以及采样对象,并通过控制模拟开关11的开合进行采样,输出采样结果”的具体实现方法有多种。下面示例性地给出两种具体实现方 法,但不构成对本公开的限制
可选地,第一种实现方法,现场可编程门阵列具体用于:
首先,根据无刷电机的三路虚拟霍尔信号,确定采样时刻以及采样对象。采样时刻包括第一采样时刻t 1以及第二采样时刻t 2。针对同一路虚拟霍尔信号,第一采样时刻t 1位于该虚拟霍尔信号的上升沿前,第二采样时刻t 2位于该虚拟霍尔信号的上升沿后。
可选地,采样时刻可以根据该虚拟霍尔信号反电动势过零点时刻以及上一周期换相误差控制器输出的误差补偿角度确定。
采样对象的确定方法有多种,示例性地,以低电平为0,高电平为1。在虚拟霍尔信号Sa的上升沿前,按照Sa、Sb和Sc的顺序,三路虚拟霍尔信号可表示为000。在虚拟霍尔信号Sa的上升沿后,按照Sa、Sb和Sc的顺序,三路虚拟霍尔信号可表示为100。在虚拟霍尔信号Sb的上升沿前,按照Sa、Sb和Sc的顺序,三路虚拟霍尔信号可表示为101。在虚拟霍尔信号Sb的上升沿后,按照Sa、Sb和Sc的顺序,三路虚拟霍尔信号可表示为111。在虚拟霍尔信号Sc的上升沿前,按照Sa、Sb和Sc的顺序,三路虚拟霍尔信号可表示为100。在虚拟霍尔信号Sb的上升沿后,按照Sa、Sb和Sc的顺序,三路虚拟霍尔信号可表示为101。即虚拟霍尔信号Sa上升沿前后,三路虚拟霍尔信号由000变为100。虚拟霍尔信号Sb上升沿前后,三路虚拟霍尔信号由101变为111。虚拟霍尔信号Sc上升沿前后,三路虚拟霍尔信号由100变为101。
据此,可以预先设置上升沿前后虚拟霍尔信号变化情况与采样对象的对应关系,并将该对应关系存储在现场可编程门阵列中。在采样之前,现场可编程门阵列获取无刷电机直接输入到现场可编程门阵列中的三路虚拟霍尔信号,并基于三路虚拟霍尔信号的变化情况,采样时刻以及该对应关系,确定出采样时刻与采样对象的对应关系。
其次,控制模拟开关的开合状态,进行采样,得到采样结果并输出;第一采样时刻t 1所采集的电压为u 1,第二采样时刻t 2所采集的电 压为u 2,采样结果为△u=u 2-u 1
可选地,根据采样时刻与采样对象的对应关系,控制模拟开关的开合状态,以使得在某一采样时刻,仅允许与其对应的采样对象的信号输入到现场可编程门阵列中。
示例性地,在图4中,在虚拟霍尔信号Sa上升沿前后的采样结果△u=u a.。在图4中,在虚拟霍尔信号Sb上升沿前后的采样结果△u=u b
可选地,第二种实现方法,现场可编程门阵列具体用于,
首先,根据无刷电机的三路虚拟霍尔信号,确定反电动势过零点时刻以及采样对象。采样时刻包括第一采样时刻t 1、第三采样时刻t 3以及第四采样时刻t 4;针对同一路虚拟霍尔信号,第一采样时刻t 1位于该虚拟霍尔信号的上升沿前,第三采样时刻t 3和第四采样时刻t 4均位于该虚拟霍尔信号的上升沿后;时刻2t 3-t 4位于该虚拟霍尔信号的上升沿后;t 4-t 3大于无刷电机续流时间,且小于或等于1.5倍的无刷电机续流时间。
其次,控制模拟开关的开合状态,进行采样,得到采样结果并输出;第一采样时刻t 1所采集的电压为u 1,第三采样时刻t 3所采集的电压为u 3,第四采样时刻t 4所采集的电压为u 4,采样结果为△u=2u 3-u 4-u 1
图5是本公开实施例提供的一种采样时刻确定的原理图。参见图5,在虚拟霍尔信号上升沿前后,若无刷电机出现续流现象,会使得基础信号的波形突变,使得波形上出现“毛刺”。显然,对于此种情况,若采用第一种实现方法,如果所确定的第二采样时刻t 2恰好位于无刷电机续流时间段内,在第二采样时刻t 2所采集的u 2偏差较大。与第一种实现方法相比,第二种实现方法并不直接于第二采样时刻t 2进行采用,而是于第三采样时刻t 3和第四采样时刻t 4进行采样,然后将2u 3-u 4作为第二采样时刻t 2采样对象的电压值。这样可以降低无刷电机续流过程对换相误差补偿的影响。
