WO2023226597A1 - 电池能量处理装置和车辆 - Google Patents

电池能量处理装置和车辆 Download PDF

Info

Publication number
WO2023226597A1
WO2023226597A1 PCT/CN2023/086032 CN2023086032W WO2023226597A1 WO 2023226597 A1 WO2023226597 A1 WO 2023226597A1 CN 2023086032 W CN2023086032 W CN 2023086032W WO 2023226597 A1 WO2023226597 A1 WO 2023226597A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
bridge arm
phase bridge
coils
voltage
Prior art date
Application number
PCT/CN2023/086032
Other languages
English (en)
French (fr)
Inventor
徐鲁辉
杜智勇
任少朋
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2023226597A1 publication Critical patent/WO2023226597A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular, to a battery energy processing device and a vehicle.
  • the present disclosure provides a battery energy processing device and a vehicle.
  • the present disclosure provides a battery energy processing device, including:
  • an inverter the first end of which is used to connect to the battery
  • An energy storage element the first end of the energy storage element is used to connect to an external power supply device, and the second end of the energy storage element is connected to the second end of the inverter;
  • a controller the controller is connected to the third end of the inverter
  • the controller controls the inverter to charge and discharge the energy storage element and the battery to achieve self-heating of the battery;
  • At least part of the energy storage element and at least part of the inverter jointly form a voltage adapting charger, and the controller controls the voltage adapting charger to perform charging on the battery. Charge.
  • the inverter includes at least two-phase bridge arms
  • the energy storage element includes at least two coils
  • the at least two-phase bridge arms and the at least two coils have the same number
  • the at least two At least one of the phase bridge arms and at least one of the at least two coils have the same number
  • the at least one phase bridge arm and the at least one coil together form the voltage adapting charger .
  • the first bus terminal of the at least two-phase bridge arm is connected to the positive electrode of the battery, and the at least The second bus end of the two-phase bridge arm is connected to the negative electrode of the battery and the negative electrode of the external power supply device respectively;
  • the second ends of the at least two coils are connected to the midpoints of the at least two phase bridge arms in one-to-one correspondence, and the first ends of the at least two coils are commonly connected to form a neutral point, and the neutral point is used for Connect to the positive terminal of the external power supply device.
  • the controller controls at least two-phase bridge arms of the at least two-phase bridge arms so that the coils connected to the at least two-phase bridge arms among the at least two coils Charge and discharge the battery to achieve self-heating of the battery.
  • At least one of the at least two-phase bridge arms and one of the at least two coils together forms a voltage-adapted charger, and the controller controls the upper arm of the at least one phase bridge arm to be disconnected and the lower bridge arm of the at least one phase bridge arm to be conducting, so as to charge the at least one phase bridge arm. Coil charging.
  • the controller when the voltage of the external power supply device is less than the voltage of the battery, in the second preset state, after charging the at least one coil, the controller also controls the at least one phase bridge arm.
  • the lower bridge arm of the battery is disconnected, and the control current is boosted and charged to the battery after passing through the freewheeling diode of the upper bridge arm of the at least one phase bridge arm.
  • the step of controlling the current to boost and charge the battery after passing through the freewheeling diode of the upper arm of the at least one phase bridge arm includes: controlling the insulated gate diode of the upper bridge arm of the at least one phase bridge arm.
  • the polar transistor is non-conductive to control the current to boost and charge the battery after passing through the freewheeling diode of the upper bridge arm of the at least one phase bridge arm.
  • the controller controls the insulated gate bipolar type of the upper and lower bridge arms of the at least two-phase bridge arms.
  • the transistor is turned off to control the current to directly charge the battery after passing through the freewheeling diode of the upper arm of the at least two-phase bridge arm.
  • the device further includes: at least two first switches, the first ends of the at least two first switches are used to connect the positive pole of the external power supply device, and the first ends of the at least two first switches are used to connect the positive pole of the external power supply device. Two ends are connected to the first ends of the at least two coils in one-to-one correspondence.
  • the controller controls the first switch among the at least two first switches that is connected to at least two coils of the at least two coils to close, and controls all the first switches to close.
  • at least two-phase bridge arms at least two-phase bridge arms connected to the at least two coils allow the at least two coils to charge and discharge with the battery to achieve self-heating of the battery;
  • At least one of the at least two coils and at least one phase bridge arm correspondingly connected to the at least one coil together form a voltage-adapted charger, and the controller controls the at least Among the two first switches, the first switch corresponding to the at least one coil is closed and controls the voltage adapting charger to charge the battery.
  • the controller controls the first switch among the at least two first switches that is connected to the coil connected to the failed bridge arm to disconnect, and controls the at least two first switches to disconnect. Switching, and not sending The first switch connected to the coil connected to the failed bridge arm is closed, and the voltage adapting charger is controlled to charge the battery.
  • the energy storage component further includes a first capacitor
  • the first capacitor has a first end connected to the neutral point and the positive electrode of the external power supply device respectively, and a second end of the first capacitor is connected to the negative electrode of the battery and the positive electrode of the external power supply device respectively. Describe the negative connection of the external power supply device.
  • the controller controls at least one phase bridge arm of the at least two phase bridge arms to charge and discharge the first capacitor and the battery to achieve the The battery is self-heating;
  • At least one of the at least two coils and at least one phase bridge arm correspondingly connected to the at least one coil together form a voltage-adapted charger, and the controller controls the voltage An adapted charger charges the battery.
  • the device also includes:
  • At least two first switches the first ends of the at least two first switches are used to connect the positive poles of the external power supply equipment, and the second ends of the at least two first switches are connected to the at least one corresponding the first ends of the two coils;
  • the controller controls the first switch of the at least two first switches that is connected to the coil connected to the failed bridge arm to disconnect, and controls the at least two first switches to disconnect.
  • the first switch connected correspondingly to the coil connected to the non-faulty bridge arm is closed, and controls the non-faulty bridge arm among the at least two-phase bridge arms, so that the first capacitor is connected to the The battery is charged and discharged to achieve self-heating of the battery.
  • the device also includes:
  • At least two first switches the first ends of the at least two first switches are used to connect the positive poles of the external power supply equipment, and the second ends of the at least two first switches are connected to the at least one corresponding the first ends of both coils;
  • a second switch wherein the first end of the second switch is connected to the neutral point, and the second end of the second switch is used to connect to the positive pole of the external power supply device;
  • the energy storage element also includes a first capacitor, wherein the first end of the first capacitor is connected to the neutral point and the positive electrode of the external power supply device respectively, and the second end of the first capacitor is respectively connected to the The negative electrode of the battery and the negative electrode of the external power supply device are connected;
  • the controller controls one of the at least two first switches and the at least two first switches.
  • the first switch connected to at least two coils of the coils is closed, the second switch is controlled to be opened, and at least two-phase bridge arms of the at least two-phase bridge arms that are connected to the at least two coils are controlled, Charging and discharging the at least two coils and the battery to achieve self-heating of the battery;
  • the controller controls one of the at least two first switches and at least one phase bridge.
  • the first switch connected to the coil connected to the arm is closed, the second switch is controlled to be closed, and the at least one phase bridge arm of the at least two phase bridge arm is controlled to charge the first capacitor and the battery. and discharge, To achieve self-heating of the battery.
  • the present disclosure provides a vehicle, including:
  • the battery energy processing device is provided according to a first aspect of the present disclosure.
  • the battery energy processing device includes: an inverter, an energy storage element and a controller, wherein the inverter is connected to the battery and the energy storage element respectively, and the energy storage element is connected to the external power supply equipment; in the first preset In the preset state, the controller controls the inverter to charge and discharge the energy storage components and the battery to achieve self-heating of the battery.
  • the energy storage element can be used to circulate the power in the battery back and forth between the battery and the energy storage element to realize battery charging and discharging, thereby realizing battery self-heating to better maintain the battery temperature and improve
  • the electrolyte activity and electrochemical reaction rate of lithium-ion batteries ensure the driving capability of the electric vehicle drive system.
  • the battery's self-heating energy loss is small, heat transfer is uniform, and heating efficiency is high.
  • at least part of the energy storage element and at least part of the inverter jointly form a voltage adapting charger, and the controller controls the voltage adapting charger to charge the battery. That is, battery charging and battery self-heating share a battery energy processing device, thereby realizing the multi-functional reuse of the battery energy processing device and saving parts cost and volume space.
  • FIG. 1 is a structural block diagram of a battery energy processing device according to an exemplary embodiment.
  • FIG. 2 is a circuit topology diagram of a battery energy processing device according to an exemplary embodiment.
  • 3 and 4 are schematic diagrams of the working principle of boost charging the battery in a second preset state according to an exemplary embodiment.
  • FIG. 5 is a circuit topology diagram of a battery energy processing device according to another exemplary embodiment.
  • FIG. 6 is a circuit topology diagram of a battery energy processing device according to another exemplary embodiment.
  • FIG. 7 is a circuit topology diagram of a battery energy processing device according to another exemplary embodiment.
  • FIG. 8 to 11 are schematic diagrams of the working principle of using the battery energy processing device shown in FIG. 7 to heat a battery in a first preset state according to an exemplary embodiment.
  • FIG. 12 is a circuit topology diagram of a battery energy processing device according to another exemplary embodiment.
  • FIG. 13 is a circuit topology diagram of a battery energy processing device according to another exemplary embodiment.
  • FIG. 1 is a structural block diagram of a battery energy processing device according to an exemplary embodiment.
  • the battery energy processing device 300 may include: an inverter 1 , an energy storage component 2 and a controller 3 .
  • the first end 11 of the inverter 1 is used to connect to the battery 100; the first end 21 of the energy storage element 2 is used to connect to the external power supply equipment 200, and the second end 22 of the energy storage element 2 is connected to the inverter 1
  • the second terminal 12 of the controller is connected; the controller 3 is connected to the third terminal 13 of the inverter 1 .
  • the controller 3 controls the inverter 1 to charge and discharge the energy storage element 2 and the battery 100 (for example, cycle charging and discharging) to achieve self-heating of the battery 100; in the second preset state , at least part of the energy storage element 2 and at least part of the inverter 1 together form a voltage adapting charger, and the controller 3 controls the voltage adapting charger to charge the battery 100 .
  • the external power supply device 200 may be, for example, a charging pile, a battery, etc.
  • the above-mentioned cyclic charging and discharging means that charging and discharging are switched multiple times at a certain frequency. Through the cyclic charging and discharging of the battery, the battery can generate heat, thereby achieving self-heating of the battery.
  • the first preset state refers to the battery self-heating state
  • the second preset state refers to the battery charging state
  • the battery energy processing device includes: an inverter, an energy storage element and a controller, wherein the inverter is connected to the battery and the energy storage element respectively, and the energy storage element is connected to the external power supply equipment; in the first preset In the preset state, the controller controls the inverter to charge and discharge the energy storage components and the battery to achieve self-heating of the battery.
