WO2021246328A1 - Operation method for substrate processing device - Google Patents

Operation method for substrate processing device Download PDF

Info

Publication number
WO2021246328A1
WO2021246328A1 PCT/JP2021/020440 JP2021020440W WO2021246328A1 WO 2021246328 A1 WO2021246328 A1 WO 2021246328A1 JP 2021020440 W JP2021020440 W JP 2021020440W WO 2021246328 A1 WO2021246328 A1 WO 2021246328A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
wafer
doctor
processing
substrate
Prior art date
Application number
PCT/JP2021/020440
Other languages
French (fr)
Japanese (ja)
Inventor
水根 李
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2022528800A priority Critical patent/JP7455972B2/en
Publication of WO2021246328A1 publication Critical patent/WO2021246328A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • This disclosure relates to an operation method of a substrate processing apparatus.
  • Patent Document 1 discloses, as a substrate processing system, a coating and developing apparatus for applying a resist to a substrate and developing after exposure.
  • a substrate for temperature monitoring called a wireless wafer is used.
  • the wireless wafer has a plurality of temperature sensors and controllers, and can transmit the temperature detected by the temperature sensors by wireless communication.
  • the time course of the actual temperature of the wireless wafer is measured when the wireless wafer is placed on the heating plate and when the wireless wafer is transferred to the heating plate before and after the heating plate.
  • the control parameters of the heating plate can be adjusted appropriately based on the measurement results.
  • the present disclosure provides an operation method of a substrate processing apparatus capable of easily and quickly identifying the cause of generation of pollutants such as particles by using an inspection substrate.
  • the product is between the processing unit that processes the product substrate, the loading / unloading section where the product substrate processed by the processing unit is loaded / unloaded, and the loading / unloading section and the processing unit.
  • a method of operating a substrate processing apparatus including a transport mechanism for transporting a substrate, wherein a plate-shaped base material, an image pickup element provided on at least a part of the surface of the base material, and the image pickup element are provided.
  • An inspection board including a light-transmitting protective layer formed on the surface and an output unit that outputs the output of the image pickup element to the outside of the inspection board, and the light emitted from the light source is the protective layer.
  • a step of preparing the inspection board configured to be able to detect the adhered state of the contaminated substance to the protective layer based on the output of the image pickup element that changes by being blocked by the contaminated substance adhering to the top.
  • the inspection board is processed by the processing unit, and the state of contaminants adhering to the inspection board is detected by the inspection board after or during the processing, and the inspection board is conveyed by the transfer mechanism.
  • the present invention provides an operation method including a determination step for determining whether or not to process or transport a product substrate by the substrate processing apparatus based on the state of.
  • the cause of generation of pollutants such as particles can be easily and quickly identified by using an inspection board.
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing system according to this embodiment.
  • the X-axis, Y-axis, and Z-axis that are orthogonal to each other are defined, and the positive direction of the Z-axis is defined as the vertical upward direction.
  • the board processing system 1 includes an loading / unloading station 2 and a processing station 3.
  • the loading / unloading station 2 and the processing station 3 are provided adjacent to each other.
  • the loading / unloading station 2 includes a carrier mounting section 11 and a transport section 12.
  • a plurality of substrates, and in the present embodiment, a plurality of carriers C for accommodating a semiconductor wafer (hereinafter referred to as a wafer W) in a horizontal state are mounted on the carrier mounting portion 11.
  • the transport section 12 is provided adjacent to the carrier mounting section 11, and includes a substrate transport device 13 (transport mechanism) and a delivery section 14 inside.
  • the substrate transfer device 13 includes a wafer holding mechanism for holding the wafer W (board). Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and swivel around the vertical axis, and transfers the wafer W between the carrier C and the delivery portion 14 by using the wafer holding mechanism. conduct.
  • the processing station 3 is provided adjacent to the transport unit 12.
  • the processing station 3 includes a transport unit 15 and a plurality of processing units 16.
  • the plurality of processing units 16 are provided side by side on both sides of the transport unit 15.
  • the transport unit 15 is provided with a substrate transport device 17 (transport mechanism) inside.
  • the substrate transfer device 17 includes a wafer holding mechanism for holding the wafer W. Further, the substrate transfer device 17 can move in the horizontal direction and the vertical direction and swivel around the vertical axis, and transfers the wafer W between the delivery unit 14 and the processing unit 16 by using the wafer holding mechanism. I do.
  • the processing unit 16 performs predetermined substrate processing on the wafer W conveyed by the substrate transfer device 17.
  • the substrate processing system 1 includes a notch aligner 90 that aligns the wafer in the circumferential direction, that is, a positioning device.
  • the notch aligner 90 can be provided, for example, in the transport section 12 of the carry-in / out station 2 (for example, in the transport space of the substrate transport device 13 or in the delivery section 14).
  • a positioning device instead of the notch aligner 90, a device that positions the wafer by detecting the orientation flat may be used.
  • the substrate processing system 1 may include a doctor wafer storage unit 92 for storing a doctor wafer (inspection substrate) DW, which will be described later.
  • the doctor wafer storage unit 92 can be provided at an arbitrary position in the substrate processing system 1 if the substrate transfer device 13 or the substrate transfer device 17 is accessible.
  • the board processing system 1 includes a control device 4.
  • the control device 4 is, for example, a computer, and includes a control unit 18 and a storage unit 19.
  • the storage unit 19 stores programs that control various processes executed in the board processing system 1.
  • the control unit 18 controls the operation of the substrate processing system 1 by reading and executing the program stored in the storage unit 19.
  • the program may be recorded on a storage medium readable by a computer, and may be installed from the storage medium in the storage unit 19 of the control device 4.
  • Examples of storage media that can be read by a computer include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
  • the substrate transfer device 13 of the loading / unloading station 2 takes out the wafer W from the carrier C mounted on the carrier mounting portion 11 and receives the taken out wafer W. Placed on Watanabe 14. The wafer W placed on the delivery section 14 is taken out from the delivery section 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16.
  • the wafer W carried into the processing unit 16 is processed by the processing unit 16, then carried out from the processing unit 16 by the substrate transfer device 17, and placed on the delivery unit 14. Then, the processed wafer W mounted on the delivery section 14 is returned to the carrier C of the carrier mounting section 11 by the substrate transfer device 13.
  • the following doctor wafer DW inspection substrate is conveyed and processed in the substrate processing system 1.
  • the doctor wafer DW can widely detect contaminants other than particles, such as water marks, or surface defects such as scratches.
  • particles will be described as an example as the most typical detection target.
  • FIG. 2 shows an example of the configuration of the doctor wafer DW.
  • the doctor wafer DW includes a wiring layer 102, a light receiving layer 104, and a protective layer 106 sequentially laminated on a substrate 100 (disk-shaped base material) made of a semiconductor wafer.
  • the wiring layer 102 and the light receiving layer 104 can be formed by using a well-known image pickup element (for example, back-illuminated CMOS) forming technique. It can be said that the doctor wafer DW is an image pickup device having the same size as the wafer W.
  • the wiring layer 102 and the light receiving layer 104 may be configured to correspond to a CCD image pickup device.
  • the light receiving layer 104 has a large number (s) of photodiodes arranged in a matrix. Since it is not necessary to distinguish colors in the doctor wafer DW, a color filter is not provided on the photodiode. Therefore, the light receiving layer 104 of the doctor wafer DW has a detection resolution that corresponds exactly to the number of photodiodes (number of pixels).
  • One photodiode is hereinafter referred to as pixel 105. In a non-limiting and exemplary embodiment, the size of one pixel 105 is 5 nm.
  • the protective layer 106 has sufficient light transmission, is not easily attacked by the processing fluid to which the doctor wafer DW is exposed, and has surface characteristics (for example, hydrophobicity) similar to those of the wafer W (product wafer). It is preferably formed from a material.
  • the protective layer 106 is formed of a pixel protective damper 106a provided on the light receiving layer 104 and transparent glass (SiOx) 106b.
  • the surface properties (eg, hydrophobicity) of the transparent glass are similar to those of the wafer W.
  • the material constituting the protective layer 106 (particularly its surface) can be changed according to the processing fluid to which the doctor wafer DW is exposed.
  • a light-transmitting coating having desired characteristics for example, a transparent PFA or PTFA thin film
  • a light-transmitting coating may be provided on the outermost surface of the protective layer 106.
  • SiN, SiOx or the like can be used when acid resistance is desired
  • SiOx or the like can be used when alkali resistance is desired
  • SiOx or the like can be used when oil resistance is desired.
  • a plurality of electrodes 108 are provided on the peripheral edge of the doctor wafer DW.
  • the electrode 108 has a function as a power receiving electrode for receiving power for operating the image pickup element (102 + 104), and receives a command signal from an external device (for example, a signal processing device) instructing the image pickup element to read pixel data. It has a function as an input electrode and a function as an output electrode for outputting the pixel data output from the doctor wafer DW to an external device (for example, a signal processing device).
  • Electrode 108 Electrode member 108
  • a different function may be assigned to each electrode 108 (electrode member).
  • the supply electrode to the pixel amplifier is exemplified.
  • the electrode 108 is electrically in contact with various components with which the wafer W is in contact in the substrate processing system 1, such as a gripping claw of a mechanical spin chuck (described later), a holding claw of a transport arm, and the like (described later). It is installed in a position where it can be used.
  • the electrode 108 can be provided, for example, so as to be exposed on the surface (side peripheral surface) of Apex of the doctor wafer DW, the bevel portion or a flat portion in the vicinity thereof.
  • the electrode 108 is electrically connected to the wiring layer 102. It is assumed that the gripping claw of the mechanical spin chuck is arranged at a position where it comes into contact with the black-painted electrode 108 of FIG. It is assumed that the holding claw of the transport arm is not always arranged at a position where it comes into contact with the black-painted electrode 108, but is arranged at a position where it comes into contact with, for example, the white electrode 108. In this case, a connection line 110 for connecting electrodes 108 (for example, electrodes that transmit and receive power, command signals, and pixel data (image signals) to and from a specific area of the doctor wafer DW) having the same role is provided. be able to.
  • the illumination light radiated to the doctor wafer DW is blocked by the particles. That is, the output of the pixel 105 below the particles is reduced. Utilizing this, the distribution of particles on the doctor wafer DW can be detected.
  • lighting devices can be provided at various locations in the substrate processing system 1.
  • the place where the lighting device is provided is arbitrary, but it is particularly preferable to provide the lighting device in a place where particles are likely to be generated. Examples of places where particles are likely to be generated include the inside of the processing unit 16 and the vicinity of the delivery portion 14 where the wafer W is delivered.
  • the processing unit 16 includes a chamber 20, a spin chuck (substrate holding mechanism) 30, a processing fluid supply unit 40, and a recovery cup 50.
  • the chamber 20 accommodates the spin chuck 30, the processing fluid supply unit 40, and the recovery cup 50.
  • An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20.
  • the FFU 21 forms a downflow in the chamber 20.
  • the spin chuck 30 is configured as a mechanical chuck.
  • the spin chuck 30 has a substrate holding portion 31.
  • the substrate holding portion 31 has a disk-shaped support plate 32 and a plurality of gripping claws 33 provided on the peripheral edge portion of the support plate 32, preferably at equal intervals in the circumferential direction. At least one or more of the gripping claws 33 are movable gripping claws.
  • the spin chuck 30 holds the wafer W in a horizontal posture by engaging the grip claw 33 with the peripheral edge of the wafer W.
  • the support plate 32 is rotationally driven by an electric motor (driving unit) 34, whereby the wafer W is rotationally driven around the vertical axis.
  • the gripping claw 33 is provided with an electrode 35 that can be electrically contacted with the electrode 108 of the doctor wafer DW.
  • the notch N of the doctor wafer DW (see FIG. 3) has a predetermined positional relationship with the electrode 108 of the doctor wafer DW. Since the doctor wafer DW is positioned in the circumferential direction by the notch aligner 90, each electrode 108 of the doctor wafer DW always comes into contact with the predetermined electrode 35 of the gripping claw 33 when held by the spin chuck 30.
  • the electrode 35 has a power supply 36 that supplies power necessary for operating the doctor wafer DW (for example, power for operating a pixel amplifier), an output of a command signal instructing the doctor wafer DW to read pixel data, and output of a command signal.
  • a signal processing device (transmission / reception unit and calculation unit) 37 that processes the pixel data signal output from the doctor wafer DW is connected to the signal processing device (transmission / reception unit and calculation unit) 37.
  • the processing fluid supply unit 40 has one or more nozzles 41 for discharging the processing fluid.
  • the nozzle 41 is supported on the tip of a nozzle arm 42 that can be swiveled around the vertical axis, and moves at least between a position directly above the center of the wafer W and a position directly above the peripheral edge of the wafer W. can do.
  • a processing fluid supply mechanism 43 that supplies a processing fluid (processing liquid, processing gas) to the nozzle 41 is connected to each nozzle 41.
  • a plurality of types of processing fluids may be supplied from each nozzle 41, and in this case, a plurality of processing fluid supply mechanisms 43 are connected to one nozzle 41.
  • the number of nozzles 41 and the number of nozzle arms 42 provided in one processing unit 16 are arbitrary.
  • the substrate holding portion 31 of the spin chuck 30 is surrounded by the recovery cup 50.
  • the recovery cup 50 collects the processing liquid scattered from the wafer W.
  • a drainage port 51 and an exhaust port 52 are formed at the bottom of the recovery cup 50.
  • the treatment liquid is discharged to the outside of the recovery cup 50 from the drain port 51.
  • the exhaust port 52 is always sucked during the normal operation of the processing unit 16, whereby the atmosphere in the space above the wafer W (for example, the clean air supplied from the FFU 21 into the chamber 20) is sucked into the recovery cup 50. To. Due to the air flow generated by this, the treatment liquid scattered from the wafer W is suppressed from reattaching to the wafer W.
  • a lighting device 45 is provided on the lower surface of the nozzle arm 42.
  • the illuminating device 45 may continuously (seamlessly) irradiate the section from the central portion to the peripheral portion of the surface of the wafer W.
  • the lighting device 45 is arranged on the nozzle arm 42 so as to be able to do so.
  • the lighting device 45 is turned on when the nozzle 41 is located directly above the center of the doctor wafer DW, the surface of the doctor wafer DW has a linear or linear shape extending continuously from the center to the periphery in the radial direction. An elongated strip-shaped irradiation section is formed.
  • FIG. 5 shows a modified example of the processing unit 16.
  • the lighting device 46 is provided at the place where the FFU 21 was provided in the example of FIG.
  • the illuminating device 46 can be composed of a disk-shaped member having a diameter larger than the diameter of the wafer W.
  • the lighting device 46 can be configured to include a light emitting unit 46a and a polarizing filter 46b made of graphene or the like.
  • the surface of the wafer W can be irradiated with parallel light (light traveling only in a direction substantially orthogonal to the surface of the wafer W), and the wafer W is irradiated with light from a relatively distant position. Nevertheless, the particle inspection accuracy can be improved.
  • FIG. 4 may be the same as that of the lighting device 46.
  • a side flow type FFU 21 outlet can be provided on the side wall of the chamber 20.
  • the configuration of the processing unit 16 of FIG. 5 may be the same as that of the processing unit of FIG.
  • the substrate transfer device 17 has a moving base 171 that can translate in the X direction (horizontal direction) and the Z direction (vertical direction) and can rotate around the vertical axis.
  • a fork 172 (board holder) that can move forward and backward in the horizontal direction is provided on the moving base 171.
  • FIG. 6 shows the fork 172 in the retracted position.
  • the fork 172 is located at a forward position when the wafer W is delivered to and from the wafer holding structure such as the spin chuck 30 of the processing unit 16 and the stage of the delivery section 14, and the wafer W is placed in the wafer holding structure described above. It is located in the retracted position when transporting between.
  • the fork 172 is provided with a plurality of holding claws 173, and at least one of them is movable. By moving the movable holding claw 173, the fork 172 can hold and release the wafer W (doctor wafer DW).
  • the holding claw 173 is provided with an electrode 175 that can be electrically contacted with the electrode 108 of the doctor wafer DW. Each electrode 108 of the properly positioned doctor wafer DW always comes into contact with the predetermined electrode 175 of the holding claw 173 when held by the fork 172.
  • the electrode 175 has a power supply 177 that supplies power necessary for operating the doctor wafer DW, an output of a command signal instructing the doctor wafer DW to read pixel data, and pixel data (image) output from the doctor wafer DW.
  • a signal processing device 179 (or the signal processing device 37 described above) that processes the signal) is connected to the signal processing device 179 (or the signal processing device 37 described above).
  • the moving base 171 is provided with a lighting device 174.
  • the lighting device 174 is provided so as to be able to irradiate the entire surface of the doctor wafer DW held by the fork 172 located at the retracted position with light.
  • the configuration of the lighting device 174 may be the same as that of the lighting devices 45 and 46 provided in the processing unit 16.
  • the lighting device 174 may be in the shape of a strip extending in a direction orthogonal to the direction in which the fork 172 moves forward and backward (the length thereof is preferably equal to or larger than the diameter of the doctor wafer DW). In this case, it is sufficient that the entire area of the doctor wafer DW crosses the strip-shaped irradiation region of the lighting device 174 as the fork 172 moves forward and backward.
  • one of the side walls of the chamber 20 of the processing unit 16 is provided with a wafer loading / unloading port 22 with a shutter (the same applies to the configuration of FIG. 4, but the figure is also shown in FIG. 4 is not shown).
  • a strip-shaped lighting device 47 having a length equal to or larger than the diameter of the wafer W may be provided on the ceiling of the wafer loading / unloading port 22.
  • the doctor wafer DW can be inspected when the fork 172 holding the doctor wafer DW passes below the lighting device 47.
  • Units / devices other than the processing unit 16 shown in FIGS. 4 and 5 and the substrate transfer device 17 shown in FIG. 6 can also be electrically contacted with the electrode 108 of the doctor wafer DW, and such.
  • a lighting device that irradiates the doctor wafer DW in the unit / device with light can be provided.
  • the power supply for supplying the power required for operating the doctor wafer DW to the electrodes, the output of the command signal instructing the doctor wafer DW to read the pixel data, and the pixel data output from the doctor wafer DW (also in this case). It can be connected to a signal processing device that processes image signals).
  • the lighting device can also be provided on the ceiling of the room forming the wafer transport space, the ceiling of the delivery section 14, and the like.
  • the amount of particles existing on the surface of the doctor wafer DW is measured based on the signal output from each pixel 105 of the doctor wafer DW.
  • the carrier C accommodating the doctor wafer DW is placed on the carrier mounting portion 11 (step 1).
  • the fork (board holder) of the board transfer device 13 of the carry-in / out station 2 invades the carrier C and takes out the doctor wafer DW from the carrier C (step 2).
  • the fork of the substrate transfer device 13 invades the delivery section 14, and the doctor wafer DW is placed on the delivery section 14 (step 3).
  • the doctor wafer DW is positioned between step 2 and step 3.
  • the electrode 175 of the fork 172 of the substrate transfer device 17 (13) and the electrode 35 of the spin chuck 30 can be surely brought into contact with the electrode 108 of the doctor wafer DW.
  • the positioning operation can be omitted.
  • the doctor wafer storage unit 92 is located in the transport unit 12, a series of steps are performed from the step of transporting the positioned doctor wafer DW stored in the doctor wafer storage unit 92 from the doctor wafer storage unit 92 to the delivery unit 14. You may start.
  • the fork of the board transfer device 17 of the processing station 3 invades the delivery section 14, and the doctor wafer DW is taken out from the delivery section 14 (step 4).
  • the fork of the substrate transfer device 17 penetrates into the processing unit 16 and passes the doctor wafer DW to the spin chuck 30 in the processing unit 16 (step 5).
  • Liquid treatment is performed on the doctor wafer DW in the processing unit 16 (step 6).
  • the fork of the substrate transfer device 17 invades the processing unit 16 and takes out the doctor wafer DW from the processing unit 16 (step 7).
  • the fork of the substrate transfer device 17 invades the delivery section 14, and the doctor wafer DW is placed on the delivery section 14 (step 8).
  • the fork of the substrate transfer device 13 invades the delivery section 14, and the doctor wafer DW is taken out from the delivery section 14 (step 9).
  • the fork of the substrate transfer device 13 penetrates into the original carrier C, and the doctor wafer DW is accommodated in the carrier C (step 10).
  • the electrode 108 of the doctor wafer DW is an external electrode (for example, the electrode 35 of the gripping claw 33 of the spin chuck 30 of the processing unit 16 or the electrode 175 of the holding claw 173 of the fork 172 of the substrate transfer device 17).
  • the signal can be output to the outside while in contact with.
  • a data buffer (memory unit) may be provided in the doctor wafer DW as described later, or the doctor wafer DW may be provided with a data buffer (memory unit).
  • a wireless output unit (antenna) may be provided on the doctor wafer DW (described later).
  • the doctor wafer DW may be used to periodically acquire the data of the transition of the particle amount as described above.
  • the data of the transition of the amount of particles acquired at a certain time with the data of the transition of the amount of particles acquired before that, it is possible to predict the possibility of a problem related to particles. For example, if the amount of particles is larger than before in steps 3, 4, 8, 9 and the like in which the doctor wafer DW is taken in and out of the delivery section 14, the particle-causing substance is attached to the delivery section 14. Is presumed to be. In this case, by cleaning the delivery portion 14, particle contamination of the wafer W can be prevented.
  • step 6 liquid treatment
  • steps 5 and 7 related to loading and unloading to and from the processing unit 16 are executed
  • particles generated by transport are detected. You can do it.
  • step 5 and 7 related to loading and unloading to and from the processing unit 16 are executed
  • particles generated by transport are detected. You can do it.
  • Steps 1 to 10 may be executed while changing only the processing unit 16 that is the target of steps 5 to 7.
  • the processing unit 16 in which particles are likely to be generated can be specified.
  • Step 6 is composed of a plurality of steps (sub-steps). First, the spin chuck 30 is rotated to rotate the doctor wafer DW, and the pre-wet liquid (for example, DIW) is supplied from the nozzle 41 to the doctor wafer DW (step 61).
  • the pre-wet liquid for example, DIW
  • the chemical solution A is supplied to the doctor wafer DW (step 62), then the rinse solution is supplied to the doctor wafer DW (step 63), then the chemical solution B is supplied to the doctor wafer DW (step 64), and then the doctor wafer.
  • a rinse solution is supplied to the DW (step 65), then an IPA is supplied to the doctor wafer DW (step 66), and then the doctor wafer DW is shaken off and dried (step 67).
  • the doctor wafer DW is used to periodically collect the data of the transition of the particle amount as described above. You may get it. By comparing the data of the transition of the amount of particles acquired at a certain time with the data of the transition of the amount of particles acquired before that, it is possible to predict the possibility of a problem related to particles.
  • the contamination status of one nozzle 41 and the processing fluid supply mechanism 43 connected to the nozzle 41 can be detected by using the doctor wafer DW.
  • the nozzle 41 supplies the processing liquid to the vicinity of the center of the doctor wafer DW rotated by the spin chuck, and the particle level is detected only in the vicinity of the center of the doctor wafer DW by the doctor wafer DW. do.
  • the change with time of the detection value of the particle amount by the doctor wafer DW (specifically, the increment from before the start of the processing of the particle amount) is detected from the time when the discharge of the treatment liquid from the nozzle 41 is started. do.
  • a branch supply pipe 432 branches from the main supply pipe 431 of the treatment liquid (for example, a circulation pipe connected to the treatment liquid storage tank) toward each treatment unit 16.
  • a flow meter 433, a constant pressure valve 434 functioning as a flow control valve, and an on-off valve 435 are interposed in the branch supply pipe 432 in order from the upstream side.
  • a nozzle 41 is connected to the downstream end of the branch supply pipe 432.
  • the on-off valve 435 may be contaminated or dust may be generated by the opening / closing operation of the on-off valve 435. It is presumed to have high sex. In this case, the on-off valve 435 may be washed or replaced with a new one.
  • the inside of the branch supply pipe 432 contact with the on-off valve 435) is preferably performed by performing dummy discharge from the nozzle 41 at a relatively large flow rate and preferably for a relatively long time. It may be possible to remove contaminants (including liquid level).
  • the processing in all the processing units 16 may be temporarily stopped, and the degree of contamination of the processing liquid flowing through the main supply pipe 431 may be confirmed.
  • step 201 it is determined whether or not the surface of the doctor wafer DW (described as "DrW” in the flowchart of FIG. 9) has sufficient cleanliness for inspection (step 201).
  • This determination can be performed, for example, by holding the doctor wafer DW by the spin chuck 30 of the substrate transfer device 17 or the processing unit 16 and reading the image data from the doctor wafer DW.
  • the determination can be made, for example, by whether or not the particles existing on the surface of the doctor wafer DW are equal to or less than the total amount reference value of the particles determined for each particle size.
  • the inspection is temporarily stopped (step 202).
  • the surface of the contaminated doctor wafer DW can be subjected to two-fluid cleaning or scrub cleaning, or the surface of the doctor wafer DW can be regenerated (details will be described later).
  • the contaminated doctor wafer DW may be replaced with another clean doctor wafer DW and the process may proceed to step 203.
  • the judgment result is OK, that is, if it is determined that the surface of the doctor wafer DW has sufficient cleanliness, a series of processes are performed on the doctor wafer DW using the process recipe of the wafer W. conduct. After the processing is completed, the amount of particles on the surface of the doctor wafer DW is measured (step 203). This measurement can be performed, for example, in a state where the doctor wafer DW is continuously held by the spin chuck 30 of the processing unit 16.
  • step 204 the amount of particles before the liquid treatment and the amount of particles after the liquid treatment are compared (step 204), and if the increment of the particle amount is equal to or less than a predetermined threshold value, the determination result is OK, and the wafer W by the processing unit 16 Processing is permitted (step 205). With the above, the inspection is completed.
  • step 207 the processing of the wafer W by the processing unit 16 is prohibited (step 207) (details will be described later).
  • step 206 If it is determined in step 206 that the determination is NG for the first time, an alarm is generated by a user interface such as a display or an alarm sound generator, and processing of the wafer W by the processing unit 16 to be inspected is temporarily prohibited. (Step 208).
  • the processing schedule may be changed so as to exclude the processing unit 16.
  • the cause of particle generation is estimated by comparing the time-dependent change data of particles measured using the doctor wafer DW with the processing log of the processing unit 16.
  • the processing log is data showing the relationship between the time and the executed procedure. For example, "13:56:25: Open the on-off valve of the processing fluid supply mechanism 43 (start discharging the chemical solution A from the nozzle 41). ) ”, Which is a collection of data in the format.
  • the cause of particle generation is estimated by making the determination as described in the above-mentioned Specific Example 2 and Specific Example 3 (step 209).
  • the cause of the generation of particles is (A) dirt on the piping (including valves, flowmeters, etc.) of the processing fluid supply mechanism 43 (liquid supply system), for example, the liquid supply system is washed (flushed).
  • the processing fluid supply mechanism 43 is used to execute a dummy tip spence from the nozzle 41 for a predetermined time to wash away the dirt in the pipe (step 211).
  • the cause is likely to be (B). If a large number of particles are detected on the peripheral edge of the doctor wafer DW while the treatment liquid is being applied to the center of the doctor wafer DW, the cause may be (B). Turns out to be higher.
  • the cleaning liquid is sprayed from a cup inner wall cleaning nozzle or a chamber inner wall cleaning nozzle (not shown) to spray the cleaning liquid on the inner wall of the cup and the inner wall of the cup. Clean the inner wall of the chamber (step 212).
  • step 211 or step 212 the flow returns to step 201. After that, if the determination result in step 204 is OK, the processing unit 16 is permitted to process the wafer W.
  • step 204 If the determination result in step 204 is NG again, the determination result in step 206 is correct (Y), and the processing of the wafer W of the processing unit 16 is prohibited.
  • an alarm is generated by a user interface such as a display or an alarm sound generator, prompting an operator to clean or overhaul the processing unit 16.
  • step 211 and step 212 a cleaning operation that can be executed by automatic operation is performed, but the cleaning operation is not limited to this.
  • the processing unit 16 may be cleaned or overhauled by an operator.
  • the cause of particle generation can be estimated from the distribution tendency of particles on the doctor wafer DW. For example, if the distribution of particles as shown in FIG. 10 is confirmed immediately after the fork of the substrate transfer device 13 takes out the doctor wafer DW from the carrier C, it can be determined that the slot of the carrier C is contaminated. In FIG. 10, particles are recognized in the portion of the doctor wafer DW that comes into contact with the slot of the carrier C.
  • the delivery section 14 is contaminated. .. In this case, it is considered that the cause is that the particles that have fallen off from the ceiling portion of the delivery portion 14 fall.
  • the three gripping claws of the spin chuck 30 (at equal intervals in the circumferential direction) are confirmed. It can be determined that (placed) is contaminated.
  • the processing liquid that is about to scatter to the outside of the doctor wafer DW collides with the gripping claw, and the particles adhering to the gripping claw fall off, contaminating the surface of the doctor wafer DW. do.
  • gripping the fork immediately after the doctor wafer DW held by the fork 172 of the substrate transfer device 17 (or 13) is placed at the transfer destination (for example, the spin chuck of the processing unit 16). If particles are confirmed in the vicinity of the portion in contact with the claw, it can be determined that the holding claw 173 of the fork 172 is contaminated.
  • FIGS. 13A, 13B, and 13C show the relationship between the position of the nozzle 41 and the amount of particles when the processing liquid is supplied from the nozzle 41 to the rotating doctor wafer DW.
  • the area painted in black is the area with a particularly large number of particles. In this case, there are many particles near the landing point of the treatment liquid from the nozzle 41. In such a case, it is presumed that a large amount of particles are contained in the processing liquid discharged from the nozzle 41.
  • FIG. 13 (D) shows the state at the time of shaking off and drying, and a region having many ring-shaped particles is formed on the peripheral edge of the doctor wafer DW.
  • the drying conditions are inappropriate or the mist scattered from the doctor wafer DW is repelled by the recovery cup and reattached to the doctor wafer DW.
  • FIG. 14 is a schematic diagram showing a state in which particles P larger than the pixel size are present above the plurality of pixels 105.
  • the thickness of the particles P is thick at the central portion and thin at the peripheral portion.
  • most of the illumination light L applied to the central portion of the particles P is blocked by the particles P and does not reach the pixel 105.
  • a part of the illumination light L applied to the peripheral portion of the particles P transmits the particles. Further, the illumination light L may wrap around the periphery of the particle P and reach the pixel.
  • FIG. 15 schematically shows the distribution of the light receiving amount of each pixel 105 in the case shown in FIG. It corresponds to one pixel 105 of one black dot, and the larger the size of the black dot, the smaller the amount of light received.
  • the intensity of the light when the illumination light L reaches the pixel 105 as it is (without being blocked by the particles P) is set to 1, and the intensity of the light reaching the pixel 105 is predetermined. If it is smaller than the threshold value (for example, less than 0.8), it may be determined that the particles are directly above the pixel 105.
  • the threshold value may be set experimentally by collating the data obtained by a proven conventional method (for example, a method utilizing laser reflection / diffraction) with the data obtained by using the doctor wafer DW.
  • adjacent pixels 105 if the intensity of light received by one pixel 105 is greater than the threshold and the intensity of light received by the other pixel 105 is less than the threshold, particles between the adjacent pixels 105. It can be determined that a part of the contour of P exists. By detecting all of the other adjacent pixels 105 having such a relationship, the contour of the particle P can be specified.
  • the threshold may be changed according to the particle size (which can be determined by the number of consecutive pixels whose light intensity is, for example, less than 0.8).
  • the threshold value when particles smaller than the pixel size (for example, about 5 nm) are present on one pixel can be, for example, less than 0.5.
  • Water marks can be detected by the same detection principle as particles, except that the light transmittance is larger than that of general particles.
  • the illumination light L is turned by the scratch S and hardly reaches the pixel 105 directly under the scratch S as shown in FIG.
  • the scratch S extends continuously linearly over a large number of pixels 105. Therefore, when the pixels 105 having a small light receiving amount are linearly connected, it can be determined that there is a scratch above these pixels 105.
  • the doctor wafer DW is reused by thinly scraping at least the vicinity of the outermost surface of the protective layer 106 by chemical treatment or CMP treatment. You will be able to do it.
  • the hydrophobic thin film may be reformed after the above treatment.
  • the transparent glass 106b is completely removed leaving the pixel protective damper 106a. After that, the layer of the transparent glass 106b may be formed again.
  • the basic function of the doctor wafer DW is to output the electric charge output from each pixel 105 of the light receiving layer 104 to the outside via the wiring layer 102 (including a logic circuit, an amplifier, etc.). ..
  • data acquisition and data are acquired only when the electrode of the doctor wafer DW and the external electrode (for example, the electrode of the gripping claw of the spin chuck, the electrode of the holding claw of the fork of the substrate transport mechanism 13, etc.) are in contact with each other. Cannot send.
  • the memory unit 107a can be composed of, for example, a DRAM, an RRAM, an MRAM, a NAND flash memory, or the like.
  • the power storage unit 107b can be composed of a battery, a capacitor, or the like.
  • the antenna portion can be made of an amorphous soft magnetic material.
  • FIG. 17 schematically shows a doctor wafer DW provided with a memory unit 107a in addition to the wiring layer 102, the light receiving layer 104, and the protective layer 106.
  • FIG. 18 schematically shows a doctor wafer DW provided with a memory unit 107a and a storage unit 107b in addition to the wiring layer 102, the light receiving layer 104, and the protective layer 106.
  • FIG. 19 schematically shows a doctor wafer DW provided with a memory unit 107a, a storage unit 107b, and an antenna unit 107c in addition to the wiring layer 102, the light receiving layer 104, and the protective layer 106.
  • the nanolens array may be incorporated in the protective layer 106.
  • the individual nanolenses 109 can be placed directly above each pixel 105.
  • the outermost surface of the protective layer 106 can be formed of transparent glass (SiOx) or the like.
  • the light receiving layer 104 may be provided only on a part of the surface of the doctor wafer DW.
  • the light receiving layer 104 may be provided only on a plurality of lines extending in the diameter direction of the doctor wafer DW.
  • Each layer such as the wiring layer 102 to the doctor wafer DW and the light receiving layer 104 can be formed on the semiconductor wafer by using the semiconductor device manufacturing technology (film forming technology).
  • a doctor wafer DW may be constructed by attaching a preformed imaging device onto a substrate.
  • the electrode 35 is provided on the gripping claw 34 of the mechanical chuck, but the present invention is not limited to this.
  • the spin chuck is a vacuum chuck
  • an electrode may be provided on the vacuum chuck and an electrode may be provided on a portion of the back surface of the doctor wafer DW in contact with the vacuum chuck at the center.
  • particle level inspection can be performed at various places of the substrate processing system 1. If a lighting device that appropriately irradiates the doctor wafer DW with illumination light is installed, particle level inspection can be performed even during processing and transportation of the doctor wafer DW. Further, by providing the doctor wafer DW with the memory unit 107a, the power storage unit 107b, the antenna unit 107c, and the like, it is possible to perform particle level inspection at an arbitrary timing. This makes it possible to easily identify the cause of particle generation in a short time.
  • the conventional particle level inspection method using a stand-alone particle inspection device can only compare the particle level before and after processing and before and after transportation, and cannot inspect the particle level during processing and transportation.
  • wet wafers cannot be inspected.
  • the wafer may be contaminated while it is being transported to the stand-alone particle inspection device. Many of these problems can be solved in the above embodiments.

