WO2020125771A1 - 电机控制电路、充放电方法、加热方法及车辆 - Google Patents

电机控制电路、充放电方法、加热方法及车辆 Download PDF

Info

Publication number
WO2020125771A1
WO2020125771A1 PCT/CN2019/127115 CN2019127115W WO2020125771A1 WO 2020125771 A1 WO2020125771 A1 WO 2020125771A1 CN 2019127115 W CN2019127115 W CN 2019127115W WO 2020125771 A1 WO2020125771 A1 WO 2020125771A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
phase
energy storage
motor
power
Prior art date
Application number
PCT/CN2019/127115
Other languages
English (en)
French (fr)
Inventor
廉玉波
凌和平
宁荣华
潘华
谢飞跃
牟利
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2020125771A1 publication Critical patent/WO2020125771A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/008Arrangement or mounting of electrical propulsion units with means for heating the electrical propulsion units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This application relates to the technical field of electric vehicles, in particular to a motor control circuit, a charging and discharging method, a heating method and a vehicle.
  • the current boost charging circuit is generally between the charging pile and the power battery.
  • a positive/negative bus is added with a DC/DC bridge circuit capable of bidirectional buck-boost.
  • Low-temperature battery heating generally uses PTC heaters or electric wire heaters to heat the cooling fluid of the battery cooling circuit at low temperatures.
  • the battery cell is heated to a predetermined temperature.
  • the engine controller to control the engine to rotate at a certain speed at a constant speed, and the engine drives the generator to rotate, and quickly charges and discharges the power battery unit through the generator to achieve the purpose of preheating the battery pack.
  • the use of the engine to drive the generator to rotate to charge and discharge the battery for heating can only be applied to hybrid vehicles, and the engine and the generator will also emit a certain noise, and the engine will also emit polluted exhaust gas.
  • a DC/DC bridge circuit and corresponding control and detection circuits need to be added separately, which increases the cost of the product; for the use of PTC heaters to heat the battery, it also leads to increased costs, and if the PTC heater is damaged , Leading to increased secondary costs.
  • the present application provides a motor control circuit, a charging and discharging method, a heating method, and a vehicle to solve the need to add a booster circuit and a PTC for heating the power battery when using a boost charging method to charge the power battery in the prior art
  • the heater causes a problem of increasing the volume and cost of the entire device.
  • a first aspect of this application provides a motor control circuit including a first switch module, a three-phase inverter, a three-phase AC motor, an energy storage module, a second switch module, and A control module, the first switch module is used to connect a power supply module or a power consumption module, the second switch module is connected to a power battery, and the three-phase inverter is connected between the first switch module and the second switch Between the modules, the three-phase inverter, the three-phase AC motor and the energy storage module are connected in sequence, the energy storage module is also connected to the power supply module or the power consumption module, and the control module is It is connected to the first switch module, the three-phase inverter, the second switch module, and the energy storage module.
  • a second aspect of the present application provides a method for charging a power battery. Based on the motor control circuit described in the first aspect, when the motor control circuit is connected to the power supply module, the charging method includes:
  • the charging method includes boost charging and direct charging
  • Controlling the first switch module, the second switch module, the three-phase inverter, and the energy storage module to cause the power supply module to output DC power, and cause the power supply module to control the power supply according to the selected charging method
  • the power battery is charged.
  • a third aspect of the present application provides a discharge method for a power battery, based on the motor control circuit described in the first aspect, when the motor control circuit is connected to the power consumption module, the discharge method includes:
  • the electrical module is used for discharging.
  • a fourth aspect of the present application provides a power battery heating method, based on the motor control circuit described in the first aspect, when the motor control circuit is connected to the power supply module, the heating method includes:
  • the first switch module When receiving that the power battery needs to be heated, the first switch module is turned on and the energy storage module is operated, and the three-phase inverter is controlled so that the power supply module controls the energy storage module and the power storage module.
  • the charging process of the three-phase coil of the three-phase AC motor and the discharging process of the energy storage module, the three-phase coil of the three-phase AC motor, and the three-phase inverter are alternately performed to make the energy storage
  • the module, the three-phase inverter and the three-phase AC motor heat the heat exchange medium flowing through at least one of the energy storage module, the three-phase inverter and the three-phase AC motor.
  • a fifth aspect of the present application provides a heating method for a power battery. Based on the motor control circuit according to the first aspect, the heating method includes:
  • control the second switch module When receiving that the power battery needs heating, control the second switch module to turn on and the energy storage module to work, and control the three-phase inverter to make the power battery to the energy storage module and all
  • the charging process of the three-phase coil of the three-phase AC motor and the discharging process of the energy storage module, the three-phase coil of the three-phase AC motor, and the three-phase inverter are alternately performed to make the energy storage
  • the module, the three-phase inverter and the three-phase AC motor heat the heat exchange medium flowing through at least one of the energy storage module, the three-phase inverter and the three-phase AC motor.
  • a sixth aspect of the present application provides a vehicle that further includes the motor control circuit described in the first aspect.
  • the motor control circuit includes a first switch module, a three-phase inverter, a three-phase AC motor, an energy storage module, a second switch module, and A control module, the first switch module is used to connect a power supply module or a power consumption module, the second switch module is connected to a power battery, and the three-phase inverter is connected between the first switch module and the second switch Between the modules, the three-phase inverter, the three-phase AC motor and the energy storage module are connected in sequence, the energy storage module is also connected to the power supply module or the power consumption module, and the control module is It is connected to the first switch module, the three-phase inverter, the second switch module, and the energy storage module.
  • the technical solution of the present application realizes that the power supply module charges the power battery, and at the same time, the power battery can be used to discharge the power module, without the need for additional external step-up or step-down circuits, reducing the cost of the external circuit, and the power supply module or
  • the power battery is powered by a three-phase AC motor internal three-phase coil, an energy storage module, and a three-phase inverter internal heating device to provide a heat source. After heating the heat exchange medium, the heating component is heated through the cooling circuit, without using an engine or Adding a heating device can increase the temperature of the parts to be heated, and the heating efficiency is high, and the temperature of the parts to be heated rises quickly.
  • FIG. 1 is a schematic structural diagram of a motor control circuit provided in Embodiment 1 of the present application.
  • FIG. 2 is another schematic structural diagram of a motor control circuit according to Embodiment 1 of the present application.
  • FIG. 3 is another schematic structural diagram of a motor control circuit according to Embodiment 1 of the present application.
  • FIG. 4 is another schematic structural diagram of a motor control circuit according to Embodiment 1 of the present application.
  • FIG. 5 is a circuit diagram of a motor control circuit provided in Embodiment 1 of the present application.
  • FIG. 6 is another circuit diagram of a motor control circuit provided in Embodiment 1 of the present application.
  • FIG. 7 is a flowchart of a power battery charging method provided in Embodiment 2 of the present application.
  • FIG. 8 is a current path diagram of a motor control circuit in a power battery charging method provided in Embodiment 2 of the present application;
  • FIG. 9 is another current path diagram of a motor control circuit in a power battery charging method provided in Embodiment 2 of the present application.
  • FIG. 10 is another current path diagram of a motor control circuit in a power battery charging method provided in Embodiment 2 of the present application;
  • FIG. 11 is a flowchart of a power battery discharge method provided in Embodiment 3 of the present application.
  • FIG. 12 is a current path diagram of a motor control circuit in a method for discharging a power battery provided in Embodiment 3 of the present application;
  • FIG. 13 is another current path diagram of a motor control circuit in a method for discharging a power battery provided in Embodiment 3 of the present application;
  • FIG. 16 is another current path diagram of a motor control circuit in a power battery heating method provided by Embodiment 4 of the present application
  • FIG. 17 is a flowchart of a power battery heating method provided by Embodiment 5 of the present application.
  • FIG. 20 is a block schematic diagram of a vehicle provided in Embodiment 6 of the present application.
  • FIG. 21 is a schematic structural diagram of a vehicle provided in Embodiment 6 of the present application.
  • FIG. 22 is a schematic diagram of an internal structure of a three-phase AC motor in a vehicle provided in Embodiment 6 of the present application.
  • Embodiment 1 of the present application provides a motor control circuit.
  • the motor control circuit includes a first switch module 102, a three-phase inverter 103, a three-phase AC motor 104, an energy storage module 107, and a Two switch modules 105 and a control module 108.
  • the motor control circuit is connected to the power supply module 101 or the power consumption module 120 through the first switch module 102.
  • the motor control circuit is connected to the power battery 106 and the three-phase inverter 103 through the second switch module 105.
  • the control module 108 is connected to the first switch module 102, the three-phase inverter 103, the second switch module 105, and the energy storage module 107, respectively.
  • the power supply module 101 may be the DC power provided by the DC charging pile, or the DC power output from the rectified single-phase and three-phase AC charging pile, or the electrical energy generated by the fuel cell, or the range extender such as the engine rotating Drive the generator to generate power, DC power and other power forms rectified by the generator controller;
  • the power module 120 refers to a module that charges or works according to the power provided by the motor control circuit, such as a mobile terminal and other power equipment;
  • the first switch The module 102 is used to connect the power supply module 101 or the power consumption module 120 to or from the circuit;
  • the energy storage module 107 is used to store electrical energy.
  • the energy storage module 107 includes an energy storage device and a controllable switch, which can be stored by controlling the controllable switch
  • the three-phase AC motor 104 includes a three-phase coil, and the three-phase coil is connected to a connection point.
  • the three-phase AC motor 104 may be a permanent magnet synchronous motor or an asynchronous motor, and the three-phase AC motor 104 is Three-phase four-wire system, that is, the neutral wire is led out at the connection point of the three-phase coil, and the neutral wire and the energy storage module 107 are connected in series to form a connection circuit.
  • the three-phase inverter 103 includes six power switch units, and the power switch may be a transistor , IGBT, MOS tube and other device types, two power switch units form a one-phase bridge arm, forming a three-phase bridge arm, the connection point of the two power switch units in each phase bridge arm is connected to one phase of the three-phase AC motor 104 Coil, the second switch module 105 is used to connect or disconnect the power battery 106 to the circuit, the control module 108 can collect the voltage, current, temperature, phase current of the three-phase AC motor 104 of the power battery 106 and the power supply module 101 or The voltage of the electric module 120, the control module 108 may include a vehicle controller, a motor controller control circuit and a BMS battery manager circuit, the three are connected by a CAN line, and different modules in the control module 108 control the three according to the obtained information
  • the power switch in the phase inverter 103 is turned on and off to realize the conduction of different current loops.
  • the first switch module, the second switch module, and the energy storage module are provided, and the first switch module and the second switch module are controlled by the control module.
  • Energy storage and three-phase inverters make the first switch module, three-phase AC motor, three-phase inverter, second switch module, energy storage module and power supply module form a charging circuit and heating circuit, so that the first switch module,
  • the three-phase AC motor, three-phase inverter, second switch module, energy storage module and power battery form a heating circuit, so that the first switch module, three-phase AC motor, three-phase inverter, second switch module, and energy storage
  • the module and the power module form a discharge circuit.
  • the first end of the energy storage module 107 is connected to the connection point of the three-phase coil in the three-phase AC motor 104, the second end of the energy storage module 107 and the first end of the first switch module 102 Commonly connected to the first end of the power supply module 101 or the power consumption module 120, the three-phase coil of the three-phase AC motor 104 is connected to the three-phase bridge arm of the three-phase inverter 103, and the first end of the three-phase inverter 103 is connected to the The second end of a switch module 102 and the first end of the second switch module 105, the second end of the three-phase inverter 103 is connected to the second end of the second switch module 105 and the fourth end of the first switch module 102, The third end of the first switch module 102 is connected to the second end of the power supply module 101 or the power consumption module 120, and the third and fourth ends of the second switch module 105 are connected to the positive and negative poles of the power battery 106.
  • the energy storage module 107 includes an energy storage device 109 and a first switch 110, the first end of the first switch 110 is the first end of the energy storage module 109, and the second end of the first switch 110 is connected to the energy storage device 109 The first end, the second end of the energy storage device 109 is the second end of the energy storage module 107.
  • the energy storage device 109 is an inductance
  • the first switch 110 is a controllable switch controlled by the control module 108
  • the control module 108 controls the first switch 110 to conduct and then communicates with the power supply module 101
  • three-phase inverter 103 three-phase AC
  • the electric motor 104 and the power battery 106 form different current loops, so as to realize the functions of charging the rechargeable battery by the power supply module 101, energy feedback of the rechargeable battery, taking electric heating from the power supply module 101, and taking electric heating from the rechargeable battery.
  • the first switch module includes a second switch and a third switch, the first end and the second end of the second switch are the first end and the second end of the first switch module, and the first end and the second end of the third switch The second terminal is the third terminal and the fourth terminal of the first switch module.
  • the second switch module includes a fourth switch and a fifth switch, the first end and the second end of the fourth switch are the first end and the third end of the second switch module, and the first end and the fifth end of the fifth switch
  • the second terminal is the second terminal and the fourth terminal of the second switch module.
  • the three-phase inverter 103 includes a first power switching unit, a second power switching unit, a third power switching unit, a fourth power switching unit, a fifth power switch, and a sixth power Switch, the control end of each power switch unit is connected to the control module 108, the input ends of the first power switch unit, the third power switch unit and the fifth power switch unit are connected together and form the first end of the three-phase inverter 103, The output terminals of the second power switching unit, the fourth power switching unit, and the sixth power switching unit are connected together and form the second terminal of the three-phase inverter 103, and the first phase coil of the three-phase AC motor 104 is connected to the first power switch The output end of the unit and the input end of the fourth power switch unit, the second phase coil of the three-phase AC motor 104 is connected to the output of the third power switch unit and the input end of the sixth power switch unit, the third The phase coil is connected to the output terminal of the fifth power switch unit and the
  • the first power switch unit and the fourth power switch unit in the three-phase inverter 103 constitute an A-phase bridge arm
  • the third power switch unit and the sixth power switch unit constitute a B-phase bridge arm
  • the two power switch units form a C-phase bridge arm
  • the control method for the three-phase inverter 104 can be any one or a combination of the following: if any of the A, B, C three-phase bridge arms or any two bridges can be realized
  • There are 7 control modes for the arm and the three-bridge arm which are flexible and simple. The switching of the bridge arms can help to achieve large, medium and small selection of heating power.
  • any phase bridge arm power switch for control For low-power heating, you can select any phase bridge arm power switch for control, and the three-phase bridge arms can be switched in turn. Work, control the first power switch unit and the fourth power switch unit to implement heating for a period of time, then the B-phase bridge arm works alone, control the third power switch unit and the sixth power switch unit to implement heating for the same time, and then the C phase
  • the bridge arm works alone, controls the fifth power switch unit and the second power switch unit to implement heating for the same time, and then switches to the A-phase bridge arm operation, so that the cycle is realized to realize the three-phase inverter 104 and the three-phase coil in turn heating ,
  • the AB phase bridge arm works first to control the first power switch unit
  • the fourth power switch unit, the third power switch unit and the sixth power switch unit are heated for a period of time
  • the BC phase bridge arm works to control the third
  • the three-phase current is basically DC, and the average value is basically the same. And because the three-phase winding is symmetrical, the three-phase synthesis inside the motor at this time
  • the magnetomotive force is basically zero, so the stator magnetic field is basically zero, and the motor basically has no torque, which is conducive to greatly reducing the stress of the drive train.
  • FIG. 5 is an example circuit diagram of a motor control circuit provided by an embodiment of the present application.
  • first switch module 102 includes switch K2 and switch K3
  • second switch module 105 includes switch K4 and switch K5
  • inductance The module 107 includes an inductor L and a switch K1
  • the first power switching unit in the three-phase inverter 103 includes a first upper arm VT1 and a first upper bridge diode VD1
  • the second power switching unit includes a second lower arm VT2 and a first Two lower bridge diodes VD2
  • the third power switch unit includes a third upper bridge arm VT3 and a third upper bridge diode VD3
  • the fourth power switch unit includes a fourth lower bridge arm VT4 and a fourth lower bridge diode
  • the sixth power switch unit includes a sixth lower bridge arm VT6 and a sixth lower bridge diode VD6.
  • the three-phase AC motor 104 is a three-phase four-wire system, which may be For the permanent magnet synchronous motor or asynchronous motor, a neutral line is drawn at the midpoint of the three-phase coil connection, and the neutral line is connected to the switch K1.
