WO2024066325A1 - 电池自加热电路及车辆 - Google Patents

电池自加热电路及车辆 Download PDF

Info

Publication number
WO2024066325A1
WO2024066325A1 PCT/CN2023/090699 CN2023090699W WO2024066325A1 WO 2024066325 A1 WO2024066325 A1 WO 2024066325A1 CN 2023090699 W CN2023090699 W CN 2023090699W WO 2024066325 A1 WO2024066325 A1 WO 2024066325A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
battery
battery pack
phase winding
bridge arm
Prior art date
Application number
PCT/CN2023/090699
Other languages
English (en)
French (fr)
Inventor
凌和平
兰云炜
张俊伟
闫磊
孟郭强
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024066325A1 publication Critical patent/WO2024066325A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles

Definitions

  • the present disclosure relates to the technical field of battery self-heating, and in particular, to a battery self-heating circuit and a vehicle.
  • battery self-heating technology is usually used to self-heat the battery pack.
  • Battery self-heating technology utilizes the battery's cyclic charge and discharge and relies on the battery's own internal resistance to generate heat.
  • Battery self-heating technology has the advantages of fast heating speed, high heating efficiency, good temperature uniformity and low cost. However, while self-heating, it will also increase noise interference.
  • the purpose of the present disclosure is to provide a battery self-heating circuit and a vehicle to solve the problems in the related art.
  • a first aspect of an embodiment of the present disclosure provides a battery self-heating circuit, comprising a first battery pack, a second battery pack, a first capacitor, a second capacitor, a multi-phase bridge arm, and a multi-phase winding corresponding to the multi-phase bridge arm one by one, wherein each phase winding is connected to the midpoint of the corresponding bridge arm;
  • the negative electrode of the first battery group is connected to the positive electrode of the second battery group, and the negative electrode of the first battery group and the positive electrode of the second battery group are connected to the neutral point of the multi-phase winding;
  • the positive electrode of the first battery group is connected to the first bus terminal of the multi-phase bridge arm, and the negative electrode of the second battery group is connected to the second bus terminal of the multi-phase bridge arm;
  • the first end of the second capacitor is connected to the second end of the first capacitor, and the first end of the second capacitor and the second end of the first capacitor are connected to the neutral point of the multi-phase winding, and the second end of the second capacitor is connected to the negative electrode of the second battery pack, and the first end of the first capacitor is connected to the positive electrode of the first battery pack.
  • the battery self-heating circuit further includes a first switch, and the first end of the second capacitor and the second end of the first capacitor are connected to the neutral point of the multi-phase winding through the first switch.
  • the first switch is a contactor.
  • the battery self-heating circuit further includes a second switch, and the negative electrode of the first battery pack and the positive electrode of the second battery pack are connected to the neutral point of the multi-phase winding through the second switch.
  • the multi-phase bridge arm is a three-phase bridge arm
  • the multi-phase winding is a three-phase winding
  • the multi-phase coils of the multiplexed motor are used as the multi-phase windings
  • the multi-phase bridge arms of the multiplexed motor controller are used as the multi-phase bridge arms.
  • the motor includes a drive motor or an air-conditioning compressor
  • the motor controller includes a motor controller corresponding to the drive motor, or a motor controller corresponding to the air-conditioning compressor.
  • the battery self-heating circuit also includes a DC charging port, the neutral point of the multi-phase winding is connected to the positive pole of the DC charging port, the second bus end of the multi-phase bridge arm is connected to the negative pole of the DC charging port, the multi-phase winding and the multi-phase bridge arm constitute a boost circuit, and the boost circuit is used to boost the DC power of the DC charging port to charge the first battery group and the second battery group.
  • the capacitance of the first capacitor is the same as the capacitance of the second capacitor.
  • the capacitance of the first capacitor and the capacitance of the second capacitor are both less than 10 uf.
  • a vehicle comprising the above-mentioned battery self-heating circuit.
  • the present disclosure provides a battery self-heating circuit and vehicle, the circuit includes a first battery pack, a second battery pack, a first capacitor, a second capacitor, a multi-phase bridge arm and a multi-phase winding corresponding to the multi-phase bridge arm, wherein each phase winding is connected to the midpoint of the corresponding bridge arm; the first battery pack and the multi-phase winding cooperate to charge and discharge to realize the self-heating of the first battery pack, since the first end of the first capacitor is connected to the positive electrode of the first battery pack, and the second end of the first capacitor is connected to the neutral point of the multi-phase winding, which is equivalent to the first capacitor being connected in parallel with the first battery pack, so the first capacitor can filter and reduce noise in the self-heating of the first battery pack; the second battery pack and the multi-phase winding cooperate to charge and discharge to realize the self-heating of the second battery pack, since the first end of the second capacitor is connected to the neutral point of the multi-phase winding, and the second end of the second capacitor is connected
  • FIG1 is a circuit diagram of a battery self-heating circuit provided by an embodiment of the present disclosure.
  • FIG2 is a circuit diagram of another battery self-heating circuit provided by an embodiment of the present disclosure.
  • FIG3 is a circuit diagram of another battery self-heating circuit provided by an embodiment of the present disclosure.
  • FIG4 is a circuit diagram of another battery self-heating circuit provided in an embodiment of the present disclosure.
  • FIG5 is a circuit diagram of another battery self-heating circuit provided by an embodiment of the present disclosure.
  • FIG6 is a circuit diagram of another battery self-heating circuit provided in an embodiment of the present disclosure.
  • FIG. 7 is a circuit diagram of another battery self-heating circuit provided in an embodiment of the present disclosure.
  • battery packs as energy supply components of new energy vehicles, are developing more and more rapidly.
  • the working characteristics of battery packs are greatly affected by the ambient temperature.
  • the capacity of battery packs is lower in low temperature environments. Therefore, battery packs need to be heated at low temperatures to maintain normal operation.
  • battery self-heating technology is usually used to self-heat the battery pack.
  • Battery self-heating technology utilizes the battery's cyclic charge and discharge and relies on the battery's own internal resistance to generate heat.
  • Battery self-heating technology has the advantages of fast heating speed, high heating efficiency, good temperature uniformity and low cost. However, while self-heating, it will also increase noise interference.
  • An embodiment of the present disclosure provides a battery self-heating circuit, as shown in FIG1 , comprising a first battery group 110, a second battery group 120, a first capacitor C1, a second capacitor C2, a multi-phase bridge arm 130, and multi-phase windings 140 corresponding one-to-one to the multi-phase bridge arm 130, wherein each phase winding is connected to the midpoint of the corresponding bridge arm.
  • the negative pole of the first battery group 110 is connected to the positive pole of the second battery group 120, and the negative pole of the first battery group 110 and the positive pole of the second battery group 120 are connected to the neutral point of the multi-phase winding 140; the positive pole of the first battery group 110 is connected to the first bus terminal of the multi-phase bridge arm 130, and the negative pole of the second battery group 120 is connected to the second bus terminal of the multi-phase bridge arm 130.
  • the first end of the second capacitor C2 is connected to the second end of the first capacitor C1, and the first end of the second capacitor C2 and the second end of the first capacitor C1 are connected to the neutral point of the multi-phase winding 140, and the second end of the second capacitor C2 is connected to the negative electrode of the second battery group 120, and the first end of the first capacitor C1 is connected to the positive electrode of the first battery group 110.
  • the first battery group 110 and the second battery group 120 belong to the same battery pack.