在上述技术方案的基础上,继续参见图2和图3,该换相误差控制器30包括PID控制器31以及第一运算模块32。PID控制器31的输入 端与采样电路20的输出端电连接,PID控制器31的输出端与第一运算模块32的输入端电连接,PID控制器31用于根据采样结果,确定换相误差补偿角度信号。第一运算模块32的输出端与换相逻辑模块40电连接,第一运算电路32的输入端还与无刷电机200的三路虚拟霍尔信号输出端连接;第一运算模块32还由于接受修正量。可选地,第一运算电路32还可以接收或者设置修正量θ 0。进一步地,可以设置θ 0=30°第一运算模块32的输出端还与采样电路10的输入端连接;第一运算模块32用于将三路误差补偿角度信号与三路虚拟霍尔信号分别叠加,形成叠加结果。
可选地,PID控制器用于根据采样结果以及下式,确定换相误差补偿角度信号;
Figure PCTCN2020103426-appb-000001
其中,φ为换相误差补偿角度,k p、k i、k d为PID控制器参数。
可选地,继续参见图2,可以设置该无刷电机无位置传感器换相误差补偿系统还包括电流测量电路61和电流控制器62。电流测量电路61与无刷电机200相连,电流控制器62输入端与电流测量电路61连接,电流控制器62输出端与换向逻辑模块40连接。电流测量电路61用于测量无刷电机200的电流,并将其输送至电流控制器62,进行电流环控制。
可选地,继续参见图2,可以设置该无刷电机无位置传感器换相误差补偿系统还包括速度测量电路71和速度控制器72。速度测量电路71与无刷电机200相连,速度控制器72输入端与速度测量电路71连接,速度控制器72输出端与换向逻辑模块40连接。速度测量电路71用于测量无刷电机200的速度,并将其输送至速度控制器72,进行速度环控制。
需要说明的是,上述无刷电机无位置传感器换相误差补偿系统可 适用于三相对称的无刷电机,也可以适用于三相不对称的无刷电机。上述无刷电机无位置传感器换相误差补偿系统可适用于非理想反电动势无刷电机,也可适用于理想反电动势无刷电机。
典型地,上述方案中,无刷电机为三相不对称无刷电机。对于三相不对称无刷电机,三相反电动势和电流不再对称,这使得三路换相用的虚拟霍尔信号误差角不再一致。对于此种情况,仅采用一相的反馈信息难以反映换相误差情况,换相误差不会从根本上消除。而本公开提供的技术方案,由于采用三相的反馈信息进行换向误差补偿,其可以做到从根本上消除换向误差。
基于相同的发明构思,本公开实施例还提供一种无刷电机无位置传感器换相误差补偿方法。图6为本公开实施例提供的一种无刷电机无位置传感器换相误差补偿方法的流程图。该无刷电机无位置传感器换相误差补偿方法适用于本公开实施例提供的任意一种无刷电机无位置传感器换相误差补偿系统。
参见图6,该无刷电机无位置传感器换相误差补偿方法包括:
S110、换相逻辑模块电路接收无刷电机输出的三路虚拟霍尔信号,并基于三路虚拟霍尔信号,得到三路误差补偿角度信号;
S120、换相逻辑模块电路将三路误差补偿角度信号与三路虚拟霍尔信号分别叠加,形成叠加结果,并基于叠加结果控制无刷电机调整换向时机,以实现换相误差补偿。
由于本公开提供的无刷电机无位置传感器换相误差补偿方法适用于本公开实施例提供的任意一种无刷电机无位置传感器换相误差补偿系统,其具有其所适用的无刷电机无位置传感器换相误差补偿系统相同或相应的有益效果,此处不再赘述。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵 盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
工业实用性
本公开提供的无刷电机无位置传感器换相误差补偿系统,基于三相的电流以及反电动势等来控制换相误差,可有效实现换相误差补偿,降低无刷直流电机的转矩脉动,提高电机的工作效率,具有很强的工业实用性。

Claims (10)

  1. 一种无刷电机无位置传感器换相误差补偿系统,其特征在于,包括:无刷电机以及换相逻辑模块电路;
    所述换相逻辑模块电路与所述无刷电机的三路虚拟霍尔信号输出端连接,用于接收所述无刷电机输出的三路虚拟霍尔信号,并基于所述三路虚拟霍尔信号,得到三路误差补偿角度信号,并将所述三路误差补偿角度信号与所述三路虚拟霍尔信号分别叠加,形成叠加结果,基于叠加结果控制所述无刷电机调整换向时机,以实现换相误差补偿。
  2. 根据权利要求1所述的无刷电机无位置传感器换相误差补偿系统,其特征在于,所述换相逻辑模块电路包括采样电路、反馈信号构造电路、换相误差控制器、换相逻辑模块以及全桥电路;