  • the three-phase coils of the three-phase AC motor 104 and the three-phase inverter 103 A, B and C are connected between the upper and lower bridge arms.
  • the specific control method of the control module 108 please refer to the following embodiments.
  • FIG. 6 is another exemplary circuit diagram of the motor control circuit provided by the embodiment of the present application, and a capacitor C1 is added on the basis of FIG. 5.
  • another embodiment of the present disclosure provides a vehicle 1000, and the vehicle 1000 further includes the motor control circuit 100 provided in the first embodiment.
  • the vehicle further includes a drive module and a heat exchange medium line, and the drive module is connected to the control module; the control module controls the drive module to drive the heat exchange medium in the heat exchange medium line to flow through at least one of the three-phase inverter and the three-phase AC motor.
  • the driving module is a water pump
  • the heat exchange medium pipeline is a water pipeline.
  • the water pump inputs the coolant in the coolant tank to the water pipeline according to the control signal, and the water pipeline passes through the power battery and the power battery heating device.
  • the control module includes a vehicle controller 301, a battery manager 302, a first motor controller 305, and a second motor controller 303, the vehicle controller 301 and the battery manager 302, the first motor controller 305 and the second motor controller 303 are connected by a CAN bus, the DC charging pile 107 is electrically connected to the first three-phase AC motor 306 through a connection line 307, and the DC charging pile 101 is connected to the second three-phase AC motor 304 through a connection line 310 Electrically connected, the power battery 106 is electrically connected to the first motor controller 305 and the second motor controller 303, the coolant tank 308, the water pump 309, the first three-phase AC motor 306, the first motor controller 305, the second three The phase AC motor 304, the second motor controller, and the power battery 106 form a coolant line.
  • the battery manager 302 is used to collect power battery information, including voltage, current, temperature, and other information.
  • the motor controller is used to control the three-phase inverter The upper and lower bridge power switches and three-phase current collection, the vehicle controller is used to manage the operation of the vehicle and other controller equipment on the vehicle.
  • the battery manager 302 and the motor controller communicate with the vehicle controller 301 through the CAN line.
  • the vehicle controller 301 detects that the power battery 106 needs to be heated, it controls the water pump 309 to draw the cooling liquid from the cooling liquid tank 308, and the cooling water
  • the pipeline passes through the first three-phase AC motor 306, the first motor controller 305, the second three-phase AC motor 304, the second motor controller 303, and then flows through the power battery 106.
  • the vehicle controller 301 controls the first motor controller by 305 and the second motor controller 303 operate the first three-phase AC motor 306 and the second three-phase AC motor 304 to heat the cooling liquid, and then when the cooling liquid flows through the power battery 106, the temperature of the power battery 106 is increased.
  • the three-phase AC motor 102 includes a motor shaft 125a, a stator assembly 127a, and a motor housing 123a.
  • the motor shaft 125a is connected to the stator assembly 127a and the bearing housing 124a.
  • the stator assembly 127a is disposed in the motor housing Inside the body 123a, a heat exchange medium inlet 121a and a heat exchange medium outlet 126a for the heat exchange medium 122a to flow in and out are provided on the motor housing 123a, and a heat exchange medium passage is provided between the motor housing 123a and the stator assembly 127a
  • the heat exchange medium channel connects the heat exchange medium inlet 121a and the heat exchange medium outlet 126a.
  • the heat exchange medium channel may be provided between the motor housing 123a and the stator assembly 127a, and a heat exchange medium channel spirally surrounding the stator assembly 127a may be provided in the motor housing 123a.
  • the three-phase AC motor in this solution is provided with a heat exchange medium channel between the motor housing 123a and the stator assembly 127a, and the heat exchange medium channel connects the heat exchange medium inlet 121a and the heat exchange medium outlet 126a, so that The heat exchange medium in the heat exchange medium channel can effectively absorb the heat generated by the motor.
  • This solution does not need to open a channel inside the motor shaft 125a or the stator assembly 127a, which has little impact on the structure of the motor itself, is simple to implement, and has a low cost.
  • the charging process of the three-phase coil and the discharging process of the three-phase coil are alternately performed by the power supply module, so that the three-phase inverter and the three-phase AC motor pair flow through the electric drive cooling circuit through the three
  • the heat exchange medium of at least one of the phase inverter and the three-phase AC motor is heated, so that the heat exchange medium flows into the heat exchange medium inlet of the three-phase AC motor, and the heat exchange medium in the heat exchange medium pipeline is heated by the stator assembly. Furthermore, when the heated heat exchange medium flows through the battery cooling circuit through the component to be heated, the temperature of the component to be heated is increased.
  • This application proposes a vehicle, which leads a neutral line in a three-phase AC motor, and then forms a different circuit with a power battery, a boost module, and a three-phase inverter.
  • the inverter and booster module and their internal heating devices provide a heat source. After heating the cooling liquid, the power battery is heated through the original cooling circuit. The temperature of the power battery can be increased and heated without using an engine or adding a heating device. High efficiency, the temperature of power battery rises fast.
  • the present application also proposes a power battery energy exchange method.
  • the energy exchange method includes: a power battery charging method and a power battery discharging method.
  • Embodiment 2 of the present application provides a power battery charging method based on the vehicle motor control circuit of the above embodiment.
  • the charging method provided in Embodiment 2 is used to enable the power supply module 101 to charge the power battery 106, as shown in FIG. 7 , Charging methods include:
  • Step S11 Acquire the voltage of the power supply module and the voltage of the power battery, and select a charging method according to the voltage of the power supply module and the voltage of the power battery, where the charging method includes boost charging and direct charging.
  • Step S12 Control the first switch module, the second switch module, the three-phase inverter and the energy storage module to make the power supply module output direct current, and make the power supply module charge the power battery according to the selected charging method.
  • the execution subject is the control module 108.
  • the control module 108 detects that the power supply module 101 is connected to the circuit, for example, when the charging gun is plugged into the DC charging pile interface (that is, when the vehicle is plugged in) When the charging gun is loaded), the control module 108 compares the voltage of the power supply module 101 and the voltage of the power battery 106, and selects different charging methods to charge the power battery 106 according to the comparison result, when the voltage of the power supply module 101 is not higher than the power battery 106 When the voltage is high, the power battery 106 can be charged by DC boost charging.
  • the first switch module 102 and the second switch module can be controlled by 105 is turned on, and by controlling the three-phase inverter 103, the power supply module 101 charges the three-phase coils of the energy storage module 107 and the three-phase AC motor 104, and then the power supply module 101, the energy storage module 107, and the three-phase AC motor
  • the three-phase coil of 104 discharges the power battery 106.
  • the voltage output from the power supply module 101 is output with the energy storage module 107 and the three-phase coil
  • the voltage of the power supply module 101 is superimposed to increase the voltage of the power supply module 101, which can realize the normal charging of the power battery 107; when the control module 108 detects that the voltage of the power supply module 101 is higher than the voltage of the power battery 107, the control module 108
  • the control module 108 By controlling the conduction of the first switch module 102 and the second switch module 105, the output voltage of the power supply module 101 directly charges the power battery 106.
  • a neutral wire is drawn out of the three-phase AC motor, which is then connected to the power battery .
  • the energy storage module and the three-phase inverter form different charge and discharge circuits.
  • the control module detects that the voltage of the power supply module is not higher than the power battery voltage, the original energy storage module and three-phase AC motor are used to After the voltage is boosted, the power battery is charged.
  • the control module detects that the voltage of the power supply module is higher than the voltage of the power battery, the voltage of the power supply module directly charges the power battery, so that the power can be supplied regardless of the voltage of the power supply module.
  • the battery is charged, and the compatibility is strong. At the same time, there is no need to add an external boost or buck circuit, which reduces the cost of the external circuit.
  • the charging method is selected according to the voltage of the power supply module and the voltage of the power battery, including:
  • the boost charging mode is selected.
  • Control the first switch module, the second switch module, the three-phase inverter and the energy storage module so that the power supply module charges the energy storage module and the three-phase coil of the three-phase AC motor, and the power supply module, the energy storage module and the three-phase The three-phase coil of the AC motor alternately discharges the power battery to boost the charging voltage of the power supply module before charging the power battery.
  • the energy storage module 107 and the three-phase AC motor 105 by controlling the charging process of the three-phase coil of the energy storage module 107 and the three-phase AC motor 104 by the power supply module 101 and the discharge of the three-phase coil of the power supply module 101, the energy storage module 107 and the three-phase AC motor 105 to the power battery 106
  • the process alternates, so that the three-phase coils of the energy storage module 107 and the three-phase AC motor 105 store electrical energy and then output voltage, which is superimposed with the voltage output by the power supply module 101, thereby achieving the voltage boost of the power supply module 101,
  • the power module 101 can normally charge the power battery 106.
  • the power supply module 101, the energy storage module 107, the three-phase AC motor 104, the three-phase inverter 103, and the first switch module 102 constitute an energy storage circuit
  • the power supply module 101, the energy storage module 107, the three-phase AC The motor 104, the three-phase inverter 103, the second switch module 105, the power battery 106, and the first switch module 102 constitute a charging circuit.
  • the three-phase inverter is controlled so that the charging process of the power supply module to the energy storage module and the three-phase coil of the three-phase AC motor and the discharge process of the power supply module, the energy storage module and the three-phase coil of the three-phase AC motor to the power battery alternately, include:
  • the control module 108 controls the first switch module 102 and the second switch module 105 to be turned on, so that the power supply module 101 outputs direct current, and outputs the PWM control signal to the three-phase inverter 103 for a conduction period to make the power supply module 101 respond to
  • the energy storage circuit is charged to make the energy storage circuit form an inductive energy storage circuit, and then the PWM control signal is turned off to control the charging circuit to turn on, and the three-phase AC motor 104 outputs current to form a current freewheeling circuit, that is, the charging circuit
  • the three-phase inverter 103 and the three-phase AC motor 104 are first charged and then discharged; in this embodiment, the first switch module and the second The switch module is turned on.
  • the power supply module, three-phase inverter, three-phase AC motor and power battery form a charge and discharge circuit, and the energy storage is controlled by controlling the power switching unit in the three-phase inverter
  • the circuit and the charging circuit are alternately turned on, so that the power supply module can charge and charge the power battery.
  • the charging method is selected according to the voltage of the power supply module and the voltage of the power battery, including:
  • the first switch module and the second switch module are controlled to be turned on, and the energy storage module and the three-phase inverter are controlled to be turned off so that the power supply module charges the power battery.
  • the power supply module can directly charge the power battery.
  • FIG. 5 is an exemplary circuit diagram of a motor control circuit provided by an embodiment of the present application.
  • the control module 108 determines the battery temperature and the preset temperature size , So as to determine whether heating and recharging is required first, and then determine the size of the voltage Uin of the charging pile and the power battery voltage Udc, so as to select the boost charging control method or direct charging control method to realize the function of charging the battery DC, the control module 108
  • the control steps include:
  • Step 1 When the charging gun is plugged into the charging pile interface (that is, when the vehicle is plugged in), the power battery temperature is detected.
  • Step 2 Determine whether the current power battery temperature is lower than the preset temperature.
  • Step 3 If the current power battery temperature is lower than the preset temperature, enter the power battery heating program first, and heat the power battery temperature to be higher than the preset temperature.
  • Step 4 If the current power battery temperature is higher than the preset temperature, the voltage Uin of the high-voltage direct current and the power battery voltage Udc are detected to determine the magnitude of the two voltages.
  • Step 5 when Uin ⁇ Udc, the charging pile voltage is considered to be lower than the battery voltage, and the battery is charged by DC boost charging.
  • Step 6 when Uin>Udc, the charging pile voltage is considered to be higher than the battery voltage, and the battery is charged by direct charging.
  • FIG. 8 is a circuit schematic diagram of an embodiment of a power battery DC boost charging inductor energy storage stage of the present application
  • FIG. 9 is a circuit diagram of an embodiment of a power battery DC boost charging inductor discharge stage of the present application.
  • the external inductor L motor three-phase coil inductance connected to the circuit constitutes a boost inductor
  • the boost inductor and the three-phase bridge arm constitute a boost DC/DC converter.
  • the three-phase coil and the three-phase inverter arm are used at the same time, or only one or two phases can be used.
  • the specific control steps include:
  • Step 1 The battery manager controls switch K2 to open, and controls switches K1, K3, K4, and K5 to close;
  • Step 2 as shown in FIG. 8, during the conduction period of each PWM cycle, the motor controller controls the power switches of the lower bridges of the three-phase inverters A, B, and C to be turned on, and the upper bridge power switches to be turned off At this time, the high-voltage DC output from the charging pile passes through the inductor L, the switch K1, the three-phase AC motor 104, the lower bridge power switch (the second lower arm VT2, the fourth lower arm VT4, and the sixth lower arm VT6) and the switch The energy storage loop formed by K3, the current increases at this time, and the inductor L starts to store energy.
  • Step 3 as shown in Fig. 9, during the off period in each PWM cycle, the motor controller controls the power switches of the lower bridges of the three-phase inverters A, B, and C to be turned off, and the upper bridge power switches to be turned on (Or it can be turned off), at this time, the high-voltage DC output from the charging pile passes through the inductor L, the switch K1, the three-phase AC motor 104, the upper bridge power switch (the first upper bridge diode VD1, the third upper bridge diode VD3, the fifth The charging circuit composed of the upper bridge diode VD5), switch K4, power battery 106, switch K5, switch K3, the inductance L and the inductance of the three-phase AC motor start to discharge, the current decreases, and the inductor voltage is superimposed with the high-voltage DC voltage to achieve boost Charge the battery;
  • Step 4 The battery manager collects the battery charging current. When the current is less than the current value corresponding to the required charging power, the motor controller adjusts to increase the PWM conduction duty cycle. When the current is greater than the current value corresponding to the required charging power, the motor The controller adjusts and reduces the PWM conduction duty cycle until the charging power is met, and at the same time detects the three-phase current of the motor to facilitate overcurrent and overtemperature control;
  • Step 5 Repeat steps 2-4 before the battery is fully charged. If the battery is fully charged, the motor controller turns off the six power switches of the three-phase inverter and the battery manager opens the switches K1, K3, K4, K5 ;
  • the three-phase current is basically DC, and the average value is basically the same, that is, the average value of the three-phase current during the charging process is basically Consistent, so that the three-phase heating of the motor and the inverter is basically the same, and because the three-phase windings are symmetrical, the three-phase synthetic magnetomotive force inside the motor is basically zero, so the stator magnetic field is basically zero, and the motor basically has no torque. This helps greatly reduce the stress of the drive train.
  • FIG. 10 is a circuit of an embodiment of direct charging of a power battery of the present application Schematic diagram, in the specific implementation, in order to realize the direct charging method, the steps specifically include:
  • Step 1 The motor controller controls all 6 power switches of the three-phase inverter to be turned off;
  • Step 2 The battery manager controls the switch K1 to open, and controls the switches K2, K3, K4, and K5 to close. At this time, the current output from the charging pile flows through the positive pole of the charging pile through the switches K2 and K4 to the positive pole of the power battery, and the negative pole of the power battery and The switches K5 and K3 flow back to the negative pole of the charging pile, the power battery starts to charge, and the charging current is sent to the charging pile by the battery manager to send charging power or charging current to the charging pile;
  • Step 3 The battery manager collects battery charging current and temperature to facilitate over-current and over-temperature control
  • Step 4 before the battery is fully charged, repeat steps 2-3, if the battery is fully charged, the battery manager controls the switches K2, K3, K4, K5 to open;
  • the energy exchange method of the power battery further includes a discharge method of the power battery, and the discharge method of the power battery will be described in conjunction with the following third embodiment.
  • Embodiment 3 of the present application provides a discharge method for a power battery, based on the motor control circuit of the vehicle provided in the above embodiment, the discharge method provided in Embodiment 3 is used to discharge the power module to the power module, as shown in FIG. 11, Methods include:
  • Step S21 Acquire the voltage of the power consumption module and the voltage of the power battery, and select a discharge method according to the voltage of the power consumption module and the voltage of the power battery.
  • the discharge methods include step-down discharge and direct discharge.
  • Step S22 Control the first switch module, the second switch module, the three-phase inverter and the energy storage module to make the power battery output direct current, and make the power battery discharge the power module according to the selected discharge mode.
