WO2021248762A1 - 一种内啮合斜齿轮传动机构 - Google Patents

一种内啮合斜齿轮传动机构 Download PDF

Info

Publication number
WO2021248762A1
WO2021248762A1 PCT/CN2020/120745 CN2020120745W WO2021248762A1 WO 2021248762 A1 WO2021248762 A1 WO 2021248762A1 CN 2020120745 W CN2020120745 W CN 2020120745W WO 2021248762 A1 WO2021248762 A1 WO 2021248762A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
internal
external gear
external
angle
Prior art date
Application number
PCT/CN2020/120745
Other languages
English (en)
French (fr)
Inventor
李轩
孙立宁
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2021248762A1 publication Critical patent/WO2021248762A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
    • F16H1/10Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes one of the members being internally toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels

Definitions

  • the invention relates to the technical field of gear transmission, in particular to an internal meshing helical gear transmission mechanism.
  • Gear is a basic component that transmits motion and power through tooth surface meshing.
  • involute gears are widely used because of their convenient processing and manufacturing and separability of center distances.
  • the teeth of involute gears are thin and tall, with poor root bending strength and low tooth surface load-bearing capacity.
  • the number of teeth is at least 17 teeth.
  • the existing involute gear transmission mechanism cannot achieve a large transmission ratio; at the same time, the relative sliding speed between the meshing tooth surfaces near the tooth root near the pitch circle is too high, resulting in this area It is prone to severe wear and can not meet the requirements of high-speed, heavy-duty and high-power gear transmission.
  • the technical problem to be solved by the present invention is to provide an internal meshing helical gear transmission mechanism, which can improve the tooth root bending strength and tooth surface bearing capacity of the transmission gear, and is not prone to undercutting, and can obtain better results under the same volume and center distance conditions.
  • Large transmission ratio and is beneficial to reduce the sliding wear of gear teeth, and can better meet the requirements of high-speed, heavy-duty, and high-power gear transmission.
  • An internal meshing helical gear transmission mechanism comprising an internal gear and an external gear that are meshed, the internal gear and the external gear are both helical gears, the normal tooth profile curve of the external gear is a circular arc curve, and the internal gear The normal tooth profile curve is a cycloid curve.
  • the cycloid curve is formed by the envelope motion of the circular arc curve.
  • the tooth surface equation of the external gear is:
  • the tooth surface equation of the internal gear is:
  • x 2 , y 2 , z 2 represent the coordinates of the internal gear tooth surface in the x, y, and z directions
  • a is the center distance between the external gear and the internal gear
  • ⁇ 1 represents the rotation angle of the external gear
  • ⁇ 2 represents the rotation angle of the internal gear
  • ⁇ 2 ⁇ [ ⁇ 2o , ⁇ 2t ] is the internal gear tooth profile angle parameter
  • ⁇ 2o is the internal gear tooth profile angle parameter minimum
  • ⁇ 2t is the internal gear tooth profile angle parameter maximum.
  • both the external gear and the internal gear adopt herringbone gears.
  • the present invention has the following beneficial effects:
  • the normal tooth profile curve of the external gear is a circular arc curve
  • the normal tooth profile curve of the internal gear is a cycloid curve, thereby forming a normal
  • the conjugate gear pair composed of circular arc and cycloid realizes helical meshing transmission.
  • the transmission mechanism has a small sliding rate and can effectively avoid gear failure due to sliding wear; it is not prone to undercutting and is easy to process.
  • the number of teeth of the external gear The minimum can reach 1, under the condition of the same volume and center distance, the design requirements of small number of teeth and large transmission can be realized; the gear tooth height of the gear meshing pair is small, the tooth root is wide, the modulus is large, and it has good root bending Strength and tooth surface contact strength, tooth surface load capacity is large and gear volume is small, which can better meet the transmission requirements of high speed, heavy load and high power.
  • Figure 1 is a schematic diagram of the three-dimensional structure of the internal meshing helical gear transmission mechanism of the present invention
  • Fig. 2 is a front view of the internal meshing helical gear transmission mechanism shown in Fig. 1;
  • Fig. 3 is a schematic diagram of the normal tooth profile meshing of the external gear and the internal gear shown in Fig. 1;