Abstract

This operation method for a substrate processing device comprises: a step for preparing a test substrate provided with the following, a plate-shaped base material, an imaging element provided to at least one portion of a surface of the base material, a light-transmissive protective layer formed on a surface of the imaging element, and an output unit that outputs the imaging element output to an external source; a testing step for processing the test substrate using a processing unit as well as for detecting the state of a contaminant adhered to the test substrate after or during processing using the test substrate, and/or conveying the test substrate using a conveyance mechanism as well as detecting the state of a contaminant adhered to the test substrate during or after conveying using the test substrate; and a determination step for determining, on the basis of the state of the contaminant detected during the testing step, whether a product substrate should be processed or conveyed by the substrate processing device.

Description

基板処理装置の運用方法Operation method of board processing equipment
 本開示は、基板処理装置の運用方法に関する。 This disclosure relates to an operation method of a substrate processing apparatus.
 半導体装置の製造においては、搬送ユニットおよび処理ユニットを備えた基板処理システムを用いて、処理対象の基板(例えば半導体ウエハ)に様々な処理、例えば薬液処理、成膜処理、熱処理等が施される。特許文献1には、基板処理システムとして、基板にレジスト塗布および露光後の現像処理を行うための塗布、現像装置が開示されている。この塗布、現像装置においては、ワイヤレスウエハと称する温度モニタ用の基板が用いられる。ワイヤレスウエハは複数の温度センサとコントローラを有し、温度センサにより検出された温度をワイヤレス通信により送信することができる。ワイヤレスウエハが加熱プレートに載置される時、およびその前後に行われる加熱プレートに対するワイヤレスウエハの搬送時において、ワイヤレスウエハの実際温度の経時変化が測定される。測定結果に基づいて加熱プレートの制御パラメータを適切に調整することができる。 In the manufacture of semiconductor devices, various treatments such as chemical treatment, film formation treatment, heat treatment and the like are performed on a substrate to be processed (for example, a semiconductor wafer) by using a substrate processing system including a transport unit and a processing unit. .. Patent Document 1 discloses, as a substrate processing system, a coating and developing apparatus for applying a resist to a substrate and developing after exposure. In this coating and developing apparatus, a substrate for temperature monitoring called a wireless wafer is used. The wireless wafer has a plurality of temperature sensors and controllers, and can transmit the temperature detected by the temperature sensors by wireless communication. The time course of the actual temperature of the wireless wafer is measured when the wireless wafer is placed on the heating plate and when the wireless wafer is transferred to the heating plate before and after the heating plate. The control parameters of the heating plate can be adjusted appropriately based on the measurement results.
特開2006-08489号公報Japanese Unexamined Patent Publication No. 2006-08489
 本開示は、パーティクル等の汚染物質の発生原因を検査基板を用いて容易且つ迅速に特定することができる基板処理装置の運用方法を提供する。 The present disclosure provides an operation method of a substrate processing apparatus capable of easily and quickly identifying the cause of generation of pollutants such as particles by using an inspection substrate.
 本開示の一態様によれば、製品基板を処理する処理ユニットと、前記処理ユニットで処理される前記製品基板が搬出入される搬出入部と、前記搬出入部と前記処理ユニットとの間で前記製品基板を搬送する搬送機構と、を備えている基板処理装置の運用方法であって、板状の基材と、前記基材の表面の少なくとも一部に設けられた撮像素子と、前記撮像素子の表面に形成された光透過性の保護層と、前記撮像素子の出力を前記検査基板の外部に出力する出力部と、を備えた検査基板であって、光源から照射された光が前記保護層上に付着した汚染物質により遮られることにより変化する前記撮像素子の出力に基づいて、前記保護層への前記汚染物質の付着状態を検出ことができるように構成された前記検査基板を準備するステップと、前記検査基板を前記処理ユニットで処理するととともに、処理後または処理中に前記検査基板に付着した汚染物質の状態を前記検査基板により検出すること、および前記検査基板を前記搬送機構で搬送することともに、搬送後または搬送中に前記検査基板に付着した汚染物質の状態を前記検査基板により検出すること、のうちの少なくとも一方を実行する検査ステップと、前記検査ステップにおいて検出された前記汚染物質の状態に基づいて、前記基板処理装置による製品基板の処理または搬送の可否判断を行う判断ステップと、を備えた、運用方法が提供される。 According to one aspect of the present disclosure, the product is between the processing unit that processes the product substrate, the loading / unloading section where the product substrate processed by the processing unit is loaded / unloaded, and the loading / unloading section and the processing unit. A method of operating a substrate processing apparatus including a transport mechanism for transporting a substrate, wherein a plate-shaped base material, an image pickup element provided on at least a part of the surface of the base material, and the image pickup element are provided. An inspection board including a light-transmitting protective layer formed on the surface and an output unit that outputs the output of the image pickup element to the outside of the inspection board, and the light emitted from the light source is the protective layer. A step of preparing the inspection board configured to be able to detect the adhered state of the contaminated substance to the protective layer based on the output of the image pickup element that changes by being blocked by the contaminated substance adhering to the top. The inspection board is processed by the processing unit, and the state of contaminants adhering to the inspection board is detected by the inspection board after or during the processing, and the inspection board is conveyed by the transfer mechanism. At the same time, an inspection step of performing at least one of detecting the state of the contaminants adhering to the inspection board after or during the transfer by the inspection board, and the contaminants detected in the inspection step. The present invention provides an operation method including a determination step for determining whether or not to process or transport a product substrate by the substrate processing apparatus based on the state of.
 本開示によれば、パーティクル等の汚染物質の発生原因を検査基板を用いて容易且つ迅速に特定することができる。 According to the present disclosure, the cause of generation of pollutants such as particles can be easily and quickly identified by using an inspection board.
基板処理装置の一実施形態に係る基板処理システムの概略横断面図である。It is a schematic cross-sectional view of the substrate processing system which concerns on one Embodiment of a substrate processing apparatus. 一実施形態に係るドクターウエハの構造を示す概略縦断面図である。It is a schematic vertical sectional view which shows the structure of the doctor wafer which concerns on one Embodiment. 一実施形態に係るドクターウエハにおける電極の配置を示す概略平面図である。It is a schematic plan view which shows the arrangement of the electrode in the doctor wafer which concerns on one Embodiment. 基板処理システムに含まれる処理ユニットの構成の一例を示す概略縦断面図である。It is a schematic vertical sectional view which shows an example of the structure of the processing unit included in a substrate processing system. 基板処理システムに含まれる処理ユニットの構成の他の例を示す概略縦断面図である。It is a schematic vertical sectional view which shows the other example of the structure of the processing unit included in a substrate processing system. 基板処理システムに含まれる基板搬送装置の構成の一例を示す概略縦断面図である。It is a schematic vertical sectional view which shows an example of the structure of the substrate transfer apparatus included in a substrate processing system. ノズルからの処理液開始からのパーティクルレベルの経時変化の例を示すグラフである。It is a graph which shows the example of the time-dependent change of the particle level from the start of the processing liquid from a nozzle. ノズルに処理液を供給する処理液供給系の構成の例を示す配管構成図である。It is a piping block diagram which shows the example of the structure of the processing liquid supply system which supplies the processing liquid to a nozzle. ドクターウエハの運用の具体例4について説明するフローチャートである。It is a flowchart explaining the specific example 4 of operation of a doctor wafer. 具体例5に関連したパーティクル分布の一例を示す図である。It is a figure which shows an example of the particle distribution which concerns on a specific example 5. 具体例5に関連したパーティクル分布の他の例を示す図である。It is a figure which shows the other example of the particle distribution related to the specific example 5. 具体例5に関連したパーティクル分布のさらに他の例を示す図である。It is a figure which shows still another example of the particle distribution which concerns on a specific example 5. 具体例6に関連したパーティクル分布の例を示す図である。It is a figure which shows the example of the particle distribution which concerns on a specific example 6. ドクターウエハによるパーティクルサイズの検出について説明する概略断面図である。It is schematic cross-sectional view explaining the detection of the particle size by a doctor wafer. ドクターウエハによるパーティクルサイズの検出について説明する分布図である。It is a distribution map explaining the detection of the particle size by a doctor wafer. ドクターウエハにスクラッチが形成された場合について説明する概略断面図である。It is schematic cross-sectional view explaining the case where a scratch is formed on a doctor wafer. ドクターウエハの他の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the other structural example of a doctor wafer. ドクターウエハの他の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the other structural example of a doctor wafer. ドクターウエハの他の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the other structural example of a doctor wafer. ドクターウエハの他の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the other structural example of a doctor wafer. ドクターウエハの他の構成例を示す概略平面図である。It is a schematic plan view which shows the other structural example of a doctor wafer.
 基板処理装置の一実施形態を、添付図面を参照して説明する。 An embodiment of the board processing apparatus will be described with reference to the attached drawings.
 図1は、本実施形態に係る基板処理システムの概略構成を示す図である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。 FIG. 1 is a diagram showing a schematic configuration of a substrate processing system according to this embodiment. In the following, in order to clarify the positional relationship, the X-axis, Y-axis, and Z-axis that are orthogonal to each other are defined, and the positive direction of the Z-axis is defined as the vertical upward direction.
 図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。 As shown in FIG. 1, the board processing system 1 includes an loading / unloading station 2 and a processing station 3. The loading / unloading station 2 and the processing station 3 are provided adjacent to each other.
 搬入出ステーション2は、キャリア載置部11と、搬送部12とを備える。キャリア載置部11には、複数枚の基板、本実施形態では半導体ウエハ(以下ウエハW)を水平状態で収容する複数のキャリアCが載置される。 The loading / unloading station 2 includes a carrier mounting section 11 and a transport section 12. A plurality of substrates, and in the present embodiment, a plurality of carriers C for accommodating a semiconductor wafer (hereinafter referred to as a wafer W) in a horizontal state are mounted on the carrier mounting portion 11.
 搬送部12は、キャリア載置部11に隣接して設けられ、内部に基板搬送装置13(搬送機構)と、受渡部14とを備える。基板搬送装置13は、ウエハW(基板)を保持するウエハ保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウエハ保持機構を用いてキャリアCと受渡部14との間でウエハWの搬送を行う。 The transport section 12 is provided adjacent to the carrier mounting section 11, and includes a substrate transport device 13 (transport mechanism) and a delivery section 14 inside. The substrate transfer device 13 includes a wafer holding mechanism for holding the wafer W (board). Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and swivel around the vertical axis, and transfers the wafer W between the carrier C and the delivery portion 14 by using the wafer holding mechanism. conduct.
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。 The processing station 3 is provided adjacent to the transport unit 12. The processing station 3 includes a transport unit 15 and a plurality of processing units 16. The plurality of processing units 16 are provided side by side on both sides of the transport unit 15.
 搬送部15は、内部に基板搬送装置17(搬送機構)を備える。基板搬送装置17は、ウエハWを保持するウエハ保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウエハ保持機構を用いて受渡部14と処理ユニット16との間でウエハWの搬送を行う。 The transport unit 15 is provided with a substrate transport device 17 (transport mechanism) inside. The substrate transfer device 17 includes a wafer holding mechanism for holding the wafer W. Further, the substrate transfer device 17 can move in the horizontal direction and the vertical direction and swivel around the vertical axis, and transfers the wafer W between the delivery unit 14 and the processing unit 16 by using the wafer holding mechanism. I do.
 処理ユニット16は、基板搬送装置17によって搬送されるウエハWに対して所定の基板処理を行う。 The processing unit 16 performs predetermined substrate processing on the wafer W conveyed by the substrate transfer device 17.
 基板処理システム1は、ウエハの円周方向に関する位置合わせを行うノッチアライナ90すなわち位置決め装置を備えている。ノッチアライナ90は、例えば、搬入出ステーション2の搬送部12内(例えば基板搬送装置13の搬送空間内、あるいは受渡部14内)に設けることができる。位置決め装置として、ノッチアライナ90に代えて、オリフラを検出することによりウエハの位置決めを行う装置を用いてもよい。 The substrate processing system 1 includes a notch aligner 90 that aligns the wafer in the circumferential direction, that is, a positioning device. The notch aligner 90 can be provided, for example, in the transport section 12 of the carry-in / out station 2 (for example, in the transport space of the substrate transport device 13 or in the delivery section 14). As the positioning device, instead of the notch aligner 90, a device that positions the wafer by detecting the orientation flat may be used.
 基板処理システム1は、後述するドクターウエハ(検査基板)DWを保管するドクターウエハ保管部92を備えていてもよい。ドクターウエハ保管部92は、基板搬送装置13または基板搬送装置17がアクセス可能であるならば、基板処理システム1内の任意の位置に設けることができる。 The substrate processing system 1 may include a doctor wafer storage unit 92 for storing a doctor wafer (inspection substrate) DW, which will be described later. The doctor wafer storage unit 92 can be provided at an arbitrary position in the substrate processing system 1 if the substrate transfer device 13 or the substrate transfer device 17 is accessible.
 また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。 Further, the board processing system 1 includes a control device 4. The control device 4 is, for example, a computer, and includes a control unit 18 and a storage unit 19. The storage unit 19 stores programs that control various processes executed in the board processing system 1. The control unit 18 controls the operation of the substrate processing system 1 by reading and executing the program stored in the storage unit 19.
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 The program may be recorded on a storage medium readable by a computer, and may be installed from the storage medium in the storage unit 19 of the control device 4. Examples of storage media that can be read by a computer include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
 上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、キャリア載置部11に載置されたキャリアCからウエハWを取り出し、取り出したウエハWを受渡部14に載置する。受渡部14に載置されたウエハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。 In the substrate processing system 1 configured as described above, first, the substrate transfer device 13 of the loading / unloading station 2 takes out the wafer W from the carrier C mounted on the carrier mounting portion 11 and receives the taken out wafer W. Placed on Watanabe 14. The wafer W placed on the delivery section 14 is taken out from the delivery section 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16.
 処理ユニット16へ搬入されたウエハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。そして、受渡部14に載置された処理済のウエハWは、基板搬送装置13によってキャリア載置部11のキャリアCへ戻される。 The wafer W carried into the processing unit 16 is processed by the processing unit 16, then carried out from the processing unit 16 by the substrate transfer device 17, and placed on the delivery unit 14. Then, the processed wafer W mounted on the delivery section 14 is returned to the carrier C of the carrier mounting section 11 by the substrate transfer device 13.
 上述した基板処理システム1内の様々な場所において、ウエハWに、汚染物質特にパーティクルが付着する。ウエハWへのパーティクルの付着原因の解析のため、基板処理システム1内において下記のドクターウエハDW(検査基板)に対して搬送および処理が行われる。 Contaminants, especially particles, adhere to the wafer W at various locations in the substrate processing system 1 described above. In order to analyze the cause of particles adhering to the wafer W, the following doctor wafer DW (inspection substrate) is conveyed and processed in the substrate processing system 1.
 なお、以下の説明より明らかなように、ドクターウエハDWは、パーティクル以外の汚染物質例えばウオーターマーク、あるいはスクラッチ等の表面欠陥を広く検出することが可能である。以下、本明細書においては最も代表的な検出対象としてパーティクルを例にとって説明を行うこととする。 As is clear from the following explanation, the doctor wafer DW can widely detect contaminants other than particles, such as water marks, or surface defects such as scratches. Hereinafter, in the present specification, particles will be described as an example as the most typical detection target.
 以下に、ドクターウエハDWの構成について説明する。図2にはドクターウエハDWの一構成例が示されている。ドクターウエハDWは、半導体ウエハからなる基板100(円板状の基材)上に順次積層された、配線層102と、受光層104と、保護層106とを備えている。 The configuration of the doctor wafer DW will be described below. FIG. 2 shows an example of the configuration of the doctor wafer DW. The doctor wafer DW includes a wiring layer 102, a light receiving layer 104, and a protective layer 106 sequentially laminated on a substrate 100 (disk-shaped base material) made of a semiconductor wafer.