  • the switch tube in the multi-phase bridge arm 130 By controlling the switch tube in the multi-phase bridge arm 130 to switch between the closed and open states, the first battery group 110 is discharged to charge the multi-phase winding 140, the multi-phase winding 140 is discharged to charge the first battery group 110, the second battery group 120 is discharged to charge the multi-phase winding 140, and the multi-phase winding 140 is discharged to charge the second battery group 120.
  • the first battery group 110 and the multi-phase winding 140 cooperate to charge and discharge each other, and the second battery group 120 and the multi-phase winding 140 cooperate to charge and discharge each other, thereby realizing self-heating of the first battery group 110 and the second battery group 120.
  • the upper bridge arm in the multi-phase bridge arm 130 is closed and the lower bridge arm is disconnected.
  • the charging current is emitted from the positive pole of the first battery group 110, charges the multi-phase winding 140 through the upper bridge arm of the multi-phase bridge arm 130, and then returns to the negative pole of the first battery group 110 through the neutral point of the multi-phase winding 140.
  • the lower bridge arm in the multi-phase bridge arm 130 is closed and the upper bridge arm is disconnected.
  • the charging current is emitted from the multi-phase winding 140, passes through the neutral point of the multi-phase winding 140 to the positive pole of the second battery group 120, charges the second battery group 120, and then returns to the multi-phase winding 140 from the negative pole of the second battery group 120 via the lower bridge arm of the multi-phase bridge arm 130.
  • the lower bridge arm in the multi-phase bridge arm 130 is closed and the upper bridge arm is disconnected.
  • the charging current is emitted from the positive pole of the second battery group 120, charges the multi-phase winding 140 through the neutral point of the multi-phase winding 140, and then returns to the negative pole of the second battery group 120 through the lower bridge arm of the multi-phase bridge arm 130.
  • the upper bridge arm in the multi-phase bridge arm 130 is closed and the lower bridge arm is disconnected.
  • the charging current is emitted from the multi-phase winding 140, passes through the upper bridge arm of the multi-phase bridge arm 130 to the positive electrode of the first battery group 110, charges the first battery group 110, and then returns to the multi-phase winding 140 from the negative electrode of the first battery group 110 via the neutral point of the multi-phase winding 140.
  • connection unit The multi-phase bridge arm 130 and the multi-phase winding 140 connected to the multi-phase bridge arm 130 in a one-to-one correspondence are regarded as a connection unit.
  • the connection unit, the first battery pack 110 and the first capacitor C1 are connected in parallel.
  • the first capacitor C1 performs filtering during the charging and discharging process of the first battery pack 110 to achieve the first battery Noise reduction during the charging and discharging process of the second battery group 110; during the charging and discharging process of the second battery group 120, the connecting unit, the second battery group 120 and the second capacitor C2 are connected in parallel, and the second capacitor C2 performs filtering during the charging and discharging process of the second battery group 120 to achieve noise reduction during the charging and discharging process of the second battery group 120.
  • the first battery pack 110 and the multi-phase winding 140 cooperate to charge and discharge to realize the self-heating of the first battery pack 110. Since the first end of the first capacitor C1 is connected to the positive electrode of the first battery pack 110, and the second end of the first capacitor C1 is connected to the neutral point of the multi-phase winding 140, it is equivalent to the first capacitor C1 and the first battery pack 110 are connected in parallel, so the first capacitor C1 can filter and reduce noise in the self-heating of the first battery pack 110; the second battery pack 120 and the multi-phase winding cooperate to charge and discharge to realize the self-heating of the second battery pack 120.
  • the second capacitor C2 Since the first end of the second capacitor C2 is connected to the neutral point of the multi-phase winding 140, and the second end of the second capacitor C2 is connected to the negative electrode of the second battery pack 120, it is equivalent to the second capacitor C2 and the second battery pack 120 are connected in parallel, so the second capacitor C2 can filter and reduce noise in the self-heating of the second battery pack 120. In this way, the noise reduction of the self-heating of the battery pack is achieved.
  • the battery self-heating circuit further includes a first switch K1 , and a first end of the second capacitor C2 and a second end of the first capacitor C1 are connected to the neutral point of the multi-phase winding 140 through the first switch K1 .
  • connection point between the first end of the second capacitor C2 and the second end of the first capacitor C1 is connected to the neutral point of the multi-phase winding 140 through the first switch K1.
  • the first switch K1 is used to control whether the first capacitor C1 and the second capacitor C2 are connected, which determines whether the noise reduction function is turned on.
  • the first switch K1 is closed, the first end of the second capacitor C2 and the second end of the first capacitor C1 are connected to the neutral point of the multi-phase winding 140, and noise reduction can be performed during the self-heating process of the battery pack.
  • the first switch K1 is disconnected, the first end of the second capacitor C2 and the second end of the first capacitor C1 are disconnected from the neutral point of the multi-phase winding 140, and noise reduction cannot be performed during the self-heating process of the battery pack.
  • the first switch K1 can be used to control whether the noise reduction function is turned on. Noise reduction can be performed when the battery pack is self-heating, and noise reduction is not performed at other times, thereby realizing the start and stop control of the noise reduction function.
  • the first switch K1 is a contactor.
  • the battery self-heating circuit further includes a second switch K2 , and the negative electrode of the first battery pack 110 and the positive electrode of the second battery pack 120 are connected to the neutral point of the multi-phase winding 140 via the second switch K2 .
  • connection point between the negative electrode of the first battery pack 110 and the positive electrode of the second battery pack 120 is connected to the neutral point of the multi-phase winding 140 through the second switch K2.
  • the second switch K2 is used to control whether the first battery pack 110 and the second battery pack 120 are connected or not, which determines whether the self-heating is turned on.
  • the second switch K2 is closed, the negative electrode of the first battery pack 110 and the positive electrode of the second battery pack 120 are connected to the neutral point of the multi-phase winding 140, and the battery pack can self-heat.
  • the second switch K2 is disconnected, the negative electrode of the first battery pack 110 and the positive electrode of the second battery pack 120 are disconnected from the multi-phase winding. If the neutral point of group 140 is connected, the battery pack cannot be self-heated.
  • the second switch K2 can be used to control whether self-heating is turned on.
  • the second switch K2 is closed and the circuit is turned on.
  • the second switch K2 is disconnected. In this way, the start and stop control of the self-heating function is achieved, thereby ensuring the safety of the vehicle and the battery pack.
  • the second switch K2 may be a contactor.
  • the multi-phase bridge arm 130 is a three-phase bridge arm
  • the multi-phase winding 140 is a three-phase winding
  • the multi-phase bridge arm 130 is a three-phase bridge arm, which may specifically include a first bridge arm 131, a second bridge arm 132 and a third bridge arm 133.
  • the multi-phase winding 140 is a three-phase winding, which may specifically include a first phase winding, a second phase winding and a third phase winding.
  • the first bridge arm 131 is connected to the first phase winding
  • the second bridge arm 132 is connected to the second phase winding
  • the third bridge arm 133 is connected to the third phase winding.
  • the first bridge arm 131 includes a first switch tube T1 and a second switch tube T2
  • the second bridge arm 132 includes a third switch tube T3 and a fourth switch tube T4
  • the third bridge arm 133 includes a fifth switch tube T5 and a sixth switch tube T6.
  • the first switch tube T1, the third switch tube T3, and the fifth switch tube T5 form an upper bridge arm of the multi-phase bridge arm 130
  • the second switch tube T2, the fourth switch tube T4, and the sixth switch tube T6 form a lower bridge arm of the multi-phase bridge arm 130.