  • the energy storage element can be used to circulate the power in the battery back and forth between the battery and the energy storage element to realize battery charging and discharging, thereby realizing battery self-heating to better maintain the battery temperature and improve
  • the electrolyte activity and electrochemical reaction rate of lithium-ion batteries ensure the driving capability of the electric vehicle drive system.
  • the battery's self-heating energy loss is small, heat transfer is uniform, and heating efficiency is high.
  • at least part of the energy storage element and at least part of the inverter jointly form a voltage adapting charger, and the controller controls the voltage adapting charger to charge the battery. That is, battery charging and battery self-heating share a battery energy processing device, thereby realizing the multi-functional reuse of the battery energy processing device and saving parts cost and volume space.
  • the inverter 1 includes N-phase bridge arm B, and the energy storage element 2 includes N coils KM.
  • the energy storage element 2 includes N coils KM.
  • at least one phase bridge arm in the N-phase bridge arm B mentioned below and at least one coil in the N coils KM have the same number, and at least one phase bridge arm and at least one coil together form a voltage adaptive charging device.
  • one of the N-phase bridge arms B and one of the N coils KM together form a voltage adaptation charger KB.
  • the first common terminal of the N-phase bridge arm B is connected to the positive electrode of the battery 100
  • the second common terminal of the N-phase bridge arm B is connected to the negative electrode of the battery 100 and the negative electrode of the external power supply device 200 respectively.
  • N coils The second end 22 of KM is connected to the midpoint of the N-phase bridge arm B in one-to-one correspondence.
  • the first ends 21 of the N coils KM are commonly connected to form a neutral point P.
  • the neutral point P is used to connect to the positive pole of the external power supply device 200 connect.
  • the controller 3 controls at least two-phase bridge arms of the N-phase bridge arm B to charge and discharge the coils connected to the at least two-phase bridge arms among the N coils KM and the battery 100. To achieve 100% self-heating of the battery.
  • the controller 3 controls the upper bridge arm of at least one phase bridge arm to be turned off and the lower bridge arm of at least one phase bridge arm to be turned on, so as to charge at least one coil.
  • the controller 3 controls the N-phase bridge arm B to charge and discharge the N coils KM with the battery 100 to realize self-heating of the battery 100.
  • the N-phase bridge arm B and the N The coils KM work at the same time, which can maximize the heating power, thus improving the battery self-heating effect.
  • the N coils KM and the N-phase bridge arm B jointly form a voltage adapting charger, and the controller 3 controls the voltage adapting charger to charge the battery 100 .
  • the N-phase bridge arm and N coils work at the same time, which can maximize the charging power and thereby improve the battery charging efficiency.
  • the specific process of using the battery energy processing device 300 in Figure 2 to heat the battery 100 is as follows: using N coils KM as current limiting buffer devices to control the conduction mode of the N-phase bridge arm B, At the same time, the duty cycle of the conductive bridge arm is adjusted to control the battery loop current, causing the internal resistance of the battery to heat up, thus driving the temperature of the battery 100 to rise, thereby achieving a controllable temperature rise of the battery 100 .
  • the controller 3 controls the upper bridge arm of at least one phase bridge arm to be turned off and the lower bridge arm of at least one phase bridge arm to be turned on, so as to charge at least one coil.
  • At least one phase bridge arm of the N-phase bridge arm B is controlled to charge the battery 100.
  • the battery 100 can be boosted or charged directly, and the battery 100 can be charged according to the voltage of the battery 100.
  • the voltage and the voltage of the external power supply device 200 determine which charging method is used.
  • the above-mentioned controller 3 is also used to detect whether the voltage of the external power supply device 200 is less than the voltage of the battery 100 .
  • the voltage of the external power supply device 200 is lower than the voltage of the battery 100, in the second preset state, at least one of the N-phase bridge arms B and at least one of the N coils KM together form a voltage-adapted charger.
  • the controller 3 controls the upper bridge arm of at least one phase bridge arm to be disconnected and the lower bridge arm of at least one phase bridge arm to be conductive, so as to control the coil ( That is, at least one coil in the voltage adapting charger) is charged; after that, the controller 3 also controls the lower arm of at least one phase bridge arm corresponding to the at least one coil to be disconnected, and controls the current to flow through at least one phase bridge.
  • the freewheeling diode of the upper arm of the upper arm boosts and charges the battery 100.
  • the above-mentioned control current boosts and charges the battery 100 after passing through the freewheeling diode of the upper arm of at least one phase bridge arm, including: controlling the insulated gate bipolar type of the upper bridge arm of at least one phase bridge arm.
  • the transistor is turned off to control the current to boost charging of the battery 100 after passing through the freewheeling diode of the upper arm of the at least one phase bridge arm.
  • the controller 3 controls the insulated gate bipolar transistors of the upper and lower arms of the N-phase bridge arm B not to conduct to control the current flow.
  • the freewheeling diode of the upper arm of the N-phase bridge arm B directly charges the battery 100 .
  • voltage adaptation charging can be automatically performed according to the voltage of the external power supply equipment 200 and the voltage of the battery 100. In this way, whether it is a high-voltage external power supply equipment or a low-voltage external power supply equipment, the battery energy processing device 300 can To achieve charging of high-voltage batteries without the need for additional boost equipment.
  • the controller 3 controls all the upper bridge arms of the N-phase bridge arm B to be disconnected, and controls at least one lower bridge arm of the N-phase bridge arm B to be turned on. Then, the current flows out from the positive electrode of the external power supply device 200, It flows sequentially through the coil connected to the conductive lower arm of the N coils KM, the conductive lower arm of the N-phase bridge arm B, and then returns to the negative electrode of the external power supply device 200 . In this way, the coil connected to the conductive lower bridge arm among the N coils KM can be charged. In addition, by controlling the conduction number and conduction duty cycle of the lower bridge arm, the charging current and thus the charging power can be controlled.
  • the N-phase bridge arm B includes two bridge arms b1 and b2
  • the N coils KM include two coils H1 and H2, where one end of the coil H1 is connected to the midpoint of the bridge arm b1, and the coil H2 One end is connected to the midpoint of bridge arm b2.
  • the controller 3 controls all the upper bridge arms of the bridge arms b1 and b2 to be disconnected, and controls all the lower bridge arms of the bridge arms b1 and b2 to be turned on, then the positive electrode of the external power supply device 200 and the N coils KM (i.e., the coils H1 and H2), all the lower bridge arms of the N-phase bridge arm B (that is, the lower bridge arms of the bridge arms b1 and b2), and the negative electrode of the external power supply device 200 form a loop for charging the N coils KM.
  • the positive electrode of the external power supply device 200 and the N coils KM i.e., the coils H1 and H2
  • all the lower bridge arms of the N-phase bridge arm B that is, the lower bridge arms of the bridge arms b1 and b2
  • the negative electrode of the external power supply device 200 form a loop for charging the N coils KM.
  • the controller 3 controls all the lower bridge arms of the N-phase bridge arm B to be disconnected. Then, the current flows out from the positive electrode of the external power supply device 200 and flows through the N coils KM and the N-phase bridge arm B in sequence. The freewheeling diodes in all the upper arms, the positive electrode of the battery 100 , and the negative electrode of the battery 100 then return to the negative electrode of the external power supply device 200 . In this way, the energy of the external power supply device 200 and the N coils KM can be transferred to the battery 100, so that the N coils KM and the external power supply device 200 can charge the battery 100 at the same time, that is, boost charging of the battery 100 can be achieved.
  • the controller 3 can control the N-phase bridge arm B All the lower bridge arms of the N-phase bridge arm B are disconnected, then the current flows out from the positive electrode of the external power supply device 200 and sequentially flows through the N coils KM, the freewheeling diodes in all the upper bridge arms of the N-phase bridge arm B, the positive electrode of the battery 100, the battery 100 The negative electrode then returns to the negative electrode of the external power supply device 200 . In this way, all the energy of the external power supply device 200 can be transferred to the battery 100, so that the external power supply device 200 can charge the battery 100, that is, direct charging of the battery 100 can be achieved.
  • the N coils KM are motor windings (for example, motor windings for driving a motor), and the N-phase bridge arm B is a bridge arm converter. That is to say, the existing motor windings and bridge arm converters on the vehicle are reused, allowing different functions to be implemented according to needs, for example: when the battery needs to self-heat or charge, N coils KM and N-phase bridge arms B can be applied in various self-heating processes described in this disclosure; when the vehicle needs to be driven, the N coils KM and the N-phase bridge arm B can be switched to control the bridge arm B to make the motor output corresponding to the motor winding power to drive the vehicle. In this way, different functions can be implemented as needed by reusing the vehicle motor windings and bridge arm converters, and also save vehicle costs.
  • the existing motor windings and bridge arm converters on the vehicle are reused, allowing different functions to be implemented according to needs, for example: when the battery needs to self-heat or charge, N coils KM and N-phase bridge
  • the above-mentioned battery energy processing device 300 may also include a second capacitor C2, wherein the first terminal C21 of the second capacitor C2 is connected to the positive electrode of the battery 100 and the first bus of the N-phase bridge arm B respectively. terminals are connected, and the second terminal C22 of the second capacitor C2 is respectively connected to the negative electrode of the battery 100 and the second bus terminal of the N-phase bridge arm B.
  • the second capacitor C2 has a voltage stabilizing effect, thereby avoiding the impact of spikes on various components in the energy processing device 300 caused by the instant when the battery energy processing device 300 is connected to the battery 100 or the external power supply device 200 .
  • the above-mentioned battery energy processing device 300 may also include: a third switch K3 and a fourth switch K4 (neither is shown in the figure).
  • the first end of the third switch K3 is connected to the above-mentioned neutral point P
  • the second end of the third switch K3 is used to connect to the positive electrode of the external power supply device 200
  • the first end of the fourth switch K4 is connected to the negative electrode of the battery 100.
  • the second end of the fourth switch K4 is used to connect with the negative electrode of the external power supply device 200 .
  • the controller 3 controls both the third switch K3 and the fourth switch K4 to be turned off, and controls at least two phase bridge arms of the N-phase bridge arm B to neutralize at least the N coils KM.
  • the coil connected to the two-phase bridge arm is charged and discharged with the battery 100 to realize self-heating of the battery 100; in the second preset state, the third switch K3 and the fourth switch K4 are controlled to be closed, and the voltage adaptation charger is controlled.
  • the battery 100 is charged.
  • the above-mentioned battery energy processing device 300 also includes: N first switches K1, wherein the first end K11 of the N first switches K1 is used to connect the positive electrode of the external power supply device 200, and the N first switches The second end K12 of K1 is connected to the first ends 21 of the N coils KM in one-to-one correspondence.
