WO2023216733A1 - 动力电池控制电路、系统及其控制方法 - Google Patents
动力电池控制电路、系统及其控制方法 Download PDFInfo
- Publication number
- WO2023216733A1 WO2023216733A1 PCT/CN2023/083342 CN2023083342W WO2023216733A1 WO 2023216733 A1 WO2023216733 A1 WO 2023216733A1 CN 2023083342 W CN2023083342 W CN 2023083342W WO 2023216733 A1 WO2023216733 A1 WO 2023216733A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch
- energy storage
- module
- power
- bridge arm
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 238000004146 energy storage Methods 0.000 claims abstract description 262
- 238000010438 heat treatment Methods 0.000 claims abstract description 134
- 238000007599 discharging Methods 0.000 claims abstract description 23
- 230000004044 response Effects 0.000 claims abstract description 5
- 230000027311 M phase Effects 0.000 claims description 16
- 230000001105 regulatory effect Effects 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 6
- 239000003990 capacitor Substances 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 5
- 239000000306 component Substances 0.000 description 69
- 230000001276 controlling effect Effects 0.000 description 31
- 238000010586 diagram Methods 0.000 description 21
- 230000008569 process Effects 0.000 description 13
- 230000006870 function Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
- H02J7/007194—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present application relates to the field of battery technology, and in particular to a power battery control circuit, system and control method.
- power batteries Due to its advantages such as high energy density, rechargeability, safety and environmental protection, power batteries are widely used in new energy vehicles, consumer electronics, energy storage systems and other fields. With the development of battery technology, the various performances of power batteries are constantly improving, especially the voltage of power batteries, which has generally been greatly improved.
- Embodiments of the present application provide a power battery control circuit, system and control method, which can flexibly adjust the charge and discharge voltage circuit of the power battery to meet the charging voltage or discharge voltage requirements of the power battery in different scenarios.
- this application provides a power battery control circuit, which includes a power battery, a power energy storage module, a charging module and a regulating switch assembly;
- the charging module includes a switch module; the power battery and the switch module are connected in parallel;
- the regulating switch assembly includes multiple A switch; a plurality of switches are arranged between the power battery and the charging module, and between the power energy storage module and the charging module;
- the power energy storage module, the adjustment switch assembly and the switch module are used to adjust the power in response to the control signal Charge and discharge between the battery and the power energy storage module, or adjust the charge and discharge between the power battery and the charging module and the power energy storage module.
- the power battery control circuit realizeds switching between different charge and discharge circuits with the power battery by controlling the power energy storage module, the adjustment switch assembly and the switch module, thereby realizing the regulation of the power battery and the power energy storage module.
- the charging and discharging between the power battery and the charging module and the power energy storage module are adjusted to meet the different heating needs of the power battery in different scenarios and avoid various failures of the motor at the same time.
- the adjustment switch assembly includes a first switch, a second switch and a third switch; the first switch is disposed between the power energy storage module and the charging module; the second switch and the third switch are disposed between the power battery and the charging module. between modules.
- the power battery control circuit provided by the embodiment of the present application can control and adjust the switch assembly to set switches at different positions in the heating circuit of the power battery to achieve different heating circuit switching purposes.
- the charge and discharge mode between the power battery and the power energy storage module can be adjusted in the same circuit structure, or the power battery, charging module and power energy storage module can be adjusted. charge and discharge modes to meet the different heating needs of the power battery in different scenarios and avoid various failures of the motor at the same time.
- the power energy storage module includes a first bridge arm group and a first energy storage component, the first bridge arm group is connected in parallel with the power battery, the switch module includes a second bridge arm group; One end is connected to the first bridge arm group, one end of the first switch is connected to the second end of the first energy storage component, the other end of the first switch is connected to the first end of the switch module; one end of the second switch is connected to the first bridge arm The other end of the second switch is connected to the connections of all the upper bridge arms in the switch module; one end of the third switch is connected to the connections of all the lower bridge arms of the first bridge arm group, and the other end of the third switch is connected to the connections of all the upper bridge arms of the first bridge arm group. The other end is connected to the connection points of all the lower bridge arms in the switch module; at least one bridge arm of the switch module is connected in parallel with the first bridge arm group.
- the power battery control circuit not only controls and regulates the switch assembly, but also controls the power energy storage module and the switch module to achieve different heating circuit switching purposes.
- the charge and discharge mode between the power battery and the power energy storage module can be adjusted in the same circuit structure, or the power battery and the charging module can be adjusted.
- the charge and discharge modes between power energy storage modules to meet the different heating needs of the power battery in different scenarios and avoid various failures of the motor at the same time.
- the adjustment switch assembly further includes a bridge arm selection switch assembly; the other end of the first switch is connected to the first end of the bridge arm selection switch assembly, and the other end of the bridge arm selection switch assembly is connected to the second bridge arm group.
- the power battery control circuit provided by the embodiment of the present application can select the bridge arms in the second bridge arm group according to the needs through the bridge arm selection switch assembly. You can select one bridge arm to enter the loop, or you can select two or all bridges. The arm enters the control loop to realize the different heating needs of the power battery in different scenarios.
- the charging module further includes a second energy storage component connected to the switch module, and the first switch is disposed between the power energy storage module and the second energy storage component.
- the power battery control circuit provided by the embodiment of the present application provides a second energy storage component in the charging module, which improves the heating efficiency during the battery self-heating process and meets the demand for rapid battery self-heating.
- one end of the first switch is connected to the second end of the first energy storage component, the other end of the first switch is connected to the first end of the second energy storage component, and the second end of the second energy storage component is connected to the second end of the first energy storage component.
- Second bridge arm group is connected to the first switch.
- a second energy storage component is provided in the charging module. Specifically, by adjusting the switch component for adjustment control, one or more energy storage elements in the second energy storage component can be selected to enter the control loop, thereby realizing different heating requirements of the power battery in different scenarios.
- the adjustment switch assembly also includes a bridge arm selector switch assembly; one end of the first switch is connected to the second end of the first energy storage assembly, the other end of the first switch is connected to the first end of the bridge arm selector switch assembly, and the bridge arm The second end of the selection switch assembly is connected to the first end of the second energy storage assembly.
- a second energy storage component is provided in the charging module.
- the bridge arm selection switch component through the bridge arm selection switch component, one or more energy storage components and one or more energy storage components in the second energy storage component can be selected. Multiple bridge arms enter the control loop to realize different heating needs of the power battery in different scenarios.
- the first energy storage component includes an M-phase motor; the first bridge arm group includes an M-phase bridge arm, and M is a positive integer; the M-phase winding of the M-phase motor is connected to each phase bridge arm in the M-phase bridge arm.
- the upper and lower bridge arm connection points are connected one-to-one.
- the power battery control circuit provided in the embodiment of the present application stores and provides energy during the charging and discharging process through the first energy storage component formed by the bridge arm group, thereby ensuring the self-heating effect of the power battery.
- the second energy storage component includes an N-phase inductor
- the second bridge arm group includes an N-phase bridge arm
- N is a positive integer
- the N-phase inductor is connected to the upper and lower bridge arms of each phase bridge arm in the N-phase bridge arms. Connection points are connected in one-to-one correspondence.
- the power battery control circuit provided by the embodiment of the present application improves energy storage and energy supply during the charging and discharging process through the second energy storage component composed of the second bridge arm group, and increases the self-heating adjustment effect of the power battery.
- the charging module further includes a charging interface and a converter.
- the charging module is connected to an external power source through the charging interface, and the charging module charges the power battery through the converter.
- the charging module also includes a charging interface and a converter, which can realize both battery charging and self-heating of the battery without increasing the cost of circuit equipment. At the same time, it meets the different heating needs of power batteries in different scenarios and avoids various failures of the motor.
- a first capacitor is connected in parallel to both ends of the power battery.
- the power battery control circuit provided by the embodiment of the present application stabilizes the voltage between the power batteries through the first capacitor, ensuring the stability and continuity of the voltage at both ends of the power battery during the charging and discharging process.
- this application provides an electrical device, including a control module and a power battery control circuit according to any embodiment of the first aspect; the control module is connected to the power energy storage module, the adjustment switch assembly and the switch module. It is used to control the power energy storage module, adjust the switch assembly and the switch module, adjust the charge and discharge current between the power energy storage modules, and adjust the charge and discharge current between the power battery and the charging module.
- the electrical equipment provided in the embodiment of the present application realizes switching between different charge and discharge circuits with the power battery by controlling the power energy storage module, the adjustment switch assembly and the switch module, thereby realizing the adjustment between the power battery and the power energy storage module.
- this application provides a power battery control system, which includes external charging and discharging equipment and the electrical equipment in the second aspect.
- the external charging and discharging equipment and the electrical equipment are connected through a charge and discharge interface.
- the power battery control system provided by the embodiment of the present application realizes the switching of different charge and discharge circuits with the power battery by controlling the power energy storage module, the adjustment switch assembly and the switch module, thereby realizing the regulation of the power battery and the power energy storage module.
- the charging and discharging between the power battery and the charging module and the power energy storage module are adjusted to meet the different heating needs of the power battery in different scenarios and avoid various failures of the motor at the same time.
- the present application provides a power battery heating method, which is characterized in that it is applied to the electrical equipment in the second aspect, including: obtaining a battery heating signal; controlling the power energy storage module and the adjustment switch according to the battery heating signal. components and switch modules to regulate the charge and discharge between the charging of the power battery and the power energy storage module; or, according to the battery heating signal, control the power energy storage module, adjust the switch component and the switch module to regulate the power battery, charging module and power energy storage module between charge and discharge.
- the power battery heating method provided by the embodiment of the present application realizes the switching of different charge and discharge circuits between the power battery and the power battery by controlling the power energy storage module, the adjustment switch assembly and the switch module, thereby realizing the regulation of the power battery and the power energy storage module.
- the charging and discharging between the power battery and the charging module and the power energy storage module are adjusted to meet the different heating needs of the power battery in different scenarios and avoid various failures of the motor at the same time.
- controlling the power energy storage module, the adjustment switch assembly and the switch module according to the battery heating signal to regulate the charge and discharge between the power battery and the power energy storage module specifically includes: in the first period, controlling the power energy storage module , adjust the switch assembly and the switch module to enable the power battery to charge the power energy storage module; in the second period, control the power energy storage module, adjust the switch assembly and the switch module to enable the power energy storage module to charge and heat the power battery; where , and continue to alternately perform the control of the first period and the control of the second period.
- the power battery in the process of adjusting the charge and discharge between the power battery and the power energy storage module, the power battery is first controlled to charge the power energy storage module, and then the power energy storage module is controlled to charge the power battery.
- the power battery is charged and heated, which can meet the different heating needs of the power battery in different scenarios and avoid various failures of the motor.
- the power energy storage module includes a first bridge arm group and a first energy storage component
- the switch module includes a second bridge arm group
- the adjustment switch assembly includes a first switch, a second switch and a third switch
- the control power The energy storage module, the regulating switch assembly and the switch module enable the power battery to charge the power energy storage module, specifically including: controlling all upper bridge arms in the first bridge arm group, at least one lower bridge arm in the second bridge arm group, The first switch and the third switch are turned on, and the second switch is turned off.
- the power energy storage module includes a first bridge arm group and a first energy storage component
- the charging module includes a second energy storage component
- the switch module includes a second bridge arm group
- the adjustment switch component includes a first switch, a third The second switch and the third switch; control the power energy storage module, the adjustment switch assembly and the switch module so that the power energy storage module charges and heats the power battery, specifically including: controlling all the lower bridge arms and the second bridge in the bridge arm group At least one upper arm, the first switch and the second switch in the arm group are turned on, and the third switch is turned off.