  • Fig. 4 is a schematic diagram of the formation of the normal tooth profile curve of the external gear shown in Fig. 1;
  • Fig. 5 is a schematic diagram of the formation of the normal tooth profile curve of the internal gear shown in Fig. 1;
  • Fig. 6 is a schematic diagram of the three-dimensional structure of the external gear shown in Fig. 1;
  • Fig. 7 is a schematic diagram of the three-dimensional structure of the internal gear shown in Fig. 1;
  • this embodiment discloses an internal meshing helical gear transmission mechanism, which includes an internal gear 2 and an external gear 1 that are meshed.
  • the internal gear 2 and the external gear 1 are both helical gears, and the external gear 1
  • the normal tooth profile curve of the internal gear 2 is a circular arc curve, and the normal tooth profile curve of the internal gear 2 is a cycloid curve.
  • the cycloid curve is formed by an envelope motion of a circular arc curve.
  • the normal tooth profile curve of the external gear 1 is a circular arc curve 1a
  • the radius of the circular arc curve 1a is ⁇
  • the production circle (radius ⁇ ) where the circular arc curve 1a is located is 1b, such as
  • the production circle 1b where the arc curve 1a is located performs an envelope motion according to the relative motion relationship to form a cycloid curve 2b
  • the normal tooth profile curve 2a of the internal gear 2 is a part of the cycloid curve 2b.
  • the structure of the external gear 1 is shown in Fig. 6, and the tooth surface equation of the external gear 1 is:
  • x 1 , y 1 , z 1 represent the coordinates of the x, y, and z directions of the tooth surface of the external gear 1
  • e is the radius of the distribution circle of the normal profile of the external gear 1
  • the circle of the normal tooth profile of the external gear 1.
  • n 1 is the number of teeth of external gear 1
  • is the deflection angle of the line connecting the arc center and the external gear center O 1
  • is the helix angle
  • a is the center distance between the external gear 1 and the internal gear 2
  • n 2 is the number of teeth of internal gear 2
  • Is the helix angle variable of external gear 1 Is the maximum helix angle of external gear 1
  • B is the width of the
  • the helix angle ⁇ of the external gear 1 and the internal gear 2 are the same, and the gear width B is also the same.
  • x 2 , y 2 , z 2 represent the coordinates of the tooth surface of the internal gear 2 in the x, y, and z directions
  • a is the center distance between the external gear 1 and the internal gear 2
  • the angle between adjacent gear teeth of 2 ⁇ 1 represents the rotation angle of the external gear 1
  • ⁇ 2 represents the rotation angle of the internal gear 2, that is, the envelope of the cycloid curve is formed by the envelope motion of the arc curve
  • ⁇ 2 ⁇ [ ⁇ 2o , ⁇ 2t ] is the tooth profile angle parameter of internal gear 2
  • ⁇ 2o is the minimum tooth profile angle parameter of internal gear 2
  • ⁇ 2t is internal gear 2.
  • both the external gear 1 and the internal gear 2 can adopt herringbone gears, that is, the tooth surfaces of the external gear 1 and the internal gear 2 can be designed as an axially symmetrical herringbone structure with opposite spiral directions. Better eliminate the lateral force of the gear on the central shaft.
  • the transmission mechanism composed of the external gear 1 and the internal gear 2 is suitable for internal meshing fixed shaft gear transmission, and is a parallel shaft internal meshing gear transmission.
  • the normal tooth profile curve of the external gear 1 is a circular arc curve
  • the normal tooth profile curve of the internal gear 2 is a cycloid curve, thereby forming a normal circular arc and pendulum curve.
  • the conjugate gear pair composed of wires realizes helical meshing transmission.
  • the transmission mechanism has a small sliding rate and can effectively avoid gear failure due to sliding wear. It is not prone to undercutting and is easy to process.
  • the minimum number of teeth of the external gear can reach 1 , Under the same volume and center distance conditions, the design requirements of small number of teeth and large transmission can be realized; the gear tooth height of the gear meshing pair is small, the tooth root is wide, the modulus is large, and it has good root bending strength and tooth surface The contact strength, the tooth surface load capacity is large and the gear volume is small, which can better meet the transmission requirements of high speed, heavy load and high power.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)
  • Gear Transmission (AREA)

Abstract

一种内啮合斜齿轮传动机构,包括相啮合的内齿轮(2)和外齿轮(1),内齿轮(2)和外齿轮(1)均为斜齿轮,外齿轮(1)的法向齿廓曲线为圆弧曲线(1a),内齿轮(2)的法向齿廓曲线(2a)为摆线曲线(2b),提高了传动齿轮的齿根弯曲强度及齿面承载力,且不易发生根切,可以在相同体积及中心距条件下获得较大传动比,且大大降低了轮齿的滑动磨损,能够较好的满足高速、重载、高功率的齿轮传动要求。

