WO2023248927A1 - Substrate treatment device and substrate treatment method - Google Patents

Substrate treatment device and substrate treatment method Download PDF

Info

Publication number
WO2023248927A1
WO2023248927A1 PCT/JP2023/022312 JP2023022312W WO2023248927A1 WO 2023248927 A1 WO2023248927 A1 WO 2023248927A1 JP 2023022312 W JP2023022312 W JP 2023022312W WO 2023248927 A1 WO2023248927 A1 WO 2023248927A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processing
processing liquid
liquid
irradiation
Prior art date
Application number
PCT/JP2023/022312
Other languages
French (fr)
Japanese (ja)
Inventor
洋 丸本
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023248927A1 publication Critical patent/WO2023248927A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a substrate processing apparatus and a substrate processing method.
  • Patent Document 1 discloses that coating is performed by comparing the difference between the laser reflected light from the substrate before discharging the coating liquid onto the substrate and the laser reflected light from the substrate during discharging the coating liquid onto the substrate with a threshold value.
  • a substrate processing method that detects the discharge state of liquid is disclosed.
  • the present disclosure describes a substrate processing apparatus and a substrate processing method that are capable of evaluating the quality of the surface condition of the substrate and the condition of the substrate processing apparatus while detecting the coating condition of the surface of the substrate with the processing liquid.
  • An example of a substrate processing apparatus includes a rotating holding section configured to hold and rotate a substrate, a supply section configured to supply a processing liquid to the surface of the substrate, and a substrate held by the rotating holding section.
  • a first optical sensor configured to irradiate light toward a first irradiation point set to overlap with the surface of the substrate and receive the reflected light; and a surface of the substrate held by the rotation holder.
  • a second irradiation point configured to irradiate light toward a second irradiation point that overlaps with the first irradiation point and is located radially outward of the substrate, and to receive the reflected light. It includes an optical sensor and a control section.
  • the control unit performs a first process of controlling the rotation holding unit to rotate the substrate, a second process of controlling the supply unit and supplying the processing liquid to the surface of the rotating substrate, and a first process of controlling the rotation holding unit to rotate the substrate.
  • the fifth processing is configured to calculate the diffusion rate of the processing liquid on the surface of the substrate based on the time difference from the time when the processing liquid reaches the second irradiation location.
  • the substrate processing apparatus and substrate processing method according to the present disclosure it is possible to evaluate the quality of the surface condition of the substrate and the condition of the substrate processing apparatus while detecting the state of coating of the surface of the substrate with the processing liquid.
  • FIG. 1 is a plan view schematically showing an example of a substrate processing system.
  • FIG. 2 is a side view schematically showing an example of a liquid processing unit.
  • FIG. 3 is a top view showing an example of the irradiation position by the optical sensor.
  • FIG. 4 is a block diagram showing an example of the main parts of the substrate processing system.
  • FIG. 5 is a schematic diagram showing an example of the hardware configuration of the controller.
  • FIG. 6 is a flowchart for explaining an example of a substrate processing procedure.
  • FIG. 7 is a side view for explaining an example of a procedure for calculating a diffusion rate.
  • FIG. 8 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using a hydrophilic substrate.
  • FIG. 8 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using a hydrophilic substrate.
  • FIG. 9 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using a hydrophilic substrate.
  • FIG. 10 is a graph showing the coating speed of the treatment liquid under the treatment conditions shown in FIGS. 8 and 9.
  • FIG. 11 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates.
  • FIG. 12 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates.
  • FIG. 13 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates.
  • FIG. 14 is a graph showing the coating speed of the treatment liquid under the treatment conditions shown in FIGS. 11 to 13.
  • FIG. 15 is a top view showing another example of the irradiation position by the optical sensor.
  • FIG. 16 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates.
  • FIG. 17 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates.
  • FIG. 18 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates.
  • the substrate processing system 1 includes a loading/unloading station 2, a processing station 3, and a controller Ctr (control unit).
  • the loading/unloading station 2 and the processing station 3 may be arranged horizontally in a row, for example.
  • the substrate W may have a disk shape, or may have a plate shape other than a circle, such as a polygon.
  • the substrate W may have a partially cutout portion.
  • the cutout portion may be, for example, a notch (U-shaped, V-shaped groove, etc.) or a straight portion extending in a straight line (so-called orientation flat).
  • the substrate W may be, for example, a semiconductor substrate (silicon wafer), a glass substrate, a mask substrate, an FPD (Flat Panel Display) substrate, or other various substrates.
  • the diameter of the substrate W may be, for example, about 200 mm to 450 mm.
  • the loading/unloading station 2 includes a loading section 4 (obtaining section), a loading/unloading section 5, and a shelf unit 6.
  • the mounting section 4 includes a plurality of mounting tables (not shown) lined up in the width direction (vertical direction in FIG. 1). Each mounting table is configured such that the carrier 7 can be placed thereon.
  • the placement section 4 reads data regarding the type of substrate W stored in the storage section 7a (described later) of the carrier 7, and transmits the data to the controller Ctr. is configured to do so.
  • the carrier 7 is configured to accommodate at least one substrate W in a sealed state.
  • the carrier 7 includes an opening/closing door (not shown) for loading and unloading the substrate W.
  • the carrier 7 includes a storage section 7a that stores data regarding the type of substrate W accommodated within the carrier 7.
  • the same type of substrates W may be accommodated in one carrier 7.
  • Examples of the information indicating the type of substrate W include the surface energy of the substrate W, the warpage of the substrate W, and the arrangement of patterning formed on the surface of the substrate W.
  • the surface energy of the substrate W is an index indicating the wettability of the surface of the substrate W, and depending on its size, it is possible to determine whether the substrate W is hydrophobic or hydrophilic. Note that in this specification, "the surface of the substrate W” refers to the upper surface Wa or the lower surface Wb (see FIG. 2) of the substrate W.
  • the loading/unloading section 5 is arranged adjacent to the loading section 4 in the direction in which the loading/unloading station 2 and the processing station 3 are lined up (the left-right direction in FIG. 1).
  • the loading/unloading section 5 includes an opening/closing door (not shown) provided to the placing section 4. With the carrier 7 placed on the loading section 4, both the opening/closing door of the carrier 7 and the opening/closing door of the loading/unloading section 5 are opened, so that the inside of the loading/unloading section 5 and the inside of the carrier 7 are communicated with each other. do.
  • the loading/unloading section 5 incorporates a transport arm A1 and a shelf unit 6.
  • the transport arm A1 is configured to be capable of horizontal movement in the width direction of the carrying-in/carry-out section 5, vertical movement in the vertical direction, and rotational movement around the vertical axis.
  • the transport arm A1 is configured to take out the substrate W from the carrier 7 and transfer it to the shelf unit 6, and also to receive the substrate W from the shelf unit 6 and return it into the carrier 7.
  • the shelf unit 6 is located near the processing station 3 and is configured to accommodate substrates W.
  • the processing station 3 includes a transport section 8 and a plurality of liquid processing units U (substrate processing apparatus).
  • the transport unit 8 extends horizontally, for example, in the direction in which the loading/unloading station 2 and the processing station 3 are lined up (the left-right direction in FIG. 1).
  • the transport section 8 has a built-in transport arm A2 (transport section).
  • the transport arm A2 is configured to be capable of horizontal movement in the longitudinal direction of the transport unit 8, vertical movement in the vertical direction, and rotational movement around the vertical axis.
  • the transport arm A2 is configured to take out the substrate W from the shelf unit 6 and deliver it to the liquid processing unit U, and also to receive the substrate W from the liquid processing unit U and return it into the shelf unit 6.
  • the plurality of liquid processing units U are arranged in a line along the longitudinal direction of the transport section 8 (horizontal direction in FIG. 1) on each of both sides of the transport section 8.
  • the liquid processing unit U is configured to perform predetermined processing (for example, etching processing, cleaning processing, etc.) on the substrate W. Details of the liquid processing unit U will be described later.
  • the controller Ctr is configured to partially or completely control the substrate processing system 1. Details of the controller Ctr will be described later.
  • the liquid processing unit U includes a rotation holding section 10, supply sections 20 and 30, an imaging section 40, and a plurality of optical sensors 50, as illustrated in FIG.
  • the rotation holding section 10 includes a driving section 11, a shaft 12, and a holding section 13.
  • the drive unit 11 is configured to operate based on an operation signal from the controller Ctr and rotate the shaft 12.
  • the drive unit 11 may be, for example, a power source such as an electric motor.
  • the holding part 13 is provided at the tip of the shaft 12.
  • the holding unit 13 is configured to hold the lower surface Wb of the substrate W by suction, for example. That is, the rotation holding unit 10 may be configured to rotate the substrate W around the rotation center axis Ax perpendicular to the surface of the substrate W while the substrate W is in a substantially horizontal orientation.
  • the supply unit 20 is configured to supply the chemical liquid L1 to the upper surface Wa of the substrate W. Although not shown, the supply unit 20 may be configured to supply the chemical liquid L1 to the lower surface Wb of the substrate W.
  • the chemical liquid L1 may be, for example, an acidic chemical, an alkaline chemical, or an organic chemical.
  • acid-based chemical solutions include SC-2 solution (mixture of hydrochloric acid, hydrogen peroxide, and pure water), SPM (mixture of sulfuric acid and hydrogen peroxide), HF solution (hydrofluoric acid), and DHF solution (dilute fluorofluoride). acid), HNO 3 +HF solution (mixture of nitric acid and hydrofluoric acid), etc.
  • the alkaline chemical solution may include, for example, SC-1 solution (a mixed solution of ammonia, hydrogen peroxide, and pure water), hydrogen peroxide solution, and the like.
  • the supply unit 20 includes a liquid source 21, a pump 22, a valve 23, a nozzle 24, a pipe 25, and a drive source 26.
  • the liquid source 21 is a supply source of the chemical liquid L1.
  • the pump 22 is configured to operate based on an operation signal from the controller Ctr, and send out the chemical liquid L1 sucked from the liquid source 21 to the nozzle 24 via the piping 25 and the valve 23.
  • the valve 23 operates based on an operation signal from the controller Ctr, and is configured to transition between an open state that allows fluid to flow through the pipe 25 and a closed state that prevents fluid flow through the pipe 25.
  • the nozzle 24 is arranged above the substrate W so that the discharge port faces the upper surface Wa of the substrate W.
  • the nozzle 24 is configured to discharge the chemical liquid L1 sent out from the pump 22 toward the upper surface Wa of the substrate W from the discharge port. Since the substrate W is being rotated by the rotation holding unit 10, the chemical liquid L1 discharged onto the upper surface Wa of the substrate W spreads from the center of the substrate W toward the periphery at a predetermined diffusion rate, and spreads toward the periphery of the substrate W. be swung outward from
  • the piping 25 connects the liquid source 21, the pump 22, the valve 23, and the nozzle 24 in this order from the upstream side.
  • the drive source 26 is connected to the nozzle 24 directly or indirectly.
  • the drive source 26 operates based on an operation signal from the controller Ctr, and is configured to move the nozzle 24 above the substrate W along the horizontal or vertical direction. Therefore, the chemical liquid L1 can be discharged not only toward the center of the upper surface Wa of the substrate W but also toward any arbitrary position on the upper surface Wa of the substrate W.
  • the nozzle 24 may move from the periphery of the substrate W toward the center while the nozzle 24 continues discharging the chemical liquid L1 (so-called scan-in operation).
  • the nozzle 24 may move from the center of the substrate W toward the periphery while the nozzle 24 continues discharging the chemical L1 (so-called scan-out operation).
  • the supply unit 30 is configured to supply the rinsing liquid L2 to the substrate W.
  • the rinsing liquid L2 is a liquid for removing (washing away) from the substrate W, for example, the chemical liquid L1 supplied to the upper surface Wa of the substrate W, components dissolved in the film by the chemical liquid L1, etching residues, and the like.
  • the rinsing liquid L2 may include, for example, deionized water (DIW), ozone water, carbonated water (CO 2 water), ammonia water, or the like.
  • the supply unit 30 includes a liquid source 31, a pump 32, a valve 33, a nozzle 34, a pipe 35, and a drive source 36.
  • the liquid source 31 is a supply source of the rinsing liquid L2.
  • the pump 32 is configured to operate based on an operation signal from the controller Ctr, and send out the rinsing liquid L2 sucked from the liquid source 31 to the nozzle 34 via the piping 35 and the valve 33.
  • the valve 33 operates based on an operation signal from the controller Ctr, and is configured to transition between an open state that allows fluid to flow through the pipe 35 and a closed state that prevents fluid flow through the pipe 35.
  • the nozzle 34 is arranged above the substrate W so that the discharge port faces the upper surface Wa of the substrate W.
  • the nozzle 34 is configured to discharge the rinsing liquid L2 sent out from the pump 32 toward the upper surface Wa of the substrate W from the discharge port. Since the substrate W is being rotated by the rotation holding unit 10, the rinsing liquid L2 discharged onto the upper surface Wa of the substrate W spreads at a predetermined diffusion rate from the center of the substrate W toward the periphery of the substrate W. It is shaken outward from the periphery.
  • the piping 35 connects the liquid source 31, the pump 32, the valve 33, and the nozzle 34 in this order from the upstream side.
  • the drive source 36 is connected directly or indirectly to the nozzle 34.
  • the drive source 36 operates based on an operation signal from the controller Ctr, and is configured to move the nozzle 34 above the substrate W along the horizontal or vertical direction. Therefore, the rinse liquid L2 can be discharged not only toward the center of the upper surface Wa of the substrate W but also toward any arbitrary position on the upper surface Wa of the substrate W.
  • the nozzle 34 may move from the periphery of the substrate W toward the center while the rinsing liquid L2 continues to be discharged from the nozzle 34 (so-called scan-in operation).
  • the nozzle 34 may move from the center of the substrate W toward the periphery while the rinsing liquid L2 continues to be discharged from the nozzle 34 (so-called scan-out operation).
  • the imaging unit 40 is arranged above the substrate W.
  • the imaging unit 40 is configured to operate based on an operation signal from the controller Ctr and to image the upper surface Wa of the substrate W. Specifically, the imaging unit 40 captures a still image or a moving image of the covering state of the upper surface Wa of the substrate W with the chemical solution L1 or the rinsing solution L2 when the upper surface Wa of the substrate W is supplied with the chemical solution L1 or the rinsing solution L2.
  • the image may be taken by
  • the imaging unit 40 is configured to send captured images to the controller Ctr.
  • the imaging unit 40 may be, for example, a CCD camera, a CMS camera, or the like.
  • the installation location of the imaging section 40 is not particularly limited as long as it is within the liquid processing unit U.
  • the imaging unit 40 may be arranged below the substrate W.
  • the plurality of optical sensors 50 are arranged above the substrate W.
  • the plurality of optical sensors 50 include an irradiating section (not shown) and a light receiving section (not shown).
  • the irradiation unit operates based on an operation signal from the controller Ctr, and is configured to irradiate light onto the upper surface Wa of the substrate W being rotated by the rotation holding unit 10.
  • the light receiving section is configured to receive light reflected from the upper surface Wa of the substrate W (reflected light) and transmit the intensity of the reflected light (hereinafter referred to as "reflection intensity") to the controller Ctr.
  • the optical sensor 50 may be a laser sensor, a photoelectric sensor, or a color sensor, for example.
  • the irradiation unit may use, for example, a red laser (wavelength: 655 nm) as the laser light, or may use another type of laser light.
  • the irradiation section of the optical sensor 50 may irradiate light downward along a direction perpendicular to the upper surface Wa of the substrate W.
  • the irradiating section of the optical sensor 50 may irradiate the upper surface Wa of the substrate W with light through a light reflecting member (for example, a mirror), and the light receiving section of the optical sensor 50 receives the reflected light through the mirror. You may.
  • the irradiating section and the light receiving section of the optical sensor 50 may be arranged in the same housing, or may be physically separated.
  • the irradiation section of the optical sensor 50 may irradiate light obliquely downward along a direction inclined with respect to the upper surface Wa of the substrate W.
  • the irradiating part and the light receiving part of the optical sensor 50 may be physically separated and arranged such that the light irradiating part on the upper surface Wa of the substrate W is located between them.
  • the plurality of optical sensors 50 may include three optical sensors 51 to 53, as illustrated in FIG. 2.
  • the optical sensors 51 to 53 each emit light toward irradiation points P1 to P3 set to overlap with the upper surface Wa of the substrate W held by the rotation holding unit 10, and the light is reflected from the irradiation points P1 to P3. It is configured to receive the reflected light.
  • Each of the irradiation points P1 to P3 is a fixed position and does not change even if the substrate W rotates.
  • the irradiation points P1 to P3 are set at different positions, as illustrated in FIG. 2. That is, the irradiation points P1 to P3 may be arranged from the center side of the substrate W toward the peripheral edge side. Specifically, the irradiation point P2 may be located closer to the periphery of the substrate W than the irradiation point P1, and the irradiation point P3 may be located closer to the periphery of the substrate W than the irradiation point P2. .
  • the irradiation locations P1 to P3 may be arranged in a line in the radial direction of the substrate W, as illustrated in FIG. 3(a).
  • the irradiation points P1 to P3 may not be lined up in the radial direction of the substrate W but may be lined up offset in the circumferential direction of the substrate W, as illustrated in FIG. 3(b). That is, the irradiation points P1 and P2 may not be on the straight line connecting the irradiation point P3 and the center of the substrate W, and the irradiation points P2 and P3 may not be on the straight line connecting the irradiation point P1 and the center of the substrate W. The irradiation points P1 and P3 may not be on the straight line connecting the irradiation point P2 and the center of the substrate W.
  • the intervals between the irradiation points P1 to P3 may be approximately the same or may be different.
  • the irradiation point P1 may be at a position of about 50 mm from the center of the substrate W
  • the irradiation point P2 may be at a position of about 100 mm from the center of the substrate W
  • the irradiation point P3 may be located approximately 147 mm from the center of the substrate W.
  • the controller Ctr includes a reading section M1, a storage section M2, a processing section M3, and an instruction section M4 as functional modules.
  • These functional modules merely divide the functions of the controller Ctr into a plurality of modules for convenience, and do not necessarily mean that the hardware constituting the controller Ctr is divided into such modules.
  • Each functional module is not limited to being realized by executing a program, but may be realized by a dedicated electric circuit (for example, a logic circuit) or an integrated circuit (ASIC: Application Specific Integrated Circuit) that integrates the same. You can.
  • the reading unit M1 is configured to read a program from a computer-readable recording medium RM.
  • the recording medium RM records a program for operating each part of the substrate processing system 1 including the liquid processing unit U.
  • the recording medium RM may be, for example, a semiconductor memory, an optical recording disk, a magnetic recording disk, or a magneto-optical recording disk.
  • each part of the substrate processing system 1 may include the rotation holding part 10, the supply parts 20 and 30, the imaging part 40, and the optical sensor 50.
  • the storage unit M2 is configured to store various data.
  • the storage unit M2 may store, for example, a program read from the recording medium RM by the reading unit M1, setting data input by an operator via an external input device (not shown), and the like.
  • the storage unit M2 may store imaged data captured by the imaging unit 40.
  • the storage unit M2 may store reflection intensity data acquired by the optical sensor 50.
  • the storage unit M2 may store data regarding the type of substrate W accommodated in the carrier 7, which is read from the storage unit 7a of the carrier 7 in the mounting unit 4.
  • the storage unit M2 stores data regarding the type of the substrate W and information about the type of substrate W when a processing liquid (chemical liquid L1 or rinsing liquid L2) is supplied to the upper surface Wa of the substrate W while the substrate W having the type is rotated.
  • Correspondence information may be stored that is associated with the permissible range R of the diffusion rate of the processing liquid on the upper surface Wa.
  • the permissible range R may be defined, for example, as a diffusion rate included between the permissible lower limit value Vmin and the permissible upper limit value Vmax.
  • This tolerance range R may differ depending on the type of substrate W. For example, when the substrate W is hydrophobic, the diffusion rate tends to be low, so the allowable lower limit value Vmin and allowable upper limit value Vmax can take relatively small values. On the other hand, for example, when the substrate W is hydrophilic, the diffusion rate tends to increase, so the lower limit value Vmin and the upper limit value Vmax can take relatively large values. Further, for example, if the center of the substrate W is curved so as to be convex downward, the diffusion rate tends to decrease, so the allowable lower limit value Vmin and allowable upper limit value Vmax should take relatively small values. obtain.
  • the allowable lower limit value Vmin and allowable upper limit value Vmax take relatively large values. obtain. For example, if a large proportion of the patterning formed on the surface of the substrate W extends along the circumferential direction of the substrate W, the diffusion rate tends to be low, so the allowable lower limit value Vmin and the allowable upper limit value Vmin The value Vmax can take a relatively small value. On the other hand, for example, if a large proportion of the patterning formed on the surface of the substrate W extends along the radial direction of the substrate W, the diffusion rate tends to increase. The allowable upper limit value Vmax can take a relatively large value.
  • Type A of substrate W Tolerance range R1 (lower limit value Vmin1 to upper limit value Vmax1)
  • Type B of substrate W Tolerance range R2 (lower limit value Vmin2 to upper limit Vmax2)
  • Type C of substrate W Tolerance range R3 (tolerable lower limit value Vmin3 to allowable upper limit value Vmax3) ...
  • the allowable range R may include an adjustment-free range Ra and an adjustment range Rb.
  • the adjustment-free range Ra can be defined, for example, as the diffusion rate included between the adjustment-free lower limit value Vlow and the adjustment-free upper limit value Vhigh.
  • the adjustment-free lower limit value Vlow is a value larger than the permissible lower limit value Vmin
  • the adjustment-free upper limit value Vhigh is a value smaller than the permissible upper limit value Vmax. That is, the adjustment-free range Ra is included in the allowable range R (Ra ⁇ R).
  • the adjustment range Rb can be defined as the diffusion rate included in the range from the allowable lower limit value Vmin to the adjustment-free lower limit value Vlow, and the range from the adjustment-free upper limit value Vhigh to the allowable upper limit value Vmax. That is, the lower limit value of the adjustment range Rb is equal to the permissible lower limit value Vmin and smaller than the adjustment-free lower limit value Vlow, and the upper limit value of the adjustment range Rb is equal to the permissible upper limit value Vmax and smaller than the adjustment-free upper limit value Vhigh. is also a large value.
  • the adjustment-free range Ra and the adjustment range Rb may also be set to values depending on the type of substrate W.
  • the processing unit M3 is configured to process various data.
  • the processing section M3 may generate signals for operating each section of the substrate processing system 1, for example, based on various data stored in the storage section M2.
  • the instruction section M4 is configured to transmit the operation signal generated in the processing section M3 to each section of the substrate processing system 1.
  • the hardware of the controller Ctr may be configured by, for example, one or more control computers.
  • the controller Ctr may include a circuit C1 as a hardware configuration, as shown in FIG.
  • the circuit C1 may be composed of electrical circuit elements (circuitry).
  • the circuit C1 may include, for example, a processor C2, a memory C3, a storage C4, a driver C5, and an input/output port C6.
  • the processor C2 is configured to implement each of the above-described functional modules by executing a program in cooperation with at least one of the memory C3 and the storage C4 and inputting and outputting signals via the input/output port C6. may have been done.
  • the memory C3 and the storage C4 may function as the storage unit M2.
  • the driver C5 may be a circuit configured to drive each part of the substrate processing system 1, respectively.
  • the input/output port C6 may be configured to mediate input/output of signals between the driver C5 and each part of the substrate processing system 1.
  • the substrate processing system 1 may include one controller Ctr, or may include a controller group (control unit) composed of a plurality of controllers Ctr.
  • each of the above functional modules may be realized by one controller Ctr, or may be realized by a combination of two or more controllers Ctr.
  • the controller Ctr is composed of a plurality of computers (circuit C1)
  • each of the above functional modules may be realized by one computer (circuit C1), or two or more computers (circuit C1) may be implemented. ) may be realized by a combination of the following.
  • Controller Ctr may include multiple processors C2. In this case, each of the above functional modules may be realized by one processor C2, or may be realized by a combination of two or more processors C2.