  • the above-mentioned controller 3 controls the first switches K1 corresponding to at least two coils of the N coils KM among the N first switches K1 to close, and controls the N-phase bridge arm B to close. , at least two-phase bridge arms connected to the at least two coils, allowing the at least two coils to charge and discharge the battery 100 to realize self-heating of the battery 100; in the second preset state, the N coils KM At least one coil and at least one phase bridge arm correspondingly connected to the at least one coil together form a voltage-adaptive charger.
  • the controller 3 controls the first switch K1 among the N first switches K1 corresponding to the at least one coil.
  • the switch K1 is closed and controls the voltage adaptation charger to charge the battery 100 .
  • controller 3 can also be used to detect whether each phase bridge arm in the N-phase bridge arm B is faulty in the second preset state; at this time , in the second preset state, the non-faulty bridge arm in the N-phase bridge arm B and the coils connected to the non-faulty bridge arm in the N coils KM jointly form a voltage adaptation charger, controller 3 Control the first switch K1 of the N first switches K1 that is connected to the coil connected to the failed bridge arm to be disconnected, and control the corresponding connection of the coil of the N first switches K1 connected to the bridge arm that has not failed. The first switch K1 is closed and controls the voltage adapting charger to charge the battery 100 .
  • the faulty bridge arm can be disconnected through the first switch K1 connected to it to close the channel of the phase bridge arm and use other phases with normal functions.
  • the channel formed by the bridge arm is used to complete the charging of the battery, thereby improving the redundant fault tolerance performance of the battery energy processing device 300.
  • the above-mentioned energy storage element 2 also includes a first capacitor C1, wherein the first terminal C11 of the first capacitor C1 is connected to the neutral point P and the positive electrode of the external power supply device 200 respectively, and the first terminal C11 of the first capacitor C1
  • the two terminals C12 are respectively connected to the negative electrode of the battery 100 and the negative electrode of the external power supply device 200 .
  • the above-mentioned controller 3 controls at least one phase bridge arm of the N-phase bridge arm B to charge and discharge the first capacitor C1 and the battery 100 to realize self-heating of the battery 100; in the first In the second preset state, at least one coil among the N coils KM and at least one phase bridge arm correspondingly connected to the at least one coil together form a voltage adapting charger, and the controller 3 controls the voltage adapting charger to charge the battery 100 .
  • the controller 3 can control all the lower bridge arms of the N-phase bridge arm B to be disconnected, and control at least one upper bridge arm of the N-phase bridge arm B to be turned on.
  • the current flows out from the positive electrode of the battery 100, flows through the conductive upper bridge arm, the coil connected to the conductive upper bridge arm and the first capacitor C1, and finally returns to the negative electrode of the battery 100.
  • the battery 100 is in an outward discharge state, the first capacitor C1 receives energy from the coil connected to the conductive upper arm, and the voltage continues to increase, thereby realizing energy storage.
  • the controller 3 can control all the upper bridge arms of the N-phase bridge arm B to be disconnected, and control the lower bridge arm of the N-phase bridge arm B to be in a state where there is freewheeling.
  • the lower bridge arm connected to the current coil is turned on.
  • the current flows out from the coil with freewheeling current, flows through the first capacitor C1 and the turned-on lower bridge arm, and finally returns to the coil with freewheeling current.
  • the first capacitor C1 continues to receive energy from the coil, and the voltage continues to increase.
  • the first capacitor C1 will automatically change from receiving the energy of the coil KM to releasing energy to the coil KM. At this time, the current changes from The first capacitor C1 flows out, flows through the coil connected to the conductive lower bridge arm, the conductive lower bridge arm, and finally returns to the first capacitor C1. During this process, the voltage across the first capacitor C1 continues to decrease.
  • the controller 3 can control all the lower bridge arms of the N-phase bridge arm B to be disconnected, and control at least one upper bridge arm of the N-phase bridge arm B to be turned on.
  • the current flows out from the first capacitor C1 and flows through the coil connected to the conductive upper bridge arm, the conductive upper bridge arm, the positive electrode of the battery 100 and The negative electrode of the battery 100 finally returns to the first capacitor C1.
  • the battery 100 is in a charging state.
  • the first capacitor C1 and the coil connected to the conductive upper arm switch from releasing energy to the battery 100 to receiving energy from the battery 100. At this time, the current flow direction returns to the first capacitor C1. In the flow direction described in the process, the battery 100 begins to discharge outward.
  • the above four processes are continuously cycled, allowing rapid cyclic charging/discharging between the first capacitor C1 and the battery 100 . Due to the existence of the internal resistance of the battery, a large amount of heat is generated, causing the battery to heat up quickly and improving the battery heating efficiency.
  • the above device also includes: N first switches K1, wherein the first terminal K11 of the N first switches K1 is used to connect the positive electrode of the external power supply device 200, and the second terminal of the N first switches K1
  • the terminals K12 are connected to the first terminals 21 of the N coils KM in one-to-one correspondence.
  • the above-mentioned controller 3 can also be used to detect whether each phase bridge arm in the N-phase bridge arm B is faulty; at this time, in the first preset state, the controller 3 controls the N first switches K1 , the first switch K1 corresponding to the coil connected to the failed bridge arm is disconnected, and the first switch K1 of the N first switches K1 is controlled to be closed corresponding to the coil connected to the non-faulty bridge arm, and The non-faulty bridge arm of the N-phase bridge arm B is controlled to charge and discharge the first capacitor C1 and the battery 100 to realize self-heating of the battery 100.
  • the faulty bridge arm can be disconnected through the first switch K1 connected to it to close the channel of the phase bridge arm and use other phases with normal functions.
  • the channel formed by the bridge arms is used to complete the self-heating of the battery, thereby improving the redundant fault tolerance performance of the battery energy processing device 300.
  • the above-mentioned battery energy processing device 300 may also include: N first switches K1 and second switches K2; the energy storage element 2 also includes a first capacitor C1.
  • the first terminal K11 of the N first switches K1 is used to connect the positive electrode of the external power supply device 200, and the second terminal K12 of the N first switches K1 is connected to the first terminal 21 of the N coils KM in one-to-one correspondence;
  • the first terminal K21 of the second switch K2 is connected to the neutral point P, the second terminal K22 of the second switch K2 is used to connect to the positive electrode of the external power supply device 200;
  • the first terminal C11 of the first capacitor C1 is connected to the neutral point P respectively.
  • the positive electrode of the external power supply equipment 200 is connected, and the second terminal C12 of the first capacitor C1 is connected to the negative electrode of the battery 100 and the negative electrode of the external power supply equipment 200 respectively.
  • the controller 3 controls the N first switches K1 and the N coils KM.
  • the first switch K1 connected to at least two coils is closed, controls the second switch K2 to open, and controls at least two phase bridge arms in the N-phase bridge arm B that are connected to the above-mentioned at least two coils, so that the above-mentioned at least two coils Charging and discharging the battery 100 to realize self-heating of the battery 100;
  • the controller 3 controls N Among the first switches K1, the first switch K1 corresponding to the coil connected to at least one phase bridge arm is closed, controls the second switch K2 to close, and controls at least one phase bridge arm of the N-phase bridge arm B, so that the first capacitor C1 Charge and discharge with the battery 100 to realize self-heating of the battery
  • battery heating includes two methods, namely inductive self-heating method and capacitive self-heating method.
  • inductive self-heating method and capacitive self-heating method.
  • users can choose the appropriate battery heating method according to their own needs, which improves the user experience.
  • the present disclosure also provides a battery energy processing method, which method includes:
  • the inverter In the first preset state, the inverter is controlled to charge and discharge the energy storage element and the battery to achieve self-heating of the battery;
  • At least part of the energy storage element and at least part of the inverter jointly form a voltage adapting charger, and the voltage adapting charger is controlled to charge the battery.
  • the first end of the inverter is used to connect to the battery, and the second end is connected to the second end of the energy storage element;
  • the first end of the energy storage element is used to connect with external power supply equipment.
  • the energy storage element in the first preset state, can be used to circulate the power in the battery back and forth between the battery and the energy storage element to realize battery charging and discharging, thereby realizing battery self-heating to better maintain the battery. temperature, improves the electrolyte activity and electrochemical reaction rate of lithium-ion batteries, and ensures the driving capability of the electric vehicle drive system.
  • the battery's self-heating energy loss is small, heat transfer is uniform, and heating efficiency is high.
  • the battery energy processing device in the second preset state, can also reuse the energy storage element and the inverter to form a voltage-adaptive charger, and control the inverter to charge the battery. That is, battery charging and battery self-heating share a battery energy processing device, thereby realizing the multi-functional reuse of the battery energy processing device and saving parts cost and volume space.
  • the inverter includes at least two-phase bridge arms
  • the energy storage element includes at least two coils
  • the number of the at least two-phase bridge arms and the at least two coils is the same
  • at least one of the at least two-phase bridge arms is The number of at least one coil in the at least two coils is the same
  • at least one phase bridge arm and at least one coil together form a voltage adapting charger.
  • the first common terminal of at least the two-phase bridge arm is connected to the positive electrode of the battery, and the second common terminal of at least the two-phase bridge arm is connected to the negative electrode of the battery and the negative electrode of the external power supply device respectively;
  • the second ends of at least two coils are connected to the midpoints of at least two phase bridge arms in one-to-one correspondence, and the first ends of at least two coils are commonly connected to form a neutral point, and the neutral point is used to connect to the positive pole of the external power supply device;
  • Control the inverter to charge and discharge energy storage components and batteries including:
  • At least part of the energy storage element and at least part of the inverter jointly form a voltage adaptation charger, and the voltage adaptation charger is controlled to charge the battery, including:
  • At least one of the at least two phase bridge arms and at least one of the at least two coils together form a voltage adapting charger, which controls the upper bridge arm of at least one phase bridge arm to be disconnected and the lower bridge arm of at least one phase bridge arm to be disconnected.
  • the bridge arms are turned on to charge at least one coil.
  • the above method also includes:
  • the lower bridge arm of at least one phase bridge arm is controlled to be disconnected, and the current is controlled to flow through the at least one phase bridge arm.
  • the freewheeling diode of the upper arm boosts the battery and charges it.
  • controlling the current to boost and charge the battery after passing through the freewheeling diode of the upper arm of the at least one phase bridge arm includes: controlling the insulated gate bipolar transistor of the upper arm of the at least one phase bridge arm to not conduct, to control The current passes through the freewheeling diode of the upper bridge arm of the at least one phase bridge arm to boost and charge the battery.
  • the method also includes:
  • the insulated gate bipolar transistors of the upper and lower bridge arms of the at least two-phase bridge arms are controlled to be non-conductive to control the current through the at least two-phase bridge arms.