Description

一种内啮合斜齿轮传动机构 技术领域
本发明涉及齿轮传动技术领域,具体涉及一种内啮合斜齿轮传动机构。
背景技术
齿轮是通过齿面啮合来传递运动与动力的一种基础零部件。在各类齿轮啮合副中,渐开线齿轮因具有加工制造方便、中心距可分性等特点而被广泛应用。但渐开线齿轮的轮齿偏瘦高型,齿根弯曲强度较差、齿面承载能力低,且为防止渐开线齿轮在加工过程中出现根切,其齿数至少为17个齿,因此在同样中心距与体积的情况下,现有的渐开线齿轮传动机构不能实现大传动比;同时在节圆附近靠近齿根部分的啮合齿面间,相对滑动速度过大,导致这一区域易发生严重磨损,无法满足高速、重载及高功率齿轮传动的要求。
发明内容
本发明要解决的技术问题是提供一种内啮合斜齿轮传动机构,能够提高传动齿轮的齿根弯曲强度及齿面承载力,且不易发生根切,可以在相同体积及中心距条件下获得较大传动比,且利于降低轮齿的滑动磨损,能够较好的满足高速、重载、高功率的齿轮传动要求。
为了解决上述技术问题,本发明提供的技术方案如下:
一种内啮合斜齿轮传动机构,包括相啮合的内齿轮和外齿轮,所述内齿轮和外齿轮均为斜齿轮,所述外齿轮的法向齿廓曲线为圆弧曲线,所述内齿轮的法向齿廓曲线为摆线曲线。
在其中一个实施方式中,所述摆线曲线由所述圆弧曲线做包络运动形成。
在其中一个实施方式中,所述外齿轮的齿面方程为:
Figure PCTCN2020120745-appb-000001
其中,x 1、y 1、z 1分别表示外齿轮齿面的x、y、z方向的坐标,e为外齿轮法向轮廓的分布圆半径,ρ外齿轮法向齿廓的圆弧半径,n 1为外齿轮齿数,φ 1=2π/n 1为外齿轮相邻轮齿之间的夹角,k=±1,γ为圆弧圆心与外齿轮中心连线的偏转角,p 1=R 1tanβ为外齿轮螺距系数,β为螺旋角,R 1=a/(i 12-1)为外齿轮基圆半径,a为外齿轮与内齿轮的中心距,i 12=n 2/n 1为内齿轮与外齿轮齿数比,n 2为内齿轮齿数,
Figure PCTCN2020120745-appb-000002
为外齿轮螺旋转角变量,
Figure PCTCN2020120745-appb-000003
为外齿轮螺旋转角最大值,B为齿轮宽度,θ 1∈[θ 1o1t]为外齿轮齿廓角参量,θ 1o为外齿轮齿廓角参量最小值,θ 1t为外齿轮齿廓角参量最大值。
在其中一个实施方式中,所述内齿轮的齿面方程为:
Figure PCTCN2020120745-appb-000004
其中,x 2、y 2、z 2分别表示内齿轮齿面的x、y、z方向的坐标,a为外齿轮与内齿轮的中心距,φ 2=2π/n 2为内齿轮相邻轮齿之间的夹角,α 1表示外齿轮旋转角度,α 2表示内齿轮旋转角度,p 2=R 2tanβ为内齿轮螺距系数,R 2=ai 12/(i 12-1)为内齿轮基圆半径,
Figure PCTCN2020120745-appb-000005
为内齿轮螺旋转角变量,
Figure PCTCN2020120745-appb-000006
为内齿轮螺旋转角最大值,θ 2∈[θ 2o2t]为内齿轮齿廓角参量,θ 2o为内齿轮齿廓角参量最小值,θ 2t为内齿轮齿廓角参量最大值。
在其中一个实施方式中,所述外齿轮与内齿轮均采用人字形齿轮。
本发明具有以下有益效果:本发明的内啮合斜齿轮传动机构,其外齿轮的法向齿廓曲线为圆弧曲线,内齿轮的法向齿廓曲线为摆线曲线,从而形成了由 法向圆弧和摆线构成的共轭齿轮副,实现了螺旋啮合传动,该传动机构具有较小的滑动率,能够有效避免齿轮因滑动磨损失效;且不易发生根切,加工方便,外齿轮的齿数最小能够达到1,在相同体积及中心距条件下可实现小齿数、大传动的设计要求;该齿轮啮合副的轮齿齿高小、齿根宽,模数大,具有较好的齿根弯曲强度及齿面接触强度,齿面承载能力较大且齿轮体积较小,能够较好的满足高速、重载、高功率的传动要求。
附图说明
图1是本发明的内啮合斜齿轮传动机构的三维结构示意图;
图2图1所示的内啮合斜齿轮传动机构的正视图;
图3图1所示的外齿轮和内齿轮的法向齿廓啮合示意图;
图4图1所示的外齿轮法向齿廓曲线形成示意图;
图5图1所示的内齿轮法向齿廓曲线形成示意图;
