WO2021244641A1 - 电池能量处理装置、方法及车辆 - Google Patents

电池能量处理装置、方法及车辆 Download PDF

Info

Publication number
WO2021244641A1
WO2021244641A1 PCT/CN2021/098394 CN2021098394W WO2021244641A1 WO 2021244641 A1 WO2021244641 A1 WO 2021244641A1 CN 2021098394 W CN2021098394 W CN 2021098394W WO 2021244641 A1 WO2021244641 A1 WO 2021244641A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
bridge arm
energy
phase bridge
coils
Prior art date
Application number
PCT/CN2021/098394
Other languages
English (en)
French (fr)
Inventor
廉玉波
凌和平
闫磊
熊永
高文
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP21818937.1A priority Critical patent/EP4160862A4/en
Priority to KR1020227042993A priority patent/KR20230009443A/ko
Priority to JP2022574708A priority patent/JP2023528902A/ja
Publication of WO2021244641A1 publication Critical patent/WO2021244641A1/zh
Priority to US18/074,448 priority patent/US20230097027A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to the field of battery technology, and in particular to a battery energy processing device, method, and vehicle.
  • batteries can be used as power sources in various fields. Different environments where batteries are used as power sources will affect their performance. For example, the charging capacity of the battery will decrease as the temperature decreases at zero temperature. Therefore, there is a technical problem of low charging efficiency in a low temperature environment.
  • a battery heating function is proposed in the related technology to perform the battery charging function after raising the battery temperature.
  • the current battery heating function and battery charging function are implemented in time sharing. For this reason, the coordinated realization of the battery heating function and the battery charging function is a technical problem that needs to be solved urgently.
  • the present disclosure aims to solve at least one of the technical problems existing in the related art.
  • the first objective of the present disclosure is to provide a battery energy processing device.
  • the second objective of the present disclosure is to propose a battery energy processing method.
  • the third purpose of the present disclosure is to propose a vehicle.
  • a battery energy processing device including: an energy exchange interface; a first circuit, the first end of the first circuit is connected to the energy exchange interface, so The second end of the first circuit is connected to the battery; the second circuit, the first end of the second circuit is connected to the battery; an energy storage unit, the energy storage unit is connected to the second circuit of the second circuit Two-terminal connection; a controller configured to control the second circuit to charge and discharge the battery to heat the battery in a first preset state, and control the first circuit to receive data from The energy of the energy exchange interface is output to the battery to charge the battery.
  • a battery energy processing method including: in a first preset state, controlling a second circuit to charge and discharge the battery to heat the battery, and controlling The first circuit receives energy from the energy exchange interface and outputs it to the battery to charge the battery; wherein, the first end of the first circuit is connected to the energy exchange interface, and the second end of the first circuit Connected to the battery, the first end of the second circuit is connected to the battery, and the energy storage unit is connected to the second end of the second circuit.
  • a vehicle including a battery and the battery energy processing device according to the first embodiment of the present disclosure.
  • Fig. 1 is a schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • Fig. 2 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • Figures 3 to 6 show schematic diagrams of the working state of the first circuit.
  • Fig. 7 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • Fig. 8 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • Fig. 9 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • Fig. 10 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • Fig. 11 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • Fig. 12 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • FIG. 13 is a flowchart of a method for processing battery energy according to an embodiment of the present disclosure.
  • the battery energy processing device includes: an energy exchange interface 100; a first circuit 200, wherein a first end of the first circuit 200 is connected to the energy exchange interface 100, and a second end of the first circuit 200 is connected to the battery 300
  • the second circuit 400 in which the first end of the second circuit 400 is connected to the battery 300; the energy storage unit 500, in which the energy storage unit 500 is connected to the second end of the second circuit 400; the controller 600 is configured to In the first preset state, the second circuit 400 is controlled to charge and discharge the battery 300 to heat the battery 300, and the first circuit 200 is controlled to receive energy from the energy exchange interface 100 and output to the battery to achieve the battery 300 Charge.
  • the controller 600 controls the second circuit 400 to charge and discharge the energy storage unit 500 and the battery 300 to achieve heating of the battery 300.
  • the foregoing charging and discharging of the energy storage unit 500 and the battery 300 means that the battery provides energy to the energy storage unit 500 to discharge the battery 300, and the energy storage unit 500 provides energy to the battery 300 to charge the battery 300.
  • the first circuit 200 is configured to stabilize the voltage of the energy exchange interface 100 in the first preset state, and the voltage transmitted by the first circuit 200 to the battery 300 matches the voltage of the battery 300 in real time.
  • the first preset state refers to a state in which the battery 300 can be charged during self-heating.
  • the voltage at the end of the battery fluctuates, and by controlling the first circuit 200 to stabilize the voltage of the energy exchange interface 100, it is possible to avoid the influence of voltage fluctuations at both ends of the battery on the voltage at the energy exchange interface 100; on the other hand, due to the first circuit 200
  • the voltage transmitted to the battery 300 matches the voltage of the battery 300 in real time, so that the voltage transmitted from the first circuit 200 to the battery 300 can track the voltage of the battery 300 in real time, avoiding the failure of charging due to the inability to track the battery voltage, and thus can The battery is charged during the self-heating period.
  • the first circuit 200 is configured to stabilize the voltage of the energy exchange interface 100 in the first preset state so that the voltage of the energy exchange interface 100 will not be greatly jumped by the voltage generated at both ends of the battery when the battery is self-heated. Influence, the first circuit 200 is configured in the first preset state to make the input voltage of the battery 300 match the voltage of the battery 300 in real time, so that the battery voltage can be tracked in real time, and the charging failure caused by the inability to track the battery voltage can be avoided, for example, The charging pile exits the charging process.
  • the first circuit 200 includes: an M-phase bridge arm B1, wherein the first bus terminal of the M-phase bridge arm B1 is connected to the positive electrode of the battery 300, and the second bus terminal of the M-phase bridge arm B1 is connected to the negative electrode of the battery 300 ; M coils KM1, the first ends of the M coils KM1 are connected to the midpoint of the M-phase bridge arm B1 one by one, and the second ends of the M coils KM1 are connected together; the first capacitor C1, of which the first capacitor C1 The first end of the first end is connected to the second end of the M coils KM1, the second end of the first capacitor C1 is connected to the second bus end of the M-phase bridge arm B1, the first end of the first capacitor C1 and the second end of the first capacitor C1 The second ends are respectively connected to the energy exchange interface 100; wherein, M ⁇ 1.
  • the controller 600 controls all lower arms of the M-phase bridge arm B1 to be disconnected, and controls at least one upper bridge arm of the M-phase bridge arm B1 to be turned on. Then, the current flows from the positive electrode of the battery 300 and flows through in turn The conductive upper arm of the M-phase bridge arm B1, the coils connected to the conductive upper arm of the M coils KM1, and the first capacitor C1 return to the negative electrode of the battery 300. In this way, the battery 300 can be charged to the first capacitor C1. In addition, by controlling the number of conduction of the upper bridge arms and the conduction duty cycle, the size of the charging current and thus the size of the charging power can be controlled.
  • the M-phase bridge arm B1 includes three bridge arms a1, a2, and a3, and the coil KM1 includes three coils L1, L2, and L3.
  • One end of the coil L1 is connected to the midpoint of the bridge arm a1.
  • One end of L2 is connected to the midpoint of the bridge arm a2, and the coil L3 is connected to the midpoint of the bridge arm a3.
  • the controller 600 controls all the lower bridge arms of the bridge arms a1, a2, and a3 to be disconnected, controls the upper bridge arms of the bridge arms a1 and a2 to turn on and the upper bridge arm of the controller bridge arm a3 to disconnect, then the battery 300
  • the positive pole, the upper bridge arm of the bridge arm a1, the coil L1, the first capacitor C1 and the negative electrode of the battery 300 form a current circulation loop for charging the first capacitor C1.
  • the first capacitor C1 and the negative electrode of the battery 300 form a current circulating loop for charging the first capacitor C1.
  • the controller 600 controls all upper bridge arms of the M-phase bridge arm B1 to disconnect, and controls the lower bridge arm of the lower bridge arm of the M-phase bridge arm B1, which is connected to the coil with freewheeling current.
  • the freewheeling current flows in the loop formed by the conductive lower bridge arm, the coil connected to the conductive lower bridge arm, and the first capacitor. In this way, the energy in the coil with freewheeling current can be transferred to the first capacitor C1. It should be noted that in the state where the lower bridge arm is disconnected, current flows through the diode of the lower bridge arm.
  • the upper bridge arm and the lower bridge arm of the N-phase bridge arm B2 cannot be turned on at the same time; 2. One of the upper bridge arms is turned on, and the other is turned off, as the upper bridge arm is turned on The lower bridge arm is turned off, and the upper bridge arm is turned off, and the lower bridge arm is turned on; 3. One of them is turned off, and the other can be turned off or turned on. If the upper bridge arm is turned off, the lower bridge arm is turned off. Or turn on, the upper bridge arm is turned off and the upper bridge arm is turned off or on.
  • the target value can be obtained by reading information (including voltage level, maximum output current, etc.) of external power supply equipment such as charging piles.
  • the controller 600 controls at least one lower bridge arm of the M-phase bridge arm B1 to be turned on, and controls all the upper bridge arms of the M-phase bridge arm B1 to disconnect, and the current flows from the positive pole of the energy exchange interface 100 in turn.
  • the coil connected to the conductive lower bridge arm and the conductive lower bridge arm finally return to the negative pole of the energy exchange interface 100. In this way, it is possible to charge the coil with external power supply equipment such as a charging post.
  • the size of the charging current can be controlled, and then the size of the charging power can be controlled.
  • the controller 600 controls all the lower arms of the M-phase bridge arm B1 to be turned off, and controls the upper bridge arm of the M-phase bridge arm B1 that is connected to the coil with freewheeling current to turn on or off , Then, the current flows through the positive pole of the energy exchange interface 100, the coil connected to the conductive upper bridge arm, the conductive upper bridge arm, the positive pole of the battery 300, the negative pole of the battery 300, and finally returns to the energy exchange interface 100. negative electrode. In this way, it is possible to jointly charge the battery 300 by an external power supply device such as a charging pile and the coil KM1. It should be noted that in the state where the upper bridge arm is disconnected, the current flows through the diode of the upper bridge arm.
  • the controller 600 controls the turn-on and turn-off of the lower bridge arm of the M-phase bridge arm B1, so that the states of FIG. 5 and FIG.
  • the voltage average value of can be at least the voltage of the energy exchange interface 100. If the duty cycle of the lower bridge arm is increased, the voltage output by the first circuit 200 to the battery 300 will also increase accordingly.
  • the voltage output by the first circuit 200 to the battery 300 can be changed, so that the voltage output by the first circuit 200 to the battery 300 can track the voltage of the battery 300 in real time.
  • the second circuit 400 includes an N-phase bridge arm B2, wherein the first bus terminal of the N-phase bridge arm B2 is connected to the positive electrode of the battery 300, and the second bus terminal of the N-phase bridge arm B2 is connected to the negative electrode of the battery 300.