  • the freewheeling diode of the upper arm is used to directly charge the battery.
  • the first ends of the at least two first switches are used to connect the positive poles of the external power supply equipment, and the second ends of the at least two first switches are connected to the first ends of the at least two coils in one-to-one correspondence;
  • Controlling at least two-phase bridge arms of at least two-phase bridge arms to charge and discharge the coil of at least two coils connected to the at least two-phase bridge arms and the battery including:
  • At least one of the at least two phase bridge arms and at least one of the at least two coils together form a voltage adapting charger, which controls the upper bridge arm of the at least one phase bridge arm to be disconnected and the lower bridge arm of the at least one phase bridge arm to be disconnected.
  • the bridge arms are turned on to charge at least one coil, including:
  • At least one of the at least two coils and at least one phase bridge arm correspondingly connected to the at least one coil together form a voltage adaptive charger, which controls the closing of the first switch among the at least two first switches that is correspondingly connected to the at least one coil. , and controls the voltage adaptation charger to charge the battery.
  • the first ends of the at least two first switches are used to connect the positive poles of the external power supply equipment, and the second ends of the at least two first switches are connected to the first ends of the at least two coils in one-to-one correspondence;
  • At least one of the at least two phase bridge arms and at least one of the at least two coils together form a voltage adapting charger, which controls the upper bridge arm of the at least one phase bridge arm to be disconnected and the lower bridge arm of the at least one phase bridge arm to be disconnected.
  • the bridge arm is turned on to charge at least one coil, including:
  • the non-faulty bridge arm of at least two phase bridge arms and the coil connected to the non-faulty bridge arm of at least two coils together form a voltage adapting charger, controlling at least two first switches and the faulty bridge arm.
  • the first switch corresponding to the coil connected to the bridge arm is disconnected, and the first switch connected to the coil connected to the non-faulty bridge arm is controlled to close among the at least two first switches, and the voltage adapting charger is controlled to close. Charge the battery.
  • the energy storage element further includes a first capacitor; a first terminal of the first capacitor is respectively connected to the neutral point and the positive electrode of the external power supply device, and the second terminal of the first capacitor is respectively connected to the negative electrode of the battery and the positive electrode of the external power supply device. Negative connection of external power supply equipment;
  • Control the inverter to charge and discharge energy storage components and batteries including:
  • At least part of the energy storage element and at least part of the inverter jointly form a voltage adaptation charger, and the voltage adaptation charger is controlled to charge the battery, including:
  • At least one of the at least two coils and at least one phase bridge arm correspondingly connected to the at least one coil together form a voltage adapting charger, and the voltage adapting charger is controlled to charge the battery.
  • the first ends of the at least two first switches are used to connect the positive poles of the external power supply equipment, and the second ends of the at least two first switches are connected to the first ends of the at least two coils in one-to-one correspondence;
  • Control the inverter to charge and discharge energy storage components and batteries including:
  • the first switch Control the first switch among the at least two first switches that is connected to the coil connected to the failed bridge arm to be disconnected, and control the at least two first switches to be connected correspondingly to the coil connected to the bridge arm that has not failed.
  • the first switch is closed and controls at least the non-faulty bridge arm of at least the two-phase bridge arms to charge and discharge the first capacitor and the battery to achieve self-heating of the battery.
  • the first ends of the at least two first switches are used to connect the positive poles of the external power supply equipment, and the second ends of the at least two first switches are connected to the first ends of the at least two coils in one-to-one correspondence;
  • the energy storage element also includes a first capacitor, wherein the first end of the first capacitor is connected to the neutral point and the positive electrode of the external power supply device respectively, and the second end of the first capacitor is connected to the negative pole of the battery and the negative pole of the external power supply device respectively. ;
  • Control the inverter to charge and discharge energy storage components and batteries including:
  • controlling the first switch corresponding to at least two coils of the at least two coils among the at least two first switches to close, and controlling the second switch to close.