图6图1所示的外齿轮的三维结构示意图;
图7图1所示的内齿轮的三维结构示意图;
图中:1、外齿轮,2、内齿轮。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1-图3所示,本实施例公开了一种内啮合斜齿轮传动机构,包括相啮合的内齿轮2和外齿轮1,内齿轮2和外齿轮1均为斜齿轮,外齿轮1的法向齿廓曲线为圆弧曲线,内齿轮2的法向齿廓曲线为摆线曲线。
进一步地,摆线曲线由圆弧曲线做包络运动形成。
如图4所示,外齿轮1的法向齿廓曲线为圆弧曲线1a,该圆弧曲线1a的半径为ρ,该圆弧曲线1a所在的产型圆(半径为ρ)为1b,如图5所示,该圆弧 曲线1a所在的产型圆1b根据相对运动关系做包络运动形成摆线曲线2b,内齿轮2的法向齿廓曲线2a就是该摆线曲线2b的一部分。
在其中一个实施方式中,外齿轮1的结构参阅图6,外齿轮1的齿面方程为:
Figure PCTCN2020120745-appb-000007
其中,x 1、y 1、z 1分别表示外齿轮1齿面的x、y、z方向的坐标,e为外齿轮1法向轮廓的分布圆半径,ρ外齿轮1法向齿廓的圆弧半径,n 1为外齿轮1的齿数,φ 1=2π/n 1为外齿轮1相邻轮齿之间的夹角,k=±1,k=1则表示该齿面方程对应的是轮齿的左侧齿面,k=-1则表示该齿面方程对应的是对应轮齿的右侧齿面,γ为圆弧圆心与外齿轮中心O 1连线的偏转角,p 1=R 1tanβ为外齿轮1的螺距系数,β为螺旋角,R 1=a/(i 12-1)为外齿轮1的基圆半径,a为外齿轮1与内齿轮2的中心距,i 12=n 2/n 1为内齿轮2与外齿轮1的齿数比,n 2为内齿轮2的齿数,
Figure PCTCN2020120745-appb-000008
为外齿轮1的螺旋转角变量,
Figure PCTCN2020120745-appb-000009
为外齿轮1的螺旋转角最大值,B为齿轮宽度,θ 1∈[θ 1o1t]为外齿轮1的齿廓角参量,θ 1o为外齿轮1的齿廓角参量最小值,θ 1t为外齿轮1的齿廓角参量最大值。
其中,外齿轮1和内齿轮2的螺旋角β是相同的,齿轮宽度B也是相同的。
进一步地,内齿轮2的结构参阅图7,内齿轮2的齿面方程为:
Figure PCTCN2020120745-appb-000010
其中,x 2、y 2、z 2分别表示内齿轮2齿面的x、y、z方向的坐标,a为外齿轮1与内齿轮2的中心距,φ 2=2π/n 2为内齿轮2的相邻轮齿之间的夹角,α 1表示外齿轮1的旋转角度,α 2表示内齿轮2的旋转角度,也即在由圆弧曲线做包 络运动形成摆线曲线的包络运动中内齿轮2的旋转角度;
p 2=R 2tanβ为内齿轮2的螺距系数,R 2=ai 12/(i 12-1)为内齿轮2的基圆半径,
Figure PCTCN2020120745-appb-000011
为内齿轮2的螺旋转角变量,
Figure PCTCN2020120745-appb-000012
为内齿轮2的螺旋转角最大值,θ 2∈[θ 2o2t]为内齿轮2的齿廓角参量,θ 2o为内齿轮2的齿廓角参量最小值,θ 2t为内齿轮2的齿廓角参量最大值。
在其中一个实施方式中,外齿轮1和内齿轮2均可采用人字形齿轮,也即外齿轮1和内齿轮2的齿面均可以设计成轴向对称且螺旋方向相反的人字形结构,以更好地消除齿轮对中心轴的横向力。
上述外齿轮1和内齿轮2构成的传动机构适用于内啮合定轴齿轮传动,且为平行轴内啮合齿轮传动。
本实施例的内啮合斜齿轮传动机构,其外齿轮1的法向齿廓曲线为圆弧曲线,内齿轮2的法向齿廓曲线为摆线曲线,从而形成了由法向圆弧和摆线构成的共轭齿轮副,实现了螺旋啮合传动,该传动机构具有较小的滑动率,能够有效避免齿轮因滑动磨损失效;且不易发生根切,加工方便,外齿轮的齿数最小能够达到1,在相同体积及中心距条件下可实现小齿数、大传动的设计要求;该齿轮啮合副的轮齿齿高小、齿根宽,模数大,具有较好的齿根弯曲强度及齿面接触强度,齿面承载能力较大且齿轮体积较小,能够较好的满足高速、重载、高功率的传动要求。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (5)