  • the drains of the first switch tube T1, the third switch tube T3, and the fifth switch tube T5 are all connected to the first bus terminal, and the sources of the second switch tube T2, the fourth switch tube T4, and the sixth switch tube T6 are all connected to the second bus terminal.
  • the source of the first switch tube T1 is connected to the drain of the second switch tube T2, and the source of the first switch tube T1 and the drain of the second switch tube T2 are connected to the first phase winding;
  • the source of the third switch tube T3 is connected to the drain of the second switch tube T2, and the source of the third switch tube T3 and the drain of the second switch tube T2 are connected to the second phase winding;
  • the source of the fifth switch tube T5 is connected to the drain of the sixth switch tube T6, and the source of the fifth switch tube T5 and the drain of the sixth switch tube T6 are connected to the third phase winding.
  • the multi-phase bridge arm 130 may be a six-phase bridge arm, and the multi-phase winding 140 may be a six-phase winding.
  • the multi-phase coils of the multiplexed motor are used as the multi-phase winding 140
  • the multi-phase bridge arms of the multiplexed motor controller are used as the multi-phase bridge arms 130 .
  • the motor includes a drive motor or an air-conditioning compressor
  • the motor controller includes a motor controller corresponding to the drive motor, or a motor controller corresponding to the air-conditioning compressor.
  • the multi-phase winding 140 and the multi-phase bridge arm 130 in the battery self-heating circuit can be shared with the existing motor and motor controller on the vehicle without the need for additional equipment, thus saving space and resources.
  • the multi-phase bridge arm 130 may also be a multi-phase bridge arm 130 in an inverter on a vehicle, and the multi-phase winding 140 may be a multi-phase winding 140 in a motor on a vehicle.
  • the battery self-heating circuit also includes a DC charging port, the neutral point of the multi-phase winding 140 is connected to the positive pole of the DC charging port, the second bus end of the multi-phase bridge arm 130 is connected to the negative pole of the DC charging port, and the multi-phase winding 140 and the multi-phase bridge arm 130 constitute a boost circuit, which is used to boost the DC power of the DC charging port to charge the first battery group 110 and the second battery group 120.
  • the external charging device can charge the battery pack through the DC charging port.
  • the external charging device can be, but is not limited to, a charging gun, a charging pile, other vehicles, etc.
  • the battery pack can also supply power to other electrical devices through the DC charging port.
  • Other electrical devices may include, but are not limited to, mobile phones, stereos, other vehicles, etc.
  • the DC charging port can be used to enable interaction between the battery self-heating circuit and the outside world, which increases the applicable scenarios of the battery self-heating circuit and improves the applicability of the battery self-heating circuit.
  • the battery self-heating circuit may also include a third capacitor C3, a fourth capacitor C4, a third switch K3 and a fourth switch K4, wherein the first end of the third capacitor C3 is connected to the positive electrode of the first battery group 110, and the second end of the third capacitor C3 is connected to the negative electrode of the second battery group 120; the first end of the fourth capacitor C4 is connected to the positive electrode of the DC charging port, and the second end of the fourth capacitor C4 is connected to the negative electrode of the DC charging port through the fourth switch K4; the third switch K3 is connected between the neutral point of the multi-phase winding 140 and the positive electrode of the DC charging port; and the fourth switch K4 is connected between the negative electrode of the second battery group 120 and the negative electrode of the DC charging port.
  • the third switch K3 is used to control whether the fourth capacitor C4 is connected or not. If the third switch K3 is closed, the fourth capacitor C4 is connected, and if the third switch K3 is disconnected, the fourth capacitor C4 is not connected. On this basis, the fourth switch K4 is used to control whether the DC charging port is connected or not. If the fourth switch K4 is closed, the DC charging port is connected, and if the fourth switch K4 is disconnected, the DC charging port is not connected, so as to control the external interaction of the battery self-heating circuit.
  • the capacitance of the first capacitor C1 is the same as the capacitance of the second capacitor C2.
  • the first battery group 110 discharges to charge the multi-phase winding 140, and the first capacitor C1 works.
  • the multi-phase winding 140 discharges to charge the second battery group 120, and the second capacitor C2 works.
  • the second battery group 120 discharges to charge the multi-phase winding 140, and the second capacitor C2 works.
  • the multi-phase winding 140 discharges to charge the first battery group 110, and the first capacitor C1 works.
  • the first capacitor C1 and the second capacitor C2 have the same capacitance and the same noise reduction capability.
  • the noise reduction effect of the first capacitor C1 is the same as that of the second battery pack 120.
  • the noise reduction effect of the second capacitor C2 is consistent, so that the noise reduction effect during the self-heating process of the battery pack is stable.
  • the capacitance of the first capacitor C1 and the capacitance of the second capacitor C2 are both less than 10 uf.
  • the capacitance of the first capacitor C1 is less than 10uf, and the capacitance of the second capacitor C2 is less than 10uf. If the capacitance of the first capacitor C1 and the second capacitor C2 is too large, the self-heating current will be affected.
  • Sequence 1 The first switch tube T1, the third switch tube T3, and the fifth switch tube T5 are closed, and the second switch tube T2, the fourth switch tube T4, and the sixth switch tube T6 are opened.
  • the charging current is emitted from the positive electrode of the first battery pack 110, charges the three-phase winding through the first switch tube T1, the third switch tube T3, and the fifth switch tube T5, and then returns to the negative electrode of the first battery pack 110 through the neutral point of the three-phase winding.
  • the first capacitor C1 is connected in parallel with the first battery pack 110.
  • Sequence 2 The first switch tube T1, the third switch tube T3, and the fifth switch tube T5 are turned off, and the second switch tube T2, the fourth switch tube T4, and the sixth switch tube T6 are turned on.
  • the charging current is emitted from the three-phase winding, passes through the neutral point of the three-phase winding to the positive electrode of the second battery pack 120, charges the second battery pack 120, and then returns to the three-phase winding from the negative electrode of the second battery pack 120 through the second switch tube T2, the fourth switch tube T4, and the sixth switch tube T6.
  • the second capacitor C2 is connected in parallel with the second battery pack 120.
  • Sequence 3 The first switch tube T1, the third switch tube T3, and the fifth switch tube T5 are turned off, and the second switch tube T2, the fourth switch tube T4, and the sixth switch tube T6 are turned on. As shown in FIG6 , the charging current is emitted from the positive electrode of the second battery pack 120, charges the three-phase winding through the neutral point of the three-phase winding, and then returns to the negative electrode of the second battery pack 120 through the second switch tube T2, the fourth switch tube T4, and the sixth switch tube T6.
  • the second capacitor C2 is connected in parallel with the second battery pack 120.
  • Sequence 4 The first switch tube T1, the third switch tube T3, and the fifth switch tube T5 are closed, and the second switch tube T2, the fourth switch tube T4, and the sixth switch tube T6 are opened.
  • the charging current is emitted from the three-phase winding, passes through the first switch tube T1, the third switch tube T3, and the fifth switch tube T5 to the positive electrode of the first battery pack 110, charges the first battery pack 110, and then returns to the three-phase winding from the negative electrode of the first battery pack 110 through the neutral point of the three-phase winding.
  • the first capacitor C1 is connected in parallel with the first battery pack 110.
  • An embodiment of the present disclosure also provides a vehicle, which includes the above-mentioned battery self-heating circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池自加热电路,包括第一电池组、第二电池组、第一电容、第二电容、多相桥臂以及与多相桥臂一一对应的多相绕组,每一相绕组连接对应桥臂的中点;第一电池组的负极和第二电池组的正极连接,且第一电池组负极和第二电池组正极与多相绕组的中性点连接;第一电池组的正极连接多相桥臂的第一汇流端,第二电池组的负极连接多相桥臂的第二汇流端;第二电容的第一端和第一电容第二端连接,且第二电容的第一端和第一电容第二端与多相绕组的中性点连接,且第二电容的第二端与第二电池组的负极连接,第一电容的第一端与第一电池组的正极连接。