- the power battery heating method when the power energy storage module is required to charge and heat the power battery, all lower bridge arms in the bridge arm group, at least one upper bridge arm in the second bridge arm group, and the first bridge arm are controlled.
- the switch and the second switch are turned on, and the third switch is turned off.
- controlling the power energy storage module, the adjustment switch assembly and the switch module according to the battery heating signal, and regulating the charge and discharge between the power battery, the charging module and the power energy storage module specifically include: in the first period, controlling the power storage module The energy module, regulating switch assembly and switch module enable the power battery to charge the power energy storage module and charging module; in the second period, the power energy storage module, regulating switch assembly and switch module are controlled to enable the power energy storage module and charging module to The power battery is charged and heated; the control of the first period and the control of the second period are continuously and alternately performed.
- the power battery in the process of adjusting the charge and discharge between the power battery, the charging module and the power energy storage module, the power battery is first controlled to charge the power energy storage module and the charging module, and then the power battery is controlled to charge the power energy storage module and the charging module.
- the power energy storage module and charging module charge and heat the power battery, thereby meeting the different heating needs of the power battery in different scenarios and avoiding various failures of the motor.
- the power energy storage module includes a first bridge arm group and a first energy storage component
- the charging module includes a second energy storage component
- the switch module includes a second bridge arm group
- the adjustment switch component includes a first switch, a third The second switch and the third switch; control the power energy storage module, the adjustment switch assembly and the switch module so that the power battery charges the power energy storage module and the charging module, specifically including: controlling all the upper bridge arms in the first bridge arm group, At least one lower bridge arm, the first switch and the third switch in the second bridge arm group are turned on, and the second switch is turned off.
- the power energy storage module includes a first bridge arm group and a first energy storage component
- the charging module includes a second energy storage component
- the switch module includes a second bridge arm group
- the adjustment switch component includes a first switch, a third The second switch and the third switch; control the power energy storage module, the adjustment switch assembly and the switch module so that the power energy storage module and the charging module charge and heat the power battery, specifically including: controlling all lower bridge arms in the bridge arm group, At least one upper bridge arm, the first switch and the second switch in the second bridge arm group are turned on, and the third switch is turned off.
- the method further includes: obtaining a battery heating stop signal; and turning off the adjustment switch component.
- the heating work can be turned off by operating at least one switch in the adjustment switch assembly.
- the fifth aspect of the present application is a power battery control device, including: a memory: used to store executable instructions; and a processor: used to connect with the memory to execute the executable instructions to complete the power battery as in any one of the fourth aspect. Heating method.
- the power battery control device realized by the embodiment of the present application realizes switching between different charge and discharge circuits with the power battery by controlling the power energy storage module, the adjustment switch assembly and the switch module, thereby realizing the regulation of the power battery and the power energy storage module.
- the charging and discharging between the power battery and the charging module and the power energy storage module are adjusted to meet the different heating needs of the power battery in different scenarios and avoid various failures of the motor at the same time.
- a sixth aspect of the present application is a computer-readable storage medium on which a computer program is stored; the computer program is executed by a processor to implement the power battery heating method according to any one of the fourth aspects.
- the computer-readable storage medium provided by the embodiment of the present application realizes switching between different charge and discharge circuits with the power battery by controlling the power energy storage module, the adjustment switch assembly and the switch module, thereby realizing the adjustment of the power battery and power energy storage.
- the charge and discharge between modules, or the charge and discharge between the power battery and the charging module and the power energy storage module are adjusted to meet the different heating needs of the power battery in different scenarios and avoid various failures of the motor at the same time.
- Figure 1 is a schematic diagram of an application architecture of the charging method provided by an embodiment of the present application.
- Figure 2 is a module schematic diagram of a power battery control circuit provided by an embodiment of the present application.
- Figure 3 is a circuit diagram of a power battery control circuit provided by an embodiment of the present application.
- Figure 4 is a schematic block diagram of electrical equipment provided by an embodiment of the present application.
- Figure 5 is a schematic block diagram of a power battery control system provided by an embodiment of the present application.
- Figure 6 is a schematic flow chart of a power battery heating method provided by an embodiment of the present application.
- Figure 7 is a schematic flow chart of scenario one of a power battery self-heating method provided by this application.
- Figure 8 is a schematic circuit diagram of the power battery control system corresponding to the first period of the heating method in scenario one.
- Figure 9 is a schematic circuit diagram of the power battery control system corresponding to the second period of the heating method in scenario one.
- Figure 10 is a schematic flow chart of scenario two of a power battery self-heating method provided by this application.
- Figure 11 is a schematic circuit diagram of the power battery control system corresponding to the first period of the heating method in scenario two.
- Figure 12 is a schematic circuit diagram of the power battery control system corresponding to the second period in the scenario two heating method.
- Figure 13 is a schematic structural diagram of a power battery control device provided by an embodiment of the present application.
- the control circuit includes a power battery, a power energy storage module, a charging module and a regulating switch assembly; the charging module includes a switch module; the power battery and switch Modules are connected in parallel; the regulating switch assembly includes multiple switches; multiple switch devices Placed between the power battery and the charging module, and between the power energy storage module and the charging module; the power energy storage module, the adjustment switch assembly and the switch module are used to adjust the power battery and the power energy storage module in response to the control signal Charge and discharge between the power battery and the charging module and the power energy storage module.
- the power battery control circuit, system and control method of the present application are applied in the field of new energy vehicles, it solves the problems of low effective value of heating current during the battery self-heating process and abnormal noise and vibration of the motor, and realizes the connection between the vehicle and the battery inside the vehicle.
- the self-heating function is completed through inductor charging and discharging.
- the power battery in the embodiment of the present application may be a lithium-ion battery, a lithium metal battery, a lead-acid battery, a nickel separator battery, a nickel-metal hydride battery, a lithium-sulfur battery, a lithium-air battery, a sodium-ion battery, etc., which are not limited here.
- the battery in the embodiment of the present application can be a single cell, a battery module or a battery pack, which is not limited here.
- batteries can be used in power devices such as cars and ships. For example, it can be used in power vehicles to power the motors of power vehicles and serve as the power source of electric vehicles.
- the battery can also power other electrical devices in electric vehicles, such as in-car air conditioners, car players, etc.
- the drive motor and its control system are one of the core components of new energy vehicles, and their driving characteristics determine the main performance indicators of the vehicle.
- the motor drive system of new energy vehicles is mainly composed of an electric motor (i.e., motor), a power converter, a motor controller (such as an inverter), various detection sensors, and a power supply.
- An electric motor is a rotating electromagnetic machine that operates on the principle of electromagnetic induction and is used to convert electrical energy into mechanical energy. During operation, it absorbs electrical power from the electrical system and outputs mechanical power to the mechanical system.
- FIG. 1 is a schematic diagram of an application architecture applicable to the charging method according to the embodiment of the present application.
- the application architecture includes a battery management system (Battery Management System, BMS) 10 and a charging pile 20.
- BMS 10 can be connected to the charging pile 20 through a communication line. , to interact with the charging pile 20.
- the communication line can be a Controller Area Network (Controller Area Network, CAN) communication line or a daisy chain communication line.
- CAN Controller Area Network
- BMS 10 is the BMS of the power battery
- the power battery is the battery that provides power source for the electrical device.
- the power battery may be a power storage battery.
- the power battery can be a lithium-ion battery, a lithium metal battery, a lead-acid battery, a nickel separator battery, a nickel-metal hydride battery, a lithium-sulfur battery, a lithium-air battery or a sodium-ion battery.
- the power battery in the embodiment of the present application can be a cell/battery cell, or a battery module or a battery pack, which is not specifically limited in the embodiment of the present application.
- the electrical device may be a vehicle, a ship, a spacecraft, etc., which is not limited in the embodiments of the present application.
- BMS is a control system that protects the safety of power batteries and implements functions such as charge and discharge management, high-voltage control, battery protection, battery data collection, and battery status evaluation.
- the BMS can be integrated with the power battery and installed in the same equipment/device, or the BMS can also be installed outside the power battery as an independent equipment/device.
- the charging pile 20, also called a charger, is a device for charging the power battery.
- the charging pile can output charging power according to the charging requirements of BMS 10 to charge the power battery.
- the charging pile 20 can output voltage and current according to the demand voltage and demand current sent by the BMS 10 .
- this application provides a power battery voltage regulation circuit.
- Figure 2 is a module schematic diagram of a power battery control circuit provided by an embodiment of the present application.
- this application provides a power battery control circuit, which includes a power battery 100, a power energy storage module 200, a charging module 400 and a regulating switch assembly 300.
- the charging module 400 includes a switch module; the power battery 100 is connected in parallel with the switch module.
- the adjustment switch assembly 300 includes a plurality of switches, and the plurality of switches are disposed between the power battery 100 and the charging module 400 , and between the power energy storage module 200 and the charging module 400 .
- the power energy storage module 200, the adjustment switch assembly 300 and the switch module are used to adjust the charge and discharge between the power battery 100 and the power energy storage module 200 in response to the control signal, or to adjust the power battery 100, the charging module 400 and the power storage module. It can charge and discharge between modules 200.
- the power battery control circuit provided by the embodiment of the present application realizes switching between different charge and discharge circuits with the power battery 100 by controlling the power energy storage module 200, the adjustment switch assembly 300 and the switch module, thereby realizing the adjustment of the power battery 100 and the power battery 100.
- the charge and discharge between the power energy storage modules 200, or the charge and discharge between the power battery 100 and the charging module 400 and the power energy storage module 200 are adjusted to meet the different heating requirements of the power battery 100 in different scenarios, and at the same time avoid the motor various faults.
- FIG. 3 is a schematic block diagram of the power battery voltage control circuit 1 provided by the embodiment of the present application.
- the adjustment switch assembly 300 includes a first switch K1, a second switch K2, and a third switch K3; the first switch K1 is provided between the power energy storage module 200 and the charging module 400.
- the second switch K2 and the third switch K3 are provided between the power battery 100 and the charging module 400 .
- switches can be set at different positions in the heating circuit of the power battery 100 by controlling and adjusting the switch assembly 300 to achieve different heating circuit switching purposes.
- the charge and discharge mode between the power battery 100 and the power energy storage module 200 can be adjusted in the same circuit structure by controlling the on and off of different switches in the adjustment switch assembly 300, or the power battery 100 and the charging module can be adjusted. 400 and the power energy storage module 200 to meet the different heating needs of the power battery 100 in different scenarios and avoid various failures of the motor at the same time.
- the power energy storage module 200 includes a first bridge arm group 201 and a first energy storage component 202 .
- the first bridge arm group 201 includes multiple groups of bridge arms, each group of bridge arms is composed of upper and lower bridge arms, and each upper bridge arm or lower bridge arm is composed of a triode and a diode connected in parallel to form a bridge arm branch.
- the first bridge arm group 201 is connected in parallel with the power battery 100 .
- the first energy storage component 202 includes a motor and motor windings.
- the switch module includes a second bridge arm group 401 .
- the second bridge arm group 401 also includes multiple groups of bridge arms, each group of bridge arms is composed of upper and lower bridge arms, and each upper bridge arm or lower bridge arm is composed of a triode and a diode connected in parallel to form a bridge arm branch.
- the first end of the first energy storage component 202 is connected to the first bridge arm group 201, and one end of the first switch K1 is connected to Connect the second end of the first energy storage component 202, the other end of the first switch K1 is connected to the first end of the switch module; one end of the second switch K2 is connected to the connections of all upper bridge arms of the first bridge arm group 201, and the second end of the second switch K2 is connected to the second end of the first energy storage component 202.
- the other end of the switch K2 is connected to the connections of all upper bridge arms in the switch module; one end of the third switch K3 is connected to the connections of all the lower bridge arms of the first bridge arm group 201, and the other end of the third switch K3 is connected to all connections in the switch module.