 配線層102および受光層104は、周知の撮像素子(例えば裏面照射型CMOS)の形成技術を用いて形成することができる。ドクターウエハDWは、ウエハWと同じサイズの撮像素子であるとも言える。配線層102および受光層104をCCD撮像素子に相当する構成としてもよい。 The wiring layer 102 and the light receiving layer 104 can be formed by using a well-known image pickup element (for example, back-illuminated CMOS) forming technique. It can be said that the doctor wafer DW is an image pickup device having the same size as the wafer W. The wiring layer 102 and the light receiving layer 104 may be configured to correspond to a CCD image pickup device.
 受光層104は、マトリックス状に配置された多数の(複数の)フォトダイオードを有する。ドクターウエハDWでは色を区別する必要は無いため、フォトダイオード上にカラーフィルターは設けられていない。従って、ドクターウエハDWの受光層104はフォトダイオードの数(ピクセル数)に丁度対応する検出分解能を有する。1つのフォトダイオードを以下ピクセル105と呼ぶ。非限定的且つ例示的な実施形態において、1つのピクセル105のサイズは5nmである。 The light receiving layer 104 has a large number (s) of photodiodes arranged in a matrix. Since it is not necessary to distinguish colors in the doctor wafer DW, a color filter is not provided on the photodiode. Therefore, the light receiving layer 104 of the doctor wafer DW has a detection resolution that corresponds exactly to the number of photodiodes (number of pixels). One photodiode is hereinafter referred to as pixel 105. In a non-limiting and exemplary embodiment, the size of one pixel 105 is 5 nm.
 保護層106は、十分な光透過性を有し、ドクターウエハDWが晒される処理流体により侵され難く、かつ、表面特性(例えば疎水度)がウエハW(製品となるウエハ)に類似している材料から形成することが好ましい。図示された実施形態では、保護層106は、受光層104上に設けられたピクセル保護ダンパー106aと、透明ガラス(SiOx)106bとから形成されている。透明ガラスの表面特性(例えば疎水度)はウエハWに類似している。 The protective layer 106 has sufficient light transmission, is not easily attacked by the processing fluid to which the doctor wafer DW is exposed, and has surface characteristics (for example, hydrophobicity) similar to those of the wafer W (product wafer). It is preferably formed from a material. In the illustrated embodiment, the protective layer 106 is formed of a pixel protective damper 106a provided on the light receiving layer 104 and transparent glass (SiOx) 106b. The surface properties (eg, hydrophobicity) of the transparent glass are similar to those of the wafer W.
 保護層106(特にその表面)を構成する材料は、ドクターウエハDWが晒される処理流体に応じて変更することができる。保護層106の表面特性(例えば疎水度)を処理対象とする基板の表面特性に近づけるため、所望の特性を有する光透過性のコーティング(例えば透明なPFAまたはPTFAの薄膜)を施してもよい。保護層106に各種処理液に対する耐性を持たせるために、保護層106の最表面に光透過性のコーティングを設けてもよい。光透過性のコーティングとして、耐酸性を持たせたい場合にはSiN,SiOxなど、耐アルカリ性を持たせたい場合にはSiOxなど、耐油性を持たせたい場合にはSiOxなどを用いることができる。 The material constituting the protective layer 106 (particularly its surface) can be changed according to the processing fluid to which the doctor wafer DW is exposed. In order to bring the surface characteristics (for example, hydrophobicity) of the protective layer 106 close to the surface characteristics of the substrate to be treated, a light-transmitting coating having desired characteristics (for example, a transparent PFA or PTFA thin film) may be applied. In order to make the protective layer 106 resistant to various treatment liquids, a light-transmitting coating may be provided on the outermost surface of the protective layer 106. As the light-transmitting coating, SiN, SiOx or the like can be used when acid resistance is desired, SiOx or the like can be used when alkali resistance is desired, and SiOx or the like can be used when oil resistance is desired.
 図3に示すように、ドクターウエハDWの周縁部には、複数の電極108(受電部)が設けられている。電極108には、撮像素子(102+104)を動作させるための電力を受け取るための受電電極としての機能と、外部機器(例えば信号処理装置)から撮像素子にピクセルデータの読み出しを指示する指令信号を受け取る入力電極としての機能と、およびドクターウエハDWから出力されたピクセルデータを外部機器(例えば信号処理装置)に出力する出力電極としての機能を有する。 As shown in FIG. 3, a plurality of electrodes 108 (power receiving portions) are provided on the peripheral edge of the doctor wafer DW. The electrode 108 has a function as a power receiving electrode for receiving power for operating the image pickup element (102 + 104), and receives a command signal from an external device (for example, a signal processing device) instructing the image pickup element to read pixel data. It has a function as an input electrode and a function as an output electrode for outputting the pixel data output from the doctor wafer DW to an external device (for example, a signal processing device).
 同じ電極108(電極部材)に上記の機能のうちの2つ以上の異なる機能を割り当ててもよい。各電極108(電極部材)にそれぞれ異なる機能を1つずつ割り当ててもよい。撮像素子を動作させるための電力としては、撮像素子が裏面照射型CMOSの場合、画素アンプへの供給電極が例示される。 Two or more different functions among the above functions may be assigned to the same electrode 108 (electrode member). A different function may be assigned to each electrode 108 (electrode member). As the electric power for operating the image pickup device, when the image pickup device is a back-illuminated CMOS, the supply electrode to the pixel amplifier is exemplified.
 電極108は、例えば機械式のスピンチャックの把持爪(後述)、搬送アームの保持爪等(後述)の、基板処理システム1内においてウエハWが接触する様々な構成要素と電気的に接触することができるような位置に設けられている。電極108は、例えばドクターウエハDWのApexの表面(側周面)、ベベル部あるいはその近傍の平坦部に露出するように設けることができる。 The electrode 108 is electrically in contact with various components with which the wafer W is in contact in the substrate processing system 1, such as a gripping claw of a mechanical spin chuck (described later), a holding claw of a transport arm, and the like (described later). It is installed in a position where it can be used. The electrode 108 can be provided, for example, so as to be exposed on the surface (side peripheral surface) of Apex of the doctor wafer DW, the bevel portion or a flat portion in the vicinity thereof.
 電極108は、配線層102と電気的に接続されている。機械式のスピンチャックの把持爪が、図3の黒塗りの電極108と接触するような位置に配置されているとする。搬送アームの保持爪が黒塗りの電極108と接触するような位置に配置されているとは限らず、例えば白抜きの電極108と接触するような位置に配置されているとする。この場合、同じ役割を受け持つ電極108(例えば、ドクターウエハDWのある特定の区域との間で電力、指令信号、ピクセルデータ(画像信号)の送受信を行う電極)同士を接続する接続ライン110を設けることができる。 The electrode 108 is electrically connected to the wiring layer 102. It is assumed that the gripping claw of the mechanical spin chuck is arranged at a position where it comes into contact with the black-painted electrode 108 of FIG. It is assumed that the holding claw of the transport arm is not always arranged at a position where it comes into contact with the black-painted electrode 108, but is arranged at a position where it comes into contact with, for example, the white electrode 108. In this case, a connection line 110 for connecting electrodes 108 (for example, electrodes that transmit and receive power, command signals, and pixel data (image signals) to and from a specific area of the doctor wafer DW) having the same role is provided. be able to.
 ドクターウエハDWの保護層106の表面にパーティクルが付着すると、ドクターウエハDWに照射された照明光がパーティクルにより遮られる。つまり、パーティクルの下方にあるピクセル105の出力が小さくなる。このことを利用して、ドクターウエハDW上のパーティクルの分布を検出することができる。 When particles adhere to the surface of the protective layer 106 of the doctor wafer DW, the illumination light radiated to the doctor wafer DW is blocked by the particles. That is, the output of the pixel 105 below the particles is reduced. Utilizing this, the distribution of particles on the doctor wafer DW can be detected.
 また、ドクターウエハDWから十分に高いフレームレート(例えば数百~数千fps)で画像(ピクセルデータ)の読み出しを行うことにより、例えば液処理中におけるパーティクルの経時的な移動も把握することもできる。この場合、データ量が膨大になるため、例えばドクターウエハDWの直径に沿って延びる互いに直交する2つの直線(X方向に延びる直線およびY方向に延びる直線)上に位置するピクセルのみから短い時間間隔(上記の高いフレームレートに対応)データを取得してもよい。このデータに基づいてSignal-Time3Dマップを形成することにより、パーティクルの経時的な移動を把握してもよい。 Further, by reading an image (pixel data) from a doctor wafer DW at a sufficiently high frame rate (for example, several hundreds to several thousand fps), it is possible to grasp the movement of particles over time, for example, during liquid processing. .. In this case, since the amount of data becomes enormous, for example, a short time interval is set only from the pixels located on two straight lines (a straight line extending in the X direction and a straight line extending in the Y direction) extending along the diameter of the doctor wafer DW. (Corresponding to the above high frame rate) Data may be acquired. By forming a Signal-Time 3D map based on this data, the movement of particles over time may be grasped.
 ドクターウエハDW上のパーティクルを検出するためには、ドクターウエハDWに光を照射する必要がある。このため、基板処理システム1内の様々な場所に、照明装置を設けることができる。照明装置を設ける場所は任意であるが、特にパーティクルが発生し易い場所に設けることが好ましい。パーティクルが発生し易い場所としては、処理ユニット16内、ウエハWの受け渡しが行われる受渡部14付近などが例示される。 In order to detect particles on the doctor wafer DW, it is necessary to irradiate the doctor wafer DW with light. Therefore, lighting devices can be provided at various locations in the substrate processing system 1. The place where the lighting device is provided is arbitrary, but it is particularly preferable to provide the lighting device in a place where particles are likely to be generated. Examples of places where particles are likely to be generated include the inside of the processing unit 16 and the vicinity of the delivery portion 14 where the wafer W is delivered.
 次に、照明装置を備えた処理ユニット16の構成について説明する。図4に示すように、処理ユニット16は、チャンバ20と、スピンチャック(基板保持機構)30と、処理流体供給部40と、回収カップ50とを備える。 Next, the configuration of the processing unit 16 provided with the lighting device will be described. As shown in FIG. 4, the processing unit 16 includes a chamber 20, a spin chuck (substrate holding mechanism) 30, a processing fluid supply unit 40, and a recovery cup 50.
 チャンバ20は、スピンチャック30と処理流体供給部40と回収カップ50とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。 The chamber 20 accommodates the spin chuck 30, the processing fluid supply unit 40, and the recovery cup 50. An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20. The FFU 21 forms a downflow in the chamber 20.
 スピンチャック30は、メカニカルチャックとして構成されている。スピンチャック30は基板保持部31を有する。基板保持部31は、円盤状の支持プレート32と、支持プレート32の周縁部に、好ましくは円周方向に等間隔で設けられた複数の把持爪33とを有する。把持爪33のうちの少なくとも1つ以上が可動の把持爪である。スピンチャック30は、把持爪33をウエハWの周縁と係合させることにより、ウエハWを水平姿勢で保持する。支持プレート32は、電気モータ(駆動部)34により回転駆動され、これによりウエハWが鉛直軸線周りに回転駆動される。 The spin chuck 30 is configured as a mechanical chuck. The spin chuck 30 has a substrate holding portion 31. The substrate holding portion 31 has a disk-shaped support plate 32 and a plurality of gripping claws 33 provided on the peripheral edge portion of the support plate 32, preferably at equal intervals in the circumferential direction. At least one or more of the gripping claws 33 are movable gripping claws. The spin chuck 30 holds the wafer W in a horizontal posture by engaging the grip claw 33 with the peripheral edge of the wafer W. The support plate 32 is rotationally driven by an electric motor (driving unit) 34, whereby the wafer W is rotationally driven around the vertical axis.
 把持爪33には、ドクターウエハDWの電極108と電気的に接触させることができる電極35が設けられている。ドクターウエハDWのノッチN(図3参照)は、ドクターウエハDWの電極108と予め定められた位置関係にある。ドクターウエハDWはノッチアライナ90により円周方向に関して位置決めされているため、ドクターウエハDWの各電極108は、スピンチャック30により保持されるときには必ず予め定められた把持爪33の電極35と接触する。 The gripping claw 33 is provided with an electrode 35 that can be electrically contacted with the electrode 108 of the doctor wafer DW. The notch N of the doctor wafer DW (see FIG. 3) has a predetermined positional relationship with the electrode 108 of the doctor wafer DW. Since the doctor wafer DW is positioned in the circumferential direction by the notch aligner 90, each electrode 108 of the doctor wafer DW always comes into contact with the predetermined electrode 35 of the gripping claw 33 when held by the spin chuck 30.
 電極35には、ドクターウエハDWを動作させるために必要な電力(例えば画素アンプを動作させるための電力)を供給する電源36と、ドクターウエハDWにピクセルデータの読み出しを指示する指令信号の出力およびドクターウエハDWから出力されたピクセルデータ信号の処理を行う信号処理装置(送受信部および演算部)37と、が接続されている。 The electrode 35 has a power supply 36 that supplies power necessary for operating the doctor wafer DW (for example, power for operating a pixel amplifier), an output of a command signal instructing the doctor wafer DW to read pixel data, and output of a command signal. A signal processing device (transmission / reception unit and calculation unit) 37 that processes the pixel data signal output from the doctor wafer DW is connected to the signal processing device (transmission / reception unit and calculation unit) 37.
 処理流体供給部40は、処理流体を吐出する1つ以上のノズル41を有している。ノズル41は、鉛直軸線周りに旋回可能なノズルアーム42の先端部に担持されており、少なくともウエハWの中心部の真上の位置とウエハWの周縁部の真上の位置との間で移動することができる。各ノズル41には、当該ノズル41に処理流体(処理液、処理ガス)を供給する処理流体供給機構43が接続されている。各ノズル41から、複数種類の処理流体を供給してもよく、この場合、1つのノズル41に複数の処理流体供給機構43が接続される。1つの処理ユニット16に設けられるノズル41の数およびノズルアーム42の数は任意である。 The processing fluid supply unit 40 has one or more nozzles 41 for discharging the processing fluid. The nozzle 41 is supported on the tip of a nozzle arm 42 that can be swiveled around the vertical axis, and moves at least between a position directly above the center of the wafer W and a position directly above the peripheral edge of the wafer W. can do. A processing fluid supply mechanism 43 that supplies a processing fluid (processing liquid, processing gas) to the nozzle 41 is connected to each nozzle 41. A plurality of types of processing fluids may be supplied from each nozzle 41, and in this case, a plurality of processing fluid supply mechanisms 43 are connected to one nozzle 41. The number of nozzles 41 and the number of nozzle arms 42 provided in one processing unit 16 are arbitrary.
 スピンチャック30の基板保持部31は、回収カップ50により包囲されている。回収カップ50は、ウエハWから飛散する処理液を捕集する。回収カップ50の底部には、排液口51および排気口52が形成されている。処理液は排液口51から回収カップ50の外部に排出される。排気口52は処理ユニット16の通常運転時には常時吸引されており、これによりウエハWの上方の空間内の雰囲気(例えばFFU21からチャンバ20内に供給された清浄空気)が回収カップ50内に吸引される。これに伴い生じる気流により、ウエハWから飛散した処理液がウエハWに再付着することが抑制されている。 The substrate holding portion 31 of the spin chuck 30 is surrounded by the recovery cup 50. The recovery cup 50 collects the processing liquid scattered from the wafer W. A drainage port 51 and an exhaust port 52 are formed at the bottom of the recovery cup 50. The treatment liquid is discharged to the outside of the recovery cup 50 from the drain port 51. The exhaust port 52 is always sucked during the normal operation of the processing unit 16, whereby the atmosphere in the space above the wafer W (for example, the clean air supplied from the FFU 21 into the chamber 20) is sucked into the recovery cup 50. To. Due to the air flow generated by this, the treatment liquid scattered from the wafer W is suppressed from reattaching to the wafer W.
 ノズルアーム42の下面には、照明装置45が設けられている。ノズル41がウエハWの中心部の真上に位置しているときに、照明装置45がウエハWの表面の中心部から周縁部に至るまでの区間を連続的に(切れ目無く)照射することができるように、照明装置45がノズルアーム42に配置されている。ノズル41がドクターウエハDWの中心部の真上に位置しているときに照明装置45を点灯すると、ドクターウエハDWの表面には、中心部から周縁部まで半径方向に連続的に延びる線状または細長い短冊状の照射区間が形成される。 A lighting device 45 is provided on the lower surface of the nozzle arm 42. When the nozzle 41 is located directly above the central portion of the wafer W, the illuminating device 45 may continuously (seamlessly) irradiate the section from the central portion to the peripheral portion of the surface of the wafer W. The lighting device 45 is arranged on the nozzle arm 42 so as to be able to do so. When the lighting device 45 is turned on when the nozzle 41 is located directly above the center of the doctor wafer DW, the surface of the doctor wafer DW has a linear or linear shape extending continuously from the center to the periphery in the radial direction. An elongated strip-shaped irradiation section is formed.
 図5には、処理ユニット16の変形例が示される。この変形例では、図4の例においてFFU21が設けられていた場所に照明装置46が設けられている。照明装置46は、少なくともウエハWの直径より大きな直径を有する円盤状の部材から構成することができる。照明装置46は、発光部46aと、グラフェン等からなる偏光フィルタ46bとを備えて構成することができる。この場合、平行光(実質的にウエハWの表面に直交する方向のみに進行する光)によりウエハWの表面を照射することができ、比較的離れた位置からウエハWに光を照射されるにも関わらずパーティクル検査精度の向上を図ることができる。なお、図4に示した照明装置45の構成を照明装置46と同じにしてもよい。図5の変形例では、チャンバ20の側壁にサイドフロータイプのFFU21の吹き出し口を設けることができる。上述した点以外については、図5の処理ユニット16の構成は図4の処理ユニットと同一であってよい。 FIG. 5 shows a modified example of the processing unit 16. In this modification, the lighting device 46 is provided at the place where the FFU 21 was provided in the example of FIG. The illuminating device 46 can be composed of a disk-shaped member having a diameter larger than the diameter of the wafer W. The lighting device 46 can be configured to include a light emitting unit 46a and a polarizing filter 46b made of graphene or the like. In this case, the surface of the wafer W can be irradiated with parallel light (light traveling only in a direction substantially orthogonal to the surface of the wafer W), and the wafer W is irradiated with light from a relatively distant position. Nevertheless, the particle inspection accuracy can be improved. The configuration of the lighting device 45 shown in FIG. 4 may be the same as that of the lighting device 46. In the modified example of FIG. 5, a side flow type FFU 21 outlet can be provided on the side wall of the chamber 20. Except for the points described above, the configuration of the processing unit 16 of FIG. 5 may be the same as that of the processing unit of FIG.
 次に図6を参照して基板搬送装置17の構成(特に基板保持具近傍の構成)について説明する。基板搬送装置17は、X方向(水平方向)、Z方向(鉛直方向)に並進運動可能で、かつ、鉛直方向軸線周りに回転可能な移動基台171を有している。移動基台171上には、水平方向に進退可能なフォーク172(基板保持具)が設けられている。 Next, the configuration of the substrate transfer device 17 (particularly the configuration near the substrate holder) will be described with reference to FIG. The substrate transfer device 17 has a moving base 171 that can translate in the X direction (horizontal direction) and the Z direction (vertical direction) and can rotate around the vertical axis. A fork 172 (board holder) that can move forward and backward in the horizontal direction is provided on the moving base 171.