    所述反馈信号构造电路的输入端与所述无刷电机的三路虚拟霍尔信号输出端连接;所述反馈信号构造电路的输出端、所述无刷电机的三路虚拟霍尔信号输出端、所述换相误差控制器的三个输出端均与所述采样电路的输入端连接;所述采样电路的三个输出端与所述换相误差控制器的三个输入端连接,所述换相误差控制器的三个输出端还与所述换相逻辑模块的三个输入端一一对应电连接,所述换相误差控制器的输入端与所述无刷电机的三路虚拟霍尔信号输出端连接;所述换相逻辑模块的输出端与所述全桥电路的输入端连接,所述全桥电路的输出端与所述无刷电机的输入端连接。
  3. 根据权利要求2所述的无刷电机无位置传感器换相误差补偿系统,其特征在于,所述反馈信号构造电路包括第一运算放大器、第二运算放大器、第三运算放大器、第四运算放大器、第五运算放大器、第六运算放大器、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻、第九电阻、第十电阻、第十一电阻、第十二电阻、第十三电阻、第十四电阻以及第十五电阻;
    所述无刷电机的第一路虚拟霍尔信号输出端与所述第三电阻的第 一端和所述第十五电阻的第一端电连接,所述第三电阻的第二端与所述第二运算放大器的正相输入端和所述第二电阻的第一端均电连接,所述第二电阻的第二端与所述第一电阻的第一端以及所述第二运算放大器的输出端均电连接,所述第一电阻的第二端与所述第一运算放大器的输出端和所述第一运算放大器的正相输入端均电连接,且所述第一运算放大器的输出端作为所述反馈信号构造电路的第一输出端;所述第一运算放大器的负相输入端接地;所述第二运算放大器的负相输入端与所述第四电阻的第一端电连接;
    所述无刷电机的第二路虚拟霍尔信号输出端与所述第七电阻的第一端和所述第十四电阻的第一端电连接,所述第七电阻的第二端与所述第四运算放大器的正相输入端和所述第六电阻的第一端均电连接,所述第六电阻的第二端与所述第五电阻的第一端以及所述第四运算放大器的输出端均电连接,所述第五电阻的第二端与所述第三运算放大器的输出端和所述第三运算放大器的正相输入端均电连接,且所述第三运算放大器的输出端作为所述反馈信号构造电路的第二输出端;所述第三运算放大器的负相输入端接地;所述第四运算放大器的负相输入端与所述第八电阻的第一端电连接;
    所述无刷电机的第三路虚拟霍尔信号输出端与所述第十一电阻的第一端和所述第十三电阻的第一端电连接,所述第十一电阻的第二端与所述第六运算放大器的正相输入端和所述第十电阻的第一端均电连接,所述第十电阻的第二端与所述第九电阻的第一端以及所述第六运算放大器的输出端均电连接,所述第九电阻的第二端与所述第五运算放大器的输出端和所述第五运算放大器的正相输入端均电连接,且所述第五运算放大器的输出端作为所述反馈信号构造电路的第三输出端;所述第五运算放大器的负相输入端接地;所述第六运算放大器的负相输入端与所述第十二电阻的第一端电连接;
    所述第四电阻的第二端与所述第八电阻的第二端、所述第十二电阻的第二端、所述第十三电阻的第二端、所述第十四电阻的第二端和 所述第十五电阻的第二端均电连接。
  4. 根据权利要求2所述的无刷电机无位置传感器换相误差补偿系统,其特征在于,所述采样电路包括模拟开关、模数转换器以及现场可编程门阵列;
    所述采样电路中,与所述反馈信号构造电路的三个输出端相连的三个输入端均为所述采样电路的第一类输入端;
    所述模拟开关与三个所述第一类输入端均电连接,并可对各所述第一类输入端进行独立控制;
    所述模数转换器与所述模拟开关电连接;
    所述现场可编程门阵列的输入端与所述无刷电机的三路虚拟霍尔信号输出端以及所述换相误差控制器的三个输出端均电连接;所述现场可编程门阵列的输出端与所述换相误差控制器的三个输入端连接;所述现场可编程门阵列用于根据所述无刷电机的运行情况,确定采样时刻以及采样对象,并通过控制所述模拟开关的开合进行采样,输出采样结果。
  5. 根据权利要求4所述的无刷电机无位置传感器换相误差补偿系统,其特征在于,所述现场可编程门阵列具体用于,