  • the switch is turned off, and controls at least two of the two-phase bridge arms connected to at least two coils to charge and discharge the at least two coils with the battery to achieve self-heating of the battery, wherein the second switch The first end is connected to the neutral point, and the second end of the second switch is used to connect to the positive pole of the external power supply device;
  • the present disclosure also provides a vehicle, including a battery and the above battery energy processing device provided by the present disclosure.
  • any combination of various embodiments of the present disclosure can also be carried out, and as long as they do not violate the idea of the present disclosure, they should also be regarded as the contents disclosed in the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池能量处理装置和车辆,装置包括:逆变器、储能元件及控制器;控制器用于:在第一预设状态下,控制器控制逆变器使储能元件与电池进行充电和放电,以实现电池自加热;在第二预设状态下,储能元件的至少部分和逆变器的至少部分共同形成电压适配充电器,控制器控制电压适配充电器对电池充电。

Description

电池能量处理装置和车辆
相关申请的交叉引用
本公开要求在2022年05月25日提交中国专利局、申请号为202210583659.9、名称为“电池能量处理装置和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,具体地,涉及一种电池能量处理装置和车辆。
背景技术
电动车辆所装载的动力电池在低温环境下,充放电过程中,性能衰减较严重,导致驱动系统或充电系统在低温环境下能力受到限制,严重降低了用户使用体验度。
为了减小低温环境对动力电池的限制,从而提出了一些动力电池的加热方案。与此同时,动力电池的快充功能也是新能源车的必备功能。
因此,寻求一种兼顾充电和加热两种功能的技术方案,是当前亟待解决的技术问题。
发明内容
为了克服相关技术中存在的问题,本公开提供一种电池能量处理装置和车辆。
为了实现上述目的,第一方面,本公开提供一种电池能量处理装置,包括:
逆变器,所述逆变器的第一端用于与电池连接;
储能元件,所述储能元件的第一端用于与外部供电设备连接,所述储能元件的第二端与所述逆变器的第二端连接;以及
控制器,所述控制器与所述逆变器的第三端连接;
其中,在第一预设状态下,所述控制器控制所述逆变器使所述储能元件与所述电池进行充电和放电,以实现所述电池自加热;
在第二预设状态下,所述储能元件的至少部分和所述逆变器的至少部分共同形成电压适配充电器,所述控制器控制所述电压适配充电器对所述电池进行充电。
可选地,所述逆变器包括至少两相桥臂,所述储能元件包括至少两个线圈,所述至少两相桥臂和所述至少两个线圈的个数相同,所述至少两相桥臂中的至少一相桥臂和所述至少两个线圈中的至少一个线圈的个数相同,且所述至少一相桥臂和所述至少一个线圈共同形成所述电压适配充电器。
可选地,所述至少两相桥臂的第一汇流端连接所述电池的正极,所述至少 两相桥臂的第二汇流端分别与所述电池的负极、所述外部供电设备的负极连接;
所述至少两个线圈的第二端一一对应连接至所述至少两相桥臂的中点,所述至少两个线圈的第一端共接形成中性点,所述中性点用于与所述外部供电设备的正极连接。
可选地,在第一预设状态下,所述控制器控制所述至少两相桥臂的至少两相桥臂,使所述至少两个线圈中与所述至少两相桥臂连接的线圈与所述电池进行充电和放电,以实现所述电池自加热。
可选地,所述外部供电设备的电压小于所述电池的电压时,在第二预设状态下,所述至少两相桥臂中的至少一相桥臂和所述至少两个线圈中的至少一个线圈共同形成电压适配充电器,所述控制器控制所述至少一相桥臂的上桥臂断开、所述至少一相桥臂的下桥臂导通,以对所述至少一个线圈充电。
可选地,所述外部供电设备的电压小于所述电池的电压时,在第二预设状态下,在对所述至少一个线圈充电后,所述控制器还控制所述至少一相桥臂的下桥臂断开,且控制电流经所述至少一相桥臂的上桥臂的续流二极管后给所述电池升压充电。
可选地,所述控制电流经所述至少一相桥臂的上桥臂的续流二极管后给所述电池升压充电包括:控制所述至少一相桥臂的上桥臂的绝缘栅双极型晶体管不导通,以控制电流经所述至少一相桥臂的上桥臂的续流二极管后给所述电池升压充电。
可选地,所述外部供电设备的电压不小于所述电池的电压时,在第二预设状态下,所述控制器控制所述至少两相桥臂的上下桥臂的绝缘栅双极型晶体管不导通,以控制电流经所述至少两相桥臂的上桥臂的续流二极管后给所述电池进行直接充电。
可选地,所述装置还包括:至少两个第一开关,所述至少两个第一开关的第一端用于连接所述外部供电设备的正极,所述至少两个第一开关的第二端一一对应连接至所述至少两个线圈的第一端。
可选地,在第一预设状态下,所述控制器控制所述至少两个第一开关中、与所述至少两个线圈的至少两个线圈对应连接的第一开关闭合,并控制所述至少两相桥臂中、与所述至少两个线圈连接的至少两相桥臂,使所述至少两个线圈与所述电池进行充电和放电,以实现所述电池自加热;
在第二预设状态下,所述至少两个线圈中的至少一个线圈和与所述至少一个线圈对应连接的至少一相桥臂共同形成电压适配充电器,所述控制器控制所述至少两个第一开关中、与所述至少一个线圈对应连接的第一开关闭合,并控制所述电压适配充电器对所述电池进行充电。
可选地,在所述第二预设状态下,所述至少两相桥臂中、未发生故障的桥臂和所述至少两个线圈中、与所述未发生故障的桥臂连接的线圈共同形成电压适配充电器,所述控制器控制所述至少两个第一开关中、与发生故障的桥臂连接的线圈对应连接的第一开关断开,并控制所述至少两个第一开关中、与未发 生故障的桥臂连接的线圈对应连接的第一开关闭合,并控制所述电压适配充电器对所述电池进行充电。
可选地,所述储能元件还包括第一电容;
所述第一电容,所述第一电容的第一端分别与所述中性点、所述外部供电设备的正极连接,所述第一电容的第二端分别与所述电池的负极、所述外部供电设备的负极连接。
可选地,在第一预设状态下,所述控制器控制所述至少两相桥臂的至少一相桥臂,使所述第一电容与所述电池进行充电和放电,以实现所述电池自加热;
在第二预设状态下,所述至少两个线圈中的至少一个线圈和与所述至少一个线圈对应连接的至少一相桥臂共同形成电压适配充电器,所述控制器控制所述电压适配充电器对所述电池进行充电。
可选地,所述装置还包括:
至少两个第一开关,所述至少两个第一开关的第一端用于连接所述外部供电设备的正极,所述至少两个第一开关的第二端一一对应连接至所述至少两个线圈的第一端;
在所述第一预设状态下,所述控制器控制所述至少两个第一开关中、与发生故障的桥臂连接的线圈对应连接的第一开关断开,并控制所述至少两个第一开关中、与未发生故障的桥臂连接的线圈对应连接的第一开关闭合,并控制所述至少两相桥臂中、未发生故障的桥臂,使所述第一电容与所述电池进行充电和放电,以实现所述电池自加热。
可选地,所述装置还包括:
至少两个第一开关,所述至少两个第一开关的第一端用于连接所述外部供电设备的正极,所述至少两个第一开关的第二端一一对应连接至所述至少两个线圈的第一端;以及
第二开关,其中,所述第二开关的第一端与所述中性点连接,所述第二开关的第二端用于与所述外部供电设备的正极连接;
所述储能元件还包括第一电容,其中,所述第一电容的第一端分别与所述中性点、所述外部供电设备的正极连接,第一电容的第二端分别与所述电池的负极、所述外部供电设备的负极连接;
在第一预设状态下,响应于接收到用于指示对所述电池进行电感式自加热的第一控制指令,所述控制器控制所述至少两个第一开关中、与所述至少两个线圈的至少两个线圈对应连接的第一开关闭合,控制所述第二开关断开,并控制所述至少两相桥臂中、与所述至少两个线圈连接的至少两相桥臂,使所述至少两个线圈与所述电池进行充电和放电,以实现所述电池自加热;
在第一预设状态下,响应于接收到用于指示对所述电池进行电容式自加热的第二控制指令,所述控制器控制所述至少两个第一开关中、与至少一相桥臂连接的线圈对应连接的第一开关闭合,控制所述第二开关闭合,并控制所述至少两相桥臂的所述至少一相桥臂,使所述第一电容与所述电池进行充电和放电, 以实现所述电池自加热。
第二方面,本公开提供一种车辆,包括:
电池;以及
根据本公开第一方面提供的所述电池能量处理装置。
在上述技术方案中,电池能量处理装置包括:逆变器、储能元件以及控制器,其中,逆变器分别与电池、储能元件连接,储能元件与外部供电设备连接;在第一预设状态下,控制器控制逆变器使储能元件与电池进行充电和放电,以实现电池自加热。这样,可以在第一预设状态下,利用储能元件将电池里的电量在电池和储能元件之间来回周转而实现电池充放电,从而实现电池自加热,以较好维持电池温度,提升锂离子电池电解液活性和电化学反应速率,保障电动车辆驱动系统的驱动能力。另外,电池自加热能量损耗小、传热均匀、且加热效率高。此外,在第二预设状态下,上述储能元件的至少部分和逆变器的至少部分共同形成电压适配充电器,控制器控制电压适配充电器对电池进行充电。即电池充电和电池自加热共用一套电池能量处理装置,由此实现了电池能量处理装置的多功能复用,节省了零部件成本和体积空间。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据一示例性实施例示出的一种电池能量处理装置的结构框图。
图2是根据一示例性实施例示出的一种电池能量处理装置的电路拓扑图。
图3和图4是根据一示例性实施例示出的一种第二预设状态下对电池进行升压充电的工作原理示意图。
图5是根据另一示例性实施例示出的一种电池能量处理装置的电路拓扑图。
图6是根据另一示例性实施例示出的一种电池能量处理装置的电路拓扑图。
图7是根据另一示例性实施例示出的一种电池能量处理装置的电路拓扑图。
图8-图11是根据一示例性实施例示出的一种在第一预设状态下利用图7中所示的电池能量处理装置对电池进行加热的工作原理示意图。
图12是根据另一示例性实施例示出的一种电池能量处理装置的电路拓扑图。
图13是根据另一示例性实施例示出的一种电池能量处理装置的电路拓扑图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
需要说明的是,本公开中所有获取信号、信息或数据的动作都是在遵照所在地国家相应的数据保护法规政策的前提下,并获得由相应装置所有者给予授 权的情况下进行的。
图1是根据一示例性实施例示出的一种电池能量处理装置的结构框图。如图1所示,该电池能量处理装置300可以包括:逆变器1、储能元件2以及控制器3。
其中,逆变器1的第一端11用于与电池100连接;储能元件2的第一端21用于与外部供电设备200连接,储能元件2的第二端22与逆变器1的第二端12连接;控制器3与逆变器1的第三端13连接。在第一预设状态下,控制器3控制逆变器1使储能元件2与电池100进行充电和放电(例如循环充电和放电),以实现电池100自加热;在第二预设状态下,储能元件2的至少部分和逆变器1的至少部分共同形成电压适配充电器,控制器3控制电压适配充电器对电池100进行充电。其中,外部供电设备200可以例如是充电桩、蓄电池等。
上述的循环充电和放电指的是充电和放电以一定频率切换多次,通过电池循环充电和放电,可以使得电池产生热量,从而实现电池的自加热。
在本公开中,第一预设状态指的是电池自加热状态,第二预设状态指的是电池充电状态。