 図6に後退位置にあるフォーク172が図示されている。フォーク172は、ウエハWを処理ユニット16のスピンチャック30、受渡部14のステージ等のウエハ保持構造物との間で受け渡しを行うときに前進位置に位置し、ウエハWを上記のウエハ保持構造物間で搬送するときに後退位置に位置する。 FIG. 6 shows the fork 172 in the retracted position. The fork 172 is located at a forward position when the wafer W is delivered to and from the wafer holding structure such as the spin chuck 30 of the processing unit 16 and the stage of the delivery section 14, and the wafer W is placed in the wafer holding structure described above. It is located in the retracted position when transporting between.
 フォーク172には複数の保持爪173が設けられており、少なくともその内一つが可動である。可動の保持爪173を移動させることにより、フォーク172は、ウエハW(ドクターウエハDW)を保持および解放することができる。保持爪173には、ドクターウエハDWの電極108と電気的に接触させることができる電極175が設けられている。適正に位置決めされたドクターウエハDWの各電極108は、フォーク172により保持されるときには必ず予め定められた保持爪173の電極175と接触する。 The fork 172 is provided with a plurality of holding claws 173, and at least one of them is movable. By moving the movable holding claw 173, the fork 172 can hold and release the wafer W (doctor wafer DW). The holding claw 173 is provided with an electrode 175 that can be electrically contacted with the electrode 108 of the doctor wafer DW. Each electrode 108 of the properly positioned doctor wafer DW always comes into contact with the predetermined electrode 175 of the holding claw 173 when held by the fork 172.
 電極175には、ドクターウエハDWを動作させるために必要な電力を供給する電源177と、ドクターウエハDWにピクセルデータの読み出しを指示する指令信号の出力およびドクターウエハDWから出力されたピクセルデータ(画像信号)の処理を行う信号処理装置179(あるいは前述した信号処理装置37)と、が接続されている。 The electrode 175 has a power supply 177 that supplies power necessary for operating the doctor wafer DW, an output of a command signal instructing the doctor wafer DW to read pixel data, and pixel data (image) output from the doctor wafer DW. A signal processing device 179 (or the signal processing device 37 described above) that processes the signal) is connected to the signal processing device 179 (or the signal processing device 37 described above).
 移動基台171には、照明装置174が設けられている。照明装置174は、後退位置に位置しているフォーク172に保持されているドクターウエハDWの表面全域に光を照射することができるように設けられている。この照明装置174の構成は、処理ユニット16に設けた照明装置45,46と同様のものでよい。 The moving base 171 is provided with a lighting device 174. The lighting device 174 is provided so as to be able to irradiate the entire surface of the doctor wafer DW held by the fork 172 located at the retracted position with light. The configuration of the lighting device 174 may be the same as that of the lighting devices 45 and 46 provided in the processing unit 16.
 照明装置174はフォーク172が進退する方向と直交する方向に延びる短冊状(その長さは好ましくはドクターウエハDWの直径以上)のものであってもよい。この場合、フォーク172の進退に伴いドクターウエハDWの全域が照明装置174の短冊(ストリップ)状の照射領域を横切るようになっていればよい。 The lighting device 174 may be in the shape of a strip extending in a direction orthogonal to the direction in which the fork 172 moves forward and backward (the length thereof is preferably equal to or larger than the diameter of the doctor wafer DW). In this case, it is sufficient that the entire area of the doctor wafer DW crosses the strip-shaped irradiation region of the lighting device 174 as the fork 172 moves forward and backward.
 また、図5に概略的に示すように、処理ユニット16のチャンバ20の側壁の1つには、シャッタ付きのウエハ搬出入口22が設けられている(図4の構成でも同様であるが、図4には図示していない。)。ウエハ搬出入口22の天井部に、ウエハWの直径の長さ以上の長さを有する例えば短冊状の照明装置47を設けてもよい。この場合、ドクターウエハDWを保持したフォーク172が照明装置47の下方を通過するときに、ドクターウエハDWの検査を行うことができる。 Further, as schematically shown in FIG. 5, one of the side walls of the chamber 20 of the processing unit 16 is provided with a wafer loading / unloading port 22 with a shutter (the same applies to the configuration of FIG. 4, but the figure is also shown in FIG. 4 is not shown). For example, a strip-shaped lighting device 47 having a length equal to or larger than the diameter of the wafer W may be provided on the ceiling of the wafer loading / unloading port 22. In this case, the doctor wafer DW can be inspected when the fork 172 holding the doctor wafer DW passes below the lighting device 47.
 図4および図5に示した処理ユニット16、図6に示した基板搬送装置17以外のユニット/装置にも、ドクターウエハDWの電極108と電気的に接触させることができる電極、並びにそのようなユニット/装置内にあるドクターウエハDWに光を照射する照明装置を設けることができる。この場合も、電極に、ドクターウエハDWを動作させるために必要な電力を供給する電源と、ドクターウエハDWにピクセルデータの読み出しを指示する指令信号の出力およびドクターウエハDWから出力されたピクセルデータ(画像信号)の処理を行う信号処理装置とを接続することができる。 Units / devices other than the processing unit 16 shown in FIGS. 4 and 5 and the substrate transfer device 17 shown in FIG. 6 can also be electrically contacted with the electrode 108 of the doctor wafer DW, and such. A lighting device that irradiates the doctor wafer DW in the unit / device with light can be provided. Also in this case, the power supply for supplying the power required for operating the doctor wafer DW to the electrodes, the output of the command signal instructing the doctor wafer DW to read the pixel data, and the pixel data output from the doctor wafer DW (also in this case). It can be connected to a signal processing device that processes image signals).
 照明装置はウエハの搬送空間を形成する部屋の天井部、受渡部14の天井部などにも設けることができる。 The lighting device can also be provided on the ceiling of the room forming the wafer transport space, the ceiling of the delivery section 14, and the like.
 次に、ドクターウエハDWを用いたパーティクル発生状況の調査および/または発生原因の解析の具体例について説明する。なお、以下の各具体例において、ドクターウエハDWの表面上に存在するパーティクルの量の測定は、ドクターウエハDWの各ピクセル105から出力される信号に基づいて行われる。 Next, a specific example of investigating the state of particle generation and / or analyzing the cause of particle generation using the doctor wafer DW will be described. In each of the following specific examples, the amount of particles existing on the surface of the doctor wafer DW is measured based on the signal output from each pixel 105 of the doctor wafer DW.
 <具体例1>
 ドクターウエハDWを収容したキャリアCをキャリア載置部11に載置する(ステップ1)。搬入出ステーション2の基板搬送装置13のフォーク(基板保持具)がキャリアC内に侵入しキャリアCからドクターウエハDWを取り出す(ステップ2)。基板搬送装置13のフォークが受渡部14に侵入し、受渡部14にドクターウエハDWを載置する(ステップ3)。
<Specific example 1>
The carrier C accommodating the doctor wafer DW is placed on the carrier mounting portion 11 (step 1). The fork (board holder) of the board transfer device 13 of the carry-in / out station 2 invades the carrier C and takes out the doctor wafer DW from the carrier C (step 2). The fork of the substrate transfer device 13 invades the delivery section 14, and the doctor wafer DW is placed on the delivery section 14 (step 3).
 なお、ノッチアライナ90が搬送部12内にある場合には、ステップ2とステップ3との間で、ドクターウエハDWの位置決めを行う。位置決めを行うことにより、基板搬送装置17(13)のフォーク172の電極175およびスピンチャック30の電極35とドクターウエハDWの電極108とを確実に接触させることができる。キャリアC内に位置決め済みのドクターウエハDWが収容されている場合には、位置決め操作を省略することができる。ドクターウエハ保管部92が搬送部12内にある場合には、ドクターウエハ保管部92内に保管された位置決め済みドクターウエハDWをドクターウエハ保管部92から受渡部14に搬送するステップから一連のステップを開始してもよい。 When the notch aligner 90 is in the transport unit 12, the doctor wafer DW is positioned between step 2 and step 3. By performing the positioning, the electrode 175 of the fork 172 of the substrate transfer device 17 (13) and the electrode 35 of the spin chuck 30 can be surely brought into contact with the electrode 108 of the doctor wafer DW. When the positioned doctor wafer DW is housed in the carrier C, the positioning operation can be omitted. When the doctor wafer storage unit 92 is located in the transport unit 12, a series of steps are performed from the step of transporting the positioned doctor wafer DW stored in the doctor wafer storage unit 92 from the doctor wafer storage unit 92 to the delivery unit 14. You may start.
 ステップ3の後、処理ステーション3の基板搬送装置17のフォークが受渡部14に侵入し、受渡部14からドクターウエハDWを取り出す(ステップ4)。基板搬送装置17のフォークが処理ユニット16内に侵入し、処理ユニット16内のスピンチャック30にドクターウエハDWを渡す(ステップ5)。処理ユニット16内でドクターウエハDWに対して液処理が行われる(ステップ6)。液処理の終了後に基板搬送装置17のフォークが処理ユニット16内に侵入し、処理ユニット16からドクターウエハDWを取り出す(ステップ7)。基板搬送装置17のフォークが受渡部14に侵入し、受渡部14にドクターウエハDWを載置する(ステップ8)。基板搬送装置13のフォークが受渡部14に侵入し、受渡部14からドクターウエハDWを取り出す(ステップ9)。基板搬送装置13のフォークが元のキャリアC内に侵入し、キャリアCにドクターウエハDWを収容する(ステップ10)。 After step 3, the fork of the board transfer device 17 of the processing station 3 invades the delivery section 14, and the doctor wafer DW is taken out from the delivery section 14 (step 4). The fork of the substrate transfer device 17 penetrates into the processing unit 16 and passes the doctor wafer DW to the spin chuck 30 in the processing unit 16 (step 5). Liquid treatment is performed on the doctor wafer DW in the processing unit 16 (step 6). After the liquid treatment is completed, the fork of the substrate transfer device 17 invades the processing unit 16 and takes out the doctor wafer DW from the processing unit 16 (step 7). The fork of the substrate transfer device 17 invades the delivery section 14, and the doctor wafer DW is placed on the delivery section 14 (step 8). The fork of the substrate transfer device 13 invades the delivery section 14, and the doctor wafer DW is taken out from the delivery section 14 (step 9). The fork of the substrate transfer device 13 penetrates into the original carrier C, and the doctor wafer DW is accommodated in the carrier C (step 10).
 上記のステップ1からステップ10までの間、ドクターウエハDWの出力信号に基づいて、ドクターウエハDW上のパーティクルの付着状態の変化を把握することができる。なお、ドクターウエハDWは、ドクターウエハDWの電極108が外部電極(例えば、処理ユニット16のスピンチャック30の把持爪33の電極35、あるいは基板搬送装置17のフォーク172の保持爪173の電極175)と接触している間に、信号を外部に出力することができる。ドクターウエハDWの電極108が上記のような外部電極と接触していないときのデータも必要な場合には、後述するように、ドクターウエハDWにデータバッファ(メモリ部)を設けてもよく、あるいはドクターウエハDWに無線出力部(アンテナ)を設けてもよい(後述)。 From step 1 to step 10 above, it is possible to grasp the change in the adhesion state of the particles on the doctor wafer DW based on the output signal of the doctor wafer DW. In the doctor wafer DW, the electrode 108 of the doctor wafer DW is an external electrode (for example, the electrode 35 of the gripping claw 33 of the spin chuck 30 of the processing unit 16 or the electrode 175 of the holding claw 173 of the fork 172 of the substrate transfer device 17). The signal can be output to the outside while in contact with. If data is also required when the electrode 108 of the doctor wafer DW is not in contact with the external electrode as described above, a data buffer (memory unit) may be provided in the doctor wafer DW as described later, or the doctor wafer DW may be provided with a data buffer (memory unit). A wireless output unit (antenna) may be provided on the doctor wafer DW (described later).
 ステップ1からステップ10までの間のドクターウエハDW上のパーティクル量(ここでは例えばパーティクルの総量)の変化を調査することにより、パーティクルが多く発生しているステップを特定することができる。この特定されたステップにおいてパーティクル対策を重点的に施すことにより、効率良くパーティクルを減少させることができる。 By investigating the change in the amount of particles (here, for example, the total amount of particles) on the doctor wafer DW between steps 1 and 10, it is possible to identify the step in which a large number of particles are generated. By focusing on particle countermeasures in this specified step, particles can be reduced efficiently.
 ウエハWに対して問題無く処理が行われているときに、ドクターウエハDWを用いて上記のようなパーティクル量の推移のデータを定期的に取得してもよい。ある時に取得したパーティクル量の推移のデータと、それより前に取得したパーティクル量の推移のデータとを比較することにより、パーティクルに関する問題の発生可能性を予測することができる。例えば、受渡部14に対してドクターウエハDWを出し入れするステップ3,4,8,9等において以前よりもパーティクル量が増加している場合には、受渡部14にパーティクル原因物質が付着していることが推定される。この場合、受渡部14を清掃することにより、ウエハWのパーティクル汚染を未然に防止することができる。 When the wafer W is being processed without any problem, the doctor wafer DW may be used to periodically acquire the data of the transition of the particle amount as described above. By comparing the data of the transition of the amount of particles acquired at a certain time with the data of the transition of the amount of particles acquired before that, it is possible to predict the possibility of a problem related to particles. For example, if the amount of particles is larger than before in steps 3, 4, 8, 9 and the like in which the doctor wafer DW is taken in and out of the delivery section 14, the particle-causing substance is attached to the delivery section 14. Is presumed to be. In this case, by cleaning the delivery portion 14, particle contamination of the wafer W can be prevented.
 上記のステップ1からステップ10からステップ6(液処理)のみを除外した一連のステップを実行し(処理ユニット16への搬出入に関連するステップ5、7は実行する)、搬送により生じるパーティクルを検出してよい。搬送中にパーティクルが増大した場所の座標を特定することにより、当該座標の近傍にある基板処理システムの構成要素がパーティクル発生原因となっていることが推定できるので、パーティクルの対策を容易に行うことができる。 A series of steps excluding only step 6 (liquid treatment) from step 1 to step 10 above is executed ( steps 5 and 7 related to loading and unloading to and from the processing unit 16 are executed), and particles generated by transport are detected. You can do it. By specifying the coordinates of the place where the particles increased during transportation, it can be estimated that the components of the board processing system in the vicinity of the coordinates are the cause of the particle generation, so it is easy to take measures against the particles. Can be done.
 ステップ5~7の対象となる処理ユニット16だけを変更しつつ、ステップ1からステップ10を実行してもよい。この場合、パーティクルが生じ易い処理ユニット16を特定することができる。 Steps 1 to 10 may be executed while changing only the processing unit 16 that is the target of steps 5 to 7. In this case, the processing unit 16 in which particles are likely to be generated can be specified.
 <具体例2>
 上述したステップ6についてさらに細分化してパーティクル量の推移を調査することもできる。上述したステップ5が終了したら(つまりスピンチャック30にドクターウエハDWが保持されたたら)、処理ユニット16内でドクターウエハDWに対して液処理が行われる(ステップ6)。ステップ6は、複数のステップ(サブステップ)からなる。まず、スピンチャック30を回転させてドクターウエハDWを回転させ、ノズル41からドクターウエハDWにプリウエット液(例えばDIW)を供給する(ステップ61)。次に、ドクターウエハDWに薬液Aを供給し(ステップ62)、次いでドクターウエハDWにリンス液を供給し(ステップ63)、次いでドクターウエハDWに薬液Bを供給し(ステップ64)、次いでドクターウエハDWにリンス液を供給し(ステップ65)、次いでドクターウエハDWにIPAを供給し(ステップ66)、次いでドクターウエハDWを振り切り乾燥させる(ステップ67)。
<Specific example 2>
It is also possible to further subdivide the above-mentioned step 6 and investigate the transition of the particle amount. When the above-mentioned step 5 is completed (that is, when the doctor wafer DW is held by the spin chuck 30), liquid treatment is performed on the doctor wafer DW in the processing unit 16 (step 6). Step 6 is composed of a plurality of steps (sub-steps). First, the spin chuck 30 is rotated to rotate the doctor wafer DW, and the pre-wet liquid (for example, DIW) is supplied from the nozzle 41 to the doctor wafer DW (step 61). Next, the chemical solution A is supplied to the doctor wafer DW (step 62), then the rinse solution is supplied to the doctor wafer DW (step 63), then the chemical solution B is supplied to the doctor wafer DW (step 64), and then the doctor wafer. A rinse solution is supplied to the DW (step 65), then an IPA is supplied to the doctor wafer DW (step 66), and then the doctor wafer DW is shaken off and dried (step 67).
 ステップ61からステップ67までの間のドクターウエハDW上のパーティクル量(ここでは例えばパーティクルの総量)の変化を調査することにより、パーティクルが多く発生しているステップを特定することができる。この特定されたステップにおいてパーティクル対策を重点的に施すことにより、効率良くパーティクルを減少させることができる。例えば、ステップ65の後にパーティクル量が十分に低くなっていない場合には、リンス工程に何らかの不具合があることが推定される。この場合、リンス工程の条件の不具合の有無の確認と、リンス工程に関連する処理ユニット16の構成部材の汚染等の有無の確認を行えばよい。 By investigating the change in the amount of particles (here, for example, the total amount of particles) on the doctor wafer DW between steps 61 and 67, it is possible to identify the step in which a large number of particles are generated. By focusing on particle countermeasures in this specified step, particles can be reduced efficiently. For example, if the amount of particles is not sufficiently low after step 65, it is presumed that there is something wrong with the rinsing process. In this case, it is sufficient to confirm whether or not there is a defect in the conditions of the rinsing process and whether or not the constituent members of the processing unit 16 related to the rinsing process are contaminated.
 この具体例2においても、具体例1と同様に、ウエハWに対して問題無く処理が行われているときに、ドクターウエハDWを用いて上記のようなパーティクル量の推移のデータを定期的に取得してもよい。ある時に取得したパーティクル量の推移のデータと、それより前に取得したパーティクル量の推移のデータとを比較することにより、パーティクルに関する問題の発生可能性を予測することができる。 In this specific example 2, as in the specific example 1, when the wafer W is processed without any problem, the doctor wafer DW is used to periodically collect the data of the transition of the particle amount as described above. You may get it. By comparing the data of the transition of the amount of particles acquired at a certain time with the data of the transition of the amount of particles acquired before that, it is possible to predict the possibility of a problem related to particles.
 <具体例3>
 ある1つのノズル41およびそれに接続された処理流体供給機構43の汚染状況をドクターウエハDWを用いて検出することができる。この場合、ノズル41は、スピンチャックにより回転させられているドクターウエハDWの中心部付近に処理液を供給し、ドクターウエハDWによるパーティクルレベルの検出はドクターウエハDWの中心部付近のみで行うこととする。図7のグラフに示すように、ノズル41からの処理液の吐出を開始した時点からドクターウエハDWによるパーティクル量の検出値(詳細にはパーティクル量の処理開始前からの増分)の経時変化を検出する。
<Specific example 3>