- the connection point of the lower bridge arm; at least one bridge arm of the switch module is connected in parallel with the first bridge arm group 201.
- the power battery control circuit provided in this embodiment in addition to controlling the adjustment switch assembly 300, also controls the power energy storage module 200 and the switch module to achieve different heating circuit switching purposes.
- the charge and discharge mode between the power battery 100 and the power energy storage module 200 can be adjusted in the same circuit structure, or the power battery can be adjusted.
- the charging and discharging modes between 100, the charging module 400 and the power energy storage module 200 can meet the different heating needs of the power battery 100 in different scenarios and avoid various failures of the motor at the same time.
- the adjustment switch assembly 300 also includes a bridge arm selection switch assembly 301; the other end of the first switch K1 is connected to the first end of the bridge arm selection switch assembly 301, and the other end of the bridge arm selection switch assembly 301 is connected to the second bridge Arm set 401.
- the bridge arm in the second bridge arm group 401 can be selected according to the needs through the bridge arm selection switch assembly 301.
- One bridge arm can be selected to enter the loop, or two or two bridge arms can be selected. All bridge arms enter the control loop to realize different heating requirements of the power battery 100 in different scenarios.
- the charging module 400 also includes a second energy storage component 402 connected to the switch module, that is, the second bridge arm group 401.
- the first switch K1 is provided on the power energy storage module 200 and the second energy storage component. between 402.
- the second energy storage component 402 is provided in the charging module 400, which improves the heating efficiency during the battery self-heating process and meets the demand for rapid battery self-heating.
- one end of the first switch K1 is connected to the second end of the first energy storage component 202, and the other end of the first switch K1 is connected to the first end of the second energy storage component 402.
- the second end of the energy component 402 is connected to the second bridge arm group 401.
- a second energy storage component 402 is provided in the charging module 400. Specifically, by adjusting the switch component 300 for adjustment control, one or more energy storage components in the second energy storage component 402 can be selected to enter the control loop, realizing different scenarios. Different heating requirements of the power battery 100 are discussed below.
- the adjustment switch assembly 300 further includes a bridge arm selection switch assembly 301 .
- One end of the first switch K1 is connected to the second end of the first energy storage component 202, the other end of the first switch K1 is connected to the first end of the bridge arm selection switch component 301, and the second end of the bridge arm selection switch component 301 is connected to the second energy storage component.
- a second energy storage component 402 is provided in the charging module 400, and at the same time, the switch group is selected through the bridge arm.
- Component 301, one or more energy storage elements and one or more bridge arms in the second energy storage component 402 can be selected to enter the control loop, thereby realizing different heating requirements of the power battery 100 in different scenarios.
- the first energy storage component 202 includes an M-phase motor; the first bridge arm group 201 includes an M-phase bridge arm, M is a positive integer; the M-phase winding of the M-phase motor is connected to each phase bridge arm in the M-phase bridge arm.
- the upper and lower bridge arm connection points are connected one-to-one.
- the M-phase winding may include three inductors. Specifically, it may include: an inductor LA connected to the U-phase bridge arm, and an inductor LB connected to the V-phase bridge arm. And the inductor LC connected to the W-phase bridge arm.
- one end of the inductor LA is connected to the connection point of the upper bridge arm and the lower bridge arm in the U-phase bridge arm
- one end of the inductor Lb is connected to the connection point of the upper bridge arm and the lower bridge arm in the V-phase bridge arm
- one end of the inductor LC Connected to the connection point of the upper bridge arm and the lower bridge arm in the W-phase bridge arm.
- the other end of the inductor LA, the other end of the inductor LB and the other end of the inductor LC are connected together.
- This connection point is the three-phase center point of the motor.
- the motor is not limited to a three-phase motor, but may also be a six-phase motor.
- the six-phase motor may include a six-phase bridge arm.
- the power battery control circuit provided in the embodiment of the present application stores and provides energy during the charging and discharging process through the first energy storage component 202 composed of a bridge arm group, thereby ensuring the self-heating effect of the power battery 100.
- the second energy storage component 402 includes an N-phase inductor
- the second bridge arm group 401 includes an N-phase bridge arm, and N is a positive integer
- the bridge arm connection points are connected in one-to-one correspondence.
- it may specifically include: an inductor La connected to the first bridge arm, an inductor Lb connected to the second bridge arm, and Inductor Lc connected to the third bridge arm.
- one end of the inductor La is connected to the connection point of the upper bridge arm and the lower bridge arm of the first bridge arm
- one end of the inductor Lb is connected to the connection point of the upper bridge arm and the lower bridge arm of the second bridge arm
- the inductor Lc One end of the bridge arm is connected to the connection point between the upper bridge arm and the lower bridge arm in the third bridge arm.
- the other ends of the inductor La, the other end of the inductor Lb and the other ends of the inductor Lc are respectively connected to the three-phase power supplies Ua, Ub and Uc of the power grid.
- the power battery control circuit provided by the embodiment of the present application improves the energy storage and energy supply during the charging and discharging process through the second energy storage component 402 composed of the second bridge arm group 401, and increases the self-heating adjustment of the power battery 100. Effect.
- the bridge arm selection switch assembly 301 includes a fourth switch K4, a fifth switch K5, and a sixth switch K6.
- the fourth switch K4 is provided between the first bridge arm and the second bridge arm at the connection point between the charging module 400 and the power grid.
- the fifth switch K5 is set between the second bridge arm and the third bridge arm where the charging module 400 connects to the power grid
- the sixth switch K6 is set between the third bridge arm and the ground wire where the charging module 400 connects to the power grid. between the bridge arms.
- K4, K5, and K6 can be closed as needed.
- K4 and K5 are closed, and the three bridge arms and the La, Lb, and Lc inductors are all working as an example for circuit description.
- the bridge arms in the second bridge arm group 401 can be selected according to the needs.
- One bridge arm can be selected to enter the loop, or two or all bridge arms can be selected to enter the control.
- the circuit realizes different heating requirements of the power battery 100 in different scenarios.
- the charging module 400 also includes a charging interface connected to the power grid and a DC-DC converter.
- the charging module 400 is connected to an external power source through the charging interface, and the charging module 400 charges the power battery 100 through the converter.
- the power battery control circuit provided by the embodiment of the present application can realize both battery charging and self-heating of the battery through the charging module 400 without additionally increasing the cost of circuit equipment. At the same time, it meets the different heating needs of the power battery 100 in different scenarios and avoids various failures of the motor.
- a first capacitor C1 is connected in parallel to both ends of the power battery 100 .
- the first capacitor C1 stabilizes the voltage between the power batteries 100, ensuring the stability and continuity of the voltage at both ends of the power battery 100 during the charging and discharging process.
- Figure 3 is a schematic block diagram of the electrical equipment 3 provided by the embodiment of the present application.
- the electrical equipment 3 includes a control module 2 and a power battery 100 voltage control circuit 1 .
- control module is connected to the power energy storage module 200, the adjustment switch assembly 300 and the switch module of the voltage control circuit 1 of the power battery 100, and is used to control the power energy storage module 200, the adjustment switch assembly 300 and the switch module.
- the charge and discharge current between the power energy storage module 200 and the charge and discharge current between the power battery 100 and the charging module 400 are adjusted.
- the electrical equipment provided in this embodiment realizes switching between different charge and discharge circuits with the power battery 100 by controlling the power energy storage module 200, the adjustment switch assembly 300 and the switch module, thereby realizing the adjustment of the power battery 100.
- FIG. 5 is a schematic block diagram of the power battery 100 control system provided by the embodiment of the present application.
- the power battery 100 control system includes external charging and discharging equipment and electrical equipment.
- the external charging and discharging equipment and the electrical equipment are connected through a charge and discharge interface.
- the power battery 100 control system provided by the embodiment of the present application realizes the switching of different charge and discharge circuits between the power battery 100 and the power battery 100 by controlling the power energy storage module 200, the adjustment switch assembly 300 and the switch module, thereby realizing adjustment. Charge and discharge between the power battery 100 and the power energy storage module 200, or adjust the charge and discharge between the power battery 100 and the charging module 400 and the power energy storage module 200 to meet the different heating needs of the power battery 100 in different scenarios, And at the same time avoid various failures of the motor.
- FIG. 6 is a schematic flow chart of a heating method for the power battery 100 provided by an embodiment of the present application.
- the vehicle self-checks whether the battery self-heating conditions are met. If so, the terminal sends a self-heating command.
- the power battery 100 heating method is applied to electrical equipment and specifically includes the following steps:
- S2 Control the power energy storage module 200, the adjustment switch assembly 300 and the switch module according to the battery heating signal, and adjust the charge and discharge between the power battery 100 and the power energy storage module 200; or, control the power energy storage module 200 according to the battery heating signal. , adjust the switch assembly 300 and the switch module, and adjust the charge and discharge between the power battery 100, the charging module 400, and the power energy storage module 200.
- the heating method of the power battery 100 in this embodiment realizes the switching of different charge and discharge circuits between the power battery 100 and the power battery 100 by controlling the power energy storage module 200, the adjustment switch assembly 300 and the switch module, thereby realizing the adjustment of the power battery. 100 and the power energy storage module 200, or adjust the charge and discharge between the power battery 100 and the charging module 400 and the power energy storage module 200 to meet the different heating needs of the power battery 100 in different scenarios, and at the same time Avoid various motor failures.
- Figure 7 is a schematic flow chart of scenario one of a power battery self-heating method provided by this application.
- the power energy storage module 200, the adjustment switch assembly 300 and the switch module are controlled according to the battery heating signal, and the charge and discharge between the power battery 100 and the power energy storage module 200 are adjusted, specifically including: :
- the power battery 100 is controlled to charge the power energy storage module 200, and then the power storage module 200 is controlled to be charged.
- the energy module 200 charges and heats the power battery 100, and then alternately heats the power battery 100 to a set temperature. In order to meet the different heating needs of the power battery 100 in different scenarios, and avoid various failures of the motor.
- the power energy storage module 200, the adjustment switch assembly 300 and the switch module are controlled so that the power battery 100 charges the power energy storage module 200, which specifically includes: controlling all the upper bridge arms in the first bridge arm group 201. , at least one lower bridge arm in the second bridge arm group 401, the first switch K1 and the third switch K3 are turned on, and the second switch K2 is turned off.
- Figure 8 is the circuit return of the power battery 100 control system corresponding to the first period in the heating method of scenario one. Road diagram.
- the power battery 100 is enabled to charge the power energy storage module 200 .
- the power energy storage module 200, the adjustment switch assembly 300 and the switch module are controlled so that the power energy storage module 200 charges and heats the power battery 100, which specifically includes: controlling all the lower bridge arms in the bridge arm group, At least one upper bridge arm in the second bridge arm group 401, the first switch K1 and the second switch K2 are turned on, and the third switch K3 is turned off.
- FIG. 9 is a schematic circuit diagram of the power battery 100 control system corresponding to the second period in the heating method of scenario one.
- the power energy storage module 200 is enabled to charge and heat the power battery 100 .
- Figure 10 is a schematic flow chart of scenario two of a power battery self-heating method provided by this application.
- the power energy storage module 200, the adjustment switch assembly 300 and the switch module are controlled according to the battery heating signal to adjust the relationship between the power battery 100, the charging module 400 and the power energy storage module 200.
- Charge and discharge including:
- S222 In the second period, control the power energy storage module 200, the adjustment switch assembly 300 and the switch module so that the power energy storage module 200 and the charging module 400 charge and heat the power battery 100; wherein, the control of the first period is continued and alternately performed. and second period control.
- the power battery 100 is first controlled to perform the heating on the power energy storage module 200 and the charging module 400 . Charging, and then controlling the power energy storage module 200 and the charging module 400 to charge and heat the power battery 100, thereby meeting different heating requirements of the power battery 100 in different scenarios and avoiding various failures of the motor.