  • the energy storage unit 500 includes N coils KM2, the first ends of the N coils KM2 are connected to the midpoint of the N-phase bridge arm B2 in a one-to-one correspondence, and the second ends of the N coils KM2 are connected in common; where N ⁇ 1.
  • the controller 600 controls the N-phase bridge arm B2 to charge and discharge the N coils KM2 and the battery 300 to heat the battery 300, and controls the M-phase bridge arm B1 to allow the battery 300 to receive energy from The energy of the interface 100 is exchanged to charge the battery 300.
  • the process of using the first circuit 200 shown in FIG. 2 to charge the battery 300 has been described in detail in conjunction with FIGS. 3 to 6. Next, the process of heating the battery 300 using the N-phase bridge arm B2 and N coils KM2 in FIG. 2 in the first preset state will be described.
  • the coil KM2 is used as a current-limiting buffer device to control the conduction mode of the N-phase bridge arm B2, and at the same time, adjust the duty cycle of the turned-on bridge arm to control the phase current of the battery loop, so that the internal resistance of the battery heats up to drive the battery temperature Raise, realize the controllable temperature rise of the battery 300.
  • the N coils KM2 are motor windings (for example, the motor windings of a driving motor), and the N-phase bridge arm B2 is a bridge arm converter. That is, the existing motor windings and bridge arm converters on the vehicle are multiplexed, so that different functions can be implemented according to needs.
  • the N coils KM2 and the N-phase bridge arm B2 can be Used in various self-heating processes described in this disclosure; when the vehicle needs to be driven, the N coils KM2 and the N-phase bridge arm B2 can be switched to control the bridge arm B2 to make the motor output power corresponding to the motor windings, Further driving the vehicle, that is, the controller 600 is also configured to, in the fourth preset state, control the bridge arm converter to output power from the motor corresponding to the motor winding.
  • the fourth preset state refers to the motor drive state. In this way, by multiplexing the vehicle motor windings and the bridge arm converter, different functions can be realized as required, and the vehicle cost can also be saved.
  • Fig. 7 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • the energy storage unit 500 further includes a second capacitor C2, wherein the first end of the second capacitor C2 is connected to the second end of the N coils KM2, and the second end of the second capacitor C2 is connected to the N-phase bridge arm.
  • the second bus terminal of B2 is connected.
  • the battery 300 can be charged during the heating of the battery 300 in the first preset state.
  • the controller 600 controls the N-phase bridge arm B2 to allow the second capacitor C2 to charge and discharge the battery 300 to heat the battery 300, and controls the M-phase bridge arm B1 to make the battery 300 Receive energy from the energy exchange interface 100.
  • the process of using the first circuit 200 shown in FIG. 7 to charge the battery 300 has been described in detail in conjunction with FIGS. 3 to 6.
  • the process of heating the battery 300 by using the N-phase bridge arm B2, the N coils KM2 and the second capacitor C2 in FIG. 7 in the first preset state will be described.
  • the controller 600 can control all lower bridge arms of the N-phase bridge arm B2 to disconnect, and control at least one upper bridge arm of the N-phase bridge arm B2 to conduct.
  • the current flows from the battery 300
  • the positive electrode flows out, flows through the conductive upper bridge arm, the coil connected to the conductive upper bridge arm and the second capacitor C2, and finally returns to the negative electrode of the battery 300.
  • the battery 300 is in an outwardly discharging state, and the second capacitor C2 receives the energy of the coil connected to the conductive upper bridge arm, and the voltage increases continuously to realize energy storage.
  • the controller 600 can control all the upper bridge arms of the N-phase bridge arm B2 to disconnect, and control the lower bridge arm of the N-phase bridge arm B2 that is connected to the coil with freewheeling current.
  • the bridge arm is turned on.
  • the current flows from the coil with freewheeling current, flows through the second capacitor C2 and the conductive lower bridge arm, and finally returns to the coil with freewheeling current.
  • the second capacitor C2 continues to receive the energy of the coil, and the voltage continues to increase.
  • the second capacitor C2 will automatically transform the energy of the receiving coil KM2 to release energy to the coil KM2.
  • the current flows from the second capacitor C2. It flows through the coil connected to the conductive lower bridge arm, the conductive lower bridge arm, and finally returns to the second capacitor C2.
  • the voltage across the second capacitor C2 continuously decreases.
  • the controller 600 can control all lower bridge arms of the N-phase bridge arm B2 to disconnect, and control at least one upper bridge arm of the N-phase bridge arm B2 to conduct.
  • the current flows from the second capacitor C2. It flows out, flows through the coil connected to the conductive upper bridge arm, the conductive upper bridge arm, the positive electrode of the battery 300 and the negative electrode of the battery 300, and finally returns to the second capacitor C2.
  • the battery 300 is in a charged state.
  • the second capacitor C2 and the coil connected to the upper bridge arm switch from releasing energy to the battery to receiving energy from the battery. At this time, the current flow returns to the first process. In the flow direction described in the above, the battery 300 begins to discharge outward.
  • the above four processes are continuously cycled, so that the second capacitor C2 and the battery 300 can quickly perform cyclic charging/discharging. Due to the internal resistance of the battery, a large amount of heat is generated to make the battery heat up quickly and improve the heating efficiency of the battery.
  • Fig. 8 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • the battery energy processing device further includes a first switch K1, wherein a first end of the first switch K1 is connected to the energy exchange interface 100, and a second end of the first switch K1 is connected to the positive electrode of the battery 300.
  • the controller 600 is also configured to control the first circuit 200 to be in a state where it does not receive energy from the energy exchange interface 100 and to control the second circuit 400 to be in a state where the energy storage unit 500 and the battery 300 are not charged and charged in the second preset state.
  • the battery 300 In a discharged state, and the first switch K1 is controlled to be turned on so that the battery 300 directly receives energy from the energy exchange interface 100, fast charging can be realized with the lowest charging energy consumption. In this way, the battery 300 can be charged by a direct charging method when the battery does not need to be self-heated.
  • the second preset state refers to a state in which the battery is charged using a direct charging method when the battery does not need to be self-heated.
  • the battery energy processing device in the present disclosure has two charging methods due to the addition of the first switch K1.
  • the first charging method is to perform boost charging through the first circuit 200
  • the second charging method is to perform direct charging through the first switch K1
  • these two charging methods will not be executed in parallel.
  • the first switch K1 needs to be turned off to avoid direct charging during the self-heating period, and if the battery 300 is charged during the self-heating period If required, the battery 300 needs to be boosted and charged through the first circuit 200.
  • the first circuit 200 is used to boost and charge the battery 300, or the first switch K1 may be closed to directly charge the battery 300 in a direct charging manner.
  • the battery energy processing device further includes a second switch K2, wherein the first end of the second switch K2 is connected to the energy exchange interface 100, and the second end of the second switch K2 is respectively connected to the first end of the second capacitor C2. Terminal and the second terminal of the N coils KM2.
  • the controller 600 is also configured to control the second switch K2 to be turned on in the third preset state, and to control the turning on and off of the lower bridge arm of the N-phase bridge arm B2, so that the battery 300 receives the power from the energy exchange interface 100 Energy, where the energy of the energy exchange interface 100 is boosted by the N-phase bridge arm B2, N coils KM2, and the second capacitor C2 and then received by the battery 300. In this way, the battery 300 can be charged by means of rapid boost charging without the need for self-heating of the battery.
  • the third preset state refers to a state in which the battery is charged using a fast boost charging method when the battery 300 has no self-heating requirement.
  • the process of using the second circuit 400 and the energy storage element 500 to boost and charge the battery 300 when the second switch K2 is turned on is similar to the process described in conjunction with FIG. 3 to FIG. 6, and will not be repeated here.
  • the topology of FIG. 9 can also realize the direct charging method to charge the battery 300 when the battery does not need to be self-heated.
  • the controller 600 is also configured to control the second switch K2 to be turned on in the second preset state, and control the lower bridge arm of the N-phase bridge arm B2 to turn off, and the upper bridge arm of the N-phase bridge arm B2 to close Or the upper bridge arm is disconnected.
  • the energy from the energy exchange interface 100 passes through N coils KM2 and the upper bridge arm of the N-phase bridge arm B2, and then flows to the positive pole of the battery 300 to charge the battery, even if the battery 300 receives it directly Energy from the energy exchange interface 100.
  • the second preset state means that the battery does not need to be self-heated. Under the circumstances, the state of using the direct charging method to charge the battery.
  • the upper bridge arm and the lower bridge arm of the N-phase bridge arm B2 cannot be turned on at the same time; 2. One of the upper bridge arms is turned on, and the other is turned off, as the upper bridge arm is turned on The lower bridge arm is turned off, and the upper bridge arm is turned off, and the lower bridge arm is turned on; 3. One of them is turned off, and the other can be turned off or turned on. If the upper bridge arm is turned off, the lower bridge arm is turned off. Or turn on, the upper bridge arm is turned off and the upper bridge arm is turned off or on.
  • the second circuit 400 and the energy storage element 500 are multiplexed to heat the battery 300 and perform rapid boost charging of the battery 300. These two operations pass through the second switch. K2 switches. That is, when the second switch K2 is turned off, the second circuit 400 and the energy storage element 500 can be used to heat the battery 300. When the second switch K2 is turned on, the second circuit 400 and the energy storage element 500 are turned on. The element 500 may be used to realize fast boost charging of the battery 300 or realize direct charging of the battery.
  • the battery energy processing device in the present disclosure has four charging methods due to the addition of the second switch K1.
  • the first charging method is to perform boost charging through the first circuit 200
  • the second One charging method is direct charging through the first switch K1
  • the third charging method is boost charging through the second switch K2, the second capacitor C2, the N-phase bridge arm B2, and the N coils KM2.
  • the fourth charging method Direct charging is performed through the second switch K2, the second capacitor C2, the N-phase bridge arm B2, and the N coils KM2, and the first, second, and third charging methods are not performed in parallel.
  • the first circuit 200 needs to be boosted and charged.
  • the first switch K1, the second switch K2, and the first circuit 200 can be turned on to directly charge the battery 300 by direct charging, or the first switch K1 can be turned off, and the first circuit 200 can be turned off.
  • the circuit 200 turns on the second switch K2 to quickly boost and charge the battery 300 through the second capacitor C2, the N-phase bridge arm B2, and the N coils KM2, or the first switch K1 and the second switch K2 can also be turned off , To boost and charge the battery 300 through the first circuit 200.
  • These charging methods can be selected according to the voltage of the charging pile.
  • direct charging can be selected to achieve fast charging with the lowest charging energy consumption.
  • the first circuit 200 is used to boost and charge the battery 300.
  • the current should be less than the current that would damage the battery when the battery is charged in a low-temperature state, which also means that the current used for boost charging by the first circuit 200 cannot be too high.
  • the fast boost charging circuit composed of the second switch K2, the N-phase bridge arm B2, the N coils KM2 and the second capacitor C2 is It is configured to use high current to quickly boost the battery.
  • Fig. 10 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • the battery energy processing device further includes a third switch K3.
  • the first end of the third switch K3 is connected to the second end of the N coils KM2.