The contamination status of one nozzle 41 and the processing fluid supply mechanism 43 connected to the nozzle 41 can be detected by using the doctor wafer DW. In this case, the nozzle 41 supplies the processing liquid to the vicinity of the center of the doctor wafer DW rotated by the spin chuck, and the particle level is detected only in the vicinity of the center of the doctor wafer DW by the doctor wafer DW. do. As shown in the graph of FIG. 7, the change with time of the detection value of the particle amount by the doctor wafer DW (specifically, the increment from before the start of the processing of the particle amount) is detected from the time when the discharge of the treatment liquid from the nozzle 41 is started. do.
 1つのノズル41およびそれに接続された処理流体供給機構43の構成が図8に概略的に示されている。処理液の主供給管431(例えば処理液貯留タンクに接続された循環配管)から、各処理ユニット16に向けて分岐供給管432が分岐している。分岐供給管432には上流側から順に、流量計433、流量制御弁として機能する定圧弁434、開閉弁435が介設されている。分岐供給管432の下流端にはノズル41が接続されている。 The configuration of one nozzle 41 and the processing fluid supply mechanism 43 connected to the nozzle 41 is schematically shown in FIG. A branch supply pipe 432 branches from the main supply pipe 431 of the treatment liquid (for example, a circulation pipe connected to the treatment liquid storage tank) toward each treatment unit 16. A flow meter 433, a constant pressure valve 434 functioning as a flow control valve, and an on-off valve 435 are interposed in the branch supply pipe 432 in order from the upstream side. A nozzle 41 is connected to the downstream end of the branch supply pipe 432.
 このような配管系統において、例えば図7のグラフにおいて実線で示すように、ノズル41からの処理液の吐出開始直後にパーティクル量が高く、その後、パーティクル量が低下していったとしたならば、ノズル41の吐出口の近傍が汚染されている可能性が高いことがわかる。このような場合には、例えば、ノズル41からの処理液の吐出開始前に、約3秒のダミーディスペンスを行うようにプロセスレシピを変更することが対策になり得る。 In such a piping system, for example, as shown by a solid line in the graph of FIG. 7, if the particle amount is high immediately after the start of ejection of the treatment liquid from the nozzle 41 and then the particle amount decreases, the nozzle It can be seen that there is a high possibility that the vicinity of the discharge port of 41 is contaminated. In such a case, for example, it may be a countermeasure to change the process recipe so as to perform a dummy discharge for about 3 seconds before the start of ejection of the processing liquid from the nozzle 41.
 また例えば図7のグラフにおいて破線で示すように、ノズル41からの処理液の吐出開始直後のパーティクル量が低いが、吐出開始後T(sec)(グラフでは約5sec)の時点でパーティクル量が増加し、その後低下したとする。この場合、ノズル41の先端から上流側に距離D(cm)だけ離れた位置にある配管系部品が汚染されている可能性が高いことがわかる。ノズル41からの処理液の吐出流量をV(ml/sec)、配管の断面積をA(cm)とした場合、Lは近似的に次式にて求めることができる。
 D=VT/A
Further, for example, as shown by the broken line in the graph of FIG. 7, the amount of particles immediately after the start of ejection of the treatment liquid from the nozzle 41 is low, but the amount of particles increases at T (sec) (about 5 sec in the graph) after the start of ejection. And then it declines. In this case, it can be seen that there is a high possibility that the piping system parts located upstream from the tip of the nozzle 41 by a distance D (cm) are contaminated. When the discharge flow rate of the processing liquid from the nozzle 41 is V (ml / sec) and the cross-sectional area of the pipe is A (cm 2 ), L can be approximately obtained by the following equation.
D = VT / A
 例えば、ノズル41の先端から距離Dだけ離れた位置にある部材が開閉弁435であったとしたなら、開閉弁435が汚染されているか、あるいは開閉弁435の開閉動作により発塵が生じている可能性が高いものと推定される。この場合、開閉弁435を洗浄するか、新品に交換すればよい。なお、開閉弁435が汚染されている場合には、好ましくは比較的大流量でかつ好ましくは比較的長時間にわたってノズル41からダミーディスペンスを行うことにより、分岐供給管432内(開閉弁435の接液面も含む)の汚染物質を除去しうる場合もある。 For example, if the on-off valve 435 is a member located at a distance D from the tip of the nozzle 41, the on-off valve 435 may be contaminated or dust may be generated by the opening / closing operation of the on-off valve 435. It is presumed to have high sex. In this case, the on-off valve 435 may be washed or replaced with a new one. When the on-off valve 435 is contaminated, the inside of the branch supply pipe 432 (contact with the on-off valve 435) is preferably performed by performing dummy discharge from the nozzle 41 at a relatively large flow rate and preferably for a relatively long time. It may be possible to remove contaminants (including liquid level).
 距離Dがノズル41の先端から分岐供給管432の上流端までの距離よりも大きい場合には、主供給管431を流れる処理液が汚染されている可能性が高い。この場合には、全ての処理ユニット16における処理を一旦中止して、主供給管431を流れる処理液の汚染度を確認してもよい。 When the distance D is larger than the distance from the tip of the nozzle 41 to the upstream end of the branch supply pipe 432, there is a high possibility that the treatment liquid flowing through the main supply pipe 431 is contaminated. In this case, the processing in all the processing units 16 may be temporarily stopped, and the degree of contamination of the processing liquid flowing through the main supply pipe 431 may be confirmed.
 <具体例4>
 次は、ドクターウエハDWを用いて例えば定期的に行われる、処理ユニット16におけるウエハWの処理の可否判断および対応について、図9のフローチャートを参照して説明する。
<Specific example 4>
Next, whether or not to process the wafer W in the processing unit 16 and how to deal with it, which is periodically performed using the doctor wafer DW, will be described with reference to the flowchart of FIG.
 まず、ドクターウエハDW(図9のフローチャートでは「DrW」と記載した)の表面が検査を行うのに十分な清浄度を有しているか否かが判定される(ステップ201)。この判定は、例えば基板搬送装置17あるいは処理ユニット16のスピンチャック30によりドクターウエハDWを保持させて、ドクターウエハDWから画像データを読み出すことにより行なうことができる。判定は、例えば、ドクターウエハDWの表面上に存在するパーティクルが、パーティクルサイズ毎に定められたパーティクルの総量基準値以下であるか否かにより行うことができる。 First, it is determined whether or not the surface of the doctor wafer DW (described as "DrW" in the flowchart of FIG. 9) has sufficient cleanliness for inspection (step 201). This determination can be performed, for example, by holding the doctor wafer DW by the spin chuck 30 of the substrate transfer device 17 or the processing unit 16 and reading the image data from the doctor wafer DW. The determination can be made, for example, by whether or not the particles existing on the surface of the doctor wafer DW are equal to or less than the total amount reference value of the particles determined for each particle size.
 判定結果が否(NG)、つまりドクターウエハDWの表面が汚染されていると判断された場合には、検査を一旦中止する(ステップ202)。この場合、その汚染されたドクターウエハDWの表面の二流体洗浄あるいはスクラブ洗浄を行うか、あるいは、ドクターウエハDWの表面の再生処理を行うことができる(詳細後述)。汚染されたドクターウエハDWを他の清浄なドクターウエハDWに交換して、ステップ203に進んでもよい。 If the determination result is negative (NG), that is, if it is determined that the surface of the doctor wafer DW is contaminated, the inspection is temporarily stopped (step 202). In this case, the surface of the contaminated doctor wafer DW can be subjected to two-fluid cleaning or scrub cleaning, or the surface of the doctor wafer DW can be regenerated (details will be described later). The contaminated doctor wafer DW may be replaced with another clean doctor wafer DW and the process may proceed to step 203.
 判定結果が是(OK)、つまりドクターウエハDWの表面が十分な清浄度を有していると判断された場合には、ウエハWのプロセスレシピを用いてドクターウエハDWに対して一連の処理を行う。処理終了後に、ドクターウエハDWの表面のパーティクル量の測定が行われる(ステップ203)。この測定は、例えば、処理ユニット16のスピンチャック30により引き続きドクターウエハDWを保持させた状態で行うことができる。 If the judgment result is OK, that is, if it is determined that the surface of the doctor wafer DW has sufficient cleanliness, a series of processes are performed on the doctor wafer DW using the process recipe of the wafer W. conduct. After the processing is completed, the amount of particles on the surface of the doctor wafer DW is measured (step 203). This measurement can be performed, for example, in a state where the doctor wafer DW is continuously held by the spin chuck 30 of the processing unit 16.
 そして、液処理前のパーティクル量と液処理後のパーティクル量が比較され(ステップ204)、パーティクル量の増分が予め定めた閾値以下であれば、判定結果はOKとなり、その処理ユニット16によるウエハWの処理が許可される(ステップ205)。以上により、検査は終了する。 Then, the amount of particles before the liquid treatment and the amount of particles after the liquid treatment are compared (step 204), and if the increment of the particle amount is equal to or less than a predetermined threshold value, the determination result is OK, and the wafer W by the processing unit 16 Processing is permitted (step 205). With the above, the inspection is completed.
 パーティクル量の増分が予め定めた閾値を超えていたら、判定結果はNGとなる。そしてフローはステップ206に進み、2度目のNG判定であるならば、その処理ユニット16によるウエハWの処理が禁止される(ステップ207)(詳細後述)。 If the increase in the amount of particles exceeds a predetermined threshold, the judgment result will be NG. Then, the flow proceeds to step 206, and if it is the second NG determination, the processing of the wafer W by the processing unit 16 is prohibited (step 207) (details will be described later).
 ステップ206において1度目のNG判定であると判定されたなら、ディスプレイ等のユーザーインターフェイスまたは警報音発生器によりアラームが発生され、検査対象の処理ユニット16によるウエハWの処理が暫定的に禁止される(ステップ208)。ドクターウエハDWを用いた検査がウエハWの通常の処理と並行して行われている場合には、その処理ユニット16を除外するように処理スケジュールを変更してもよい。 If it is determined in step 206 that the determination is NG for the first time, an alarm is generated by a user interface such as a display or an alarm sound generator, and processing of the wafer W by the processing unit 16 to be inspected is temporarily prohibited. (Step 208). When the inspection using the doctor wafer DW is performed in parallel with the normal processing of the wafer W, the processing schedule may be changed so as to exclude the processing unit 16.
 次に、ドクターウエハDWを用いて測定されたパーティクルの経時変化データと処理ユニット16の処理ログとを対比し、パーティクルの発生原因を推定する。なお、処理ログとは、時刻と実行された手順の関連を示すデータであり、例えば、「13時56分25秒:処理流体供給機構43の開閉弁を開放(ノズル41から薬液Aの吐出開始)」といった形式のデータの集合体である。具体的には例えば、前述した具体例2、具体例3で説明したような判断を行うことにより、パーティクルの発生原因を推定する(ステップ209)。 Next, the cause of particle generation is estimated by comparing the time-dependent change data of particles measured using the doctor wafer DW with the processing log of the processing unit 16. The processing log is data showing the relationship between the time and the executed procedure. For example, "13:56:25: Open the on-off valve of the processing fluid supply mechanism 43 (start discharging the chemical solution A from the nozzle 41). ) ”, Which is a collection of data in the format. Specifically, for example, the cause of particle generation is estimated by making the determination as described in the above-mentioned Specific Example 2 and Specific Example 3 (step 209).
 次に、パーティクルの発生原因が(A)処理流体供給機構43(液供給系)の汚れか、(B)それ以外であるかを判定する(ステップ210)。(A)の液供給系の汚れの例については前述した具体例2および具体例3を参照されたい。 Next, it is determined whether the cause of the generation of particles is (A) dirt on the processing fluid supply mechanism 43 (liquid supply system) or (B) other than that (step 210). Please refer to the above-mentioned Specific Example 2 and Specific Example 3 for the example of the contamination of the liquid supply system of (A).
 パーティクルの発生原因が(A)処理流体供給機構43(液供給系)の配管(弁、流量計等も含む)の汚れである場合には、例えば液供給系の洗浄(フラッシング)を行う。具体的には、例えば、処理流体供給機構43を用いてノズル41からダミーティスペンスを予め定められた時間だけ実行し、配管内の汚れを洗い流す(ステップ211)。 If the cause of the generation of particles is (A) dirt on the piping (including valves, flowmeters, etc.) of the processing fluid supply mechanism 43 (liquid supply system), for example, the liquid supply system is washed (flushed). Specifically, for example, the processing fluid supply mechanism 43 is used to execute a dummy tip spence from the nozzle 41 for a predetermined time to wash away the dirt in the pipe (step 211).
 (B)それ以外の原因の例として、チャンバ20の内壁の汚れ、あるいは回収カップ50の汚れ等が例示される。チャンバ20あるいは回収カップ50の汚れの場合には、パーティクルがドクターウエハDWの周縁部に集中する傾向があるため、これに基づいて原因が(B)であることを判断することができる。 (B) As an example of other causes, dirt on the inner wall of the chamber 20, dirt on the recovery cup 50, and the like are exemplified. In the case of dirt on the chamber 20 or the recovery cup 50, the particles tend to concentrate on the peripheral edge of the doctor wafer DW, and based on this, it can be determined that the cause is (B).
 発生原因(A),(B)の判断の一例について以下に説明する。処理中に、ノズル41から吐出された処理液がドクターウエハDW上に着液した場所(例えばドクターウエハDWの中心部)でパーティクルが多いことが検出された場合には、処理流体供給機構43内(処理液の流路内)にパーティクル発生の原因がある(つまり原因は(A)である)可能性が高いものと判断することができる。一方で、回収カップ50の汚れが多い場合には、ドクターウエハDWから飛散した処理液が回収カップ50に衝突した後に汚れとともに散乱して、ドクターウエハDWの周縁部に再付着する。従って、処理中にドクターウエハDWの周縁部にパーティクルが多く検出された場合には、原因が(B)である可能性が高いものと判断することができる。なお、ドクターウエハDWの中心部に処理液を着液させながら処理を行っているときに、ドクターウエハDWの周縁部にパーティクルが多く検出された場合には、原因が(B)である可能性がより高いことがわかる。 An example of determining the cause (A) and (B) of occurrence will be described below. When it is detected that there are many particles at the place where the processing liquid discharged from the nozzle 41 has landed on the doctor wafer DW (for example, the center of the doctor wafer DW) during the processing, the inside of the processing fluid supply mechanism 43 It can be determined that there is a high possibility that there is a cause of particle generation (that is, the cause is (A)) (in the flow path of the treatment liquid). On the other hand, when the recovery cup 50 is heavily soiled, the treatment liquid scattered from the doctor wafer DW collides with the recovery cup 50 and then scatters together with the dirt and reattaches to the peripheral portion of the doctor wafer DW. Therefore, if a large number of particles are detected in the peripheral portion of the doctor wafer DW during processing, it can be determined that the cause is likely to be (B). If a large number of particles are detected on the peripheral edge of the doctor wafer DW while the treatment liquid is being applied to the center of the doctor wafer DW, the cause may be (B). Turns out to be higher.
 チャンバ20あるいは回収カップ50の汚れが脱落したことによりパーティクル量が増大しているものと判断された場合には、図示しないカップ内壁洗浄ノズルあるいはチャンバ内壁洗浄ノズル等から洗浄液を噴射し、カップ内壁およびチャンバ内壁を洗浄する(ステップ212)。 When it is determined that the amount of particles is increased due to the dirt on the chamber 20 or the recovery cup 50 being removed, the cleaning liquid is sprayed from a cup inner wall cleaning nozzle or a chamber inner wall cleaning nozzle (not shown) to spray the cleaning liquid on the inner wall of the cup and the inner wall of the cup. Clean the inner wall of the chamber (step 212).
 ステップ211またはステップ212を実行した後、フローはステップ201に戻る。その後ステップ204の判定結果がOKとなった場合には、その処理ユニット16でウエハWの処理が許可される。 After executing step 211 or step 212, the flow returns to step 201. After that, if the determination result in step 204 is OK, the processing unit 16 is permitted to process the wafer W.
 ステップ204の判定結果が再びNGとなった場合は、ステップ206の判定結果が是(Y)であるので、その処理ユニット16のウエハWの処理が禁止される。この場合、ディスプレイ等のユーザーインターフェイスまたは警報音発生器によりアラームが発生され、作業者によるその処理ユニット16の洗浄またはオーバーホールが促される。 If the determination result in step 204 is NG again, the determination result in step 206 is correct (Y), and the processing of the wafer W of the processing unit 16 is prohibited. In this case, an alarm is generated by a user interface such as a display or an alarm sound generator, prompting an operator to clean or overhaul the processing unit 16.
 上記の具体例では、ステップ211およびステップ212では、自動運転で実行できる洗浄操作を行っているがこれには限定されない。ステップ211およびステップ212において、作業者による処理ユニット16の洗浄またはオーバーホールを行ってもよい。 In the above specific example, in step 211 and step 212, a cleaning operation that can be executed by automatic operation is performed, but the cleaning operation is not limited to this. In steps 211 and 212, the processing unit 16 may be cleaned or overhauled by an operator.
 <具体例5>
 ドクターウエハDW上のパーティクルの分布傾向からパーティクルの発生原因の推定することができる。例えば、キャリアCからドクターウエハDWを基板搬送装置13のフォークが取り出した直後に図10のようなパーティクルの分布が確認されたら、キャリアCのスロットが汚染されているものと判断することができる。図10では、ドクターウエハDWのキャリアCのスロットと接触する部分にパーティクルが認められる。
<Specific example 5>
The cause of particle generation can be estimated from the distribution tendency of particles on the doctor wafer DW. For example, if the distribution of particles as shown in FIG. 10 is confirmed immediately after the fork of the substrate transfer device 13 takes out the doctor wafer DW from the carrier C, it can be determined that the slot of the carrier C is contaminated. In FIG. 10, particles are recognized in the portion of the doctor wafer DW that comes into contact with the slot of the carrier C.
 また例えば、受渡部14からドクターウエハDWを基板搬送装置17のフォークが取り出した直後に図11のようなパーティクルの分布が確認されたら、受渡部14が汚染されているものと判断することができる。この場合、受渡部14の天井部から脱落したパーティクルが降下することに起因していることが考えられる。 Further, for example, if the distribution of particles as shown in FIG. 11 is confirmed immediately after the fork of the substrate transport device 17 takes out the doctor wafer DW from the delivery section 14, it can be determined that the delivery section 14 is contaminated. .. In this case, it is considered that the cause is that the particles that have fallen off from the ceiling portion of the delivery portion 14 fall.
 また例えば、処理ユニット16によるドクターウエハDWの処理直後(あるいは処理の初期に)に図12のようなパーティクルの分布が確認されたら、スピンチャック30の3つの把持爪(円周方向に等間隔に配置されている)が汚染されているものと判断することができる。把持爪が汚染されている場合、ドクターウエハDWの外方に飛散しようとしている処理液が把持爪に衝突することにより、把持爪に付着していたパーティクルが脱落し、ドクターウエハDWの表面を汚染する。 Further, for example, if the distribution of particles as shown in FIG. 12 is confirmed immediately after the processing of the doctor wafer DW by the processing unit 16 (or at the beginning of the processing), the three gripping claws of the spin chuck 30 (at equal intervals in the circumferential direction) are confirmed. It can be determined that (placed) is contaminated. When the gripping claw is contaminated, the processing liquid that is about to scatter to the outside of the doctor wafer DW collides with the gripping claw, and the particles adhering to the gripping claw fall off, contaminating the surface of the doctor wafer DW. do.