  1. 一种内啮合斜齿轮传动机构,包括相啮合的内齿轮和外齿轮,其特征在于,所述内齿轮和外齿轮均为斜齿轮,所述外齿轮的法向齿廓曲线为圆弧曲线,所述内齿轮的法向齿廓曲线为摆线曲线。
  2. 如权利要求1所述的内啮合斜齿轮传动机构,其特征在于,所述摆线曲线由所述圆弧曲线做包络运动形成。
  3. 如权利要求2所述的内啮合斜齿轮传动机构,其特征在于,所述外齿轮的齿面方程为:
    Figure PCTCN2020120745-appb-100001
    其中,x 1、y 1、z 1分别表示外齿轮齿面的x、y、z方向的坐标,e为外齿轮法向轮廓的分布圆半径,ρ外齿轮法向齿廓的圆弧半径,n 1为外齿轮齿数,φ 1=2π/n 1为外齿轮相邻轮齿之间的夹角,k=±1,γ为圆弧圆心与外齿轮中心连线的偏转角,p 1=R 1tanβ为外齿轮螺距系数,β为螺旋角,R 1=a/(i 12-1)为外齿轮基圆半径,a为外齿轮与内齿轮的中心距,i 12=n 2/n 1为内齿轮与外齿轮齿数比,n 2为内齿轮齿数,
    Figure PCTCN2020120745-appb-100002
    为外齿轮螺旋转角变量,
    Figure PCTCN2020120745-appb-100003
    为外齿轮螺旋转角最大值,B为齿轮宽度,θ 1∈[θ 1o1t]为外齿轮齿廓角参量,θ 1o为外齿轮齿廓角参量最小值,θ 1t为外齿轮齿廓角参量最大值。
  4. 如权利要求3所述的内啮合斜齿轮传动机构,其特征在于,所述内齿轮的齿面方程为:
    Figure PCTCN2020120745-appb-100004
    其中,x 2、y 2、z 2分别表示内齿轮齿面的x、y、z方向的坐标,a为外齿轮与内 齿轮的中心距,φ 2=2π/n 2为内齿轮相邻轮齿之间的夹角,α 1表示外齿轮旋转角度,α 2表示内齿轮旋转角度,p 2=R 2tanβ为内齿轮螺距系数,R 2=ai 12/(i 12-1)为内齿轮基圆半径,
    Figure PCTCN2020120745-appb-100005
    为内齿轮螺旋转角变量,
    Figure PCTCN2020120745-appb-100006
    为内齿轮螺旋转角最大值,θ 2∈[θ 2o2t]为内齿轮齿廓角参量,θ 2o为内齿轮齿廓角参量最小值,θ 2t为内齿轮齿廓角参量最大值。
  5. 如权利要求1所述的内啮合斜齿轮传动机构,其特征在于,所述外齿轮与内齿轮均采用人字形齿轮。
PCT/CN2020/120745 2020-06-12 2020-10-14 一种内啮合斜齿轮传动机构 WO2021248762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010537838.XA CN111637193B (zh) 2020-06-12 2020-06-12 一种内啮合斜齿轮传动机构
CN202010537838.X 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021248762A1 true WO2021248762A1 (zh) 2021-12-16

Family

ID=72329422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120745 WO2021248762A1 (zh) 2020-06-12 2020-10-14 一种内啮合斜齿轮传动机构

Country Status (2)