Description

电池自加热电路及车辆
相关申请的交叉引用
本公开要求在2022年09月29日提交中国专利局、申请号为202222636478.6、名称为“电池自加热电路及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池自加热技术领域,具体地,涉及一种电池自加热电路及车辆。
背景技术
在相关技术中,通常采用电池自加热技术来对电池包进行自加热,电池自加热技术是利用电池循环充放电,依靠电池自身的内阻进行发热,电池自加热技术具有加热速度快、加热效率高、均温性好以及成本低等优点,但在自加热的同时,也会同时增加噪声干扰。
发明内容
本公开的目的是提供一种电池自加热电路及车辆,以解决相关技术中的问题。
为了实现上述目的,本公开实施例的第一方面,提供一种电池自加热电路,包括第一电池组、第二电池组、第一电容、第二电容、多相桥臂以及与所述多相桥臂一一对应的多相绕组,其中,每一相绕组连接对应桥臂的中点;
所述第一电池组的负极和所述第二电池组的正极连接,且所述第一电池组负极和所述第二电池组正极与所述多相绕组的中性点连接;
所述第一电池组的正极连接所述多相桥臂的第一汇流端,所述第二电池组的负极连接所述多相桥臂的第二汇流端;
所述第二电容的第一端和所述第一电容第二端连接,且所述第二电容的第一端和所述第一电容第二端与所述多相绕组的中性点连接,且所述第二电容的第二端与所述第二电池组的负极连接,所述第一电容的第一端与所述第一电池组的正极连接。
可选地,电池自加热电路还包括第一开关,所述第二电容的第一端和所述第一电容第二端通过所述第一开关与所述多相绕组的中性点连接。
可选地,所述第一开关为接触器。
可选地,电池自加热电路还包括第二开关,所述第一电池组负极和所述第二电池组正极通过所述第二开关与所述多相绕组的中性点连接。
可选地,所述多相桥臂为三相桥臂,所述多相绕组为三相绕组。
可选地,复用电机的多相线圈作为所述多相绕组,复用电机控制器的多相桥臂作为所述多相桥臂。
可选地,所述电机包括驱动电机或空调压缩机,所述电机控制器包括与所述驱动电机对应的电机控制器,或与所述空调压缩机对应的电机控制器。
可选地,电池自加热电路还包括直流充电口,所述多相绕组的中性点与所述直流充电口的正极连接,所述多相桥臂的第二汇流端与所述直流充电口的负极连接,所述多相绕组和所述多相桥臂构成升压电路,所述升压电路用于将所述直流充电口的直流电进行升压处理后,以对所述第一电池组和第二电池组进行充电。
可选地,所述第一电容的容值和所述第二电容的容值相同。
可选地,所述第一电容的容值和所述第二电容的容值均小于10uf。
根据公开实施例的第二方面,还提供一种车辆,包括上述的电池自加热电路。
本公开提供的一种电池自加热电路及车辆,该电路包括第一电池组、第二电池组、第一电容、第二电容、多相桥臂以及与该多相桥臂一一对应的多相绕组,其中,每一相绕组连接对应桥臂的中点;第一电池组和多相绕组配合进行充放电实现第一电池组的自加热,由于第一电容的第一端与第一电池组的正极连接,第一电容的第二端与多相绕组的中性点连接,相当于第一电容与第一电池组并联,故第一电容可以在第一电池组自加热中进行滤波降噪;第二电池组和多项绕组配合进行充放电实现第二电池组的自加热,由于第二电容的第一端与多相绕组的中性点连接,第二电容的第二端与第二电池组的负极连接,相当于第二电容与第二电池组并联,故第二电容可以在第二电池组自加热中进行滤波降噪。进而实现了电池包自加热的降噪。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开实施例提供的一种电池自加热电路的电路图;
图2是本公开实施例提供的另一种电池自加热电路的电路图;
图3是本公开实施例提供的另一种电池自加热电路的电路图;
图4是本公开实施例提供的另一种电池自加热电路的电路图;
图5是本公开实施例提供的另一种电池自加热电路的电路图;
图6是本公开实施例提供的另一种电池自加热电路的电路图;
图7是本公开实施例提供的另一种电池自加热电路的电路图。
附图标记说明
110-第一电池组;120-第二电池组;130-多相桥臂;131-第一桥臂;132-第二桥臂;
133-第三桥臂;140-多相绕组;C1-第一电容;C2-第二电容;C3-第三电容;C4-第四电容;K1-第一开关;K2-第二开关;K3-第三开关;K4-第四开关;T1-第一开关管;T2-第二开关管;T3-第三开关管;T4-第四开关管;T5-第五开关管;T6-第六开关管。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
本公开所使用的术语“第一”、“第二”等是为了区分一个要素和另一个要素,不具有顺序性和重要性。此外,在下面的描述中,当涉及到附图时,除非另有解释,不同的附图中相同的附图标记表示相同或相似的要素。
随着车辆技术的不断发展,电池包作为新能源汽车的供能元件,其发展也越来越迅速。电池包的工作特性受到环境温度的影响较大,在低温环境下电池包的容量较低,因此,电池包在低温下需要加热来维持正常运行的状态。
在相关技术中,通常采用电池自加热技术来对电池包进行自加热,电池自加热技术是利用电池循环充放电,依靠电池自身的内阻进行发热,电池自加热技术具有加热速度快、加热效率高、均温性好以及成本低等优点,但在自加热的同时,也会同时增加噪声干扰。
本公开实施例提供一种电池自加热电路,如图1所示,包括第一电池组110、第二电池组120、第一电容C1、第二电容C2、多相桥臂130以及与多相桥臂130一一对应的多相绕组140,其中,每一相绕组连接对应桥臂的中点。
第一电池组110的负极和第二电池组120的正极连接,且第一电池组110负极和第二电池组120正极与多相绕组140的中性点连接;第一电池组110的正极连接多相桥臂130的第一汇流端,第二电池组120的负极连接多相桥臂130的第二汇流端。