- the power energy storage module 200, the adjustment switch assembly 300 and the switch module are controlled so that the power battery 100 charges the power energy storage module 200 and the charging module 400, which specifically includes: controlling the first bridge arm group 201. All the upper bridge arms, at least one lower bridge arm in the second bridge arm group 401, the first switch K1 and the third switch K3 are turned on, and the second switch K2 is turned off.
- Figure 11 is a schematic circuit diagram of the power battery control system corresponding to the first period of the heating method in scenario two.
- the current path at this time is: from the positive electrode of the battery, the upper arm of the motor V1, V2, V3, The three-phase inductors LA, LB, and LC of the motor, the switch K1, the three-phase inductors La, Lb, and Lc of the charging module, the lower arms Q5, Q6, and Q7 of the charging module and the switch K3, and finally the negative electrode of the battery.
- the power battery 100 is realized to charge the power energy storage module 200 and the charging module 400 .
- the power energy storage module 200, the adjustment switch assembly 300 and the switch module are controlled so that the power energy storage module 200 and the charging module 400 charge and heat the power battery 100, which specifically includes: controlling all the components in the bridge arm group. At least one upper bridge arm in the lower bridge arm, the second bridge arm group 401, the first switch K1 and the second switch K2 are turned on, and the third switch K3 is turned off.
- Figure 12 is a schematic circuit diagram of the power battery control system corresponding to the second period in the scenario two heating method.
- the current path at this time is: the three-phase inductance LA, LB, LC of the self-motor, the switch K1, the three-phase inductance La, Lb, Lc of the charging module, and the upper arm Q1, Q2, Q3 of the charging module. , switch K2, battery positive pole, battery negative pole, to the lower bridge arms V4, V5, and V6 of the motor.
- the power energy storage module 200 and the charging module 400 are implemented to charge and heat the power battery 100 .
- a self-heating loop can be formed in which the power energy storage module 200 and the charging module 400 jointly heat the power battery 100 .
- the power battery 100 heating method further includes: obtaining a battery heating stop signal; and closing the adjustment switch assembly 300 . After the battery temperature reaches the preset value, the heating will be stopped. After the electronically controlled V1-V6 switch tubes and Q1-Q6 switch tubes are disconnected, K1, K2 and K3 will be disconnected to complete the self-heating process.
- the heating operation can be turned off by operating at least one switch in the adjustment switch assembly 300 .
- the neutral point of the three-phase motor is used to connect the bridge arm of the charging module in the car in parallel to form a self-heating loop, which reduces the additional cost of the circuit, while reducing motor failures and ensuring stable operation of the motor. , which can achieve rapid heating of the battery.
- the power battery control circuit, system and control method of the present application are applied in the field of new energy vehicles, it solves the problems of low effective value of heating current during the battery self-heating process and abnormal noise and vibration of the motor, and realizes the connection between the vehicle and the battery inside the vehicle.
- the self-heating function is completed through inductor charging and discharging.
- Figure 13 shows a schematic structural diagram of a power battery control device 400 according to an embodiment of the present application.
- power battery control device 400 includes:
- Memory 402 used to store executable instructions
- Processor 401 used to connect with the memory 402 to execute executable instructions to complete the power battery control method.
- schematic diagram 13 is only an example of the power battery control device 400 and does not constitute a limitation on the power battery control device 400. It may include more or less components than shown in the figure, or some components may be combined. Or different components, for example, the power battery control device 400 may also include input and output devices, network access devices, buses, etc.
- the so-called processor 401 Central Processing Unit, CPU
- CPU Central Processing Unit
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
- the general processor can be a microprocessor or the processor 401 can also be any conventional processor, etc.
- the processor 401 is the control center of the power battery control device 400 and uses various interfaces and lines to connect the entire power battery control device 400 various parts.
- the memory 402 can be used to store computer readable instructions.
- the processor 401 implements various functions of the power battery control device 400 by running or executing the computer readable instructions or modules stored in the memory 402 and calling the data stored in the memory 402. .
- the memory 402 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store data based on The power battery control device 400 uses the created data and the like.
- the memory 402 may include a hard disk, memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card), at least one disk storage device, flash memory device, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM) or other non-volatile/volatile storage devices.
- smart memory card Smart Media Card, SMC
- flash memory card Flash Card
- at least one disk storage device flash memory device, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM) or other non-volatile/volatile storage devices.
- the integrated modules of the power battery control device 400 are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through computer-readable instructions.
- the computer-readable instructions can be stored in a computer-readable storage medium. When executed by the processor, the computer-readable instructions can implement the steps of each of the above method embodiments.
