WO2021238103A1 - 电池能量处理装置和方法、车辆 - Google Patents

电池能量处理装置和方法、车辆 Download PDF

Info

Publication number
WO2021238103A1
WO2021238103A1 PCT/CN2020/130178 CN2020130178W WO2021238103A1 WO 2021238103 A1 WO2021238103 A1 WO 2021238103A1 CN 2020130178 W CN2020130178 W CN 2020130178W WO 2021238103 A1 WO2021238103 A1 WO 2021238103A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge arm
battery
phase bridge
inductor
phase
Prior art date
Application number
PCT/CN2020/130178
Other languages
English (en)
French (fr)
Inventor
王俊龙
劳黎明
王亮
薛鹏辉
陈明文
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to JP2022573424A priority Critical patent/JP7518924B2/ja
Priority to CA3180352A priority patent/CA3180352A1/en
Priority to EP20937691.2A priority patent/EP4159533A4/en
Priority to US17/928,560 priority patent/US20230238591A1/en
Priority to BR112022024118A priority patent/BR112022024118A2/pt
Publication of WO2021238103A1 publication Critical patent/WO2021238103A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to the field of vehicle control, and in particular, to a battery energy processing device and method, and a vehicle.
  • the power battery is the core power component of electric vehicles, and its charge and discharge performance directly determines the driving performance and user experience of electric vehicles.
  • the discharge capacity of the power battery in a low temperature environment is greatly reduced, which greatly affects the driving range of electric vehicles; the charging performance and charging time of the power battery in a low temperature environment cannot be guaranteed.
  • the power battery needs to be heated when necessary.
  • Vehicle-mounted high-power electronic devices often produce severe electromagnetic interference, which causes the electromagnetic compatibility of new energy vehicles to become increasingly prominent.
  • Most of the related technologies for heating power batteries have the defects of complex circuit topology and serious electromagnetic interference.
  • the purpose of the present disclosure is to provide a battery energy processing device and method, and a vehicle with good electromagnetic compatibility.
  • the present disclosure provides a battery energy processing device.
  • the device includes:
  • a first inductor the first end of the first inductor is connected to the positive electrode of the battery
  • a second inductor the first end of the second inductor is connected to the positive electrode of the battery
  • the first phase bridge arm, the midpoint of the first phase bridge arm is connected to the second end of the first inductor
  • the second phase bridge arm, the midpoint of the second phase bridge arm is connected to the second end of the second inductance, the first end of the first phase bridge arm and the first end of the second phase bridge arm
  • the ends are jointly connected to form a first bus end
  • the second end of the first phase bridge arm and the second end of the second phase bridge arm are jointly connected to form a second bus end, and the second bus end is connected to the battery ⁇ negative connection;
  • An energy storage element the first end of the energy storage element is connected to the first confluence end, and the second end of the energy storage element is connected to the second confluence end;
  • a controller configured to control the first phase bridge arm and the second phase bridge arm so that the battery is charged and discharged through the first inductor and the second inductor to achieve For heating the battery, the first inductor and the second inductor are in different working states.
  • the working state includes: an energy storage state, a freewheeling state, and a non-working state
  • the controller is configured to control the first phase bridge arm and the second phase bridge arm so that the battery And the energy storage element is charged and discharged through the first inductor and the second inductor, so as to realize heating of the battery.
  • the controller is configured to control the first-phase bridge arm and the second-phase bridge arm so that the battery or the energy storage element is discharged to the first inductor, so as to realize the In the heating of the battery, the first inductor is in an energy storage state, and the second inductor is in a non-working state.
  • the controller is configured to control the first phase bridge arm and the second phase bridge arm so that one of the battery and the energy storage element is discharged to the second inductor, The other of the battery and the energy storage element is charged through the first inductor to heat the battery, wherein the second inductor is in an energy storage state, and the first inductor is in a state of energy storage. Freewheeling state.
  • the controller is configured to control the first phase bridge arm and the second phase bridge arm so that the battery or the energy storage element is charged through the second inductor, so as to realize charging In the heating of the battery, the second inductor is in a freewheeling state, and the first inductor is in a non-working state.
  • the battery is an on-board battery
  • the first inductance and the second inductance are inductances in a voltage converter of a vehicle
  • the first phase bridge arm and the second phase bridge arm are the In the bridge arm of the voltage converter
  • the energy storage element is a bus capacitor
  • the battery is an on-board battery
  • the first phase bridge arm and the second phase bridge arm are bridge arms in a motor controller of the vehicle
  • the energy storage element is a bus capacitor
  • the device further includes:
  • a first switch module a first end of the first switch module is connected to the positive electrode of the battery, and a second end of the first switch module is connected to the first end of the energy storage element;
  • a second switch module the first end of the second switch module is connected to the midpoint of the first phase bridge arm, and the second end of the second switch module is connected to the first phase winding of the motor;
  • a third switch module the first end of the third switch module is connected to the midpoint of the second phase bridge arm, and the second end of the third switch module is connected to the second phase winding of the motor;
  • the controller is configured to control the first switch module, the second switch module, and the third switch module to turn off, so as to realize heating of the battery.
  • the device further includes: a fourth switch module, the first end of the fourth switch module is connected to the positive electrode of the battery, and the second end of the fourth switch module is respectively connected to the first inductor The first end of is connected to the first end of the second inductor;
  • the controller is also configured to control the fourth switch module to be turned off, and to control the first switch module, the second switch module, and the third switch module to turn on, so as to realize that the battery pairs the The drive of the motor.