 また、図示はしていないが、基板搬送装置17(または13)のフォーク172により保持されていたドクターウエハDWが搬送目的場所(例えば処理ユニット16のスピンチャック)に置かれた直後にフォークの把持爪と接触する部分の近傍にパーティクルが確認されたら、フォーク172の保持爪173が汚染されているものと判断することができる。 Further, although not shown, gripping the fork immediately after the doctor wafer DW held by the fork 172 of the substrate transfer device 17 (or 13) is placed at the transfer destination (for example, the spin chuck of the processing unit 16). If particles are confirmed in the vicinity of the portion in contact with the claw, it can be determined that the holding claw 173 of the fork 172 is contaminated.
 <具体例6>
 図13の(A),(B),(C)は、ノズル41から処理液を回転するドクターウエハDWに供給したときの、ノズル41の位置とパーティクル量との関係を示している。黒塗りされている領域がパーティクルの特に多い領域である。この場合、ノズル41からの処理液の着液点付近にパーティクルが多い。このような場合、ノズル41から吐出されている処理液内にパーティクルが多く含まれているものと推定される。
<Specific example 6>
FIGS. 13A, 13B, and 13C show the relationship between the position of the nozzle 41 and the amount of particles when the processing liquid is supplied from the nozzle 41 to the rotating doctor wafer DW. The area painted in black is the area with a particularly large number of particles. In this case, there are many particles near the landing point of the treatment liquid from the nozzle 41. In such a case, it is presumed that a large amount of particles are contained in the processing liquid discharged from the nozzle 41.
 なお、ノズル41からある程度の遮光性を有する液をドクターウエハDWに吐出した場合には、図13の(A)~(C)に示した形式のデータに基づいて、ドクターウエハDWにより取得したピクセルデータに基づいてドクターウエハDWへの液の着液点を確認することができる。つまり、ノズル41の位置制御が適切に行われているか否かの確認を行うことができる。 When a liquid having a certain degree of light-shielding property is discharged from the nozzle 41 to the doctor wafer DW, the pixels acquired by the doctor wafer DW based on the data of the formats shown in FIGS. 13A to 13C. The landing point of the liquid on the doctor wafer DW can be confirmed based on the data. That is, it is possible to confirm whether or not the position control of the nozzle 41 is properly performed.
 図13の(D)は振り切り乾燥時の状態を示しており、ドクターウエハDWの周縁部にリング状のパーティクルが多い領域が形成されている。この場合、乾燥条件不適切、あるいは、ドクターウエハDWから飛散したミストが回収カップで跳ね返されてドクターウエハDWに再付着していることが考えられる。 FIG. 13 (D) shows the state at the time of shaking off and drying, and a region having many ring-shaped particles is formed on the peripheral edge of the doctor wafer DW. In this case, it is considered that the drying conditions are inappropriate or the mist scattered from the doctor wafer DW is repelled by the recovery cup and reattached to the doctor wafer DW.
 <ドクターウエハによるパーティクルサイズの検出>
 以下に、ドクターウエハDWによるパーティクル検出についてさらに説明する。図14は、ピクセルサイズより大きなパーティクルPが複数のピクセル105の上方に存在している状態を示す模式図である。図14に示されるように、パーティクルPの厚さは中央部で厚く、周縁部で薄いものとする。この場合、パーティクルPの中央部に照射された照明光Lの殆どはパーティクルPに遮られ、ピクセル105に到達しない。一方、パーティクルPの周縁部に照射された照明光Lの一部はパーティクルを透過する。また、照明光LがパーティクルPの周縁を回り込んでピクセルに到達することもある。
<Detection of particle size by doctor wafer>
The particle detection by the doctor wafer DW will be further described below. FIG. 14 is a schematic diagram showing a state in which particles P larger than the pixel size are present above the plurality of pixels 105. As shown in FIG. 14, the thickness of the particles P is thick at the central portion and thin at the peripheral portion. In this case, most of the illumination light L applied to the central portion of the particles P is blocked by the particles P and does not reach the pixel 105. On the other hand, a part of the illumination light L applied to the peripheral portion of the particles P transmits the particles. Further, the illumination light L may wrap around the periphery of the particle P and reach the pixel.
 図15は、図14に示した場合において、各ピクセル105の受光量の分布を模式的に示したものである。1つの黒いドットの1つのピクセル105に対応しており、黒いドットのサイズが大きいほど受光量が小さいことを意味している。 FIG. 15 schematically shows the distribution of the light receiving amount of each pixel 105 in the case shown in FIG. It corresponds to one pixel 105 of one black dot, and the larger the size of the black dot, the smaller the amount of light received.
 上記のことを考慮して、照明光Lがそのまま(パーティクルPに遮られずに)ピクセル105に到達した場合の光の強さを1とし、ピクセル105に到達した光の強さが予め定めた閾値より小さい(例えば0.8未満)の場合、そのピクセル105の真上にパーティクルが存在するものと判断してもよい。閾値は、実績のある従来方法(例えばレーザーの反射/回折を利用する方法)により得たデータと、ドクターウエハDWを用いて得たデータとを照合することにより、実験的に定めてもよい。 In consideration of the above, the intensity of the light when the illumination light L reaches the pixel 105 as it is (without being blocked by the particles P) is set to 1, and the intensity of the light reaching the pixel 105 is predetermined. If it is smaller than the threshold value (for example, less than 0.8), it may be determined that the particles are directly above the pixel 105. The threshold value may be set experimentally by collating the data obtained by a proven conventional method (for example, a method utilizing laser reflection / diffraction) with the data obtained by using the doctor wafer DW.
 隣接するピクセル105において、一方のピクセル105が受光した光の強さが閾値より大で、他のピクセル105が受光した光の強さが閾値より小の場合、この隣接するピクセル105の間にパーティクルPの輪郭の一部が存在するものと判断することができる。このような関係にある他の隣接するピクセル105の全てを検出することにより、パーティクルPの輪郭を特定することができる。 In adjacent pixels 105, if the intensity of light received by one pixel 105 is greater than the threshold and the intensity of light received by the other pixel 105 is less than the threshold, particles between the adjacent pixels 105. It can be determined that a part of the contour of P exists. By detecting all of the other adjacent pixels 105 having such a relationship, the contour of the particle P can be specified.
 閾値はパーティクルサイズ(これは光の強さが例えば0.8未満となっている連続するピクセルの数により判定することができる)に応じて変更してもよい。例えば、ピクセルサイズ(例えば5nm程度)より小さなパーティクルが1つのピクセル上に存在するときの閾値は例えば0.5未満とすることができる。 The threshold may be changed according to the particle size (which can be determined by the number of consecutive pixels whose light intensity is, for example, less than 0.8). For example, the threshold value when particles smaller than the pixel size (for example, about 5 nm) are present on one pixel can be, for example, less than 0.5.
 なお、前述したように、ドクターウエハDWによりその他の欠陥例えばウオーターマーク、スクラッチなども検出することは可能である。これらの欠陥も照明光がピクセルに入射することを妨げるからである。ウオーターマークは、透光率が一般的なパーティクルよりも大きい点を除いて、パーティクルと同じ検出原理により検出することができる。 As described above, it is possible to detect other defects such as water marks and scratches by using the doctor wafer DW. This is because these defects also prevent the illumination light from entering the pixel. Water marks can be detected by the same detection principle as particles, except that the light transmittance is larger than that of general particles.
 ドクターウエハDWの保護層106の表面にスクラッチSが生じた場合には、図16に示すように照明光LがスクラッチSにより転向されてスクラッチSの真下のピクセル105に殆ど到達しない。スクラッチSは、多数のピクセル105に亘って線状に連続的に延びる。このため、受光量が小さいピクセル105が線状に連なっている場合、これらのピクセル105の上方にスクラッチがあるものと判定することができる。 When a scratch S is generated on the surface of the protective layer 106 of the doctor wafer DW, the illumination light L is turned by the scratch S and hardly reaches the pixel 105 directly under the scratch S as shown in FIG. The scratch S extends continuously linearly over a large number of pixels 105. Therefore, when the pixels 105 having a small light receiving amount are linearly connected, it can be determined that there is a scratch above these pixels 105.
 <ドクターウエハの再生>
 表面にスクラッチSが生じるか、あるいは洗浄により除去することができないパーティクルが強固に固着したドクターウエハDWで検査を行うことは好ましくない。このようなドクターウエハDWを再生するために以下のような再生方法を実行してもよい。
<Regeneration of doctor wafer>
It is not preferable to perform the inspection on the doctor wafer DW in which the scratch S is generated on the surface or the particles that cannot be removed by cleaning are firmly adhered to the surface. In order to regenerate such a doctor wafer DW, the following regeneration method may be executed.
 パーティクルが強固に固着している場合、あるいは浅いスクラッチSが形成されている場合には、保護層106の少なくとも最表面近傍を薬液処理またはCMP処理により薄く削り取ることにより、ドクターウエハDWを再使用することができるようになる。保護層106の最表面に疎水性薄膜が形成されている場合には、上記の処理後に疎水性薄膜を再形成すればよい。 When the particles are firmly adhered or a shallow scratch S is formed, the doctor wafer DW is reused by thinly scraping at least the vicinity of the outermost surface of the protective layer 106 by chemical treatment or CMP treatment. You will be able to do it. When the hydrophobic thin film is formed on the outermost surface of the protective layer 106, the hydrophobic thin film may be reformed after the above treatment.
 スクラッチSが深い場合であって、ドクターウエハDWの保護層106がピクセル保護ダンパー106aと、透明ガラス(SiOx)106bとからなる場合、ピクセル保護ダンパー106aを残して透明ガラス106bを完全に除去し、その後、透明ガラス106bの層を再度形成してもよい。 When the scratch S is deep and the protective layer 106 of the doctor wafer DW is composed of the pixel protective damper 106a and the transparent glass (SiOx) 106b, the transparent glass 106b is completely removed leaving the pixel protective damper 106a. After that, the layer of the transparent glass 106b may be formed again.
 <ドクターウエハの変形実施形態>
 前述したように、ドクターウエハDWの基本的な機能は、受光層104の各ピクセル105から出力された電荷を配線層102(ロジック回路、アンプ等を含む)を介して外部に出力することにある。この基本構成では、ドクターウエハDWの電極と外部電極(例えばスピンチャックの把持爪の電極、基板搬送機構13のフォークの保持爪の電極等)とが互いに接触しているときにしかデータ取得およびデータ送信を行うことができない。
<Deformation embodiment of doctor wafer>
As described above, the basic function of the doctor wafer DW is to output the electric charge output from each pixel 105 of the light receiving layer 104 to the outside via the wiring layer 102 (including a logic circuit, an amplifier, etc.). .. In this basic configuration, data acquisition and data are acquired only when the electrode of the doctor wafer DW and the external electrode (for example, the electrode of the gripping claw of the spin chuck, the electrode of the holding claw of the fork of the substrate transport mechanism 13, etc.) are in contact with each other. Cannot send.
 上記の問題を解決するために、ドクターウエハDWに以下の構成のうちの1つ、あるいは2つ以上を組み合わせて基本構成に付加することができる。これにより、ドクターウエハDWの柔軟な運用が可能となる。
 (a)一時的にピクセルデータを保存するためのメモリ部107a
 (b)ドクターウエハDWを動作させるための電力を貯蔵する蓄電部107b
 (c)ドクターウエハDWへの非接触給電(ドクターウエハDWの受電)のため、あるいはドクターウエハDWと外部機器との間でのデータの無線伝送(例えばピクセルデータの読み出し指令の受信およびピクセルデータの外部機器への送信)するためのアンテナ部107c
In order to solve the above problem, one or a combination of two or more of the following configurations can be added to the basic configuration of the doctor wafer DW. This enables flexible operation of the doctor wafer DW.
(A) Memory unit 107a for temporarily storing pixel data
(B) Power storage unit 107b for storing electric power for operating the doctor wafer DW.
(C) For non-contact power supply to the doctor wafer DW (power reception of the doctor wafer DW), or wireless transmission of data between the doctor wafer DW and an external device (for example, reception of a pixel data read command and pixel data). Antenna unit 107c for transmission to an external device)
 なお、メモリ部107aは例えばDRAM,RRAM,MRAM,NAND型フラッシュメモリ等から構成することができる。蓄電部107bはバッテリー、コンデンサ等から構成することができる。アンテナ部は、アモルファス軟磁性体から構成することができる。 The memory unit 107a can be composed of, for example, a DRAM, an RRAM, an MRAM, a NAND flash memory, or the like. The power storage unit 107b can be composed of a battery, a capacitor, or the like. The antenna portion can be made of an amorphous soft magnetic material.
 図17は、配線層102、受光層104および保護層106に加えて、メモリ部107aが設けられたドクターウエハDWを概略的に示している。図18は、配線層102、受光層104および保護層106に加えて、メモリ部107aおよび蓄電部107bが設けられたドクターウエハDWを概略的に示している。図19は、配線層102、受光層104および保護層106に加えて、メモリ部107aおよび蓄電部107bおよびアンテナ部107cが設けられたドクターウエハDWを概略的に示している。 FIG. 17 schematically shows a doctor wafer DW provided with a memory unit 107a in addition to the wiring layer 102, the light receiving layer 104, and the protective layer 106. FIG. 18 schematically shows a doctor wafer DW provided with a memory unit 107a and a storage unit 107b in addition to the wiring layer 102, the light receiving layer 104, and the protective layer 106. FIG. 19 schematically shows a doctor wafer DW provided with a memory unit 107a, a storage unit 107b, and an antenna unit 107c in addition to the wiring layer 102, the light receiving layer 104, and the protective layer 106.
 図20に示すように、保護層106にナノレンズアレイを組み込んでもよい。この場合、個々のナノレンズ109は各ピクセル105の真上に配置することができる。この場合も、保護層106の最表面は透明ガラス(SiOx)等により形成することができる。 As shown in FIG. 20, the nanolens array may be incorporated in the protective layer 106. In this case, the individual nanolenses 109 can be placed directly above each pixel 105. Also in this case, the outermost surface of the protective layer 106 can be formed of transparent glass (SiOx) or the like.
 ドクターウエハDWの表面の全体に受光層104を設けることに代えて、ドクターウエハDWの表面の一部のみに受光層104を設けてもよい。例えば、図21に示すように、ドクターウエハDWの直径方向に延びる複数のライン上のみに受光層104を設けてもよい。このようにすることにより、扱うデータ量が小さくなるため、データの送受信および演算処理の負担が低減される。例えばドクターウエハDWの表面のパーティクルの総量のみを問題とする(分布は問題としない)検査を行う場合には、検査効率が向上する。 Instead of providing the light receiving layer 104 on the entire surface of the doctor wafer DW, the light receiving layer 104 may be provided only on a part of the surface of the doctor wafer DW. For example, as shown in FIG. 21, the light receiving layer 104 may be provided only on a plurality of lines extending in the diameter direction of the doctor wafer DW. By doing so, the amount of data to be handled is reduced, so that the burden of data transmission / reception and arithmetic processing is reduced. For example, when an inspection is performed in which only the total amount of particles on the surface of the doctor wafer DW is a problem (distribution does not matter), the inspection efficiency is improved.
 ドクターウエハDWへの配線層102および受光層104等の各層は、半導体デバイスの製造技術(成膜技術)を用いて半導体ウエハ上に形成することができる。しかしながら、予め形成された撮像デバイスを、基板の上に貼り付けることによりドクターウエハDWを構築してもよい。 Each layer such as the wiring layer 102 to the doctor wafer DW and the light receiving layer 104 can be formed on the semiconductor wafer by using the semiconductor device manufacturing technology (film forming technology). However, a doctor wafer DW may be constructed by attaching a preformed imaging device onto a substrate.
 上記実施形態では、メカニカルチャックの把持爪34に電極35を設けたが、これには限定されない。スピンチャックがバキュームチャックの場合、バキュームチャックに電極を設けるとともにドクターウエハDWの裏面の中央部のバキュームチャックに接する部分に電極を設けてもよい。 In the above embodiment, the electrode 35 is provided on the gripping claw 34 of the mechanical chuck, but the present invention is not limited to this. When the spin chuck is a vacuum chuck, an electrode may be provided on the vacuum chuck and an electrode may be provided on a portion of the back surface of the doctor wafer DW in contact with the vacuum chuck at the center.
 上記の実施形態によれば、ドクターウエハDWを使用することにより、基板処理システム1の様々な場所でパーティクルレベルの検査を行うことができる。ドクターウエハDWに適切に照明光を照射する照明装置を設置すれば、ドクターウエハDWの処理中、搬送中においてもパーティクルレベルの検査を行うことができる。また、メモリ部107a、蓄電部107bおよびアンテナ部107c等をドクターウエハDWに設けることにより、任意のタイミングでパーティクルレベルの検査を行うことも可能となる。これによりパーティクルの発生原因の特定を容易かつ短時間で行うことが可能となる。 According to the above embodiment, by using the doctor wafer DW, particle level inspection can be performed at various places of the substrate processing system 1. If a lighting device that appropriately irradiates the doctor wafer DW with illumination light is installed, particle level inspection can be performed even during processing and transportation of the doctor wafer DW. Further, by providing the doctor wafer DW with the memory unit 107a, the power storage unit 107b, the antenna unit 107c, and the like, it is possible to perform particle level inspection at an arbitrary timing. This makes it possible to easily identify the cause of particle generation in a short time.
 スタンドアローンのパーティクル検査装置を用いる従来のパーティクルレベルの検査方法では、処理前後および搬送前後のパーティクルレベルの比較しかできず、処理中および搬送中のパーティクルレベルの検査はできない。もちろんウエット状態のウエハの検査はできない。また、パーティクル発生の原因を特定するためには、多くのウエハを処理して、その処理結果同士を比較する必要がある。また、1枚のウエハの検査にかかる時間も長い。このため、パーティクル発生の原因の特定に非常に時間がかかり、費用も高くなる。また、スタンドアローンのパーティクル検査装置までウエハを搬送する途中にもウエハが汚染される可能性もある。上記の実施形態ではこのような問題の多くを解決することができる。 The conventional particle level inspection method using a stand-alone particle inspection device can only compare the particle level before and after processing and before and after transportation, and cannot inspect the particle level during processing and transportation. Of course, wet wafers cannot be inspected. Further, in order to identify the cause of particle generation, it is necessary to process many wafers and compare the processing results with each other. In addition, it takes a long time to inspect one wafer. Therefore, it takes a very long time to identify the cause of particle generation, and the cost is high. In addition, the wafer may be contaminated while it is being transported to the stand-alone particle inspection device. Many of these problems can be solved in the above embodiments.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The above embodiments may be omitted, replaced or modified in various forms without departing from the scope of the appended claims and their gist.
 DW 検査基板
 100 基材
 102+104 撮像素子
 106 保護層
 108 出力部(電極)
DW inspection board 100 base material 102 + 104 image sensor 106 protective layer 108 output part (electrode)