  • the carrier 7 is placed on the mounting table of the mounting section 4. At least one substrate W of the same type is accommodated within the carrier 7.
  • the mounting unit 4 detects that the carrier 7 is placed on the mounting table, the mounting unit 4 reads data regarding the type of substrate W stored in the storage unit 7a of the carrier 7, and transmits the data to the controller Ctr (FIG. 6). (see step S1).
  • the controller Ctr searches the correspondence information stored in the storage unit M2 based on the data regarding the type of substrate W, and obtains the tolerance range R corresponding to the data regarding the type of substrate W (step in FIG. (See S2).
  • the controller Ctr controls the transport arms A1 and A2 to take out one substrate W from the carrier 7 and transport it into one of the liquid processing units U.
  • the substrate W transported into the liquid processing unit U is sucked and held by the holding section 13 (see step S3 in FIG. 6).
  • the controller Ctr controls the rotation holding unit 10 to rotate the substrate W while holding the lower surface Wb of the substrate W by suction with the holding unit 13.
  • the controller Ctr controls the supply unit 20 to supply the chemical liquid L1 from the nozzle 24 to the upper surface Wa of the substrate W for a predetermined period of time (see step S4 in FIG. 6).
  • the nozzle 24 may perform a scan-in operation or a scan-out operation.
  • the chemical liquid L1 supplied to the upper surface Wa of the substrate W spreads over the entire surface of the substrate W due to the rotation of the substrate W, and is shaken off from the periphery of the substrate W to the outside.
  • the imaging unit 40 captures an image of the covering state of the upper surface Wa of the substrate W with the chemical solution L1 when the upper surface Wa of the substrate W is supplied with the chemical solution L1, and transmits the captured image data to the controller Ctr. Good too.
  • the controller Ctr controls the rotation holding unit 10 to rotate the substrate W while holding the back surface of the substrate W by suction with the holding unit 13.
  • the controller Ctr controls the supply unit 30 to supply the rinsing liquid L2 from the nozzle 34 to the upper surface Wa of the substrate W for a predetermined period of time (see step S5 in FIG. 6).
  • the nozzle 34 may perform a scan-in operation or a scan-out operation.
  • the rinsing liquid L2 supplied to the upper surface Wa of the substrate W spreads over the entire surface of the substrate W due to the rotation of the substrate W, and is shaken off from the periphery of the substrate W to the outside.
  • the imaging unit 40 captures an image of the covering state of the upper surface Wa of the substrate W with the rinsing liquid L2 when the upper surface Wa of the substrate W is supplied with the rinsing liquid L2, and transmits the imaged data to the controller Ctr. You may.
  • the hydrophilic substrate W is a substrate on which a thermal oxide film (Th-Ox) is formed.
  • FIG. 8(a) shows changes in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 200 rpm.
  • FIG. 8(b) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 500 rpm.
  • FIG. 8(c) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 1000 rpm.
  • FIG. 8(d) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 1500 rpm. .
  • FIG. 9(a) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 200 rpm.
  • FIG. 9(b) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 500 rpm.
  • FIG. 9(c) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1000 rpm.
  • FIG. 9(d) shows changes in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1500 rpm. .
  • the reflection intensity increases rapidly (the reflection intensity rises) in the order of the irradiation points P1 to P3. That is, it can be determined that the processing liquid has reached the irradiation points P1 to P3 at the time when the reflection intensity rises. Therefore, as shown in FIG. 10, by plotting the rise of the reflection intensity and the positions of the irradiation points P1 to P3 on a graph and finding an approximate straight line, the slope of the approximate straight line (that is, the processing liquid The diffusion rate can be calculated from the difference in time between arrival at the irradiation points P1 to P3 (see step S7 in FIG. 6).
  • FIG. 10(a) shows the rise time of the reflection intensity at each of the irradiation points P1 to P3 and the rinse It shows the rise time of the reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 200 rpm.
  • FIG. 10(b) shows the rising time of the reflection intensity at each of the irradiation points P1 to P3 and the rinse The figure shows the rise of the reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 500 rpm.
  • FIG. 10(c) shows the rise time of the reflection intensity at each of the irradiation points P1 to P3 and the rinse The figure shows the rise of the reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1000 rpm.
  • FIG. 10(d) shows the rise time of the reflection intensity at each of the irradiation points P1 to P3 and the rinse The figure shows the rise of the reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1500 rpm.
  • FIGS. 11 to 13 show the results of measuring the reflection intensity at the irradiation points P1 to P3 in the same manner as above.
  • 11(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1000 ml/min and the rotation speed of the substrate W is 1000 rpm. It shows changes in reflection intensity at each position of P1 to P3.
  • FIGS. 11(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1000 ml/min and the rotation speed of the substrate W is 1000 rpm. It shows changes in reflection intensity at each position of P1 to P3.
  • 12(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 1000 rpm. It shows changes in reflection intensity at each position of P1 to P3.
  • 13(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1000 rpm. It shows changes in reflection intensity at each position of P1 to P3.
  • the hydrophobic substrate W is a silicon substrate (so-called "bare silicon") after a natural oxide film has been removed by surface treatment using a DHF solution (dilute hydrofluoric acid).
  • a DHF solution dilute hydrofluoric acid
  • FIGS. 11 to 13 it can be seen that even on the hydrophobic substrate W, the reflection intensity increases rapidly (the reflection intensity rises) in the order of the irradiation points P1 to P3.
  • the rise of the reflection intensity at the irradiation point P3 becomes slower than that of the hydrophilic substrate W. Therefore, as shown in FIG. 14, it was confirmed that the hydrophobic substrate W has a slower diffusion rate than the hydrophilic substrate W.
  • the controller Ctr determines whether the diffusion rate calculated in step S7 is within the tolerance range R obtained in step S2 (see step S8 in FIG. 6). As a result of the judgment by the controller Ctr, if the diffusion rate calculated in step S7 is not within the tolerance range R obtained in step S2 (see "NO" in step S8 in FIG. 6), the processing of the substrate W is inappropriate. There is a possibility. Therefore, the controller Ctr stores the imaging data of the substrate W being processed or the processing conditions of the substrate W imaged by the imaging section 40 together with the inappropriate judgment result in the storage section M2 (Fig. (See step S9 of 6).
  • the controller Ctr may issue an alarm indicating that the diffusion rate is not within the allowable range R from a notification section (not shown) (for example, the alarm may be displayed on a display, or from a speaker). (Alarm sounds and warning guidance may be issued).
  • a notification section for example, the alarm may be displayed on a display, or from a speaker.
  • Alarm sounds and warning guidance may be issued.
  • processing of the substrate W is completed. Thereafter, the processing of the subsequent substrate W may be interrupted, or the subsequent substrate W may be processed using a liquid processing unit U that is different from the liquid processing unit U in which the inappropriate processing of the substrate W may have been performed. You may also perform the following processing.
  • step S10 the controller Ctr determines whether the diffusion rate calculated in step S7 is within the adjustment-free range Ra in the allowable range R obtained in step S2. As a result of the judgment by the controller Ctr, if the diffusion rate calculated in step S7 is not within the adjustment-free range Ra in the tolerance range R obtained in step S2 (see “NO” in step S10 in FIG. 6), the diffusion rate of the substrate W is There may be room to improve processing conditions.
  • the controller Ctr changes the processing conditions for the subsequent substrate W (see step S11 in FIG. 6).
  • the processing conditions that are changed here include the rotational speed of the subsequent substrate W, the flow rate of the processing liquid discharged onto the subsequent substrate W, and the like.
  • the controller Ctr displays the imaged data of the substrate W being processed that was imaged by the imaging unit 40 or the processing of the substrate W, together with the judgment result that the diffusion rate is not within the adjustment unnecessary range Ra.
  • the conditions may be stored in the storage unit M2. Further, the controller Ctr may issue a warning indicating that the diffusion rate is not within the adjustment-free range Ra from a notification unit (not shown), as described above. After step S11, processing of the substrate W is completed.
  • a subsequent substrate W is processed under the changed processing conditions using a liquid processing unit U that is different from the liquid processing unit U for which it was determined that the diffusion rate is not within the adjustment unnecessary range Ra.
  • the subsequent processing of the substrate W may be performed under the changed processing conditions using the liquid processing unit U for which it has been determined that the diffusion rate is not within the adjustment unnecessary range Ra.
  • step S7 if the diffusion rate calculated in step S7 is within the adjustment-free range Ra in the tolerance range R obtained in step S2 (see “YES" in step S10 of FIG. 6), the diffusion rate of the substrate W is It is presumed that the processing was carried out appropriately. Therefore, after step S9, the processing of the substrate W is completed. Thereafter, a subsequent substrate W may be processed using the same liquid processing unit U under the same processing conditions.
  • the diffusion rate can change depending on the surface condition of the substrate W, the condition of the liquid processing unit U, and the like. If the diffusion rate is extremely slow, it can be determined, for example, that the entire surface of the substrate W may not be covered with the processing liquid. On the other hand, if the diffusion rate is extremely fast, it can be determined that, for example, there is a possibility of a problem with the liquid processing unit U or a problem with the surface condition of the substrate W.
  • the state of the surface of the substrate W covered by the processing liquid can be detected, and the quality of the surface state of the substrate W and the state of the liquid processing unit U can be evaluated. It becomes possible to do so. Furthermore, compared to the case where the surface state of the substrate W is acquired using a camera, by using the optical sensor 50, the enlargement of the liquid processing unit U is suppressed, and the amount of data to be handled is small, making calculation processing simpler. be converted into Therefore, it is possible to detect the state of coating of the surface of the substrate W with the processing liquid and to evaluate the quality of the surface state of the substrate W and the state of the liquid processing unit U at low cost.
  • the permissible range R is obtained based on the data regarding the type of substrate W read from the storage unit 7a of the carrier 7 and the correspondence information stored in the storage unit M2, and the diffusion rate is calculated. It is determined whether or not is within the permissible range R.
  • the permissible range R of the diffusion rate of the processing liquid is appropriately set for each type of substrate W. Therefore, it becomes possible to detect the covering state of the upper surface Wa of the substrate W with the processing liquid and to evaluate the quality of the surface state of the substrate W and the state of the liquid processing unit U with higher accuracy.
  • the allowable range R includes the adjustment-free range Ra and the adjustment range Rb, and it is determined whether the calculated diffusion rate is within the adjustment-free range Ra. In this case, even if it is determined that the processing result of the substrate W is good, if the diffusion rate is within the adjustment range Rb, the rotation speed of the substrate W or the flow rate of the processing liquid is changed. That is, the processing conditions for the substrate W are adjusted so that the processing results for the subsequent substrates W are improved. Therefore, it becomes possible to process the substrate W more appropriately.
  • the image data taken by the imaging unit 40 during processing of the substrate W or the processing conditions of the substrate W are It is stored in the storage unit M2 together with the judgment result that it is inappropriate. In this case, it becomes possible for the operator to easily check the processing status of the substrate W when the judgment result that it is inappropriate is obtained.
  • the processing of the substrate W may be performed in a light-shielded space.
  • the casing that constitutes the liquid processing unit U may be made of a light-shielding material.
  • the optical sensor 50 since the optical sensor 50 is used, the diffusion rate can be calculated even when the substrate W is processed using a processing liquid whose properties can be changed by light. Therefore, compared to the case where a camera is used, it is possible to detect the coating state of the surface of the substrate W with the processing liquid for more types of processing liquids, and to check whether the surface condition of the substrate W or the condition of the liquid processing unit U is good or bad. It becomes possible to evaluate.
  • the diffusion rate of the rinsing liquid L2 is calculated by the optical sensor 50, and the suitability of processing the substrate W is determined.
  • the diffusion rate of the chemical liquid L1 may be similarly calculated to determine whether or not the processing of the substrate W is appropriate.
  • the diffusion rate was calculated using three optical sensors 51 to 53, but the diffusion rate may be calculated using at least two optical sensors 50.
  • the diffusion speed of the processing liquid is calculated by the optical sensor 50. be able to. Specifically, when the nozzles 24 and 34 perform a scan-out operation, the substrate W dries from the center due to evaporation of the processing liquid, so the reflection intensity changes greatly before and after drying. Therefore, the evaporation rate of the processing liquid is determined based on the change.
  • the processing liquid supplied to the substrate W may not spread evenly in the radial direction of the substrate W.
  • the processing liquid supplied to the substrate W may not spread evenly in the radial direction of the substrate W.
  • by using at least four optical sensors 50 it is possible to detect uneven spread of the processing liquid.
  • a plurality of irradiation points lined up in the first direction three irradiation points P1 to P3 in the example of FIG. 15
  • a plurality of irradiation points lined up in the second direction 3 points P4 to P6.
  • the first direction extends along the radial direction of the substrate W.
  • the second direction extends along the radial direction of the substrate W and in a direction different from the first direction.
  • the diffusion rate of the processing liquid when passing through the plurality of irradiation points arranged in the first direction and the diffusion rate of the processing liquid when passing through the plurality of irradiation points arranged in the second direction are calculated respectively. , calculate the difference in these diffusion rates. If the difference is larger than a predetermined threshold value, it can be determined that the treatment liquid is spread unevenly.
  • the controller Ctr may arrange the calculated diffusion rates in chronological order and store them in the storage unit M2 as a so-called log.
  • the controller Ctr may predict when the diffusion rate is expected to fall outside the allowable range R in the future, based on log information that is accumulated over time. For example, if the multiple diffusion rates that make up the log gradually increase over time, by calculating their approximation lines, it is possible to predict when the future diffusion rate will exceed the allowable range R. You can.
  • FIGS. 16(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1000 rpm.
  • 3 is a graph showing changes in reflection intensity at each position of P1 to P3.
  • FIGS. 16(d) to (f) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 1000 rpm.
  • 3 is a graph showing changes in reflection intensity at each position of P1 to P3.
  • 16(g) to (i) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1000 ml/min and the rotation speed of the substrate W is 1000 rpm.
  • 3 is a graph showing changes in reflection intensity at each position of P1 to P3.
  • FIGS. 17(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 500 rpm.
  • 3 is a graph showing changes in reflection intensity at each position of P1 to P3.
  • FIGS. 17(d) to (f) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 500 rpm.
  • 3 is a graph showing changes in reflection intensity at each position of P1 to P3.
  • 17(g) to (i) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1000 ml/min and the rotation speed of the substrate W is 500 rpm.
  • 3 is a graph showing changes in reflection intensity at each position of P1 to P3.
  • 18(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 200 rpm.
  • 3 is a graph showing changes in reflection intensity at each position of P1 to P3.
  • 18(d) to (f) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 200 rpm.
  • 3 is a graph showing changes in reflection intensity at each position of P1 to P3.
  • the reflection intensity shows the same change in both the hydrophobic substrate W and the hydrophilic substrate W.
  • the rotation speed of the substrate W was slower than in the processing conditions in FIG. ), (i) and FIGS. 18(c), (e), (f), (h), (i)). That is, by acquiring changes in reflection intensity using the optical sensor 50, it can be determined whether the surface of the substrate W is coated with the processing liquid.
  • the controller Ctr may be configured to determine the state of coating of the surface of the substrate W with the processing liquid based on the reflection intensity received from the optical sensor 50. In this case, it becomes possible to automatically determine whether the surface of the substrate W is coated with the processing liquid without relying on visual inspection by an operator.
  • the processing conditions for the substrate W are predetermined depending on the type of the substrate W, and for all the substrates W, the flow rate of the processing liquid is set high or the rotation speed of the substrate W is set high. It may not be possible to do so.
  • the processing liquid may be scattered around or the airflow near the surface of the substrate W may be disturbed, causing particles or the like to form on the surface of the substrate W. There are also concerns that this may occur. Therefore, by automatically detecting the coating state of the processing liquid on the surface of the substrate W after the fact, it becomes possible to process the substrate W under preset processing conditions as much as possible.
  • An example of a substrate processing apparatus includes a rotating holding section configured to hold and rotate a substrate, a supply section configured to supply a processing liquid to the surface of the substrate, and a substrate held by the rotating holding section. a first optical sensor configured to irradiate light toward a first irradiation point set to overlap with the surface of the substrate and receive the reflected light; and a surface of the substrate held by the rotation holder. A second irradiation point configured to irradiate light toward a second irradiation point that overlaps with the first irradiation point and is located radially outward of the substrate, and to receive the reflected light. It includes an optical sensor and a control section.
  • the control unit performs a first process of controlling the rotation holding unit to rotate the substrate, a second process of controlling the supply unit and supplying the processing liquid to the surface of the rotating substrate, and a first process of controlling the rotation holding unit to rotate the substrate.
  • a fifth process of calculating the diffusion rate of the treatment liquid on the surface of the substrate based on the time difference between the arrival time of the treatment liquid to the second irradiation location, and based on the diffusion rate calculated in the fifth process,
  • the device is configured to execute a sixth process for determining suitability of processing the substrate.
  • the diffusion rate can change depending on the surface condition of the substrate, the condition of the substrate processing apparatus, and the like. If the diffusion rate is extremely slow, it can be determined that, for example, the entire surface of the substrate may not be covered with the processing liquid. On the other hand, if the diffusion rate is extremely fast, it can be determined that, for example, there is a possibility that there is a problem with the substrate processing apparatus or there is a possibility that there is a problem with the surface condition of the substrate.
  • the suitability of substrate processing based on the diffusion rate it is possible to evaluate the quality of the surface condition of the substrate and the condition of the substrate processing equipment while detecting the state of coating of the surface of the substrate with the processing liquid. becomes. Furthermore, compared to the case where the surface state of the substrate is obtained using a camera, by using an optical sensor, the size of the apparatus is suppressed, and the amount of data to be handled is small, and calculation processing is simplified. Therefore, it is possible to detect the state of coating of the surface of the substrate with the processing liquid and to evaluate the quality of the surface state of the substrate and the state of the substrate processing apparatus at low cost.
  • Example 2 The device of Example 1 associates data regarding the type of substrate with the permissible range of the diffusion rate of the processing liquid on the surface of the substrate when the processing liquid is supplied to the surface of the rotating substrate of the type.
  • the control unit further includes a storage unit configured to store the correspondence information obtained by the acquisition unit, and an acquisition unit configured to acquire the type of the board, and the control unit stores the type of board acquired by the acquisition unit and the storage unit.
  • the device is configured to further execute a seventh process of acquiring an allowable range for the board based on the correspondence information stored in the part, and the sixth process is based on the diffusion calculated in the fifth process.
  • the step may include determining whether the speed is within the allowable range obtained in the seventh process.
  • the permissible range of the diffusion rate of the processing liquid is appropriately set for each type of substrate. Therefore, it becomes possible to detect the state of coating of the surface of the substrate with the processing liquid and to evaluate the quality of the surface state of the substrate and the state of the substrate processing apparatus with higher accuracy.
  • the allowable range includes an adjustment-free range and an adjustment range
  • the upper limit of the adjustment range is set larger than the upper limit of the adjustment-free range
  • the lower limit of the adjustment range is set smaller than the lower limit of the adjustment-free range.
  • Example 4 The apparatus according to any one of Examples 1 to 3 further includes an imaging section configured to take an image of how the processing liquid is supplied to the surface of the substrate, and the control section is configured to take an image of the surface of the substrate in the sixth process. If it is determined that the coating state is inappropriate, a storage unit stores the imaging data of the substrate during processing captured by the imaging unit or the processing conditions of the substrate together with the determination result that the coating state is inappropriate. It may be configured to further execute the process of step 9. In this case, it becomes possible for the operator to easily check the status of the substrate processing at the time when the judgment result that the processing was inappropriate was obtained.
  • Example 5 In any of the devices of Examples 1 to 4, the first optical sensor and the second optical sensor are both laser sensors, and the second processing to the fourth processing may be performed in a light-shielded space. good.
  • the diffusion rate can be calculated even when a substrate is processed using a processing liquid whose properties can be changed by light. Therefore, compared to the case of using a camera, it is possible to evaluate the quality of the surface condition of the substrate and the condition of the substrate processing equipment while detecting the state of coating of the surface of the substrate with the processing liquid for more types of processing liquids. becomes possible.
  • An example of a substrate processing method includes a first step in which a rotation holding section holds and rotates the substrate, and a supply section supplies a processing liquid to the surface of the substrate, and a first step in which a first optical sensor controls the substrate while it is being rotated. a second step of irradiating light toward the irradiation location and detecting arrival of the processing liquid to the first irradiation location based on a change in the intensity of the reflected light acquired by the first optical sensor; A second optical sensor irradiates light toward a second irradiation location on the rotating substrate, and a processing liquid is applied to the second irradiation location based on a change in the intensity of reflected light acquired by the second optical sensor.
  • the same effects as the device of Example 1 can be obtained.
  • Example 7 The method of Example 6 includes a sixth step of acquiring the type of substrate, and a seventh step of acquiring the allowable range for the substrate based on the type of substrate acquired in the sixth step and the correspondence information.
  • the correspondence information further includes data regarding the type of substrate and an allowable range of the diffusion rate of the processing liquid on the surface of the substrate when the processing liquid is supplied to the surface of the rotating substrate of the type.
  • the fifth step may include determining whether the diffusion rate calculated in the fourth step is within the tolerance range obtained in the seventh step. . In this case, the same effects as the device of Example 2 can be obtained.
  • the allowable range includes an adjustment-free range and an adjustment range
  • the upper limit of the adjustment range is set larger than the upper limit of the adjustment-free range
  • the lower limit of the adjustment range is set smaller than the lower limit of the adjustment-free range.
  • Example 9 In any of the methods of Examples 6 to 8, if it is determined that the coating state of the surface of the substrate is inappropriate in the fifth step, the imaging data of the substrate during processing captured by the imaging unit or the substrate
  • the processing condition may further include a ninth step of storing the processing condition in the storage unit together with the determination result that the processing condition is inappropriate. In this case, the same effects as the device of Example 4 can be obtained.
  • Example 10 In any of the methods of Examples 6 to 9, the first optical sensor and the second optical sensor may both be laser sensors, and the first to third steps may be performed in a light-blocked space. . In this case, the same effects as the device of Example 5 can be obtained.
  • Substrate processing system (substrate processing apparatus), 4... Placement part (acquisition part), 7... Carrier, 7a... Storage part, 10... Rotation holding part, 20, 30... Supply part, 40... Imaging part, 50...
  • Optical sensor Ctr...Controller (control unit), M2...Storage unit, P1-P3...Irradiation location, R...Tolerance range, Ra...Adjustment unnecessary range, Rb...Adjustment range, U...Liquid processing unit (substrate processing apparatus), W...substrate, Wa...top surface (front surface), Wb...bottom surface (front surface).

