WO2021244642A1 - 电池能量处理装置、方法及车辆 - Google Patents

电池能量处理装置、方法及车辆 Download PDF

Info

Publication number
WO2021244642A1
WO2021244642A1 PCT/CN2021/098397 CN2021098397W WO2021244642A1 WO 2021244642 A1 WO2021244642 A1 WO 2021244642A1 CN 2021098397 W CN2021098397 W CN 2021098397W WO 2021244642 A1 WO2021244642 A1 WO 2021244642A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
bridge arm
energy storage
storage element
switch
Prior art date
Application number
PCT/CN2021/098397
Other languages
English (en)
French (fr)
Inventor
廉玉波
凌和平
潘华
闫磊
谢飞跃
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP21816937.3A priority Critical patent/EP4163149A4/en
Priority to US18/008,091 priority patent/US20230238603A1/en
Priority to JP2022574363A priority patent/JP2023528627A/ja
Priority to KR1020237000221A priority patent/KR20230020507A/ko
Publication of WO2021244642A1 publication Critical patent/WO2021244642A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/42Voltage source inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/01Motors with neutral point connected to the power supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to the field of battery technology, and in particular to a battery energy processing device, method, and vehicle.
  • batteries can be used as power sources in various fields. Different environments where batteries are used as power sources will affect their performance. For example, the performance of the battery in a low temperature environment will be reduced to a greater extent than that at room temperature. For example, the discharge capacity of the battery at the zero point temperature will decrease as the temperature decreases. Under the condition of -30°C, the discharge capacity of the battery is basically 0, making the battery unusable. In order to be able to use the battery in a low-temperature environment, the battery needs to be heated.
  • the present disclosure aims to solve at least one of the technical problems existing in the related art.
  • the first objective of the present disclosure is to provide a battery energy processing device.
  • the second objective of the present disclosure is to propose a battery energy processing method.
  • the third purpose of the present disclosure is to propose a vehicle.
  • the first aspect of the embodiments of the present disclosure provides a battery energy processing device, including: a bridge arm converter, the first bus terminal of the bridge arm converter is connected to the positive electrode of the battery, and The second bus terminal of the bridge arm converter is connected to the negative electrode of the battery; a motor winding, the first end of the motor winding is connected with the midpoint of the bridge arm converter; an energy storage element, the energy storage element Are respectively connected to the second end of the motor winding and the second bus end; the controller is configured to charge and discharge the battery by controlling the bridge arm converter in the first preset state , In order to realize the heating of the battery.
  • the present disclosure provides a battery energy processing method, which includes: in a first preset state, by controlling the bridge arm converter to charge and discharge the battery to achieve heating of the battery, wherein the bridge The first bus end of the arm converter is connected to the positive pole of the battery, and the second bus end of the bridge arm converter is connected to the negative pole of the battery; the first end of the motor winding is connected to the middle of the bridge arm converter. Point connection; the energy storage element is respectively connected with the second end of the motor winding and the second confluence end.
  • the present disclosure provides a vehicle, including a battery, and further including the battery energy processing device provided in the above-mentioned first aspect.
  • a new circuit topology including the bridge arm converter, motor winding and energy storage element connected to the battery is designed.
  • the energy storage element is connected to the second end of the motor winding and the bridge arm converter respectively.
  • the second bus terminal is connected, and the bridge arm converter is connected to the battery and the motor windings.
  • Fig. 1 is a structural block diagram of a battery energy processing device according to an exemplary embodiment of the present disclosure.
  • Fig. 2 is a circuit topology diagram of an exemplary embodiment of the battery energy processing device shown in Fig. 1 according to the present disclosure.
  • 3 to 6 are schematic diagrams of the cyclic charging and discharging process of the battery energy processing device provided in FIG. 2 of the present disclosure in the first preset state.
  • FIG. 7 is a circuit topology diagram of another exemplary embodiment of the battery energy processing device shown in FIG. 2 according to the present disclosure.
  • FIGS. 8 and 9 are circuit topology diagrams of a battery energy processing device in a third preset state according to another exemplary embodiment of the present disclosure.
  • Fig. 10 is a circuit topology diagram of a battery energy processing device in a third preset state according to another exemplary embodiment of the present disclosure.
  • Fig. 11 shows a flowchart of a battery energy processing method according to an exemplary embodiment of the present disclosure.
  • the battery energy processing device may include: a bridge arm converter 20, the first bus terminal of the bridge arm converter 20 is connected to the positive electrode of the battery 10, and the second bus terminal of the bridge arm converter 20 is connected to The negative electrode of the battery 10 is connected; the motor winding 30, the first end of the motor winding 30 is connected to the midpoint of the bridge arm converter 20; the energy storage element 40, the energy storage element 40 is connected to the second end of the motor winding 30 and The second bus terminal is connected; the controller 50 is configured to charge and discharge the battery 10 by controlling the bridge arm converter 20 in the first preset state, so as to realize the heating of the battery 10.
  • the bridge arm converter 20 By designing a new circuit topology including the bridge arm converter 20, the motor winding 30 and the energy storage element 40 connected to the battery 10, specifically, the energy storage element 40 is connected to the second end of the motor winding 30 and the bridge arm converter 20 respectively.
  • the bridge arm converter 20 is connected to the battery 10 and the motor winding 30 respectively. Based on this circuit topology, in the first preset state, the bridge arm converter 20 is controlled to make the battery 10 charge and Discharge, due to the internal resistance of the battery 10, will cause the battery 10 itself to generate a lot of heat, which will cause the battery 10 to heat up and realize the heating of the battery 10.
  • the controller 50 in the first preset state, causes the energy storage element 40 and the battery 10 to charge and discharge.
  • the battery energy processing device may be configured in a vehicle, and therefore, the battery 10 may be a battery configured in a vehicle.
  • the battery energy processing device can also be configured in other equipment with batteries, which is not limited in the present disclosure.
  • the motor winding 30 may include a multi-phase winding, for example, a two-phase winding, or a three-phase winding shown in FIG. 2, and so on.
  • the bridge arm converter 20 may include multi-phase bridge arms, which correspond to the multi-phase windings in a one-to-one manner.
  • the motor winding 30 may include A-phase winding, B-phase winding and C-phase winding, each phase winding has its own first end and second end (in the plane direction shown in FIG. 2, the first The end is the left end, and the second end is the right end).
  • the first end of the A-phase winding, the first end of the B-phase winding, and the first end of the C-phase winding form the first end of the motor winding 30 and are used to connect the midpoint of the bridge arm converter 20.
  • the second end of the A-phase winding, the second end of the B-phase winding, and the second end of the C-phase winding are connected together to form the second end of the motor winding 30 for connecting the energy storage element 40.
  • the energy storage element 40 may be a capacitor.
  • the first preset state may be a battery heating state.
  • the user can trigger the vehicle to enter the battery heating state by triggering the battery heating switch according to actual needs.
  • the controller 50 may obtain a signal representing the battery temperature, and determine that the vehicle enters the battery heating state when the battery temperature is less than or equal to the battery temperature threshold. In the first preset state, the controller 50 can charge and discharge the energy storage element 40 and the battery 10 by controlling the bridge arm converter 20 to realize the heating of the battery 10.
  • the energy storage element 40 can store and release energy.
  • the first preset state by controlling the bridge arm converter 20, the direction of the current flowing through the motor winding 30 and the voltage across the energy storage element 40 can be controlled.
  • the charging and discharging between the energy storage element 40 and the battery 10 can be controlled. Due to the internal resistance of the battery, this charging and discharging process between the energy storage element 40 and the battery 10 will cause the battery itself to generate a large amount of heat, which will cause the battery to heat up and realize the heating of the battery.
  • the battery energy processing device can provide multiple control strategies for selection. That is, it not only provides the possibility for one phase winding to participate in the energy exchange between the energy storage element 40 and the battery 10, but also provides the possibility for the multiphase winding to participate in the energy exchange between the energy storage element 40 and the battery 10 .
  • the controller 50 can be configured with corresponding strategies according to actual heating requirements, so as to realize different heating efficiencies, and the flexibility and practicability are further enhanced.
  • the controller 50 in the first preset state, can charge and discharge the energy storage element 40 and the battery 10 by controlling at least one phase bridge arm of the bridge arm converter 20. That is to say, in an embodiment, the controller 50 can control a phase bridge arm in the bridge arm converter 20, such as the A phase bridge arm in FIG. 2, so that the winding corresponding to the phase bridge arm (for example, The phase A winding in 2) participates in the energy exchange between the energy storage element 40 and the battery 10 to realize the charging and discharging of the energy storage element 40 and the battery 10. In another embodiment, the controller 50 may control the multi-phase bridge arms in the bridge arm converter 20, for example, the A-phase bridge arm and the B-phase bridge arm in FIG.
  • the windings of the two-phase bridge arm are (For example, the A-phase winding and the B-phase winding in FIG. 2) participate in the energy exchange between the energy storage element 40 and the battery 10 to realize the charging and discharging of the energy storage element 40 and the battery 10.
  • the multi-phase bridge arms of the bridge arm converter 20 are controlled, the upper bridge arms of the controlled multi-phase bridge arms are turned on at the same time (in this state, the lower bridge arms of the multi-phase bridge arms are turned off at the same time), or, The lower bridge arms of the controlled multi-phase bridge arms are turned on at the same time (in this state, the upper bridge arms of the multi-phase bridge arms are turned off at the same time).
  • the multi-phase winding in the motor winding 30 can participate in the energy exchange between the energy storage element 40 and the battery 10, so that the current passing capacity can be increased, the battery heating rate can be improved, and the battery heating efficiency can be improved.
  • the controller 50 The three-phase bridge arms of the bridge-arm converter 20 can be controlled so that the upper bridge arms of the three-phase bridge arms are turned on at the same time, or the lower bridge arms of the three-phase bridge arms are turned on at the same time. Since the three-phase bridge arm control is exactly the same, the current vector inside the motor is zero, and there will be no torque pulsation, thereby improving the safety of the vehicle and the service life of the motor. At the same time, the three-phase windings jointly participate in the energy exchange between the energy storage element 40 and the battery 10, the current passing capacity is further increased, and the battery heating efficiency is further improved.
  • controller controls the bridge arm converter 20 to charge and discharge the energy storage element 40 and the battery 10 to realize the heating process and principle of the battery 10 with reference to FIGS. 3 to 6.
  • the controller 50 can control the upper bridge arm of the bridge arm converter 20 to turn on and the lower bridge arm to turn off.
  • the current flow in the battery energy processing device is as shown in FIG. 3.
  • the battery 10 is in an outwardly discharged state.
  • the voltage across the energy storage element 40 continues to increase to realize energy storage.
  • the controller 50 can control the lower bridge arm of the bridge arm converter 20 to turn on and the upper bridge arm to turn off.