Claims (11)

  1.  製品基板を処理する処理ユニットと、前記処理ユニットで処理される前記製品基板が搬出入される搬出入部と、前記搬出入部と前記処理ユニットとの間で前記製品基板を搬送する搬送機構と、を備えている基板処理装置の運用方法であって、
     板状の基材と、前記基材の表面の少なくとも一部に設けられた撮像素子と、前記撮像素子の表面に形成された光透過性の保護層と、前記撮像素子の出力を前記検査基板の外部に出力する出力部と、を備えた検査基板であって、光源から照射された光が前記保護層上に付着した汚染物質により遮られることにより変化する前記撮像素子の出力に基づいて、前記保護層への前記汚染物質の付着状態を検出ことができるように構成された前記検査基板を準備するステップと、
     - 前記検査基板を前記処理ユニットで処理するととともに、処理後または処理中に前記検査基板に付着した汚染物質の状態を前記検査基板により検出すること、および
     - 前記検査基板を前記搬送機構で搬送することともに、搬送後または搬送中に前記検査基板に付着した汚染物質の状態を前記検査基板により検出すること、
    のうちの少なくとも一方を実行する検査ステップと、
     前記検査ステップにおいて検出された前記汚染物質の状態に基づいて、前記基板処理装置による製品基板の処理または搬送の可否判断を行う判断ステップと、
    を備えた、運用方法。
    A processing unit for processing the product substrate, an loading / unloading section for loading / unloading the product substrate processed by the processing unit, and a transport mechanism for transporting the product substrate between the loading / unloading section and the processing unit. It is an operation method of the board processing equipment that is provided.
    The plate-shaped base material, the image pickup element provided on at least a part of the surface of the base material, the light-transmitting protective layer formed on the surface of the image pickup element, and the output of the image pickup element are measured by the inspection substrate. Based on the output of the image sensor, which is an inspection substrate provided with an output unit for outputting to the outside of the image sensor, which changes when the light emitted from the light source is blocked by the contaminants adhering to the protective layer. A step of preparing the inspection substrate configured to be able to detect the adhered state of the contaminant to the protective layer, and a step of preparing the inspection substrate.
    -The inspection board is treated by the processing unit, and the state of contaminants adhering to the inspection board is detected by the inspection board after or during the treatment, and-the inspection board is conveyed by the transfer mechanism. At the same time, the inspection board should be used to detect the state of contaminants adhering to the inspection board after or during transportation.
    Inspection steps that perform at least one of the
    A determination step for determining whether or not the product substrate can be processed or transported by the substrate processing apparatus based on the state of the contaminants detected in the inspection step.
    Operation method with.
  2.  前記検査ステップは、前記検査基板に対して、製品基板に対して行われる一連の搬送操作および処理操作と同じ一連の搬送操作および処理操作を実行することを含み、
     前記判断ステップは、前記検査基板に対する前記一連の搬送操作および処理操作の開始時点と終了時点とにおける前記検査基板上の汚染物質の状態の比較結果に基づいて、前記基板処理装置による製品基板に対する一連の搬送操作および処理操作の実行の可否判断を行うことを含む、請求項1記載の運用方法。
    The inspection step comprises performing on the inspection board a series of transport and processing operations that is the same as a series of transport and processing operations performed on the product substrate.
    The determination step is a series of steps for the product substrate by the substrate processing apparatus based on the comparison result of the state of the contaminants on the inspection board at the start time and the end time of the series of transfer operation and processing operation for the inspection board. The operation method according to claim 1, which comprises determining whether or not the transport operation and the processing operation can be executed.
  3.  前記検査ステップは、
     前記検査基板に対して、製品基板に対して行われる一連の搬送操作および処理操作と同じ一連の搬送操作および処理操作を実行することと、
     各搬送操作および各処理操作時における前記検査基板上の汚染物質の状態の変化に基づいて、前記検査基板上の汚染物質の増大への寄与度が高い搬送操作および/または処理操作を特定することと、を含む、請求項1記載の運用方法。
    The inspection step is
    Performing the same series of transport operations and processing operations on the inspection board as the series of transport operations and processing operations performed on the product board.
    Identifying transport and / or treatment operations that contribute significantly to the increase in contaminants on the inspection board based on changes in the state of contaminants on the inspection board during each transport operation and each treatment operation. And, the operation method according to claim 1.
  4.  前記検査ステップは、前記検査基板を前記処理ユニットで処理しているときに、少なくとも第1の時点と第2の時点との間において前記検査基板上の汚染物質の状態を連続的に監視することを含む、請求項1記載の運用方法。 The inspection step is to continuously monitor the state of contaminants on the inspection board between at least the first time point and the second time point while the inspection board is being processed by the processing unit. 1. The operation method according to claim 1.
  5.  前記検査ステップは、前記検査基板を前記処理ユニットで処理するときに、少なくとも第1の時点および第2の時点の各々において前記検査基板上の汚染物質の状態を検出することを含む、請求項1記載の運用方法。 The inspection step comprises detecting the state of contaminants on the inspection board at least at each of the first and second time points when the inspection board is processed by the processing unit. The described operation method.
  6.  前記検査ステップは、前記検査基板を前記搬送機構で搬送しているときに、少なくとも第1の時点と第2の時点との間において前記検査基板上の汚染物質の状態を連続的に監視することを含む、請求項1記載の運用方法。 The inspection step is to continuously monitor the state of contaminants on the inspection board between at least the first time point and the second time point while the inspection board is being conveyed by the transfer mechanism. 1. The operation method according to claim 1.
  7.  前記検査ステップは、前記検査基板上の汚染物質の量が増大したときにおける前記搬送機構で搬送されている前記検査基板の座標を特定することを含む、請求項6に記載の運用方法。 The operation method according to claim 6, wherein the inspection step includes specifying the coordinates of the inspection board transported by the transport mechanism when the amount of contaminants on the inspection board increases.
  8.  前記検査ステップは、前記検査基板を前記搬送機構で搬送しているときに、少なくとも第1の時点および第2の時点の各々において前記検査基板上の汚染物質の状態を検出することを含む、請求項1記載の運用方法。 The inspection step comprises detecting the state of contaminants on the inspection board at least at each of the first and second time points while the inspection board is being transported by the transfer mechanism. The operation method described in Item 1.
  9.  前記検査ステップは、前記検査基板を前記処理ユニットで液処理するときに実行され、前記液処理は、ノズルから前記検査基板に処理液を供給することを含み、
     前記検査ステップは、前記ノズルからの前記処理液の吐出が開始された時点から前記検査基板上の汚染物質の状態を連続的に監視することを含み、前記処理液の吐出が開始された前記時点から前記検査基板上の汚染物質の量が増大した時点までの経過時間に基づいて、前記ノズルおよび前記ノズルに接続された処理液供給配管における汚染されている部位を特定することを含む、請求項1記載の運用方法。
    The inspection step is performed when the inspection board is liquid-treated by the processing unit, and the liquid treatment includes supplying a treatment liquid from a nozzle to the inspection board.
    The inspection step comprises continuously monitoring the state of contaminants on the inspection substrate from the time when the treatment liquid is started to be discharged from the nozzle, and the time when the treatment liquid is started to be discharged. A claim comprising identifying contaminated sites in the nozzle and the treatment fluid supply pipe connected to the nozzle based on the elapsed time from to the point in time when the amount of contaminants on the inspection substrate has increased. 1 Operation method described.
  10.  前記検査ステップは、前記検査基板を前記処理ユニットで液処理するときに実行され、前記液処理は一連の処理ステップを備え、
     前記検査ステップは、各処理ステップを行うときの前記検査基板上の汚染物質の状態の変化に基づいて、前記検査基板上の汚染物質の増大への寄与度が高い1つ以上の処理ステップを特定することを含む、請求項1記載の運用方法。
    The inspection step is executed when the inspection board is liquid-treated by the processing unit, and the liquid treatment comprises a series of processing steps.
    The inspection step identifies one or more treatment steps that contribute significantly to the increase in contaminants on the inspection board, based on changes in the state of contaminants on the inspection board as each treatment step is performed. The operation method according to claim 1, which includes the above-mentioned operation method.
  11.  前記検査ステップは、前記検査基板に対して前記処理ユニットにより一連の処理ステップを備えた液処理を行うときに実行され、
     前記検査ステップは、当該検査ステップにおいて検出された前記一連の処理ステップの実行後における実行前に対する汚染物質の増分を求めることを含み、
     前記判定ステップは、前記増分が予め定められた閾値よりも大きい場合に、前記処理ユニットにおける製品基板の処理を禁止する、請求項1記載の運用方法。
    The inspection step is executed when the inspection board is subjected to liquid treatment including a series of treatment steps by the treatment unit.
    The inspection step comprises determining the increment of contaminants after and before execution of the series of treatment steps detected in the inspection step.
    The operation method according to claim 1, wherein the determination step prohibits processing of the product substrate in the processing unit when the increment is larger than a predetermined threshold value.
PCT/JP2021/020440 2020-06-04 2021-05-28 Operation method for substrate processing device WO2021246328A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022528800A JP7455972B2 (en) 2020-06-04 2021-05-28 How to operate substrate processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020097773 2020-06-04
JP2020-097773 2020-06-04