- the power battery control device realizeds switching between different charge and discharge circuits with the power battery 100 by controlling the power energy storage module 200, the adjustment switch assembly 300 and the switch module, thereby realizing the adjustment of the power battery 100 and the power battery 100.
- the charge and discharge between the power energy storage modules 200, or the charge and discharge between the power battery 100 and the charging module 400 and the power energy storage module 200 are adjusted to meet the different heating requirements of the power battery 100 in different scenarios, and at the same time avoid the motor various faults.
- this application also provides a computer-readable storage medium with a computer program stored thereon; The computer program is executed by the processor to implement the power battery heating method.
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
- the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
- the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
- the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
本申请提供了一种动力电池控制电路、系统及其控制方法,动力电池控制电路,包括动力电池、动力储能模块、充电模块以及调节开关组件;充电模块包括开关模块;动力电池与开关模块并联连接;调节开关组件包括多个开关;多个开关设置于动力电池与充电模块之间,以及设置于动力储能模块与充电模块之间;动力储能模块、调节开关组件以及开关模块,用于响应于控制信号,调节动力电池与动力储能模块之间的充放电,或,调节动力电池与充电模块以及动力储能模块之间的充放电。满足了不同场景下动力电池的不同加热需求,并同时避免电机的各种故障。
Description
本申请涉及电池技术领域,特别是涉及一种动力电池控制电路、系统及其控制方法。
由于具有能量密度高、可循环充电、安全环保等优点,动力电池被广泛应用于新能源汽车、消费电子、储能系统等领域中。随着电池技术的发展,动力电池的各种性能都在不断提高,尤其是动力电池的电压,普遍都有大幅度的提升。
然而,当前为了提升电动汽车在寒冷地区的适应性,提升电池加热效果,大多会增加动力电池的加热技术。但是,电池加热过程中,电机会出现缺相或短路等故障,如何在避免故障情况下灵活的调整、控制动力电池的充放电,是一项亟待解决的问题。
发明内容
本申请实施例提供了一种动力电池控制电路、系统及其控制方法,能够灵活调整动力电池的充放电电压回路,以满足不同场景下动力电池对充电电压或放电电压的需求。
第一方面,本申请提供了一种动力电池控制电路,包括动力电池、动力储能模块、充电模块以及调节开关组件;充电模块包括开关模块;动力电池与开关模块并联连接;调节开关组件包括多个开关;多个开关设置于动力电池与充电模块之间,以及设置于动力储能模块与充电模块之间;动力储能模块、调节开关组件以及开关模块,用于响应于控制信号,调节动力电池与动力储能模块之间的充放电,或,调节动力电池与充电模块以及动力储能模块之间的充放电。
本申请实施例提供的动力电池控制电路,通过控制动力储能模块、调节开关组件以及开关模块,实现了与动力电池之间不同的充放电回路的切换,进而实现调节动力电池与动力储能模块之间的充放电,或,调节动力电池与充电模块以及动力储能模块之间的充放电,以满足不同场景下动力电池的不同加热需求,并同时避免电机的各种故障。
在一些实施例中,调节开关组件包括第一开关、第二开关以及第三开关;第一开关设置于动力储能模块和充电模块之间;第二开关和第三开关设置于动力电池以及充电模块之间。
本申请实施例提供的动力电池控制电路,可以通过控制调节开关组件在动力电池的加热回路中不同位置设置开关,达到不同的加热回路切换的目的。可以通过控制调节开关组件中不同开关的导通与断开,在同一个电路结构中形成调节动力电池与动力储能模块之间的充放电模式,或调节动力电池与充电模块以及动力储能模块之间的充放电模式,以满足不同场景下动力电池的不同加热需求,并同时避免电机的各种故障。
在一些实施例中,动力储能模块包括第一桥臂组以及第一储能组件,第一桥臂组与动力电池并联连接,开关模块包括第二桥臂组;第一储能组件的第一端与第一桥臂组连接,第一开关的一端连接第一储能组件的第二端,第一开关的另一端连接开关模块的第一端;第二开关的一端连接第一桥臂组所有上桥臂的连接处,第二开关的另一端连接开关模块中所有上桥臂的连接处;第三开关的一端连接第一桥臂组所有下桥臂的连接处,第三开关的另一端连接开关模块中所有下桥臂的连接处;开关模块的至少一个桥臂与第一桥臂组并联连接。
本申请实施例提供的动力电池控制电路,在控制调节开关组件之外,还通过控制控制动力储能模块以及开关模块,达到不同的加热回路切换的目的。可以通过控制动力储能模块以及开关模块中不同桥臂的导通与断开,在同一个电路结构中形成调节动力电池与动力储能模块之间的充放电模式,或调节动力电池与充电模块以及动力储能模块之间的充放电模式,以满足不同场景下动力电池的不同加热需求,并同时避免电机的各种故障。
在一些实施例中,调节开关组件还包括桥臂选择开关组件;第一开关另一端连接桥臂选择开关组件的第一端,桥臂选择开关组件的另一端连接第二桥臂组。
本申请实施例提供的动力电池控制电路,通过桥臂选择开关组件,可以根据需求对第二桥臂组中的桥臂进行选择,可以选择一个桥臂进入回路,也可以选择两个或者全部桥臂进入控制回路,实现了不同场景下动力电池的不同加热需求。
在一些实施例中,充电模块还包括连接开关模块的第二储能组件,第一开关设置于动力储能模块和第二储能组件之间。
本申请实施例提供的动力电池控制电路,在充电模块中设置第二储能组件,提高了电池自加热过程中加热效率,满足了快速电池自加热的需求。
在一些实施例中,第一开关的一端连接第一储能组件的第二端,第一开关的另一端连接第二储能组件的第一端,第二储能组件的第二端连接第二桥臂组。
本申请实施例提供的动力电池控制电路,在充电模块中设置第二储能组件,
具体通过调节开关组件进行调节控制,可以选择第二储能组件中一个或多个储能元件进入控制回路,实现了不同场景下动力电池的不同加热需求。
在一些实施例中,调节开关组件还包括桥臂选择开关组件;第一开关一端连接第一储能组件的第二端,第一开关另一端连接桥臂选择开关组件的第一端,桥臂选择开关组件的第二端连接第二储能组件的第一端。
本申请实施例提供的动力电池控制电路,在充电模块中设置第二储能组件,同时通过桥臂选择开关组件,可以选择第二储能组件中一个或多个储能元件以及所在的一个或多个桥臂进入控制回路,实现了不同场景下动力电池的不同加热需求。
在一些实施例中,第一储能组件包括M相电机;第一桥臂组包括M相桥臂,M为正整数;M相电机的M相绕组分别与M相桥臂中每相桥臂的上下桥臂连接点一一对应连接。
本申请实施例提供的动力电池控制电路,通过桥臂组构成的第一储能组件进行充放电过程中储能和提供能量,保证了动力电池自加热效果。
在一些实施例中,第二储能组件包括N相电感,第二桥臂组包括N相桥臂,N为正整数;N相电感分别与N相桥臂中每相桥臂的上下桥臂连接点一一对应连接。
本申请实施例提供的动力电池控制电路,通过第二桥臂组构成的第二储能组件提高了充放电过程中的储能和能量提供,增加了动力电池自加热调节效果。
在一些实施例中,充电模块还包括充电接口以及变换器,充电模块通过充电接口连接外部电源,充电模块通过变换器为动力电池充电。
本申请实施例提供的动力电池控制电路,充电模块还包括充电接口以及变换器,在不额外增加电路设备成本情况下,既实现了电池充电,也可以实现电池的自加热。同时,满足不同场景下动力电池的不同加热需求,并避免了电机的各种故障。
在一些实施例中,动力电池两端并联有第一电容。
本申请实施例提供的动力电池控制电路,通过第一电容稳定动力电池之间的电压,保证了动力电池两端在充放电过程中电压的稳定和持续。
第二方面,本申请提供了一种用电设备,包括控制模块及上述第一方面中任一实施例的动力电池控制电路;控制模块与动力储能模块、调节开关组件以及开关模块连接,用于控制动力储能模块、调节开关组件以及开关模块,调节动力储能模块之间的充放电电流,以及调节动力电池与充电模块之间的充放电电流。
本申请实施例提供的用电设备,通过控制动力储能模块、调节开关组件以及开关模块,实现了与动力电池之间不同的充放电回路的切换,进而实现调节动力电池与动力储能模块之间的充放电,或,调节动力电池与充电模块以及动力储能模块之间的充放电,以满足不同场景下动力电池的不同加热需求,并同时避免电机的各种故
障。
第三方面,本申请提供了一种动力电池控制系统,包括外部充放电设备及上述第二方面中的用电设备,外部充放电设备与用电设备中通过充放电接口连接。
本申请实施例提供的动力电池控制系统,通过控制动力储能模块、调节开关组件以及开关模块,实现了与动力电池之间不同的充放电回路的切换,进而实现调节动力电池与动力储能模块之间的充放电,或,调节动力电池与充电模块以及动力储能模块之间的充放电,以满足不同场景下动力电池的不同加热需求,并同时避免电机的各种故障。
第四方面,本申请提供了一种动力电池加热方法,其特征在于,应用于上述第二方面中的用电设备,包括:获取电池加热信号;根据电池加热信号控制动力储能模块、调节开关组件以及开关模块,调节动力电池与动力储能模块充电之间的充放电;或,根据电池加热信号控制动力储能模块、调节开关组件以及开关模块,调节动力电池与充电模块以及动力储能模块之间的充放电。
本申请实施例提供的动力电池加热方法,通过控制动力储能模块、调节开关组件以及开关模块,实现了与动力电池之间不同的充放电回路的切换,进而实现调节动力电池与动力储能模块之间的充放电,或,调节动力电池与充电模块以及动力储能模块之间的充放电,以满足不同场景下动力电池的不同加热需求,并同时避免电机的各种故障。
在一些实施例中,根据电池加热信号控制动力储能模块、调节开关组件以及开关模块,调节动力电池与动力储能模块充电之间的充放电,具体包括:第一时段,控制动力储能模块、调节开关组件以及开关模块,使动力电池对动力储能模块进行充电;第二时段,控制控制动力储能模块、调节开关组件以及开关模块,使动力储能模块对动力电池进行充电加热;其中,持续交替进行第一时段的控制和第二时段的控制。
本申请实施例提供的动力电池加热方法,在调节动力电池与动力储能模块充电之间的充放电过程中,首先控制使动力电池对动力储能模块进行充电,然后控制使动力储能模块对动力电池进行充电加热,从而可以满足不同场景下动力电池的不同加热需求,并避免电机的各种故障。
在一些实施例中,动力储能模块包括第一桥臂组以及第一储能组件,开关模块包括第二桥臂组;调节开关组件包括第一开关、第二开关以及第三开关;控制动力储能模块、调节开关组件以及开关模块,使动力电池对动力储能模块进行充电,具体包括:控制第一桥臂组中的所有上桥臂、第二桥臂组中至少一个下桥臂、第一开关以及第三开关导通,第二开关断开。
本申请实施例提供的动力电池加热方法,当需要使动力电池对动力储能模块进行充电时,控制第一桥臂组中的所有上桥臂、第二桥臂组中至少一个下桥臂、第一开关以及第三开关导通,第二开关断开。
在一些实施例中,动力储能模块包括第一桥臂组以及第一储能组件,充电模块包括第二储能组件,开关模块包括第二桥臂组;调节开关组件包括第一开关、第二开关以及第三开关;控制控制动力储能模块、调节开关组件以及开关模块,使动力储能模块对动力电池进行充电加热,具体包括:控制桥臂组中的所有下桥臂、第二桥臂组中至少一个上桥臂、第一开关以及第二开关导通,第三开关断开。
本申请实施例提供的动力电池加热方法,当需要动力储能模块对动力电池进行充电加热时,控制桥臂组中的所有下桥臂、第二桥臂组中至少一个上桥臂、第一开关以及第二开关导通,第三开关断开。
在一些实施例中,根据电池加热信号控制动力储能模块、调节开关组件以及开关模块,调节动力电池与充电模块以及动力储能模块之间的充放电,具体包括:第一时段,控制动力储能模块、调节开关组件以及开关模块,使动力电池对动力储能模块以及充电模块进行充电;第二时段,控制控制动力储能模块、调节开关组件以及开关模块,使动力储能模块以及充电模块对动力电池进行充电加热;其中,持续交替进行第一时段的控制和第二时段的控制。
本申请实施例提供的动力电池加热方法,在调节动力电池与充电模块以及动力储能模块之间的充放电过程中,首先控制使动力电池对动力储能模块以及充电模块进行充电,然后控制使动力储能模块以及充电模块对动力电池进行充电加热,从而可以满足不同场景下动力电池的不同加热需求,并避免电机的各种故障。
在一些实施例中,动力储能模块包括第一桥臂组以及第一储能组件,充电模块包括第二储能组件,开关模块包括第二桥臂组;调节开关组件包括第一开关、第二开关以及第三开关;控制动力储能模块、调节开关组件以及开关模块,使动力电池对动力储能模块以及充电模块进行充电,具体包括:控制第一桥臂组中的所有上桥臂、第二桥臂组中至少一个下桥臂、第一开关以及第三开关导通,第二开关断开。
本申请实施例提供的动力电池加热方法,当需要使动力电池对动力储能模块以及充电模块进行充电时,控制第一桥臂组中的所有上桥臂、第二桥臂组中至少一个下桥臂、第一开关以及第三开关导通,第二开关断开。
在一些实施例中,动力储能模块包括第一桥臂组以及第一储能组件,充电模块包括第二储能组件,开关模块包括第二桥臂组;调节开关组件包括第一开关、第二开关以及第三开关;控制控制动力储能模块、调节开关组件以及开关模块,使动力储能模块以及充电模块对动力电池进行充电加热,具体包括:控制桥臂组中的所有下桥臂、第二桥臂组中至少一个上桥臂、第一开关以及第二开关导通,第三开关断开。