  • the current flow in the battery energy processing device is as shown in FIG. 4.
  • the voltage across the energy storage element 40 continues to increase.
  • the current flowing out of the second end of the motor winding will gradually decrease.
  • the voltage across the energy storage element 40 reaches the maximum. At this time, the energy storage element 40 will automatically transform from receiving the energy of the motor winding 30 to releasing energy to the motor winding 30. Compared with the current flow direction shown in FIG. 4, the current flowing through the energy storage element 40 starts to reverse. The current flow in the battery energy processing device at this time is changed to the direction shown in FIG. 5. During this process, the voltage across the energy storage element 40 continuously decreases.
  • the controller can control the upper bridge arm of the bridge arm converter 20 to turn on and the lower bridge arm to turn off.
  • the current flow in the battery energy processing device is shown in FIG. 6.
  • the battery 10 is in a charged state.
  • the energy storage element 40 releases energy, and the voltage at both ends is continuously reduced.
  • the current flowing through the energy storage element 40 also gradually decreases.
  • the energy storage element 40 and the motor winding 30 automatically switch from releasing energy to the battery to receiving energy from the battery.
  • the current flow direction shown in 6 starts to reverse the current flowing through the energy storage element 40.
  • the current flow in the battery energy processing device returns to that shown in FIG. 3, and the battery 10 starts to discharge outward.
  • the above four processes can be continuously cycled, so that the energy storage element 40 and the battery 10 can be quickly charged and discharged in cycles. Due to the internal resistance of the battery, a large amount of heat is generated to make the battery heat up quickly and improve the heating efficiency of the battery. In addition, because the three-phase bridge arm control is exactly the same, the current vector inside the motor is zero, and there is no torque pulsation, thereby improving the safety of the vehicle and the service life of the motor.
  • the controller 50 can keep the upper bridge arm off and the lower bridge arm on during the process shown in FIG. 4 A relatively long time period, so that the energy storage element 40 can automatically transform from receiving the energy of the motor winding 30 to releasing energy to the motor winding 30, thereby completing the switch from the process shown in FIG. 4 to the process shown in FIG. 5.
  • the control bridge arm converter 20 is switched from the upper bridge arm turned off, the lower bridge arm is turned on to the upper bridge arm is turned on, and the lower bridge arm is turned off, the battery
  • the working state of the energy processing device will change to the process shown in FIG. 6.
  • the battery energy processing device can also be operated by turning off the upper bridge arm and conducting the lower bridge arm again. The state is switched from the process shown in FIG. 6 back to the process in FIG. 5 again, thereby realizing the cycle between the process shown in FIG. 5 and the process shown in FIG. 6.
  • the controller 50 can keep the upper bridge arm on and the lower bridge arm off during the process shown in FIG. 6 A relatively long time period, so that the energy storage element 40 and the motor winding 30 can automatically switch from releasing energy to the battery to receiving the energy of the battery, thereby completing the switching from the process shown in FIG. 6 to the process shown in FIG. 3.
  • the controller 50 may be configured to obtain the current flowing through the energy storage element 40 and/or the voltage across the energy storage element 40 in the first preset state, and according to the current and/or the voltage, The switching of the on-off state of the upper bridge arm and the lower bridge arm of the bridge arm converter 20 is controlled. In this way, the controller 50 can accurately determine the timing to switch the on-off state of the upper bridge arm and the lower bridge arm according to the current flowing through the energy storage element 40 and/or the voltage across the energy storage element 40, so as to realize the timing shown in Fig. 5 Switching from the shown process to the process shown in Fig. 6 and from the process shown in Fig. 3 to the process shown in Fig. 4 achieves the purpose of precise control.
  • controller 50 may be configured to: in the first preset state:
  • the upper bridge arm When the upper bridge arm is in the ON state and the current flowing through the energy storage element 40 reaches the first current threshold, and/or the voltage across the energy storage element 40 increases to the first voltage threshold, the upper bridge arm is controlled to be turned off, The lower bridge arm is turned on. For example, the process shown in FIG. 3 is switched to the process shown in FIG. 4.
  • the upper bridge arm is controlled to be turned on, The lower bridge arm is off.
  • the process shown in FIG. 5 is switched to the process shown in FIG. 6.
  • the current direction corresponding to the first current threshold is opposite to the current direction corresponding to the second current threshold.
  • the first current threshold, the second current threshold, the first voltage threshold, and the second voltage threshold can all be determined according to empirical data, or calibrated in advance according to experimental data, or determined according to a formula, where the formula can characterize each The corresponding relationship between the threshold and the environmental information.
  • the environmental information may include, for example, the duration of use of the battery, SOH information, battery temperature, environmental temperature, and so on. The above formula can be obtained through function fitting using data under different experimental conditions.
  • the energy storage element 40 and the motor winding 30 switch from releasing energy to the battery to receiving energy from the battery.
  • the process shown in FIG. 6 is switched to the process shown in FIG. 3.
  • the energy storage element 40 switches from receiving energy from the motor winding 30 to releasing energy to the motor winding 30 according to the conduction time of the lower bridge arm. For example, the process shown in FIG. 4 is switched to the process shown in FIG. 5.
  • the battery energy processing device may further include: a switch K1 connected in series with the energy storage element 40, and the switch K1 is connected between the second end of the motor winding 30 and the second confluence end of the bridge arm controller 20 .
  • the controller 50 may be configured to control the switch K1 to be turned on in the first preset state.
  • the battery energy processing device may further include a switch K2 and a switch K3.
  • the switch K2 is connected between the positive electrode of the battery 10 and the first bus terminal of the bridge arm converter 20; the switch K3 is connected between the negative electrode of the battery 10 and the second bus terminal of the bridge arm converter 20.
  • the controller 50 may be configured to control the switch K2 and the switch K3 to be turned on in the first preset state.
  • the controller 50 can control the bridge arm converter 20 to reduce the battery 10, until the current value becomes zero, the control switches K2 and K3 are turned off, and the bridge arm converter 20 is controlled to complete the discharge of the energy storage element 40.
  • control The switch K1 is controlled by the device 50 to be turned off, and the vehicle is restored to the parking state.
  • the controller 50 may also be configured to control the switch K1 to be turned off in the second preset state, and to control the bridge arm converter 20 to make the motor corresponding to the motor winding 30 output power.
  • the second preset state is the driving condition of the vehicle. If it is currently in a driving condition, the switch K1 needs to be kept open, and the controller 50 controls the bridge arm converter 20 to make the motor corresponding to the motor winding 30 output power to realize the vehicle driving function.
  • the switch K2 and the switch K3 are also kept closed.
  • the switch K1 serves as a switch between the battery heating mode and the vehicle driving mode.
  • the battery energy processing device provided by the present disclosure can have these two functions, namely, the battery heating function and the vehicle driving function.
  • the on-off state of the switch K1 is used to control which function the battery energy processing device provides. In this way, the practicability of the battery energy processing device is further improved.
  • the switch K1 when in the second preset state, the switch K1 is in an off state, and the bridge arm controller 20 drives the motor in a control manner of space vector pulse width modulation.
  • the switch K1 When switching from the second preset state to the first preset state, the switch K1 is closed to enter the battery heating process.
  • the controller 50 controls the bridge arm controller 20 in the manner described above in conjunction with FIGS. 3 to 6 to enable rapid cyclic charging and discharging between the energy storage element 40 and the battery 10 to complete the battery heating process.
  • the controller 50 can control the bridge arm converter 20 to reduce the charging and discharging current of the battery 10 until the current value becomes zero, and then, by controlling the bridge arm The converter 20 enables the energy storage element 40 to complete the discharge.
  • the controller 50 controls the switch K1 to be turned off, and the hardware circuit of the battery energy processing device is restored to the structure of the vehicle driving state, and then the controller 50 can adopt the control mode of space vector pulse width modulation to drive and control the motor, and the vehicle enters the driving state.
  • the aforementioned motor winding 30 may be a motor winding of a driving motor of a vehicle
  • the aforementioned bridge arm controller 20 may be a bridge arm controller of a driving motor.
  • the drive motor of the vehicle is reused to perform battery heating processing. Since the power of the driving motor is relatively large, the corresponding heating power is also relatively large during the heating process, which can increase the heating rate and increase the heating efficiency.
  • the energy storage element 40 may be a capacitor of a charging circuit of the vehicle.
  • the capacitor must not only meet the charging requirements, but also meet the heating requirements.
  • the energy storage element 40 also reuses the existing capacitors in the vehicle, and there is no need to provide additional components as the energy storage element 40, which further improves the utilization of the components in the vehicle, reduces the occupation of vehicle space, and reduces the cost of the entire vehicle. Conducive to the promotion of new energy vehicles.
  • a battery energy processing device can be built to realize battery heating.
  • only a switch K1 is needed to enable the battery energy processing device to have both battery heating function and vehicle driving function. Only by controlling the switch K1, the two states can be flexibly switched between the two states without the need for different configurations.
  • the hardware structure of the vehicle can improve the utilization rate of the components in the vehicle, reduce the occupation of the vehicle space, and reduce the cost of the entire vehicle, which is conducive to the promotion of new energy vehicles.
  • the two ends of the energy storage element 40 are connected with a first terminal 601 and a second terminal 602 to be externally connected to the power supply device 70, and the controller 50 can also be It is configured to control the bridge arm converter 20 in the third preset state so that the power supply device 70 can charge the battery through the battery energy processing device, and the power supply device 70 can boost or charge the battery through the battery energy processing device. Charge directly.
  • the battery energy processing device further includes a switch K1 and a switch K4. 8 and 9, the switch K1 is connected to the second end of the motor winding 30 and the first end of the energy storage element 40, and the first terminal 601 is connected to the first end of the energy storage element 40 and the switch K1, respectively.
  • the switch K4 is respectively connected to the second end of the energy storage element 40 and the second confluence end of the bridge arm controller 20, and the second terminal 602 is connected to the switch K4; the controller 50 can be configured to control The switch K1 and the switch K4 are turned on, and the power supply device 70 charges the battery 10 by controlling the bridge arm converter 20.
  • the battery energy processing device may further include a switch K2 and a switch K3.
  • the controller 50 also needs to control the switch K2 and the switch K3 to be turned on.
  • the third preset state mentioned above is the battery charging state.
  • the controller 50 can determine that the battery 10 is currently to be charged through the power supply device 70.
  • the controller 50 can control the switches K1 and K2. , K3 and K4 are turned on, and by controlling the turn-on and turn-off of the lower bridge arm of the bridge arm converter 20, the power supply device 70 boosts and charges the battery 10.