Publications (1)

Publication Number Publication Date
WO2021246328A1 true WO2021246328A1 (en) 2021-12-09

Family

ID=78830495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020440 WO2021246328A1 (en) 2020-06-04 2021-05-28 Operation method for substrate processing device

Country Status (3)

Country Link
JP (1) JP7455972B2 (en)
TW (1) TW202213596A (en)
WO (1) WO2021246328A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314150A1 (en) * 2003-03-28 2004-10-21 Infineon Technologies Ag Detecting environmental or process parameters in process-wafer manufacturing environment for semiconductor integrated circuit manufacture, by exposing wafer comprising sensors to manufacturing environment
JP2005516400A (en) * 2002-01-24 2005-06-02 センサレー コーポレイション Processing status detection wafer and data analysis system
JP2006505940A (en) * 2002-11-04 2006-02-16 ブリオン テクノロジーズ,インコーポレーテッド Method and apparatus for monitoring the manufacture of integrated circuits
JP2008032401A (en) * 2006-07-26 2008-02-14 Fujifilm Corp Method and device for inspecting infrared cut-off filter
JP2020500415A (en) * 2016-10-22 2020-01-09 ラピドット, マタンLAPIDOT, Matan Mobile inspection system for defect occurrence and location detection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828542B2 (en) 2002-06-07 2004-12-07 Brion Technologies, Inc. System and method for lithography process monitoring and control
JP2014022578A (en) 2012-07-19 2014-02-03 Tokyo Electron Ltd Process liquid supply device and process liquid supply method
JP2016146440A (en) 2015-02-09 2016-08-12 大日本印刷株式会社 Liquid processing apparatus and liquid processing method
US10067070B2 (en) 2015-11-06 2018-09-04 Applied Materials, Inc. Particle monitoring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005516400A (en) * 2002-01-24 2005-06-02 センサレー コーポレイション Processing status detection wafer and data analysis system
JP2006505940A (en) * 2002-11-04 2006-02-16 ブリオン テクノロジーズ,インコーポレーテッド Method and apparatus for monitoring the manufacture of integrated circuits
DE10314150A1 (en) * 2003-03-28 2004-10-21 Infineon Technologies Ag Detecting environmental or process parameters in process-wafer manufacturing environment for semiconductor integrated circuit manufacture, by exposing wafer comprising sensors to manufacturing environment
JP2008032401A (en) * 2006-07-26 2008-02-14 Fujifilm Corp Method and device for inspecting infrared cut-off filter
JP2020500415A (en) * 2016-10-22 2020-01-09 ラピドット, マタンLAPIDOT, Matan Mobile inspection system for defect occurrence and location detection

Also Published As

Publication number Publication date
TW202213596A (en) 2022-04-01
JPWO2021246328A1 (en) 2021-12-09
JP7455972B2 (en) 2024-03-26

Similar Documents

Publication Publication Date Title
EP0898300B1 (en) Method for processing a semiconductor wafer on a robotic track having access to in situ wafer backside particle detection
US10618140B2 (en) Substrate processing system and substrate processing method
KR100540314B1 (en) Optical inspection module and method for detecting particles and defects on substrates in integrated process tools
CN107636450B (en) Substrate inspection method, computer storage medium, and substrate inspection apparatus
US20080031510A1 (en) Method of and apparatus for inspecting wafers in chemical mechanical polishing equipment
US11158079B2 (en) Substrate treating apparatus and apparatus and method for eccentricity inspection
TWI638400B (en) Substrate processing device, substrate processing method, and memory medium
JP5459279B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
US11448978B2 (en) Contamination handling for semiconductor apparatus
WO2021246328A1 (en) Operation method for substrate processing device
WO2021246331A1 (en) Inspection substrate, method for reproducing same, and substrate processing device
JP2006228862A (en) Device and method for removing foreign substance and processing system
JPH06345262A (en) Processing device
US11846536B2 (en) Sensor target cover used in combination with liquid level detection sensor, wet processing device, substrate processing device, and sensor assembly
US7542134B2 (en) System, method and apparatus for in-situ substrate inspection
JP6135617B2 (en) Substrate processing apparatus, cleaning jig, particle removal method of substrate processing apparatus, and storage medium
JP4872448B2 (en) Coating, developing device, coating, developing method and storage medium.
KR102405151B1 (en) Cleaning method and cleaning device of liquid contact nozzle
KR101829953B1 (en) Integrated system, integrated system operation method and film treatment method
KR102620998B1 (en) Substrate inspection method, substrate processing method and substrate processing system for performing the same
KR20170058070A (en) Substrate cleaning module for inspection apparatus and probe station having the same
WO2023189894A1 (en) Substrate processing apparatus, inspection method therefor, and substrate processing system
WO2023248927A1 (en) Substrate treatment device and substrate treatment method
WO2022186324A1 (en) Semiconductor manufacturing device
TW201729333A (en) Apparatus and method for cleaning a wafer table surface and/or an object disposed thereon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817898

Country of ref document: EP

Kind code of ref document: A1