    根据所述无刷电机的三路虚拟霍尔信号,确定采样时刻以及采样对象;所述采样时刻包括第一采样时刻t 1以及第二采样时刻t 2;针对同一路虚拟霍尔信号,所述第一采样时刻t 1位于所述虚拟霍尔信号的上升沿前,所述第二采样时刻t 2位于所述虚拟霍尔信号的上升沿后;
    控制所述模拟开关的开合状态,进行采样,得到采样结果并输出;所述第一采样时刻t 1所采集的电压为u 1,所述第二采样时刻t 2所采集的电压为u 2,所述采样结果为△u=u 2-u 1
  6. 根据权利要求4所述的无刷电机无位置传感器换相误差补偿系统,其特征在于,所述现场可编程门阵列具体用于,
    根据所述无刷电机的三路虚拟霍尔信号,确定采样时刻以及采样对象;所述采样时刻包括第一采样时刻t 1、第三采样时刻t 3以及第四采 样时刻t 4;针对同一路虚拟霍尔信号,所述第一采样时刻t 1位于所述虚拟霍尔信号的上升沿前,所述第三采样时刻t 3和所述第四采样时刻t 4均位于所述虚拟霍尔信号的上升沿后;时刻2t 3-t 4位于所述虚拟霍尔信号的上升沿后;t 4-t 3大于所述无刷电机续流时间,且小于或等于1.5倍的所述无刷电机续流时间
    控制所述模拟开关的开合状态,进行采样,得到采样结果并输出;所述第一采样时刻t 1所采集的电压为u 1,所述第三采样时刻t 3所采集的电压为u 3,所述第四采样时刻t 4所采集的电压为u 4,所述采样结果为△u=2u 3-u 4-u 1
  7. 根据权利要求4-6中任意一项所述的无刷电机无位置传感器换相误差补偿系统,其特征在于,所述换相误差控制器包括PID控制器以及第一运算模块;
    所述PID控制器的输入端与所述采样电路的输出端电连接,所述PID控制器的输出端与所述第一运算模块的输入端电连接,所述PID控制器用于根据所述采样结果,确定换相误差补偿角度信号;
    所述第一运算模块的输出端与所述换相逻辑模块电连接,所述第一运算电路的输入端还与所述无刷电机的三路虚拟霍尔信号输出端连接;所述第一运算模块的输出端还与所述采样电路的输入端连接;所述第一运算模块用于将所述三路误差补偿角度信号与所述三路虚拟霍尔信号分别叠加,形成叠加结果。
  8. 根据权利要求7所述的无刷电机无位置传感器换相误差补偿系统,其特征在于,所述PID控制器用于根据所述采样结果以及下式,确定换相误差补偿角度信号;
    Figure PCTCN2020103426-appb-100001
    其中φ为换相误差补偿角度,k p、k i、k d为PID控制器参数。
  9. 根据权利要求1所述的无刷电机无位置传感器换相误差补偿系统,其特征在于,所述无刷电机为三相不对称无刷电机。
  10. 一种无刷电机无位置传感器换相误差补偿方法,其特征在于,所述无刷电机无位置传感器换相误差补偿方法适用于权利要求1-9任意一项所述的无刷电机无位置传感器换相误差补偿系统;
    所述无刷电机无位置传感器换相误差补偿方法包括:
    所述换相逻辑模块电路接收所述无刷电机输出的三路虚拟霍尔信号,并基于所述三路虚拟霍尔信号,得到三路误差补偿角度信号;
    所述换相逻辑模块电路将所述三路误差补偿角度信号与所述三路虚拟霍尔信号分别叠加,形成叠加结果,并基于叠加结果控制所述无刷电机调整换向时机,以实现换相误差补偿。
PCT/CN2020/103426 2020-06-17 2020-07-22 无刷电机无位置传感器换相误差补偿系统及方法 WO2021253562A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/995,410 US20230179127A1 (en) 2020-06-17 2020-07-22 Sensorless commutation error compensation system and method for brushless motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010556838.4A CN111817618B (zh) 2020-06-17 2020-06-17 无刷电机无位置传感器换相误差补偿系统及方法
CN202010556838.4 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021253562A1 true WO2021253562A1 (zh) 2021-12-23