  • the second end of the third switch K3 is connected to the second end of the second capacitor C2. The first end is connected.
  • the third switch K3 can be turned off, and the N-phase bridge arm B2 and N coils KM2 can be used to charge and discharge the battery 300 cyclically, so that the internal resistance heating of the battery 300 can be used to realize the self-heating of the battery 300. heating.
  • the third switch K3 can be turned on, the second switch K2 can be turned off, and the battery 300 can be cyclically charged and discharged using the N-phase bridge arm B2, the N coils KM2, and the second capacitor C2. , Thereby using the internal resistance heating of the battery 300 to realize self-heating of the battery 300.
  • the second switch K2 and the third switch K3 can be turned on, so that the N-phase bridge arm B2, the N coils KM2, and the second capacitor C2 can be used to charge the battery 300 Perform fast boost charging.
  • the coordination work between the direct charging method, the fast boost charging method, the boost charging method using the first circuit 200, and battery heating has been described in detail in conjunction with FIG. 9 and will not be repeated here.
  • the N coils KM2 are motor windings (for example, the motor windings of a driving motor), and the N-phase bridge arm B2 is a bridge arm converter. That is, the existing motor windings and bridge arm converters on the vehicle are multiplexed, so that different functions can be implemented according to needs.
  • the third switch K3 can be turned off and N switches can be used.
  • the coil KM2 and the N-phase bridge arm B2 implement the related self-heating process described in this disclosure, or the third switch K3 can be turned on and the N coils KM2, the N-phase bridge arm B2, and the second capacitor C2 can be used to implement the description in this disclosure.
  • N coils KM2 and N-phase bridge arm B2 can be switched to be used in the fast boost charging process described above; when the vehicle needs to be driven, it can be disconnected
  • the third switch K3 enables the N coils KM2 and the N-phase bridge arm B2 to be switched to the motor output power corresponding to the motor windings by controlling the bridge arm B2 to drive the vehicle, that is, the controller 600 is also configured to
  • the third switch K3 is controlled to be turned off, and the bridge arm converter is controlled to output power from the motor corresponding to the motor winding.
  • the fifth preset state refers to the motor drive state. In this way, by multiplexing the vehicle motor windings and the bridge arm converter, different functions can be realized as required, and the vehicle cost can also be saved.
  • Fig. 8 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • the battery energy processing device further includes a fourth switch K4, wherein the first end of the fourth switch K4 is connected to the second end of the M coils KM1, and the second end of the fourth switch K4 is connected to the first capacitor C1. The first end of the connection.
  • the fourth switch K4 When the fourth switch K4 is turned on, the first circuit 200 can be used to charge the battery 300 as described above.
  • the fourth switch K4 is turned off, the first circuit 200 can be applied to functions other than boosting and charging the battery 300, for example, as a driving circuit.
  • the second function of the first circuit 200 can be realized without affecting other functions of the battery energy processing device of the present disclosure, such as battery self-heating, the boost charging function of the battery self-heating circuit, and the battery Direct charging, battery drive, etc.
  • the M coils KM1 may be the motor windings of the drive motor, and the M-phase bridge arm B1 is the bridge arm converter, the controller 600 may be configured to control the first The four-switch K4 is turned off, and the bridge arm converter is controlled to make the motor output power corresponding to the motor winding, so that the motor drive function is realized.
  • the sixth preset state refers to the motor drive state.
  • the M coils KM1 are motor windings of the compressor
  • the M-phase bridge arm B1 is a bridge arm converter.
  • the first switch K4 is controlled to be turned off, and the M coils KM1 and the M-phase bridge arm B1 can be used to realize the common functions of the compressor, such as the refrigeration function.
  • the multiplexing of motor windings and bridge arm converters can save vehicle costs.
  • the driving current of the compressor is not large, it is very suitable for multiplexing the motor windings and bridge arm converter of the compressor into the first circuit 200, so that a small current can be used when the battery is charged during self-heating. The battery is boosted and charged as described above.
  • the M coils KM1 and the M-phase bridge arm B1 are used for the vehicle driving function
  • the fast boost charging, direct charging, battery heating, motor drive, etc. described above can also be performed.
  • boost charging using the first circuit 200, compressor function, etc. can also be performed .
  • Fig. 12 is another schematic block diagram of a battery energy processing device according to an embodiment of the present disclosure.
  • the battery energy processing device further includes a fifth switch K5, wherein the first end of the fifth switch K5 is connected to the energy exchange interface 100, and the second end of the fifth switch K5 is connected to the negative electrode of the battery 300; the controller 600 is also configured to control the fifth switch K5 to be turned on in the first preset state, the second preset state, or the third preset state.
  • the first circuit 200 can be completely isolated from the energy exchange interface 100 to prevent the high voltage of the first circuit 200 from being serially connected to the energy exchange interface 100.
  • a person touches the energy exchange interface 100, causing personal safety. .
  • FIG. 13 is a flowchart of a method for processing battery energy according to an embodiment of the present disclosure. As shown in Figure 13, the method includes:
  • step S101 in the first preset state, the second circuit 400 is controlled to charge and discharge the battery 300 to heat the battery 300;
  • step S102 in the first preset state, the first circuit 200 is controlled to receive energy from the energy exchange interface 100 and output to the battery 300 to charge the battery 300.
  • the first end of the first circuit 200 is connected to the energy exchange interface 100, the second end of the first circuit 200 is connected to the battery 300, the first end of the second circuit 400 is connected to the battery 300, and the energy storage unit 500 is connected to the second The second end of the circuit 400 is connected.
  • step S101 can be started first and then step S102 can be started, step S102 can be started first and then step S101 can be started, or step S101 and step S102 can be started at the same time.
  • step S101 can be directly started to heat the battery; if it is detected that the battery needs to be charged during the execution of battery self-heating, then step S102 can also be directly started to The battery is charged.
  • the controller 600 controls the second circuit 400 to charge and discharge the energy storage unit 500 and the battery 300 to achieve heating of the battery 300.
  • the foregoing charging and discharging of the energy storage unit 500 and the battery 300 means that the battery provides energy to the energy storage unit 500 to discharge the battery 300, and the energy storage unit 500 provides energy to the battery 300 to charge the battery 300.
  • the first circuit 200 is controlled to stabilize the voltage of the energy exchange interface 100 in the first preset state, and the voltage transmitted by the first circuit 200 to the battery 300 matches the voltage of the battery 300 in real time.
  • the first circuit 200 includes: an M-phase bridge arm B1, the first bus terminal of the M-phase bridge arm B1 is connected to the positive electrode of the battery 300, and the second bus terminal of the M-phase bridge arm B1 is connected to the negative electrode of the battery 300; M The first ends of the coil KM1 and M coils KM1 are connected to the midpoint of the M-phase bridge arm B1 one by one, and the second ends of the M coils KM1 are connected in common; the first capacitor C1, the first end of the first capacitor C1 and The second ends of the M coils KM1 are connected, and the second end of the first capacitor C1 is connected to the second bus terminal of the M-phase bridge arm B1; wherein, M ⁇ 1;
  • the step of controlling the first circuit 200 to receive energy from the energy exchange interface 100 and output to the battery 300 to charge the battery 300 includes: controlling the M-phase bridge arm B1 so that the battery 300 receives energy from the battery 300 Exchange the energy of the interface 100.
  • the second circuit 400 includes an N-phase bridge arm B2, the first bus terminal of the N-phase bridge arm B2 is connected to the positive electrode of the battery 300, and the second bus terminal of the N-phase bridge arm B2 is connected to the negative electrode of the battery 300;
  • an energy storage unit 500 includes N coils KM2 and a second capacitor C2.
  • the first ends of the N coils KM2 are connected to the midpoint of the N-phase bridge arm B2 one by one.
  • the second ends of the N coils KM2 are connected together.
  • the second capacitor C2 The first end is connected to the second end of the N coils KM2, and the second end of the second capacitor C2 is connected to the second bus end of the N-phase bridge arm B2; where N ⁇ 1;
  • the step of controlling the second circuit 400 to charge and discharge the energy storage unit 500 and the battery 300 to heat the battery 300 includes: controlling the N-phase bridge arm B2 to make the second capacitor C2 pair The battery 300 is charged and discharged to realize heating of the battery 300.
  • the first circuit 200 is controlled to be in a state where it does not receive energy from the energy exchange interface 100 and the second circuit 400 is in a state where the energy storage unit 500 and the battery 300 are not charged and discharged, And control the first switch K1 to be turned on so that the battery 300 directly receives energy from the energy exchange interface 100, wherein the first end of the first switch K1 is connected to the energy exchange interface 100, and the second end of the first switch K1 is connected to the battery The positive pole of 300.
  • the second switch K2 is controlled to be turned on, and the N-phase bridge arm B2 is controlled so that the battery 300 receives energy from the energy exchange interface 100, wherein the energy of the energy exchange interface 100 passes through the N-phase The bridge arm B2, the N coils KM2 and the second capacitor C2 are boosted and received by the battery 300.
  • the first end of the second switch K2 is connected to the energy exchange interface 100, and the second end of the second switch K2 is connected to the second The first end of the capacitor C2 and the second end of the N coils KM2 are connected.
  • the second switch K2 is controlled to be turned on, and the N-phase bridge arm B2 is controlled so that the battery 300 directly receives energy from the energy exchange interface 100, wherein the first end of the second switch K2 Connected to the energy exchange interface 100, the second end of the second switch K2 is respectively connected to the first end of the second capacitor C2 and the second end of the N coils KM2.
  • the third switch K3 is controlled to be turned off, and the bridge arm converter is controlled to make the motor output power corresponding to the motor windings, wherein the first end of the third switch K3 is connected to the N coils
  • the second end of KM2 is connected, the second end of the third switch K3 is connected to the first end of the second capacitor C2, the N coils KM2 are motor windings, and the N-phase bridge arm B2 is a bridge arm converter.
  • the fourth switch K4 is controlled to be turned off, and the bridge arm converter is controlled to make the motor output power corresponding to the motor windings, wherein the first end of the fourth switch K4 is connected to the M coils
  • the second end of KM1 is connected, the second end of the fourth switch K4 is connected to the first end of the first capacitor C1, the M coils KM1 are motor windings, and the M-phase bridge arm B1 is a bridge arm converter.
  • the second circuit 400 includes an N-phase bridge arm B2, the first bus terminal of the N-phase bridge arm B2 is connected to the positive electrode of the battery 300, and the second bus terminal of the N-phase bridge arm B2 is connected to the negative electrode of the battery 300; an energy storage unit 500 includes N coils KM2, the first ends of the N coils KM2 are connected to the midpoint of the N-phase bridge arm B2 one by one, and the second ends of the N coils KM2 are connected together; where N ⁇ 1;
  • the N-phase bridge arm B2 is controlled to charge and discharge the N coils KM2 and the battery 300 to heat the battery 300, and the M-phase bridge arm B1 is controlled so that the battery 300 receives energy exchange The energy of the interface 100.
  • the method further includes: in the fourth preset state, controlling the bridge arm converter to make the motor output power corresponding to the motor windings; wherein the N coils KM2 are motor windings, and the N-phase bridge arm B2 is the bridge arm conversion Device.
  • a vehicle which includes a battery and the battery energy processing device according to the embodiment of the present disclosure.