第二电容C2的第一端和第一电容C1第二端连接,且第二电容C2的第一端和第一电容C1第二端与多相绕组140的中性点连接,且第二电容C2的第二端与第二电池组120的负极连接,第一电容C1的第一端与第一电池组110的正极连接。
第一电池组110和第二电池组120属于同一电池包,通过控制多相桥臂130中的开关管在闭合和断开状态中切换,实现第一电池组110放电给多相绕组140充电、多相绕组140放电给第一电池组110充电、第二电池组120放电给多相绕组140充电、多相绕组140放电给第二电池组120充电。第一电池组110和多相绕组140配合互相充放电,第二电池组120和多相绕组140配合互相充放电,进而实现第一电池组110和第二电池组120的自加热。
在第一电池组110放电给多相绕组140充电的过程中,多相桥臂130中的上桥臂闭合,下桥臂断开,充电电流从第一电池组110的正极发出,通过多相桥臂130的上桥臂给多相绕组140充电,再经由多相绕组140的中性点回到第一电池组110的负极。
在多相绕组140放电给第二电池组120充电的过程中,多相桥臂130中的下桥臂闭合,上桥臂断开,充电电流从多相绕组140发出,经过多相绕组140的中性点到第二电池组120的正极,给第二电池组120充电,再由第二电池组120的负极经由多相桥臂130的下桥臂回到多相绕组140。
在第二电池组120放电给多相绕组140充电的过程中,多相桥臂130中的下桥臂闭合,上桥臂断开,充电电流从第二电池组120的正极发出,经过多相绕组140的中性点给多相绕组140充电,再经由多相桥臂130的下桥臂回到第二电池组120的负极。
在多相绕组140放电给第一电池组110充电的过程中,多相桥臂130中的上桥臂闭合,下桥臂断开,充电电流从多相绕组140发出,通过多相桥臂130的上桥臂到第一电池组110的正极,给第一电池组110充电,再由第一电池组110的负极经由多相绕组140的中性点回到多相绕组140。
将多相桥臂130以及与多相桥臂130一一对应连接的多相绕组140,看作一个连接单元。在第一电池组110充放电过程中,该连接单元、第一电池组110及第一电容C1,三者呈并联关系,第一电容C1在第一电池组110充放电过程中进行滤波,实现对第一电池 组110充放电过程中的降噪;在第二电池组120充放电过程中,该连接单元、第二电池组120及第二电容C2,三者呈并联关系,第二电容C2在第二电池组120充放电过程中进行滤波,实现对第二电池组120充放电过程中的降噪。
通过上述的技术方案,第一电池组110和多相绕组140配合进行充放电实现第一电池组110的自加热,由于第一电容C1的第一端与第一电池组110的正极连接,第一电容C1的第二端与多相绕组140的中性点连接,相当于第一电容C1与第一电池组110并联,故第一电容C1可以在第一电池组110自加热中进行滤波降噪;第二电池组120和多项绕组配合进行充放电实现第二电池组120的自加热,由于第二电容C2的第一端与多相绕组140的中性点连接,第二电容C2的第二端与第二电池组120的负极连接,相当于第二电容C2与第二电池组120并联,故第二电容C2可以在第二电池组120自加热中进行滤波降噪。进而实现了电池包自加热的降噪。
在一种实施方式中,如图2所示,电池自加热电路还包括第一开关K1,第二电容C2的第一端和第一电容C1第二端通过第一开关K1与多相绕组140的中性点连接。
可以理解为,第二电容C2的第一端和第一电容C1第二端之间的连接点,通过第一开关K1与多相绕组140的中性点连接。第一开关K1用于控制第一电容C1、第二电容C2的接入与否,也就决定了降噪功能是否开启。当第一开关K1闭合,第二电容C2的第一端和第一电容C1的第二端与多相绕组140的中性点连接,在电池包自加热过程中,可以进行降噪,当第一开关K1断开,第二电容C2的第一端和第一电容C1的第二端断开与多相绕组140的中性点的连接,在电池包自加热过程中,则不能进行降噪。
也就是说,可以通过第一开关K1来控制降噪功能是否开启,可以在电池包自加热的时候降噪,在其它时候不进行降噪,实现了对降噪功能的启停控制。
在一种实施方式中,第一开关K1为接触器。
在一种实施方式中,如图3所示,电池自加热电路还包括第二开关K2,第一电池组110负极和第二电池组120正极通过第二开关K2与多相绕组140的中性点连接。
可以理解为,第一电池组110的负极和第二电池组120的正极之间的连接点,通过第二开关K2与多相绕组140的中性点连接。第二开关K2用于控制第一电池组110和第二电池组120的接入与否,也就决定了自加热是否开启。当第二开关K2闭合,第一电池组110的负极和第二电池组120的正极与多相绕组140的中性点连接,电池包可以自加热,当第二开关K2断开,第一电池组110的负极和第二电池组120的正极断开与多相绕 组140的中性点的连接,则不能进行电池包自加热。
也就是说,可以通过第二开关K2控制自加热是否开启,在电池包需要自加热时第二开关K2闭合,电路导通,在电池包不需要加热时第二开关K2断开,以此,实现对自加热功能的启停控制,进而保证车辆和电池包的安全性。
具体地,第二开关K2可以是接触器。
在一种实施方式中,多相桥臂130为三相桥臂,多相绕组140为三相绕组。
多相桥臂130为三相桥臂,具体可以包括第一桥臂131、第二桥臂132和第三桥臂133,多相绕组140为三相绕组,具体可以包括第一相绕组、第二相绕组和第三相绕组,第一桥臂131和第一相绕组连接,第二桥臂132和第二相绕组连接,第三桥臂133和第三相绕组连接。
第一桥臂131包括第一开关管T1和第二开关管T2,第二桥臂132包括第三开关管T3和第四开关管T4,第三桥臂133包括第五开关管T5和第六开关管T6。第一开关管T1、第三开关管T3、第五开关管T5组成了多相桥臂130的上桥臂,第二开关管T2、第四开关管T4、第六开关管T6的组成了多相桥臂130的下桥臂。