  • the third embodiment is different from the second embodiment described above in that the second embodiment is used to realize the power supply module 101 to charge the power battery 106, and the third embodiment is used to realize the power battery 106 to discharge the power consumption module 120.
  • control module 108 when the control module 108 detects that the power module 120 is connected to the circuit, for example, when the power device is connected to the motor control circuit, the control module 108 compares the voltage of the power battery 106 with the voltage of the power module 120, and when the control module When 108 detects that the voltage of the power battery 106 is higher than the voltage of the power consumption module 120, the control module 108 controls the first switch module 102, the second switch module 105, and the three-phase inverter 103 to make the power battery 106 to the energy storage module 107 Discharge with the three-phase AC motor 104 and the power module 120, which can realize the step-down of the output voltage of the power battery 106 and then discharge the power module 120.
  • the embodiment of the present application leads a neutral line in the three-phase AC motor. Furthermore, it forms a different circuit with the power battery, energy storage module and three-phase inverter.
  • the control module detects that the voltage of the power battery is higher than the voltage of the power module, the original energy storage module and three-phase AC motor are used to power the battery. After the voltage is reduced, the power module is discharged, and there is no need to add an external step-down circuit, which reduces the cost of the additional circuit.
  • the charging method is selected according to the voltage of the power module and the voltage of the power battery, including:
  • the buck charging mode is selected
  • Controlling the first switch module, the second switch module, the three-phase inverter and the energy storage module to make the power battery output direct current, and causing the power battery to discharge the power module according to the selected discharge mode including:
  • Control the conduction of the energy storage module and control the first switch module, the second switch module, and the three-phase inverter, so that the voltage reduction process of the power battery to the energy storage module, the three-phase coil of the three-phase AC motor, and the power module and The three-phase coils of the energy storage module and the three-phase AC motor alternately discharge the power module to reduce the discharge voltage of the power battery before discharging the power module.
  • the power battery 106, the second switch module 105, the three-phase inverter 103, the three-phase AC motor 104, the energy storage module 107, the power consumption module 120, and the first switch module 102 constitute a step-down circuit.
  • the phase AC motor 104, the energy storage module 107, the power consumption module 120, the three-phase inverter 103, and the first switch module 102 constitute a first discharge circuit;
  • the conduction of the energy storage module is controlled, and the first switch module, the second switch module, and the three-phase inverter are controlled to alternately conduct the step-down circuit and the first discharge circuit.
  • control module 108 controls the first switch module 102 and the second switch module 105 to be turned on, so that the power battery 106 outputs direct current, and outputs a PWM control signal to the three-phase inverter 103 during the conduction period to make the power battery reduce the voltage
  • the circuit is charged to make the step-down circuit constitute an inductive energy storage circuit, and then the first discharge circuit is controlled to be turned on during the off period of the PWM control signal, and the three-phase AC motor 104 outputs current, so that the first discharge circuit forms a current freewheeling circuit , That is, in the process of alternately conducting the step-down circuit and the first discharge circuit, the three-phase inverter 103 and the three-phase AC motor 104 are first charged and then discharged; in this embodiment, by setting the first switch The module and the second switch module are turned on.
  • the electric module, three-phase inverter, three-phase AC motor and power battery are used to form a charge and discharge circuit, and the power switch in the three-phase inverter is controlled by The unit alternately conducts the step-down circuit and the first discharge circuit to realize the step-down charging of the power module by the power battery.
  • FIG. 12 is based on A circuit schematic diagram of an embodiment applying for an energy storage stage of a buck output inductor of a power battery.
  • FIG. 13 is a circuit schematic diagram of an embodiment of a freewheeling stage of a power battery buck output inductor of the present application.
  • the inductance L and the motor inductance form a drop Voltage inductance, buck inductance and three-phase bridge arm constitute a buck DC/DC converter.
  • control steps This includes:
  • Step 1 The battery manager controls switch K2 to open, and controls switches K1, K3, K4, and K5 to close;
  • Step 2 the motor controller control circuit controls the upper bridge power switch of the three-phase inverter to be turned on during the PWM period, and the lower bridge power switch is turned off. At this time, the power battery is discharged and the current passes through the battery positive electrode.
  • Output, switch K4, upper bridge power switch (first upper arm VT1, third upper arm VT3, fifth upper arm VT5), motor three-phase coil 104, switch K1, inductance L reach the power module 120, and then Pass switch K3 and switch K5 to the negative pole of the power battery to form an inductive energy storage circuit;
  • Step 3 the motor controller control circuit controls the upper bridge power switch of the three-phase inverter to be turned off during the PWM period off, and the lower bridge power switch is turned on, at which time the power battery discharge path is turned off.
  • the current output by the three-phase coil forms a freewheel through the lower bridge diode.
  • the current output by the three-phase coil passes through the switch K1, the inductor L, the power module, the switch K3, and the lower bridge power diode (the second lower bridge diode VD2, the fourth lower bridge Diode VD4 and sixth lower bridge diode VD6) form an inductor current freewheeling circuit;
  • Step 4 The motor controller collects the voltage and current of the power module, and controls the stability of the output voltage by adjusting the PWM duty cycle;
  • Step 5 the vehicle controller cyclically detects the gear position, vehicle speed, and power battery temperature, repeats steps 2-4 if the conditions are met, and exits the step-down output program if it is not satisfied;
  • Step 6 If the step-down output of the battery is not needed, exit the step-down output program, the upper and lower bridges of the three-phase inverter are all turned off, and the battery manager control switches K1, K3, K4, and K5 are turned off.
  • Embodiment 4 of the present application provides a method for heating a power battery, based on the motor control circuit and the vehicle provided in the above embodiment, embodiment 4 provides a heating method for realizing the heating of the power battery by taking power from the power supply module when the motor is controlled When the circuit is connected to the power supply module, as shown in Figure 14, the heating method includes:
  • the receiving power battery needs to be heated.
  • the power supply module charges the energy storage module and the three-phase coil of the three-phase AC motor, and the energy storage module, three-phase The discharge process composed of the three-phase coil of the AC motor and the three-phase inverter alternates so that the energy storage module, the three-phase inverter and the three-phase AC motor flow through at least one energy storage module, the three-phase inverter and the three The heat exchange medium in the phase AC motor is heated, and when the heated heat exchange medium flows through the power battery again, the temperature of the power battery is increased.
  • the charging and discharging capacity of the power battery 106 will be greatly reduced at a low temperature, which will affect the use of new energy vehicles in cold regions.
  • the temperature of the power battery 106 is too low, the temperature of the power battery 106 is increased. Therefore, the temperature of the power battery 106 can be obtained through the control module 108.
  • the battery manager can be used to obtain the temperature of the power battery 106. A comparison is made to determine whether the power battery 106 is in a low temperature state.
  • the temperature of the power battery 106 can be increased by raising the temperature of the heat exchange medium flowing through the power battery 106,
  • other modules can be powered by the power supply module 101 to make the other modules heat the heat exchange medium flowing through the power battery 106, because the energy storage module 107, the three-phase inverter 103, and the three-phase AC motor 104 Heat is generated during operation, so the energy storage module 107, three-phase inverter 103, and three-phase AC motor 104 can be controlled to heat the coolant flowing through the power battery 106, by controlling the first switch module 102 and the three Phase inverter 103, the first switch module 102, the energy storage module 107, the three-phase inverter 103, the three-phase AC motor 104, and the power supply module 101 form an energy storage circuit, so that the power supply module 101 can store energy through the energy storage circuit
  • the first three-phase inverter module 103, the energy storage module 107, the three-phase inverter 103, and the three-phase AC motor are controlled by the three-phase inverter 103.
  • 104 forms a discharge circuit to discharge the energy storage module 107 and the three-phase AC motor 104, so that the energy storage module 107, the three-phase inverter 103, and the three-phase AC motor 104 heat the heat exchange medium flowing through the power battery 107.
  • the embodiment of the present application leads a neutral line in the three-phase AC motor, and then forms a different circuit with the power supply module, the energy storage module and the three-phase inverter, and passes through the energy storage module, the three-phase coil and the three-phase inside the three-phase AC motor
  • the inverter and its internal heating device provide a heat source. After heating the heat exchange medium, the power battery is heated through the original cooling circuit.
  • the temperature of the power battery can be increased without using an engine or adding a heating device, and the heating efficiency is high. The temperature of the power battery rises quickly.
  • the power supply module 101, the energy storage module 107, the three-phase AC motor 104, the three-phase inverter 103, and the first switch module 102 constitute an energy storage circuit
  • the device 103, the second switch module 105, the power battery 106, and the first switch module 102 constitute a second discharge circuit.
  • the charging process of the power supply module to the energy storage module and the three-phase coil of the three-phase AC motor and the discharge process composed of the energy storage module, the three-phase coil of the three-phase AC motor, and the three-phase inverter Alternate including:
  • the three-phase inverter is controlled to alternately conduct the energy storage circuit and the second discharge circuit.
  • the energy storage circuit and the second discharge circuit are alternately turned on by controlling the power switch unit in the three-phase inverter to realize energy storage
  • the module, three-phase inverter and three-phase AC motor heat the heat exchange medium flowing through the power battery.
  • the motor in a cold and low temperature area, the motor generates heat to heat the power battery in the parking state.
  • the method includes the following steps:
  • Step 1 When the vehicle is powered on, the vehicle controller receives the status signal of the three-phase AC motor (for example, it can be determined by the gear information and the vehicle speed signal) and the power battery temperature signal sent by the battery manager;
  • the status signal of the three-phase AC motor for example, it can be determined by the gear information and the vehicle speed signal
  • the power battery temperature signal sent by the battery manager
  • Step 2 The vehicle controller detects whether the status signal of the three-phase AC motor is in the non-driving state (for example, it can be determined by whether the gear is in the P range and the vehicle speed is zero);
  • Step 3 If not, exit the motor heating program
  • Step 4 if yes, then determine whether the power battery temperature is lower than the set threshold
  • Step 5 If the battery temperature is higher than the set threshold, exit the motor heating program
  • Step 6 if the battery temperature is lower than the set threshold, then determine whether the charging gun is plugged into the charging pile;
  • Step 7 If the charging gun is plugged into a DC charging pile, use the charging pile to heat the battery.
  • Step 8 If the charging gun is not plugged into a charging pile, determine whether the power battery self-test status (such as SOC, temperature, fault, voltage, etc.) is allowed to be used to heat the battery;
  • the power battery self-test status such as SOC, temperature, fault, voltage, etc.
  • Step 9 if the power battery self-test is allowed to be used to heat the battery, the battery discharge is used to heat the battery;
  • Step 10 If the power battery self-test is not allowed to heat the battery, exit the motor heating program
  • FIG. 15 is a circuit schematic diagram of an embodiment of the power supply module in the application of heating and inductance energy storage stage
  • FIG. 16 is a circuit schematic diagram of an embodiment of the application in the application of power supply module heating inductance freewheeling stage, in In this embodiment, the three-phase coil and the three-phase inverter bridge arm are used at the same time, or only one or two phases can be used.
  • the steps specifically include:
  • Step 1 The battery manager controls the switches K4 and K5 to open, and controls the switches K1, K2 and K3 to close;
  • Step 2 as shown in Fig. 15, during the conduction period of each PWM period, the motor controller controls the power switches of the lower bridges of the three-phase inverters A, B, and C to be turned on, and the upper bridge power switches to be turned off At this time, the high-voltage direct current output by the charging pile passes through the inductor L, the switch K1, the three-phase AC motor 104, the lower bridge power switch (the second lower arm VT2, the fourth lower arm VT4, and the sixth lower arm VT6) and the switch The energy storage loop formed by K3, when the current increases, the inductor L starts to store energy;
  • Step 3 the motor controller control circuit controls the lower bridge power switch of the three-phase inverter to be turned off during the PWM period off, and the upper bridge power switch is turned on, at which time the discharge path of the charging pile is turned off.
  • the three-phase coil current passes through the upper bridge power switch (first upper bridge diode VD1, third upper bridge diode VD3, fifth upper bridge diode VD5), K2, inductance L, switch K1 and then returns to the motor three-phase coil to form an inductance Current freewheeling circuit;
  • Step 4 The motor controller receives the charging pile voltage and current data, calculates the output power, compares the calculated heating power with the heating command power sent by the battery manager, and increases the PWM duty cycle if the calculated heating power is low. Increase the output current of the DC charging pile. If the calculated heating power is high, reduce the PWM duty cycle and reduce the output current of the DC charging pile until the heating power reaches the heating command power;
  • Step 5 then the vehicle controller cyclically detects the gear position, vehicle speed, and power battery temperature, repeats steps 2-4 if the conditions are met, and exits the heating program if it is not satisfied;
  • Step 6 If the heating condition is not satisfied, exit the heating program, the upper and lower bridges of the three-phase inverter are all turned off, and the battery manager control switches K1, K2, and K3 are turned off.
  • Embodiment 5 of the present application provides a method for heating a power battery, based on the motor control circuit provided in the embodiment, and embodiment 5 provides a heating method for heating the power battery by taking power from the power battery, as shown in FIG. 17, Heating methods include:
  • the difference between this embodiment and the above embodiment is that when the power supply module 101 is not connected, the power battery 106 can be discharged to achieve heating of the cooling liquid, and by controlling the first switch module 102, the second switch module 105, and the three-phase
  • the inverter 103 makes the first switch module 102, the second switch module 105, the energy storage module 107, the three-phase inverter 103, the three-phase AC motor 104, and the power battery 106 form a charging circuit, and the power battery 106 passes through the charging circuit Charge the energy storage module 107 and the three-phase AC motor 104, and then control the three-phase inverter 103 so that the first switch module 102, the energy storage module 107, the three-phase inverter 103, and the three-phase AC motor 104 form a discharge circuit.
  • the energy storage module 107 and the three-phase AC motor 104 are discharged, so that the energy storage module 107, the three-phase inverter 103, and the three-phase AC motor 104 heat the cool
  • the power battery 106, the second switch module 105, the first switch module 102, the energy storage module 107, the three-phase AC motor 104 and the three-phase inverter 103 constitute a charging circuit
  • the device 103, the first switch module 102 and the energy storage module 107 constitute a third discharge circuit.
  • the three-phase inverter is controlled so that the charging circuit and the third discharging circuit are alternately conducted.
  • FIG. 16 is a schematic circuit diagram of an embodiment of a power battery discharge heating inductance energy storage stage of the present application
  • FIG. 17 is a first stage of the power battery discharge heating inductance freewheeling stage of the present application.
  • Circuit diagram of a different embodiment In this embodiment, the three-phase coil and the three-phase inverter arm are used at the same time, or only one or two phases can be used.
  • the steps are specific include:
  • Step 1 The battery manager controls switches K1, K2, K4, and K5 to close, and switch K3 to open;
  • Step 2 the motor controller control circuit controls the lower bridge power switch of the three-phase inverter to be turned on during the PWM period, and the upper bridge power switch is turned off. At this time, the power battery 106 is discharged, and the current passes through the battery.
  • the positive pole, switch K4, switch K2, inductance L, switch K1 reach the three-phase coil of the motor, and then pass through the three-phase inverter lower bridge three power switches (second lower bridge arm VT2, fourth lower bridge arm VT4, sixth lower Bridge arm VT6), switch K5 to the negative pole of the battery, forming an inductive energy storage circuit;
  • Step 3 the motor controller control circuit controls the lower bridge power switch of the three-phase inverter to be turned off during the PWM period off, and the upper bridge power switch is turned on, at which time the discharge path of the charging pile is turned off.
  • the three-phase coil current passes through the upper bridge power switch (first upper bridge diode VD1, third upper bridge diode VD3, fifth upper bridge diode VD5), switch K2, inductance L, switch K1 and then returns to the motor three-phase coil to form a Inductor current freewheeling circuit;
  • Step 4 The motor controller receives the battery voltage and current data, calculates the output power, and compares the calculated heating power with the heating command power sent by the battery manager. If the calculated heating power is low, the PWM duty cycle is increased to increase Large battery output current, if the calculated heating power is too high, reduce the PWM duty cycle and reduce the battery output current until the heating power reaches the heating command power;
  • Step 5 then the vehicle controller cyclically detects the gear position, vehicle speed, and power battery temperature, repeats steps 2-4 if the conditions are met, and exits the heating program if it is not satisfied;
  • Step 6 If the heating condition is not satisfied, exit the heating program, the upper and lower bridges of the three-phase inverter are all turned off, and the battery manager control switches K1, K2, K4, and K5 are turned off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电机控制电路、充放电方法、加热方法及车辆,电机控制电路包括第一开关模块(102)、三相逆变器(103)、三相交流电机(104)、储能模块(107)、第二开关模块(105)以及控制模块(108),第一开关模块(102)用于连接供电模块(101)或者用电模块(120),第二开关模块(105)连接动力电池(106),三相逆变器(103)连接在第一开关模块(102)与第二开关模块(105)之间,三相逆变器(103)、三相交流电机(104)以及储能模块(107)依次连接,储能模块(107)还连接供电模块(101)或者用电模块(120)。该电机控制电路实现了供电模块(101)对动力电池(106)充电,同时可以实现动力电池(106)为用电模块(120)进行放电,并且可以从供电模块(101)或者动力电池(106)取电通过三相交流电机(104)内部三相线圈和三相逆变器(103)内部发热器件来提供热源以提升待加热部件的温度,加热效率高,待加热部件温度升高快。