Abstract

本公开涉及一种电池能量处理装置、方法和车辆,属于车辆领域,能够在电池自加热期间对电池进行充电。一种电池能量处理装置,包括:能量交换接口;第一电路,所述第一电路的第一端与所述能量交换接口连接,所述第一电路的第二端与所述电池连接;第二电路,所述第二电路的第一端与所述电池连接;储能单元,所述储能单元与所述第二电路的第二端连接;控制器,被配置为在第一预设状态下,控制所述第二电路使所述电池进行充电和放电以实现对所述电池的加热,以及控制所述第一电路接收来自所述能量交换接口的能量输出至电池以实现对所述电池的充电。

Description

电池能量处理装置、方法及车辆
相关申请的交叉引用
本公开要求于2020年06月04日提交的申请号为202010501072.X、名称为“电池能量处理装置、方法及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池技术领域,特别涉及一种电池能量处理装置、方法及车辆。
背景技术
随着新能源的广泛使用,电池可作为动力源应用在各个领域中。电池作为动力源使用的环境不同,电池的性能也会受到影响。譬如:在零点温度下电池的充电容量会随温度的降低而降低,因此,存在低温环境下充电效率低的技术问题。
为了解决低温环境下充电效率低的问题,相关技术中,提出了电池加热功能,以提升电池温度后执行电池充电功能。但是,目前的电池加热功能、电池充电功能是分时实现的。为此,电池加热功能和电池充电功能的协同实现是当前亟待解决的技术问题。
发明内容
本公开旨在至少解决相关技术中存在的技术问题之一。
为此,本公开的第一个目的在于提出一种电池能量处理装置。
本公开的第二个目的在于提出一种电池能量处理方法。
本公开的第三个目的在于提出一种车辆。
为了实现上述目的,根据本公开的第一实施例,提供一种电池能量处理装置,包括:能量交换接口;第一电路,所述第一电路的第一端与所述能量交换接口连接,所述第一电路的第二端与所述电池连接;第二电路,所述第二电路的第一端与所述电池连接;储能单元,所述储能单元与所述第二电路的第二端连接;控制器,被配置为在第一预设状态下,控制所述第二电路使所述电池进行充电和放电以实现对所述电池的加热,以及控制所述第一电路接收来自所述能量交换接口的能量输出至所述电池以实现对所述电池的充电。
根据本公开的第二实施例,提供一种电池能量处理方法,包括:在第一预设状态下,控制第二电路使所述电池进行充电和放电以实现对所述电池的加热,以及控制第一电路接收来自能量交换接口的能量输出至所述电池以实现对所述电池的充电;其中,所述第一电 路的第一端与能量交换接口连接,所述第一电路的第二端与所述电池连接,所述第二电路的第一端与所述电池连接,所述储能单元与所述第二电路的第二端连接。
根据本公开的第三实施例,提供一种车辆,包括电池及根据本公开第一实施例所述的电池能量处理装置。
通过采用上述技术方案,能够在控制第二电路使电池进行充电和放电以实现对电池进行加热期间,控制第一电路接收来自能量交换接口的能量以实现对电池的充电,这样就能够在电池执行自加热的时候实现电池的充电。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据本公开一种实施例的电池能量处理装置的示意框图。
图2是根据本公开一种实施例的电池能量处理装置的又一示意框图。
图3-图6示出了第一电路的工作状态示意图。
图7是根据本公开一种实施例的电池能量处理装置的又一示意框图。
图8是根据本公开一种实施例的电池能量处理装置的又一示意框图。
图9是根据本公开一种实施例的电池能量处理装置的又一示意框图。
图10是根据本公开一种实施例的电池能量处理装置的又一示意框图。
图11是根据本公开一种实施例的电池能量处理装置的又一示意框图。
图12是根据本公开一种实施例的电池能量处理装置的又一示意框图。
图13是根据本公开一种实施例的电池能量处理方法的流程图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
如图1所示,该电池能量处理装置包括:能量交换接口100;第一电路200,其中第一电路200的第一端与能量交换接口100连接,第一电路200的第二端与电池300连接;第二电路400,其中第二电路400的第一端与电池300连接;储能单元500,其中储能单元500与第二电路400的第二端连接;控制器600,被配置为在第一预设状态下,控制第二电路400使电池300进行充电和放电以实现对电池300的加热,以及控制第一电路200接收来自能量交换接口100的能量输出至电池以实现对电池300的充电。
通过采用上述技术方案,能够在控制第二电路400使电池300进行充电和放电以实现对电池300进行加热期间,控制第一电路200接收来自能量交换接口100的能量以实现对电池300的充电,这样就能够在电池执行自加热的时候实现电池的充电。
在具体实施例中,在第一预设状态下,控制器600控制所述第二电路400使储能单元500与电池300进行充电和放电以实现对电池300的加热。上述使储能单元500与电池300进行充电和放电是指电池向储能单元500提供能量,使电池300放电,以及储能单元500向电池300提供能量,使电池300充电。
在一种实施例中,第一电路200在第一预设状态下被配置为对能量交换接口100的电压进行稳压,而且第一电路200传输至电池300的电压实时匹配电池300的电压。
在本公开中,第一预设状态指的是电池300在执行自加热期间能够进行充电的一种状态。
通过采用上述技术方案,能够实现如下的有益效果:首先,控制第二电路400使储能单元500与电池300进行充电和放电的操作(也即,电池300的自加热操作)会导致电池300两端的电压出现波动,而通过控制第一电路200对能量交换接口100的电压进行稳压,就能够避免电池两端的电压波动对能量交换接口100处电压的影响;另一方面,由于第一电路200传输至电池300的电压实时匹配电池300的电压,这样就能够使得第一电路200传输至电池300的电压实时跟踪电池300的电压,避免了因无法跟踪电池电压而导致的充电失败,进而就能够在执行自加热期间实现对电池的充电。
第一电路200在第一预设状态下被配置为对能量交换接口100的电压进行稳压就使得能量交换接口100的电压不会受到电池自加热时在电池两端产生的电压大幅跳变的影响,第一电路200在第一预设状态下被配置为使电池300的输入电压实时匹配电池300的电压就能够对电池电压进行实时跟踪,避免因无法跟踪电池电压而导致的充电失败,例如充电桩退出充电流程。
如图2所示,第一电路200包括:M相桥臂B1,其中M相桥臂B1的第一汇流端连接电池300的正极,M相桥臂B1的第二汇流端连接电池300的负极;M个线圈KM1,其中M个线圈KM1的第一端一一对应连接至M相桥臂B1的中点,M个线圈KM1的第二端共接;第一电容C1,其中第一电容C1的第一端与M个线圈KM1的第二端连接,第一电容C1的第二端与M相桥臂B1的第二汇流端连接,第一电容C1的第一端和第一电容C1的第二端分别与能量交换接口100连接;其中,M≥1。
虽然图2是以M=3为例进行图示的,但是本领域技术人员应当理解的是,图2的桥臂数量和线圈数量仅是示例。
下面结合图3-图6描述在第一预设状态下第一电路200的工作原理。
在图3中,控制器600控制M相桥臂B1的所有下桥臂断开,控制M相桥臂B1的至少一个上桥臂导通,则,电流从电池300的正极流出,依次流过M相桥臂B1的导通的上桥臂、M个线圈KM1中与导通的上桥臂相连接的线圈、第一电容C1后回到电池300的负极。这样,就能够实现电池300向第一电容C1充电。另外,通过控制上桥臂的导通数量以及导通占空比,能够控制充电电流的大小,进而控制充电功率的大小。
在一个示例中,假设M相桥臂B1包括3个桥臂a1、a2和a3,线圈KM1包括3个线圈L1、L2和L3,其中,线圈L1的一端与桥臂a1的中点连接,线圈L2的一端与桥臂a2的中点连接,线圈L3与桥臂a3的中点连接。然后,控制器600控制桥臂a1、a2和a3的所有下桥臂断开,控制桥臂a1和a2的上桥臂导通并控制器桥臂a3的上桥臂断开,则电池300的正极、桥臂a1的上桥臂、线圈L1、第一电容C1和电池300的负极构成一个给第一电容C1充电的电流循环回路,电池300的正极、桥臂a2的上桥臂、线圈L2、第一电容C1和电池300的负极构成一个给第一电容C1充电的电流循环回路。
然后,在图4中,控制器600控制M相桥臂B1的所有上桥臂断开,控制M相桥臂B1的下桥臂中、与存在续流电流的线圈相连接的下桥臂导通或断开,则,续流电流就在由导通的下桥臂、与导通的下桥臂相连接的线圈和第一电容构成的回路中流动。这样,就能够将存在续流电流的线圈中的能量转移给第一电容C1。需要说明的是:在下桥臂断开的状态,电流流经下桥臂的二极管。
如本领域普通技术人员所知晓的,1、N相桥臂B2的上桥臂和下桥臂不能同时导通;2、其中一个导通,另一个就是关断的,如上桥臂导通则下桥臂关断,上桥臂关断则下桥臂导通;3、其中一个关断,另一个可以是关断的也可以是导通的,如上桥臂关断则下桥臂关断或导通,上桥臂关断则上桥臂关断或导通。
仍然以上面的示例为例。由于在上面的示例中是控制桥臂a1和a2的上桥臂导通,所以现在应当控制M相桥臂B1的所有上桥臂断开,控制M相桥臂B1的a1和a2的下桥臂导通以及a3的下桥臂断开,则桥臂a1的下桥臂、线圈L1、第一电容C1构成一个将线圈L1中的能量转移给第一电容C1的续流循环回路,桥臂a2的下桥臂、线圈L2、第一电容C1构成一个将线圈L2中的能量转移给第一电容C1的续流循环回路。
图3和图4用于对第一电容C1进行预充,通过控制M相桥臂B1的上下桥臂导通的占空比,就能够将能量交换接口100处的电压稳定至目标值。该目标值可以通过读取诸如充电桩之类的外部供电设备的信息(包括电压等级、最大输出电流等)而得到。
在图5中,控制器600控制M相桥臂B1的至少一个下桥臂导通,控制M相桥臂B1的所有上桥臂断开,则电流从能量交换接口100的正极,依次流过与导通的下桥臂连接的线圈和导通的下桥臂,最后回到能量交换接口100的负极。这样,就能够实现诸如充电桩之 类的外部供电设备向线圈充电。另外,通过控制下桥臂的导通数量以及导通占空比,能够控制充电电流的大小,进而控制充电功率的大小。
然后,在图6中,控制器600控制M相桥臂B1的所有下桥臂断开,并控制M相桥臂B1的、与存在续流电流的线圈连接的上桥臂导通或断开,则,电流依次流经能量交换接口100的正极、与导通的上桥臂连接的线圈、导通的上桥臂、电池300的正极、电池300的负极,最后回到能量交换接口100的负极。这样,就能够由诸如充电桩之类的外部供电设备以及线圈KM1共同向电池300充电。需要说明的是:在上桥臂断开的状态,电流流经上桥臂的二极管。