Abstract

The present disclosure explains a substrate treatment device and a substrate treatment method with which the state of coverage of a substrate surface by a treatment liquid can be detected, and while doing so, the surface condition of the substrate and the quality of the state of the substrate treatment device can be evaluated. The substrate treatment device executes: a process of controlling a rotary holding part to rotate the substrate; a process of controlling a supply part to supply a treatment liquid to the surface of the rotating substrate; a process of detecting an arrival of the treatment liquid at a first irradiation site on the basis of a change in the intensity of reflected light obtained by a first light sensor at the first irradiation site; a process of detecting an arrival of the treatment liquid at a second irradiation site on the basis of a change in the intensity of reflected light obtained by a second light sensor at the second irradiation site; a process of calculating a diffusion speed of the treatment liquid on the surface of the substrate on the basis of a time difference between the arrival time of the treatment liquid at the first irradiation site and the arrival time of the treatment liquid at the second irradiation site; and a process of determining the suitability of the treatment of the substrate on the basis of the calculated diffusion speed.

Description

基板処理装置及び基板処理方法Substrate processing equipment and substrate processing method
 本開示は、基板処理装置及び基板処理方法に関する。 The present disclosure relates to a substrate processing apparatus and a substrate processing method.
 現在、基板(例えば、半導体ウエハ)を微細加工して半導体デバイスを製造するにあたり、基板に種々の処理液を吐出して基板処理を行う基板処理システムが知られている。特許文献1は、基板への塗布液の吐出前における基板からのレーザ反射光と、基板への塗布液の吐出中における基板からのレーザ反射光との差を、閾値と比較することで、塗布液の吐出状態を検知する基板処理方法を開示している。 Currently, there are known substrate processing systems that perform substrate processing by discharging various processing liquids onto the substrate when microfabricating a substrate (for example, a semiconductor wafer) to manufacture a semiconductor device. Patent Document 1 discloses that coating is performed by comparing the difference between the laser reflected light from the substrate before discharging the coating liquid onto the substrate and the laser reflected light from the substrate during discharging the coating liquid onto the substrate with a threshold value. A substrate processing method that detects the discharge state of liquid is disclosed.
特開2007-258658号公報Japanese Patent Application Publication No. 2007-258658
 本開示は、処理液による基板の表面の被覆状態を検出しつつ、基板の表面状態や基板処理装置の状態の良否を評価するすることが可能な基板処理装置及び基板処理方法を説明する。 The present disclosure describes a substrate processing apparatus and a substrate processing method that are capable of evaluating the quality of the surface condition of the substrate and the condition of the substrate processing apparatus while detecting the coating condition of the surface of the substrate with the processing liquid.
 基板処理装置の一例は、基板を保持しつつ回転させるように構成された回転保持部と、基板の表面に処理液を供給するように構成された供給部と、回転保持部に保持された基板の表面と重なるように設定された第1の照射箇所に向けて光を照射し、その反射光を受光するように構成された第1の光センサと、回転保持部に保持された基板の表面と重なり且つ第1の照射箇所よりも基板の径方向外側に位置するように設定された第2の照射箇所に向けて光を照射し、その反射光を受光するように構成された第2の光センサと、制御部とを備える。制御部は、回転保持部を制御して基板を回転させる第1の処理と、供給部を制御して、回転中の基板の表面に対して処理液を供給する第2の処理と、第1の照射箇所において第1の光センサが取得した反射光の強度の変化に基づいて、第1の照射箇所への処理液の到達を検出する第3の処理と、第2の照射箇所において第2の光センサが取得した反射光の強度の変化に基づいて、第2の照射箇所への処理液の到達を検出する第4の処理と、第1の照射箇所への処理液の到達時点と、第2の照射箇所への処理液の到達時点との時間差に基づいて、基板の表面における処理液の拡散速度を算出する第5の処理とを実行するように構成されている。 An example of a substrate processing apparatus includes a rotating holding section configured to hold and rotate a substrate, a supply section configured to supply a processing liquid to the surface of the substrate, and a substrate held by the rotating holding section. a first optical sensor configured to irradiate light toward a first irradiation point set to overlap with the surface of the substrate and receive the reflected light; and a surface of the substrate held by the rotation holder. A second irradiation point configured to irradiate light toward a second irradiation point that overlaps with the first irradiation point and is located radially outward of the substrate, and to receive the reflected light. It includes an optical sensor and a control section. The control unit performs a first process of controlling the rotation holding unit to rotate the substrate, a second process of controlling the supply unit and supplying the processing liquid to the surface of the rotating substrate, and a first process of controlling the rotation holding unit to rotate the substrate. a third process of detecting the arrival of the treatment liquid at the first irradiation point based on a change in the intensity of the reflected light acquired by the first optical sensor at the irradiation point; a fourth process of detecting arrival of the processing liquid at the second irradiation location based on a change in the intensity of the reflected light acquired by the optical sensor; and a time point at which the processing liquid reaches the first irradiation location; The fifth processing is configured to calculate the diffusion rate of the processing liquid on the surface of the substrate based on the time difference from the time when the processing liquid reaches the second irradiation location.
 本開示に係る基板処理装置及び基板処理方法によれば、処理液による基板の表面の被覆状態を検出しつつ、基板の表面状態や基板処理装置の状態の良否を評価することが可能となる。 According to the substrate processing apparatus and substrate processing method according to the present disclosure, it is possible to evaluate the quality of the surface condition of the substrate and the condition of the substrate processing apparatus while detecting the state of coating of the surface of the substrate with the processing liquid.
図1は、基板処理システムの一例を模式的に示す平面図である。FIG. 1 is a plan view schematically showing an example of a substrate processing system. 図2は、液処理ユニットの一例を模式的に示す側面図である。FIG. 2 is a side view schematically showing an example of a liquid processing unit. 図3は、光センサによる照射位置の一例を示す上面図である。FIG. 3 is a top view showing an example of the irradiation position by the optical sensor. 図4は、基板処理システムの主要部の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of the main parts of the substrate processing system. 図5は、コントローラのハードウェア構成の一例を示す概略図である。FIG. 5 is a schematic diagram showing an example of the hardware configuration of the controller. 図6は、基板の処理手順の一例を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining an example of a substrate processing procedure. 図7は、拡散速度の算出手順の一例を説明するための側面図である。FIG. 7 is a side view for explaining an example of a procedure for calculating a diffusion rate. 図8は、親水性の基板を用いて、照射箇所P1~P3において反射光の強度を測定した結果を示すグラフである。FIG. 8 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using a hydrophilic substrate. 図9は、親水性の基板を用いて、照射箇所P1~P3において反射光の強度を測定した結果を示すグラフである。FIG. 9 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using a hydrophilic substrate. 図10は、図8及び図9における処理条件での処理液の被覆速度を示すグラフである。FIG. 10 is a graph showing the coating speed of the treatment liquid under the treatment conditions shown in FIGS. 8 and 9. FIG. 図11は、疎水性及び親水性の基板を用いて、照射箇所P1~P3において反射光の強度を測定した結果を示すグラフである。FIG. 11 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates. 図12は、疎水性及び親水性の基板を用いて、照射箇所P1~P3において反射光の強度を測定した結果を示すグラフである。FIG. 12 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates. 図13は、疎水性及び親水性の基板を用いて、照射箇所P1~P3において反射光の強度を測定した結果を示すグラフである。FIG. 13 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates. 図14は、図11~図13における処理条件での処理液の被覆速度を示すグラフである。FIG. 14 is a graph showing the coating speed of the treatment liquid under the treatment conditions shown in FIGS. 11 to 13. 図15は、光センサによる照射位置の他の例を示す上面図である。FIG. 15 is a top view showing another example of the irradiation position by the optical sensor. 図16は、疎水性及び親水性の基板を用いて、照射箇所P1~P3において反射光の強度を測定した結果を示すグラフである。FIG. 16 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates. 図17は、疎水性及び親水性の基板を用いて、照射箇所P1~P3において反射光の強度を測定した結果を示すグラフである。FIG. 17 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates. 図18は、疎水性及び親水性の基板を用いて、照射箇所P1~P3において反射光の強度を測定した結果を示すグラフである。FIG. 18 is a graph showing the results of measuring the intensity of reflected light at irradiation points P1 to P3 using hydrophobic and hydrophilic substrates.
 以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。なお、本明細書において、図の上、下、右、左というときは、図中の符号の向きを基準とすることとする。 In the following explanation, the same elements or elements having the same function will be denoted by the same reference numerals, and duplicate explanations will be omitted. In this specification, when referring to the upper, lower, right, or left side of a figure, the direction of the symbol in the figure is used as a reference.
 [基板処理システムの構成]
 まず、図1を参照して、基板Wを処理するように構成された基板処理システム1(基板処理装置)について説明する。基板処理システム1は、搬入出ステーション2と、処理ステーション3と、コントローラCtr(制御部)とを備える。搬入出ステーション2及び処理ステーション3は、例えば水平方向に一列に並んでいてもよい。
[Substrate processing system configuration]
First, with reference to FIG. 1, a substrate processing system 1 (substrate processing apparatus) configured to process a substrate W will be described. The substrate processing system 1 includes a loading/unloading station 2, a processing station 3, and a controller Ctr (control unit). The loading/unloading station 2 and the processing station 3 may be arranged horizontally in a row, for example.
 基板Wは、円板状を呈してもよいし、多角形など円形以外の板状を呈していてもよい。基板Wは、一部が切り欠かれた切欠部を有していてもよい。切欠部は、例えば、ノッチ(U字形、V字形等の溝)であってもよいし、直線状に延びる直線部(いわゆる、オリエンテーション・フラット)であってもよい。基板Wは、例えば、半導体基板(シリコンウエハ)、ガラス基板、マスク基板、FPD(Flat Panel Display)基板その他の各種基板であってもよい。基板Wの直径は、例えば200mm~450mm程度であってもよい。 The substrate W may have a disk shape, or may have a plate shape other than a circle, such as a polygon. The substrate W may have a partially cutout portion. The cutout portion may be, for example, a notch (U-shaped, V-shaped groove, etc.) or a straight portion extending in a straight line (so-called orientation flat). The substrate W may be, for example, a semiconductor substrate (silicon wafer), a glass substrate, a mask substrate, an FPD (Flat Panel Display) substrate, or other various substrates. The diameter of the substrate W may be, for example, about 200 mm to 450 mm.
 搬入出ステーション2は、載置部4(取得部)と、搬入搬出部5と、棚ユニット6とを含む。載置部4は、幅方向(図1の上下方向)において並ぶ複数の載置台(図示せず)を含んでいる。各載置台は、キャリア7を載置可能に構成されている。載置部にキャリア7が載置されたとき、載置部4は、キャリア7の記憶部7a(後述する)に記憶されている基板Wの種類に関するデータを読み取り、当該データをコントローラCtrに送信するように構成されている。 The loading/unloading station 2 includes a loading section 4 (obtaining section), a loading/unloading section 5, and a shelf unit 6. The mounting section 4 includes a plurality of mounting tables (not shown) lined up in the width direction (vertical direction in FIG. 1). Each mounting table is configured such that the carrier 7 can be placed thereon. When the carrier 7 is placed on the placement section, the placement section 4 reads data regarding the type of substrate W stored in the storage section 7a (described later) of the carrier 7, and transmits the data to the controller Ctr. is configured to do so.
 キャリア7は、少なくとも一つの基板Wを密封状態で収容するように構成されている。キャリア7は、基板Wを出し入れするための開閉扉(図示せず)を含む。キャリア7は、キャリア7内に収容されている基板Wの種類に関するデータを記憶する記憶部7aを含んでいる。一つのキャリア7内には、同じ種類の基板Wが収容されていてもよい。基板Wの種類を示す情報としては、例えば、基板Wの表面エネルギー、基板Wの反り、基板Wの表面に形成されたパターニングの配置などが挙げられる。基板Wの表面エネルギーは、基板Wの表面の濡れ性を示す指標であり、その大きさに応じて、疎水性の基板Wであるか、親水性の基板Wであるかを判別可能である。なお、本明細書において、「基板Wの表面」とは、基板Wの上面Wa又は下面Wb(図2参照)をいう。 The carrier 7 is configured to accommodate at least one substrate W in a sealed state. The carrier 7 includes an opening/closing door (not shown) for loading and unloading the substrate W. The carrier 7 includes a storage section 7a that stores data regarding the type of substrate W accommodated within the carrier 7. The same type of substrates W may be accommodated in one carrier 7. Examples of the information indicating the type of substrate W include the surface energy of the substrate W, the warpage of the substrate W, and the arrangement of patterning formed on the surface of the substrate W. The surface energy of the substrate W is an index indicating the wettability of the surface of the substrate W, and depending on its size, it is possible to determine whether the substrate W is hydrophobic or hydrophilic. Note that in this specification, "the surface of the substrate W" refers to the upper surface Wa or the lower surface Wb (see FIG. 2) of the substrate W.
 搬入搬出部5は、搬入出ステーション2及び処理ステーション3が並ぶ方向(図1の左右方向)において、載置部4に隣接して配置されている。搬入搬出部5は、載置部4に対して設けられた開閉扉(図示せず)を含む。載置部4上にキャリア7が載置された状態で、キャリア7の開閉扉と搬入搬出部5の開閉扉とが共に開放されることで、搬入搬出部5内とキャリア7内とが連通する。 The loading/unloading section 5 is arranged adjacent to the loading section 4 in the direction in which the loading/unloading station 2 and the processing station 3 are lined up (the left-right direction in FIG. 1). The loading/unloading section 5 includes an opening/closing door (not shown) provided to the placing section 4. With the carrier 7 placed on the loading section 4, both the opening/closing door of the carrier 7 and the opening/closing door of the loading/unloading section 5 are opened, so that the inside of the loading/unloading section 5 and the inside of the carrier 7 are communicated with each other. do.
 搬入搬出部5は、搬送アームA1及び棚ユニット6を内蔵している。搬送アームA1は、搬入搬出部5の幅方向における水平移動と、鉛直方向における上下動と、鉛直軸周りにおける旋回動作とが可能に構成されている。搬送アームA1は、キャリア7から基板Wを取り出して棚ユニット6に渡し、また、棚ユニット6から基板Wを受け取ってキャリア7内に戻すように構成されている。棚ユニット6は、処理ステーション3の近傍に位置しており、基板Wを収容するように構成されている。 The loading/unloading section 5 incorporates a transport arm A1 and a shelf unit 6. The transport arm A1 is configured to be capable of horizontal movement in the width direction of the carrying-in/carry-out section 5, vertical movement in the vertical direction, and rotational movement around the vertical axis. The transport arm A1 is configured to take out the substrate W from the carrier 7 and transfer it to the shelf unit 6, and also to receive the substrate W from the shelf unit 6 and return it into the carrier 7. The shelf unit 6 is located near the processing station 3 and is configured to accommodate substrates W.
 処理ステーション3は、搬送部8と、複数の液処理ユニットU(基板処理装置)とを含む。搬送部8は、例えば、搬入出ステーション2及び処理ステーション3が並ぶ方向(図1の左右方向)において水平に延びている。搬送部8は、搬送アームA2(搬送部)を内蔵している。搬送アームA2は、搬送部8の長手方向における水平移動と、鉛直方向における上下動と、鉛直軸周りにおける旋回動作とが可能に構成されている。搬送アームA2は、棚ユニット6から基板Wを取り出して液処理ユニットUに渡し、また、液処理ユニットUから基板Wを受け取って棚ユニット6内に戻すように構成されている。 The processing station 3 includes a transport section 8 and a plurality of liquid processing units U (substrate processing apparatus). The transport unit 8 extends horizontally, for example, in the direction in which the loading/unloading station 2 and the processing station 3 are lined up (the left-right direction in FIG. 1). The transport section 8 has a built-in transport arm A2 (transport section). The transport arm A2 is configured to be capable of horizontal movement in the longitudinal direction of the transport unit 8, vertical movement in the vertical direction, and rotational movement around the vertical axis. The transport arm A2 is configured to take out the substrate W from the shelf unit 6 and deliver it to the liquid processing unit U, and also to receive the substrate W from the liquid processing unit U and return it into the shelf unit 6.
 複数の液処理ユニットUは、搬送部8の両側のそれぞれにおいて、搬送部8の長手方向(図1の左右方向)に沿って一列に並ぶように配置されている。液処理ユニットUは、基板Wに所定の処理(例えば、エッチング処理、洗浄処理など)を行うように構成されている。液処理ユニットUの詳細については、後述する。 The plurality of liquid processing units U are arranged in a line along the longitudinal direction of the transport section 8 (horizontal direction in FIG. 1) on each of both sides of the transport section 8. The liquid processing unit U is configured to perform predetermined processing (for example, etching processing, cleaning processing, etc.) on the substrate W. Details of the liquid processing unit U will be described later.
 コントローラCtrは、基板処理システム1を部分的又は全体的に制御するように構成されている。コントローラCtrの詳細については後述する。 The controller Ctr is configured to partially or completely control the substrate processing system 1. Details of the controller Ctr will be described later.
 [液処理ユニットの詳細]
 続いて、図2及び図3を参照して、液処理ユニットUについて詳しく説明する。液処理ユニットUは、図2に例示されるように、回転保持部10と、供給部20,30と、撮像部40と、複数の光センサ50とを備える。
[Details of liquid processing unit]
Next, the liquid processing unit U will be described in detail with reference to FIGS. 2 and 3. The liquid processing unit U includes a rotation holding section 10, supply sections 20 and 30, an imaging section 40, and a plurality of optical sensors 50, as illustrated in FIG.
 回転保持部10は、駆動部11と、シャフト12と、保持部13とを含む。駆動部11は、コントローラCtrからの動作信号に基づいて動作し、シャフト12を回転させるように構成されている。駆動部11は、例えば電動モータ等の動力源であってもよい。 The rotation holding section 10 includes a driving section 11, a shaft 12, and a holding section 13. The drive unit 11 is configured to operate based on an operation signal from the controller Ctr and rotate the shaft 12. The drive unit 11 may be, for example, a power source such as an electric motor.
 保持部13は、シャフト12の先端部に設けられている。保持部13は、例えば吸着等により、基板Wの下面Wbを吸着保持するように構成されている。すなわち、回転保持部10は、基板Wの姿勢が略水平の状態で、基板Wの表面に対して垂直な回転中心軸Ax周りで基板Wを回転させるように構成されていてもよい。 The holding part 13 is provided at the tip of the shaft 12. The holding unit 13 is configured to hold the lower surface Wb of the substrate W by suction, for example. That is, the rotation holding unit 10 may be configured to rotate the substrate W around the rotation center axis Ax perpendicular to the surface of the substrate W while the substrate W is in a substantially horizontal orientation.
 供給部20は、基板Wの上面Waに薬液L1を供給するように構成されている。図示はしていないが、供給部20は、基板Wの下面Wbに薬液L1を供給するように構成されていてもよい。薬液L1は、例えば、酸系薬液であってもよいし、アルカリ系薬液であってもよいし、有機系薬液であってもよい。酸系薬液は、例えば、SC-2液(塩酸、過酸化水素及び純水の混合液)、SPM(硫酸及び過酸化水素水の混合液)、HF液(フッ酸)、DHF液(希フッ酸)、HNO+HF液(硝酸及びフッ酸の混合液)などを含んでいてもよい。アルカリ系薬液は、例えば、SC-1液(アンモニア、過酸化水素及び純水の混合液)、過酸化水素水などを含んでいてもよい。 The supply unit 20 is configured to supply the chemical liquid L1 to the upper surface Wa of the substrate W. Although not shown, the supply unit 20 may be configured to supply the chemical liquid L1 to the lower surface Wb of the substrate W. The chemical liquid L1 may be, for example, an acidic chemical, an alkaline chemical, or an organic chemical. Examples of acid-based chemical solutions include SC-2 solution (mixture of hydrochloric acid, hydrogen peroxide, and pure water), SPM (mixture of sulfuric acid and hydrogen peroxide), HF solution (hydrofluoric acid), and DHF solution (dilute fluorofluoride). acid), HNO 3 +HF solution (mixture of nitric acid and hydrofluoric acid), etc. The alkaline chemical solution may include, for example, SC-1 solution (a mixed solution of ammonia, hydrogen peroxide, and pure water), hydrogen peroxide solution, and the like.
 供給部20は、液源21と、ポンプ22と、バルブ23と、ノズル24と、配管25と、駆動源26とを含む。液源21は、薬液L1の供給源である。ポンプ22は、コントローラCtrからの動作信号に基づいて動作し、液源21から吸引した薬液L1を、配管25及びバルブ23を介してノズル24に送り出すように構成されている。 The supply unit 20 includes a liquid source 21, a pump 22, a valve 23, a nozzle 24, a pipe 25, and a drive source 26. The liquid source 21 is a supply source of the chemical liquid L1. The pump 22 is configured to operate based on an operation signal from the controller Ctr, and send out the chemical liquid L1 sucked from the liquid source 21 to the nozzle 24 via the piping 25 and the valve 23.
 バルブ23は、コントローラCtrからの動作信号に基づいて動作し、配管25における流体の流通を許容する開状態と、配管25における流体の流通を妨げる閉状態との間で遷移するように構成されている。ノズル24は、吐出口が基板Wの上面Waに向かうように基板Wの上方に配置されている。ノズル24は、ポンプ22から送り出された薬液L1を、吐出口から基板Wの上面Waに向けて吐出するように構成されている。基板Wは回転保持部10によって回転しているので、基板Wの上面Waに吐出された薬液L1は、基板Wの中心部から周縁部に向けて所定の拡散速度で拡がりつつ、基板Wの周縁から外方に振り切られる。 The valve 23 operates based on an operation signal from the controller Ctr, and is configured to transition between an open state that allows fluid to flow through the pipe 25 and a closed state that prevents fluid flow through the pipe 25. There is. The nozzle 24 is arranged above the substrate W so that the discharge port faces the upper surface Wa of the substrate W. The nozzle 24 is configured to discharge the chemical liquid L1 sent out from the pump 22 toward the upper surface Wa of the substrate W from the discharge port. Since the substrate W is being rotated by the rotation holding unit 10, the chemical liquid L1 discharged onto the upper surface Wa of the substrate W spreads from the center of the substrate W toward the periphery at a predetermined diffusion rate, and spreads toward the periphery of the substrate W. be swung outward from
 配管25は、上流側から順に、液源21、ポンプ22、バルブ23及びノズル24を接続している。駆動源26は、ノズル24に対して直接的又は間接的に接続されている。駆動源26は、コントローラCtrからの動作信号に基づいて動作し、基板Wの上方において、水平方向又は鉛直方向に沿ってノズル24を移動させるように構成されている。そのため、薬液L1は、基板Wの上面Waの中心部のみならず、基板Wの上面Waの任意の位置に向けて吐出されうる。例えば、ノズル24から薬液L1の吐出が継続している状態で、ノズル24が基板Wの周縁から中心部に向けて移動してもよい(いわゆる、スキャンイン動作)。あるいは、ノズル24から薬液L1の吐出が継続している状態で、ノズル24が基板Wの中心部から周縁に向けて移動してもよい(いわゆる、スキャンアウト動作)。 The piping 25 connects the liquid source 21, the pump 22, the valve 23, and the nozzle 24 in this order from the upstream side. The drive source 26 is connected to the nozzle 24 directly or indirectly. The drive source 26 operates based on an operation signal from the controller Ctr, and is configured to move the nozzle 24 above the substrate W along the horizontal or vertical direction. Therefore, the chemical liquid L1 can be discharged not only toward the center of the upper surface Wa of the substrate W but also toward any arbitrary position on the upper surface Wa of the substrate W. For example, the nozzle 24 may move from the periphery of the substrate W toward the center while the nozzle 24 continues discharging the chemical liquid L1 (so-called scan-in operation). Alternatively, the nozzle 24 may move from the center of the substrate W toward the periphery while the nozzle 24 continues discharging the chemical L1 (so-called scan-out operation).
 供給部30は、基板Wにリンス液L2を供給するように構成されている。リンス液L2は、例えば、基板Wの上面Waに供給された薬液L1、薬液L1による膜の溶解成分、エッチング残渣などを、基板Wから除去する(洗い流す)ための液である。リンス液L2は、例えば、純水(DIW:deionized water)、オゾン水、炭酸水(CO水)、アンモニア水などを含んでいてもよい。 The supply unit 30 is configured to supply the rinsing liquid L2 to the substrate W. The rinsing liquid L2 is a liquid for removing (washing away) from the substrate W, for example, the chemical liquid L1 supplied to the upper surface Wa of the substrate W, components dissolved in the film by the chemical liquid L1, etching residues, and the like. The rinsing liquid L2 may include, for example, deionized water (DIW), ozone water, carbonated water (CO 2 water), ammonia water, or the like.
 供給部30は、液源31と、ポンプ32と、バルブ33と、ノズル34と、配管35と、駆動源36とを含む。液源31は、リンス液L2の供給源である。ポンプ32は、コントローラCtrからの動作信号に基づいて動作し、液源31から吸引したリンス液L2を、配管35及びバルブ33を介してノズル34に送り出すように構成されている。 The supply unit 30 includes a liquid source 31, a pump 32, a valve 33, a nozzle 34, a pipe 35, and a drive source 36. The liquid source 31 is a supply source of the rinsing liquid L2. The pump 32 is configured to operate based on an operation signal from the controller Ctr, and send out the rinsing liquid L2 sucked from the liquid source 31 to the nozzle 34 via the piping 35 and the valve 33.
 バルブ33は、コントローラCtrからの動作信号に基づいて動作し、配管35における流体の流通を許容する開状態と、配管35における流体の流通を妨げる閉状態との間で遷移するように構成されている。ノズル34は、吐出口が基板Wの上面Waに向かうように基板Wの上方に配置されている。ノズル34は、ノズル24と同様に、ポンプ32から送り出されたリンス液L2を、吐出口から基板Wの上面Waに向けて吐出するように構成されている。基板Wは回転保持部10によって回転しているので、基板Wの上面Waに吐出されたリンス液L2は、基板Wの中心部から周縁部に向けて所定の拡散速度で拡がりつつ、基板Wの周縁から外方に振り切られる。 The valve 33 operates based on an operation signal from the controller Ctr, and is configured to transition between an open state that allows fluid to flow through the pipe 35 and a closed state that prevents fluid flow through the pipe 35. There is. The nozzle 34 is arranged above the substrate W so that the discharge port faces the upper surface Wa of the substrate W. Like the nozzle 24, the nozzle 34 is configured to discharge the rinsing liquid L2 sent out from the pump 32 toward the upper surface Wa of the substrate W from the discharge port. Since the substrate W is being rotated by the rotation holding unit 10, the rinsing liquid L2 discharged onto the upper surface Wa of the substrate W spreads at a predetermined diffusion rate from the center of the substrate W toward the periphery of the substrate W. It is shaken outward from the periphery.