  • the upper and lower arms of the bridge arm converter 20 cannot be turned on at the same time; 2. One of them is turned on and the other is turned off.
  • the lower bridge arm is turned off, and the upper bridge arm is turned off, and the lower bridge arm is turned on; 3. One of them is turned off, and the other can be turned off or turned on. If the upper bridge arm is turned off, the lower bridge arm is turned off. Or turn on, the upper bridge arm is turned off and the upper bridge arm is turned off or on.
  • the controller 50 can control the lower bridge arm of the bridge arm converter 20 to close and the upper bridge arm to open. At this time, the current flows from the positive pole of the power supply device 70. After passing through the motor windings and the lower bridge arm, it flows to the negative pole of the power supply device 70, and the current continues to increase. After that, as shown in FIG. 9, the controller 50 can control the lower bridge arm of the bridge arm converter 20 to be opened, the upper bridge arm is closed, or the upper bridge arm is opened.
  • the current flows from the positive pole of the power supply device 70 and passes through the motor After winding and the upper bridge arm, it flows to the positive electrode of the battery to charge the battery, and the current from the negative electrode of the battery flows back to the negative electrode of the power supply device 70. It should be noted that in the state where the upper bridge arm is disconnected, the current flows through the diode of the upper bridge arm. Due to the energy storage function of the motor windings, the power supply device 70 can boost the charging of the battery 10.
  • the above-mentioned third preset state is the battery charging state.
  • the controller 50 can determine that the battery 10 is currently to be charged by the power supply device 70.
  • the controller 50 can control the switches K1, K2, and K3 and K4 are turned on, and the lower bridge arm of the bridge arm converter 20 is controlled to be turned off, the upper bridge arm is closed or the upper bridge arm is disconnected.
  • the current flows from the positive pole of the power supply device 70 and passes through the motor winding and the upper bridge. After the arm, it flows to the positive electrode of the battery to charge the battery, even if the power supply device 70 directly charges the battery 10. It should be noted that when the upper bridge arm is disconnected, current flows through the diode of the upper bridge arm.
  • the battery energy processing device provided by the present disclosure can provide three different functions based on the same hardware structure, namely, the battery heating function, the vehicle driving function, and the boost charging function. Only by controlling the on-off state of these switches, you can flexibly switch between these three states without configuring different hardware structures, thereby improving the utilization of components in the vehicle, reducing the occupation of vehicle space, and reducing the cost of the entire vehicle , Which is conducive to the promotion of new energy vehicles.
  • the controller 50 controls the bridge arm converter 20 to rapidly charge and discharge the energy storage element 40 and the battery 10 in a rapid cycle, thereby completing the battery heating process.
  • the power supply device 70 is connected to the first terminal 601 and the second terminal 602 of the battery energy processing device, and the battery is boosted and charged.
  • the present disclosure also provides a vehicle, including a battery, and further including the battery energy processing device described in any of the above embodiments.
  • a new circuit topology including the bridge arm converter 20, the motor winding 30 and the energy storage element 40 connected to the battery 10 is designed, specifically The energy storage element 40 is respectively connected to the second end of the motor winding 30 and the second bus end of the bridge arm converter 20, and the bridge arm converter 20 is respectively connected to the battery 10 and the motor winding 30.
  • the battery 10 In the first preset state, the battery 10 is charged and discharged by controlling the bridge arm converter 20. Due to the internal resistance of the battery 10, a large amount of heat will be generated by the battery 10 itself, which will cause the battery 10 to heat up and realize the battery 10 heating.
  • Fig. 11 is a flowchart showing a method for processing battery energy according to an exemplary embodiment of the present disclosure. As shown in Figure 11, the method may include:
  • the battery in the first preset state, the battery is charged and discharged by controlling the bridge arm converter to realize the heating of the battery.
  • the first bus terminal of the bridge arm converter 20 is connected to the positive electrode of the battery 10
  • the second bus terminal of the bridge arm converter 20 is connected to the negative electrode of the battery 10
  • the first terminal of the motor winding 30 is connected to the The midpoint of the bridge arm converter 20
  • the energy storage element 40 is respectively connected to the second end of the motor winding 30 and the second bus end of the bridge arm converter 20.
  • the bridge arm converter 20 By designing a new circuit topology including the bridge arm converter 20, the motor winding 30 and the energy storage element 40 connected to the battery 10, specifically, the energy storage element 40 is connected to the second end of the motor winding 30 and the bridge arm converter 20 respectively.
  • the bridge arm converter 20 is connected to the battery 10 and the motor winding 30 respectively. Based on this circuit topology, in the first preset state, the bridge arm converter 20 is controlled to make the battery 10 charge and Discharge, due to the internal resistance of the battery 10, will cause the battery 10 itself to generate a lot of heat, which will cause the battery 10 to heat up and realize the heating of the battery 10.
  • the energy storage element and the battery are charged and discharged.
  • the energy storage element can store and release energy.
  • the first preset state by controlling the bridge arm converter, the direction of the current flowing through the motor windings and the voltage across the energy storage element can be controlled.
  • the charging and discharging between the energy storage element and the battery can be controlled. Due to the internal resistance of the battery, this charging and discharging process between the energy storage element and the battery will cause the battery itself to generate a large amount of heat, which will cause the battery to heat up and realize the heating of the battery.
  • S701 may further include: controlling the bridge arm converter to perform cyclic charging and discharging of the energy storage element and the battery to realize the heating of the battery.
  • This kind of cyclic charging and discharging between the energy storage element and the battery will cause the battery to generate a lot of heat due to the internal resistance of the battery, thereby causing the battery to heat up quickly and achieving the purpose of improving the heating efficiency of the battery.
  • S701 may further include: in the first preset state, by controlling at least one phase bridge arm of the bridge arm converter to make the energy storage element and the battery Perform charging and discharging.
  • the battery energy processing method provided by the present disclosure can provide a variety of control strategies for selection, that is, it provides the possibility for one of the phase windings to participate in the energy exchange between the energy storage element and the battery. It also provides the possibility of making the multi-phase winding participate in the energy exchange between the energy storage element and the battery. In this way, corresponding strategic configurations can be made according to actual heating requirements, and thus different heating efficiencies can be realized, and flexibility and practicability can be further enhanced.
  • the upper arms of the multi-phase bridge arms are turned on at the same time, or the lower arms of the multi-phase bridge arms are turned on at the same time.
  • the bridge arms are turned on at the same time.
  • the multi-phase windings in the motor windings can participate in the energy exchange between the energy storage element and the battery, so that the current passing capacity can be increased, the battery heating rate can be improved, and the battery heating efficiency can be improved.
  • the three-phase bridge arms in the bridge-arm converter can be controlled so that the upper bridge arms of the three-phase bridge arms are turned on at the same time, or the lower bridge arms of the three-phase bridge arms are turned on at the same time. Since the three-phase bridge arm control is exactly the same, the current vector inside the motor is zero, and there will be no torque pulsation, thereby improving the safety of the vehicle and the service life of the motor. At the same time, the three-phase windings jointly participate in the energy exchange between the energy storage element and the battery, the current passing capacity is further increased, and the battery heating efficiency is further improved.
  • the charging and discharging of the energy storage element and the battery by controlling at least one phase bridge arm of the bridge arm converter includes: obtaining the flow through the storage The current of the energy element and/or the voltage across the energy storage element, and according to the current and/or the voltage, control the switching of the on-off state of the upper bridge arm and the lower bridge arm of the bridge arm converter.
  • the controlling the switching of the on-off state of the upper bridge arm and the lower bridge arm of the bridge arm converter according to the current and/or the voltage includes: The upper bridge arm is in the on state, and the current reaches the first current threshold, and/or, when the voltage increases to the first voltage threshold, the upper bridge arm is controlled to be turned off and the lower bridge arm is turned on; When the lower bridge arm is in the conducting state, and the current reaches the second current threshold, and/or the voltage decreases to the second voltage threshold, the upper bridge arm is controlled to be turned on and the lower bridge The arm is off; wherein the current direction corresponding to the first current threshold is opposite to the current direction corresponding to the second current threshold.
  • the timing for switching the on-off state of the upper bridge arm and the lower bridge arm can be accurately determined according to the current flowing through the energy storage element and/or the voltage across the energy storage element, so as to achieve the purpose of precise control.
  • the energy storage element and the motor winding are switched by releasing energy to the battery according to the conduction time of the upper bridge arm.
  • the energy storage element is switched from receiving the energy of the motor winding to the motor winding emit energy.
  • the energy storage element is connected in series with the first switch K1, and the first switch K1 is connected between the second end of the motor winding and the second confluence end of the bridge arm converter.
  • the method may further include: controlling the first switch K1 to be turned on in the first preset state.
  • the method may further include: in the second preset state, controlling the first switch K1 to be turned off and controlling the bridge arm converter to enable the motor corresponding to the motor winding to output power.
  • the first switch K1 serves as a switch between the battery heating mode and the vehicle driving mode.
  • the battery energy processing method provided by the present disclosure can realize the two functions, namely, the battery heating function and the vehicle driving function.
  • the on-off state of the switch K1 what kind of function the battery energy processing method provides, so that the practicability is further improved.
  • the first terminal and the second terminal are connected to both ends of the energy storage element to be externally connected to the power supply device.
  • the method may further include: in the third preset state, controlling the bridge arm converter so that the power supply device charges the battery through the motor winding.
  • the power supply device boosts and charges the battery through the motor windings.
  • the lower bridge arm of the bridge arm converter is periodically controlled to be turned on and off, so that all The power supply device boosts and charges the battery.
  • the power supply device directly charges the battery through the motor windings.
  • the lower bridge arm of the bridge arm converter is controlled to be turned off, so that the The power supply device directly charges the battery.
  • the battery energy processing method provided by the present disclosure can provide three different functions based on the same hardware structure, namely, the battery heating function, the vehicle driving function, and the boost charging function. Only by controlling the on-off state of the switch, you can flexibly switch between these three states without configuring different hardware structures, thereby improving the utilization of components in the vehicle, reducing the occupation of vehicle space, and reducing the cost of the entire vehicle. Conducive to the promotion of new energy vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Inverter Devices (AREA)