因此,控制器600通过控制M相桥臂B1的的下桥臂导通与关断,使得图5和图6的状态交替工作,完成了升压斩波功能(BOOST),使得输出到电池300的电压平均值最小可以为能量交换接口100的电压,如果增大下桥臂的占空比,则第一电路200输出至电池300的电压也会随之增大。通过控制M相桥臂B1的上下桥臂导通的占空比,能够改变第一电路200输出至电池300的电压,从而使得第一电路200输出至电池300的电压实时跟踪电池300的电压。
进一步参考图2。第二电路400包括N相桥臂B2,其中N相桥臂B2的第一汇流端连接电池300的正极,N相桥臂B2的第二汇流端连接电池300的负极。储能单元500包括N个线圈KM2,N个线圈KM2的第一端一一对应连接至N相桥臂B2的中点,N个线圈KM2的第二端共接;其中,N≥1。虽然图2是以N=3为例进行图示的,但是本领域技术人员应当理解的是,图2的桥臂数量和线圈数量仅是示例。
在第一预设状态下,控制器600控制N相桥臂B2使N个线圈KM2与电池300进行充电和放电以实现对电池300的加热,以及控制M相桥臂B1使电池300接收来自能量交换接口100的能量从而对电池300进行充电。在第一预设状态下,利用图2所示的第一电路200对电池300进行充电的过程已经结合图3-图6进行了详细描述。接下来描述在第一预设状态下利用图2中的N相桥臂B2、N个线圈KM2对电池300进行加热的过程。具体地,利用线圈KM2作为限流缓冲装置,控制N相桥臂B2的导通方式,同时调节导通的桥臂的占空比来控制电池回路相电流,使电池内阻发热从而带动电池温度升高,实现电池300的可控升温。
在一种实施例中,N个线圈KM2为电机绕组(例如驱动电机的电机绕组),N相桥臂B2为桥臂变换器。也即,车辆上的现有电机绕组和桥臂变换器被复用了,使得能够根据需要而实现不同的功能,例如:在电池需要自加热时,N个线圈KM2和N相桥臂B2能够被应用于本公开中描述的各种自加热流程中;在需要驱动车辆时,N个线圈KM2和N相桥臂B2能够被切换成通过控制桥臂B2使与电机绕组对应的电机输出功率,进而驱动车辆,也即控制 器600还被配置为,在第四预设状态下,控制桥臂变换器使与电机绕组对应的电机输出功率。其中,第四预设状态指的是电机驱动状态。这样,就能够通过复用车辆电机绕组和桥臂变换器,来根据需要实现不同的功能,而且还节省了车辆成本。
图7是根据本公开一种实施例的电池能量处理装置的又一示意框图。如图7所示,储能单元500还包括第二电容C2,其中第二电容C2的第一端与N个线圈KM2的第二端连接,第二电容C2的第二端与N相桥臂B2的第二汇流端连接。利用图7的电路拓扑,能够在第一预设状态下,在对电池300进行加热期间对电池300进行充电。也即,在第一预设状态下,控制器600控制N相桥臂B2使第二电容C2对电池300进行充电和放电以实现对电池300的加热,以及控制M相桥臂B1使电池300接收来自能量交换接口100的能量。在第一预设状态下,利用图7所示的第一电路200对电池300进行充电的过程已经结合图3-图6进行了详细描述。接下来描述在第一预设状态下利用图7中的N相桥臂B2、N个线圈KM2和第二电容C2对电池300进行加热的过程。
首先,在第一过程中,控制器600可以控制N相桥臂B2的所有下桥臂断开,并控制N相桥臂B2的至少一个上桥臂导通,此时,电流从电池300的正极流出,流经导通的上桥臂、与导通的上桥臂连接的线圈和第二电容C2,最后回到电池300的负极。在该过程中,电池300为向外放电状态,第二电容C2接收与导通的上桥臂连接的线圈的能量,电压不断增大,实现储能。
接下来,在第二过程中,控制器600可以控制N相桥臂B2的所有上桥臂断开,并控制N相桥臂B2的下桥臂中、与存在续流电流的线圈连接的下桥臂导通,此时,电流从存在续流电流的线圈流出,流经第二电容C2和导通的下桥臂,最后回到存在续流电流的线圈。在该过程中,由于线圈的续流作用,第二电容C2继续接收线圈的能量,电压不断增大。
在第三过程中,随着第二电容C2两端的电压不断增大,第二电容C2会自动从接收线圈KM2的能量变换为向线圈KM2释放能量,此时,电流从第二电容C2流出,流经与导通的下桥臂连接的线圈、导通的下桥臂,最后回到第二电容C2。在该过程中,第二电容C2两端的电压不断减小。
之后,在第四过程中,控制器600可以控制N相桥臂B2的所有下桥臂断开,控制N相桥臂B2的至少一个上桥臂导通,此时,电流从第二电容C2流出,流经与导通的上桥臂连接的线圈、导通的上桥臂、电池300的正极和电池300的负极,最后回到第二电容C2。在该过程中,电池300为充电状态。
随着第二电容C2两端的电压不断降低,第二电容C2和与导通的上桥臂连接的线圈由向电池释放能量切换到接收电池的能量,此时,电流流向又回到第一过程中所述的流向,电池300开始向外放电。
上述四个过程不断循环,使第二电容C2与电池300之间能够快速进行循环式充/放电。由于电池内阻的存在,产生大量的热使得电池快速升温,提高电池加热效率。
图8是根据本公开实施例的电池能量处理装置的又一示意框图。如图8所示,电池能量处理装置还包括第一开关K1,其中第一开关K1的第一端与能量交换接口100连接,第一开关K1的第二端连接至电池300的正极。控制器600还被配置为在第二预设状态下,控制第一电路200处于不接收能量交换接口100的能量的状态且控制第二电路400处于不使储能单元500与电池300进行充电和放电的状态,并控制第一开关K1导通以使电池300直接接收来自能量交换接口100的能量,可以实现快速充电且充电能耗最低。这样,就能够在电池不需要自加热的情况下,利用直接充电的方式对电池300进行充电。
在本公开中,第二预设状态指的是在电池不需要自加热的情况下利用直接充电方式对电池进行充电的状态。
可以理解的是,本公开中的电池能量处理装置因为增加了第一开关K1,使得本公开具有两种充电方式。第一种充电方式是通过第一电路200进行升压充电,第二种充电方式是通过第一开关K1进行直接充电,而且这两种充电方式不会并行执行。在储能单元500与电池300进行充电和放电以对电池300进行自加热期间,需要断开第一开关K1,避免在自加热期间直接充电方式起作用,而且如果在自加热期间电池300有充电需求的话,需要通过第一电路200对电池300进行升压充电。在储能单元500与电池300不进行充电和放电以对电池300进行加热的情况下,如果电池300有充电需求的话,由于此时电池300的两端没有因自加热导致的电压波动,所以可以利用第一电路200对电池300进行升压充电,或者也可以闭合第一开关K1以利用直接充电方式对电池300进行直接充电。
如图9所示,电池能量处理装置还包括第二开关K2,其中第二开关K2的第一端与能量交换接口100连接,第二开关K2的第二端分别与第二电容C2的第一端以及N个线圈KM2的第二端连接。控制器600还被配置为在第三预设状态下,控制第二开关K2导通,并控制N相桥臂B2的下桥臂导通与关断,使电池300接收来自能量交换接口100的能量,其中,能量交换接口100的能量通过N相桥臂B2、N个线圈KM2和第二电容C2升压后被电池300接收。这样,就能够在电池不需要自加热的情况下利用快速升压充电的方式对电池300进行充电。
在本公开中,第三预设状态指的是在电池300没有自加热需求的情况下利用快速升压充电方式对电池进行充电的状态。另外,在第二开关K2导通的情况下利用第二电路400、储能元件500对电池300进行升压充电的过程与结合图3-图6描述的过程类似,此处不再赘述。
在本公开另一实施例中,图9的拓扑结构还可以实现在电池不需要自加热的情况下利 用直接充电的方式对电池300进行充电。具体为:控制器600还被配置为在第二预设状态下,控制第二开关K2导通,并控制N相桥臂B2的下桥臂关断,N相桥臂B2的上桥臂闭合或者上桥臂断开,此时,来自能量交换接口100的能量经过N个线圈KM2和N相桥臂B2的上桥臂后,流至电池300的正极对电池进行充电,即使电池300直接接收来自能量交换接口100的能量。需要说明的是,在N相桥臂B2的上桥臂断开的状态,电流流经N相桥臂B2的上桥臂的二极管,第二预设状态指的是在电池不需要自加热的情况下利用直接充电方式对电池进行充电的状态。
如本领域普通技术人员所知晓的,1、N相桥臂B2的上桥臂和下桥臂不能同时导通;2、其中一个导通,另一个就是关断的,如上桥臂导通则下桥臂关断,上桥臂关断则下桥臂导通;3、其中一个关断,另一个可以是关断的也可以是导通的,如上桥臂关断则下桥臂关断或导通,上桥臂关断则上桥臂关断或导通。
另外,通过图9所示的电路拓扑可以看出,第二电路400和储能元件500被复用于对电池300进行加热和对电池300进行快速升压充电,这两种操作通过第二开关K2进行切换。也即,在第二开关K2断开的情况下,第二电路400和储能元件500可以用于实现电池300的加热,在第二开关K2导通的情况下,第二电路400和储能元件500可以用于实现电池300的快速升压充电或实现电池的直接充电。
另外,可以理解的是,本公开中的电池能量处理装置因为增加了第二开关K1,使得本公开具有四种充电方式,第一种充电方式是通过第一电路200进行升压充电,第二种充电方式是通过第一开关K1进行直接充电,第三种充电方式是通过第二开关K2、第二电容C2、N相桥臂B2、N个线圈KM2进行升压充电,第四种充电方式是通过第二开关K2、第二电容C2、N相桥臂B2、N个线圈KM2进行直接充电,而且第一种、第二种和第三种充电方式不并行执行。在储能单元500与电池300进行充电和放电以对电池300进行自加热期间,需要断开第一开关K1和第二开关K2,避免在自加热期间直接充电方式起作用,而且如果在自加热期间电池300有充电需求的话,需要通过第一电路200进行升压充电。在储能单元500与电池300不进行充电和放电以对电池300进行加热的情况下,如果电池300有充电需求的话,由于此时电池300的两端没有因自加热导致的电压波动,所以此时可以导通第一开关K1、断开第二开关K2、断开第一电路200,以通过直接充电的方式对电池300进行直接充电,或者也可以断开第一开关K1、断开第一电路200、导通第二开关K2,以通过第二电容C2、N相桥臂B2、N个线圈KM2对电池300进行快速升压充电,或者也可以断开第一开关K1和第二开关K2,以通过第一电路200对电池300进行升压充电。这些充电方式可以根据充电桩的电压来选择,在充电桩的电压均满足充电电压需求时,可以选择直接充电以实现快速充电且充电能耗最低。在充电桩的电压不满足直接充电的电压要求时,可以 选择利用第二开关K2、第二电容C2、N相桥臂B2、N个线圈KM2进行快速升压充电,也可以选择利用第一电路200进行升压充电。
另外,如果需要利用储能单元500与电池300的充放电对电池300进行自加热,则说明电池300目前处于低温状态,所以在本公开中,利用第一电路200对电池300进行升压充电的电流应当小于电池低温状态下充电时会对电池造成损伤的电流,这也意味着,利用第一电路200进行升压充电的电流不能太高。所以,在不需要利用N相桥臂B2、N个线圈KM2和第二电容C2对电池进行加热的情况下,如果电池300需要进行升压充电,则优选使用第二开关K2、N相桥臂B2、N个线圈KM2和第二电容C2对电池300进行快速升压充电,其中,第二开关K2、N相桥臂B2、N个线圈KM2和第二电容C2组成的快速升压充电电路被配置为能够利用大电流对电池进行快速升压充电。