 配管35は、上流側から順に、液源31、ポンプ32、バルブ33及びノズル34を接続している。駆動源36は、ノズル34に対して直接的又は間接的に接続されている。駆動源36は、コントローラCtrからの動作信号に基づいて動作し、基板Wの上方において、水平方向又は鉛直方向に沿ってノズル34を移動させるように構成されている。そのため、リンス液L2は、基板Wの上面Waの中心部のみならず、基板Wの上面Waの任意の位置に向けて吐出されうる。例えば、ノズル34からリンス液L2の吐出が継続している状態で、ノズル34が基板Wの周縁から中心部に向けて移動してもよい(いわゆる、スキャンイン動作)。あるいは、ノズル34からリンス液L2の吐出が継続している状態で、ノズル34が基板Wの中心部から周縁に向けて移動してもよい(いわゆる、スキャンアウト動作)。 The piping 35 connects the liquid source 31, the pump 32, the valve 33, and the nozzle 34 in this order from the upstream side. The drive source 36 is connected directly or indirectly to the nozzle 34. The drive source 36 operates based on an operation signal from the controller Ctr, and is configured to move the nozzle 34 above the substrate W along the horizontal or vertical direction. Therefore, the rinse liquid L2 can be discharged not only toward the center of the upper surface Wa of the substrate W but also toward any arbitrary position on the upper surface Wa of the substrate W. For example, the nozzle 34 may move from the periphery of the substrate W toward the center while the rinsing liquid L2 continues to be discharged from the nozzle 34 (so-called scan-in operation). Alternatively, the nozzle 34 may move from the center of the substrate W toward the periphery while the rinsing liquid L2 continues to be discharged from the nozzle 34 (so-called scan-out operation).
 撮像部40は、基板Wの上方に配置されている。撮像部40は、コントローラCtrからの動作信号に基づいて動作し、基板Wの上面Waを撮像するように構成されている。具体的には、撮像部40は、基板Wの上面Waに薬液L1又はリンス液L2が供給されたときの、薬液L1又はリンス液L2による基板Wの上面Waの被覆状態を、静止画又は動画によって撮像してもよい。 The imaging unit 40 is arranged above the substrate W. The imaging unit 40 is configured to operate based on an operation signal from the controller Ctr and to image the upper surface Wa of the substrate W. Specifically, the imaging unit 40 captures a still image or a moving image of the covering state of the upper surface Wa of the substrate W with the chemical solution L1 or the rinsing solution L2 when the upper surface Wa of the substrate W is supplied with the chemical solution L1 or the rinsing solution L2. The image may be taken by
 撮像部40は、撮像画像をコントローラCtrに送信するように構成されている。撮像部40は、例えば、CCDカメラ、COMSカメラなどであってもよい。撮像部40の設置箇所は、液処理ユニットU内であれば特に制限されない。例えば、薬液L1又はリンス液L2が基板Wの下面Wbに供給される場合には、撮像部40は、基板Wの下方に配置されてもよい。 The imaging unit 40 is configured to send captured images to the controller Ctr. The imaging unit 40 may be, for example, a CCD camera, a CMS camera, or the like. The installation location of the imaging section 40 is not particularly limited as long as it is within the liquid processing unit U. For example, when the chemical liquid L1 or the rinsing liquid L2 is supplied to the lower surface Wb of the substrate W, the imaging unit 40 may be arranged below the substrate W.
 複数の光センサ50は、基板Wの上方に配置されている。複数の光センサ50は、図示しない照射部と、図示しない受光部とを含む。照射部は、コントローラCtrからの動作信号に基づいて動作し、回転保持部10によって回転中の基板Wの上面Waに光を照射するように構成されている。受光部は、基板Wの上面Waにおいて反射した光(反射光)を受光して、その反射光の強度(以下、「反射強度」という。)をコントローラCtrに送信するように構成されている。 The plurality of optical sensors 50 are arranged above the substrate W. The plurality of optical sensors 50 include an irradiating section (not shown) and a light receiving section (not shown). The irradiation unit operates based on an operation signal from the controller Ctr, and is configured to irradiate light onto the upper surface Wa of the substrate W being rotated by the rotation holding unit 10. The light receiving section is configured to receive light reflected from the upper surface Wa of the substrate W (reflected light) and transmit the intensity of the reflected light (hereinafter referred to as "reflection intensity") to the controller Ctr.
 光センサ50は、例えば、レーザセンサであってもよいし、光電センサであってもよいし、カラーセンサであってもよい。光センサ50がレーザセンサである場合、照射部は、例えば、赤色レーザ(波長:655nm)をレーザ光として用いてもよいし、他の種類のレーザ光を用いてもよい。 The optical sensor 50 may be a laser sensor, a photoelectric sensor, or a color sensor, for example. When the optical sensor 50 is a laser sensor, the irradiation unit may use, for example, a red laser (wavelength: 655 nm) as the laser light, or may use another type of laser light.
 光センサ50の照射部は、基板Wの上面Waに対して垂直な方向に沿って、光を下方に照射してもよい。光センサ50の照射部は、光反射部材(例えば、鏡)を介して光を基板Wの上面Waに照射してもよく、光センサ50の受光部は、鏡を介してその反射光を受光してもよい。これらの場合、光センサ50の照射部と受光部とは、同じ一つの筐体内に配置されていてもよいし、物理的に分離されていてもよい。 The irradiation section of the optical sensor 50 may irradiate light downward along a direction perpendicular to the upper surface Wa of the substrate W. The irradiating section of the optical sensor 50 may irradiate the upper surface Wa of the substrate W with light through a light reflecting member (for example, a mirror), and the light receiving section of the optical sensor 50 receives the reflected light through the mirror. You may. In these cases, the irradiating section and the light receiving section of the optical sensor 50 may be arranged in the same housing, or may be physically separated.
 光センサ50の照射部は、基板Wの上面Waに対して傾斜した方向に沿って、光を斜め下方に照射してもよい。この場合、光センサ50の照射部と受光部とは、物理的に分離されており、基板Wの上面Waにおける光の照射箇所がこれらの間に位置するように配置されていてもよい。 The irradiation section of the optical sensor 50 may irradiate light obliquely downward along a direction inclined with respect to the upper surface Wa of the substrate W. In this case, the irradiating part and the light receiving part of the optical sensor 50 may be physically separated and arranged such that the light irradiating part on the upper surface Wa of the substrate W is located between them.
 複数の光センサ50は、図2に例示されるように、3つの光センサ51~53を含んでいてもよい。光センサ51~53はそれぞれ、回転保持部10によって保持されている基板Wの上面Waと重なるように設定された照射箇所P1~P3に向けて光を照射し、照射箇所P1~P3から反射された反射光を受光するように構成されている。照射箇所P1~P3それぞれは、固定された定位置であり、基板Wが回転しても変化しない。 The plurality of optical sensors 50 may include three optical sensors 51 to 53, as illustrated in FIG. 2. The optical sensors 51 to 53 each emit light toward irradiation points P1 to P3 set to overlap with the upper surface Wa of the substrate W held by the rotation holding unit 10, and the light is reflected from the irradiation points P1 to P3. It is configured to receive the reflected light. Each of the irradiation points P1 to P3 is a fixed position and does not change even if the substrate W rotates.
 照射箇所P1~P3は、図2に例示されるように、互いに異なる位置に設定されている。すなわち、照射箇所P1~P3は、基板Wの中心側から周縁側に向けて並んでいてもよい。具体的には、照射箇所P2は、照射箇所P1よりも基板Wの周縁側に位置していてもよく、照射箇所P3は、照射箇所P2よりも基板Wの周縁側に位置していてもよい。照射箇所P1~P3は、図3(a)に例示されるように、基板Wの径方向において一列に並んでいてもよい。あるいは、照射箇所P1~P3は、図3(b)に例示されるように、基板Wの径方向において並ぶことなく、基板Wの周方向においてずれて並んでいてもよい。すなわち、照射箇所P1,P2は、照射箇所P3と基板Wの中心とを結ぶ直線上になくてもよいし、照射箇所P2,P3は、照射箇所P1と基板Wの中心とを結ぶ直線上になくてもよいし、照射箇所P1,P3は、照射箇所P2と基板Wの中心とを結ぶ直線上になくてもよい。 The irradiation points P1 to P3 are set at different positions, as illustrated in FIG. 2. That is, the irradiation points P1 to P3 may be arranged from the center side of the substrate W toward the peripheral edge side. Specifically, the irradiation point P2 may be located closer to the periphery of the substrate W than the irradiation point P1, and the irradiation point P3 may be located closer to the periphery of the substrate W than the irradiation point P2. . The irradiation locations P1 to P3 may be arranged in a line in the radial direction of the substrate W, as illustrated in FIG. 3(a). Alternatively, the irradiation points P1 to P3 may not be lined up in the radial direction of the substrate W but may be lined up offset in the circumferential direction of the substrate W, as illustrated in FIG. 3(b). That is, the irradiation points P1 and P2 may not be on the straight line connecting the irradiation point P3 and the center of the substrate W, and the irradiation points P2 and P3 may not be on the straight line connecting the irradiation point P1 and the center of the substrate W. The irradiation points P1 and P3 may not be on the straight line connecting the irradiation point P2 and the center of the substrate W.
 照射箇所P1~P3の間隔は、それぞれ略等しくてもよいし、異なっていてもよい。基板Wの半径が150mm程度の場合、照射箇所P1は基板Wの中心から50mm程度の位置であってもよいし、照射箇所P2は基板Wの中心から100mm程度の位置であってもよいし、照射箇所P3は基板Wの中心から147mm程度の位置であってもよい。 The intervals between the irradiation points P1 to P3 may be approximately the same or may be different. When the radius of the substrate W is about 150 mm, the irradiation point P1 may be at a position of about 50 mm from the center of the substrate W, the irradiation point P2 may be at a position of about 100 mm from the center of the substrate W, The irradiation point P3 may be located approximately 147 mm from the center of the substrate W.
 [コントローラの詳細]
 コントローラCtrは、図4に例示されるように、機能モジュールとして、読取部M1と、記憶部M2と、処理部M3と、指示部M4とを有する。これらの機能モジュールは、コントローラCtrの機能を便宜上複数のモジュールに区切ったものに過ぎず、コントローラCtrを構成するハードウェアがこのようなモジュールに分かれていることを必ずしも意味するものではない。各機能モジュールは、プログラムの実行により実現されるものに限られず、専用の電気回路(例えば論理回路)、又は、これを集積した集積回路(ASIC:Application Specific Integrated Circuit)により実現されるものであってもよい。
[Controller details]
As illustrated in FIG. 4, the controller Ctr includes a reading section M1, a storage section M2, a processing section M3, and an instruction section M4 as functional modules. These functional modules merely divide the functions of the controller Ctr into a plurality of modules for convenience, and do not necessarily mean that the hardware constituting the controller Ctr is divided into such modules. Each functional module is not limited to being realized by executing a program, but may be realized by a dedicated electric circuit (for example, a logic circuit) or an integrated circuit (ASIC: Application Specific Integrated Circuit) that integrates the same. You can.
 読取部M1は、コンピュータ読み取り可能な記録媒体RMからプログラムを読み取るように構成されている。記録媒体RMは、液処理ユニットUを含む基板処理システム1の各部を動作させるためのプログラムを記録している。記録媒体RMは、例えば、半導体メモリ、光記録ディスク、磁気記録ディスク、光磁気記録ディスクであってもよい。なお、以下では、基板処理システム1の各部は、回転保持部10、供給部20,30、撮像部40及び光センサ50を含みうる。 The reading unit M1 is configured to read a program from a computer-readable recording medium RM. The recording medium RM records a program for operating each part of the substrate processing system 1 including the liquid processing unit U. The recording medium RM may be, for example, a semiconductor memory, an optical recording disk, a magnetic recording disk, or a magneto-optical recording disk. In addition, below, each part of the substrate processing system 1 may include the rotation holding part 10, the supply parts 20 and 30, the imaging part 40, and the optical sensor 50.
 記憶部M2は、種々のデータを記憶するように構成されている。記憶部M2は、例えば、読取部M1において記録媒体RMから読み出したプログラム、外部入力装置(図示せず)を介してオペレータから入力された設定データなどを記憶してもよい。記憶部M2は、撮像部40によって撮像された撮像データを記憶してもよい。記憶部M2は、光センサ50によって取得された反射強度のデータを記憶してもよい。記憶部M2は、載置部4においてキャリア7の記憶部7aから読み取られた、当該キャリア7に収容されている基板Wの種類に関するデータを記憶してもよい。 The storage unit M2 is configured to store various data. The storage unit M2 may store, for example, a program read from the recording medium RM by the reading unit M1, setting data input by an operator via an external input device (not shown), and the like. The storage unit M2 may store imaged data captured by the imaging unit 40. The storage unit M2 may store reflection intensity data acquired by the optical sensor 50. The storage unit M2 may store data regarding the type of substrate W accommodated in the carrier 7, which is read from the storage unit 7a of the carrier 7 in the mounting unit 4.
 記憶部M2は、基板Wの種類に関するデータと、当該種類を有する基板Wの回転中に当該基板Wの上面Waに処理液(薬液L1又はリンス液L2)が供給されたときの、当該基板Wの上面Waにおける処理液の拡散速度の許容範囲Rとが対応付けられた対応情報を記憶していてもよい。ここで、許容範囲Rは、例えば、許容下限値Vminと許容上限値Vmaxとの間に含まれる拡散速度として規定されうる。 The storage unit M2 stores data regarding the type of the substrate W and information about the type of substrate W when a processing liquid (chemical liquid L1 or rinsing liquid L2) is supplied to the upper surface Wa of the substrate W while the substrate W having the type is rotated. Correspondence information may be stored that is associated with the permissible range R of the diffusion rate of the processing liquid on the upper surface Wa. Here, the permissible range R may be defined, for example, as a diffusion rate included between the permissible lower limit value Vmin and the permissible upper limit value Vmax.
 この許容範囲Rは、基板Wの種類ごとに異なりうる。例えば、基板Wが疎水性である場合には、拡散速度が小さくなる傾向にあるので、許容下限値Vmin及び許容上限値Vmaxが比較的小さな値を取り得る。一方、例えば、基板Wが親水性である場合には、拡散速度が大きくなる傾向にあるので、許容下限値Vmin及び許容上限値Vmaxが比較的大きな値を取り得る。また、例えば、基板Wの中央部が下に凸となるように反っている場合には、拡散速度が小さくなる傾向にあるので、許容下限値Vmin及び許容上限値Vmaxが比較的小さな値を取り得る。一方、例えば、基板Wの中央部が上に凸となるように反っている場合には、拡散速度が大きくなる傾向にあるので、許容下限値Vmin及び許容上限値Vmaxが比較的大きな値を取り得る。例えば、基板Wの表面に形成されているパターニングのうち基板Wの周方向に沿って延びているものの割合が大きい場合には、拡散速度が小さくなる傾向にあるので、許容下限値Vmin及び許容上限値Vmaxが比較的小さな値を取り得る。一方、例えば、基板Wの表面に形成されているパターニングのうち基板Wの径方向に沿って延びているものの割合が大きい場合には、拡散速度が大きくなる傾向にあるので、許容下限値Vmin及び許容上限値Vmaxが比較的大きな値を取り得る。 This tolerance range R may differ depending on the type of substrate W. For example, when the substrate W is hydrophobic, the diffusion rate tends to be low, so the allowable lower limit value Vmin and allowable upper limit value Vmax can take relatively small values. On the other hand, for example, when the substrate W is hydrophilic, the diffusion rate tends to increase, so the lower limit value Vmin and the upper limit value Vmax can take relatively large values. Further, for example, if the center of the substrate W is curved so as to be convex downward, the diffusion rate tends to decrease, so the allowable lower limit value Vmin and allowable upper limit value Vmax should take relatively small values. obtain. On the other hand, for example, if the center of the substrate W is curved upward, the diffusion rate tends to increase, so the allowable lower limit value Vmin and allowable upper limit value Vmax take relatively large values. obtain. For example, if a large proportion of the patterning formed on the surface of the substrate W extends along the circumferential direction of the substrate W, the diffusion rate tends to be low, so the allowable lower limit value Vmin and the allowable upper limit value Vmin The value Vmax can take a relatively small value. On the other hand, for example, if a large proportion of the patterning formed on the surface of the substrate W extends along the radial direction of the substrate W, the diffusion rate tends to increase. The allowable upper limit value Vmax can take a relatively large value.
 以上を踏まえて、記憶部M2に記憶されている対応情報の例を以下に示す。
  基板Wの種類A:許容範囲R1(許容下限値Vmin1~許容上限値Vmax1)
  基板Wの種類B:許容範囲R2(許容下限値Vmin2~許容上限値Vmax2)
  基板Wの種類C:許容範囲R3(許容下限値Vmin3~許容上限値Vmax3)
  ・・・
Based on the above, an example of the correspondence information stored in the storage unit M2 is shown below.
Type A of substrate W: Tolerance range R1 (lower limit value Vmin1 to upper limit value Vmax1)
Type B of substrate W: Tolerance range R2 (lower limit value Vmin2 to upper limit Vmax2)
Type C of substrate W: Tolerance range R3 (tolerable lower limit value Vmin3 to allowable upper limit value Vmax3)
...
 なお、許容範囲Rは、調整不要範囲Raと、調整範囲Rbとを含んでいてもよい。調整不要範囲Raは、例えば、調整不要下限値Vlowと調整不要上限値Vhighとの間に含まれる拡散速度として規定されうる。調整不要下限値Vlowは許容下限値Vminよりも大きい値であり、調整不要上限値Vhighは許容上限値Vmaxよりも小さい値である。すなわち、調整不要範囲Raは、許容範囲Rに包含されている(Ra⊂R)。一方、調整範囲Rbは、許容下限値Vminから調整不要下限値Vlowまでの範囲と、調整不要上限値Vhighから許容上限値Vmaxまでの範囲に含まれる拡散速度として規定されうる。すなわち、調整範囲Rbの下限値は、許容下限値Vminと等しく且つ調整不要下限値Vlowよりも小さい値であり、調整範囲Rbの上限値は、許容上限値Vmaxと等しく且つ調整不要上限値Vhighよりも大きい値である。調整不要範囲Ra及び調整範囲Rbも、基板Wの種類に応じた値に設定されていてもよい。 Note that the allowable range R may include an adjustment-free range Ra and an adjustment range Rb. The adjustment-free range Ra can be defined, for example, as the diffusion rate included between the adjustment-free lower limit value Vlow and the adjustment-free upper limit value Vhigh. The adjustment-free lower limit value Vlow is a value larger than the permissible lower limit value Vmin, and the adjustment-free upper limit value Vhigh is a value smaller than the permissible upper limit value Vmax. That is, the adjustment-free range Ra is included in the allowable range R (Ra⊂R). On the other hand, the adjustment range Rb can be defined as the diffusion rate included in the range from the allowable lower limit value Vmin to the adjustment-free lower limit value Vlow, and the range from the adjustment-free upper limit value Vhigh to the allowable upper limit value Vmax. That is, the lower limit value of the adjustment range Rb is equal to the permissible lower limit value Vmin and smaller than the adjustment-free lower limit value Vlow, and the upper limit value of the adjustment range Rb is equal to the permissible upper limit value Vmax and smaller than the adjustment-free upper limit value Vhigh. is also a large value. The adjustment-free range Ra and the adjustment range Rb may also be set to values depending on the type of substrate W.
 処理部M3は、各種データを処理するように構成されている。処理部M3は、例えば、記憶部M2に記憶されている各種データに基づいて、基板処理システム1の各部を動作させるための信号を生成してもよい。 The processing unit M3 is configured to process various data. The processing section M3 may generate signals for operating each section of the substrate processing system 1, for example, based on various data stored in the storage section M2.
 指示部M4は、処理部M3において生成された動作信号を、基板処理システム1の各部に送信するように構成されている。 The instruction section M4 is configured to transmit the operation signal generated in the processing section M3 to each section of the substrate processing system 1.
 コントローラCtrのハードウェアは、例えば一つ又は複数の制御用のコンピュータにより構成されていてもよい。コントローラCtrは、図5に示されるように、ハードウェア上の構成として回路C1を含んでいてもよい。回路C1は、電気回路要素(circuitry)で構成されていてもよい。回路C1は、例えば、プロセッサC2と、メモリC3と、ストレージC4と、ドライバC5と、入出力ポートC6とを含んでいてもよい。 The hardware of the controller Ctr may be configured by, for example, one or more control computers. The controller Ctr may include a circuit C1 as a hardware configuration, as shown in FIG. The circuit C1 may be composed of electrical circuit elements (circuitry). The circuit C1 may include, for example, a processor C2, a memory C3, a storage C4, a driver C5, and an input/output port C6.
 プロセッサC2は、メモリC3及びストレージC4の少なくとも一方と協働してプログラムを実行し、入出力ポートC6を介した信号の入出力を実行することで、上述した各機能モジュールを実現するように構成されていてもよい。メモリC3及びストレージC4は、記憶部M2として機能してもよい。ドライバC5は、基板処理システム1の各部をそれぞれ駆動するように構成された回路であってもよい。入出力ポートC6は、ドライバC5と基板処理システム1の各部との間で、信号の入出力を仲介するように構成されていてもよい。 The processor C2 is configured to implement each of the above-described functional modules by executing a program in cooperation with at least one of the memory C3 and the storage C4 and inputting and outputting signals via the input/output port C6. may have been done. The memory C3 and the storage C4 may function as the storage unit M2. The driver C5 may be a circuit configured to drive each part of the substrate processing system 1, respectively. The input/output port C6 may be configured to mediate input/output of signals between the driver C5 and each part of the substrate processing system 1.
 基板処理システム1は、一つのコントローラCtrを備えていてもよいし、複数のコントローラCtrで構成されるコントローラ群(制御部)を備えていてもよい。基板処理システム1がコントローラ群を備えている場合には、上記の機能モジュールがそれぞれ、一つのコントローラCtrによって実現されていてもよいし、2個以上のコントローラCtrの組み合わせによって実現されていてもよい。コントローラCtrが複数のコンピュータ(回路C1)で構成されている場合には、上記の機能モジュールがそれぞれ、一つのコンピュータ(回路C1)によって実現されていてもよいし、2つ以上のコンピュータ(回路C1)の組み合わせによって実現されていてもよい。コントローラCtrは、複数のプロセッサC2を有していてもよい。この場合、上記の機能モジュールがそれぞれ、一つのプロセッサC2によって実現されていてもよいし、2つ以上のプロセッサC2の組み合わせによって実現されていてもよい。 The substrate processing system 1 may include one controller Ctr, or may include a controller group (control unit) composed of a plurality of controllers Ctr. When the substrate processing system 1 includes a controller group, each of the above functional modules may be realized by one controller Ctr, or may be realized by a combination of two or more controllers Ctr. . When the controller Ctr is composed of a plurality of computers (circuit C1), each of the above functional modules may be realized by one computer (circuit C1), or two or more computers (circuit C1) may be implemented. ) may be realized by a combination of the following. Controller Ctr may include multiple processors C2. In this case, each of the above functional modules may be realized by one processor C2, or may be realized by a combination of two or more processors C2.
 [基板処理方法]
 続いて、図6~図14を参照して、基板Wを処理液によって処理する方法について説明する。
[Substrate processing method]
Next, a method for treating the substrate W with a treatment liquid will be described with reference to FIGS. 6 to 14.
 まず、載置部4の載置台にキャリア7を載置する。当該キャリア7内には、同じ種類の少なくとも一枚の基板Wが収容されている。載置部4は、キャリア7の載置台への載置を検出すると、キャリア7の記憶部7aに記憶されている基板Wの種類に関するデータを読み取り、当該データをコントローラCtrに送信する(図6のステップS1参照)。コントローラCtrは、基板Wの種類に関する当該データに基づいて、記憶部M2に記憶されている対応情報を検索し、基板Wの種類に関する当該データに対応する許容範囲Rを取得する(図6のステップS2参照)。 First, the carrier 7 is placed on the mounting table of the mounting section 4. At least one substrate W of the same type is accommodated within the carrier 7. When the mounting unit 4 detects that the carrier 7 is placed on the mounting table, the mounting unit 4 reads data regarding the type of substrate W stored in the storage unit 7a of the carrier 7, and transmits the data to the controller Ctr (FIG. 6). (see step S1). The controller Ctr searches the correspondence information stored in the storage unit M2 based on the data regarding the type of substrate W, and obtains the tolerance range R corresponding to the data regarding the type of substrate W (step in FIG. (See S2).
 次に、コントローラCtrが搬送アームA1,A2を制御して、キャリア7から基板Wを1枚取り出し、いずれかの液処理ユニットU内に搬送する。液処理ユニットU内に搬送された基板Wは、保持部13に吸着保持される(図6のステップS3参照)。 Next, the controller Ctr controls the transport arms A1 and A2 to take out one substrate W from the carrier 7 and transport it into one of the liquid processing units U. The substrate W transported into the liquid processing unit U is sucked and held by the holding section 13 (see step S3 in FIG. 6).
 次に、コントローラCtrが回転保持部10を制御して、基板Wの下面Wbを保持部13で吸着保持しつつ、基板Wを回転させる。この状態で、コントローラCtrが供給部20を制御して、ノズル24から基板Wの上面Waに薬液L1を所定時間供給させる(図6のステップS4参照)。このとき、ノズル24は、スキャンイン動作またはスキャンアウト動作をしてもよい。基板Wの上面Waに供給された薬液L1は、基板Wの回転によって、基板Wの全面にわたって拡がり、基板Wの周縁から外方に振り切られる。そのため、ノズル24からの薬液L1の供給が継続されている間、基板Wの上面Waに薬液L1の液膜が形成される。これにより、基板Wの上面Waが処理される。このとき、撮像部40は、基板Wの上面Waに薬液L1が供給されたときの、薬液L1による基板Wの上面Waの被覆状態を撮像しておき、その撮像データをコントローラCtrに送信してもよい。 Next, the controller Ctr controls the rotation holding unit 10 to rotate the substrate W while holding the lower surface Wb of the substrate W by suction with the holding unit 13. In this state, the controller Ctr controls the supply unit 20 to supply the chemical liquid L1 from the nozzle 24 to the upper surface Wa of the substrate W for a predetermined period of time (see step S4 in FIG. 6). At this time, the nozzle 24 may perform a scan-in operation or a scan-out operation. The chemical liquid L1 supplied to the upper surface Wa of the substrate W spreads over the entire surface of the substrate W due to the rotation of the substrate W, and is shaken off from the periphery of the substrate W to the outside. Therefore, while the supply of the chemical liquid L1 from the nozzle 24 continues, a liquid film of the chemical liquid L1 is formed on the upper surface Wa of the substrate W. As a result, the upper surface Wa of the substrate W is processed. At this time, the imaging unit 40 captures an image of the covering state of the upper surface Wa of the substrate W with the chemical solution L1 when the upper surface Wa of the substrate W is supplied with the chemical solution L1, and transmits the captured image data to the controller Ctr. Good too.
 次に、コントローラCtrが回転保持部10を制御して、基板Wの裏面を保持部13で吸着保持しつつ、基板Wを回転させる。この状態で、コントローラCtrが供給部30を制御して、ノズル34から基板Wの上面Waにリンス液L2を所定時間供給させる(図6のステップS5参照)。このとき、ノズル34は、スキャンイン動作またはスキャンアウト動作をしてもよい。基板Wの上面Waに供給されたリンス液L2は、基板Wの回転によって、基板Wの全面にわたって拡がり、基板Wの周縁から外方に振り切られる。そのため、ノズル34からのリンス液L2の供給が継続されている間、基板Wの上面Waにリンス液L2の液膜が形成される。これにより、基板Wの上面Waが洗浄される。このとき、撮像部40は、基板Wの上面Waにリンス液L2が供給されたときの、リンス液L2による基板Wの上面Waの被覆状態を撮像しておき、その撮像データをコントローラCtrに送信してもよい。 Next, the controller Ctr controls the rotation holding unit 10 to rotate the substrate W while holding the back surface of the substrate W by suction with the holding unit 13. In this state, the controller Ctr controls the supply unit 30 to supply the rinsing liquid L2 from the nozzle 34 to the upper surface Wa of the substrate W for a predetermined period of time (see step S5 in FIG. 6). At this time, the nozzle 34 may perform a scan-in operation or a scan-out operation. The rinsing liquid L2 supplied to the upper surface Wa of the substrate W spreads over the entire surface of the substrate W due to the rotation of the substrate W, and is shaken off from the periphery of the substrate W to the outside. Therefore, while the supply of the rinsing liquid L2 from the nozzle 34 continues, a liquid film of the rinsing liquid L2 is formed on the upper surface Wa of the substrate W. As a result, the upper surface Wa of the substrate W is cleaned. At this time, the imaging unit 40 captures an image of the covering state of the upper surface Wa of the substrate W with the rinsing liquid L2 when the upper surface Wa of the substrate W is supplied with the rinsing liquid L2, and transmits the imaged data to the controller Ctr. You may.