Abstract

本公开涉及一种电池能量处理装置、方法及车辆。该电池能量处理装置包括:桥臂变换器,该桥臂变换器的第一汇流端与电池的正极连接,该桥臂变换器的第二汇流端与电池的负极连接;电机绕组,该电机绕组的第一端与桥臂变换器的中点连接;储能元件,该储能元件分别与电机绕组的第二端和第二汇流端连接;控制器,被配置为在第一预设状态下,通过控制桥臂变换器,使电池进行充电和放电,以实现电池的加热。如此,可以控制电池充电和放电,由于电池内阻的存在,会使电池自身产生大量的热,致使电池升温,实现电池的加热。

Description

电池能量处理装置、方法及车辆
相关申请的交叉引用
本公开要求于2020年06月04日提交的申请号为202010502048.8、名称为“电池能量处理装置、方法及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池技术领域,特别涉及一种电池能量处理装置、方法及车辆。
背景技术
随着新能源的广泛使用,电池可作为动力源应用在各个领域中。电池作为动力源使用的环境不同,电池的性能也会受到影响。比如,在低温环境下的电池的性能较常温会产生较大程度的降低。例如,在零点温度下电池的放电容量会随温度的降低而降低。在-30℃的条件下,电池的放电容量基本为0,导致电池无法使用。为了能够在低温环境下使用电池,需要对电池进行加热。
发明内容
本公开旨在至少解决相关技术中存在的技术问题之一。
为此,本公开的第一个目的在于提出一种电池能量处理装置。
本公开的第二个目的在于提出一种电池能量处理方法。
本公开的第三个目的在于提出一种车辆。
为了实现上述目的,本公开实施例的第一方面,提供了一种电池能量处理装置,包括:桥臂变换器,所述桥臂变换器的第一汇流端与所述电池的正极连接,所述桥臂变换器的第二汇流端与所述电池的负极连接;电机绕组,所述电机绕组的第一端与所述桥臂变换器的中点连接;储能元件,所述储能元件分别与所述电机绕组的第二端和所述第二汇流端连接;控制器,被配置为在第一预设状态下,通过控制所述桥臂变换器,使所述电池进行充电和放电,以实现所述电池的加热。
第二方面,本公开提供一种电池能量处理方法,包括:在第一预设状态下,通过控制桥臂变换器,使电池进行充电和放电,实现所述电池的加热,其中,所述桥臂变换器的第一汇流端与所述电池的正极连接,所述桥臂变换器的第二汇流端与所述电池的负极连接;电机绕组的第一端与所述桥臂变换器的中点连接;所述储能元件分别与所述电机绕组的第 二端和所述第二汇流端连接。
第三方面,本公开提供一种车辆,包括电池,还包括上述第一方面提供的电池能量处理装置。
在上述技术方案中,通过设计与电池连接的包括桥臂变换器、电机绕组和储能元件的新的电路拓扑,具体的,储能元件分别与电机绕组的第二端和桥臂变换器的第二汇流端连接,桥臂变换器分别与电池及电机绕组连接,基于这样的电路拓扑,在第一预设状态下,通过控制桥臂变换器,使电池进行充电和放电,由于电池内阻的存在,会使电池自身产生大量的热,致使电池升温,实现电池的加热。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据本公开一示例性实施例示出的电池能量处理装置的结构框图。
图2是根据本公开图1示出的电池能量处理装置的一示例性实施例的电路拓扑图。
图3至图6是本公开图2提供的电池能量处理装置在第一预设状态下的循环充电和放电过程示意图。
图7是根据本公开图2示出的电池能量处理装置的另一示例性实施例的电路拓扑图。
图8和图9是根据本公开另一示例性实施例示出的电池能量处理装置在第三预设状态下的电路拓扑图。
图10是根据本公开又一示例性实施例示出的电池能量处理装置在第三预设状态下的电路拓扑图。
图11根据本公开一示例性实施例示出的电池能量处理方法的流程图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
如图1所示,该电池能量处理装置可以包括:桥臂变换器20,该桥臂变换器20的第一汇流端与电池10的正极连接,该桥臂变换器20的第二汇流端与电池10的负极连接;电机绕组30,该电机绕组30的第一端与桥臂变换器20的中点连接;储能元件40,该储能元件40分别与该电机绕组30的第二端和该第二汇流端连接;控制器50,被配置为在第一预设状态下,通过控制该桥臂变换器20,使该电池10进行充电和放电,以实现该电池10的 加热。
通过设计与电池10连接的包括桥臂变换器20、电机绕组30和储能元件40的新的电路拓扑,具体的,储能元件40分别与电机绕组30的第二端和桥臂变换器20的第二汇流端连接,桥臂变换器20分别与电池10及电机绕组30连接,基于这样的电路拓扑,在第一预设状态下,通过控制桥臂变换器20,使电池10进行充电和放电,由于电池10内阻的存在,会使电池10自身产生大量的热,致使电池10升温,实现电池10的加热。
在具体实施例中,在第一预设状态下,控制器50使储能元件40与电池10进行充电和放电。
该电池能量处理装置可以配置在车辆中,因此,该电池10可以为车辆中配置的电池。当然,该电池能量处理装置也可以配置在其他具有电池的设备中,本公开对此不进行限定。
在本公开提供的电池能量处理装置中,电机绕组30可以包括多相绕组,例如,两相绕组,或者图2中示出的三相绕组,等等。相应地,桥臂变换器20可以包括多相桥臂,与多相绕组一一对应。如图2所示,电机绕组30可以包括A相绕组、B相绕组及C相绕组,每相绕组均具有各自的第一端和第二端(在图2所示的平面方向中,第一端为左侧端,第二端为右侧端)。其中,A相绕组的第一端、B相绕组的第一端、C相绕组的第一端形成电机绕组30的第一端,用于连接桥臂变换器20的中点。另外,A相绕组的第二端、B相绕组的第二端、C相绕组的第二端共接以形成电机绕组30的第二端,用于连接储能元件40。
示例地,储能元件40可以为电容。该第一预设状态可以为电池加热状态。例如,用户可以根据实际需求,通过触发电池加热开关的方式来触发车辆进入到电池加热状态。或者,控制器50可以获取表征电池温度的信号,在电池温度小于或等于电池温度阈值时,确定车辆进入电池加热状态。在该第一预设状态下,控制器50可以通过控制该桥臂变换器20,使该储能元件40与该电池10进行充电和放电,以实现该电池10的加热。
在上述技术方案中,储能元件40可以进行能量的储存和释放。在第一预设状态下,通过控制桥臂变换器20,可以控制流经电机绕组30的电流的方向,以及储能元件40两端的电压。如此,可以控制储能元件40与电池10之间的充电和放电。由于电池内阻的存在,储能元件40与电池10间的这种充电和放电过程,会使电池自身产生大量的热,致使电池升温,实现电池的加热。此外,由于电机绕组30包括多相桥臂,桥臂变换器20包括多相桥臂,因此,在第一预设状态下,本公开提供的电池能量处理装置可以提供多种控制策略供选择,即,既提供了使其中一相绕组参与储能元件40与电池10之间的能量交换的可能性,也提供了使多相绕组参与储能元件40与电池10之间的能量交换的可能性。如此,可以根据实际的加热需求,对控制器50进行相应的策略配置,进而实现不同的加热效率,灵活性、实用性都进一步得以增强。
在本公开中,在第一预设状态下,控制器50可以通过控制桥臂变换器20中至少一相桥臂,使储能元件40与电池10进行充电和放电。也就是说,在一种实施例中,控制器50可以控制桥臂变换器20中的一相桥臂,例如图2中的A相桥臂,使得该相桥臂对应的绕组(例如,图2中的A相绕组)参与到储能元件40与电池10之间的能量交换,实现储能元件40与电池10的充电和放电。在另一种实施例中,控制器50可以控制桥臂变换器20中的多相桥臂,例如,图2中的A相桥臂和B相桥臂,使得该两相桥臂对应的绕组(例如,图2中的A相绕组和B相绕组)参与到储能元件40与电池10之间的能量交换,实现储能元件40与电池10的充电和放电。在桥臂变换器20的多相桥臂被控制时,被控制的多相桥臂的上桥臂同时导通(此状态下,该多相桥臂的下桥臂同时关断),或,被控制的多相桥臂的下桥臂同时导通(此状态下,该多相桥臂的上桥臂同时关断)。如此,可以使电机绕组30中的多相绕组参与储能元件40与电池10之间的能量交换,使得电流通过能力增大,可以提高电池加热速率,提高电池加热效率。
为了避免因电机的三相绕组存在电流,形成电流矢量并产生磁场,使得电机转子输出脉动扭矩,对电机寿命以及用车安全产生较大影响,因此,在本公开的实施方式中,控制器50可以控制桥臂变换器20中的三相桥臂,使得该三相桥臂的上桥臂同时导通,或者,该三相桥臂的下桥臂同时导通。由于三相桥臂控制完全一样,使得电机内部的电流矢量为零,不会存在扭矩脉动,从而提高用车安全,以及电机的使用寿命。同时,三相绕组共同参与到储能元件40与电池10之间的能量交换,电流通过能力进一步被增大,电池加热效率进一步被提高。
下面结合图3至图6来详细描述控制器如何通过控制桥臂变换器20,使储能元件40与电池10进行充电和放电,以实现该电池10的加热的过程及原理。
首先,控制器50可以控制桥臂变换器20的上桥臂导通、下桥臂关断,此时,电池能量处理装置中的电流流向如图3所示。在该过程中,电池10为向外放电状态。随着上桥臂导通时间的增加,储能元件40两端的电压不断增大,实现储能。
接下来,控制器50可以控制桥臂变换器20的下桥臂导通、上桥臂关断,此时,电池能量处理装置中的电流流向如图4所示。在该过程中,储能元件40两端的电压继续增大。不过,电机绕组的第二端流出的电流会逐渐减小。
当电机绕组的第二端流出的电流降为零时,储能元件40两端的电压达到最大。此时,储能元件40会自动从接收电机绕组30的能量变换为向电机绕组30释放能量,相比于图4所示的电流流向,流经储能元件40的电流开始反向。此时的电池能量处理装置中的电流流向变换为如图5所示的方向。在该过程中,储能元件40两端的电压不断减小。