在上述技术方案中,电池能量处理装置包括:逆变器、储能元件以及控制器,其中,逆变器分别与电池、储能元件连接,储能元件与外部供电设备连接;在第一预设状态下,控制器控制逆变器使储能元件与电池进行充电和放电,以实现电池自加热。这样,可以在第一预设状态下,利用储能元件将电池里的电量在电池和储能元件之间来回周转而实现电池充放电,从而实现电池自加热,以较好维持电池温度,提升锂离子电池电解液活性和电化学反应速率,保障电动车辆驱动系统的驱动能力。另外,电池自加热能量损耗小、传热均匀、且加热效率高。此外,在第二预设状态下,上述储能元件的至少部分和逆变器的至少部分共同形成电压适配充电器,控制器控制电压适配充电器对电池进行充电。即电池充电和电池自加热共用一套电池能量处理装置,由此实现了电池能量处理装置的多功能复用,节省了零部件成本和体积空间。
如图2所示,逆变器1包括N相桥臂B,储能元件2包括N个线圈KM。其中,下文中提到的N相桥臂B中的至少一相桥臂和N个线圈KM中的至少一个线圈的个数相同,且至少一相桥臂和至少一个线圈共同形成电压适配充电器。
示例地,如图2所示,N相桥臂B中的一相桥臂和N个线圈KM中的一个线圈共同形成电压适配充电器KB。
如图2所示,N相桥臂B的第一汇流端连接电池100的正极,N相桥臂B的第二汇流端分别与电池100的负极、外部供电设备200的负极连接,N个线圈KM的第二端22一一对应连接至N相桥臂B的中点,N个线圈KM的第一端21共接形成中性点P,中性点P用于与外部供电设备200的正极连接。
此时,在第一预设状态下,控制器3控制N相桥臂B的至少两相桥臂,使N个线圈KM中与至少两相桥臂连接的线圈与电池100进行充电和放电,以实现电池100自加热。
外部供电设备200的电压小于电池100的电压时,在第二预设状态下,N相桥臂B中的至少一相桥臂和N个线圈KM中的至少一个线圈共同形成电压适配充电器,控制器3控制至少一相桥臂的上桥臂断开、至少一相桥臂的下桥臂导通,以对至少一个线圈充电。
优选地,在第一预设状态下,控制器3控制N相桥臂B使N个线圈KM与电池100进行充电和放电,以实现电池100自加热,这样,N相桥臂B和N个线圈KM同时工作,可以最大程度地提升加热功率,从而提升电池自加热效果。
在第二预设状态下,N个线圈KM和N相桥臂B共同形成电压适配充电器,控制器3控制电压适配充电器对电池100进行充电。这样,N相桥臂和N个线圈同时工作,可以最大程度地提升充电功率,从而提升电池充电效率。
虽然图2是以N=2为例进行图示的,但是本领域技术人员应当理解的是,图2的桥臂数量和线圈数量仅是示例。
在第一预设状态下,利用图2中的电池能量处理装置300对电池100进行加热的具体过程如下:利用N个线圈KM作为限流缓冲装置,控制N相桥臂B的导通方式,同时调节导通的桥臂的占空比来控制电池回路电流,使电池内阻发热从而带动电池100温度升高,实现电池100的可控升温。
外部供电设备200的电压小于电池100的电压时,在第二预设状态下,N相桥臂B中的至少一相桥臂和N个线圈KM中的至少一个线圈共同形成电压适配充电器,控制器3控制至少一相桥臂的上桥臂断开、至少一相桥臂的下桥臂导通,以对至少一个线圈充电。
在第二预设状态下,控制N相桥臂B的至少一相桥臂,以对电池100进行充电,其中,可以对电池100进行升压充电,也可以是直接充电,可以根据电池100的电压与外部供电设备200的电压大小来确定采用哪种充电方式。
具体来说,上述控制器3,还用于检测外部供电设备200的电压是否小于电池100的电压。外部供电设备200的电压小于电池100的电压时,在第二预设状态下,N相桥臂B中的至少一相桥臂和N个线圈KM中的至少一个线圈共同形成电压适配充电器,控制器3控制至少一相桥臂的上桥臂断开、至少一相桥臂的下桥臂导通,以对给N个线圈KM中、与导通的下桥臂相连接的线圈(即上述电压适配充电器中的至少一个线圈)充电;之后,控制器3还控制与上述至少一个线圈对应连接的至少一相桥臂的下桥臂断开、且控制电流经至少一相桥臂的上桥臂的续流二极管后给电池100升压充电。
在一种实施方式中,上述控制电流经至少一相桥臂的上桥臂的续流二极管后给电池100升压充电,包括:控制至少一相桥臂的上桥臂的绝缘栅双极型晶体管不导通,以控制电流经该至少一相桥臂的上桥臂的续流二极管后给电池100升压充电。
外部供电设备200的电压不小于电池100的电压时,在第二预设状态下,控制器3控制N相桥臂B的上下桥臂的绝缘栅双极型晶体管不导通,以控制电流经N相桥臂B的上桥臂的续流二极管后给电池100直接充电。
这样,可以根据外部供电设备200的电压与电池100的电压的大小情况,自动进行电压适配充电,这样,无论是高压外部供电设备,还是低压外部供电设备,均可以通过该电池能量处理装置300来实现高压电池的充电,而无需额外配置升压设备。
下面结合图3和图4详细描述第二预设状态下对电池100进行升压充电的工作原理。
在图3中,控制器3控制N相桥臂B的所有上桥臂断开,控制N相桥臂B的至少一相下桥臂导通,则,电流从外部供电设备200的正极流出,依次流过N个线圈KM中与导通的下桥臂相连接的线圈、N相桥臂B的导通的下桥臂后回到外部供电设备200的负极。这样,就能给N个线圈KM中与导通的下桥臂相连接的线圈充电。另外,通过控制下桥臂的导通数量以及导通占空比,能够控制充电电流的大小,进而控制充电功率的大小。
在一个示例中,假设N相桥臂B包括2个桥臂b1和b2,N个线圈KM包括2个线圈H1和H2,其中,线圈H1的一端与桥臂b1的中点连接,线圈H2的一端与桥臂b2的中点连接。然后,控制器3控制桥臂b1和b2的所有上桥臂断开,控制桥臂b1和b2的所有下桥臂导通,则外部供电设备200的正极、N个线圈KM(即线圈H1和H2)、N相桥臂B的所有下桥臂(即桥臂b1和b2的下桥臂)、外部供电设备200的负极构成一个给N个线圈KM充电的回路。
然后,在图4中,控制器3控制N相桥臂B的所有下桥臂断开,则,电流从外部供电设备200的正极流出,依次流过N个线圈KM、N相桥臂B的所有上桥臂中的续流二极管、电池100正极、电池100的负极后回到外部供电设备200的负极。这样,就能够将外部供电设备200、以及N个线圈KM的能量均转移给电池100,实现N个线圈KM和外部供电设备200同时向电池100充电,即实现电池100的升压充电。
仍然以上面的示例为例。由于在上面的示例中是将桥臂b1和b2的所有下桥臂导通,所以现在应当将N相桥臂B的所有下桥臂(即桥臂b1和b2的所有上桥臂)断开,则外部供电设备200的正极、N个线圈KM(即线圈H1和H2)、N相桥臂B的所有上桥臂(即桥臂b1和b2的上桥臂)中的续流二极管、电池100、外部供电设备200的负极构成一个将N个线圈KM中的能量和外部供电设备接收到的能量转移给电池100的回路,即由N个线圈KM和外部供电设备200向电池100充电。
因此,通过控制N相桥臂B的至少一相桥臂的上桥臂断开、至少一相桥臂的下桥臂交替通断,使得图3和图4的状态循环工作,完成了电池100的升压充电。
下面结合图4详细描述第二预设状态下对电池100进行直接充电的工作原理。
在外部供电设备200的电压不小于电池100的电压的情况下,不需要对外部供电设备进行升压充电,此时,如图4所示,控制器3可以控制N相桥臂B 的所有下桥臂断开,则,电流从外部供电设备200的正极流出,依次流过N个线圈KM、N相桥臂B的所有上桥臂中的续流二极管、电池100正极、电池100的负极后回到外部供电设备200的负极。这样,就能够将外部供电设备200的能量均转移给电池100,实现外部供电设备200向电池100充电,即实现电池100的直接充电。
在一种实施例中,N个线圈KM为电机绕组(例如驱动电机的电机绕组),N相桥臂B为桥臂变换器。也即,车辆上的现有电机绕组和桥臂变换器被复用了,使得能够根据需要而实现不同的功能,例如:在电池需要自加热或者充电时,N个线圈KM和N相桥臂B能够被应用于本公开中描述的各种自加热流程中;在需要驱动车辆时,N个线圈KM和N相桥臂B能够被切换成通过控制桥臂B使与电机绕组对应的电机输出功率,进而驱动车辆。这样,就能够通过复用车辆电机绕组和桥臂变换器,来根据需要实现不同的功能,而且还节省了车辆成本。
另外,如图5所示,上述电池能量处理装置300还可以包括第二电容C2,其中,该第二电容C2的第一端C21分别与电池100的正极、N相桥臂B的第一汇流端连接,第二电容C2的第二端C22分别与电池100的负极、N相桥臂B的第二汇流端连接。其中,该第二电容C2具有稳压作用,从而可以避免电池能量处理装置300与电池100或者外部供电设备200导通瞬间产生的尖峰对能量处理装置300中各部件的影响。
此外,上述电池能量处理装置300还可以包括:第三开关K3和第四开关K4(图中均未示出)。其中,第三开关K3的第一端与上述中性点P连接,第三开关K3的第二端用于与外部供电设备200的正极连接;第四开关K4的第一端与电池100的负极连接,第四开关K4的第二端用于与外部供电设备200的负极连接。
此时,在第一预设状态下,控制器3控制第三开关K3、第四开关K4均断开,并控制N相桥臂B的至少两相桥臂,使N个线圈KM中与至少两相桥臂连接的线圈与电池100进行充电和放电,以实现电池100自加热;在第二预设状态下,控制第三开关K3、第四开关K4均闭合,并控制电压适配充电器对电池100进行充电。
如图6所示,上述电池能量处理装置300还包括:N个第一开关K1,其中,N个第一开关K1的第一端K11用于连接外部供电设备200的正极,N个第一开关K1的第二端K12一一对应连接至N个线圈KM的第一端21。
此时,在第一预设状态下,上述控制器3控制N个第一开关K1中、N个线圈KM的至少两个线圈对应连接的第一开关K1闭合,并控制N相桥臂B中、与该至少两个线圈连接的至少两相桥臂,使该至少两个线圈与电池100进行充电和放电,以实现电池100自加热;在第二预设状态下,N个线圈KM中的至少一个线圈和与至少一个线圈对应连接的至少一相桥臂共同形成电压适配充电器,控制器3控制N个第一开关K1中、与上述至少一个线圈对应连接的第一 开关K1闭合,并控制电压适配充电器对电池100进行充电。
另外,针对图6中所示的电池能量处理装置300,上述控制器3,还可以用于在第二预设状态下,检测N相桥臂B中的每一相桥臂是否故障;此时,在第二预设状态下,N相桥臂B中、未发生故障的桥臂和N个线圈KM中、与未发生故障的桥臂连接的线圈共同形成电压适配充电器,控制器3控制N个第一开关K1中、与发生故障的桥臂连接的线圈对应连接的第一开关K1断开,并控制N个第一开关K1中、与未发生故障的桥臂连接的线圈对应连接的第一开关K1闭合,并控制电压适配充电器对电池100进行充电。这样,如果N相桥臂B的某相桥臂出现了故障,可以通过与其对应连接的第一开关K1将该故障桥臂断开,以关闭该相桥臂的通道,利用功能正常的其他相桥臂组成的通道来完成电池的充电,从而提升电池能量处理装置300的冗余容错性能。
如图7所示,上述储能元件2还包括第一电容C1,其中,第一电容C1的第一端C11分别与中性点P、外部供电设备200的正极连接,第一电容C1的第二端C12分别与电池100的负极、外部供电设备200的负极连接。
此时,在第一预设状态下,上述控制器3控制N相桥臂B的至少一相桥臂,使第一电容C1与电池100进行充电和放电,以实现电池100自加热;在第二预设状态下,N个线圈KM中的至少一个线圈和与至少一个线圈对应连接的至少一相桥臂共同形成电压适配充电器,控制器3控制电压适配充电器对电池100进行充电。
下面结合图8至图11详细描述在第一预设状态下利用图7中的N相桥臂B、N个线圈KM、第一电容C1对电池100进行加热的过程。
首先,如图8所示,在第一过程中,控制器3可以控制N相桥臂B的所有下桥臂断开,并控制N相桥臂B的至少一个上桥臂导通,此时,电流从电池100的正极流出,流经导通的上桥臂、与导通的上桥臂连接的线圈和第一电容C1,最后回到电池100的负极。在该过程中,电池100为向外放电状态,第一电容C1接收与导通的上桥臂连接的线圈的能量,电压不断增大,实现储能。
接下来,如图9所示,在第二过程中,控制器3可以控制N相桥臂B的所有上桥臂断开,并控制N相桥臂B的下桥臂中、与存在续流电流的线圈连接的下桥臂导通,此时,电流从存在续流电流的线圈流出,流经第一电容C1和导通的下桥臂,最后回到存在续流电流的线圈。在该过程中,由于线圈的续流作用,第一电容C1继续接收线圈的能量,电压不断增大。
如图10所示,在第三过程中,随着第一电容C1两端的电压不断增大,第一电容C1会自动从接收线圈KM的能量变换为向线圈KM释放能量,此时,电流从第一电容C1流出,流经与导通的下桥臂连接的线圈、导通的下桥臂,最后回到第一电容C1。在该过程中,第一电容C1两端的电压不断减小。
之后,如图11所示,在第四过程中,控制器3可以控制N相桥臂B的所有下桥臂断开,控制N相桥臂B的至少一个上桥臂导通,此时,电流从第一电容C1流出,流经与导通的上桥臂连接的线圈、导通的上桥臂、电池100的正极和 电池100的负极,最后回到第一电容C1。在该过程中,电池100为充电状态。