 ここで、図7に例示されるように、基板Wの上面Waにリンス液L2が供給される前の時点から、光センサ51~53によって照射箇所P1~P3に光を照射させておき、反射強度の変化を取得する(図6のステップS6参照)。リンス液L2が基板Wの径方向外方に向けて基板Wの上面Waを拡がっていくと、リンス液L2が照射箇所P1~P3をこの順に通過する。リンス液L2が照射箇所P1~P3を通過する前後では、基板Wの上面Waからの反射強度が大きく変化する。これは、リンス液L2の液膜の表面変動が激しく、光が乱反射するためであると推測される。他に、反射強度の変化の要因としては、処理液の種類、処理液の流量、処理液の液膜の厚さなどが考えられる。 Here, as illustrated in FIG. 7, before the rinsing liquid L2 is supplied to the upper surface Wa of the substrate W, light is irradiated to the irradiation points P1 to P3 by the optical sensors 51 to 53, and the light is reflected. Obtain the change in intensity (see step S6 in FIG. 6). When the rinsing liquid L2 spreads radially outward on the upper surface Wa of the substrate W, the rinsing liquid L2 passes through the irradiation points P1 to P3 in this order. Before and after the rinsing liquid L2 passes through the irradiation points P1 to P3, the intensity of reflection from the upper surface Wa of the substrate W changes significantly. It is presumed that this is because the surface of the liquid film of the rinsing liquid L2 fluctuates rapidly and the light is diffusely reflected. Other possible factors for changes in reflection intensity include the type of processing liquid, the flow rate of the processing liquid, and the thickness of the liquid film of the processing liquid.
 ここで、親水性の基板Wを用いて照射箇所P1~P3において反射強度を測定した結果を、図8及び図9に示す。親水性の基板Wは、具体的には、表面に熱酸化膜(Th-Ox)が形成された基板である。 Here, the results of measuring the reflection intensity at the irradiation points P1 to P3 using the hydrophilic substrate W are shown in FIGS. 8 and 9. Specifically, the hydrophilic substrate W is a substrate on which a thermal oxide film (Th-Ox) is formed.
 図8(a)は、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を200rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示している。図8(b)は、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を500rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示している。図8(c)は、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を1000rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示している。図8(d)は、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を1500rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示している。 FIG. 8(a) shows changes in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 200 rpm. . FIG. 8(b) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 500 rpm. . FIG. 8(c) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 1000 rpm. . FIG. 8(d) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 1500 rpm. .
 図9(a)は、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を200rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示している。図9(b)は、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を500rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示している。図9(c)は、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を1000rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示している。図9(d)は、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を1500rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示している。 FIG. 9(a) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 200 rpm. . FIG. 9(b) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 500 rpm. . FIG. 9(c) shows the change in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1000 rpm. . FIG. 9(d) shows changes in reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1500 rpm. .
 図8及び図9に示されるように、照射箇所P1~P3の順に、反射強度が急激に大きくなっている様子(反射強度が立ち上がっている様子)が見て取れる。すなわち、反射強度の立ち上がりの時点で、照射箇所P1~P3に処理液が到達したと判断することができる。そこで、図10に示されるように、反射強度の立ち上がりの時点と、照射箇所P1~P3の位置とをグラフにプロットし、近似直線を求めることで、当該近似直線の傾き(すなわち、処理液が照射箇所P1~P3に到達した時間差)から拡散速度を算出することができる(図6のステップS7参照)。 As shown in FIGS. 8 and 9, it can be seen that the reflection intensity increases rapidly (the reflection intensity rises) in the order of the irradiation points P1 to P3. That is, it can be determined that the processing liquid has reached the irradiation points P1 to P3 at the time when the reflection intensity rises. Therefore, as shown in FIG. 10, by plotting the rise of the reflection intensity and the positions of the irradiation points P1 to P3 on a graph and finding an approximate straight line, the slope of the approximate straight line (that is, the processing liquid The diffusion rate can be calculated from the difference in time between arrival at the irradiation points P1 to P3 (see step S7 in FIG. 6).
 図10(a)は、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を200rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の立ち上がり時点と、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を200rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の立ち上がり時点とを示している。図10(b)は、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を500rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の立ち上がり時点と、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を500rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の立ち上がり時点とを示している。 FIG. 10(a) shows the rise time of the reflection intensity at each of the irradiation points P1 to P3 and the rinse It shows the rise time of the reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 200 rpm. FIG. 10(b) shows the rising time of the reflection intensity at each of the irradiation points P1 to P3 and the rinse The figure shows the rise of the reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 500 rpm.
 図10(c)は、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を1000rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の立ち上がり時点と、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を1000rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の立ち上がり時点とを示している。図10(d)は、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を1500rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の立ち上がり時点と、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を1500rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の立ち上がり時点とを示している。 FIG. 10(c) shows the rise time of the reflection intensity at each of the irradiation points P1 to P3 and the rinse The figure shows the rise of the reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1000 rpm. FIG. 10(d) shows the rise time of the reflection intensity at each of the irradiation points P1 to P3 and the rinse The figure shows the rise of the reflection intensity at each of the irradiation points P1 to P3 when the discharge flow rate of the liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1500 rpm.
 なお、疎水性の基板Wを用いて、上記と同様に照射箇所P1~P3において反射強度を測定した結果を、上記の親水性の基板Wと比較しつつ、図11~図13に示す。図11(a)~(c)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を1000ml/minとし、基板Wの回転数を1000rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示している。図12(a)~(c)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を1000rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示している。図13(a)~(c)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を1000rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示している。 Note that using a hydrophobic substrate W, the results of measuring the reflection intensity at the irradiation points P1 to P3 in the same manner as above are shown in FIGS. 11 to 13 in comparison with the hydrophilic substrate W described above. 11(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1000 ml/min and the rotation speed of the substrate W is 1000 rpm. It shows changes in reflection intensity at each position of P1 to P3. FIGS. 12(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 1000 rpm. It shows changes in reflection intensity at each position of P1 to P3. 13(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1000 rpm. It shows changes in reflection intensity at each position of P1 to P3.
 疎水性の基板Wは、具体的には、DHF液(希フッ酸)を用いた表面処理により自然酸化膜が除去された後の、シリコン製の基板(いわゆる「ベアシリコン」)である。図11~図13に示されるように、疎水性の基板Wにおいても、照射箇所P1~P3の順に、反射強度が急激に大きくなっている様子(反射強度が立ち上がっている様子)が見て取れる。ただし、特に基板Wの回転数が遅くなるほど、照射箇所P3における反射強度の立ち上がりが親水性の基板Wよりも遅くなっていることが見て取れる。そのため、図14に示されるように、疎水性の基板Wは、親水性の基板Wと比較して、拡散速度が遅いことが確認された。 Specifically, the hydrophobic substrate W is a silicon substrate (so-called "bare silicon") after a natural oxide film has been removed by surface treatment using a DHF solution (dilute hydrofluoric acid). As shown in FIGS. 11 to 13, it can be seen that even on the hydrophobic substrate W, the reflection intensity increases rapidly (the reflection intensity rises) in the order of the irradiation points P1 to P3. However, it can be seen that especially as the rotation speed of the substrate W becomes slower, the rise of the reflection intensity at the irradiation point P3 becomes slower than that of the hydrophilic substrate W. Therefore, as shown in FIG. 14, it was confirmed that the hydrophobic substrate W has a slower diffusion rate than the hydrophilic substrate W.
 次に、コントローラCtrが、ステップS7において算出した拡散速度が、ステップS2において取得した許容範囲R内であるか否かを判断する(図6のステップS8参照)。コントローラCtrによる判断の結果、ステップS7において算出した拡散速度が、ステップS2において取得した許容範囲R内にない場合(図6のステップS8で「NO」を参照)、基板Wの処理が不適切である可能性がある。そのため、コントローラCtrは、当該不適切であるとの判断結果と共に、撮像部40により撮像された当該基板Wの処理中の撮像データ又は当該基板Wの処理条件を、記憶部M2に記憶させる(図6のステップS9参照)。この際、コントローラCtrは、拡散速度が許容範囲R内にない旨を示す警報を、図示しない報知部から報知するようにしてもよい(例えば、ディスプレイに警報を表示してもよいし、スピーカから警報音や警報案内を発してもよい)。ステップS9の後、基板Wの処理が完了する。その後、後続の基板Wの処理を中断してもよいし、不適切な基板Wの処理が行われた可能性のある液処理ユニットUとは別の液処理ユニットUを用いて後続の基板Wの処理を実行してもよい。 Next, the controller Ctr determines whether the diffusion rate calculated in step S7 is within the tolerance range R obtained in step S2 (see step S8 in FIG. 6). As a result of the judgment by the controller Ctr, if the diffusion rate calculated in step S7 is not within the tolerance range R obtained in step S2 (see "NO" in step S8 in FIG. 6), the processing of the substrate W is inappropriate. There is a possibility. Therefore, the controller Ctr stores the imaging data of the substrate W being processed or the processing conditions of the substrate W imaged by the imaging section 40 together with the inappropriate judgment result in the storage section M2 (Fig. (See step S9 of 6). At this time, the controller Ctr may issue an alarm indicating that the diffusion rate is not within the allowable range R from a notification section (not shown) (for example, the alarm may be displayed on a display, or from a speaker). (Alarm sounds and warning guidance may be issued). After step S9, processing of the substrate W is completed. Thereafter, the processing of the subsequent substrate W may be interrupted, or the subsequent substrate W may be processed using a liquid processing unit U that is different from the liquid processing unit U in which the inappropriate processing of the substrate W may have been performed. You may also perform the following processing.
 コントローラCtrによる判断の結果、ステップS7において算出した拡散速度が、ステップS2において取得した許容範囲R内である場合(図6のステップS8で「YES」を参照)、ステップS10に進む。ステップS10では、コントローラCtrが、ステップS7において算出した拡散速度が、ステップS2において取得した許容範囲Rにおける調整不要範囲Ra内であるか否かを判断する。コントローラCtrによる判断の結果、ステップS7において算出した拡散速度が、ステップS2において取得した許容範囲Rにおける調整不要範囲Ra内にない場合(図6のステップS10で「NO」を参照)、基板Wの処理条件を改善する余地がありうる。そのため、コントローラCtrは、後続の基板Wの処理条件を変更する(図6のステップS11参照)。ここで変更される処理条件としては、例えば、後続の基板Wの回転数、後続の基板Wに吐出される処理液の流量などが挙げられる。この際、ステップS9と同様に、コントローラCtrは、拡散速度が調整不要範囲Ra内でないとの判断結果と共に、撮像部40により撮像された当該基板Wの処理中の撮像データ又は当該基板Wの処理条件を、記憶部M2に記憶させてもよい。また、コントローラCtrは、上記と同様に、拡散速度が調整不要範囲Ra内でない旨を示す警報を、図示しない報知部から報知するようにしてもよい。ステップS11の後、基板Wの処理が完了する。その後、拡散速度が調整不要範囲Ra内でないとの判断結果が出た液処理ユニットUとは別の液処理ユニットUを用いて、変更後の処理条件にて後続の基板Wの処理を実行してもよい。あるいは、拡散速度が調整不要範囲Ra内でないとの判断結果が出た液処理ユニットUを用いて、変更後の処理条件にて後続の基板Wの処理を実行してもよい。 As a result of the determination by the controller Ctr, if the diffusion rate calculated in step S7 is within the tolerance range R obtained in step S2 (see "YES" in step S8 of FIG. 6), the process proceeds to step S10. In step S10, the controller Ctr determines whether the diffusion rate calculated in step S7 is within the adjustment-free range Ra in the allowable range R obtained in step S2. As a result of the judgment by the controller Ctr, if the diffusion rate calculated in step S7 is not within the adjustment-free range Ra in the tolerance range R obtained in step S2 (see "NO" in step S10 in FIG. 6), the diffusion rate of the substrate W is There may be room to improve processing conditions. Therefore, the controller Ctr changes the processing conditions for the subsequent substrate W (see step S11 in FIG. 6). Examples of the processing conditions that are changed here include the rotational speed of the subsequent substrate W, the flow rate of the processing liquid discharged onto the subsequent substrate W, and the like. At this time, similarly to step S9, the controller Ctr displays the imaged data of the substrate W being processed that was imaged by the imaging unit 40 or the processing of the substrate W, together with the judgment result that the diffusion rate is not within the adjustment unnecessary range Ra. The conditions may be stored in the storage unit M2. Further, the controller Ctr may issue a warning indicating that the diffusion rate is not within the adjustment-free range Ra from a notification unit (not shown), as described above. After step S11, processing of the substrate W is completed. Thereafter, a subsequent substrate W is processed under the changed processing conditions using a liquid processing unit U that is different from the liquid processing unit U for which it was determined that the diffusion rate is not within the adjustment unnecessary range Ra. You can. Alternatively, the subsequent processing of the substrate W may be performed under the changed processing conditions using the liquid processing unit U for which it has been determined that the diffusion rate is not within the adjustment unnecessary range Ra.
 コントローラCtrによる判断の結果、ステップS7において算出した拡散速度が、ステップS2において取得した許容範囲Rにおける調整不要範囲Ra内である場合(図6のステップS10で「YES」を参照)、基板Wの処理が適切に行われたと推定される。そのため、ステップS9の後、基板Wの処理が完了する。その後、同じ液処理ユニットUを用いて、同じ処理条件にて後続の基板Wの処理を実行してもよい。 As a result of the judgment by the controller Ctr, if the diffusion rate calculated in step S7 is within the adjustment-free range Ra in the tolerance range R obtained in step S2 (see "YES" in step S10 of FIG. 6), the diffusion rate of the substrate W is It is presumed that the processing was carried out appropriately. Therefore, after step S9, the processing of the substrate W is completed. Thereafter, a subsequent substrate W may be processed using the same liquid processing unit U under the same processing conditions.
 [作用]
 以上の例によれば、基板Wの表面を処理液がどの程度の早さで拡がっているのかを把握することができる。ここで、拡散速度は、基板Wの表面状態や液処理ユニットUの状態などに影響して変化しうる。拡散速度が極端に遅い場合には、例えば、基板Wの表面全体が処理液によって覆われていない可能性があるなどと判断できる。一方、拡散速度が極端に速い場合には、例えば、液処理ユニットUの不具合の可能性があったり、基板Wの表面状態の不具合の可能性があるなどと判断できる。そのため、拡散速度に基づいて基板Wの処理の適否を判断することにより、処理液による基板Wの表面の被覆状態を検出しつつ、基板Wの表面状態や液処理ユニットUの状態の良否を評価することが可能となる。また、カメラを用いて基板Wの表面状態を取得する場合と比較して、光センサ50を用いることにより、液処理ユニットUの大型化が抑制されると共に、扱うデータ量が少なく計算処理が簡素化される。そのため、処理液による基板Wの表面の被覆状態の検出と、基板Wの表面状態や液処理ユニットUの状態の良否の評価とを、低コストで実現することが可能となる。
[Effect]
According to the above example, it is possible to grasp how quickly the processing liquid is spreading over the surface of the substrate W. Here, the diffusion rate can change depending on the surface condition of the substrate W, the condition of the liquid processing unit U, and the like. If the diffusion rate is extremely slow, it can be determined, for example, that the entire surface of the substrate W may not be covered with the processing liquid. On the other hand, if the diffusion rate is extremely fast, it can be determined that, for example, there is a possibility of a problem with the liquid processing unit U or a problem with the surface condition of the substrate W. Therefore, by determining whether or not the processing of the substrate W is appropriate based on the diffusion rate, the state of the surface of the substrate W covered by the processing liquid can be detected, and the quality of the surface state of the substrate W and the state of the liquid processing unit U can be evaluated. It becomes possible to do so. Furthermore, compared to the case where the surface state of the substrate W is acquired using a camera, by using the optical sensor 50, the enlargement of the liquid processing unit U is suppressed, and the amount of data to be handled is small, making calculation processing simpler. be converted into Therefore, it is possible to detect the state of coating of the surface of the substrate W with the processing liquid and to evaluate the quality of the surface state of the substrate W and the state of the liquid processing unit U at low cost.
 以上の例によれば、キャリア7の記憶部7aから読み取られた基板Wの種類に関するデータと、記憶部M2に記憶されている対応情報とに基づいて許容範囲Rを取得し、算出した拡散速度が当該許容範囲R内であるか否かを判断している。この場合、基板Wの種類ごとに、処理液の拡散速度の許容範囲Rが適切に設定される。そのため、処理液による基板Wの上面Waの被覆状態の検出と、基板Wの表面状態や液処理ユニットUの状態の良否の評価とを、より精度よく実行することが可能となる。 According to the above example, the permissible range R is obtained based on the data regarding the type of substrate W read from the storage unit 7a of the carrier 7 and the correspondence information stored in the storage unit M2, and the diffusion rate is calculated. It is determined whether or not is within the permissible range R. In this case, the permissible range R of the diffusion rate of the processing liquid is appropriately set for each type of substrate W. Therefore, it becomes possible to detect the covering state of the upper surface Wa of the substrate W with the processing liquid and to evaluate the quality of the surface state of the substrate W and the state of the liquid processing unit U with higher accuracy.
 以上の例によれば、許容範囲Rは、調整不要範囲Raと、調整範囲Rbとを含み、算出した拡散速度が当該調整不要範囲Ra内であるか否かを判断している。この場合、基板Wの処理結果が良であると判断されても、拡散速度が調整範囲Rb内であると、基板Wの回転数又は処理液の流量が変更される。すなわち、後続の基板Wの処理結果がよりよくなるように、基板Wの処理条件が調整される。そのため、基板Wをより適切に処理することが可能となる。 According to the above example, the allowable range R includes the adjustment-free range Ra and the adjustment range Rb, and it is determined whether the calculated diffusion rate is within the adjustment-free range Ra. In this case, even if it is determined that the processing result of the substrate W is good, if the diffusion rate is within the adjustment range Rb, the rotation speed of the substrate W or the flow rate of the processing liquid is changed. That is, the processing conditions for the substrate W are adjusted so that the processing results for the subsequent substrates W are improved. Therefore, it becomes possible to process the substrate W more appropriately.
 以上の例によれば、基板Wの表面の被覆状態が不適切であると判断した場合、撮像部40により撮像された当該基板Wの処理中の撮像データ又は当該基板Wの処理条件を、当該不適切であるとの判断結果と共に記憶部M2に記憶させる。この場合、不適切であるとの判断結果が出たときの基板Wの処理の状況を、作業者が手間なく確認することが可能となる。 According to the above example, when it is determined that the coating state of the surface of the substrate W is inappropriate, the image data taken by the imaging unit 40 during processing of the substrate W or the processing conditions of the substrate W are It is stored in the storage unit M2 together with the judgment result that it is inappropriate. In this case, it becomes possible for the operator to easily check the processing status of the substrate W when the judgment result that it is inappropriate is obtained.
 [変形例]
 本明細書における開示はすべての点で例示であって制限的なものではないと考えられるべきである。特許請求の範囲及びその要旨を逸脱しない範囲において、以上の例に対して種々の省略、置換、変更などが行われてもよい。
[Modified example]
The disclosure herein should be considered to be illustrative in all respects and not restrictive. Various omissions, substitutions, changes, etc. may be made to the above examples without departing from the scope and gist of the claims.
 (1)液処理ユニットUにおいて、基板Wの処理は遮光された空間内において実行されてもよい。例えば、液処理ユニットUを構成する筐体が、遮光材料で構成されていてもよい。この場合、光センサ50を用いているので、光によって性質が変化しうる処理液を用いて基板Wを処理する際にも、拡散速度を算出できる。そのため、カメラを用いる場合と比較して、より多くの種類の処理液について、処理液による基板Wの表面の被覆状態を検出しつつ、基板Wの表面状態や液処理ユニットUの状態の良否を評価することが可能となる。 (1) In the liquid processing unit U, the processing of the substrate W may be performed in a light-shielded space. For example, the casing that constitutes the liquid processing unit U may be made of a light-shielding material. In this case, since the optical sensor 50 is used, the diffusion rate can be calculated even when the substrate W is processed using a processing liquid whose properties can be changed by light. Therefore, compared to the case where a camera is used, it is possible to detect the coating state of the surface of the substrate W with the processing liquid for more types of processing liquids, and to check whether the surface condition of the substrate W or the condition of the liquid processing unit U is good or bad. It becomes possible to evaluate.
 (2)上記の例では、基板Wにリンス液L2を供給している際に、光センサ50によってリンス液L2の拡散速度を算出し、基板Wの処理の適否を判断していた。しかしながら、基板Wに薬液L1を供給する場合も同様に、薬液L1の拡散速度を算出し、基板Wの処理の適否を判断してもよい。 (2) In the above example, when the rinsing liquid L2 is being supplied to the substrate W, the diffusion rate of the rinsing liquid L2 is calculated by the optical sensor 50, and the suitability of processing the substrate W is determined. However, in the case of supplying the chemical liquid L1 to the substrate W, the diffusion rate of the chemical liquid L1 may be similarly calculated to determine whether or not the processing of the substrate W is appropriate.
 (3)上記の例では、3つの光センサ51~53を用いて拡散速度を算出したが、少なくとも2つの光センサ50を用いて拡散速度を算出してもよい。 (3) In the above example, the diffusion rate was calculated using three optical sensors 51 to 53, but the diffusion rate may be calculated using at least two optical sensors 50.
 (4)基板Wの中心部から周縁に向けてノズル24,34がスキャンアウト動作をしながら、基板Wに処理液が供給される場合においても、光センサ50によって処理液の拡散速度を算出することができる。具体的には、ノズル24,34がスキャンアウト動作する場合には、処理液の蒸発により基板Wの中心部から乾燥していくので、乾燥の前後において反射強度が大きく変化する。そのため、当該変化に基づいて、処理液の蒸発速度が求められる。処理液の拡散速度が速いほど処理液の蒸発速度も速く、処理液の拡散速度が遅いほど処理液の蒸発速度も遅くなることから、結果として、処理液の蒸発速度を求めることにより、処理液の拡散速度が得られることとなる。 (4) Even when the processing liquid is supplied to the substrate W while the nozzles 24 and 34 perform a scan-out operation from the center of the substrate W toward the periphery, the diffusion speed of the processing liquid is calculated by the optical sensor 50. be able to. Specifically, when the nozzles 24 and 34 perform a scan-out operation, the substrate W dries from the center due to evaporation of the processing liquid, so the reflection intensity changes greatly before and after drying. Therefore, the evaporation rate of the processing liquid is determined based on the change. The faster the diffusion rate of the treatment liquid, the faster the evaporation rate of the treatment liquid, and the slower the diffusion rate of the treatment liquid, the slower the evaporation rate of the treatment liquid.As a result, by determining the evaporation rate of the treatment liquid, This results in a diffusion rate of .
 (5)ところで、図15に例示されるように、基板Wに供給された処理液が基板Wの径方向において均等に拡がらない場合があり得る。この場合、少なくとも4つの光センサ50を用いることで、処理液の不均等な拡がりを検出しうる。具体的には、第1の方向において並ぶ複数の照射箇所(図15の例では照射箇所P1~P3の3点)と、第2の方向において並ぶ複数の照射箇所(図15の例では照射箇所P4~P6の3点)とを設定する。第1の方向は、基板Wの径方向に沿って延びている。第2の方向は、基板Wの径方向に沿い且つ第1の方向と異なる方向に延びている。そして、第1の方向において並ぶ複数の照射箇所を通過するときの処理液の拡散速度と、第2の方向において並ぶ複数の照射箇所を通過するときの処理液の拡散速度とをそれぞれ算出して、これらの拡散速度の差を算出する。当該差が所定の閾値より大きい場合には、処理液の不均等な拡がりがあると判断することができる。 (5) By the way, as illustrated in FIG. 15, the processing liquid supplied to the substrate W may not spread evenly in the radial direction of the substrate W. In this case, by using at least four optical sensors 50, it is possible to detect uneven spread of the processing liquid. Specifically, a plurality of irradiation points lined up in the first direction (three irradiation points P1 to P3 in the example of FIG. 15) and a plurality of irradiation points lined up in the second direction (the irradiation points P1 to P3 in the example of FIG. 15) 3 points P4 to P6). The first direction extends along the radial direction of the substrate W. The second direction extends along the radial direction of the substrate W and in a direction different from the first direction. Then, the diffusion rate of the processing liquid when passing through the plurality of irradiation points arranged in the first direction and the diffusion rate of the processing liquid when passing through the plurality of irradiation points arranged in the second direction are calculated respectively. , calculate the difference in these diffusion rates. If the difference is larger than a predetermined threshold value, it can be determined that the treatment liquid is spread unevenly.