第一开关管T1、第三开关管T3、第五开关管T5的漏极均和第一汇流端连接,第二开关管T2、第四开关管T4、第六开关管T6的源极均和第二汇流端连接。第一开关管T1的源极和第二开关管T2的漏极连接,且第一开关管T1的源极和第二开关管T2的漏极与第一相绕组连接;第三开关管T3的源极和第二开关管T2的漏极连接,且第三开关管T3的源极和第二开关管T2的漏极与第二相绕组连接;第五开关管T5的源极和第六开关管T6的漏极连接,且第五开关管T5的源极和第六开关管T6的漏极与第三相绕组连接。
在本公开的其他实施例中,多相桥臂130可以是六相桥臂,多相绕组140可以是六相绕组。
在一种实施方式中,复用电机的多相线圈作为多相绕组140,复用电机控制器的多相桥臂作为多相桥臂130。
具体地,电机包括驱动电机或空调压缩机,电机控制器包括与驱动电机对应的电机控制器,或与空调压缩机对应的电机控制器。
也就是说,电池自加热电路中的多相绕组140和多相桥臂130可以与车辆上已有的电机以及电机控制器共用,无需增设,节约了空间,节省了资源。
在本公开的其他实施例中,多相桥臂130还可以是车辆上的逆变器中的多相桥臂130,多相绕组140可以是车辆上的电机中的多相绕组140。
在一种实施方式中,电池自加热电路还包括直流充电口,多相绕组140的中性点与直流充电口的正极连接,多相桥臂130的第二汇流端与直流充电口的负极连接,多相绕组140和多相桥臂130构成升压电路,升压电路用于将直流充电口的直流电进行升压处理后,以对第一电池组110和第二电池组120进行充电。
外部充电设备可以通过直流充电口给电池包充电,外部充电设备可以是,但不限于充电枪、充电桩、其它车辆等。
电池包也可以通过直流充电口向其它用电设备供电,其它用电设备可以是,但不限于手机、音响、其它车辆等。
也就是说,通过直流充电口可以实现电池自加热电路和外部的交互,增加了电池自加热电路的适用场景,提高了电池自加热电路的适用性。
在本公开的其他实施例中,电池自加热电路还可以包括第三电容C3、第四电容C4、第三开关K3和第四开关K4,第三电容C3的第一端与第一电池组110的正极连接,第三电容C3的第二端与第二电池组120的负极连接;第四电容C4的第一端与直流充电口的正极连接,第四电容C4的第二端通过第四开关K4与直流充电口的负极连接;第三开关K3连接在多相绕组140的中性点与直流充电口的正极之间;第四开关K4连接在第二电池组120的负极与直流充电口负极之间。
第三开关K3用于控制第四电容C4的接入与否,若第三开关K3闭合,则第四电容C4接入,若第三开关K3断开,则第四电容C4不接入。在此基础上,第四开关K4用于控制直流充电口的接入与否,若第四开关K4闭合,则直流充电口接入,所第四开关K4断开,则直流充电口不接入,以此来控制电池自加热电路对外的交互。
在一种实施方式中,第一电容C1的容值和第二电容C2的容值相同。
在时序1中,第一电池组110放电给多相绕组140充电,第一电容C1工作,在时序2中,多相绕组140放电给第二电池组120充电,第二电容C2工作,在时序3中,第二电池组120放电给多相绕组140充电,第二电容C2工作,在时序4中,多相绕组140放电给第一电池组110充电,第一电容C1工作。
第一电容C1和第二电容C2的容值相同,第一电容C1和第二电容C2的降噪能力相同,在第一电池组110充放电过程中,第一电容C1的降噪效果和在第二电池组120充放 电过程中,第二电容C2的降噪效果一致。使得在电池包自加热过程的降噪效果稳定。
在一种实施方式中,第一电容C1的容值和第二电容C2的容值均小于10uf。
第一电容C1的容值小于10uf,第二电容C2的容值小于10uf,若是第一电容C1和第二电容C2的容值过大,则会影响自加热电流。
以三相桥臂和三相绕组为例,进行电池自加热电路工作原理介绍:
时序1:第一开关管T1、第三开关管T3、第五开关管T5闭合,第二开关管T2、第四开关管T4、第六开关管T6断开。如图4所示,充电电流从第一电池组110的正极发出,通过第一开关管T1、第三开关管T3、第五开关管T5给三相绕组充电,再经由三相绕组的中性点回到第一电池组110的负极。第一电容C1与第一电池组110并联。
时序2:第一开关管T1、第三开关管T3、第五开关管T5断开,第二开关管T2、第四开关管T4、第六开关管T6闭合。如图5所示,充电电流从三相绕组发出,经过三相绕组的中性点到第二电池组120的正极,给第二电池组120充电,再由第二电池组120的负极经由第二开关管T2、第四开关管T4、第六开关管T6回到三相绕组。第二电容C2与第二电池组120并联。
通过时序1和时序2的来回切换,实现第一电池组110的放电以及第二电池组120的充电。
时序3:第一开关管T1、第三开关管T3、第五开关管T5断开,第二开关管T2、第四开关管T4、第六开关管T6闭合。如图6所示,充电电流从第二电池组120的正极发出,经过三相绕组的中性点给三相绕组充电,再经由第二开关管T2、第四开关管T4、第六开关管T6回到第二电池组120的负极。第二电容C2与第二电池组120并联。
时序4:第一开关管T1、第三开关管T3、第五开关管T5闭合,第二开关管T2、第四开关管T4、第六开关管T6断开。如图7所示,充电电流从三相绕组发出,通过第一开关管T1、第三开关管T3、第五开关管T5到第一电池组110的正极,给第一电池组110充电,再由第一电池组110的负极经由三相绕组的中性点回到三相绕组。第一电容C1和第一电池组110并联。
通过时序3和时序4的来回切换,完成第一电池组110的充电和第二电池组120的放电。
通过时序1/2与时序3/4的切换,完成对第一电池组110和第二电池组120的充放电。
本公开实施例还提供一种车辆,该车辆包括上述的电池自加热电路。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (10)