本申请实施例提供的动力电池加热方法,当需要动力储能模块以及充电模块对动力电池进行充电加热时,控制桥臂组中的所有下桥臂、第二桥臂组中至少一个上桥臂、第一开关以及第二开关导通,第三开关断开。
在一些实施例中,还包括:获取电池加热停止信号;关闭调节开关组件。
本申请实施例提供的动力电池加热方法,在电池自加热结束后,可通过操作调节开关组件中的至少一个开关关闭加热工作。
第五方面,本申请一种动力电池控制设备,包括:存储器:用于存储可执行指令;以及处理器:用于与存储器连接以执行可执行指令从而完成如第四方面任一项的动力电池加热方法。
本申请实施例提供的动力电池控制设备,通过控制动力储能模块、调节开关组件以及开关模块,实现了与动力电池之间不同的充放电回路的切换,进而实现调节动力电池与动力储能模块之间的充放电,或,调节动力电池与充电模块以及动力储能模块之间的充放电,以满足不同场景下动力电池的不同加热需求,并同时避免电机的各种故障。
第六方面,本申请一种计算机可读存储介质,其上存储有计算机程序;计算机程序被处理器执行以实现如第四方面任一项的动力电池加热方法。
本申请实施例提供的计算机可读存储介质,通过控制动力储能模块、调节开关组件以及开关模块,实现了与动力电池之间不同的充放电回路的切换,进而实现调节动力电池与动力储能模块之间的充放电,或,调节动力电池与充电模块以及动力储能模块之间的充放电,以满足不同场景下动力电池的不同加热需求,并同时避免电机的各种故障。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例提供的充电方法的一种应用架构示意图。
图2是本申请实施例提供的动力电池控制电路的模块示意图。
图3是本申请实施例提供的动力电池控制电路的电路图。
图4是本申请实施例提供的用电设备的示意性框图。
图5是本申请实施例提供的动力电池控制系统的示意性框图。
图6是本申请实施例提供的一种动力电池加热方法的示意性流程图。
图7是本申请提供的一种动力电池自加热方法场景一的示意性流程图。
图8是场景一加热方法中第一时段对应的动力电池控制系统的电路回路示意图。
图9是场景一加热方法中第二时段对应的动力电池控制系统的电路回路示意图。
图10是本申请提供的一种动力电池自加热方法场景二的示意性流程图。
图11是场景二加热方法中第一时段对应的动力电池控制系统的电路回路示意图。
图12是场景二加热方法中第二时段对应的动力电池控制系统的电路回路示意图。
图13是本申请实施例提供的动力电池控制设备的结构示意图。
在附图中,附图并未按照实际的比例绘制。
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
随着电池技术的发展,动力电池的各种性能都在不断提高,尤其是动力电池的电压,普遍都有大幅度的提升。当前为了提升电动汽车在寒冷地区的适应性,提升电池加热效果,大多会增加动力电池的加热技术。但是,电池加热过程中,电机会出现缺相或短路等故障,如何在避免故障情况下灵活的调整、控制动力电池的充放电,是一项亟待解决的问题。
鉴于此,本申请实施例提供了一种动力电池控制电路、系统及其控制方法,控制电路包括动力电池、动力储能模块、充电模块以及调节开关组件;充电模块包括开关模块;动力电池与开关模块并联连接;调节开关组件包括多个开关;多个开关设
置于动力电池与充电模块之间,以及设置于动力储能模块与充电模块之间;动力储能模块、调节开关组件以及开关模块,用于响应于控制信号,调节动力电池与动力储能模块之间的充放电,或,调节动力电池与充电模块以及动力储能模块之间的充放电。
本申请的动力电池控制电路、系统及其控制方法应用的新能源汽车领域时,解决了电池自加热过程中加热电流有效值低以及电机的噪声和振动异常的问题,实现车与车内的电池通过电感充放电完成自加热功能。
本申请实施例中的动力电池可以为锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在此不做限定。从规模而言,本申请实施例中的电池可以为电芯单体,也可以是电池模组或电池包,在此不做限定。从应用场景而言,电池可应用于汽车、轮船等动力装置内。比如,可以应用于动力汽车内,为动力汽车的电机供电,作为电动汽车的动力源。电池还可为电动汽车中的其他用电器件供电,比如为车内空调、车载播放器等供电。
为了便于描述,以下将以动力电池应用于新能源汽车(动力汽车)作为实施例进行阐述。
驱动电机及其控制系统是新能源汽车的核心部件之一,其驱动特性决定了汽车行驶的主要性能指标。新能源汽车的电机驱动系统主要由电动机(即电机)、功率转换器、电机控制器(例如,逆变器)、各种检测传感器以及电源等部分构成。电机是应用电磁感应原理运行的旋转电磁机械,用于实现电能向机械能的转换。运行时从电系统吸收电功率,向机械系统输出机械功率。
图1为本申请实施例充电的方法可应用的一种应用架构示意图,该应用架构包括电池管理系统(Battery Management System,BMS)10和充电桩20,BMS 10可以通过通信线与充电桩20连接,以与充电桩20进行信息交互。例如,通信线可以为控制器局域网络(Controller Area Network,CAN)通信线或菊花链通信线。
其中,BMS 10为动力电池的BMS,动力电池为给用电装置提供动力来源的电池。可选地,动力电池可以为动力蓄电池。从电池的种类而言,该动力电池可以是锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在本申请实施例中不做具体限定。从电池规模而言,本申请实施例中的动力电池可以是电芯/电池单体,也可以是电池模组或电池包,在本申请实施例中不做具体限定。可选地,用电装置可以为车辆、船舶或航天器等,本申请实施例对此并不限定。BMS为保护动力电池使用安全的控制系统,实施充放电管理、高压控制、保护电池、采集电池数据、评估电池状态等功能。其中,BMS可以与动力电池集成设置于同一设备/装置中,或者,BMS也可作为独立的设备/装置设置于动力电池之外。
充电桩20,也称为充电机,为给动力电池充电的装置。充电桩可以按照BMS 10的充电需求输出充电功率,以给动力电池充电。例如,充电桩20可以按照BMS 10发送的需求电压和需求电流输出电压和电流。
为了满足不同场景下动力电池自加热的需求,本申请提供了一种动力电池电压调节电路。
图2是本申请实施例提供的动力电池控制电路的模块示意图。
如图2所示,本申请提供了一种动力电池控制电路,包括动力电池100、动力储能模块200、充电模块400以及调节开关组件300。
其中,充电模块400包括开关模块;动力电池100与开关模块并联连接。调节开关组件300包括多个开关,多个开关设置于动力电池100与充电模块400之间,以及设置于动力储能模块200与充电模块400之间。
动力储能模块200、调节开关组件300以及开关模块,用于响应于控制信号,调节动力电池100与动力储能模块200之间的充放电,或,调节动力电池100与充电模块400以及动力储能模块200之间的充放电。
本申请实施例提供的动力电池控制电路,通过控制动力储能模块200、调节开关组件300以及开关模块,实现了与动力电池100之间不同的充放电回路的切换,进而实现调节动力电池100与动力储能模块200之间的充放电,或,调节动力电池100与充电模块400以及动力储能模块200之间的充放电,以满足不同场景下动力电池100的不同加热需求,并同时避免电机的各种故障。
图3是本申请实施例提供的动力电池电压控制电路1的示意性框图。
具体的,如图3所示,调节开关组件300包括第一开关K1、第二开关K2以及第三开关K3;第一开关K1设置于动力储能模块200和充电模块400之间。第二开关K2和第三开关K3设置于动力电池100以及充电模块400之间。
基于此,可以通过控制调节开关组件300在动力电池100的加热回路中不同位置设置开关,达到不同的加热回路切换的目的。具体可以通过控制调节开关组件300中不同开关的导通与断开,在同一个电路结构中形成调节动力电池100与动力储能模块200之间的充放电模式,或调节动力电池100与充电模块400以及动力储能模块200之间的充放电模式,以满足不同场景下动力电池100的不同加热需求,并同时避免电机的各种故障。
进一步限定的,动力储能模块200包括第一桥臂组201以及第一储能组件202。可选地,第一桥臂组201包括多组桥臂,每一组桥臂由上下桥臂构成,每一个上桥臂或者下桥臂由三极管和二极管并联构成一个桥臂支路。第一桥臂组201与动力电池100并联连接。第一储能组件202包括电机和电机绕组。
开关模块包括第二桥臂组401。可选地,第二桥臂组401也包括多组桥臂,每一组桥臂由上下桥臂构成,每一个上桥臂或者下桥臂由三极管和二极管并联构成一个桥臂支路。
第一储能组件202的第一端与第一桥臂组201连接,第一开关K1的一端连
接第一储能组件202的第二端,第一开关K1的另一端连接开关模块的第一端;第二开关K2的一端连接第一桥臂组201所有上桥臂的连接处,第二开关K2的另一端连接开关模块中所有上桥臂的连接处;第三开关K3的一端连接第一桥臂组201所有下桥臂的连接处,第三开关K3的另一端连接开关模块中所有下桥臂的连接处;开关模块的至少一个桥臂与第一桥臂组201并联连接。
基于此,本实施方式下提供的动力电池控制电路,在控制调节开关组件300之外,还通过控制控制动力储能模块200以及开关模块,达到不同的加热回路切换的目的。可以通过控制动力储能模块200以及开关模块中不同桥臂的导通与断开,在同一个电路结构中形成调节动力电池100与动力储能模块200之间的充放电模式,或调节动力电池100与充电模块400以及动力储能模块200之间的充放电模式,以满足不同场景下动力电池100的不同加热需求,并同时避免电机的各种故障。
如图3所示,调节开关组件300还包括桥臂选择开关组件301;第一开关K1另一端连接桥臂选择开关组件301的第一端,桥臂选择开关组件301的另一端连接第二桥臂组401。
本申请实施例提供的动力电池控制电路,通过桥臂选择开关组件301,可以根据需求对第二桥臂组401中的桥臂进行选择,可以选择一个桥臂进入回路,也可以选择两个或者全部桥臂进入控制回路,实现了不同场景下动力电池100的不同加热需求。
优选地,如图3所示,充电模块400还包括连接开关模块,即第二桥臂组401的第二储能组件402,第一开关K1设置于动力储能模块200和第二储能组件402之间。
基于此,在充电模块400中设置第二储能组件402,提高了电池自加热过程中加热效率,满足了快速电池自加热的需求。
进一步限定的,如图3所示,第一开关K1的一端连接第一储能组件202的第二端,第一开关K1的另一端连接第二储能组件402的第一端,第二储能组件402的第二端连接第二桥臂组401。
基于此,在充电模块400中设置第二储能组件402,具体通过调节开关组件300进行调节控制,可以选择第二储能组件402中一个或多个储能元件进入控制回路,实现了不同场景下动力电池100的不同加热需求。
优选地,如图3所示,调节开关组件300还包括桥臂选择开关组件301。第一开关K1一端连接第一储能组件202的第二端,第一开关K1另一端连接桥臂选择开关组件301的第一端,桥臂选择开关组件301的第二端连接第二储能组件402的第一端。
进而,在充电模块400中设置第二储能组件402,同时通过桥臂选择开关组
件301,可以选择第二储能组件402中一个或多个储能元件以及所在的一个或多个桥臂进入控制回路,实现了不同场景下动力电池100的不同加热需求。
可选地,第一储能组件202包括M相电机;第一桥臂组201包括M相桥臂,M为正整数;M相电机的M相绕组分别与M相桥臂中每相桥臂的上下桥臂连接点一一对应连接。优选实施方式中,如图2所示,以三相电机为例,M相绕组可以包括三个电感,具体可以包括:与U相桥臂相连的电感LA,与V相桥臂相连的电感LB以及与W相桥臂相连的电感LC。其中,电感LA的一端与U相桥臂中上桥臂和下桥臂的连接点相连,电感Lb的一端与V相桥臂中上桥臂和下桥臂的连接点相连,电感LC的一端与W相桥臂中上桥臂和下桥臂的连接点相连。电感LA的另一端、电感LB的另一端和电感LC另一端连接在一起,该连接点为电机的三相中心点。
需要说明的是,该电机不限于是三相电机,还可以是六相电机等,对应地,六相电机可以包括六相桥臂。
本申请实施例提供的动力电池控制电路,通过桥臂组构成的第一储能组件202进行充放电过程中储能和提供能量,保证了动力电池100自加热效果。
在一些实施例中,第二储能组件402包括N相电感,第二桥臂组401包括N相桥臂,N为正整数;N相电感分别与N相桥臂中每相桥臂的上下桥臂连接点一一对应连接。优选实施方式中,如图2所示,以包括三相桥臂和三个电感为例,具体可以包括:与第一个桥臂相连的电感La,与第二个桥臂相连的电感Lb以及与第三个桥臂相连的电感Lc。其中,电感La的一端与第一个桥臂中上桥臂和下桥臂的连接点相连,电感Lb的一端与第二个桥臂中上桥臂和下桥臂的连接点相连,电感Lc的一端与第三个桥臂中上桥臂和下桥臂的连接点相连。电感La的另一端、电感Lb的另一端和电感Lc另一端分别连接电网的三相电源Ua、Ub以及Uc。
基于此,本申请实施例提供的动力电池控制电路,通过第二桥臂组401构成的第二储能组件402提高了充放电过程中的储能和能量提供,增加了动力电池100自加热调节效果。
进一步的,桥臂选择开关组件301包括第四开关K4、第五开关K5和第六开关K6。第四开关K4设置于充电模块400与电网连接处的第一个桥臂和第二个桥臂之间。第五开关K5设置于充电模块400与电网连接处的第二个桥臂和第三个桥臂之间,第六开关K6设置于充电模块400与电网连接处的第三个桥臂和地线桥臂之间。
进而,K4、K5、K6可根据需求闭合,如图2所示的场景,若均断开时,则只有第二个桥臂、Lb电感工作;若只闭合K4则第一个桥臂、第二个桥臂、La和Lb电感工作;若只闭合K5,则第二个桥臂、第三个桥臂、Lb和Lc电感工作;若闭合K4和K5则三个桥臂以及La、Lb、Lc电感均工作;若闭合K5、K6则没有电感接入电路。本实施例均以闭合K4和K5,三个桥臂以及La、Lb、Lc电感均工作为例进行电路说明。
通过桥臂选择开关组件301的K4、K5、K6,以根据需求对第二桥臂组401中的桥臂进行选择,可以选择一个桥臂进入回路,也可以选择两个或者全部桥臂进入控制回路,实现了不同场景下动力电池100的不同加热需求。
如图3所示,进一步描述的,充电模块400还包括连接电网的充电接口以及变换器DC-DC,充电模块400通过充电接口连接外部电源,充电模块400通过变换器为动力电池100充电。