Country Link
CN (1) CN111637193B (zh)
WO (1) WO2021248762A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117407989A (zh) * 2023-10-24 2024-01-16 辽宁工业大学 一种基于可变圆心啮合线的内啮合齿轮修形设计方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637193B (zh) * 2020-06-12 2022-06-14 苏州大学 一种内啮合斜齿轮传动机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120638A (zh) * 1995-06-09 1996-04-17 李汉玉 摆线齿轮传动机构及其装置
CN102817968A (zh) * 2012-05-24 2012-12-12 袁宗凡 内啮合双圆弧结构
CN105114542A (zh) * 2015-09-01 2015-12-02 重庆大学 一种基于共轭曲线人字齿轮的行星齿轮传动装置
US9764592B1 (en) * 2016-10-27 2017-09-19 Orbis Wheels, Inc. Ring gear and brake for centerless wheel
CN108533681A (zh) * 2018-06-12 2018-09-14 中国地质大学(武汉) 平行轴内啮合传动的平-凸啮合纯滚动齿轮机构
CN111637193A (zh) * 2020-06-12 2020-09-08 苏州大学 一种内啮合斜齿轮传动机构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746599B1 (ko) * 2015-06-08 2017-06-14 주식회사 세진아이지비 내접식 유성치차 감속기
CN106641111B (zh) * 2016-12-19 2019-02-26 扬州大学 一种弧齿摆线行星齿轮减速器
CN206386439U (zh) * 2016-12-19 2017-08-08 扬州大学 一种螺旋齿摆线齿轮行星减速器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120638A (zh) * 1995-06-09 1996-04-17 李汉玉 摆线齿轮传动机构及其装置
CN102817968A (zh) * 2012-05-24 2012-12-12 袁宗凡 内啮合双圆弧结构
CN105114542A (zh) * 2015-09-01 2015-12-02 重庆大学 一种基于共轭曲线人字齿轮的行星齿轮传动装置
US9764592B1 (en) * 2016-10-27 2017-09-19 Orbis Wheels, Inc. Ring gear and brake for centerless wheel
CN108533681A (zh) * 2018-06-12 2018-09-14 中国地质大学(武汉) 平行轴内啮合传动的平-凸啮合纯滚动齿轮机构
CN111637193A (zh) * 2020-06-12 2020-09-08 苏州大学 一种内啮合斜齿轮传动机构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117407989A (zh) * 2023-10-24 2024-01-16 辽宁工业大学 一种基于可变圆心啮合线的内啮合齿轮修形设计方法

Also Published As

Publication number Publication date
CN111637193B (zh) 2022-06-14
CN111637193A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2021248761A1 (zh) 一种斜齿轮行星传动机构
CN106090185B (zh) 三维高刚性谐波减速器的齿型设计方法
CN105202115B (zh) 基于共轭曲线的多点接触圆柱齿轮啮合副
CN101975264B (zh) 渐开弧面齿廓的斜齿轮及其啮合副
WO2011093744A1 (ru) Эксцентриково - циклоидальное зацепление зубчатых профилей с криволинейными зубьями
WO2021248762A1 (zh) 一种内啮合斜齿轮传动机构
CN110805680B (zh) 一种高强度齿轮齿根过渡曲线的优化方法
CN105114542B (zh) 一种基于共轭曲线人字齿轮的行星齿轮传动装置
CN110081148B (zh) 一种基于共轭曲线的凸-凸接触的对构齿轮
CN110909430B (zh) 一种谐波减速器柔轮摆线齿形设计方法
CN102072308A (zh) 齿廓曲线为圆弧和渐开线相结合的斜齿轮
CN108036038A (zh) 一种圆弧抛物线多点接触的人字齿轮
CN105202152A (zh) 基于共轭曲线的多点接触圆锥齿轮啮合副
CN107327559A (zh) 一种圆弧抛物线多点接触的斜齿轮
CN111173896B (zh) 一种单级根切摆线活齿传动单元
CN110802280B (zh) 一种渐开线螺旋锥齿轮齿面设计方法
WO2023184652A1 (zh) 一种非正交椭圆环面蜗杆齿轮副
CN109711098B (zh) 渐开弧面齿廓的直齿锥齿轮的设计方法及齿轮啮合副
US20100317483A1 (en) High performance differential
CN104265858B (zh) 基于不同齿形角球面齿形的圆弧伞齿轮齿面设计方法
CN112377595B (zh) 一种基于空间共轭曲线的内啮合斜齿轮副
CN113062961B (zh) 一种低滑动率齿轮及其设计方法
CN103234006A (zh) 一种双圆弧修正摆线齿轮差动轮系
CN102537098B (zh) 齿轮联轴节及其制造方法
US20240167556A1 (en) Gear pair

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940386

Country of ref document: EP

Kind code of ref document: A1