之后,控制器可以控制桥臂变换器20的上桥臂导通、下桥臂关断,此时,电池能量处 理装置中的电流流向如图6所示。在该过程中,电池10为充电状态。储能元件40释放能量,两端电压不断降低。流经储能元件40的电流也逐渐减小。
随着储能元件40两端的电压不断降低,流经储能元件40的电流的不断减小,储能元件40和电机绕组30自动由向电池释放能量切换到接收电池的能量,相比于图6所示的电流流向,流经储能元件40的电流开始反向。此时,电池能量处理装置中的电流流向又回到如图3所示,电池10开始向外放电。
上述四个过程可以不断循环,使储能元件40与电池10之间能够快速进行循环式充电和放电。由于电池内阻的存在,产生大量的热使得电池快速升温,提高电池加热效率。此外,由于三相桥臂控制完全一样,使得电机内部的电流矢量为零,不会存在扭矩脉动,从而提高用车安全,以及电机的使用寿命。
如上所示,在图3所示的过程中,如果控制桥臂变换器20由上桥臂导通、下桥臂关断切换到上桥臂关断、下桥臂导通,则电池能量处理装置的工作状态会变换到图4所示的过程。之后,在储能元件40自动从接收电机绕组30的能量变换为向电机绕组30释放能量之前,也可以通过再次将上桥臂导通、下桥臂关断的方式,使电池能量处理装置的工作状态从图4所示的过程再次切换回图3的过程,从而实现图3所示的过程与图4所示的过程之间的循环。待这两个过程之间循环几次(该循环次数可以被预先设置)之后,控制器50可以在图4所示的过程中,使上桥臂关断、下桥臂导通的状态保持一相对较长的时长,以使储能元件40能够自动从接收电机绕组30的能量变换为向电机绕组30释放能量,从而完成从图4所示的过程切换到图5所示的过程。
此外,如上所示,在图5所示的过程中,如果控制桥臂变换器20由上桥臂关断、下桥臂导通切换到上桥臂导通、下桥臂关断,则电池能量处理装置的工作状态会变换到图6所示的过程。之后,在储能元件40和电机绕组30由向电池释放能量切换到接收电池的能量之前,也可以通过再次将上桥臂关断、下桥臂导通的方式,使电池能量处理装置的工作状态从图6所示的过程再次切换回图5的过程,从而实现图5所示的过程与图6所示的过程之间的循环。待这两个过程之间循环几次(该循环次数可以被预先设置)之后,控制器50可以在图6所示的过程中,使上桥臂导通、下桥臂关断的状态保持一相对较长的时长,以使储能元件40和电机绕组30能够自动由向电池释放能量切换到接收电池的能量,从而完成从图6所示的过程切换到图3所示的过程。
在本公开中,控制器50可以被配置为在第一预设状态下,获取流经储能元件40的电流和/或储能元件40两端的电压,并根据该电流和/或该电压,控制桥臂变换器20的上桥臂和下桥臂的通断状态的切换。如此,控制器50可以根据流经储能元件40的电流和/或储能元件40两端的电压,准确确定出切换上桥臂和下桥臂的通断状态的时机,以实现从图5 所示的过程到图6所示的过程的切换,以及从图3所示的过程到图4所示的过程的切换,达到精准控制的目的。
示例地,控制器50可以被配置为在第一预设状态下:
当上桥臂处于导通状态,且流经储能元件40的电流达到第一电流阈值,和/或,储能元件40两端的电压增加到第一电压阈值时,控制上桥臂关断、下桥臂导通。例如,由图3所示的过程切换到图4所示的过程。
当下桥臂处于导通状态,且流经储能元件40的电流达到第二电流阈值,和/或,储能元件40两端的电压减小到第二电压阈值时,控制上桥臂导通、下桥臂关断。例如,由图5所示的过程切换到图6所示的过程。
其中,第一电流阈值所对应的电流方向和第二电流阈值所对应的电流方向相反。值得说明的是,第一电流阈值、第二电流阈值、第一电压阈值和第二电压阈值均可以根据经验数据确定,或者根据实验数据提前标定得到,或者根据公式确定,其中该公式可以表征各阈值与环境信息之间的对应关系,当环境信息变化时,各阈值可以相应变化。其中,该环境信息可以例如包括电池的使用时长、SOH信息、电池温度、环境温度等等。可以利用不同实验条件下的数据,通过函数拟合获得上述公式。
此外,在上桥臂处于导通状态时,根据上桥臂的导通时间,储能元件40和电机绕组30由向电池释放能量切换到接收电池的能量。例如,由图6所示的过程切换到图3所示的过程。
以及,在下桥臂处于导通状态时,根据下桥臂的导通时间,储能元件40由接收电机绕组30的能量切换到向电机绕组30释放能量。例如,由图4所示的过程切换到图5所示的过程。
如图7所示,该电池能量处理装置还可以包括:与储能元件40串联的开关K1,该开关K1连接在电机绕组30的第二端和桥臂控制器20的第二汇流端之间。控制器50可以被配置为在第一预设状态下,控制开关K1导通。
此外,该电池能量处理装置还可以包括:开关K2、开关K3。其中,开关K2连接在电池10的正极与桥臂变换器20的第一汇流端之间;开关K3连接在电池10的负极与桥臂变换器20的第二汇流端之间。控制器50可以被配置为在第一预设状态下,控制开关K2、开关K3导通。
当电池加热完成,比如用户关闭了电池加热开关,或者电池温度满足电池加热可以停止的温度阈值条件,如果想要使车辆恢复停车状态,则控制器50可以控制桥臂变换器20,减小电池10的充电和放电电流,直至电流值变为零,控制开关K2、K3断开,通过控制桥臂变换器20,使得储能元件40完成泄放,当储能元件40泄放完成后,控制器50控制开 关K1断开,车辆恢复停车状态。
可选地,控制器50还可以被配置为在第二预设状态下,通过控制开关K1断开,并控制桥臂变换器20,使电机绕组30对应的电机输出功率。其中,该第二预设状态即为车辆的驱动工况。如果当前处于驱动工况,则开关K1需要保持断开,控制器50通过控制桥臂变换器20,使电机绕组30对应的电机输出功率,以实现车辆驱动功能。此外,在第二预设状态下,开关K2、开关K3也保持闭合。
如此,开关K1作为电池加热工况与车辆驱动工况之间的切换开关。通过设置该开关K1,可以使本公开提供的电池能量处理装置具有这两种功能,即,电池加热功能和车辆驱动功能。通过切换开关K1的通断状态,来控制该电池能量处理装置提供何种作用,如此,电池能量处理装置的实用性进一步得以提升。
具体地,当在第二预设状态时,开关K1处于断开状态,桥臂控制器20以空间矢量脉宽调制的控制方式对电机进行驱动。当从第二预设状态切换至第一预设状态时,闭合开关K1,进入电池加热过程。控制器50按照如上结合图3至图6描述的方式,控制桥臂控制器20,使储能元件40与电池10之间能够快速进行循环式充电和放电,进而完成电池加热过程。
当从第一预设状态切换至第二预设状态时,控制器50可以控制桥臂变换器20,减小电池10的充电和放电电流,直至电流值变为零,然后,通过控制桥臂变换器20,使得储能元件40完成泄放,当储能元件40泄放完成后,控制器50控制开关K1断开,电池能量处理装置的硬件电路恢复至车辆驱动状态的结构,然后控制器50可以采用空间矢量脉宽调制的控制方式对电机进行驱动控制,车辆进入行驶状态。
此外,在本公开的一实施例中,上述的电机绕组30可以为车辆的驱动电机的电机绕组,相应地,上述的桥臂控制器20可以为驱动电机的桥臂控制器。也就是说,在本公开提供的电池能量处理装置中,复用了车辆的驱动电机来进行电池加热处理。由于驱动电机的功率较大,因此,在加热过程中,对应的加热功率也较大,从而可以提升加热速率,提高加热效率。另外,由于复用了车辆上现有的驱动电机,无需额外提供专用电机,从而可以提高车辆中器件的利用率,减少车辆空间的占用,并降低车辆重量,降低了整车成本,有利于新能源汽车推广。
可选地,储能元件40可以为车辆的充电电路的电容。其中,该电容既要满足充电要求,也要满足加热要求。如此,储能元件40也复用了车辆中现有的电容,无需额外提供元件作为该储能元件40,进一步提高车辆中器件的利用率,减少车辆空间的占用,降低了整车成本,有利于新能源汽车推广。
此外,通过复用车辆的驱动电机、该驱动电机的桥臂控制器、以及充电电路的电容, 就可以搭建出电池能量处理装置以实现电池加热。并且,仅需增加一个开关K1,就可以使电池能量处理装置同时具有电池加热功能和车辆驱动功能,仅通过控制该开关K1,便可灵活地在这两种状态之间进行切换,无需配置不同的硬件结构,从而提高车辆中器件的利用率,减少车辆空间的占用,降低整车成本,有利于新能源汽车推广。
如图8、图9和图10所示,在电池能量处理装置中,储能元件40的两端连接有第一端子601和第二端子602以外接至供电设备70,控制器50还可以被配置为在第三预设状态下,控制桥臂变换器20,使供电设备70通过该电池能量处理装置对电池进行充电,可以使供电设备70通过该电池能量处理装置对电池进行升压充电或直接充电。
具体的,电池能量处理装置还包括开关K1和开关K4。其中,如图8和图9所示,开关K1分别连接电机绕组30的第二端和储能元件40的第一端,第一端子601分别与储能元件40的第一端和开关K1连接,开关K4分别与储能元件40的第二端和桥臂控制器20的第二汇流端连接,第二端子602连接开关K4;控制器50可以被配置为在第三预设状态下,控制开关K1和开关K4导通,并通过控制桥臂变换器20,使供电设备70为电池10充电。
电池能量处理装置还可以包括开关K2和开关K3,如此,在该第三预设状态下,控制器50也需控制开关K2和开关K3导通。
如图8和图9所示,上述的第三预设状态为电池充电状态。当第一端子601和第二端子602外接了供电设备70(例如,充电桩),控制器50可以确定当前要通过供电设备70为电池10充电,此时,控制器50可以控制开关K1、K2、K3和K4导通,并通过控制桥臂变换器20的下桥臂导通与关断,使供电设备70为电池10升压充电。