  1. 一种电池自加热电路,其特征在于,包括第一电池组(110)、第二电池组(120)、第一电容(C1)、第二电容(C2)、多相桥臂(130)以及与所述多相桥臂(130)一一对应的多相绕组(140),其中,每一相绕组连接对应桥臂的中点;
    所述第一电池组(110)的负极和所述第二电池组(120)的正极连接,且所述第一电池组(110)负极和所述第二电池组(120)正极与所述多相绕组(140)的中性点连接;
    所述第一电池组(110)的正极连接所述多相桥臂(130)的第一汇流端,所述第二电池组(120)的负极连接所述多相桥臂(130)的第二汇流端;
    所述第二电容(C2)的第一端和所述第一电容(C1)第二端连接,且所述第二电容(C2)的第一端和所述第一电容(C1)第二端与所述多相绕组(140)的中性点连接,且所述第二电容(C2)的第二端与所述第二电池组(120)的负极连接,所述第一电容(C1)的第一端与所述第一电池组(110)的正极连接。
  2. 根据权利要求1所述的电池自加热电路,其特征在于,还包括第一开关(K1),所述第二电容(C2)的第一端和所述第一电容(C1)第二端通过所述第一开关(K1)与所述多相绕组(140)的中性点连接。
  3. 根据权利要求2所述的电池自加热电路,其特征在于,所述第一开关(K1)为接触器。
  4. 根据权利要求1-3任一项所述的电池自加热电路,其特征在于,还包括第二开关(K2),所述第一电池组(110)负极和所述第二电池组(120)正极通过所述第二开关(K2)与所述多相绕组(140)的中性点连接。
  5. 根据权利要求1-4任一项所述的电池自加热电路,其特征在于,复用电机的多相线圈作为所述多相绕组(140),复用电机控制器的多相桥臂(130)作为所述多相桥臂(130)。
  6. 根据权利要求5所述的电池自加热电路,其特征在于,所述电机包括驱动电机或空调压缩机,所述电机控制器包括与所述驱动电机对应的电机控制器,或与所述空调压缩机对应的电机控制器。
  7. 根据权利要求1-6任一项所述的电池自加热电路,其特征在于,还包括直流充电口,所述多相绕组(140)的中性点与所述直流充电口的正极连接,所述多相桥臂(130)的第二汇流端与所述直流充电口的负极连接,所述多相绕组(140)和所述多相桥臂(130)构成升压电路,所述升压电路用于将所述直流充电口的直流电进行升压处理后,以对所 述第一电池组(110)和第二电池组(120)进行充电。
  8. 根据权利要求1-7任一项所述的电池自加热电路,其特征在于,所述第一电容(C1)的容值和所述第二电容(C2)的容值相同。
  9. 根据权利要求1-8任一项所述的电池自加热电路,其特征在于,所述第一电容(C1)的容值和所述第二电容(C2)的容值均小于10uf。
  10. 一种车辆,其特征在于,包括权利要求1-9任意一项所述的电池自加热电路。
PCT/CN2023/090699 2022-09-29 2023-04-25 电池自加热电路及车辆 WO2024066325A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222636478.6 2022-09-29
CN202222636478.6U CN218456098U (zh) 2022-09-29 2022-09-29 电池自加热电路及车辆