随着第一电容C1两端的电压不断降低,第一电容C1和与导通的上桥臂连接的线圈由向电池100释放能量切换到接收电池100的能量,此时,电流流向又回到第一过程中所述的流向,电池100开始向外放电。
上述四个过程不断循环,使第一电容C1与电池100之间能够快速进行循环式充/放电。由于电池内阻的存在,产生大量的热使得电池快速升温,提高电池加热效率。
如图12所示,上述装置还包括:N个第一开关K1,其中,N个第一开关K1的第一端K11用于连接外部供电设备200的正极,N个第一开关K1的第二端K12一一对应连接至N个线圈KM的第一端21。此时,上述控制器3,还可以用于检测N相桥臂B中的每一相桥臂是否故障;此时,在第一预设状态下,控制器3控制N个第一开关K1中、与发生故障的桥臂连接的线圈对应连接的第一开关K1断开,并控制N个第一开关K1中、与未发生故障的桥臂连接的线圈对应连接的第一开关K1闭合,并控制N相桥臂B中、未发生故障的桥臂,使第一电容C1与电池100进行充电和放电,以实现电池100自加热。
这样,如果N相桥臂B的某相桥臂出现了故障,可以通过与其对应连接的第一开关K1将该故障桥臂断开,以关闭该相桥臂的通道,利用功能正常的其他相桥臂组成的通道来完成电池自加热,从而提升电池能量处理装置300的冗余容错性能。
如图13所示,上述电池能量处理装置300还可以包括:N个第一开关K1和第二开关K2;储能元件2还包括第一电容C1。其中,N个第一开关K1的第一端K11用于连接外部供电设备200的正极,N个第一开关K1的第二端K12一一对应连接至N个线圈KM的第一端21;第二开关K2的第一端K21与中性点P连接,第二开关K2的第二端K22用于与外部供电设备200的正极连接;第一电容C1的第一端C11分别与中性点P、外部供电设备200的正极连接,第一电容C1的第二端C12分别与电池100的负极、外部供电设备200的负极连接。
此时,在第一预设状态下,响应于接收到用于指示对电池100进行电感式自加热的第一控制指令,控制器3控制N个第一开关K1中、与N个线圈KM的至少两个线圈对应连接的第一开关K1闭合,控制第二开关K2断开,并控制N相桥臂B中、与上述至少两个线圈连接的至少两相桥臂,使上述至少两个线圈与电池100进行充电和放电,以实现电池100自加热;在第一预设状态下,响应于接收到用于指示对电池100进行电容式自加热的第二控制指令,控制器3控制N个第一开关K1中、与至少一相桥臂连接的线圈对应连接的第一开关K1闭合,控制第二开关K2闭合,并控制N相桥臂B的至少一相桥臂,使第一电容C1与电池100进行充电和放电,以实现电池100自加热。
这样,电池加热包括两种方式,即电感式自加热方式和电容式自加热方式,这样,用户根据自身的需要选择合适的电池加热方式,提升了用户体验。
虽然图3-图13中是以N=2为例进行图示的,但是本领域技术人员应当理解 的是,上述各图中的桥臂数量和线圈数量仅是示例。
本公开还提供一种电池能量处理方法,该方法包括:
在第一预设状态下,控制逆变器使储能元件与电池进行充电和放电,以实现电池自加热;
在第二预设状态下,储能元件的至少部分和逆变器的至少部分共同形成电压适配充电器,控制电压适配充电器对电池进行充电。
其中,逆变器的第一端用于与电池连接,第二端与储能元件的第二端连接;
储能元件的第一端用于与外部供电设备连接。
通过上述技术方案,可以在第一预设状态下,利用储能元件将电池里的电量在电池和储能元件之间来回周转而实现电池充放电,从而实现电池自加热,以较好维持电池温度,提升锂离子电池电解液活性和电化学反应速率,保障电动车辆驱动系统的驱动能力。另外,电池自加热能量损耗小、传热均匀、且加热效率高。此外,在第二预设状态下,上述电池能量处理装置还可以复用储能元件和逆变器形成电压适配充电器,且控制逆变器,以对电池进行充电。即电池充电和电池自加热共用一套电池能量处理装置,由此实现了电池能量处理装置的多功能复用,节省了零部件成本和体积空间。
可选地,逆变器包括至少两相桥臂,储能元件包括至少两个线圈,至少两相桥臂和至少两个线圈的个数相同,至少两相桥臂中的至少一相桥臂和至少两个线圈中的至少一个线圈的个数相同,且至少一相桥臂和至少一个线圈共同形成电压适配充电器。
可选地,至少两相桥臂的第一汇流端连接电池的正极,至少两相桥臂的第二汇流端分别与电池的负极、外部供电设备的负极连接;
至少两个线圈的第二端一一对应连接至至少两相桥臂的中点,至少两个线圈的第一端共接形成中性点,中性点用于与外部供电设备的正极连接;
控制逆变器使储能元件与电池进行充电和放电,包括:
控制至少两相桥臂的至少两相桥臂,使至少两个线圈中与至少两相桥臂连接的线圈与电池进行充电和放电,以实现电池自加热;
储能元件的至少部分和逆变器的至少部分共同形成电压适配充电器,控制电压适配充电器对电池进行充电,包括:
至少两相桥臂中的至少一相桥臂和至少两个线圈中的至少一个线圈共同形成电压适配充电器,控制至少一相桥臂的上桥臂断开、至少一相桥臂的下桥臂导通,以对至少一个线圈充电。
可选地,上述方法还包括:
外部供电设备的电压小于电池的电压时,在第二预设状态下,在对至少一个线圈充电后,控制至少一相桥臂的下桥臂断开,且控制电流经该至少一相桥臂的上桥臂的续流二极管后给电池升压充电。
可选地,控制电流经该至少一相桥臂的上桥臂的续流二极管后给电池升压充电包括:控制至少一相桥臂的上桥臂的绝缘栅双极型晶体管不导通,以控制 电流经该至少一相桥臂的上桥臂的续流二极管后给电池升压充电。
可选地,所述方法还包括:
外部供电设备的电压不小于电池的电压时,在第二预设状态下,控制至少两相桥臂的上下桥臂的绝缘栅双极型晶体管不导通,以控制电流经至少两相桥臂的上桥臂的续流二极管后给电池进行直接充电。
可选地,至少两个第一开关的第一端用于连接外部供电设备的正极,至少两个第一开关的第二端一一对应连接至至少两个线圈的第一端;
控制至少两相桥臂的至少两相桥臂,使至少两个线圈中与至少两相桥臂连接的线圈与电池进行充电和放电,包括:
控制至少两个第一开关中、与至少两个线圈的至少两个线圈对应连接的第一开关闭合,并控制至少两相桥臂中、与至少两个线圈连接的至少两相桥臂,使至少两个线圈与电池进行充电和放电,以实现电池自加热;
至少两相桥臂中的至少一相桥臂和至少两个线圈中的至少一个线圈共同形成电压适配充电器,控制至少一相桥臂的上桥臂断开、至少一相桥臂的下桥臂导通,以对至少一个线圈充电,包括:
至少两个线圈中的至少一个线圈和与至少一个线圈对应连接的至少一相桥臂共同形成电压适配充电器,控制至少两个第一开关中、与至少一个线圈对应连接的第一开关闭合,并控制电压适配充电器对电池进行充电。
可选地,至少两个第一开关的第一端用于连接外部供电设备的正极,至少两个第一开关的第二端一一对应连接至至少两个线圈的第一端;
至少两相桥臂中的至少一相桥臂和至少两个线圈中的至少一个线圈共同形成电压适配充电器,控制至少一相桥臂的上桥臂断开、至少一相桥臂的下桥臂导通,以对至少一个线圈充电,包括:
至少两相桥臂中、未发生故障的桥臂和至少两个线圈中、与未发生故障的桥臂连接的线圈共同形成电压适配充电器,控制至少两个第一开关中、与发生故障的桥臂连接的线圈对应连接的第一开关断开,并控制至少两个第一开关中、与未发生故障的桥臂连接的线圈对应连接的第一开关闭合,并控制电压适配充电器对电池进行充电。
可选地,储能元件还包括第一电容;第一电容,第一电容的第一端分别与中性点、外部供电设备的正极连接,第一电容的第二端分别与电池的负极、外部供电设备的负极连接;
控制逆变器使储能元件与电池进行充电和放电,包括:
控制至少两相桥臂的至少一相桥臂,使第一电容与电池进行充电和放电,以实现电池自加热;
储能元件的至少部分和逆变器的至少部分共同形成电压适配充电器,控制电压适配充电器对电池进行充电,包括:
至少两个线圈中的至少一个线圈和与至少一个线圈对应连接的至少一相桥臂共同形成电压适配充电器,控制电压适配充电器对电池进行充电。
可选地,至少两个第一开关的第一端用于连接外部供电设备的正极,至少两个第一开关的第二端一一对应连接至至少两个线圈的第一端;
控制逆变器使储能元件与电池进行充电和放电,包括:
控制至少两个第一开关中、与发生故障的桥臂连接的线圈对应连接的第一开关断开,并控制至少两个第一开关中、与未发生故障的桥臂连接的线圈对应连接的第一开关闭合,并控制至少两相桥臂中、未发生故障的桥臂,使第一电容与电池进行充电和放电,以实现电池自加热。
可选地,至少两个第一开关的第一端用于连接外部供电设备的正极,至少两个第一开关的第二端一一对应连接至至少两个线圈的第一端;以及
储能元件还包括第一电容,其中,第一电容的第一端分别与中性点、外部供电设备的正极连接,第一电容的第二端分别与电池的负极、外部供电设备的负极连接;
控制逆变器使储能元件与电池进行充电和放电,包括:
响应于接收到用于指示对电池进行电感式自加热的第一控制指令,控制至少两个第一开关中、与至少两个线圈的至少两个线圈对应连接的第一开关闭合,控制第二开关断开,并控制至少两相桥臂中、与至少两个线圈连接的至少两相桥臂,使至少两个线圈与电池进行充电和放电,以实现电池自加热,其中,第二开关的第一端与中性点连接,第二开关的第二端用于与外部供电设备的正极连接;
响应于接收到用于指示对电池进行电容式自加热的第二控制指令,控制至少两个第一开关中、与至少一相桥臂连接的线圈对应连接的第一开关闭合,控制第二开关闭合,并控制至少两相桥臂的至少一相桥臂,使第一电容与电池进行充电和放电,以实现电池自加热。
根据本公开实施例的电池能量处理方法中各个步骤的具体实现方式已经在根据本公开实施例的电池能量处理装置中进行了详细描述,此处不再赘述。
此外,本公开还提供一种车辆,包括电池及本公开提供的上述电池能量处理装置。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (16)

  1. 一种电池能量处理装置(300),其特征在于,包括:
    逆变器(1),所述逆变器(1)的第一端用于与电池(100)连接;
    储能元件(2),所述储能元件(2)的第一端用于与外部供电设备(200)连接,所述储能元件(2)的第二端与所述逆变器(1)的第二端连接;以及
    控制器(3),所述控制器(3)与所述逆变器(1)的第三端连接;
    其中,在第一预设状态下,所述控制器(3)控制所述逆变器(1)使所述储能元件(2)与所述电池(100)进行充电和放电,以实现所述电池(100)自加热;
    在第二预设状态下,所述储能元件(2)的至少部分和所述逆变器(1)的至少部分共同形成电压适配充电器,所述控制器(3)控制所述电压适配充电器对所述电池(100)进行充电。
  2. 根据权利要求1所述的装置(300),其特征在于,所述逆变器(1)包括至少两相桥臂(B),所述储能元件(2)包括至少两个线圈(KM),所述至少两相桥臂(B)和所述至少两个线圈(KM)的个数相同,所述至少两相桥臂(B)中的至少一相桥臂和所述至少两个线圈(KM)中的至少一个线圈的个数相同,且所述至少一相桥臂和所述至少一个线圈共同形成所述电压适配充电器。
  3. 根据权利要求2所述的装置(300),其特征在于,所述至少两相桥臂(B)的第一汇流端连接所述电池(100)的正极,所述至少两相桥臂(B)的第二汇流端分别与所述电池(100)的负极、所述外部供电设备(200)的负极连接;
    所述至少两个线圈(KM)的第二端一一对应连接至所述至少两相桥臂(B)的中点,所述至少两个线圈(KM)的第一端共接形成中性点,所述中性点用于与所述外部供电设备(200)的正极连接。
  4. 根据权利要求2所述的装置(300),其特征在于,在第一预设状态下,所述控制器(3)控制所述至少两相桥臂(B)的至少两相桥臂,使所述至少两个线圈(KM)中与所述至少两相桥臂连接的线圈与所述电池(100)进行充电和放电,以实现所述电池(100)自加热。
  5. 根据权利要求3所述的装置(300),其特征在于,
    所述外部供电设备(200)的电压小于所述电池(100)的电压时,在第二预设状态下,所述至少两相桥臂(B)中的至少一相桥臂和所述至少两个线圈(KM)中的至少一个线圈共同形成电压适配充电器,所述控制器(3)控制所述至少一相桥臂的上桥臂断开、所述至少一相桥臂的下桥臂导通,以对所述至少一个线圈充电。
  6. 根据权利要求5所述的装置(300),其特征在于,所述外部供电设备(200)的电压小于所述电池(100)的电压时,在第二预设状态下,在对所述至少一个线圈充电后,所述控制器(3)还控制所述至少一相桥臂的下桥臂断开,且控制电流经所述至少一相桥臂的上桥臂的续流二极管后给所述电池(100)升压充电。