Description

电机控制电路、充放电方法、加热方法及车辆
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2018年12月21日提交的、发明名称为“电机控制电路、充放电方法、加热方法及车辆”的、中国专利申请号“201811574182.8”的优先权。
技术领域
本申请涉及电动汽车技术领域,尤其涉及一种电机控制电路、充放电方法、加热方法及车辆。
背景技术
随着电动汽车的发展和快速普及,电动汽车动力电池的充电技术变得越来越重要,充电技术需要满足不同用户的需求,目前的升压充电电路一般是在充电桩和动力电池之间的正负母线增加一个可双向升降压的DC/DC桥式电路,低温电池加热一般是利用PTC加热器或者电热丝加热器在低温时对电池冷却回路的冷却液进行加热,通过冷却液来给电池电芯加热到预定温度。也有另一些方案是利用发动机控制器控制发动机在某一转速下匀速转动,且发动机带动发电机转动,通过发电机向动力电池单元快速充电及放电,达到预热电池包的目的。
对于利用发动机带动发电机转动给电池进行充放电来加热,只能应用于混合动力汽车,且发动机及发电机也会发出一定噪声,发动机也会排放污染废气。对于目前的升压充电电路需要单独增加DC/DC桥式电路以及相应的控制及检测电路等,增加了产品成本;对于使用PTC加热器加热电池,同样导致增加成本,且PTC加热器如果损坏后,导致二次成本增加。
发明内容
本申请提供一种电机控制电路、充放电方法、加热方法及车辆,以解决现有技术中存在对动力电池进行充电采用升压充电方式时需要增加升压电路以及对动力电池进行加热需要增加PTC加热器导致增加整个装置的体积和成本的问题。
本申请是这样实现的,本申请第一方面提供一种电机控制电路,所述电机控制电路包括第一开关模块、三相逆变器、三相交流电机、储能模块、第二开关模块以及控制模块,所述第一开关模块用于连接供电模块或者用电模块,所述第二开关模块连接动力电池,所 述三相逆变器连接在所述第一开关模块与所述第二开关模块之间,所述三相逆变器、所述三相交流电机以及所述储能模块依次连接,所述储能模块还连接所述供电模块或者所述用电模块,所述控制模块分别与所述第一开关模块、所述三相逆变器、所述第二开关模块以及所述储能模块连接。
本申请第二方面提供一种动力电池的充电方法,基于第一方面所述的电机控制电路,当所述电机控制电路连接所述供电模块时,所述充电方法包括:
获取所述供电模块的电压和所述动力电池的电压,并根据所述供电模块的电压和所述动力电池的电压选择充电方式,其中,所述充电方式包括升压充电和直接充电;
控制所述第一开关模块、所述第二开关模块、所述三相逆变器以及所述储能模块使所述供电模块输出直流电,并使所述供电模块按照所选择的充电方式对所述动力电池进行充电。
本申请第三方面提供一种动力电池的放电方法,基于第一方面所述的电机控制电路,当所述电机控制电路连接所述用电模块时,所述放电方法包括:
获取所述用电模块的电压和所述动力电池的电压,并根据用电模块的电压和所述动力电池的电压选择放电方式,所述放电方式包括降压放电以及直接放电;
控制所述第一开关模块、所述第二开关模块、所述三相逆变器以及所述储能模块使所述动力电池输出直流电,并使所述动力电池按照所选择的放电方式对所述用电模块进行放电。
本申请第四方面提供一种动力电池的加热方法,基于第一方面所述的电机控制电路,当所述电机控制电路连接所述供电模块时,所述加热方法包括:
接收所述动力电池需要加热时,控制所述第一开关模块导通和所述储能模块工作,并通过控制所述三相逆变器,使所述供电模块对所述储能模块和所述三相交流电机的三相线圈的充电过程以及所述储能模块、所述三相交流电机的三相线圈以及所述三相逆变器构成的放电过程交替进行,以使所述储能模块、所述三相逆变器以及所述三相交流电机对流经至少一个所述储能模块、所述三相逆变器以及所述三相交流电机中的换热介质进行加热。
本申请第五方面提供一种动力电池的加热方法,基于第一方面所述的电机控制电路,所述加热方法包括:
接收所述动力电池需要加热时,控制所述第二开关模块导通和所述储能模块工作,并通过控制所述三相逆变器,使所述动力电池对所述储能模块和所述三相交流电机的三相线圈的充电过程以及所述储能模块、所述三相交流电机的三相线圈以及所述三相逆变器构成的放电过程交替进行,以使所述储能模块、所述三相逆变器以及所述三相交流电机对流经至少一个所述储能模块、所述三相逆变器以及所述三相交流电机中的换热介质进行加热。
本申请第六方面提供一种车辆,所述车辆还包括第一方面所述的电机控制电路。
本申请提出了一种电机控制电路、充放电方法、加热方法及车辆,所述电机控制电路包括第一开关模块、三相逆变器、三相交流电机、储能模块、第二开关模块以及控制模块,所述第一开关模块用于连接供电模块或者用电模块,所述第二开关模块连接动力电池,所述三相逆变器连接在所述第一开关模块与所述第二开关模块之间,所述三相逆变器、所述三相交流电机以及所述储能模块依次连接,所述储能模块还连接所述供电模块或者所述用电模块,所述控制模块分别与所述第一开关模块、所述三相逆变器、所述第二开关模块以及所述储能模块连接。本申请技术方案实现了供电模块对动力电池充电,同时可以实现动力电池为用电模块进行放电,不需要额外增加外部升压或者降压电路,减少了外加电路的成本,并且可以从供电模块或者动力电池取电通过三相交流电机内部三相线圈、储能模块、三相逆变器内部发热器件来提供热源,加热换热介质后经过冷却回路实现对待加热部件的加热,不需要使用发动机或者增加加热装置就可以实现提升待加热部件的温度,并且加热效率高,待加热部件温度升高快。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的一种电机控制电路的结构示意图;
图2是本申请实施例一提供的一种电机控制电路的另一结构示意图;
图3是本申请实施例一提供的一种电机控制电路的另一结构示意图;
图4是本申请实施例一提供的一种电机控制电路的另一结构示意图;
图5是本申请实施例一提供的一种电机控制电路的电路图;
图6是本申请实施例一提供的一种电机控制电路的另一电路图;
图7是本申请实施例二提供的一种动力电池的充电方法的流程图;
图8是本申请实施例二提供的一种动力电池的充电方法中的电机控制电路的电流路径图;
图9是本申请实施例二提供的一种动力电池的充电方法中的电机控制电路的另一电流路径图;
图10是本申请实施例二提供的一种动力电池的充电方法中的电机控制电路的另一电流路径图;
图11是本申请实施例三提供的一种动力电池的放电方法的流程图;
图12是本申请实施例三提供的一种动力电池的放电方法中的电机控制电路的电流路径图;
图13是本申请实施例三提供的一种动力电池的放电方法中的电机控制电路的另一电流路径图;
图14是本申请实施例四提供一种动力电池的加热方法的流程图;
图15是本申请实施例四提供的一种动力电池的加热方法中的电机控制电路的电流路径图;
图16是本申请实施例四提供的一种动力电池的加热方法中的电机控制电路的另一电流路径图;图17是本申请实施例五提供一种动力电池的加热方法的流程图;
图18是本申请实施例五提供的一种动力电池的加热方法中的电机控制电路的电流路径图;
图19是本申请实施例五提供的一种动力电池的加热方法中的电机控制电路的另一电流路径图;
图20是本申请实施例六提供的一种车辆的方框示意图;
图21是本申请实施例六提供的一种车辆的结构示意图;
图22是本申请实施例六提供的一种车辆中的三相交流电机的内部结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
为了说明本申请的技术方案,下面通过具体实施例来进行说明。
本申请实施例一提供一种电机控制电路,如图1和图2所示,电机控制电路包括第一开关模块102、三相逆变器103以及三相交流电机104、储能模块107、第二开关模块105以及控制模块108,电机控制电路通过第一开关模块102连接至供电模块101或者用电模块120,电机控制电路通过第二开关模块105连接至动力电池106,三相逆变器103连接在第一开关模块102与第二开关模块105之间,三相逆变器103、三相交流电机104以及储 能模块107依次连接,储能模块107还连接至供电模块101或者用电模块120,控制模块108分别与第一开关模块102、三相逆变器103、第二开关模块105以及储能模块107连接。
其中,供电模块101可以是直流充电桩提供的直流电,也可以是单相、三相交流充电桩经过整流后输出的直流电,也可以是燃料电池发出的电能,也可以是增程器如发动机转动带动发电机发电,经发电机控制器整流后的直流电等电源形式;用电模块120是指根据电机控制电路提供的电源进行充电或者工作的模块,例如,移动终端等用电设备;第一开关模块102用于使供电模块101或者用电模块120接入电路或者脱离电路;储能模块107用于储存电能,储能模块107包括储能器件和可控开关,可以通过控制可控开关使储能器件开始工作或者停止工作;三相交流电机104包括三相线圈,三相线圈连接于一个连接点,三相交流电机104可以是永磁同步电机或异步电机,并且该三相交流电机104为三相四线制,即在三相线圈连接点引出中性线,且中性线和储能模块107串联组成连接电路,三相逆变器103包括六个功率开关单元,功率开关可以是晶体管、IGBT、MOS管等器件类型,两个功率开关单元构成一相桥臂,共形成三相桥臂,每相桥臂中两个功率开关单元的连接点连接三相交流电机104中的一相线圈,第二开关模块105用于使动力电池106接入电路或者与脱离电路,控制模块108可以采集动力电池106的电压、电流、温度、三相交流电机104的相电流以及供电模块101或者用电模块120的电压,控制模块108可以包括整车控制器、电机控制器的控制电路和BMS电池管理器电路,三者通过CAN线连接,控制模块108中的不同模块根据所获取的信息控制三相逆变器103中功率开关的导通和关断以实现不同电流回路的导通。
本实施例在原有的三相交流电机及三相逆变器的基础上,通过设置第一开关模块、第二开关模块以及储能模块,通过控制模块控制第一开关模块、第二开关模块、储能以及三相逆变器,使第一开关模块、三相交流电机、三相逆变器、第二开关模块以及储能模块与供电模块组成充电电路和加热电路,使第一开关模块、三相交流电机、三相逆变器、第二开关模块以及储能模块与动力电池组成加热电路,使第一开关模块、三相交流电机、三相逆变器、第二开关模块以及储能模块与用电模块组成放电电路,通过对第一开关模块、三相交流电机、三相逆变器、第二开关模块以及储能模块的复用,实现了加热功能和充放电功能,同时不需要额外增加外部充电电路和加热器件,减少了外加电路的成本。
作为实施例一的一种连接方式,储能模块107的第一端连接三相交流电机104中三相线圈的连接点,储能模块107的第二端和第一开关模块102的第一端共接于供电模块101或者用电模块120的第一端,三相交流电机104的三相线圈连接三相逆变器103的三相桥臂,三相逆变器103的第一端连接第一开关模块102的第二端和第二开关模块105的第一端,三相逆变器103的第二端连接第二开关模块105的第二端和第一开关模块102的第四 端,第一开关模块102的第三端连接供电模块101或者用电模块120的第二端,第二开关模块105的第三端和第四端连接动力电池106的正极和负极。
进一步的,储能模块107包括储能器件109和第一开关110,第一开关110的第一端为储能模块109的第一端,第一开关110的第二端连接储能器件109的第一端,储能器件109的第二端为储能模块107的第二端。
其中,储能器件109为电感,第一开关110为接受控制模块108控制的可控开关,控制模块108控制第一开关110导通进而与供电模块101、三相逆变器103、三相交流电机104以及动力电池106形成不同的电流回路,进而实现供电模块101对充电电池的充电,充电电池的能量回馈,从供电模块101中取电加热以及从充电电池中取电加热的功能。
进一步的,第一开关模块包括第二开关和第三开关,第二开关的第一端和第二端为第一开关模块的第一端和第二端,第三开关的第一端和第二端为第一开关模块的第三端和第四端。
进一步的,第二开关模块包括第四开关和第五开关,第四开关的第一端和第二端为第二开关模块的第一端和第三端,第五开关的第一端和第二端为第二开关模块的第二端和第四端。
对于三相逆变器103,具体的,三相逆变器103包括第一功率开关单元、第二功率开关单元、第三功率开关单元、第四功率开关单元、第五功率开关以及第六功率开关,每个功率开关单元的控制端连接控制模块108,第一功率开关单元、第三功率开关单元以及第五功率开关单元的输入端共接并构成三相逆变器103的第一端,第二功率开关单元、第四功率开关单元以及第六功率开关单元的输出端共接并构成三相逆变器103的第二端,三相交流电机104的第一相线圈连接第一功率开关单元的输出端和第四功率开关单元的输入端,三相交流电机104的第二相线圈连接第三功率开关单元的输出和第六功率开关单元的输入端,三相交流电机104的第三相线圈连接第五功率开关单元的输出端和第二功率开关单元的输入端。