Publications (1)

Publication Number Publication Date
WO2024066325A1 true WO2024066325A1 (zh) 2024-04-04

Family

ID=85124127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090699 WO2024066325A1 (zh) 2022-09-29 2023-04-25 电池自加热电路及车辆

Country Status (2)

Country Link
CN (1) CN218456098U (zh)
WO (1) WO2024066325A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218456098U (zh) * 2022-09-29 2023-02-07 比亚迪股份有限公司 电池自加热电路及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111391718A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 电池能量处理装置、方法及车辆
CN215752030U (zh) * 2021-09-10 2022-02-08 比亚迪股份有限公司 电池控制电路、电池管理系统和车辆
CN114074561A (zh) * 2020-08-20 2022-02-22 比亚迪股份有限公司 能量转换装置及其运行方法、电动汽车
CN217074099U (zh) * 2021-12-13 2022-07-29 广州汽车集团股份有限公司 电池自加热系统及车辆
CN218456098U (zh) * 2022-09-29 2023-02-07 比亚迪股份有限公司 电池自加热电路及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111391718A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 电池能量处理装置、方法及车辆
CN114074561A (zh) * 2020-08-20 2022-02-22 比亚迪股份有限公司 能量转换装置及其运行方法、电动汽车
CN215752030U (zh) * 2021-09-10 2022-02-08 比亚迪股份有限公司 电池控制电路、电池管理系统和车辆
CN217074099U (zh) * 2021-12-13 2022-07-29 广州汽车集团股份有限公司 电池自加热系统及车辆
CN218456098U (zh) * 2022-09-29 2023-02-07 比亚迪股份有限公司 电池自加热电路及车辆

Also Published As

Publication number Publication date
CN218456098U (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
CN110116653B (zh) 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
EP3886304A1 (en) On-board charger
US20230238591A1 (en) Battery energy processing device and method, and vehicle
CN109995098B (zh) 无线充电接收装置、无线充电方法及设备
WO2024066325A1 (zh) 电池自加热电路及车辆
CN110771000A (zh) 用双逆变器驱动经dc电网对电动车辆的恒定电流快速充电
US20100315048A1 (en) Voltage step-up circuit
WO2023246324A1 (zh) 电池振荡加热的控制电路、方法、系统及可读存储介质
CN111315615B (zh) 包括dc/dc转换器的车辆充电器
WO2021244649A1 (zh) 能量转换装置及其安全控制方法
CN111391717A (zh) 能量转换装置、方法及车辆
CN109962660B (zh) 驱动电路、电动汽车驱动系统及驱动方法
CN115378063A (zh) 充放电电路的控制方法、装置、设备、系统及存储介质
CN113745703B (zh) 动力电池的加热方法和装置、车辆
JP2011205806A (ja) 車両用マルチフェーズコンバータ
WO2023216733A1 (zh) 动力电池控制电路、系统及其控制方法
CN111200308A (zh) 一种集成于双电机控制系统的充电电路及装置
US20160221462A1 (en) System and method for charging a traction battery limiting the current draw of parasitic capacitances
JP2020533945A (ja) Dc/dcコンバータを備える車両充電器
CN115782692A (zh) 电池控制电路、方法、电池管理系统和车辆
WO2023207495A1 (zh) 电池自加热装置、方法及车辆
WO2024082155A1 (zh) 电池自加热系统、用电设备及车辆
WO2023201687A1 (zh) 用于电池加热的装置和方法
WO2023185245A1 (zh) 电池自加热装置、方法及车辆
WO2024021676A1 (zh) 充放电电路、充放电控制方法和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869581

Country of ref document: EP

Kind code of ref document: A1