因此,本申请实施例提供的动力电池控制电路可以在不额外增加电路设备成本情况下,通过充电模块400既实现了电池充电,也可以实现电池的自加热。同时,满足不同场景下动力电池100的不同加热需求,并避免了电机的各种故障。
可选地,动力电池100两端并联有第一电容C1。
进而,通过第一电容C1稳定动力电池100之间的电压,保证了动力电池100两端在充放电过程中电压的稳定和持续。
图3是本申请实施例提供的用电设备3的示意性框图。
如图4所示,用电设备3包括控制模块2及动力电池100电压控制电路1。
如图4所示,控制模块与动力电池100电压控制电路1的动力储能模块200、调节开关组件300以及开关模块连接,用于控制动力储能模块200、调节开关组件300以及开关模块,调节动力储能模块200之间的充放电电流,以及调节动力电池100与充电模块400之间的充放电电流。
基于此,本实施方式提供的用电设备,通过控制动力储能模块200、调节开关组件300以及开关模块,实现了与动力电池100之间不同的充放电回路的切换,进而实现调节动力电池100与动力储能模块200之间的充放电,或,调节动力电池100与充电模块400以及动力储能模块200之间的充放电,以满足不同场景下动力电池100的不同加热需求,并同时避免电机的各种故障。
图5是本申请实施例提供的动力电池100控制系统的示意性框图。
如图5所示,动力电池100控制系统包括外部充放电设备及用电设备,外部充放电设备与用电设备中通过充放电接口连接。
基于此,本申请实施例提供的动力电池100控制系统,通过控制动力储能模块200、调节开关组件300以及开关模块,实现了与动力电池100之间不同的充放电回路的切换,进而实现调节动力电池100与动力储能模块200之间的充放电,或,调节动力电池100与充电模块400以及动力储能模块200之间的充放电,以满足不同场景下动力电池100的不同加热需求,并同时避免电机的各种故障。
图6是本申请实施例提供的一种动力电池100加热方法的示意性流程图。
首先,车辆自检是否满足电池自加热条件,若满足则终端发送自加热命令。
如图6所示,动力电池100加热方法,应用于用电设备,具体包括以下步骤:
S1:获取电池加热信号。
S2:根据电池加热信号控制动力储能模块200、调节开关组件300以及开关模块,调节动力电池100与动力储能模块200充电之间的充放电;或,根据电池加热信号控制动力储能模块200、调节开关组件300以及开关模块,调节动力电池100与充电模块400以及动力储能模块200之间的充放电。
基于此,本实施方式的动力电池100加热方法,通过控制动力储能模块200、调节开关组件300以及开关模块,实现了与动力电池100之间不同的充放电回路的切换,进而实现调节动力电池100与动力储能模块200之间的充放电,或,调节动力电池100与充电模块400以及动力储能模块200之间的充放电,以满足不同场景下动力电池100的不同加热需求,并同时避免电机的各种故障。
图7是本申请提供的一种动力电池自加热方法场景一的示意性流程图。
一种实施场景下,如图7所示,根据电池加热信号控制动力储能模块200、调节开关组件300以及开关模块,调节动力电池100与动力储能模块200充电之间的充放电,具体包括:
S211:第一时段,控制动力储能模块200、调节开关组件300以及开关模块,使动力电池100对动力储能模块200进行充电。
S211:第二时段,控制控制动力储能模块200、调节开关组件300以及开关模块,使动力储能模块200对动力电池100进行充电加热;其中,持续交替进行第一时段的控制和第二时段的控制。
基于此提供的动力电池100加热方法,在调节动力电池100与动力储能模块200充电之间的充放电过程中,首先控制使动力电池100对动力储能模块200进行充电,然后控制使动力储能模块200对动力电池100进行充电加热,继而交替进行使动力电池100加热到设定温度。以满足不同场景下动力电池100的不同加热需求,并避免电机的各种故障。
进一步的,在S211中控制动力储能模块200、调节开关组件300以及开关模块,使动力电池100对动力储能模块200进行充电,具体包括:控制第一桥臂组201中的所有上桥臂、第二桥臂组401中至少一个下桥臂、第一开关K1以及第三开关K3导通,第二开关K2断开。
图8是场景一加热方法中第一时段对应的动力电池100控制系统的电路回
路示意图。
进而,实现使动力电池100对动力储能模块200进行充电。
进一步的,在S212中控制控制动力储能模块200、调节开关组件300以及开关模块,使动力储能模块200对动力电池100进行充电加热,具体包括:控制桥臂组中的所有下桥臂、第二桥臂组401中至少一个上桥臂、第一开关K1以及第二开关K2导通,第三开关K3断开。
图9是场景一加热方法中第二时段对应的动力电池100控制系统的电路回路示意图。
进而,实现使动力储能模块200对动力电池100进行充电加热。
如图8和图9所示,持续交替进行第一时段的控制和第二时段的控制,可以形成通过动力储能模块200对动力电池100的自加热回路。
本实施例以三个桥臂以及La、Lb、Lc电感均工作为例进行说明。
图10是本申请提供的一种动力电池自加热方法场景二的示意性流程图。
另一种优选实施场景下,如图10所示,根据电池加热信号控制动力储能模块200、调节开关组件300以及开关模块,调节动力电池100与充电模块400以及动力储能模块200之间的充放电,具体包括:
S221:第一时段,控制动力储能模块200、调节开关组件300以及开关模块,使动力电池100对动力储能模块200以及充电模块400进行充电。
S222:第二时段,控制控制动力储能模块200、调节开关组件300以及开关模块,使动力储能模块200以及充电模块400对动力电池100进行充电加热;其中,持续交替进行第一时段的控制和第二时段的控制。
基于此提供的动力电池100加热方法,在调节动力电池100与充电模块400以及动力储能模块200之间的充放电过程中,首先控制使动力电池100对动力储能模块200以及充电模块400进行充电,然后控制使动力储能模块200以及充电模块400对动力电池100进行充电加热,从而可以满足不同场景下动力电池100的不同加热需求,并避免电机的各种故障。
进一步的,在S221中控制动力储能模块200、调节开关组件300以及开关模块,使动力电池100对动力储能模块200以及充电模块400进行充电,具体包括:控制第一桥臂组201中的所有上桥臂、第二桥臂组401中至少一个下桥臂、第一开关K1以及第三开关K3导通,第二开关K2断开。
图11是场景二加热方法中第一时段对应的动力电池控制系统的电路回路示意图。
如图11所示,此时电流路径为:自电池正极、电机的上桥臂V1、V2、V3、
电机的三相电感LA、LB、LC、开关K1、充电模块的三相电感La、Lb、Lc、充电模块的下桥臂Q5、Q6、Q7以及开关K3,最后到电池负极。
进而,实现使动力电池100对动力储能模块200以及充电模块400进行充电。
进一步的,在S222中控制控制动力储能模块200、调节开关组件300以及开关模块,使动力储能模块200以及充电模块400对动力电池100进行充电加热,具体包括:控制桥臂组中的所有下桥臂、第二桥臂组401中至少一个上桥臂、第一开关K1以及第二开关K2导通,第三开关K3断开。
图12是场景二加热方法中第二时段对应的动力电池控制系统的电路回路示意图。
如图12所示,此时电流路径为:自电机的三相电感LA、LB、LC、开关K1、充电模块的三相电感La、Lb、Lc、充电模块的上桥臂Q1、Q2、Q3、开关K2、电池正极、电池负极,至电机的下桥臂V4、V5、V6。
进而,实现使动力储能模块200以及充电模块400对动力电池100进行充电加热。
如图11和图12所示,持续交替进行第一时段的控制和第二时段的控制,可以形成通过动力储能模块200和充电模块400共同对动力电池100加热的自加热回路。
在一些实施例中,动力电池100加热方法还包括:获取电池加热停止信号;关闭调节开关组件300。待电池温度达到预设值后,即停止加热,断开电控的V1-V6开关管和Q1-Q6开关管后,断开K1、K2和K3,完成自加热过程。
进而,实现在电池自加热结束后,可通过操作调节开关组件300中的至少一个开关关闭加热工作。
本申请在一种实施方式中,使用三相电机的中性点处并联车内的充电模块的桥臂形成自加热回路,减少了电路额外的成本,同时在减少电机故障、保证电机稳定运行下,可以实现电池的快速加热。
最后,待电池温度升高达到设定值后,自加热结束,电控的开关全部断开后,断开中性线继电器开关,进行充电或者待机模式。
本申请的动力电池控制电路、系统及其控制方法应用的新能源汽车领域时,解决了电池自加热过程中加热电流有效值低以及电机的噪声和振动异常的问题,实现车与车内的电池通过电感充放电完成自加热功能。
图13中示出了根据本申请实施例的动力电池控制设备400的结构示意图。
如图13所示,动力电池控制设备400,包括:
存储器402:用于存储可执行指令;以及
处理器401:用于与存储器402连接以执行可执行指令从而完成动力电池控制方法。
本领域技术人员可以理解,示意图13仅仅是动力电池控制设备400的示例,并不构成对动力电池控制设备400的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如动力电池控制设备400还可以包括输入输出设备、网络接入设备、总线等。
所称处理器401(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器401也可以是任何常规的处理器等,处理器401是动力电池控制设备400的控制中心,利用各种接口和线路连接整个动力电池控制设备400的各个部分。
存储器402可用于存储计算机可读指令,处理器401通过运行或执行存储在存储器402内的计算机可读指令或模块,以及调用存储在存储器402内的数据,实现动力电池控制设备400的各种功能。存储器402可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据动力电池控制设备400使用所创建的数据等。此外,存储器402可以包括硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或其他非易失性/易失性存储器件。
动力电池控制设备400集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机可读指令来指令相关的硬件来完成,的计算机可读指令可存储于一计算机可读存储介质中,该计算机可读指令在被处理器执行时,可实现上述各个方法实施例的步骤。
本申请实施例提供的动力电池控制设备,通过控制动力储能模块200、调节开关组件300以及开关模块,实现了与动力电池100之间不同的充放电回路的切换,进而实现调节动力电池100与动力储能模块200之间的充放电,或,调节动力电池100与充电模块400以及动力储能模块200之间的充放电,以满足不同场景下动力电池100的不同加热需求,并同时避免电机的各种故障。
最后,本申请还提供了一种计算机可读存储介质,其上存储有计算机程序;
计算机程序被处理器执行以实现动力电池加热方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
Claims (23)
- 一种动力电池控制电路,其特征在于,包括动力电池、动力储能模块、充电模块以及调节开关组件;所述充电模块包括开关模块;所述动力电池与所述开关模块并联连接;所述调节开关组件包括多个开关;所述多个开关设置于所述动力电池与所述充电模块之间,以及设置于所述动力储能模块与所述充电模块之间;所述动力储能模块、调节开关组件以及开关模块,用于响应于控制信号,调节所述动力电池与所述动力储能模块之间的充放电,或,调节所述动力电池与所述充电模块以及所述动力储能模块之间的充放电。
- 根据权利要求1所述的控制电路,其特征在于,所述调节开关组件包括第一开关、第二开关以及第三开关;所述第一开关设置于所述动力储能模块和所述充电模块之间;所述第二开关和第三开关设置于所述动力电池以及所述充电模块之间。
- 根据权利要求2所述的控制电路,其特征在于,所述动力储能模块包括第一桥臂组以及第一储能组件,所述第一桥臂组与所述动力电池并联连接,所述开关模块包括第二桥臂组;所述第一储能组件的第一端与所述第一桥臂组连接,所述第一开关的一端连接所述第一储能组件的第二端,所述第一开关的另一端连接所述开关模块的第一端;所述第二开关的一端连接所述第一桥臂组所有上桥臂的连接处,所述第二开关的另一端连接所述开关模块中所有上桥臂的连接处;所述第三开关的一端连接所述第一桥臂组所有下桥臂的连接处,所述第三开关的另一端连接所述开关模块中所有下桥臂的连接处;所述开关模块的至少一个桥臂与所述第一桥臂组并联连接。
- 根据权利要求3所述的控制电路,其特征在于,所述调节开关组件还包括桥臂选择开关组件;所述第一开关另一端连接所述桥臂选择开关组件的第一端,所述桥臂选择开关组件的另一端连接所述第二桥臂组。
- 根据权利要求3所述的控制电路,其特征在于,所述充电模块还包括连接所述开关模块的第二储能组件,所述第一开关设置于所述动力储能模块和所述第二储能组件之间。
- 根据权利要求5所述的控制电路,其特征在于,所述第一开关的一端连接所述 第一储能组件的第二端,所述第一开关的另一端连接所述第二储能组件的第一端,所述第二储能组件的第二端连接所述第二桥臂组。
- 根据权利要求5所述的控制电路,其特征在于,所述调节开关组件还包括桥臂选择开关组件;所述第一开关一端连接所述第一储能组件的第二端,所述第一开关另一端连接所述桥臂选择开关组件的第一端,所述桥臂选择开关组件的第二端连接所述第二储能组件的第一端。
- 根据权利要求3-7任一项所述的控制电路,其特征在于,所述第一储能组件包括M相电机;所述第一桥臂组包括M相桥臂,M为正整数;所述M相电机的M相绕组分别与所述M相桥臂中每相桥臂的上下桥臂连接点一一对应连接。
- 根据权利要求5-7任一项所述的控制电路,其特征在于,所述第二储能组件包括N相电感,第二桥臂组包括N相桥臂,N为正整数;所述N相电感分别与所述N相桥臂中每相桥臂的上下桥臂连接点一一对应连接。
- 根据权利要求1所述的控制电路,其特征在于,所述充电模块还包括充电接口以及变换器,所述充电模块通过充电接口连接外部电源,所述充电模块通过变换器为所述动力电池充电。
- 根据权利要求1所述的控制电路,其特征在于,所述动力电池两端并联有第一电容。