其中,三相逆变器103中第一功率开关单元和第四功率开关单元构成A相桥臂,第三功率开关单元和第六功率开关单元构成B相桥臂,第五功率开关单元和第二功率开关单元构成C相桥臂,对三相逆变器104的控制方式可以是如下任一种或几种的组合:如可以实现A、B、C三相任一桥臂或任两桥臂,以及三桥臂共7种控制方式,灵活简单。通过桥臂的切换可以有利于实现加热功率的大中小选择,如对于小功率加热,可以选择任一相桥臂功率开关进行控制,且三相桥臂可以轮流切换,例如A相桥臂先单独工作,控制第一功率开关单元和第四功率开关单元实施加热一段时间,然后B相桥臂单独工作,控制第三功率开关单元和第六功率开关单元实施加热同样长的时间,再然后C相桥臂单独工作,控制第 五功率开关单元和第二功率开关单元实施加热同样长的时间,再切换到A相桥臂工作,如此循环以实现三相逆变器104和三相线圈轮流通电发热,让三相发热更均衡;如对于中功率加热,可以选择任两相桥臂功率开关进行控制,且三相桥臂可以轮流切换,例如AB相桥臂先工作,控制第一功率开关单元、第四功率开关单元、第三功率开关单元和第六功率开关单元实施加热一段时间,然后BC相桥臂工作,控制第三功率开关单元、第六功率开关单元、第五功率开关单元和第二功率开关单元实施加热同样长的时间,再然后CA相桥臂工作,控制第五功率开关单元、第二功率开关单元、第一功率开关单元和第四功率开关单元实施加热同样长的时间,再然后切换到AB相桥臂工作,如此循环以实现三相逆变器103和三相线圈发热更均衡;如对于大功率加热,可以选择三相桥臂功率开关进行控制,且由于三相回路理论上均衡,从而三相电流均衡,实现三相逆变器103和三相线圈发热均衡三相电流基本为直流,其平均值基本一致,以及由于三相绕组对称,此时电机内部的三相合成磁动势基本为零,从而定子磁场基本为零,电机基本无转矩产生,这有利于大大减小传动系的应力。
图5为本申请实施例提供的电机控制电路的一种举例的电路图,为方便说明电机控制电路,上图忽略了其它电器设备,只考虑了供电模块101、第一开关模块102、三相逆变器103、三相交流电机104、第二开关模块105、动力电池106以及储能模块107,第一开关模块102包括开关K2和开关K3,第二开关模块105包括开关K4和开关K5,电感模块107包括电感L和开关K1,三相逆变器103中第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第二下桥臂VT2和第二下桥二极管VD2,第三功率开关单元包括第三上桥臂VT3和第三上桥二极管VD3,第四功率开关单元包括第四下桥臂VT4和第四下桥二极管VD4,第五功率开关单元包括第五上桥臂VT5和第五上桥二极管VD5,第六功率开关单元包括第六下桥臂VT6和第六下桥二极管VD6,三相交流电机104是三相四线制,可以是永磁同步电机或异步电机,在三相线圈连结中点引出中性线,且中性线和开关K1连接,三相交流电机104的三相线圈分别和三相逆变器103中的A、B、C上下桥臂之间连接,其中对控制模块108的具体控制方法请参照以下实施例。
图6为本申请实施例提供的电机控制电路的另一种举例的电路图,在图5的基础上增加一个电容C1。
如图20,本公开另一种实施例提供一种车辆1000,车辆1000还包括上述实施例一提供的电机控制电路100。
车辆还包括驱动模块和换热介质管线,驱动模块连接控制模块;控制模块控制驱动模块驱动换热介质管线中的换热介质流经三相逆变器以及三相交流电机中至少一个。
其中,驱动模块为水泵,换热介质管线为水管线,水泵根据控制信号将冷却液箱中的 冷却液输入至水管线,水管线穿过动力电池和动力电池加热装置。
如图21所示,控制模块包括整车控制器301、电池管理器302、第一电机控制器305以及第二电机控制器303,整车控制器301与电池管理器302、第一电机控制器305以及第二电机控制器303之间通过CAN总线连接,直流充电桩107通过连接线路307与第一三相交流电机306电连接,直流充电桩101通过连接线路310与第二三相交流电机304电连接,动力电池106分别与第一电机控制器305与第二电机控制器303电连接,冷却液箱308、水泵309、第一三相交流电机306、第一电机控制器305、第二三相交流电机304、第二电机控制器、动力电池106形成冷却液管路,电池管理器302用于采集动力电池信息,包括电压、电流、温度等信息,电机控制器用于控制三相逆变器上下桥功率开关及采集三相电流,整车控制器用于管理整车的运行及车上其他控制器设备。电池管理器302、电机控制器通过CAN线与整车控制器301通讯,整车控制器301检测到动力电池106需要加热时,控制水泵309将冷却液从冷却液箱308中抽出,冷却液水管线依次经过第一三相交流电机306、第一电机控制器305、第二三相交流电机304、第二电机控制器303流经动力电池106,整车控制器301通过控制第一电机控制器305和第二电机控制器303使第一三相交流电机306和第二三相交流电机304工作以加热冷却液,进而当冷却液流经动力电池106时,使动力电池106的温度升高。
进一步的,如图22所示,三相交流电机102包括电机轴125a、定子组件127a以及电机壳体123a,电机轴125a上连接定子组件127a以及轴承座124a,定子组件127a设置于电机壳体123a内,电机壳体123a上设有供换热介质122a流入和流出的换热介质入口121a和换热介质出口126a,电机壳体123a与定子组件127a之间设有换热介质通道,换热介质通道连接换热介质入口121a和换热介质出口126a。
其中,电机壳体123a与定子组件127a之间设有换热介质通道的方式可以是电机壳体123a内设有螺旋形环绕定子组件127a的换热介质通道。
本方案中的三相交流电机,通过在电机壳体123a与定子组件127a之间设有换热介质通道,且换热介质通道连接换热介质入口121a和所述换热介质出口126a,使得换热介质通道内的换热介质能够有效吸收电机产生的热量,该方案无需在电机轴125a或定子组件127a内部开设通道,对电机本身的结构影响较小,实现方式简单,成本较低。
其中,通过控制三相逆变器使供电模块对三相线圈的充电过程以及三相线圈的放电过程交替进行,以使三相逆变器以及三相交流电机对通过电驱冷却回路流经三相逆变器以及三相交流电机中至少一个的换热介质进行加热,使换热介质从三相交流电机的换热介质入口流入,通过定子组件对换热介质管线内的换热介质加热,进而该被加热的换热介质再通过电池冷却回路流经待加热部件时,使待加热部件的温度升高。
本申请提出了一种车辆,在三相交流电机中引出中性线,进而与动力电池、升压模块以及三相逆变器组成不同的回路,通过三相交流电机内部三相线圈、三相逆变器和升压模块及其内部发热器件来提供热源,加热冷却液后经过原冷却回路实现对动力电池的加热,不需要使用发动机或者增加加热装置就可以实现提升动力电池的温度,并且加热效率高,动力电池温度升高快。
本申请还提出一种动力电池的能量交换方法,能量交换方法包括:动力电池充电方法和动力电池的放电方法。
本申请实施例二提供一种基于上述实施例的车辆的电机控制电路的动力电池的充电方法,实施例二提供的充电方法用于使供电模块101对动力电池106进行充电,如图7所示,充电方法包括:
步骤S11.获取供电模块的电压和动力电池的电压,并根据供电模块的电压和动力电池的电压选择充电方式,其中,充电方式包括升压充电和直接充电。
步骤S12.控制第一开关模块、第二开关模块、三相逆变器以及储能模块使供电模块输出直流电,并使供电模块按照所选择的充电方式对动力电池进行充电。
在上述步骤中,如图1所示,执行主体为控制模块108,当控制模块108检测到供电模块101接入电路时,例如,当充电枪插到直流充电桩接口时(即当整车插上充电枪时),控制模块108比较供电模块101的电压和动力电池106的电压大小,根据比较结果选择不同的充电方式对动力电池106进行充电,当供电模块101的电压不高于动力电池106电压时,可以采用直流升压充电的方式为动力电池106进行充电,由于储能模块107和三相交流电机104的三相线圈可以存储电能,可以通过控制第一开关模块102和第二开关模块105导通,并通过控制三相逆变器103使供电模块101对储能模块107和三相交流电机104的三相线圈进行充电,再使供电模块101、储能模块107和三相交流电机104的三相线圈对动力电池106进行放电,在放电过程中由于三相交流电机104的三相线圈此时也输出电压,则将供电模块101输出的电压与储能模块107以及三相线圈输出的电压进行叠加进而实现了对供电模块101的电压的升压,可以实现对动力电池107的正常充电;当控制模块108检测到供电模块101的电压高于动力电池107的电压时,控制模块108通过控制第一开关模块102和第二开关模块105导通,使供电模块101的输出电压直接对动力电池106进行充电,本申请实施例在三相交流电机中引出中性线,进而与动力电池、储能模块以及三相逆变器组成不同的充放电回路,通过控制模块检测到供电模块的电压不高于动力电池电压时,采用原有的储能模块和三相交流电机对供电模块的电压进行升压后再给动力电池充电,控制模块检测到供电模块的电压高于动力电池电压时,使供电模块的电压直接给动力电池充电,实现了无论供电模块的电压高低,都可以给动力电池充电,并且兼容性适应性较强, 同时不需要额外增加外部升压或者降压电路,减少了外加电路的成本。
进一步的,根据供电模块的电压和动力电池的电压选择充电方式,包括:
当检测到供电模块输出的最大电压不高于动力电池的电压时选择升压充电方式。
控制第一开关模块、第二开关模块、三相逆变器以及储能模块使供电模块输出直流电,并使供电模块按照所选择的充电方式对动力电池进行充电,包括:
控制第一开关模块、第二开关模块、三相逆变器以及储能模块,使供电模块对储能模块和三相交流电机的三相线圈的充电过程以及供电模块、储能模块和三相交流电机的三相线圈对动力电池的放电过程交替进行,以将供电模块的充电电压进行升压后再对动力电池进行充电。
其中,通过控制供电模块101对储能模块107和三相交流电机104的三相线圈的充电过程以及供电模块101、储能模块107和三相交流电机105的三相线圈对动力电池106的放电过程交替进行,使储能模块107和三相交流电机105的三相线圈存储电能后再输出电压,并与供电模块101输出的电压进行叠加,进而实现了对供电模块101的电压的升压,可以实现供电模块101对动力电池106的正常充电。
作为一种实施方式,供电模块101、储能模块107、三相交流电机104、三相逆变器103以及第一开关模块102构成储能回路,供电模块101、储能模块107、三相交流电机104、三相逆变器103、第二开关模块105、动力电池106以及第一开关模块102构成充电回路。
控制三相逆变器使供电模块对储能模块和三相交流电机的三相线圈的充电过程以及供电模块、储能模块和三相交流电机的三相线圈对动力电池的放电过程交替进行,包括:
控制三相逆变器使储能回路和充电回路交替导通。
其中,控制模块108控制第一开关模块102和第二开关模块105导通,使供电模块101输出直流电,并向三相逆变器103输出PWM控制信号的导通时间段使供电模块101对该储能回路进行充电,使储能回路构成一个电感储能回路,之后PWM控制信号的关闭时间段控制充电回路导通,三相交流电机104输出电流,使充电回路形成一个电流续流回路,即在储能回路和充电回路交替导通的过程中,使三相逆变器103以及三相交流电机104先处于充电状态再处于放电状态;本实施方式中,通过设置第一开关模块和第二开关模块导通,在外部电源输出直流电时,使供电模块、三相逆变器、三相交流电机以及动力电池形成充放电回路,并通过控制三相逆变器中的功率开关单元使储能回路和充电回路交替导通,实现了使供电模块对动力电池的升压充电。
作为另一种实施方式,根据供电模块的电压和动力电池的电压选择充电方式,包括:
当检测到供电模块输出的最大电压高于动力电池的电压时选择直接充电方式;
控制第一开关模块、第二开关模块、三相逆变器以及储能模块使供电模块输出直流电, 并使供电模块按照所选择的充电方式对动力电池进行充电,包括:
控制第一开关模块和第二开关模块导通,并控制储能模块和三相逆变器关断使供电模块对动力电池进行充电。
其中,当供电模块输出的最大电压高于动力电池的电压时,可以直接使供电模块对动力电池进行充电。
下面通过具体的电路结构对本申请实施例的技术方案进行具体说明:
图5为本申请实施例提供的电机控制电路的一种举例的电路图,以供电模块为充电桩为例,当充电枪插到充电桩接口时,通过控制模块108判断电池温度与预设温度大小,从而判断是否先要加热再充电,然后再判断充电桩的电压Uin和动力电池电压Udc大小,从而选择升压充电控制方式或者直接充电控制方式,实现给电池直流充电的功能,控制模块108的控制步骤具体包括:
步骤1,当充电枪插到充电桩接口时(即当整车插上充电枪时),检测动力电池温度。
步骤2,判断当前动力电池温度是否低于预设温度。
步骤3,如果当前动力电池温度低于预设温度,则先进入动力电池加热程序,将动力电池温度加热到高于预设温度。
步骤4,如果当前动力电池温度高于预设温度,则检测高压直流电的电压Uin和动力电池电压Udc,判断二者电压大小。
步骤5,当Uin≤Udc时,认为充电桩电压低于电池电压,采用直流升压充电的方式给电池充电。
步骤6,当Uin>Udc时,认为充电桩电压高于电池电压,采用直接充电的方式给电池充电。
更进一步地,如充电桩最大输出电压低于动力电池电压,这时如果要给动力电池充电就需要进行升压充电模式,在具体实施中,升压充电过程包括电感储能和电感放电两个阶段,图8为本申请动力电池直流升压充电电感储能阶段一种实施例的电路示意图,图9为本申请动力电池直流升压充电电感放电阶段一种实施例的电路示意图,此时,连接电路的外加电感L电机三相线圈电感组成升压电感,升压电感和三相桥臂组成升压DC/DC变换器。在此实施例中,三相线圈和三相逆变器桥臂同时使用,也可以只使用其中一相或两相,为了实现升压充电方式,如图8和图9所示,控制步骤具体包括:
步骤1,电池管理器控制开关K2断开,控制开关K1、K3、K4、K5闭合;
步骤2,如图8所示,在每个PWM周期中的导通时间段内,电机控制器控制三相逆变器A、B、C下桥的功率开关导通,上桥功率开关断开,此时充电桩输出的高压直流电通过电感L、开关K1、三相交流电机104、下桥功率开关(第二下桥臂VT2、第四下桥臂VT4、 第六下桥臂VT6)以及开关K3构成的储能回路,此时电流增加,电感L开始储能。
步骤3,如图9所示,在每个PWM周期中的关断时间段内,电机控制器控制三相逆变器A、B、C下桥的功率开关关断,上桥功率开关导通(或关断也可以),此时充电桩输出的高压直流电通过电感L、开关K1、三相交流电机104、上桥功率开关(第一上桥二极管VD1、第三上桥二极管VD3、第五上桥二极管VD5)、开关K4、动力电池106、开关K5、开关K3构成的充电回路,电感L和三相交流电机电感开始放电,电流减小,电感电压与高压直流电电压叠加,从而实现升压给电池充电;