 (6)コントローラCtrは、算出した拡散速度を時系列に沿って並べて、いわゆるログとして記憶部M2に記憶させてもよい。コントローラCtrは、時間経過に伴い蓄積されていくログの情報に基づいて、拡散速度が将来的に許容範囲R外となると見込まれる時期を予測してもよい。例えば、ログを構成している複数の拡散速度が時間と共に徐々に大きくなっている場合には、それらの近似線を算出することで、将来的な拡散速度が許容範囲Rを上回る時期を予測してもよい。 (6) The controller Ctr may arrange the calculated diffusion rates in chronological order and store them in the storage unit M2 as a so-called log. The controller Ctr may predict when the diffusion rate is expected to fall outside the allowable range R in the future, based on log information that is accumulated over time. For example, if the multiple diffusion rates that make up the log gradually increase over time, by calculating their approximation lines, it is possible to predict when the future diffusion rate will exceed the allowable range R. You can.
 (7)ところで、疎水性の基板Wにおいては、処理条件によっては、基板Wの表面を処理液が被覆できない場合があり得る。この点について、疎水性の基板W及び親水性の基板Wを用いて、各種の処理条件にて基板Wを処理した結果を示す図16~図18を参照して説明する。 (7) By the way, in the case of a hydrophobic substrate W, depending on the processing conditions, there may be cases where the surface of the substrate W cannot be covered with the processing liquid. This point will be explained with reference to FIGS. 16 to 18, which show the results of processing the substrates W under various processing conditions using a hydrophobic substrate W and a hydrophilic substrate W.
 図16(a)~(c)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を1000rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示すグラフである。図16(d)~(f)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を1000rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示すグラフである。図16(g)~(i)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を1000ml/minとし、基板Wの回転数を1000rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示すグラフである。 16(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 1000 rpm. 3 is a graph showing changes in reflection intensity at each position of P1 to P3. FIGS. 16(d) to (f) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 1000 rpm. 3 is a graph showing changes in reflection intensity at each position of P1 to P3. 16(g) to (i) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1000 ml/min and the rotation speed of the substrate W is 1000 rpm. 3 is a graph showing changes in reflection intensity at each position of P1 to P3.
 図17(a)~(c)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を500rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示すグラフである。図17(d)~(f)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を500rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示すグラフである。図17(g)~(i)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を1000ml/minとし、基板Wの回転数を500rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示すグラフである。 17(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 500 rpm. 3 is a graph showing changes in reflection intensity at each position of P1 to P3. FIGS. 17(d) to (f) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 500 rpm. 3 is a graph showing changes in reflection intensity at each position of P1 to P3. 17(g) to (i) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1000 ml/min and the rotation speed of the substrate W is 500 rpm. 3 is a graph showing changes in reflection intensity at each position of P1 to P3.
 図18(a)~(c)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を2000ml/minとし、基板Wの回転数を200rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示すグラフである。図18(d)~(f)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を1500ml/minとし、基板Wの回転数を200rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示すグラフである。図18(g)~(i)は、疎水性の基板W及び親水性の基板Wにおいて、リンス液L2の吐出流量を1000ml/minとし、基板Wの回転数を200rpmとしたときの、照射箇所P1~P3のそれぞれの位置での反射強度の変化を示すグラフである。 18(a) to (c) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 2000 ml/min and the rotation speed of the substrate W is 200 rpm. 3 is a graph showing changes in reflection intensity at each position of P1 to P3. 18(d) to (f) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1500 ml/min and the rotation speed of the substrate W is 200 rpm. 3 is a graph showing changes in reflection intensity at each position of P1 to P3. 18(g) to (i) show the irradiation locations on a hydrophobic substrate W and a hydrophilic substrate W when the discharge flow rate of the rinse liquid L2 is 1000 ml/min and the rotation speed of the substrate W is 200 rpm. 3 is a graph showing changes in reflection intensity at each position of P1 to P3.
 図16における処理条件では、疎水性の基板W及び親水性の基板Wの双方において、反射強度は同等の変化を示している。一方、図17及び図18における処理条件では、基板Wの回転数が図16の処理条件よりも遅いため、疎水性の基板Wの周縁側において極めて低い反射強度が検出された(図17(h),(i)及び図18(c),(e),(f),(h),(i)参照)。すなわち、光センサ50を用いて反射強度の変化を取得することにより、処理液が基板Wの表面を被覆しているか否かを判断することができる。換言すれば、コントローラCtrは、光センサ50から受信した反射強度に基づいて、基板Wの表面の処理液による被覆状態を判断するように構成されていてもよい。この場合、基板Wの表面が処理液によって被覆されているか否かを、作業者による目視に頼ることなく、自動的に判別することが可能となる。 Under the processing conditions shown in FIG. 16, the reflection intensity shows the same change in both the hydrophobic substrate W and the hydrophilic substrate W. On the other hand, under the processing conditions in FIGS. 17 and 18, the rotation speed of the substrate W was slower than in the processing conditions in FIG. ), (i) and FIGS. 18(c), (e), (f), (h), (i)). That is, by acquiring changes in reflection intensity using the optical sensor 50, it can be determined whether the surface of the substrate W is coated with the processing liquid. In other words, the controller Ctr may be configured to determine the state of coating of the surface of the substrate W with the processing liquid based on the reflection intensity received from the optical sensor 50. In this case, it becomes possible to automatically determine whether the surface of the substrate W is coated with the processing liquid without relying on visual inspection by an operator.
 なお、図16に示されるように、処理液の流量又は基板Wの回転数が大きい場合には、基板Wの表面が処理液によって適切に覆われる傾向にある。しかしながら、一般的に、基板Wの処理条件は基板Wの種類に応じて予め決められており、全ての基板Wについて、処理液の流量を大きく設定したり、基板Wの回転数を大きく設定したりできない場合がある。特に、処理液の流量又は基板Wの回転数が大きい場合には、処理液が周囲に飛散したり、基板Wの表面近傍の気流の流れが乱れたりすることで、基板Wの表面にパーティクルなどが発生する懸念もある。そのため、基板Wの表面における処理液の被覆状態を事後的に自動的に検出することで、できる限り予め設定された処理条件の下で基板Wを処理することが可能となる。 Note that, as shown in FIG. 16, when the flow rate of the processing liquid or the rotation speed of the substrate W is large, the surface of the substrate W tends to be appropriately covered with the processing liquid. However, generally, the processing conditions for the substrate W are predetermined depending on the type of the substrate W, and for all the substrates W, the flow rate of the processing liquid is set high or the rotation speed of the substrate W is set high. It may not be possible to do so. In particular, when the flow rate of the processing liquid or the rotational speed of the substrate W is high, the processing liquid may be scattered around or the airflow near the surface of the substrate W may be disturbed, causing particles or the like to form on the surface of the substrate W. There are also concerns that this may occur. Therefore, by automatically detecting the coating state of the processing liquid on the surface of the substrate W after the fact, it becomes possible to process the substrate W under preset processing conditions as much as possible.
 [他の例]
 例1.基板処理装置の一例は、基板を保持しつつ回転させるように構成された回転保持部と、基板の表面に処理液を供給するように構成された供給部と、回転保持部に保持された基板の表面と重なるように設定された第1の照射箇所に向けて光を照射し、その反射光を受光するように構成された第1の光センサと、回転保持部に保持された基板の表面と重なり且つ第1の照射箇所よりも基板の径方向外側に位置するように設定された第2の照射箇所に向けて光を照射し、その反射光を受光するように構成された第2の光センサと、制御部とを備える。制御部は、回転保持部を制御して基板を回転させる第1の処理と、供給部を制御して、回転中の基板の表面に対して処理液を供給する第2の処理と、第1の照射箇所において第1の光センサが取得した反射光の強度の変化に基づいて、第1の照射箇所への処理液の到達を検出する第3の処理と、第2の照射箇所において第2の光センサが取得した反射光の強度の変化に基づいて、第2の照射箇所への処理液の到達を検出する第4の処理と、第1の照射箇所への処理液の到達時点と、第2の照射箇所への処理液の到達時点との時間差に基づいて、基板の表面における処理液の拡散速度を算出する第5の処理と、第5の処理で算出した拡散速度に基づいて、基板の処理の適否を判断する第6の処理とを実行するように構成されている。この場合、基板の表面を処理液がどの程度の早さで拡がっているのかを把握することができる。ここで、拡散速度は、基板の表面状態や基板処理装置の状態などに影響して変化しうる。拡散速度が極端に遅い場合には、例えば、基板の表面全体が処理液によって覆われていない可能性があるなどと判断できる。一方、拡散速度が極端に速い場合には、例えば、基板処理装置の不具合の可能性があったり、基板の表面状態の不具合の可能性があるなどと判断できる。そのため、拡散速度に基づいて基板の処理の適否を判断することにより、処理液による基板の表面の被覆状態を検出しつつ、基板の表面状態や基板処理装置の状態の良否を評価することが可能となる。また、カメラを用いて基板の表面状態を取得する場合と比較して、光センサを用いることにより、装置の大型化が抑制されると共に、扱うデータ量が少なく計算処理が簡素化される。そのため、処理液による基板の表面の被覆状態の検出と、基板の表面状態や基板処理装置の状態の良否の評価とを、低コストで実現することが可能となる。
[Other examples]
Example 1. An example of a substrate processing apparatus includes a rotating holding section configured to hold and rotate a substrate, a supply section configured to supply a processing liquid to the surface of the substrate, and a substrate held by the rotating holding section. a first optical sensor configured to irradiate light toward a first irradiation point set to overlap with the surface of the substrate and receive the reflected light; and a surface of the substrate held by the rotation holder. A second irradiation point configured to irradiate light toward a second irradiation point that overlaps with the first irradiation point and is located radially outward of the substrate, and to receive the reflected light. It includes an optical sensor and a control section. The control unit performs a first process of controlling the rotation holding unit to rotate the substrate, a second process of controlling the supply unit and supplying the processing liquid to the surface of the rotating substrate, and a first process of controlling the rotation holding unit to rotate the substrate. a third process of detecting the arrival of the treatment liquid at the first irradiation point based on a change in the intensity of the reflected light acquired by the first optical sensor at the irradiation point; a fourth process of detecting arrival of the processing liquid at the second irradiation location based on a change in the intensity of the reflected light acquired by the optical sensor; and a time point at which the processing liquid reaches the first irradiation location; A fifth process of calculating the diffusion rate of the treatment liquid on the surface of the substrate based on the time difference between the arrival time of the treatment liquid to the second irradiation location, and based on the diffusion rate calculated in the fifth process, The device is configured to execute a sixth process for determining suitability of processing the substrate. In this case, it is possible to grasp how quickly the processing liquid is spreading over the surface of the substrate. Here, the diffusion rate can change depending on the surface condition of the substrate, the condition of the substrate processing apparatus, and the like. If the diffusion rate is extremely slow, it can be determined that, for example, the entire surface of the substrate may not be covered with the processing liquid. On the other hand, if the diffusion rate is extremely fast, it can be determined that, for example, there is a possibility that there is a problem with the substrate processing apparatus or there is a possibility that there is a problem with the surface condition of the substrate. Therefore, by determining the suitability of substrate processing based on the diffusion rate, it is possible to evaluate the quality of the surface condition of the substrate and the condition of the substrate processing equipment while detecting the state of coating of the surface of the substrate with the processing liquid. becomes. Furthermore, compared to the case where the surface state of the substrate is obtained using a camera, by using an optical sensor, the size of the apparatus is suppressed, and the amount of data to be handled is small, and calculation processing is simplified. Therefore, it is possible to detect the state of coating of the surface of the substrate with the processing liquid and to evaluate the quality of the surface state of the substrate and the state of the substrate processing apparatus at low cost.
 例2.例1の装置は、基板の種類に関するデータと、当該種類を有する回転中の当該基板の表面に処理液を供給したときの、当該基板の表面における処理液の拡散速度の許容範囲とが対応付けられた対応情報を記憶するように構成された記憶部と、基板の種類を取得するように構成された取得部とをさらに備え、制御部は、取得部において取得された基板の種類と、記憶部に記憶されている対応情報とに基づいて、当該基板における許容範囲を取得する第7の処理をさらに実行するように構成されており、第6の処理は、第5の処理で算出した拡散速度が、第7の処理で取得した許容範囲内であるか否かを判断することを含んでいてもよい。この場合、基板の種類ごとに、処理液の拡散速度の許容範囲が適切に設定される。そのため、処理液による基板の表面の被覆状態の検出と、基板の表面状態や基板処理装置の状態の良否の評価とを、より精度よく実行することが可能となる。 Example 2. The device of Example 1 associates data regarding the type of substrate with the permissible range of the diffusion rate of the processing liquid on the surface of the substrate when the processing liquid is supplied to the surface of the rotating substrate of the type. The control unit further includes a storage unit configured to store the correspondence information obtained by the acquisition unit, and an acquisition unit configured to acquire the type of the board, and the control unit stores the type of board acquired by the acquisition unit and the storage unit. The device is configured to further execute a seventh process of acquiring an allowable range for the board based on the correspondence information stored in the part, and the sixth process is based on the diffusion calculated in the fifth process. The step may include determining whether the speed is within the allowable range obtained in the seventh process. In this case, the permissible range of the diffusion rate of the processing liquid is appropriately set for each type of substrate. Therefore, it becomes possible to detect the state of coating of the surface of the substrate with the processing liquid and to evaluate the quality of the surface state of the substrate and the state of the substrate processing apparatus with higher accuracy.
 例3.例2の装置において、許容範囲は、調整不要範囲と、調整範囲とを含み、調整範囲の上限は調整不要範囲の上限よりも大きく、調整範囲の下限は調整不要範囲の下限よりも小さく設定されており、制御部は、第6の処理において、第5の処理で算出した拡散速度が調整範囲内であると判断された場合に、回転保持部及び供給部の少なくとも一方を制御して、後続の基板の回転数及び後続の基板に吐出される処理液の流量の少なくとも一方を変更する第8の処理をさらに実行するように構成されていてもよい。この場合、基板の処理結果が良であると判断されても、拡散速度が調整範囲内であると、基板の回転数又は処理液の流量が変更される。すなわち、後続の基板の処理結果がよりよくなるように、基板の処理条件が調整される。そのため、基板をより適切に処理することが可能となる。 Example 3. In the device of Example 2, the allowable range includes an adjustment-free range and an adjustment range, and the upper limit of the adjustment range is set larger than the upper limit of the adjustment-free range, and the lower limit of the adjustment range is set smaller than the lower limit of the adjustment-free range. In the sixth process, when it is determined that the diffusion rate calculated in the fifth process is within the adjustment range, the control unit controls at least one of the rotation holding unit and the supply unit to prevent the subsequent The apparatus may be configured to further execute an eighth process of changing at least one of the rotational speed of the substrate and the flow rate of the processing liquid discharged to the subsequent substrate. In this case, even if it is determined that the processing result of the substrate is good, if the diffusion rate is within the adjustment range, the rotation speed of the substrate or the flow rate of the processing liquid is changed. That is, the processing conditions of the substrate are adjusted so that the processing results of subsequent substrates are better. Therefore, it becomes possible to process the substrate more appropriately.
 例4.例1~例3のいずれかの装置は、基板の表面に処理液が供給される様子を撮像するように構成された撮像部をさらに備え、制御部は、第6の処理において基板の表面の被覆状態が不適切であると判断した場合、撮像部により撮像された当該基板の処理中の撮像データ又は当該基板の処理条件を、当該不適切であるとの判断結果と共に記憶部に記憶させる第9の処理をさらに実行するように構成されていてもよい。この場合、不適切であるとの判断結果が出たときの基板の処理の状況を、作業者が手間なく確認することが可能となる。 Example 4. The apparatus according to any one of Examples 1 to 3 further includes an imaging section configured to take an image of how the processing liquid is supplied to the surface of the substrate, and the control section is configured to take an image of the surface of the substrate in the sixth process. If it is determined that the coating state is inappropriate, a storage unit stores the imaging data of the substrate during processing captured by the imaging unit or the processing conditions of the substrate together with the determination result that the coating state is inappropriate. It may be configured to further execute the process of step 9. In this case, it becomes possible for the operator to easily check the status of the substrate processing at the time when the judgment result that the processing was inappropriate was obtained.
 例5.例1~例4のいずれかの装置において、第1の光センサ及び第2の光センサは共にレーザセンサであり、第2の処理~第4の処理は遮光された空間内において実行されてもよい。この場合、レーザセンサを用いているので、光によって性質が変化しうる処理液を用いて基板を処理する際にも、拡散速度を算出できる。そのため、カメラを用いる場合と比較して、より多くの種類の処理液について、処理液による基板の表面の被覆状態を検出しつつ、基板の表面状態や基板処理装置の状態の良否を評価することが可能となる。 Example 5. In any of the devices of Examples 1 to 4, the first optical sensor and the second optical sensor are both laser sensors, and the second processing to the fourth processing may be performed in a light-shielded space. good. In this case, since a laser sensor is used, the diffusion rate can be calculated even when a substrate is processed using a processing liquid whose properties can be changed by light. Therefore, compared to the case of using a camera, it is possible to evaluate the quality of the surface condition of the substrate and the condition of the substrate processing equipment while detecting the state of coating of the surface of the substrate with the processing liquid for more types of processing liquids. becomes possible.
 例6.基板処理方法の一例は、回転保持部が基板を保持及び回転させつつ、供給部が基板の表面に処理液を供給する第1の工程と、第1の光センサによって回転中の基板の第1の照射箇所に向けて光を照射し、第1の光センサが取得した反射光の強度の変化に基づいて、第1の照射箇所への処理液の到達を検出する第2の工程と、第2の光センサによって回転中の基板の第2の照射箇所に向けて光を照射し、第2の光センサが取得した反射光の強度の変化に基づいて、第2の照射箇所への処理液の到達を検出する第3の工程であって、第2の照射箇所は第1の照射箇所よりも基板の径方向外側に位置する、第3の工程と、第1の照射箇所への処理液の到達時点と、第2の照射箇所への処理液の到達時点との時間差に基づいて、基板の表面における処理液の拡散速度を算出する第4の工程と、第4の工程で算出した拡散速度に基づいて、基板の処理の適否を判断する第5の工程とを含む。この場合、例1の装置と同様の作用効果が得られる。 Example 6. An example of a substrate processing method includes a first step in which a rotation holding section holds and rotates the substrate, and a supply section supplies a processing liquid to the surface of the substrate, and a first step in which a first optical sensor controls the substrate while it is being rotated. a second step of irradiating light toward the irradiation location and detecting arrival of the processing liquid to the first irradiation location based on a change in the intensity of the reflected light acquired by the first optical sensor; A second optical sensor irradiates light toward a second irradiation location on the rotating substrate, and a processing liquid is applied to the second irradiation location based on a change in the intensity of reflected light acquired by the second optical sensor. a third step of detecting the arrival of the treatment liquid to the first irradiation point, the second irradiation point being located radially outward of the substrate than the first irradiation point; a fourth step of calculating the diffusion rate of the treatment liquid on the surface of the substrate based on the time difference between the arrival time of the treatment liquid and the arrival time of the treatment liquid to the second irradiation location; and the diffusion rate calculated in the fourth step. and a fifth step of determining suitability of processing the substrate based on the speed. In this case, the same effects as the device of Example 1 can be obtained.
 例7.例6の方法は、基板の種類を取得する第6の工程と、第6の工程で取得した基板の種類と、対応情報とに基づいて、当該基板における許容範囲を取得する第7の工程とをさらに含み、対応情報は、基板の種類に関するデータと、当該種類を有する回転中の当該基板の表面に処理液を供給したときの、当該基板の表面における処理液の拡散速度の許容範囲とが対応付けられた情報であり、第5の工程は、第4の工程で算出した拡散速度が、第7の工程で取得した許容範囲内であるか否かを判断することを含んでいてもよい。この場合、例2の装置と同様の作用効果が得られる。 Example 7. The method of Example 6 includes a sixth step of acquiring the type of substrate, and a seventh step of acquiring the allowable range for the substrate based on the type of substrate acquired in the sixth step and the correspondence information. The correspondence information further includes data regarding the type of substrate and an allowable range of the diffusion rate of the processing liquid on the surface of the substrate when the processing liquid is supplied to the surface of the rotating substrate of the type. The fifth step may include determining whether the diffusion rate calculated in the fourth step is within the tolerance range obtained in the seventh step. . In this case, the same effects as the device of Example 2 can be obtained.
 例8.例7の方法において、許容範囲は、調整不要範囲と、調整範囲とを含み、調整範囲の上限は調整不要範囲の上限よりも大きく、調整範囲の下限は調整不要範囲の下限よりも小さく設定されており、第5の工程において、第4の工程で算出した拡散速度が調整範囲内であると判断された場合に、後続の基板の回転数及び後続の基板に吐出される処理液の流量の少なくとも一方を変更する第8の工程をさらに含んでいてもよい。この場合、例3の装置と同様の作用効果が得られる。 Example 8. In the method of Example 7, the allowable range includes an adjustment-free range and an adjustment range, and the upper limit of the adjustment range is set larger than the upper limit of the adjustment-free range, and the lower limit of the adjustment range is set smaller than the lower limit of the adjustment-free range. In the fifth step, if it is determined that the diffusion rate calculated in the fourth step is within the adjustment range, the rotation speed of the subsequent substrate and the flow rate of the processing liquid discharged to the subsequent substrate are adjusted. It may further include an eighth step of changing at least one of them. In this case, the same effects as the device of Example 3 can be obtained.
 例9.例6~例8のいずれかの方法は、第5の工程において基板の表面の被覆状態が不適切であると判断した場合、撮像部により撮像された当該基板の処理中の撮像データ又は当該基板の処理条件を、当該不適切であるとの判断結果と共に記憶部に記憶させる第9の工程をさらに含んでいてもよい。この場合、例4の装置と同様の作用効果が得られる。 Example 9. In any of the methods of Examples 6 to 8, if it is determined that the coating state of the surface of the substrate is inappropriate in the fifth step, the imaging data of the substrate during processing captured by the imaging unit or the substrate The processing condition may further include a ninth step of storing the processing condition in the storage unit together with the determination result that the processing condition is inappropriate. In this case, the same effects as the device of Example 4 can be obtained.
 例10.例6~例9のいずれか方法において、第1の光センサ及び第2の光センサは共にレーザセンサであり、第1の工程~第3の工程は遮光された空間内において実行されてもよい。この場合、例5の装置と同様の作用効果が得られる。 Example 10. In any of the methods of Examples 6 to 9, the first optical sensor and the second optical sensor may both be laser sensors, and the first to third steps may be performed in a light-blocked space. . In this case, the same effects as the device of Example 5 can be obtained.
 1…基板処理システム(基板処理装置)、4…載置部(取得部)、7…キャリア、7a…記憶部、10…回転保持部、20,30…供給部、40…撮像部、50…光センサ、Ctr…コントローラ(制御部)、M2…記憶部、P1~P3…照射箇所、R…許容範囲、Ra…調整不要範囲、Rb…調整範囲、U…液処理ユニット(基板処理装置)、W…基板、Wa…上面(表面)、Wb…下面(表面)。 DESCRIPTION OF SYMBOLS 1... Substrate processing system (substrate processing apparatus), 4... Placement part (acquisition part), 7... Carrier, 7a... Storage part, 10... Rotation holding part, 20, 30... Supply part, 40... Imaging part, 50... Optical sensor, Ctr...Controller (control unit), M2...Storage unit, P1-P3...Irradiation location, R...Tolerance range, Ra...Adjustment unnecessary range, Rb...Adjustment range, U...Liquid processing unit (substrate processing apparatus), W...substrate, Wa...top surface (front surface), Wb...bottom surface (front surface).