如本领域普通技术人员所知晓的,1、桥臂变换器20的上桥臂和下桥臂不能同时导通;2、其中一个导通,另一个就是关断的,如上桥臂导通则下桥臂关断,上桥臂关断则下桥臂导通;3、其中一个关断,另一个可以是关断的也可以是导通的,如上桥臂关断则下桥臂关断或导通,上桥臂关断则上桥臂关断或导通。
示例地,如图8所示,在第三预设状态下,控制器50可以控制桥臂变换器20的下桥臂闭合,上桥臂断开,此时,电流从供电设备70的正极流出,经过电机绕组和下桥臂后,流至供电设备70的负极,电流不断增加。之后,如图9所示,控制器50可以控制桥臂变换器20的下桥臂断开,上桥臂闭合或者上桥臂断开,此时,电流从供电设备70的正极流出,经过电机绕组和上桥臂后,流至电池正极对电池进行充电,电池负极电流流回至供电设备70负极。需要说明的是:在上桥臂断开的状态,电流流经上桥臂的二极管。由于电机绕组的储能作用,可以实现供电设备70对电池10的升压充电。
如图10所示,上述的第三预设状态为电池充电状态。当第一端子601和第二端子602外接了供电设备70,例如,充电桩,控制器50可以确定当前要通过供电设备70为电池10 充电,此时,控制器50可以控制开关K1、K2、K3和K4导通,并通过控制桥臂变换器20的下桥臂关断,上桥臂闭合或者上桥臂断开,此时,电流从供电设备70的正极流出,经过电机绕组和上桥臂后,流至电池正极对电池进行充电,即使供电设备70为电池10直接充电。需要说明的是,在上桥臂断开的状态,电流流经上桥臂的二极管。
如此,通过增加开关K1和开关K4,使得本公开提供的电池能量处理装置,可以基于同一硬件结构,提供三种不同的功能,即,电池加热功能、车辆驱动功能以及升压充电功能。仅通过控制这些开关的通断状态,便可灵活地在这三种状态之间进行切换,无需配置不同的硬件结构,从而提高车辆中器件的利用率,减少车辆空间的占用,降低整车成本,有利于新能源汽车推广。
当从第三预设状态切换至第一预设状态时,只需在充电过程完成之后,在硬件上将供电设备70与电池能量处理装置的第一端子601和第二端子602的连接断开,切换完成。还可以通过将开关K4断开,实现第三预设状态至第一预设状态的切换。然后,控制器50通过控制桥臂变换器20,使储能元件40与电池10之间快速进行循环式充电和放电,进而完成电池加热过程。
当从第一预设状态切换至第三预设状态时,由于储能元件40两端的电压是个不确定的变量,需要先通过控制桥臂控制器20将储能元件40的电压稳定到预设值,再将供电设备70接入电池能量处理装置的第一端子601和第二端子602,对电池进行升压充电。
本公开还提供一种车辆,包括电池,还包括上述任一实施例所述的电池能量处理装置。
在本公开提供的车辆中,包括上述任一实施例中的电池能量处理装置,通过设计与电池10连接的包括桥臂变换器20、电机绕组30和储能元件40的新的电路拓扑,具体的,储能元件40分别与电机绕组30的第二端和桥臂变换器20的第二汇流端连接,桥臂变换器20分别与电池10及电机绕组30连接,基于这样的电路拓扑,在第一预设状态下,通过控制桥臂变换器20,使电池10进行充电和放电,由于电池10内阻的存在,会使电池10自身产生大量的热,致使电池10升温,实现电池10的加热。
本公开还提供一种电池能量处理方法。图11是根据本公开一示例性实施例示出的电池能量处理方法的流程图。如图11所示,该方法可以包括:
在S701中,在第一预设状态下,通过控制桥臂变换器,使电池进行充电和放电,实现电池的加热。其中,如图1所示,桥臂变换器20的第一汇流端与电池10的正极连接,桥臂变换器20的第二汇流端与电池10的负极连接;电机绕组30的第一端与桥臂变换器20的中点连接;储能元件40分别与电机绕组30的第二端和桥臂变换器20的第二汇流端连接。
通过设计与电池10连接的包括桥臂变换器20、电机绕组30和储能元件40的新的电路拓扑,具体的,储能元件40分别与电机绕组30的第二端和桥臂变换器20的第二汇流端 连接,桥臂变换器20分别与电池10及电机绕组30连接,基于这样的电路拓扑,在第一预设状态下,通过控制桥臂变换器20,使电池10进行充电和放电,由于电池10内阻的存在,会使电池10自身产生大量的热,致使电池10升温,实现电池10的加热。
在具体实施例中,在第一预设状态下,通过控制桥臂变换器,使储能元件与电池进行充电和放电。
在上述技术方案中,储能元件可以进行能量的储存和释放。在第一预设状态下,通过控制桥臂变换器,可以控制流经电机绕组的电流的方向,以及储能元件两端的电压。如此,可以控制储能元件与电池之间的充电和放电。由于电池内阻的存在,储能元件与电池间的这种充电和放电过程,会使电池自身产生大量的热,致使电池升温,实现电池的加热。
在一种可选的实施方式中,S701可以进一步包括:通过控制所述桥臂变换器,使所述储能元件与所述电池进行循环式充电和放电,实现所述电池的加热。
储能元件与电池之间的这种循环式充电和放电,由于电池内阻的存在,会使得电池产生大量的热,从而使得电池快速升温,达到提高电池加热效率的目的。
在一种可选的实施方式中,S701可以进一步包括:在所述第一预设状态下,通过控制所述桥臂变换器中至少一相桥臂,使所述储能元件与所述电池进行充电和放电。
如此,在第一预设状态下,本公开提供的电池能量处理方法可以提供多种控制策略供选择,即,既提供了使其中一相绕组参与储能元件与电池之间的能量交换的可能性,也提供了使多相绕组参与储能元件与电池之间的能量交换的可能性。如此,可以根据实际的加热需求,进行相应的策略配置,进而实现不同的加热效率,灵活性、实用性都进一步得以增强。
在一种可选的实施方式中,在所述桥臂变换器的多相桥臂被控制时,所述多相桥臂的上桥臂同时导通,或,所述多相桥臂的下桥臂同时导通。
如此,可以使电机绕组中的多相绕组参与储能元件与电池之间的能量交换,使得电流通过能力增大,可以提高电池加热速率,提高电池加热效率。
为了避免因电机的三相绕组存在电流,形成电流矢量并产生磁场,使得电机转子输出脉动扭矩,对电机寿命以及用车安全产生较大影响,因此,在本公开的实施方式中,在上述方法中,可以控制桥臂变换器中的三相桥臂,使得该三相桥臂的上桥臂同时导通,或者,该三相桥臂的下桥臂同时导通。由于三相桥臂控制完全一样,使得电机内部的电流矢量为零,不会存在扭矩脉动,从而提高用车安全,以及电机的使用寿命。同时,三相绕组共同参与到储能元件与电池之间的能量交换,电流通过能力进一步被增大,电池加热效率进一步被提高。
在一种可选的实施方式中,所述通过控制所述桥臂变换器中至少一相桥臂,使所述储 能元件与所述电池进行充电和放电,包括:获取流经所述储能元件的电流和/或所述储能元件两端的电压,并根据所述电流和/或所述电压,控制所述桥臂变换器的上桥臂和下桥臂的通断状态的切换。
在一种可选的实施方式中,所述根据所述电流和/或所述电压,控制所述桥臂变换器的上桥臂和下桥臂的通断状态的切换,包括:当所述上桥臂处于导通状态,且所述电流达到第一电流阈值,和/或,所述电压增加到第一电压阈值时,控制所述上桥臂关断、所述下桥臂导通;当所述下桥臂处于导通状态,且所述电流达到第二电流阈值,和/或,所述电压减小到第二电压阈值时,控制所述上桥臂导通、所述下桥臂关断;其中,所述第一电流阈值所对应的电流方向和所述第二电流阈值所对应的电流方向相反。
如此,可以根据流经储能元件的电流和/或储能元件两端的电压,准确确定出切换上桥臂和下桥臂的通断状态的时机,达到精准控制的目的。
在一种可选的实施方式中,当所述上桥臂处于导通状态,根据所述上桥臂的导通时间,所述储能元件和所述电机绕组由向所述电池释放能量切换到接收所述电池的能量;当所述下桥臂处于导通状态,根据所述下桥臂的导通时间,所述储能元件由接收所述电机绕组的能量切换到向所述电机绕组释放能量。
在一种可选的实施方式中,储能元件与第一开关K1串联,该第一开关K1连接在电机绕组的第二端和桥臂变换器的第二汇流端之间。该方法还可以包括:在第一预设状态下,控制第一开关K1导通。
在一种可选的实施方式中,该方法还可以包括:在第二预设状态下,通过控制第一开关K1断开,并控制桥臂变换器,使电机绕组对应的电机输出功率。
如此,第一开关K1作为电池加热工况与车辆驱动工况之间的切换开关。通过设置该开关K1,可以使本公开提供的电池能量处理方法能够实现这两种功能,即,电池加热功能和车辆驱动功能。通过切换开关K1的通断状态,使得该电池能量处理方法提供何种作用,如此,实用性进一步得以提升。
在一种可选的实施方式中,所述储能元件的两端连接有第一端子和第二端子以外接至供电设备。该方法还可以包括:在第三预设状态下,控制桥臂变换器,使该供电设备通过电机绕组对电池进行充电。
具体的,该供电设备通过电机绕组对电池进行升压充电,此时,在第三预设状态下,通过周期性的控制所述桥臂变换器的下桥臂导通与关断,使所述供电设备为所述电池升压充电。
另一具体实施例中,该供电设备通过电机绕组对电池进行直接充电,此时,在所述第三预设状态下,通过控制所述桥臂变换器的下桥臂关断,使所述供电设备为所述电池直接 充电。
如此,本公开提供的电池能量处理方法,可以基于同一硬件结构,提供三种不同的功能,即,电池加热功能、车辆驱动功能以及升压充电功能。仅通过控制开关的通断状态,便可灵活地在这三种状态之间进行切换,无需配置不同的硬件结构,从而提高车辆中器件的利用率,减少车辆空间的占用,降低整车成本,有利于新能源汽车推广。
关于上述实施例中的方法,其中各个步骤的具体方式已经在有关装置的实施例中进行了详细描述,此处将不做详细阐述说明。
以上结合附图详细描述了本公开的具体实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (20)