步骤4,电池管理器采集电池充电电流,当电流小于所需充电功率对应的电流值时,电机控制器调节增加PWM导通占空比,当电流大于所需充电功率对应的电流值时,电机控制器调节减小PWM导通占空比,直至满足充电功率为止,同时再检测电机三相电流,便于过流,过温控制;
步骤5,在电池充满电前,重复步骤2-4,如果电池充满电,则电机控制器关断三相逆变器的6个功率开关、电池管理器断开开关K1、K3、K4、K5;
为方便理解,在图8和图9都标注有储能阶段、放电阶段的电流流向箭头。三相线圈的电感值即使不完全一致,也主要影响相电流的纹波斜率和峰峰值大小,三相电流基本为直流,其平均值基本一致,也即在充电过程中三相电流平均值基本一致,从而电机和逆变器三相发热基本一致,以及由于三相绕组对称,此时电机内部的三相合成磁动势基本为零,从而定子磁场基本为零,电机基本无转矩产生,这有利于大大减小传动系的应力。
更进一步地,如充电桩最大输出电压高于动力电池电压,这时如果要给电池充电就需要进行直接充电模式,在具体实施中,图10为本申请动力电池直接充电一种实施例的电路示意图,在具体实施中,为了实现直接充电方式,步骤具体包括:
步骤1,电机控制器控制三相逆变器的6个功率开关全部关断;
步骤2,电池管理器控制开关K1断开,控制开关K2、K3、K4、K5闭合,此时充电桩输出的电流通过充电桩正极流出经开关K2、K4到动力电池正极,经动力电池负极及开关K5、K3流回充电桩负极,动力电池开始充电,充电电流大小由电池管理器发送充电功率或充电电流给充电桩控制;
步骤3,电池管理器采集电池充电电流和温度,便于过流,过温控制;
步骤4,在电池充满电前,重复步骤2-3,如果电池充满电,则电池管理器控制开关K2、K3、K4、K5断开;
为方便理解,在图10都标注有电流流向箭头。由于直接充电不需要经过连接电路、三相交流电机、三相逆变器,故充电效率更高。
动力电池的能量交换方法还包括动力电池的放电方法,结合下述实施例三对动力电池 的放电方法进行说明。
本申请实施例三提供动力电池的放电方法,基于上述实施例提供的车辆的电机控制电路,实施例三提供的放电方法用于实现动力电池对用电模块的放电,如图11所示,放电方法包括:
步骤S21.获取用电模块的电压和动力电池的电压,并根据用电模块的电压和动力电池的电压选择放电方式,放电方式包括降压放电以及直接放电。
步骤S22.控制第一开关模块、第二开关模块、三相逆变器以及储能模块使动力电池输出直流电,并使动力电池按照所选择的放电方式对用电模块进行放电。
实施例三与上述实施例二的不同点在于,实施例二中用于实现供电模块101对动力电池106进行充电,实施例三用于实现动力电池106对用电模块120进行放电。
其中,当控制模块108检测到用电模块120接入电路时,例如,当用电设备与电机控制电路连接时,控制模块108比较动力电池106的电压和用电模块120电压大小,当控制模块108检测到动力电池106的电压高于用电模块120的电压时,控制模块108通过控制第一开关模块102、第二开关模块105以及三相逆变器103使动力电池106对储能模块107和三相交流电机104以及用电模块120进行放电,可以实现对动力电池106的输出电压进行降压后对用电模块120进行放电,本申请实施例在三相交流电机中引出中性线,进而与动力电池、储能模块以及三相逆变器组成不同的回路,控制模块检测到动力电池的电压高于用电模块电压时,采用原有的储能模块和三相交流电机对动力电池的电压进行降压后再给用电模块放电,同时不需要额外增加外部降压电路,减少了外加电路的成本。
进一步的,根据用电模块的电压和动力电池的电压选择充电方式,包括:
当检测到动力电池的电压高于用电模块的电压时选择降压充电方式;
控制第一开关模块、第二开关模块、三相逆变器以及储能模块使动力电池输出直流电,并使述动力电池按照所选择的放电方式对用电模块进行放电,包括:
控制储能模块导通,并控制第一开关模块、第二开关模块以及三相逆变器,使动力电池对储能模块、三相交流电机的三相线圈以及用电模块的降压过程以及储能模块和三相交流电机的三相线圈对用电模块的放电过程交替进行,以将动力电池的放电电压进行降压后再对用电模块进行放电。
作为一种实施方式,动力电池106、第二开关模块105、三相逆变器103、三相交流电机104、储能模块107、用电模块120以及第一开关模块102构成降压回路,三相交流电机104、储能模块107、用电模块120、三相逆变器103以及第一开关模块102构成第一放电回路;
控制储能模块导通,并控制第一开关模块、第二开关模块以及三相逆变器,使动力电 池对储能模块、三相交流电机的三相线圈以及用电模块的降压过程以及储能模块和三相交流电机的三相线圈对用电模块的放电过程交替进行,以将动力电池的放电电压进行降压后再对供电模块进行放电,包括:
控制储能模块导通,并控制第一开关模块、第二开关模块以及三相逆变器,使降压回路和第一放电回路交替导通。
其中,控制模块108控制第一开关模块102和第二开关模块105导通,使动力电池106输出直流电,并向三相逆变器103输出PWM控制信号的导通期间使动力电池对该降压回路进行充电,使降压回路构成一个电感储能回路,之后PWM控制信号的关断期间控制第一放电回路导通,三相交流电机104输出电流,使第一放电回路形成一个电流续流回路,即在降压回路和第一放电回路交替导通的过程中,使三相逆变器103以及三相交流电机104先处于充电状态再处于放电状态;本实施方式中,通过设置第一开关模块和第二开关模块导通,在动力电池输出直流电时,使用电模块、三相逆变器、三相交流电机以及动力电池形成充放电回路,并通过控制三相逆变器中的功率开关单元使降压回路和第一放电回路交替导通,实现了使动力电池对用电模块的降压充电。
下面通过具体的电路结构对本申请实施例三进行说明:
有时在停车时需要动力电池给外界提供电能,如车上用电设备,或者车与车之间的充电放电,电池降压输出过程包括电感储能和电感续流两个阶段,图12为本申请动力电池降压输出电感储能阶段一种实施例的电路示意图,图13为本申请动力电池降压输出电感续流阶段一种实施例的电路示意图,此时,电感L和电机电感组成降压电感,降压电感和三相桥臂组成降压DC/DC变换器。在此实施例中,三相线圈和三相逆变器桥臂同时使用,也可以只使用其中一相或两相,为了实现动力电池降压输出,如图12和图13所示,控制步骤具体包括:
步骤1,电池管理器控制开关K2断开,控制开关K1、K3、K4、K5闭合;
步骤2,如图12所示,电机控制器控制电路在PWM周期导通期间控制三相逆变器上桥功率开关导通,下桥功率开关关断,这时动力电池放电,电流经过电池正极输出、开关K4、上桥功率开关(第一上桥臂VT1、第三上桥臂VT3、第五上桥臂VT5)、电机三相线圈104、开关K1、电感L到达用电模块120,再经过开关K3、开关K5到动力电池负极,构成一个电感储能回路;
步骤3,如图13所示,电机控制器控制电路在PWM周期关断期间控制三相逆变器上桥功率开关关断,下桥功率开关导通,这时动力电池放电通路被关断,三相线圈输出的电流通过下桥二极管形成续流,三相线圈输出的电流经过开关K1、电感L、用电模块、开关K3、下桥功率二极管(第二下桥二极管VD2、第四下桥二极管VD4、第六下桥二极管VD6) 构成一个电感电流续流回路;
步骤4,电机控制器采集用电模块的电压和电流,通过调节PWM占空比控制输出电压的稳定;
步骤5,然后整车控制器循环检测档位、车速、动力电池温度,满足条件就重复步骤2-4,不满足就退出降压输出程序;
步骤6,如果不需要电池降压输出,退出降压输出程序,三相逆变器上下桥全部关断、电池管理器控制开关K1、K3、K4、K5断开。
本申请实施例四提供一种动力电池的加热方法,基于上述实施例提供的电机控制电路和车辆,实施例四提供加热方法用于实现从供电模块中取电为动力电池进行加热,当电机控制电路连接供电模块时,如图14所示,加热方法包括:
S31,接收动力电池需要加热。
S32,控制第一开关模块导通和储能模块工作,并通过控制三相逆变器,使供电模块对储能模块和三相交流电机的三相线圈的充电过程以及储能模块、三相交流电机的三相线圈以及三相逆变器构成的放电过程交替进行,以使储能模块、三相逆变器以及三相交流电机对流经至少一个储能模块、三相逆变器以及三相交流电机中的换热介质进行加热,进而该被加热的换热介质再流经动力电池时,使动力电池的温度升高。
其中,在上述步骤中,由于电池的固有特性,在低温状态时动力电池106的充放电能力会大幅降低,会影响新能源汽车在寒冷地区的使用,为了使动力电池106正常工作,需要在动力电池106温度过低时提升动力电池106的温度,因此,通过控制模块108获取动力电池106的温度,可以采用电池管理器来获取动力电池106的温度,将动力电池106的温度与预设温度值进行比较来判断动力电池106是否处于低温状态,当检测到动力电池106的温度低于预设温度值时,可以通过提升流经动力电池106的换热介质的温度方式提高动力电池106的温度,当连接供电模块101时,可以借助供电模块101对其他模块进行供电使其他模块对流经动力电池106的换热介质进行加热,由于储能模块107、三相逆变器103以及三相交流电机104在工作的过程中均产生热量,因此,可以控制储能模块107、三相逆变器103以及三相交流电机104对流经动力电池106的冷却液进行加热,通过控制第一开关模块102以及三相逆变器103,使第一开关模块102、储能模块107、三相逆变器103、三相交流电机104以及供电模块101形成储能回路,使供电模块101通过储能回路对储能模块107和三相交流电机104的三相线圈进行充电,完成充电后通过控制三相逆变器103再使第一开关模块102、储能模块107、三相逆变器103以及三相交流电机104形成放电回路,使储能模块107和三相交流电机104进行放电,以实现储能模块107、三相逆变器103以及三相交流电机104对流经动力电池107的换热介质进行加热。本申请实施例在三相交 流电机中引出中性线,进而与供电模块、储能模块以及三相逆变器组成不同的回路,通过储能模块、三相交流电机内部三相线圈、三相逆变器及其内部发热器件来提供热源,加热换热介质后经过原冷却回路实现对动力电池的加热,不需要使用发动机或者增加加热装置就可以实现提升动力电池的温度,并且加热效率高,动力电池温度升高快。
进一步的,供电模块101、储能模块107、三相交流电机104、三相逆变器103以及第一开关模块102构成储能回路,储能模块107、三相交流电机104、三相逆变器103、第二开关模块105、动力电池106以及第一开关模块102构成第二放电回路。
通过控制三相逆变器,使供电模块对储能模块和三相交流电机的三相线圈的充电过程以及储能模块、三相交流电机的三相线圈以及三相逆变器构成的放电过程交替进行,包括:
控制三相逆变器使储能回路和第二放电回路交替导通。
本实施方式中,通过设置第一开关模块导通,在供电模块输出直流电时,通过控制三相逆变器中的功率开关单元使储能回路和第二放电回路交替导通,实现了储能模块、三相逆变器以及三相交流电机对流经动力电池的换热介质进行加热。
下面以具体电路结构对本申请实施例进行具体说明:在寒冷低温地区,在停车状态下进行电机产热加热动力电池。当需要电池加热功能时方法包括以下步骤:
步骤1,整车上电时整车控制器接收三相交流电机的状态信号(如:可以通过档位信息和车速信号来确定)以及电池管理器发来的动力电池温度信号;
步骤2,整车控制器检测三相交流电机的状态信号是否为处于非驱动状态(如:可以通过档位是否处在P档且车速是否为零来确定);
步骤3,如果不是,则退出电机加热程序;
步骤4,如果是,再判断动力电池温度是否低于设定阈值;
步骤5,如果电池温度高于设定阈值,则退出电机加热程序;
步骤6,如果电池温度低于设定阈值,再判断充电枪是否插上充电桩;
步骤7,如果充电枪已插上直流充电桩,则利用充电桩进行电池加热,
步骤8,如果充电枪未插上充电桩,则判断动力电池自检状态(如SOC、温度、故障、电压等信息)是否允许用于加热电池;
步骤9,如果动力电池自检允许用于加热电池,则采用电池放电进行电池加热;
步骤10,如果动力电池自检不允许用于加热电池,则退出电机加热程序;
更进一步地,当在极低温下,或电池电量极低,无法利用电池自身放电加热动力电池时,这时就需要供电模块进行放电,如充电桩进行电池加热,电池加热过程包括电感储能和电感续流两个阶段,图15为本申请供电模块供电加热电感储能阶段一种实施例的电路示意图,图16为本申请供电模块供电加热电感续流阶段一种实施例的电路示意图,在此实施 例中,三相线圈和三相逆变器桥臂同时使用,也可以只使用其中一相或两相,为了实现充电桩进行电池加热,步骤具体包括:
步骤1,电池管理器控制开关K4、K5断开,控制开关K1、K2、K3闭合;
步骤2,如图15所示,在每个PWM周期中的导通时间段内,电机控制器控制三相逆变器A、B、C下桥的功率开关导通,上桥功率开关断开,此时充电桩输出的高压直流电通过电感L、开关K1、三相交流电机104、下桥功率开关(第二下桥臂VT2、第四下桥臂VT4、第六下桥臂VT6)以及开关K3构成的储能回路,此时电流增加,电感L开始储能;
步骤3,如图16所示,电机控制器控制电路在PWM周期关断期间控制三相逆变器下桥功率开关关断,上桥功率开关导通,这时充电桩放电通路被关断,三相线圈电流通过上桥功率开关(第一上桥二极管VD1、第三上桥二极管VD3、第五上桥二极管VD5)、K2、电感L、开关K1再回到电机三相线圈,构成一个电感电流续流回路;
步骤4,电机控制器接收充电桩电压、电流数据,计算输出功率,将计算的加热功率与电池管理器发送的加热指令功率相比较,如果计算的加热功率偏低,则增加PWM占空比,增大直流充电桩输出电流,如果计算的加热功率偏高,则减小PWM占空比,减小直流充电桩输出电流,直至加热功率达到加热指令功率附近为止;