  7. 根据权利要求6所述的装置(300),其特征在于,所述控制电流经所述至少一相桥臂的上桥臂的续流二极管后给所述电池(100)升压充电包括:控制所述至少一相桥臂的上桥臂的绝缘栅双极型晶体管不导通,以控制电流经所述至少一相桥臂的上桥臂的续流二极管后给所述电池(100)升压充电。
  8. 根据权利要求5所述的装置(300),其特征在于,所述外部供电设备(200)的电压不小于所述电池(100)的电压时,在第二预设状态下,所述控制器(3)控制所述至少两相桥臂(B)的上下桥臂的绝缘栅双极型晶体管不导 通,以控制电流经所述至少两相桥臂(B)的上桥臂的续流二极管后给所述电池(100)进行直接充电。
  9. 根据权利要求3-8中任一项所述的装置(300),其特征在于,所述装置(300)还包括:
    至少两个第一开关(K1),所述至少两个第一开关(K1)的第一端用于连接所述外部供电设备(200)的正极,所述至少两个第一开关(K1)的第二端一一对应连接至所述至少两个线圈(KM)的第一端。
  10. 根据权利要求9所述的装置(300),其特征在于,
    在第一预设状态下,所述控制器(3)控制所述至少两个第一开关(K1)中、与所述至少两个线圈(KM)的至少两个线圈对应连接的第一开关(K1)闭合,并控制所述至少两相桥臂(B)中、与所述至少两个线圈连接的至少两相桥臂,使所述至少两个线圈与所述电池(100)进行充电和放电,以实现所述电池(100)自加热;
    在第二预设状态下,所述至少两个线圈(KM)中的至少一个线圈和与所述至少一个线圈对应连接的至少一相桥臂共同形成电压适配充电器,所述控制器(3)控制所述至少两个第一开关(K1)中、与所述至少一个线圈对应连接的第一开关(K1)闭合,并控制所述电压适配充电器对所述电池(100)进行充电。
  11. 根据权利要求9或10所述的装置(300),其特征在于,
    在所述第二预设状态下,所述至少两相桥臂(B)中、未发生故障的桥臂和所述至少两个线圈(KM)中、与所述未发生故障的桥臂连接的线圈共同形成电压适配充电器,所述控制器(3)控制所述至少两个第一开关(K1)中、与发生故障的桥臂连接的线圈对应连接的第一开关(K1)断开,并控制所述至少两个第一开关(K1)中、与未发生故障的桥臂连接的线圈对应连接的第一开关(K1)闭合,并控制所述电压适配充电器对所述电池(100)进行充电。
  12. 根据权利要求3-11中任一项所述的装置(300),其特征在于,所述储能元件(2)还包括第一电容(C1);
    所述第一电容(C1),所述第一电容(C1)的第一端分别与所述中性点、所述外部供电设备(200)的正极连接,所述第一电容(C1)的第二端分别与所述电池(100)的负极、所述外部供电设备(200)的负极连接。
  13. 根据权利要求12所述的装置(300),其特征在于,
    在第一预设状态下,所述控制器(3)控制所述至少两相桥臂(B)的至少一相桥臂,使所述第一电容(C1)与所述电池(100)进行充电和放电,以实现所述电池(100)自加热;
    在第二预设状态下,所述至少两个线圈(KM)中的至少一个线圈和与所述至少一个线圈对应连接的至少一相桥臂共同形成电压适配充电器,所述控制器(3)控制所述电压适配充电器对所述电池(100)进行充电。
  14. 根据权利要求12或13所述的装置(300),其特征在于,所述装置(300)还包括:
    至少两个第一开关(K1),所述至少两个第一开关(K1)的第一端用于连接所述外部供电设备(200)的正极,所述至少两个第一开关(K1)的第二端一一对应连接至所述至少两个线圈(KM)的第一端;
    在所述第一预设状态下,所述控制器(3)控制所述至少两个第一开关(K1)中、与发生故障的桥臂连接的线圈对应连接的第一开关(K1)断开,并控制所述至少两个第一开关(K1)中、与未发生故障的桥臂连接的线圈对应连接的第一开关(K1)闭合,并控制所述至少两相桥臂(B)中、未发生故障的桥臂,使所述第一电容(C1)与所述电池(100)进行充电和放电,以实现所述电池(100)自加热。
  15. 根据权利要求3-14中任一项所述的装置(300),其特征在于,所述装置(300)还包括:
    至少两个第一开关(K1),所述至少两个第一开关(K1)的第一端用于连接所述外部供电设备(200)的正极,所述至少两个第一开关(K1)的第二端一一对应连接至所述至少两个线圈(KM)的第一端;以及
    第二开关(K2),其中,所述第二开关(K2)的第一端与所述中性点连接,所述第二开关(K2)的第二端用于与所述外部供电设备(200)的正极连接;
    所述储能元件(2)还包括第一电容(C1),其中,所述第一电容(C1)的第一端分别与所述中性点、所述外部供电设备(200)的正极连接,第一电容(C1)的第二端分别与所述电池(100)的负极、所述外部供电设备(200)的负极连接;
    在第一预设状态下,响应于接收到用于指示对所述电池(100)进行电感式自加热的第一控制指令,所述控制器(3)控制所述至少两个第一开关(K1)中、与所述至少两个线圈(KM)的至少两个线圈对应连接的第一开关(K1)闭合,控制所述第二开关(K2)断开,并控制所述至少两相桥臂(B)中、与所述至少两个线圈连接的至少两相桥臂,使所述至少两个线圈与所述电池(100)进行充电和放电,以实现所述电池(100)自加热;
    在第一预设状态下,响应于接收到用于指示对所述电池(100)进行电容式自加热的第二控制指令,所述控制器(3)控制所述至少两个第一开关(K1)中、与至少一相桥臂连接的线圈对应连接的第一开关(K1)闭合,控制所述第二开关(K2)闭合,并控制所述至少两相桥臂(B)的所述至少一相桥臂,使所述第一电容(C1)与所述电池(100)进行充电和放电,以实现所述电池(100)自加热。
  16. 一种车辆,其特征在于,包括:
    电池(100);以及
    根据权利要求1-15中任一项所述的电池能量处理装置(300)。
PCT/CN2023/086032 2022-05-25 2023-04-03 电池能量处理装置和车辆 WO2023226597A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210583659.9A CN117162860A (zh) 2022-05-25 2022-05-25 电池能量处理装置和车辆
CN202210583659.9 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023226597A1 true WO2023226597A1 (zh) 2023-11-30

Family

ID=88918400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086032 WO2023226597A1 (zh) 2022-05-25 2023-04-03 电池能量处理装置和车辆

Country Status (2)

Country Link
CN (1) CN117162860A (zh)
WO (1) WO2023226597A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834977A2 (de) * 1996-08-08 1998-04-08 Schmidhauser AG Einrichtung zum Laden mindestens eines Akkumulators, insbesondere eines Akkumulators für ein elektrisch angetriebenes Fahrzeug sowie ein Verfahren zum Betrieb dieser Einrichtung
CN214112341U (zh) * 2020-12-04 2021-09-03 比亚迪股份有限公司 电池能量处理装置及车辆
CN113752911A (zh) * 2020-06-04 2021-12-07 比亚迪股份有限公司 能量处理装置、方法及车辆
CN113752875A (zh) * 2020-06-04 2021-12-07 比亚迪股份有限公司 车辆电池加热装置和方法、车辆
WO2021244642A1 (zh) * 2020-06-04 2021-12-09 比亚迪股份有限公司 电池能量处理装置、方法及车辆
CN216033900U (zh) * 2021-06-30 2022-03-15 比亚迪股份有限公司 能量转换装置及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834977A2 (de) * 1996-08-08 1998-04-08 Schmidhauser AG Einrichtung zum Laden mindestens eines Akkumulators, insbesondere eines Akkumulators für ein elektrisch angetriebenes Fahrzeug sowie ein Verfahren zum Betrieb dieser Einrichtung
CN113752911A (zh) * 2020-06-04 2021-12-07 比亚迪股份有限公司 能量处理装置、方法及车辆
CN113752875A (zh) * 2020-06-04 2021-12-07 比亚迪股份有限公司 车辆电池加热装置和方法、车辆
WO2021244642A1 (zh) * 2020-06-04 2021-12-09 比亚迪股份有限公司 电池能量处理装置、方法及车辆
CN214112341U (zh) * 2020-12-04 2021-09-03 比亚迪股份有限公司 电池能量处理装置及车辆
CN216033900U (zh) * 2021-06-30 2022-03-15 比亚迪股份有限公司 能量转换装置及车辆

Also Published As

Publication number Publication date
CN117162860A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
CN110116653B (zh) 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
US11876396B2 (en) Power battery charging method, motor control circuit, and vehicle
US11605967B2 (en) On-board charger
WO2021244642A1 (zh) 电池能量处理装置、方法及车辆
CN113752875B (zh) 车辆电池加热装置和方法、车辆
WO2021244641A1 (zh) 电池能量处理装置、方法及车辆
CN215752030U (zh) 电池控制电路、电池管理系统和车辆
CN113733987B (zh) 电池能量处理装置和方法、车辆
WO2021244649A1 (zh) 能量转换装置及其安全控制方法
CN210760284U (zh) 电动汽车驱动系统及驱动电路
CN111391717B (zh) 能量转换装置、方法及车辆
WO2024041331A1 (zh) 电动车辆的充电系统和电动车辆
CN109962660B (zh) 驱动电路、电动汽车驱动系统及驱动方法
WO2024037112A1 (zh) 电池自加热装置和具有其的车辆
WO2023226597A1 (zh) 电池能量处理装置和车辆
WO2024066325A1 (zh) 电池自加热电路及车辆
WO2023216733A1 (zh) 动力电池控制电路、系统及其控制方法
WO2023226567A1 (zh) 动力电池充放电电路、系统及其控制方法和控制装置
CN115782692A (zh) 电池控制电路、方法、电池管理系统和车辆
WO2024045657A1 (zh) 电池自加热系统及车辆
CN216162646U (zh) 电机控制器、动力装置及交通工具
WO2023201687A1 (zh) 用于电池加热的装置和方法
WO2023185245A1 (zh) 电池自加热装置、方法及车辆
CN113859004B (zh) 一种能量转换装置及其车辆
CN117656947A (zh) 电池自加热系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810672

Country of ref document: EP

Kind code of ref document: A1