Family

ID=72844735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103426 WO2021253562A1 (zh) 2020-06-17 2020-07-22 无刷电机无位置传感器换相误差补偿系统及方法

Country Status (3)

Country Link
US (1) US20230179127A1 (zh)
CN (1) CN111817618B (zh)
WO (1) WO2021253562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400929A (zh) * 2022-01-20 2022-04-26 北京航空航天大学 无刷直流电机无传感器换相控制方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809957B (zh) * 2021-09-28 2024-01-12 北京航空航天大学 换相误差补偿方法和换相误差补偿系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515486A (zh) * 2015-12-03 2016-04-20 北京机械设备研究所 一种永磁同步电机转子磁极位置实时补偿校正方法
CN106059409A (zh) * 2016-05-27 2016-10-26 北京航空航天大学 一种无位置传感器无刷直流电机转子换相误差校正方法及控制系统
KR101686345B1 (ko) * 2015-09-10 2016-12-13 서강대학교산학협력단 역기전력 검출 회로 및 이를 이용한 센서리스 브러시리스 직류모터 구동 제어 장치
CN107222135A (zh) * 2017-05-12 2017-09-29 哈尔滨工程大学 一种直流无刷电机无位置传感器控制系统换相控制方法
CN107395072A (zh) * 2017-08-31 2017-11-24 哈尔滨工程大学 一种无位置传感器直流无刷电机相位补偿的方法
US20180159451A1 (en) * 2015-11-10 2018-06-07 Stmicroelectronics S.R.L. Mutual inductance voltage offset compensation for brushless dc sensorless motors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105141201B (zh) * 2015-10-09 2018-06-29 北京航空航天大学 一种磁悬浮控制力矩陀螺高速电机无位置换相误差校正控制系统及方法
CN106655918B (zh) * 2016-11-09 2018-11-06 北京航空航天大学 一种无位置传感器无刷直流电机换相偏差快速校正控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101686345B1 (ko) * 2015-09-10 2016-12-13 서강대학교산학협력단 역기전력 검출 회로 및 이를 이용한 센서리스 브러시리스 직류모터 구동 제어 장치
US20180159451A1 (en) * 2015-11-10 2018-06-07 Stmicroelectronics S.R.L. Mutual inductance voltage offset compensation for brushless dc sensorless motors
CN105515486A (zh) * 2015-12-03 2016-04-20 北京机械设备研究所 一种永磁同步电机转子磁极位置实时补偿校正方法
CN106059409A (zh) * 2016-05-27 2016-10-26 北京航空航天大学 一种无位置传感器无刷直流电机转子换相误差校正方法及控制系统