步骤5,然后整车控制器循环检测档位、车速、动力电池温度,满足条件就重复步骤2-4,不满足就退出加热程序;
步骤6,如果不满足加热条件,退出加热程序,三相逆变器上下桥全部关断、电池管理器控制开关K1、K2、K3断开。
本申请实施例五提供一种动力电池的加热方法,基于实施例提供的电机控制电路,实施例五提供加热方法用于实现从动力电池中取电为动力电池进行加热,如图17所示,加热方法包括:
S41,接收动力电池需要加热。
S42,控制第二开关模块导通和储能模块工作,并通过控制三相逆变器,使动力电池对储能模块和三相交流电机的三相线圈的充电过程以及储能模块、三相交流电机的三相线圈以及三相逆变器构成的放电过程交替进行,以使储能模块、三相逆变器以及三相交流电机对流经至少一个储能模块、三相逆变器以及三相交流电机中的换热介质进行加热。
本实施方式与上述实施方式的不同点在于在未连接供电模块101时,可以通过动力电池106进行放电以实现对冷却液进行加热,通过控制第一开关模块102、第二开关模块105以及三相逆变器103,使第一开关模块102、第二开关模块105、储能模块107、三相逆变器103、三相交流电机104以及动力电池106形成充电回路,使动力电池106通过充电回路对储能模块107和三相交流电机104进行充电,再控制三相逆变器103使第一开关模块 102、储能模块107、三相逆变器103以及三相交流电机104形成放电回路,使储能模块107和三相交流电机104进行放电,以实现储能模块107、三相逆变器103以及三相交流电机104对流经动力电池106的冷却液进行加热。
具体的,动力电池106、第二开关模块105、第一开关模块102、储能模块107、三相交流电机104以及三相逆变器103构成充电回路,三相交流电机104、三相逆变器103、第一开关模块102以及储能模块107构成第三放电回路。
控制三相逆变器,使动力电池对储能模块和三相交流电机的三相线圈的充电过程以及储能模块、三相交流电机的三相线圈以及三相逆变器构成的放电过程交替进行,包括:
控制三相逆变器使充电回路和第三放电回路交替导通。
下面通过具体的电路结构对本申请实施例进行具体说明,当动力电池温度不是很低,且动力电池电量足够多,动力电池允许放电时,这时无需供电模块如充电枪就可以利用电池自身放电加热动力电池。电池加热过程包括电感储能和电感续流两个阶段,图16为本申请动力电池放电加热电感储能阶段一种实施例的电路示意图,图17为本申请动力电池放电加热电感续流阶段一种实施例的电路示意图,在此实施例中,三相线圈和三相逆变器桥臂同时使用,也可以只使用其中一相或两相,为了实现动力电池自身放电进行电池加热,步骤具体包括:
步骤1,电池管理器控制开关K1、K2、K4、K5闭合,开关K3断开;
步骤2,如图18所示,电机控制器控制电路在PWM周期导通期间控制三相逆变器下桥功率开关导通,上桥功率开关关断,这时动力电池106放电,电流经过电池正极、开关K4、开关K2、电感L、开关K1到达电机三相线圈,再经过三相逆变器下桥三个功率开关(第二下桥臂VT2、第四下桥臂VT4、第六下桥臂VT6)、开关K5到电池负极,构成一个电感储能回路;
步骤3,如图19所示,电机控制器控制电路在PWM周期关断期间控制三相逆变器下桥功率开关关断,上桥功率开关导通,这时充电桩放电通路被关断,三相线圈电流通过上桥功率开关(第一上桥二极管VD1、第三上桥二极管VD3、第五上桥二极管VD5)、开关K2、电感L、开关K1再回到电机三相线圈,构成一个电感电流续流回路;
步骤4,电机控制器接收电池电压、电流数据,计算输出功率,将计算的加热功率与电池管理器发送的加热指令功率相比较,如果计算的加热功率偏低,则增加PWM占空比,增大电池输出电流,如果计算的加热功率偏高,则减小PWM占空比,减小电池输出电流,直至加热功率达到加热指令功率附近为止;
步骤5,然后整车控制器循环检测档位、车速、动力电池温度,满足条件就重复步骤2-4,不满足就退出加热程序;
步骤6,如果不满足加热条件,退出加热程序,三相逆变器上下桥全部关断、电池管理器控制开关K1、K2、K4、K5断开。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种车辆,其特征在于,包括电机控制电路,所述电机控制电路包括第一开关模块、三相逆变器、三相交流电机、储能模块、第二开关模块以及控制模块,所述电机控制电路通过第一开关模块连接至供电模块或者用电模块,所述电机控制电路通过所述第二开关模块连接至动力电池,所述三相逆变器连接在所述第一开关模块与所述第二开关模块之间,所述三相逆变器、所述三相交流电机以及所述储能模块依次连接,所述储能模块还连接至所述供电模块或者所述用电模块,所述控制模块分别与所述第一开关模块、所述三相逆变器、所述第二开关模块以及所述储能模块连接。
  2. 如权利要求1所述的车辆,其特征在于,所述储能模块的第一端连接所述三相交流电机中三相线圈的连接点,所述储能模块的第二端和所述第一开关模块的第一端共接于所述供电模块或者用电模块的第一端,所述三相交流电机的三相线圈连接所述三相逆变器的三相桥臂,所述三相逆变器的第一端连接所述第一开关模块的第二端和所述第二开关模块的第一端,所述三相逆变器的第二端连接所述第二开关模块的第二端和所述第一开关模块的第四端,所述第一开关模块的第三端连接所述供电模块或者用电模块的第二端,所述第二开关模块的第三端和第四端连接所述动力电池的正极和负极。
  3. 如权利要求2所述的车辆,其特征在于,所述储能模块包括储能器件和第一开关器件,所述第一开关器件的第一端为所述储能模块的第一端,所述第一开关器件的第二端连接所述储能器件的第一端,所述储能器件的第二端为所述储能模块的第二端。
  4. 如权利要求1所述的车辆,其特征在于,所述三相交流电机包括电机轴、定子组件以及电机壳体,所述电机轴上连接所述定子组件,所述定子组件设置于所述电机壳体内,所述电机壳体上设有换热介质入口和换热介质出口,所述电机壳体与所述定子组件之间设有换热介质通道,所述换热介质通道连接所述换热介质入口和所述换热介质出口。
  5. 一种动力电池的能量交换方法,基于权利要求1所述的车辆的电机控制电路,其特征在于,当所述电机控制电路连接所述供电模块时,所述能量交换方法包括:
    获取所述供电模块的电压和所述动力电池的电压,并根据所述供电模块的电压和所述动力电池的电压选择充电方式,其中,所述充电方式包括升压充电和直接充电;
    控制所述第一开关模块、所述第二开关模块、所述三相逆变器以及所述储能模块使所述供电模块输出直流电,并使所述供电模块按照所选择的充电方式对所述动力电池进行充电。
  6. 如权利要求5所述的动力电池的能量交换方法,其特征在于,所述根据供电模块的电压和所述动力电池的电压选择充电方式,包括:
    检测到所述供电模块输出的最大电压不高于所述动力电池的电压,选择升压充电方式;
    控制所述第一开关模块、所述第二开关模块、所述三相逆变器以及所述储能模块使所述供电模块输出直流电,并使所述供电模块按照所选择的充电方式对所述动力电池进行充电,包括:
    控制所述第一开关模块、所述第二开关模块、所述三相逆变器以及所述储能模块,使所述供电模块对所述储能模块和所述三相交流电机的三相线圈的充电过程以及所述供电模块、所述储能模块和所述三相交流电机的三相线圈对所述动力电池的放电过程交替进行,以将所述供电模块的充电电压进行升压后再对所述动力电池进行充电。
  7. 如权利要求6所述的动力电池的能量交换方法,其特征在于,所述供电模块、所述储能模块、所述三相交流电机、所述三相逆变器以及所述第一开关模块构成储能回路,所述供电模块、所述储能模块、所述三相交流电机、所述三相逆变器、所述第二开关模块、所述动力电池以及所述第一开关模块构成充电回路;
    所述控制所述三相逆变器使所述供电模块对所述储能模块和所述三相交流电机的三相线圈的充电过程以及所述供电模块、所述储能模块和所述三相交流电机的三相线圈对所述动力电池的放电过程交替进行,包括:
    控制所述三相逆变器使所述储能回路和充电回路交替导通。
  8. 如权利要求5所述的动力电池的能量交换方法,其特征在于,所述根据供电模块的电压和所述动力电池的电压选择充电方式,包括:
    检测到所述供电模块输出的最大电压高于所述动力电池的电压,选择直接充电方式;
    控制所述第一开关模块、所述第二开关模块、所述三相逆变器以及所述储能模块使所述供电模块输出直流电,并使所述供电模块按照所选择的充电方式对所述动力电池进行充电,包括:
    控制所述第一开关模块和所述第二开关模块导通,并控制所述储能模块和三相逆变器关断使所述供电模块对所述动力电池进行充电。
  9. 如权利要求5所述的动力电池的能量交换方法,其特征在于,当所述电机控制电路连接所述用电模块时,所述能量交换方法包括:
    获取所述用电模块的电压和所述动力电池的电压,并根据用电模块的电压和所述动力电池的电压选择放电方式,所述放电方式包括降压放电以及直接放电;
    控制所述第一开关模块、所述第二开关模块、所述三相逆变器以及所述储能模块使所述动力电池输出直流电,并使所述动力电池按照所选择的放电方式对所述用电模块进行放电。
  10. 如权利要求9所述的动力电池的能量交换方法,其特征在于,所述根据用电模块的 电压和所述动力电池的电压选择放电方式,包括:
    检测到所述动力电池的电压高于所述用电模块的电压,选择降压放电方式;
    控制所述第一开关模块、所述第二开关模块、所述三相逆变器以及所述储能模块使所述动力电池输出直流电,并使所述动力电池按照所选择的放电方式对所述用电模块进行放电,包括:
    控制所述储能模块导通,并控制所述第一开关模块、所述第二开关模块以及所述三相逆变器,使所述动力电池对所述储能模块、所述三相交流电机的三相线圈以及所述用电模块的降压过程以及所述储能模块和所述三相交流电机的三相线圈对所述用电模块的放电过程交替进行,以将所述动力电池的放电电压进行降压后再对所述用电模块进行放电。
  11. 如权利要10所述的动力电池的能量交换方法,其特征在于,所述动力电池、所述第二开关模块、所述三相逆变器、所述三相交流电机、所述储能模块以及所述用电模块构成降压回路,所述三相交流电机、所述储能模块、所述用电模块以及所述三相逆变器构成第一放电回路;
    控制所述储能模块导通,并控制所述第一开关模块、所述第二开关模块以及所述三相逆变器,使所述动力电池对所述储能模块、所述三相交流电机的三相线圈以及所述用电模块的降压过程以及所述储能模块和所述三相交流电机的三相线圈对所述用电模块的放电过程交替进行,以将所述动力电池的放电电压进行降压后再对所述供电模块进行放电,包括:
    控制所述储能模块导通,并控制所述第一开关模块、所述第二开关模块以及所述三相逆变器,使所述降压回路和第一放电回路交替导通。
  12. 一种动力电池的加热方法,基于权利要求1所述的车辆的电机控制电路,其特征在于,所述加热方法包括:
    接收所述动力电池需要加热;
    控制所述第二开关模块导通和所述储能模块工作,并通过控制所述三相逆变器,使所述动力电池对所述储能模块和所述三相交流电机的三相线圈的充电过程以及所述储能模块、所述三相交流电机的三相线圈以及所述三相逆变器构成的放电过程交替进行,以使所述储能模块、所述三相逆变器以及所述三相交流电机对流经至少一个所述储能模块、所述三相逆变器以及所述三相交流电机中的换热介质进行加热。
  13. 如权利要求12所述的动力电池的加热方法,其特征在于,所述动力电池、所述第二开关模块、所述第一开关模块、所述储能模块、所述三相交流电机以及所述三相逆变器构成充电回路,所述三相交流电机、所述三相逆变器、所述第一开关模块以及所述储能模块构成第三放电回路;
    所述控制所述三相逆变器,使所述动力电池对所述储能模块和所述三相交流电机的三 相线圈的充电过程以及所述储能模块、所述三相交流电机的三相线圈以及所述三相逆变器构成的放电过程交替进行,包括:
    控制所述三相逆变器使所述充电回路和第三放电回路交替导通。
  14. 如权利要求12所述的动力电池的加热方法,其特征在于,接收所述动力电池需要加热后,还包括:
    确定所述电机控制电路连接所述供电模块;
    控制所述第一开关模块导通和所述储能模块工作,并通过控制所述三相逆变器,使所述供电模块对所述储能模块和所述三相交流电机的三相线圈的充电过程以及所述储能模块、所述三相交流电机的三相线圈以及所述三相逆变器构成的放电过程交替进行,以使所述储能模块、所述三相逆变器以及所述三相交流电机对流经至少一个所述储能模块、所述三相逆变器以及所述三相交流电机中的换热介质进行加热。
  15. 如权利要求14所述的动力电池的加热方法,其特征在于,所述供电模块、所述第一开关模块、所述储能模块、所述三相逆变器以及所述三相交流电机构成储能回路,所述储能模块、所述三相交流电机、所述三相逆变器以及所述第一开关模块构成第二放电回路;
    所述通过控制所述三相逆变器,使所述供电模块对所述储能模块和所述三相交流电机的三相线圈的充电过程以及所述储能模块、所述三相交流电机的三相线圈以及所述三相逆变器构成的放电过程交替进行,包括:
    控制所述三相逆变器使所述储能回路和第二放电回路交替导通。
PCT/CN2019/127115 2018-12-21 2019-12-20 电机控制电路、充放电方法、加热方法及车辆 WO2020125771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811574182.8A CN111347853B (zh) 2018-12-21 2018-12-21 电机控制电路、充放电方法、加热方法及车辆
CN201811574182.8 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020125771A1 true WO2020125771A1 (zh) 2020-06-25