  1. 一种电池能量处理装置,其特征在于,包括:
    桥臂变换器,所述桥臂变换器的第一汇流端与所述电池的正极连接,所述桥臂变换器的第二汇流端与所述电池的负极连接;
    电机绕组,所述电机绕组的第一端与所述桥臂变换器的中点连接;
    储能元件,所述储能元件分别与所述电机绕组的第二端和所述第二汇流端连接;
    控制器,被配置为在第一预设状态下,通过控制所述桥臂变换器,使所述电池进行充电和放电,以实现所述电池的加热。
  2. 根据权利要求1所述的电池能量处理装置,其特征在于,在所述第一预设状态下,所述控制器通过控制所述桥臂变换器中至少一相桥臂,使所述储能元件与所述电池进行充电和放电。
  3. 根据权利要求2所述的电池能量处理装置,其特征在于,在所述桥臂变换器的多相桥臂被控制时,所述多相桥臂的上桥臂同时导通,或,所述多相桥臂的下桥臂同时导通。
  4. 根据权利要求3所述的电池能量处理装置,其特征在于,所述控制器被配置为在所述第一预设状态下,获取流经所述储能元件的电流和/或所述储能元件两端的电压,并根据所述电流和/或所述电压,控制所述桥臂变换器的上桥臂和下桥臂的通断状态的切换。
  5. 根据权利要求4所述的电池能量处理装置,其特征在于,所述控制器被配置为在所述第一预设状态下,
    当所述上桥臂处于导通状态,且所述电流达到第一电流阈值,和/或,所述电压增加到第一电压阈值时,控制所述上桥臂关断、所述下桥臂导通;
    当所述下桥臂处于导通状态,且所述电流达到第二电流阈值,和/或,所述电压减小到第二电压阈值时,控制所述上桥臂导通、所述下桥臂关断;
    其中,所述第一电流阈值所对应的电流方向和所述第二电流阈值所对应的电流方向相反。
  6. 根据权利要求5所述的电池能量处理装置,其特征在于,当所述上桥臂处于导通状态,根据所述上桥臂的导通时间,所述储能元件和所述电机绕组由向所述电池释放能量切换到接收所述电池的能量;
    当所述下桥臂处于导通状态,根据所述下桥臂的导通时间,所述储能元件由接收所述电机绕组的能量切换到向所述电机绕组释放能量。
  7. 根据权利要求1所述的电池能量处理装置,其特征在于,还包括与所述储能元件串联的第一开关,所述第一开关连接在所述电机绕组的第二端和所述第二汇流端之间;
    所述控制器被配置为在所述第一预设状态下,控制所述第一开关导通。
  8. 根据权利要求7所述的电池能量处理装置,其特征在于,所述控制器还被配置为在第二预设状态下,通过控制所述第一开关断开,并控制所述桥臂变换器,使所述电机绕组对应的电机输出功率。
  9. 根据权利要求1所述的电池能量处理装置,其特征在于,所述储能元件的两端连接有第一端子和第二端子以外接至供电设备,所述控制器还被配置为在第三预设状态下,控制所述桥臂变换器,使所述供电设备通过所述电池能量处理装置对所述电池进行充电。
  10. 根据权利要求9所述的电池能量处理装置,其特征在于,还包括第一开关和第二开关,其中,所述第一开关分别连接所述电机绕组的第二端和所述储能元件,所述第一端子分别与所述储能元件和所述第一开关连接,所述第二开关分别与所述储能元件和所述第二汇流端连接,所述第二端子与所述第二开关连接;
    所述控制器被配置为在所述第三预设状态下,控制所述第一开关和所述第二开关导通,并通过控制所述桥臂变换器,使所述供电设备为所述电池充电。
  11. 根据权利要求10所述的电池能量处理装置,其特征在于,所述控制器被配置为在所述第三预设状态下,控制所述第一开关和所述第二开关导通,并通过周期性的控制所述桥臂变换器的下桥臂导通与关断,使所述供电设备为所述电池升压充电;或,
    所述控制器被配置为在所述第三预设状态下,控制所述第一开关和所述第二开关导通,并通过控制所述桥臂变换器的下桥臂关断,使所述供电设备为所述电池直接充电。
  12. 根据权利要求1至11中任一项所述的电池能量处理装置,其特征在于,所述控制器被配置为在所述第一预设状态下,通过控制所述桥臂变换器,使所述储能元件与所述电池进行循环式充电和放电,以实现所述电池的加热。
  13. 一种电池能量处理方法,其特征在于,包括:
    在第一预设状态下,通过控制桥臂变换器,使电池进行充电和放电,实现所述电池的加热,其中,所述桥臂变换器的第一汇流端与所述电池的正极连接,所述桥臂变换器的第二汇流端与所述电池的负极连接;电机绕组的第一端与所述桥臂变换器的中点连接;所述储能元件分别与所述电机绕组的第二端和所述第二汇流端连接。
  14. 根据权利要求13所述的方法,其特征在于,在所述第一预设状态下,通过控制所述桥臂变换器,使所述储能元件与所述电池进行充电和放电。
  15. 根据权利要求14所述的方法,其特征在于,所述通过控制桥臂变换器,使储能元件与电池进行充电和放电,包括:
    在所述第一预设状态下,通过控制所述桥臂变换器中至少一相桥臂,使所述储能元件与所述电池进行充电和放电,其中包括,在所述第一预设状态下,获取流经所述储能元件的电流和/或所述储能元件两端的电压,并根据所述电流和/或所述电压,控制所述桥臂变换器的上桥臂和下桥臂的通断状态的切换;
    其中,在所述桥臂变换器的多相桥臂被控制时,所述多相桥臂的上桥臂同时导通,或,所述多相桥臂的下桥臂同时导通。
  16. 根据权利要求15所述的方法,其特征在于,所述根据所述电流和/或所述电压,控制所述桥臂变换器的上桥臂和下桥臂的通断状态的切换,包括:
    当所述上桥臂处于导通状态,且所述电流达到第一电流阈值,和/或,所述电压增加到第一电压阈值时,控制所述上桥臂关断、所述下桥臂导通;
    当所述下桥臂处于导通状态,且所述电流达到第二电流阈值,和/或,所述电压减小到第二电压阈值时,控制所述上桥臂导通、所述下桥臂关断;
    其中,所述第一电流阈值所对应的电流方向和所述第二电流阈值所对应的电流方向相反;
    并且,当所述上桥臂处于导通状态,根据所述上桥臂的导通时间,所述储能元件和所述电机绕组由向所述电池释放能量切换到接收所述电池的能量;
    当所述下桥臂处于导通状态,根据所述下桥臂的导通时间,所述储能元件由接收所述电机绕组的能量切换到向所述电机绕组释放能量。
  17. 根据权利要求13所述的方法,其特征在于,所述储能元件与第一开关串联,所 述第一开关连接在所述电机绕组的第二端和所述第二汇流端之间;
    所述方法还包括:在所述第一预设状态下,控制所述第一开关导通;
    在第二预设状态下,通过控制所述第一开关断开,并控制所述桥臂变换器,使所述电机绕组对应的电机输出功率。
  18. 根据权利要求13所述的方法,其特征在于,所述储能元件的两端连接有第一端子和第二端子以外接至供电设备;
    所述方法还包括:在第三预设状态下,控制所述桥臂变换器,使所述供电设备通过所述电机绕组对所述电池进行充电;
    所述供电设备通过所述电机绕组对所述电池进行充电包括所述供电设备通过所述电机绕组对所述电池进行升压充电,其中,在第三预设状态下,通过周期性的控制所述桥臂变换器的下桥臂导通与关断,使所述供电设备为所述电池升压充电;或,
    所述供电设备通过所述电机绕组对所述电池进行充电包括所述供电设备通过所述电机绕组对所述电池进行直接充电,其中,在所述第三预设状态下,通过控制所述桥臂变换器的下桥臂关断,使所述供电设备为所述电池直接充电。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,所述通过控制桥臂变换器,使储能元件与电池进行充电和放电,实现所述电池的加热,包括:
    通过控制所述桥臂变换器,使所述储能元件与所述电池进行循环式充电和放电,实现所述电池的加热。
  20. 一种车辆,包括电池,其特征在于,还包括权利要求1至12中任一项所述的电池能量处理装置。
PCT/CN2021/098397 2020-06-04 2021-06-04 电池能量处理装置、方法及车辆 WO2021244642A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21816937.3A EP4163149A4 (en) 2020-06-04 2021-06-04 DEVICE AND METHOD FOR PROCESSING BATTERY ENERGY, AND VEHICLE
US18/008,091 US20230238603A1 (en) 2020-06-04 2021-06-04 Battery energy processing device and method, and vehicle
JP2022574363A JP2023528627A (ja) 2020-06-04 2021-06-04 電池のエネルギー処理装置及び方法、並びに車両
KR1020237000221A KR20230020507A (ko) 2020-06-04 2021-06-04 배터리 에너지 처리 디바이스 및 방법, 및 차량