Claims (10)

  1.  基板を保持しつつ回転させるように構成された回転保持部と、
     前記基板の表面に処理液を供給するように構成された供給部と、
     前記回転保持部に保持された前記基板の表面と重なるように設定された第1の照射箇所に向けて光を照射し、その反射光を受光するように構成された第1の光センサと、
     前記回転保持部に保持された前記基板の表面と重なり且つ前記第1の照射箇所よりも前記基板の径方向外側に位置するように設定された第2の照射箇所に向けて光を照射し、その反射光を受光するように構成された第2の光センサと、
     制御部とを備え、
     前記制御部は、
      前記回転保持部を制御して前記基板を回転させる第1の処理と、
      前記供給部を制御して、回転中の前記基板の表面に対して処理液を供給する第2の処理と、
      前記第1の照射箇所において前記第1の光センサが取得した反射光の強度の変化に基づいて、前記第1の照射箇所への処理液の到達を検出する第3の処理と、
      前記第2の照射箇所において前記第2の光センサが取得した反射光の強度の変化に基づいて、前記第2の照射箇所への処理液の到達を検出する第4の処理と、
      前記第1の照射箇所への処理液の到達時点と、前記第2の照射箇所への処理液の到達時点との時間差に基づいて、前記基板の表面における処理液の拡散速度を算出する第5の処理と、
      前記第5の処理で算出した前記拡散速度に基づいて、前記基板の処理の適否を判断する第6の処理とを実行するように構成されている、基板処理装置。
    a rotation holding part configured to hold and rotate the substrate;
    a supply unit configured to supply a processing liquid to the surface of the substrate;
    a first optical sensor configured to irradiate light toward a first irradiation location set to overlap with a surface of the substrate held by the rotation holding unit and receive the reflected light;
    irradiating light toward a second irradiation location set to overlap the surface of the substrate held by the rotation holding unit and located radially outward of the substrate from the first irradiation location; a second optical sensor configured to receive the reflected light;
    It is equipped with a control section,
    The control unit includes:
    a first process of controlling the rotation holding unit to rotate the substrate;
    a second process of controlling the supply unit to supply a treatment liquid to the surface of the rotating substrate;
    a third process of detecting arrival of the processing liquid at the first irradiation location based on a change in the intensity of reflected light acquired by the first optical sensor at the first irradiation location;
    a fourth process of detecting arrival of the processing liquid at the second irradiation location based on a change in the intensity of reflected light acquired by the second optical sensor at the second irradiation location;
    a fifth step of calculating the diffusion rate of the processing liquid on the surface of the substrate based on the time difference between the time point at which the processing liquid reaches the first irradiation point and the time point at which the processing liquid reaches the second irradiation point; processing and
    A substrate processing apparatus configured to execute a sixth process of determining whether or not the substrate is to be processed based on the diffusion rate calculated in the fifth process.
  2.  前記基板の種類に関するデータと、当該種類を有する回転中の当該基板の表面に処理液を供給したときの、当該基板の表面における処理液の拡散速度の許容範囲とが対応付けられた対応情報を記憶するように構成された記憶部と、
     前記基板の種類を取得するように構成された取得部とをさらに備え、
     前記制御部は、
      前記取得部において取得された前記基板の種類と、前記記憶部に記憶されている前記対応情報とに基づいて、当該基板における許容範囲を取得する第7の処理をさらに実行するように構成されており、
     前記第6の処理は、前記第5の処理で算出した前記拡散速度が、前記第7の処理で取得した前記許容範囲内であるか否かを判断することを含む、請求項1に記載の装置。
    Correspondence information in which data regarding the type of the substrate is associated with an allowable range of the diffusion rate of the processing liquid on the surface of the substrate when the processing liquid is supplied to the surface of the rotating substrate of the type. a storage unit configured to store;
    further comprising an acquisition unit configured to acquire the type of the substrate,
    The control unit includes:
    Based on the type of the board acquired by the acquisition unit and the correspondence information stored in the storage unit, the seventh process is further configured to acquire an allowable range for the board. Ori,
    The sixth process includes determining whether the diffusion rate calculated in the fifth process is within the allowable range obtained in the seventh process. Device.
  3.  前記許容範囲は、調整不要範囲と、調整範囲とを含み、
     前記調整範囲の上限は前記調整不要範囲の上限よりも大きく、前記調整範囲の下限は前記調整不要範囲の下限よりも小さく設定されており、
     前記制御部は、前記第6の処理において、前記第5の処理で算出した前記拡散速度が前記調整範囲内であると判断された場合に、前記回転保持部及び前記供給部の少なくとも一方を制御して、後続の基板の回転数及び後続の基板に吐出される処理液の流量の少なくとも一方を変更する第8の処理をさらに実行するように構成されている、請求項2に記載の装置。
    The permissible range includes a no-adjustment range and an adjustment range,
    The upper limit of the adjustment range is set larger than the upper limit of the adjustment-free range, and the lower limit of the adjustment range is set smaller than the lower limit of the adjustment-free range,
    In the sixth process, the control unit controls at least one of the rotation holding unit and the supply unit when it is determined that the diffusion rate calculated in the fifth process is within the adjustment range. The apparatus according to claim 2, further configured to perform an eighth process of changing at least one of the rotational speed of the subsequent substrate and the flow rate of the processing liquid discharged to the subsequent substrate.
  4.  前記基板の表面に処理液が供給される様子を撮像するように構成された撮像部をさらに備え、
     前記制御部は、前記第6の処理において前記基板の表面の被覆状態が不適切であると判断した場合、前記撮像部により撮像された当該基板の処理中の撮像データ又は当該基板の処理条件を、当該不適切であるとの判断結果と共に記憶部に記憶させる第9の処理をさらに実行するように構成されている、請求項1~3のいずれか一項に記載の装置。
    further comprising an imaging unit configured to take an image of how the processing liquid is supplied to the surface of the substrate,
    When the control unit determines that the coating state of the surface of the substrate is inappropriate in the sixth process, the control unit controls the image data taken by the imaging unit during processing of the substrate or the processing conditions of the substrate. The apparatus according to any one of claims 1 to 3, wherein the apparatus is configured to further execute a ninth process of storing the determination result of inappropriateness in the storage unit.
  5.  前記第1の光センサ及び前記第2の光センサは共にレーザセンサであり、
     前記第2の処理~前記第4の処理は遮光された空間内において実行される、請求項1に記載の装置。
    Both the first optical sensor and the second optical sensor are laser sensors,
    The apparatus according to claim 1, wherein the second process to the fourth process are performed in a light-shielded space.
  6.  回転保持部が基板を保持及び回転させつつ、供給部が前記基板の表面に処理液を供給する第1の工程と、
     第1の光センサによって回転中の前記基板の第1の照射箇所に向けて光を照射し、前記第1の光センサが取得した反射光の強度の変化に基づいて、前記第1の照射箇所への処理液の到達を検出する第2の工程と、
     第2の光センサによって回転中の前記基板の第2の照射箇所に向けて光を照射し、前記第2の光センサが取得した反射光の強度の変化に基づいて、前記第2の照射箇所への処理液の到達を検出する第3の工程であって、前記第2の照射箇所は前記第1の照射箇所よりも前記基板の径方向外側に位置する、第3の工程と、
     前記第1の照射箇所への処理液の到達時点と、前記第2の照射箇所への処理液の到達時点との時間差に基づいて、前記基板の表面における処理液の拡散速度を算出する第4の工程と、
     前記第4の工程で算出した前記拡散速度に基づいて、前記基板の処理の適否を判断する第5の工程とを含む、基板処理方法。
    a first step in which a rotation holding unit holds and rotates the substrate, and a supply unit supplies a processing liquid to the surface of the substrate;
    A first optical sensor irradiates light toward a first irradiation location of the rotating substrate, and the first irradiation location is determined based on a change in the intensity of reflected light acquired by the first optical sensor. a second step of detecting arrival of the processing liquid to;
    A second optical sensor irradiates light toward a second irradiation location of the rotating substrate, and the second irradiation location is determined based on a change in the intensity of reflected light acquired by the second optical sensor. a third step of detecting arrival of the processing liquid to the substrate, the second irradiation location being located radially outward of the substrate from the first irradiation location;
    a fourth step of calculating the diffusion rate of the processing liquid on the surface of the substrate based on the time difference between the time point at which the processing liquid reaches the first irradiation point and the time point at which the processing liquid reaches the second irradiation point; The process of
    a fifth step of determining suitability of processing the substrate based on the diffusion rate calculated in the fourth step.
  7.  前記基板の種類を取得する第6の工程と、
     前記第6の工程で取得した前記基板の種類と、対応情報とに基づいて、当該基板における許容範囲を取得する第7の工程とをさらに含み、
     前記対応情報は、前記基板の種類に関するデータと、当該種類を有する回転中の当該基板の表面に処理液を供給したときの、当該基板の表面における処理液の拡散速度の許容範囲とが対応付けられた情報であり、
     前記第5の工程は、前記第4の工程で算出した前記拡散速度が、前記第7の工程で取得した前記許容範囲内であるか否かを判断することを含む、請求項6に記載の方法。
    a sixth step of acquiring the type of the substrate;
    further comprising a seventh step of acquiring an allowable range for the substrate based on the type of the substrate and correspondence information acquired in the sixth step,
    The correspondence information associates data regarding the type of the substrate with an allowable range of the diffusion rate of the processing liquid on the surface of the substrate when the processing liquid is supplied to the surface of the rotating substrate of the type. The information is
    The fifth step includes determining whether the diffusion rate calculated in the fourth step is within the tolerance range obtained in the seventh step. Method.
  8.  前記許容範囲は、調整不要範囲と、調整範囲とを含み、
     前記調整範囲の上限は前記調整不要範囲の上限よりも大きく、前記調整範囲の下限は前記調整不要範囲の下限よりも小さく設定されており、
     前記第5の工程において、前記第4の工程で算出した前記拡散速度が前記調整範囲内であると判断された場合に、後続の基板の回転数及び後続の基板に吐出される処理液の流量の少なくとも一方を変更する第8の工程をさらに含む、請求項7に記載の方法。
    The permissible range includes a no-adjustment range and an adjustment range,
    The upper limit of the adjustment range is set larger than the upper limit of the adjustment-free range, and the lower limit of the adjustment range is set smaller than the lower limit of the adjustment-free range,
    In the fifth step, if it is determined that the diffusion rate calculated in the fourth step is within the adjustment range, the rotation speed of the subsequent substrate and the flow rate of the processing liquid discharged to the subsequent substrate. 8. The method of claim 7, further comprising an eighth step of changing at least one of the.
  9.  前記第5の工程において前記基板の表面の被覆状態が不適切であると判断した場合、撮像部により撮像された当該基板の処理中の撮像データ又は当該基板の処理条件を、当該不適切であるとの判断結果と共に記憶部に記憶させる第9の工程をさらに含む、請求項6~8のいずれか一項に記載の方法。 If it is determined in the fifth step that the coating state of the surface of the substrate is inappropriate, the imaging data of the substrate during processing captured by the imaging unit or the processing conditions of the substrate are determined to be inappropriate. The method according to any one of claims 6 to 8, further comprising a ninth step of storing the determination result in the storage unit.
  10.  前記第1の光センサ及び前記第2の光センサは共にレーザセンサであり、
     前記第1の工程~前記第3の工程は遮光された空間内において実行される、請求項6に記載の方法。
    Both the first optical sensor and the second optical sensor are laser sensors,
    The method according to claim 6, wherein the first step to the third step are performed in a light-shielded space.
PCT/JP2023/022312 2022-06-24 2023-06-15 Substrate treatment device and substrate treatment method WO2023248927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022101682 2022-06-24
JP2022-101682 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023248927A1 true WO2023248927A1 (en) 2023-12-28