- 一种用电设备,其特征在于,包括控制模块及如权利要求1-11任一项所述的动力电池控制电路;所述控制模块与所述动力储能模块、调节开关组件以及开关模块连接,用于控制所述动力储能模块、调节开关组件以及开关模块,调节所述动力储能模块之间的充放电电流,以及调节所述动力电池与所述充电模块之间的充放电电流。
- 一种动力电池控制系统,包括外部充放电设备及权利要求12所述的用电设备,所述外部充放电设备与所述用电设备中通过充放电接口连接。
- 一种动力电池加热方法,其特征在于,应用于权利要求12所述的用电设备, 包括:获取电池加热信号;根据所述电池加热信号控制所述动力储能模块、调节开关组件以及开关模块,调节所述动力电池与所述动力储能模块充电之间的充放电;或,根据所述电池加热信号控制所述动力储能模块、调节开关组件以及开关模块,调节所述动力电池与所述充电模块以及所述动力储能模块之间的充放电。
- 根据权利要求14所述的动力电池加热方法,其特征在于,所述根据所述电池加热信号控制所述动力储能模块、调节开关组件以及开关模块,调节所述动力电池与所述动力储能模块充电之间的充放电,具体包括:第一时段,控制所述动力储能模块、调节开关组件以及开关模块,使所述动力电池对所述动力储能模块进行充电;第二时段,控制所述控制所述动力储能模块、调节开关组件以及开关模块,使所述动力储能模块对所述动力电池进行充电;其中,持续交替进行所述第一时段的控制和所述第二时段的控制。
- 根据权利要求15所述的动力电池加热方法,其特征在于,所述动力储能模块包括第一桥臂组以及第一储能组件,所述开关模块包括第二桥臂组;所述调节开关组件包括第一开关、第二开关以及第三开关;所述控制所述动力储能模块、调节开关组件以及开关模块,使所述动力电池对所述动力储能模块进行充电,具体包括:控制所述第一桥臂组中的所有上桥臂、所述第二桥臂组中至少一个下桥臂、所述第一开关以及所述第三开关导通,所述第二开关断开。
- 根据权利要求15所述的动力电池加热方法,其特征在于,所述动力储能模块包括第一桥臂组以及第一储能组件,所述充电模块包括第二储能组件,所述开关模块包括第二桥臂组;所述调节开关组件包括第一开关、第二开关以及第三开关;所述控制所述控制所述动力储能模块、调节开关组件以及开关模块,使所述动力储能模块对所述动力电池进行充电,具体包括:控制所述桥臂组中的所有下桥臂、所述第二桥臂组中至少一个上桥臂、所述第一开关以及所述第二开关导通,所述第三开关断开。
- 根据权利要求14所述的动力电池加热方法,其特征在于,所述根据所述电池加热信号控制所述动力储能模块、调节开关组件以及开关模块,调节所述动力电池与所述充电模块以及所述动力储能模块之间的充放电,具体包括:第一时段,控制所述动力储能模块、调节开关组件以及开关模块,使所述动力电池对所述动力储能模块以及充电模块进行充电;第二时段,控制所述控制所述动力储能模块、调节开关组件以及开关模块,使所述动力储能模块以及充电模块对所述动力电池进行充电;其中,持续交替进行所述第一时段的控制和所述第二时段的控制。
- 根据权利要求18所述的动力电池加热方法,其特征在于,所述动力储能模块包括第一桥臂组以及第一储能组件,所述充电模块包括第二储能组件,所述开关模块包括第二桥臂组;所述调节开关组件包括第一开关、第二开关以及第三开关;所述控制所述动力储能模块、调节开关组件以及开关模块,使所述动力电池对所述动力储能模块以及充电模块进行充电,具体包括:控制所述第一桥臂组中的所有上桥臂、所述第二桥臂组中至少一个下桥臂、所述第一开关以及所述第三开关导通,所述第二开关断开。
- 根据权利要求18所述的动力电池加热方法,其特征在于,所述动力储能模块包括第一桥臂组以及第一储能组件,所述充电模块包括第二储能组件,所述开关模块包括第二桥臂组;所述调节开关组件包括第一开关、第二开关以及第三开关;所述控制所述控制所述动力储能模块、调节开关组件以及开关模块,使所述动力储能模块以及充电模块对所述动力电池进行充电,具体包括:控制所述桥臂组中的所有下桥臂、所述第二桥臂组中至少一个上桥臂、所述第一开关以及所述第二开关导通,所述第三开关断开。
- 根据权利要求14-20任一项所述的动力电池加热方法,其特征在于,还包括:获取电池加热停止信号;关闭调节开关组件。
- 一种动力电池加热设备,其特征在于,包括:存储器:用于存储可执行指令;以及处理器:用于与存储器连接以执行可执行指令从而完成如权利要求14-21任一项所述的动力电池加热方法。
- 一种计算机可读存储介质,其特征在于,其上存储有计算机程序;所述计算机程序被处理器执行以实现如权利要求14-21任一项所述的动力电池加热方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210501735.7 | 2022-05-10 | ||
CN202210501735.7A CN115378061B (zh) | 2022-05-10 | 2022-05-10 | 动力电池控制电路、系统及其控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023216733A1 true WO2023216733A1 (zh) | 2023-11-16 |
Family
ID=84060220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/083342 WO2023216733A1 (zh) | 2022-05-10 | 2023-03-23 | 动力电池控制电路、系统及其控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN115378061B (zh) |
WO (1) | WO2023216733A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115378061B (zh) * | 2022-05-10 | 2024-02-13 | 宁德时代新能源科技股份有限公司 | 动力电池控制电路、系统及其控制方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170057368A1 (en) * | 2008-10-22 | 2017-03-02 | General Electric Company | Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same |
CN111347924A (zh) * | 2018-12-21 | 2020-06-30 | 比亚迪股份有限公司 | 电机控制电路、车辆、加热方法及充放电方法 |
CN111355430A (zh) * | 2018-12-21 | 2020-06-30 | 比亚迪股份有限公司 | 电机控制电路、充放电方法、加热方法及车辆 |
CN112398184A (zh) * | 2019-08-15 | 2021-02-23 | 比亚迪股份有限公司 | 能量转换装置及车辆 |
CN112550079A (zh) * | 2019-09-25 | 2021-03-26 | 比亚迪股份有限公司 | 能量转换装置及车辆 |
CN112810467A (zh) * | 2019-10-31 | 2021-05-18 | 比亚迪股份有限公司 | 能量转换装置及车辆 |
CN112977171A (zh) * | 2021-04-30 | 2021-06-18 | 重庆长安新能源汽车科技有限公司 | 一种电动汽车及动力电池脉冲加热系统 |
CN115378061A (zh) * | 2022-05-10 | 2022-11-22 | 宁德时代新能源科技股份有限公司 | 动力电池控制电路、系统及其控制方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10363828B1 (en) * | 2018-06-12 | 2019-07-30 | Nio Usa, Inc. | Systems and methods for regulating charging of electric vehicles |
CN111347893B (zh) * | 2018-12-21 | 2022-04-15 | 比亚迪股份有限公司 | 电机控制电路、动力电池的充电方法及加热方法 |
CN110971173B (zh) * | 2018-12-21 | 2021-01-19 | 比亚迪股份有限公司 | 动力电池的充电方法、电机控制电路及车辆 |
CN111347900B (zh) * | 2018-12-21 | 2021-11-12 | 比亚迪股份有限公司 | 一种车辆、电机控制电路、动力电池充电与加热方法 |
CN110962631B (zh) * | 2018-12-29 | 2020-11-17 | 宁德时代新能源科技股份有限公司 | 电池加热系统及其控制方法 |
CN110588380B (zh) * | 2019-08-09 | 2024-05-10 | 华为数字能源技术有限公司 | 可充放电的储能装置、无线充电系统及电动汽车 |
CN113752851B (zh) * | 2020-06-04 | 2023-08-08 | 比亚迪股份有限公司 | 车辆、能量转换装置及其控制方法 |
CN113752911B (zh) * | 2020-06-04 | 2023-06-13 | 比亚迪股份有限公司 | 能量处理装置、方法及车辆 |
-
2022
- 2022-05-10 CN CN202210501735.7A patent/CN115378061B/zh active Active
- 2022-05-10 CN CN202311617768.9A patent/CN117639170A/zh active Pending
-
2023
- 2023-03-23 WO PCT/CN2023/083342 patent/WO2023216733A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170057368A1 (en) * | 2008-10-22 | 2017-03-02 | General Electric Company | Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same |
CN111347924A (zh) * | 2018-12-21 | 2020-06-30 | 比亚迪股份有限公司 | 电机控制电路、车辆、加热方法及充放电方法 |
CN111355430A (zh) * | 2018-12-21 | 2020-06-30 | 比亚迪股份有限公司 | 电机控制电路、充放电方法、加热方法及车辆 |
CN112398184A (zh) * | 2019-08-15 | 2021-02-23 | 比亚迪股份有限公司 | 能量转换装置及车辆 |
CN112550079A (zh) * | 2019-09-25 | 2021-03-26 | 比亚迪股份有限公司 | 能量转换装置及车辆 |
CN112810467A (zh) * | 2019-10-31 | 2021-05-18 | 比亚迪股份有限公司 | 能量转换装置及车辆 |
CN112977171A (zh) * | 2021-04-30 | 2021-06-18 | 重庆长安新能源汽车科技有限公司 | 一种电动汽车及动力电池脉冲加热系统 |
CN115378061A (zh) * | 2022-05-10 | 2022-11-22 | 宁德时代新能源科技股份有限公司 | 动力电池控制电路、系统及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115378061A (zh) | 2022-11-22 |
CN117639170A (zh) | 2024-03-01 |
CN115378061B (zh) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6832751B2 (ja) | 電荷移動管理方法および電荷移動装置 | |
WO2023226567A1 (zh) | 动力电池充放电电路、系统及其控制方法和控制装置 | |
WO2023087331A1 (zh) | 充放电电路、系统及其控制方法 | |
US12119697B2 (en) | Voltage regulation circuit and system for traction battery and control method thereof | |
US20240208362A1 (en) | Power battery voltage regulation circuit and system, and control method and control apparatus therefor | |
WO2023010372A1 (zh) | 动力电池加热系统及其控制方法和控制电路 | |
WO2023216733A1 (zh) | 动力电池控制电路、系统及其控制方法 | |
CN115917836A (zh) | 充放电电路、系统及其控制方法 | |
CN115378063A (zh) | 充放电电路的控制方法、装置、设备、系统及存储介质 | |
WO2023168788A1 (zh) | 动力电池电压调节电路、系统及其控制方法和控制装置 | |
WO2023168677A1 (zh) | 电池加热装置及其控制方法、控制电路和动力装置 | |
WO2023168787A1 (zh) | 动力电池电压调节电路、系统及其控制方法和控制装置 | |
EP4420923A1 (en) | Power battery voltage regulation circuit and system, and control method and control apparatus therefor | |
WO2023206410A1 (zh) | 电池的加热系统的控制方法和加热系统 | |
CN220874252U (zh) | 升压充电装置及充电系统 | |
KR102684957B1 (ko) | 전원 배터리 가열 시스템 및 그 제어 방법 및 제어 회로 | |
CN115956317B (zh) | 电池加热装置及其控制方法、控制电路和动力装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23802509 Country of ref document: EP Kind code of ref document: A1 |