图10是根据本公开一种实施例的电池能量处理装置的又一示意框图。如图10所示,电池能量处理装置还包括第三开关K3,第三开关K3的第一端与N个线圈KM2的第二端连接,第三开关K3的第二端与第二电容C2的第一端连接。
如果电池300有自加热需求,则可以断开第三开关K3,并利用N相桥臂B2和N个线圈KM2对电池300进行循环充放电,从而利用电池300的内阻发热实现电池300的自加热。当然,如果电池300有自加热需求,也可以导通第三开关K3,断开第二开关K2,并利用N相桥臂B2、N个线圈KM2和第二电容C2对电池300进行循环充放电,从而利用电池300的内阻发热实现电池300的自加热。这些自加热的工作流程已经在上文进行了详细描述,此处不再赘述。
如果电池300无自加热需求、但是有快速升压充电需求,则可以导通第二开关K2和第三开关K3,以便利用N相桥臂B2、N个线圈KM2和第二电容C2对电池300进行快速升压充电。另外,直接充电方式、快速升压充电方式、利用第一电路200的升压充电方式、电池加热等之间的协调工作,已经结合图9进行了详细描述,此处不再赘述。
在一种实施例中,N个线圈KM2为电机绕组(例如驱动电机的电机绕组),N相桥臂B2为桥臂变换器。也即,车辆上的现有电机绕组和桥臂变换器被复用了,使得能够根据需要而实现不同的功能,例如:在电池需要自加热时,可以断开第三开关K3并利用N个线圈KM2和N相桥臂B2实现本公开中描述的相关自加热流程,或者也可以导通第三开关K3并利用N个线圈KM2、N相桥臂B2和第二电容C2实现本公开中描述的相关自加热流程;在电池需要快速升压充电时,N个线圈KM2和N相桥臂B2能够被切换成应用于如上描述的快速升压充电流程中;在需要驱动车辆时,可以断开第三开关K3并使得N个线圈KM2和N相桥臂B2能够被切换成通过控制桥臂B2使与电机绕组对应的电机输出功率,进而驱动车辆,也即控制器600,还被配置为在第五预设状态下,控制第三开关K3断开,并控制桥臂变换 器使与电机绕组对应的电机输出功率。其中,第五预设状态指的是电机驱动状态。这样,就能够通过复用车辆电机绕组和桥臂变换器,来根据需要实现不同的功能,而且还节省了车辆成本。
图8是根据本公开一种实施例的电池能量处理装置的又一示意框图。如图8所示,电池能量处理装置还包括第四开关K4,其中第四开关K4的第一端与M个线圈KM1的第二端连接,第四开关K4的第二端与第一电容C1的第一端连接。在第四开关K4导通时,能够利用第一电路200对电池300进行如上描述的升压充电。在第四开关K4断开时,能够将第一电路200应用于除了给电池300进行升压充电之外的功能中,例如,用作驱动电路。因此,通过增加第四开关K4,可以实现第一电路200的第二功能,且不会影响本公开的电池能量处理装置的其他功能例如电池自加热、电池自加热电路的升压充电功能、电池直接充电、电池驱动等。
例如,在一种实施例中,M个线圈KM1可以为驱动电机的电机绕组,M相桥臂B1为桥臂变换器,则控制器600可以被配置为在第六预设状态下,控制第四开关K4断开,并控制桥臂变换器使与电机绕组对应的电机输出功率,这样就实现了电机驱动功能。其中第六预设状态指的是电机驱动状态。通过电机绕组、桥臂变换器的复用,能节省车辆成本。
再例如,在又一种实施例中,M个线圈KM1为压缩机的电机绕组,M相桥臂B1为桥臂变换器。则控制第一开关K4断开,可以利用M个线圈KM1和M相桥臂B1实现压缩机的常用功能,例如制冷功能。通过电机绕组、桥臂变换器的复用,能节省车辆成本。另外,由于压缩机的驱动电流不大,所以非常适用于将压缩机的电机绕组和桥臂变换器复用到第一电路200中,以便能够在电池自加热期间进行充电的情况下采用小电流对电池进行如上所述的升压充电。
另外,在M个线圈KM1和M相桥臂B1被用于车辆驱动功能的情况下,在有需求时,如上描述的快速升压充电、直接充电、电池加热、电机驱动等也是可以执行的。在N个线圈KM2和N相桥臂B2被用于车辆驱动功能的情况下,在有需求时,如上描述的直接充电、利用第一电路200的升压充电、压缩机功能等也是可以执行的。
图12是根据本公开一种实施例的电池能量处理装置的又一示意框图。如图12所示,电池能量处理装置还包括第五开关K5,其中第五开关K5的第一端与能量交换接口100连接,第五开关K5的第二端连接至电池300的负极;控制器600,还被配置为在第一预设状态、第二预设状态或第三预设状态下,均控制第五开关K5导通。这样,就能够在充电结束后,可以将第一电路200与能量交换接口100完全隔离,避免第一电路200的高压串入能量交换接口100的同时,有人员接触能量交换接口100,引发人身安全。
图13是根据本公开一种实施例的电池能量处理方法的流程图。如图13所示,该方法 包括:
在步骤S101中,在第一预设状态下,控制第二电路400使电池300进行充电和放电以实现对电池300的加热;以及
在步骤S102中,在第一预设状态下,控制第一电路200接收来自能量交换接口100的能量输出至电池300以实现对电池300的充电。
其中,第一电路200的第一端与能量交换接口100连接,第一电路200的第二端与电池300连接,第二电路400的第一端与电池300连接,储能单元500与第二电路400的第二端连接。
另外,本公开对步骤S101和S102的先后顺序不做限定。也即,例如,如果检测到电池需要自加热和充电,那么可以先启动步骤S101后启动步骤S102,也可以先启动步骤S102后启动步骤S101,还可以同时启动步骤S101和步骤S102。当然,如果是在执行电池充电期间检测到电池需要自加热,那么可以直接启动步骤S101对电池进行加热;如果是在执行电池自加热期间检测到电池需要充电,那么也可以直接启动步骤S102以对电池进行充电。
通过采用上述技术方案,能够在控制第二电路400使电池300进行充电和放电以实现对电池300进行加热期间,控制第一电路200接收来自能量交换接口100的能量以实现对电池300的充电,这样就能够在电池执行自加热的时候实现电池的充电。
在具体实施例中,在第一预设状态下,控制器600控制所述第二电路400使储能单元500与电池300进行充电和放电以实现对电池300的加热。上述使储能单元500与电池300进行充电和放电是指电池向储能单元500提供能量,使电池300放电,以及储能单元500向电池300提供能量,使电池300充电。
可选地,第一电路200在第一预设状态下被控制对能量交换接口100的电压进行稳压,而且第一电路200传输至电池300的电压实时匹配电池300的电压。
可选地,第一电路200包括:M相桥臂B1,M相桥臂B1的第一汇流端连接电池300的正极,M相桥臂B1的第二汇流端连接电池300的负极;M个线圈KM1,M个线圈KM1的第一端一一对应连接至M相桥臂B1的中点,M个线圈KM1的第二端共接;第一电容C1,第一电容C1的第一端与M个线圈KM1的第二端连接,第一电容C1的第二端与M相桥臂B1的第二汇流端连接;其中,M≥1;
则,在第一预设状态下,控制第一电路200接收来自能量交换接口100的能量输出至电池300以实现对电池300的充电的步骤包括:控制M相桥臂B1使电池300接收来自能量交换接口100的能量。
可选地,第二电路400包括N相桥臂B2,N相桥臂B2的第一汇流端连接电池300的正极,N相桥臂B2的第二汇流端连接电池300的负极;储能单元500包括N个线圈KM2和第 二电容C2,N个线圈KM2的第一端一一对应连接至N相桥臂B2的中点,N个线圈KM2的第二端共接,第二电容C2的第一端与N个线圈KM2的第二端连接,第二电容C2的第二端与N相桥臂B2的第二汇流端连接;其中,N≥1;
则,在第一预设状态下,控制第二电路400使储能单元500与电池300进行充电和放电以实现对电池300的加热的步骤包括:控制N相桥臂B2使第二电容C2对电池300进行充电和放电以实现对电池300的加热。
可选地,在第二预设状态下,控制第一电路200处于不接收能量交换接口100的能量的状态且第二电路400处于不使储能单元500与电池300进行充电和放电的状态,并控制第一开关K1导通以使电池300直接接收来自能量交换接口100的能量,其中,第一开关K1的第一端与能量交换接口100连接,第一开关K1的第二端连接至电池300的正极。
可选地,在第三预设状态下,控制第二开关K2导通,并控制N相桥臂B2使电池300接收来自能量交换接口100的能量,其中,能量交换接口100的能量通过N相桥臂B2、N个线圈KM2和第二电容C2升压后被电池300接收,其中,第二开关K2的第一端与能量交换接口100连接,第二开关K2的第二端分别与第二电容C2的第一端以及N个线圈KM2的第二端连接。
可选地,在第二预设状态下,控制第二开关K2导通,并控制N相桥臂B2使电池300直接接收来自能量交换接口100的能量,其中,第二开关K2的第一端与能量交换接口100连接,第二开关K2的第二端分别与第二电容C2的第一端以及N个线圈KM2的第二端连接。
可选地,在第五预设状态下,控制第三开关K3断开,并控制桥臂变换器使与电机绕组对应的电机输出功率,其中,第三开关K3的第一端与N个线圈KM2的第二端连接,第三开关K3的第二端与第二电容C2的第一端连接,N个线圈KM2为电机绕组,N相桥臂B2为桥臂变换器。
可选地,在第六预设状态下,控制第四开关K4断开,并控制桥臂变换器使与电机绕组对应的电机输出功率,其中,第四开关K4的第一端与M个线圈KM1的第二端连接,第四开关K4的第二端与第一电容C1的第一端连接,M个线圈KM1为电机绕组,M相桥臂B1为桥臂变换器。
可选地,第二电路400包括N相桥臂B2,N相桥臂B2的第一汇流端连接电池300的正极,N相桥臂B2的第二汇流端连接电池300的负极;储能单元500包括N个线圈KM2,N个线圈KM2的第一端一一对应连接至N相桥臂B2的中点,N个线圈KM2的第二端共接;其中,N≥1;
则,在第一预设状态下,控制N相桥臂B2使N个线圈KM2与电池300进行充电和放电以实现对电池300的加热,以及控制M相桥臂B1使电池300接收来自能量交换接口100的 能量。
可选地,方法还包括:在第四预设状态下,控制桥臂变换器使与电机绕组对应的电机输出功率;其中,N个线圈KM2为电机绕组,N相桥臂B2为桥臂变换器。
根据本公开实施例的电池能量处理方法中各个步骤的具体实现方式已经在根据本公开实施例的电池能量处理装置中进行了详细描述,此处不再赘述。
根据本公开的又一实施例,提供一种车辆,其包括电池及根据本公开实施例的电池能量处理装置。
以上结合附图详细描述了本公开的具体实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (22)