Family

ID=89379823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022312 WO2023248927A1 (en) 2022-06-24 2023-06-15 Substrate treatment device and substrate treatment method

Country Status (1)

Country Link
WO (1) WO2023248927A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000909A (en) * 1999-04-19 2001-01-09 Tokyo Electron Ltd Method for forming coating film and applicator
JP2006049630A (en) * 2004-08-05 2006-02-16 Tokyo Electron Ltd Coater and coating method
JP2007258658A (en) * 2006-02-24 2007-10-04 Tokyo Electron Ltd Method and device for detecting discharge of coating liquid, and program for detecting discharge of coating liquid
US20210109015A1 (en) * 2019-10-15 2021-04-15 Tokyo Electron Limited Systems and Methods for Monitoring One or More Characteristics of a Substrate
US20210129166A1 (en) * 2019-11-04 2021-05-06 Tokyo Electron Limited Systems and Methods for Spin Process Video Analysis During Substrate Processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000909A (en) * 1999-04-19 2001-01-09 Tokyo Electron Ltd Method for forming coating film and applicator
JP2006049630A (en) * 2004-08-05 2006-02-16 Tokyo Electron Ltd Coater and coating method
JP2007258658A (en) * 2006-02-24 2007-10-04 Tokyo Electron Ltd Method and device for detecting discharge of coating liquid, and program for detecting discharge of coating liquid
US20210109015A1 (en) * 2019-10-15 2021-04-15 Tokyo Electron Limited Systems and Methods for Monitoring One or More Characteristics of a Substrate
US20210129166A1 (en) * 2019-11-04 2021-05-06 Tokyo Electron Limited Systems and Methods for Spin Process Video Analysis During Substrate Processing

Similar Documents

Publication Publication Date Title
JP6351992B2 (en) Displacement detection apparatus, substrate processing apparatus, displacement detection method, and substrate processing method
JP4194495B2 (en) Coating / developing equipment
JP5841389B2 (en) Substrate processing apparatus and substrate processing method
JP3320640B2 (en) Cleaning equipment
TWI512805B (en) A foreign matter removing device, a foreign matter removing method, and a memory medium
KR20170098695A (en) Substrate processing method, substrate processing apparatus and readable computer storage medium
US20080031510A1 (en) Method of and apparatus for inspecting wafers in chemical mechanical polishing equipment
JP2019062011A (en) Substrate processing apparatus
JP2011146683A (en) Liquid treatment device, coating and developing device, coating and developing method, and storage medium
JP2015096830A (en) Substrate processing device and substrate processing method
WO2023248927A1 (en) Substrate treatment device and substrate treatment method
JP2009218402A (en) Substrate processing device and substrate processing method
JP2018129432A (en) Substrate processing method and substrate processing apparatus
JP2000164555A (en) Substrate drying device and method therefor
US7542134B2 (en) System, method and apparatus for in-situ substrate inspection
JP7004579B2 (en) Board processing equipment, board processing method and storage medium
JP5290837B2 (en) Substrate processing apparatus and substrate processing method
WO2024014294A1 (en) Substrate treatment device and film thickness estimation method
TW202405893A (en) Substrate processing device and substrate processing method
JP2013016698A (en) Substrate processing device, substrate processing method, and storage medium with program for executing substrate processing method recorded
JP2011187928A (en) Substrate processing method
JP2017118049A (en) Substrate processing apparatus, substrate processing method and storage medium
JP7455972B2 (en) How to operate substrate processing equipment
WO2023153174A1 (en) Substrate processing apparatus and monitoring method
JP2021141233A (en) Substrate processing equipment and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827113

Country of ref document: EP

Kind code of ref document: A1