CN107222135A (zh) * 2017-05-12 2017-09-29 哈尔滨工程大学 一种直流无刷电机无位置传感器控制系统换相控制方法
CN107395072A (zh) * 2017-08-31 2017-11-24 哈尔滨工程大学 一种无位置传感器直流无刷电机相位补偿的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400929A (zh) * 2022-01-20 2022-04-26 北京航空航天大学 无刷直流电机无传感器换相控制方法及系统
CN114400929B (zh) * 2022-01-20 2024-02-13 北京航空航天大学 无刷直流电机无传感器换相控制方法及系统

Also Published As

Publication number Publication date
CN111817618A (zh) 2020-10-23
CN111817618B (zh) 2021-07-23
US20230179127A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2021253562A1 (zh) 无刷电机无位置传感器换相误差补偿系统及方法
US8030867B1 (en) Sample and hold time stamp for sensing zero crossing of back electromotive force in 3-phase brushless DC motors
CN107749725B (zh) 一种无位置传感器直流无刷电机的换相校正方法
US7548039B2 (en) Motor control unit
TW465171B (en) Apparatus and method for controlling a synchronous motor
JP2004312834A (ja) モータ駆動制御装置および電動パワーステアリング装置
WO2009049501A1 (fr) Procédé et dispositif de commande de moteur utilisant une modulation de largeur d'impulsion à vecteur spatial
CN110535378B (zh) 无刷直流电机高精度换相控制的方法及系统
CN105790666A (zh) 基于霍尔信号的无刷直流电机直接转矩控制系统和方法
CN109088567B (zh) 一种无位置传感器无刷直流电机续流干扰补偿方法
TWI419459B (zh) 同步馬達驅動控制電路
CN111934588B (zh) 一种无位置传感器无刷直流电机静止状态下转子位置检测系统及方法
JP5782769B2 (ja) 交流モータの制御方法および制御装置
JP4051833B2 (ja) 永久磁石式同期電動機のベクトル制御装置
JPH09215382A (ja) 永久磁石同期モータの駆動方法
JP2004187396A (ja) 永久磁石形同期電動機の制御装置
JP4566695B2 (ja) 巻線界磁式同期機の磁極位置検出装置
CN111064396B (zh) 基于虚拟中性点电压的无刷直流电机功率因数校正方法
JP5426221B2 (ja) 可変電流路における電流検出装置及び可変磁束モータの制御方法
CN113541554A (zh) 一种飞轮用永磁电机自适应带速充电控制方法
JP2003250293A (ja) モータ制御方法及び装置
CN114465535B (zh) 无刷直流电机的换相方法、装置和无刷直流电机系统
JP4411742B2 (ja) モータ制御装置
JP2001112285A (ja) 同期電動機の抵抗値同定方法とその制御装置
JP3562397B2 (ja) 電気角計測装置、電動回転機の制御装置、電気角計測方法、電動回転機の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940599

Country of ref document: EP

Kind code of ref document: A1