  1. 一种电池能量处理装置,其特征在于,包括:
    能量交换接口(100);
    第一电路(200),所述第一电路(200)的第一端与所述能量交换接口(100)连接,所述第一电路(200)的第二端与所述电池(300)连接;
    第二电路(400),所述第二电路(400)的第一端与所述电池(300)连接;
    储能单元(500),所述储能单元(500)与所述第二电路(400)的第二端连接;
    控制器(600),被配置为在第一预设状态下,控制所述第二电路(400)使所述电池(300)进行充电和放电以实现对所述电池(300)的加热,以及控制所述第一电路(200)接收来自所述能量交换接口(100)的能量输出至所述电池(300)以实现对所述电池(300)的充电。
  2. 根据权利要求1所述的电池能量处理装置,其特征在于,在第一预设状态下,所述控制器控制所述第二电路(400)使所述储能单元(500)与所述电池(300)进行充电和放电以实现对所述电池(300)的加热;
    其中,所述第一电路(200)在所述第一预设状态下被配置为对所述能量交换接口(100)的电压进行稳压,并使所述第一电路(200)传输至所述电池(300)的电压实时匹配所述电池(300)的电压。
  3. 根据权利要求2所述的电池能量处理装置,其特征在于,所述第一电路(200)包括:
    M相桥臂(B1),所述M相桥臂(B1)的第一汇流端连接所述电池(300)的正极,所述M相桥臂(B1)的第二汇流端连接所述电池(300)的负极;
    M个线圈(KM1),所述M个线圈(KM1)的第一端一一对应连接至所述M相桥臂(B1)的中点,所述M个线圈(KM1)的第二端共接;
    第一电容(C1),所述第一电容(C1)的第一端与所述M个线圈(KM1)的第二端连接,所述第一电容(C1)的第二端与所述M相桥臂(B1)的所述第二汇流端连接,所述第一电容(C1)的第一端和所述第一电容(C1)的第二端分别与所述能量交换接口(100)连接;
    其中,M≥1。
  4. 根据权利要求3所述的电池能量处理装置,其特征在于,
    所述第二电路(400)包括N相桥臂(B2),所述N相桥臂(B2)的第一汇流端连接所 述电池(300)的正极,所述N相桥臂(B2)的第二汇流端连接所述电池(300)的负极;
    所述储能单元(500)包括N个线圈(KM2)和第二电容(C2),所述N个线圈(KM2)的第一端一一对应连接至所述N相桥臂(B2)的中点,所述N个线圈(KM2)的第二端共接,所述第二电容(C2)的第一端与所述N个线圈(KM2)的第二端连接,所述第二电容(C2)的第二端与所述N相桥臂(B2)的第二汇流端连接,其中,N≥1;
    在所述第一预设状态下,所述控制器(600)控制所述N相桥臂(B2)使所述第二电容(C2)对所述电池(300)进行充电和放电以实现对所述电池(300)的加热,以及控制所述M相桥臂(B1)使所述电池(300)接收来自所述能量交换接口(100)的能量。
  5. 根据权利要求4所述的电池能量处理装置,其特征在于,所述电池能量处理装置还包括第一开关(K1),所述第一开关(K1)的第一端与所述能量交换接口(100)连接,所述第一开关(K1)的第二端连接至所述电池(300)的正极;
    所述控制器(600)还被配置为在第二预设状态下,控制所述第一电路(200)处于不接收所述能量交换接口(100)的能量的状态且所述第二电路(400)处于不使所述储能单元(500)与所述电池(300)进行充电和放电的状态,并控制所述第一开关(K1)导通以使所述电池(300)直接接收来自所述能量交换接口(100)的能量。
  6. 根据权利要求4所述的电池能量处理装置,其特征在于,所述电池能量处理装置还包括第二开关(K2),所述第二开关(K2)的第一端与所述能量交换接口(100)连接,所述第二开关(K2)的第二端分别与所述第二电容(C2)的第一端以及所述N个线圈(KM2)的第二端连接;
    所述控制器(600)还被配置为,在第三预设状态下,控制所述第二开关(K2)导通,并控制所述N相桥臂(B2)的下桥臂导通与关断,使所述电池(300)接收来自所述能量交换接口(100)的能量,其中,所述能量交换接口(100)的能量通过所述N相桥臂(B2)、所述N个线圈(KM2)和所述第二电容(C2)升压后被所述电池(300)接收;
    所述控制器(600)还被配置为,在第二预设状态下,控制所述第二开关(K2)导通,并控制所述N相桥臂(B2)的下桥臂关断,使所述电池(300)直接接收来自所述能量交换接口(100)的能量。
  7. 根据权利要求4所述的电池能量处理装置,其特征在于,所述电池能量处理装置还包括第三开关(K3),所述第三开关(K3)的第一端与所述N个线圈(KM2)的第二端连接,所述第三开关(K3)的第二端与所述第二电容(C2)的第一端连接;其中,所述N个 线圈(KM2)为电机绕组,所述N相桥臂(B2)为桥臂变换器;
    所述控制器(600),还被配置为在第五预设状态下,控制所述第三开关(K3)断开,并控制所述桥臂变换器使与所述电机绕组对应的电机输出功率。
  8. 根据权利要求3所述的电池能量处理装置,其特征在于,所述电池能量处理装置还包括第四开关(K4),所述第四开关(K4)的第一端与所述M个线圈(KM1)的第二端连接,所述第四开关(K4)的第二端与所述第一电容(C1)的第一端连接;其中,所述M个线圈(KM1)为电机绕组,所述M相桥臂(B1)为桥臂变换器;
    所述控制器(600),还被配置为在第六预设状态下,控制所述第四开关(K4)断开,并控制所述桥臂变换器使与所述电机绕组对应的电机输出功率。
  9. 根据权利要求4所述的电池能量处理装置,其特征在于,
    所述M个线圈(KM1)为驱动电机的电机绕组或压缩机的电机绕组;
    所述N个线圈(KM2)为所述驱动电机的电机绕组。
  10. 根据权利要求1至9任一项所述的电池能量处理装置,其特征在于,
    所述控制器(600),被配置为在所述第一预设状态下,控制所述第二电路(400)使所述储能单元(500)与所述电池(300)进行循环充电和放电,以实现对所述电池(300)的加热。
  11. 根据权利要求3所述的电池能量处理装置,其特征在于,
    所述第二电路(400)包括N相桥臂(B2),所述N相桥臂(B2)的第一汇流端连接所述电池(300)的正极,所述N相桥臂(B2)的第二汇流端连接所述电池(300)的负极;
    所述储能单元(500)包括N个线圈(KM2),所述N个线圈(KM2)的第一端一一对应连接至所述N相桥臂(B2)的中点,所述N个线圈(KM2)的第二端共接,其中,N≥2,所述N个线圈(KM2)为电机绕组,所述N相桥臂(B2)为桥臂变换器;
    在所述第一预设状态下,所述控制器(600)控制所述N相桥臂(B2)使所述N个线圈(KM2)与所述电池(300)进行充电和放电以实现对所述电池(300)的加热,以及控制所述M相桥臂(B1)使所述电池(300)接收来自所述能量交换接口(100)的能量;
    所述控制器(600),还被配置为在第四预设状态下,控制所述桥臂变换器使与所述电机绕组对应的电机输出功率。
  12. 一种电池能量处理方法,其特征在于,在第一预设状态下,控制第二电路(400)使所述电池(300)进行充电和放电以实现对所述电池(300)的加热,以及控制第一电路(200)接收来自能量交换接口(100)的能量输出至所述电池(300)以实现对所述电池(300)的充电;
    其中,所述第一电路(200)的第一端与能量交换接口(100)连接,所述第一电路(200)的第二端与所述电池(300)连接,所述第二电路(400)的第一端与所述电池(300)连接,所述储能单元(500)与所述第二电路(400)的第二端连接。
  13. 根据权利要求12所述的电池能量处理方法,其特征在于,在第一预设状态下,控制第二电路(400)使储能单元(500)与所述电池(300)进行充电和放电以实现对所述电池(300)的加热;
    所述第一电路(200)在所述第一预设状态下被控制对所述能量交换接口(100)的电压进行稳压,而且所述第一电路(200)传输至所述电池(300)的电压实时匹配所述电池(300)的电压。
  14. 根据权利要求13所述的电池能量处理方法,其特征在于,所述第一电路(200)包括:
    M相桥臂(B1),所述M相桥臂(B1)的第一汇流端连接所述电池(300)的正极,所述M相桥臂(B1)的第二汇流端连接所述电池(300)的负极;
    M个线圈(KM1),所述M个线圈(KM1)的第一端一一对应连接至所述M相桥臂(B1)的中点,所述M个线圈(KM1)的第二端共接;
    第一电容(C1),所述第一电容(C1)的第一端与所述M个线圈(KM1)的第二端连接,所述第一电容(C1)的第二端与所述M相桥臂(B1)的所述第二汇流端连接;其中,M≥1;
    则,在所述第一预设状态下,所述控制第一电路(200)接收来自能量交换接口(100)的能量输出至所述电池(300)以实现对所述电池(300)的充电的步骤包括:
    控制所述M相桥臂(B1)使所述电池(300)接收来自所述能量交换接口(100)的能量。
  15. 根据权利要求14所述的电池能量处理方法,其特征在于,
    所述第二电路(400)包括N相桥臂(B2),所述N相桥臂(B2)的第一汇流端连接所述电池(300)的正极,所述N相桥臂(B2)的第二汇流端连接所述电池(300)的负极;
    所述储能单元(500)包括N个线圈(KM2)和第二电容(C2),所述N个线圈(KM2) 的第一端一一对应连接至所述N相桥臂(B2)的中点,所述N个线圈(KM2)的第二端共接,所述第二电容(C2)的第一端与所述N个线圈(KM2)的第二端连接,所述第二电容(C2)的第二端与所述N相桥臂(B2)的第二汇流端连接;其中,N≥1;
    则,在所述第一预设状态下,所述控制第二电路(400)使储能单元(500)与所述电池(300)进行充电和放电以实现对所述电池(300)的加热的步骤包括:
    控制所述N相桥臂(B2)使所述第二电容(C2)对所述电池(300)进行充电和放电以实现对所述电池(300)的加热。
  16. 根据权利要求15所述的电池能量处理方法,其特征在于,在第二预设状态下,控制所述第一电路(200)处于不接收所述能量交换接口(100)的能量的状态且所述第二电路(400)处于不使所述储能单元(500)与所述电池(300)进行充电和放电的状态,并控制第一开关(K1)导通以使所述电池(300)直接接收来自所述能量交换接口(100)的能量,
    其中,所述第一开关(K1)的第一端与所述能量交换接口(100)连接,所述第一开关(K1)的第二端连接至所述电池(300)的正极;
    在第三预设状态下,控制第二开关(K2)导通,并控制所述N相桥臂(B2)的下桥臂导通与关断,使所述电池(300)接收来自所述能量交换接口(100)的能量,其中,所述能量交换接口(100)的能量通过所述N相桥臂(B2)、所述N个线圈(KM2)和所述第二电容(C2)升压后被所述电池(300)接收;
    其中,所述第二开关(K2)的第一端与所述能量交换接口(100)连接,所述第二开关(K2)的第二端分别与所述第二电容(C2)的第一端以及所述N个线圈(KM2)的第二端连接。
  17. 根据权利要求15所述的电池能量处理方法,其特征在于,在第二预设状态下,控制第二开关(K2)导通,并控制所述N相桥臂(B2)的下桥臂关断,使所述电池(300)接收来自所述能量交换接口(100)的能量;
    其中,所述第二开关(K2)的第一端与所述能量交换接口(100)连接,所述第二开关(K2)的第二端分别与所述第二电容(C2)的第一端以及所述N个线圈(KM2)的第二端连接。
  18. 根据权利要求15所述的电池能量处理方法,其特征在于,在第五预设状态下,控制第三开关(K3)断开,并控制桥臂变换器使与电机绕组对应的电机输出功率;
    其中,所述第三开关(K3)的第一端与所述N个线圈(KM2)的第二端连接,所述第三开关(K3)的第二端与所述第二电容(C2)的第一端连接,所述N个线圈(KM2)为所述电机绕组,所述N相桥臂(B2)为所述桥臂变换器。
  19. 根据权利要求15所述的电池能量处理方法,其特征在于,在第六预设状态下,控制第四开关(K4)断开,并控制桥臂变换器使与电机绕组对应的电机输出功率;
    其中,所述第四开关(K4)的第一端与所述M个线圈(KM1)的第二端连接,所述第四开关(K4)的第二端与所述第一电容(C1)的第一端连接,所述M个线圈(KM1)为所述电机绕组,所述M相桥臂(B1)为所述桥臂变换器。
  20. 根据权利要求14所述的电池能量处理方法,其特征在于,
    所述第二电路(400)包括N相桥臂(B2),所述N相桥臂(B2)的第一汇流端连接所述电池(300)的正极,所述N相桥臂(B2)的第二汇流端连接所述电池(300)的负极;
    所述储能单元(500)包括N个线圈(KM2),所述N个线圈(KM2)的第一端一一对应连接至所述N相桥臂(B2)的中点,所述N个线圈(KM2)的第二端共接;
    其中,N≥2;
    则,在所述第一预设状态下,控制所述N相桥臂(B2)使所述N个线圈(KM2)与所述电池(300)进行充电和放电以实现对所述电池(300)的加热,以及控制所述M相桥臂(B1)使所述电池(300)接收来自所述能量交换接口(100)的能量。
  21. 根据权利要求20所述的电池能量处理方法,其特征在于,所述方法还包括:在第四预设状态下,控制桥臂变换器使与电机绕组对应的电机输出功率;
    其中,所述N个线圈(KM2)为所述电机绕组,所述N相桥臂(B2)为所述桥臂变换器。
  22. 一种车辆,其特征在于,包括电池及根据权利要求1至11中任一项所述的电池能量处理装置。
PCT/CN2021/098394 2020-06-04 2021-06-04 电池能量处理装置、方法及车辆 WO2021244641A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21818937.1A EP4160862A4 (en) 2020-06-04 2021-06-04 BATTERY ENERGY PROCESSING APPARATUS AND METHOD, AND VEHICLE
KR1020227042993A KR20230009443A (ko) 2020-06-04 2021-06-04 배터리 에너지 처리 장치와 방법 및 차량
JP2022574708A JP2023528902A (ja) 2020-06-04 2021-06-04 電池エネルギー処理装置及び方法、並びに車両
US18/074,448 US20230097027A1 (en) 2020-06-04 2022-12-02 Battery energy processing apparatus and method, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010501072.XA CN111404246B (zh) 2020-06-04 2020-06-04 电池能量处理装置、方法和车辆
CN202010501072.X 2020-06-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/074,448 Continuation US20230097027A1 (en) 2020-06-04 2022-12-02 Battery energy processing apparatus and method, and vehicle