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010502048.8 2020-06-04
CN202010502048.8A CN111391718B (zh) 2020-06-04 2020-06-04 电池能量处理装置、方法及车辆

Publications (1)

Publication Number Publication Date
WO2021244642A1 true WO2021244642A1 (zh) 2021-12-09

Family

ID=71425618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098397 WO2021244642A1 (zh) 2020-06-04 2021-06-04 电池能量处理装置、方法及车辆

Country Status (6)

Country Link
US (1) US20230238603A1 (zh)
EP (1) EP4163149A4 (zh)
JP (1) JP2023528627A (zh)
KR (1) KR20230020507A (zh)
CN (1) CN111391718B (zh)
WO (1) WO2021244642A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114572061A (zh) * 2022-03-17 2022-06-03 上海小至科技有限公司 具有电池预加热功能的车用电机系统及控制方法
WO2023226597A1 (zh) * 2022-05-25 2023-11-30 比亚迪股份有限公司 电池能量处理装置和车辆

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111391718B (zh) * 2020-06-04 2020-10-23 比亚迪股份有限公司 电池能量处理装置、方法及车辆
CN113506934B (zh) * 2021-06-24 2023-09-08 武汉理工大学 一种锂电池加热系统及加热方法
CN113571810B (zh) * 2021-07-23 2023-01-24 经纬恒润(天津)研究开发有限公司 电池加热系统
WO2023010898A1 (zh) * 2021-08-05 2023-02-09 宁德时代新能源科技股份有限公司 充放电电路、系统及其控制方法
CN114523854A (zh) * 2022-03-17 2022-05-24 上海小至科技有限公司 用于电池低温加热的车用电机系统、电动汽车、存储介质
CN117637639A (zh) * 2022-08-18 2024-03-01 比亚迪股份有限公司 电动总成和具有其的车辆
CN117673570A (zh) * 2022-08-31 2024-03-08 比亚迪股份有限公司 电池加热装置和车辆
CN218456098U (zh) * 2022-09-29 2023-02-07 比亚迪股份有限公司 电池自加热电路及车辆
CN117688786A (zh) * 2024-02-04 2024-03-12 吉林大学 单电机集中前驱式纯电汽车整车能量流闭环分析研究方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050324B2 (ja) * 2005-07-04 2012-10-17 トヨタ自動車株式会社 二次電池の制御装置
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN210225008U (zh) * 2019-08-15 2020-03-31 比亚迪股份有限公司 能量转换装置及车辆
CN110962631A (zh) * 2018-12-29 2020-04-07 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法
CN110962692A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统及其控制方法
CN111098760A (zh) * 2018-10-26 2020-05-05 法法汽车(中国)有限公司 用于为电动汽车的电池包加热的装置和方法及电动汽车
CN111391718A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 电池能量处理装置、方法及车辆

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491434B2 (ja) * 2006-05-29 2010-06-30 トヨタ自動車株式会社 電力制御装置およびそれを備えた車両
JP4441920B2 (ja) * 2007-11-22 2010-03-31 株式会社デンソー 電源装置
WO2012056543A1 (ja) * 2010-10-28 2012-05-03 トヨタ自動車株式会社 電動車両の電源装置およびその制御方法ならびに電動車両
DE102013200674A1 (de) * 2013-01-17 2014-07-17 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit einer elektrischen Maschine und zwei Teilbordnetzen
CN107394294B (zh) * 2017-07-20 2018-09-04 浙江谷神能源科技股份有限公司 用于锂离子电池充放电的系统、控制装置以及相关方法
CN108847513B (zh) * 2018-05-08 2020-07-24 北京航空航天大学 一种锂离子电池低温加热控制方法
CN108511822B (zh) * 2018-05-08 2020-09-11 北京航空航天大学 一种锂离子电池低温加热装置及电动汽车
CN110970690B (zh) * 2018-12-29 2021-01-29 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法
CN110970965B (zh) * 2019-06-24 2020-11-06 宁德时代新能源科技股份有限公司 开关控制装置及方法、电机控制器和电池组加热控制系统
KR20210027663A (ko) * 2019-08-30 2021-03-11 현대자동차주식회사 모터 구동 시스템을 이용한 배터리 승온 시스템 및 방법
CN110789400A (zh) * 2019-10-22 2020-02-14 上海交通大学 电池无线充电-加热一体化系统、控制方法及电池系统
EP4159517A4 (en) * 2020-05-27 2023-12-20 Denso Corporation POWER SUPPLY SYSTEM

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050324B2 (ja) * 2005-07-04 2012-10-17 トヨタ自動車株式会社 二次電池の制御装置
CN111098760A (zh) * 2018-10-26 2020-05-05 法法汽车(中国)有限公司 用于为电动汽车的电池包加热的装置和方法及电动汽车
CN110962631A (zh) * 2018-12-29 2020-04-07 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN110962692A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统及其控制方法
CN210225008U (zh) * 2019-08-15 2020-03-31 比亚迪股份有限公司 能量转换装置及车辆
CN111391718A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 电池能量处理装置、方法及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4163149A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114572061A (zh) * 2022-03-17 2022-06-03 上海小至科技有限公司 具有电池预加热功能的车用电机系统及控制方法
WO2023226597A1 (zh) * 2022-05-25 2023-11-30 比亚迪股份有限公司 电池能量处理装置和车辆

Also Published As

Publication number Publication date
CN111391718B (zh) 2020-10-23
EP4163149A4 (en) 2023-11-22
EP4163149A1 (en) 2023-04-12
KR20230020507A (ko) 2023-02-10
US20230238603A1 (en) 2023-07-27
CN111391718A (zh) 2020-07-10
JP2023528627A (ja) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2021244642A1 (zh) 电池能量处理装置、方法及车辆
CN111660875B (zh) 车辆、能量转换装置及其控制方法
WO2020125771A1 (zh) 电机控制电路、充放电方法、加热方法及车辆
EP2413464B1 (en) Battery heating circuit
CN113752875B (zh) 车辆电池加热装置和方法、车辆
WO2021244641A1 (zh) 电池能量处理装置、方法及车辆
WO2013107371A1 (en) Electric vehicle running control system
WO2023061278A1 (zh) 电池系统及供电系统
CN103066665A (zh) 一种动力锂离子电池模块的主动均衡电路及其均衡方法
WO2021238103A1 (zh) 电池能量处理装置和方法、车辆
CN213734669U (zh) 一种能量转换装置及车辆
WO2023226567A1 (zh) 动力电池充放电电路、系统及其控制方法和控制装置
CN113844334A (zh) 车辆、能量转换装置及其控制方法
CN111391717A (zh) 能量转换装置、方法及车辆
CN113928183A (zh) 车辆、能量转换装置及其控制方法
CN113067530B (zh) 能量转换装置及车辆
WO2023207495A1 (zh) 电池自加热装置、方法及车辆
CN218731293U (zh) 电池自加热电路及车辆
WO2023207481A1 (zh) 电池加热系统以及电动交通工具
CN113752909B (zh) 一种能量转换装置及车辆
WO2024045085A1 (zh) 电池加热拓扑电路及用电装置
WO2023226597A1 (zh) 电池能量处理装置和车辆
EP4108511A1 (en) System for charging vehicle battery using motor driving system
CN117656948A (zh) 电池自加热系统及车辆
CN113752913A (zh) 能量转换方法、装置和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574363

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237000221

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021816937

Country of ref document: EP

Effective date: 20230104