Family

ID=71102531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127115 WO2020125771A1 (zh) 2018-12-21 2019-12-20 电机控制电路、充放电方法、加热方法及车辆

Country Status (2)

Country Link
CN (1) CN111347853B (zh)
WO (1) WO2020125771A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852167A (zh) * 2021-09-29 2021-12-28 珠海冠宇动力电池有限公司 一种电压调节电路、供电模组、车辆和控制方法
CN113859052A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 电池加热系统及其电池加热方法
CN113871757A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 电池加热系统及其电池加热方法
CN113972707A (zh) * 2020-07-23 2022-01-25 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN114336855A (zh) * 2021-12-29 2022-04-12 蜂巢能源科技(无锡)有限公司 电池组系统的控制方法、装置和储能系统
CN114537164A (zh) * 2022-02-17 2022-05-27 华为电动技术有限公司 一种动力电池组装置、加热控制系统及电动汽车
CN114872529A (zh) * 2022-06-17 2022-08-09 蒋明达 一种电池包高低温控制系统
CN115503550A (zh) * 2022-09-28 2022-12-23 安徽鸿创新能源动力有限公司 一种基于驱动电机模块的充电控制系统及方法、汽车
CN115956317A (zh) * 2021-09-06 2023-04-11 宁德时代新能源科技股份有限公司 电池加热装置及其控制方法、控制电路和动力装置
CN116262466A (zh) * 2022-12-17 2023-06-16 平高集团储能科技有限公司 一种多功能移动充电车
CN116533786A (zh) * 2023-06-20 2023-08-04 深蓝汽车科技有限公司 充电电路、系统、充电方法、车辆及存储介质

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119801B (zh) * 2019-12-31 2023-12-12 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN111884553A (zh) * 2020-08-04 2020-11-03 儒竞艾默生环境优化技术(上海)有限公司 压缩机预加热的电流矢量控制方法、介质、设备及系统
CN112039158B (zh) * 2020-09-02 2021-11-19 江苏云笛智能科技有限公司 一种清洗泵的控制方法
CN112440761B (zh) * 2020-11-24 2023-09-12 广州橙行智动汽车科技有限公司 驱动电机系统、驱动电机系统的控制方法及电动汽车
CN112186308B (zh) * 2020-11-30 2021-04-13 江苏时代新能源科技有限公司 电池加热系统、及其控制方法和装置
EP4033587B1 (en) 2020-11-30 2023-10-11 Jiangsu Contemporary Amperex Technology Limited Current modulation module, parameter determination module, battery heating system, as well as control method and control device therefor
CN113002327A (zh) * 2021-02-09 2021-06-22 广州橙行智动汽车科技有限公司 一种充电电路、充电电路的控制方法及电动汽车
CN113002350A (zh) * 2021-02-09 2021-06-22 广州橙行智动汽车科技有限公司 一种充电电路、充电控制方法、充电系统及电动汽车
CN112848959B (zh) * 2021-03-25 2022-10-14 广州小鹏汽车科技有限公司 一种充电控制方法、充电控制装置及电动汽车
CN113043897B (zh) * 2021-04-12 2022-12-13 广州小鹏汽车科技有限公司 一种充电控制方法、充电控制装置及电动汽车
CN114270655A (zh) * 2021-04-17 2022-04-01 深圳欣锐科技股份有限公司 电压转换电路、电压转换装置、电压转换芯片和充电设备
CN114337473B (zh) * 2021-04-29 2024-05-03 华为数字能源技术有限公司 一种加热装置及控制方法
CN112977171B (zh) * 2021-04-30 2022-05-31 重庆长安新能源汽车科技有限公司 一种电动汽车及动力电池脉冲加热系统
CN113022344B (zh) * 2021-04-30 2022-05-31 重庆长安新能源汽车科技有限公司 一种基于双电机的动力电池充电系统及电动汽车
CN113043870B (zh) * 2021-04-30 2022-05-31 重庆长安新能源汽车科技有限公司 一种动力电池充电系统及电动汽车
CN117157849A (zh) * 2022-03-09 2023-12-01 宁德时代新能源科技股份有限公司 动力电池电压调节系统及其控制方法和控制装置
CN115835978A (zh) * 2022-03-09 2023-03-21 宁德时代新能源科技股份有限公司 动力电池电压调节电路、系统及其控制方法和控制装置
WO2023168677A1 (zh) * 2022-03-11 2023-09-14 宁德时代新能源科技股份有限公司 电池加热装置及其控制方法、控制电路和动力装置
CN114640162B (zh) * 2022-05-12 2022-10-11 宁德时代新能源科技股份有限公司 动力电池电压调节电路、系统及其控制方法
CN115117973B (zh) * 2022-07-15 2023-09-26 首凯高科技(江苏)有限公司 一种电压叠加型复合电源系统
CN116298833B (zh) * 2022-09-06 2024-03-08 肇庆小鹏汽车有限公司 继电器粘连的检测方法、系统以及存储介质、新能源汽车
WO2024077422A1 (zh) * 2022-10-09 2024-04-18 宁德时代(上海)智能科技有限公司 充电控制方法、装置、设备、计算机可读存储介质及程序

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212918A (ja) * 1994-01-21 1995-08-11 Toyota Motor Corp 電気自動車のバッテリ接続制御装置
JP2002223589A (ja) * 2001-01-25 2002-08-09 Mitsubishi Heavy Ind Ltd バッテリフォークリフト用モータコントローラ
CN101267956A (zh) * 2005-09-23 2008-09-17 通用汽车环球科技运作公司 具有单个控制器的多路逆变器系统及其相关操作方法
CN202455130U (zh) * 2011-12-31 2012-09-26 比亚迪股份有限公司 电动车辆的充放电控制系统及电动车
CN203553304U (zh) * 2013-10-30 2014-04-16 安徽江淮汽车股份有限公司 一种电池热管理控制系统
CN105579275A (zh) * 2013-09-24 2016-05-11 丰田自动车株式会社 蓄电系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677541B2 (ja) * 2002-02-20 2005-08-03 株式会社日立製作所 充電装置
JP4894656B2 (ja) * 2007-07-13 2012-03-14 トヨタ自動車株式会社 車両
DE102011004624A1 (de) * 2011-02-24 2012-08-30 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Erwärmen einer Fahrbatterie eines Fahrzeugs
DE102011118823A1 (de) * 2011-11-18 2013-05-23 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zum Laden einer Traktionsbatterie eines Elektro- oder Hybridfahrzeuges
CN105762862B (zh) * 2014-12-19 2019-05-17 比亚迪股份有限公司 电源系统及电子装置及电池的充电方法及放电方法
DE102015208747A1 (de) * 2015-05-12 2016-11-17 Continental Automotive Gmbh Fahrzeugseitige Ladeschaltung für ein Fahrzeug mit elektrischem Antrieb und Verfahren zum Betreiben eines fahrzeugseitigen Stromrichters sowie Verwenden zumindest einer Wicklung einer fahrzeugseitigen elektrischen Maschine zum Zwischenspeichern
CN204721053U (zh) * 2015-06-26 2015-10-21 安徽江淮汽车股份有限公司 一种车用铅酸电池的充电回路
CN106183875A (zh) * 2016-08-23 2016-12-07 合肥工业大学 一种充放电一体化的电动汽车高压电气架构系统
CN207896898U (zh) * 2018-02-12 2018-09-21 西安中车永电捷通电气有限公司 逆变主回路和永磁同步电机传动系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212918A (ja) * 1994-01-21 1995-08-11 Toyota Motor Corp 電気自動車のバッテリ接続制御装置
JP2002223589A (ja) * 2001-01-25 2002-08-09 Mitsubishi Heavy Ind Ltd バッテリフォークリフト用モータコントローラ
CN101267956A (zh) * 2005-09-23 2008-09-17 通用汽车环球科技运作公司 具有单个控制器的多路逆变器系统及其相关操作方法
CN202455130U (zh) * 2011-12-31 2012-09-26 比亚迪股份有限公司 电动车辆的充放电控制系统及电动车
CN105579275A (zh) * 2013-09-24 2016-05-11 丰田自动车株式会社 蓄电系统
CN203553304U (zh) * 2013-10-30 2014-04-16 安徽江淮汽车股份有限公司 一种电池热管理控制系统

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113859052A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 电池加热系统及其电池加热方法
CN113871757A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 电池加热系统及其电池加热方法
CN113972707A (zh) * 2020-07-23 2022-01-25 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN115956317A (zh) * 2021-09-06 2023-04-11 宁德时代新能源科技股份有限公司 电池加热装置及其控制方法、控制电路和动力装置
CN115956317B (zh) * 2021-09-06 2024-01-05 宁德时代新能源科技股份有限公司 电池加热装置及其控制方法、控制电路和动力装置
CN113852167A (zh) * 2021-09-29 2021-12-28 珠海冠宇动力电池有限公司 一种电压调节电路、供电模组、车辆和控制方法
CN114336855A (zh) * 2021-12-29 2022-04-12 蜂巢能源科技(无锡)有限公司 电池组系统的控制方法、装置和储能系统
CN114336855B (zh) * 2021-12-29 2023-11-28 蜂巢能源科技(无锡)有限公司 电池组系统的控制方法、装置和储能系统
CN114537164A (zh) * 2022-02-17 2022-05-27 华为电动技术有限公司 一种动力电池组装置、加热控制系统及电动汽车
CN114537164B (zh) * 2022-02-17 2023-02-03 华为电动技术有限公司 一种动力电池组装置、加热控制系统及电动汽车
CN114872529A (zh) * 2022-06-17 2022-08-09 蒋明达 一种电池包高低温控制系统
CN115503550A (zh) * 2022-09-28 2022-12-23 安徽鸿创新能源动力有限公司 一种基于驱动电机模块的充电控制系统及方法、汽车
CN116262466A (zh) * 2022-12-17 2023-06-16 平高集团储能科技有限公司 一种多功能移动充电车
CN116533786A (zh) * 2023-06-20 2023-08-04 深蓝汽车科技有限公司 充电电路、系统、充电方法、车辆及存储介质

Also Published As

Publication number Publication date
CN111347853B (zh) 2022-01-07
CN111347853A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2020125771A1 (zh) 电机控制电路、充放电方法、加热方法及车辆
CN111347924B (zh) 电机控制电路、车辆、加热方法及充放电方法
CN111347926B (zh) 动力电池充放电装置、车辆及加热装置
CN111347893B (zh) 电机控制电路、动力电池的充电方法及加热方法
CN110971173B (zh) 动力电池的充电方法、电机控制电路及车辆
CN111347900B (zh) 一种车辆、电机控制电路、动力电池充电与加热方法
CN111355430B (zh) 电机控制电路、充放电方法、加热方法及车辆
CN111354998B (zh) 车辆及其温度控制装置
CN111347925B (zh) 一种车辆、电机控制电路、动力电池充电方法与加热方法
CN111347937B (zh) 动力电池的加热方法、电机控制电路及车辆
WO2021244277A1 (zh) 能量转换装置及车辆
CN111355433B (zh) 电机控制电路、车辆及其加热方法
CN111347936B (zh) 一种车辆及其动力电池加热方法与装置
CN113752875B (zh) 车辆电池加热装置和方法、车辆
CN111355435B (zh) 电机控制电路、车辆及其加热方法
CN111354996B (zh) 车辆及其动力电池温度控制装置
CN113071346B (zh) 一种动力电池的充电装置及车辆
CN216033900U (zh) 能量转换装置及车辆
CN111355434B (zh) 电机控制电路、车辆及其加热方法
CN113783477B (zh) 一种用于电动汽车的多工作模式电机驱动系统
CN113928183A (zh) 车辆、能量转换装置及其控制方法
US11801764B2 (en) Energy conversion device and vehicle
CN116923135A (zh) 六相电机兼容交直流充电桩的车载集成充电系统及方法
CN113067530A (zh) 能量转换装置及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900143

Country of ref document: EP

Kind code of ref document: A1