Publications (1)

Publication Number Publication Date
WO2021244641A1 true WO2021244641A1 (zh) 2021-12-09

Family

ID=71413777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098394 WO2021244641A1 (zh) 2020-06-04 2021-06-04 电池能量处理装置、方法及车辆

Country Status (6)

Country Link
US (1) US20230097027A1 (zh)
EP (1) EP4160862A4 (zh)
JP (1) JP2023528902A (zh)
KR (1) KR20230009443A (zh)
CN (1) CN111404246B (zh)
WO (1) WO2021244641A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116566010A (zh) * 2023-05-18 2023-08-08 中国华能集团清洁能源技术研究院有限公司 多电池簇的电压分配方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111404246B (zh) * 2020-06-04 2020-10-23 比亚迪股份有限公司 电池能量处理装置、方法和车辆
US11502350B2 (en) * 2020-07-20 2022-11-15 Guangzhou Automobile Group Co., Ltd. Battery heating system, battery device and electric vehicle
CN113002350A (zh) * 2021-02-09 2021-06-22 广州橙行智动汽车科技有限公司 一种充电电路、充电控制方法、充电系统及电动汽车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195081A (ja) * 2009-02-23 2010-09-09 Mazda Motor Corp 電動車両のモータ制御方法及びその装置
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN109823234A (zh) * 2019-04-23 2019-05-31 上海汽车集团股份有限公司 一种驱动系统的控制方法、驱动系统及新能源汽车
CN109927572A (zh) * 2017-12-19 2019-06-25 福特全球技术公司 一体式直流车辆充电器
CN210225008U (zh) * 2019-08-15 2020-03-31 比亚迪股份有限公司 能量转换装置及车辆
CN110949157A (zh) * 2019-12-27 2020-04-03 成都图翎数控科技有限公司 一种牵引机车的充电装置、系统及方法
CN110970965A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 开关控制装置及方法、电机控制器和电池组加热控制系统
CN111404246A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 电池能量处理装置、方法和车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951721B2 (ja) * 2010-07-29 2012-06-13 パナソニック株式会社 電池昇温回路および電池昇温装置
JP5849917B2 (ja) * 2012-09-28 2016-02-03 株式会社豊田自動織機 電気自動車におけるバッテリ昇温制御装置
CN108173323A (zh) * 2016-12-05 2018-06-15 飞宏科技股份有限公司 一种双向车载充放电系统及其方法
CN108511822B (zh) * 2018-05-08 2020-09-11 北京航空航天大学 一种锂离子电池低温加热装置及电动汽车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195081A (ja) * 2009-02-23 2010-09-09 Mazda Motor Corp 電動車両のモータ制御方法及びその装置
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN109927572A (zh) * 2017-12-19 2019-06-25 福特全球技术公司 一体式直流车辆充电器
CN109823234A (zh) * 2019-04-23 2019-05-31 上海汽车集团股份有限公司 一种驱动系统的控制方法、驱动系统及新能源汽车
CN110970965A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 开关控制装置及方法、电机控制器和电池组加热控制系统
CN210225008U (zh) * 2019-08-15 2020-03-31 比亚迪股份有限公司 能量转换装置及车辆
CN110949157A (zh) * 2019-12-27 2020-04-03 成都图翎数控科技有限公司 一种牵引机车的充电装置、系统及方法
CN111404246A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 电池能量处理装置、方法和车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4160862A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116566010A (zh) * 2023-05-18 2023-08-08 中国华能集团清洁能源技术研究院有限公司 多电池簇的电压分配方法及装置
CN116566010B (zh) * 2023-05-18 2024-01-30 中国华能集团清洁能源技术研究院有限公司 多电池簇的电压分配方法及装置

Also Published As

Publication number Publication date
EP4160862A1 (en) 2023-04-05
US20230097027A1 (en) 2023-03-30
CN111404246A (zh) 2020-07-10
CN111404246B (zh) 2020-10-23
KR20230009443A (ko) 2023-01-17
EP4160862A4 (en) 2023-12-06
JP2023528902A (ja) 2023-07-06

Similar Documents

Publication Publication Date Title
WO2021244641A1 (zh) 电池能量处理装置、方法及车辆
US8841883B2 (en) Battery heating circuits and methods with resonance components in series using energy transfer and voltage inversion
TWI556995B (zh) 一種電動車行車控制系統
US20230238603A1 (en) Battery energy processing device and method, and vehicle
US20230097060A1 (en) Energy conversion device and vehicle
CN113752875B (zh) 车辆电池加热装置和方法、车辆
US8941358B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
WO2021244649A1 (zh) 能量转换装置及其安全控制方法
CN212579628U (zh) 能量转换装置及车辆
CN113752911A (zh) 能量处理装置、方法及车辆
CN111404247B (zh) 电池能量处理装置、方法及车辆
WO2023226597A1 (zh) 电池能量处理装置和车辆
WO2023207495A1 (zh) 电池自加热装置、方法及车辆
CN113067530B (zh) 能量转换装置及车辆
WO2024045657A1 (zh) 电池自加热系统及车辆
CN113752913A (zh) 能量转换方法、装置和车辆
CN117656948A (zh) 电池自加热系统及车辆
CN113752865A (zh) 能量转换方法、装置和车辆
CN117656952A (zh) 电池自加热系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574708

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227042993

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021818937

Country of ref document: EP

Effective date: 20230102