  • the controller is configured to control the first phase bridge arm and the second phase bridge arm so that the battery and the energy storage element pass through the first inductor and the second inductor Carrying out cyclic charging and discharging to realize heating of the battery, wherein the first inductor and the second inductor are in different working states.
  • the present disclosure also provides a battery energy processing method, the method includes:
  • the first phase bridge arm and the second phase bridge arm are controlled so that the battery is charged and discharged through the first inductor and the second inductor to achieve heating of the battery, wherein, The first inductor and the second inductor are in different working states,
  • the first end of the first inductor is connected to the anode of the battery
  • the first end of the second inductor is connected to the anode of the battery
  • the midpoint of the first phase bridge arm is connected to the first
  • the second end of an inductor is connected
  • the midpoint of the second phase bridge arm is connected to the second end of the second inductor
  • the first end of the first phase bridge arm is connected to the second end of the second phase bridge arm.
  • the first end is connected together to form a first confluence end
  • the second end of the first phase bridge arm and the second end of the second phase bridge arm are conjoined to form a second confluence end
  • the second confluence end is connected to the
  • the negative electrode of the battery is connected, the first end of the energy storage element is connected to the first confluence end, and the second end of the energy storage element is connected to the second confluence end.
  • the working state includes: an energy storage state, a freewheeling state, and a non-working state.
  • controlling the first phase bridge arm and the second phase bridge arm so that the battery is charged and discharged through the first inductor and the second inductor to achieve heating of the battery including: If it is determined that the battery needs to be heated, the first phase bridge arm and the second phase bridge arm are controlled so that the battery and the energy storage element are charged and discharged through the first inductor and the second inductor, so as to realize the Heating of the battery.
  • controlling the first phase bridge arm and the second phase bridge arm so that the battery and the energy storage element are charged and discharged through the first inductor and the second inductor to heat the battery including:
  • the first phase bridge arm and the second phase bridge arm are controlled to discharge the battery or the energy storage element to the first inductor, so as to heat the battery, wherein the first phase The inductor is in an energy storage state, and the second inductor is in a non-working state;
  • the first phase bridge arm and the second phase bridge arm are controlled so that one of the battery and the energy storage element is discharged to the second inductor, and the battery and the energy storage element are The other is charged through the first inductor to heat the battery, wherein the second inductor is in an energy storage state, and the first inductor is in a freewheeling state;
  • the first phase bridge arm and the second phase bridge arm are controlled so that the battery or the energy storage element is charged through the second inductor to realize heating of the battery, wherein the first phase The second inductor is in a freewheeling state, and the first inductor is in a non-working state.
  • controlling the first phase bridge arm and the second phase bridge arm so that the battery and the energy storage element are charged and discharged through the first inductor and the second inductor including:
  • the lower bridge arm of the first phase bridge arm is controlled to be turned on, and the upper bridge arm of the first phase bridge arm, the upper bridge arm and the lower bridge arm of the second phase bridge arm are turned off, so that the battery Charging the first inductor;
  • the upper bridge arm of the second phase bridge arm is controlled to be turned on, and the lower bridge arm of the second phase bridge arm, the upper bridge arm and the lower bridge arm of the first phase bridge arm are turned off, so that the second phase bridge arm is turned off.
  • Two inductors charge the energy storage element
  • the upper bridge arm of the second phase bridge arm is controlled to be turned on, and the lower bridge arm of the second phase bridge arm, the upper bridge arm and the lower bridge arm of the first phase bridge arm are turned off, so that the storage
  • the energy element charges the battery through the second inductor
  • the lower bridge arm of the first phase bridge arm is controlled to be turned on, and the upper bridge arm of the first phase bridge arm, the upper bridge arm and the lower bridge arm of the second phase bridge arm are turned off, so that the first phase bridge arm is turned off.
  • An inductor charges the battery.
  • controlling the first phase bridge arm and the second phase bridge arm so that the battery and the energy storage element are charged and discharged through the first inductor and the second inductor including:
  • the lower bridge arm of the first phase bridge arm is controlled to be turned on, and the upper bridge arm of the first phase bridge arm, the upper bridge arm and the lower bridge arm of the second phase bridge arm are turned off, so that the battery Charging the first inductor;
  • the upper bridge arm of the second phase bridge arm is controlled to be turned on, and the lower bridge arm of the second phase bridge arm, the upper bridge arm and the lower bridge arm of the first phase bridge arm are turned off, so that the second phase bridge arm is turned off.
  • Two inductors charge the energy storage element
  • the upper bridge arm of the first phase bridge arm is controlled to be turned on, and the lower bridge arm of the first phase bridge arm, the upper bridge arm and the lower bridge arm of the second phase bridge arm are turned off, so that the storage
  • the energy element charges the battery through the first inductor
  • the lower bridge arm of the second phase bridge arm is controlled to be turned on, and the upper bridge arm of the second phase bridge arm, the upper bridge arm and the lower bridge arm of the first phase bridge arm are turned off, so that the second phase bridge arm is turned off.
  • Two inductors charge the battery.
  • the switching frequency or duty cycle in the first phase bridge arm and the second phase bridge arm is adjusted so that the current value flowing through the battery reaches an optimal current value .
  • adjusting the duty ratios of the first phase bridge arm and the second phase bridge arm so that the current value flowing through the battery reaches an optimal current value includes:
  • Adjust the duty cycle of the first phase bridge arm and the second phase bridge arm in the next carrier frequency cycle so that the current value flowing through the battery reaches the optimal current value include:
  • control to make the first phase bridge arm and the second phase bridge arm operate in the next carrier frequency cycle The duty cycle is greater than the duty cycle in the current carrier frequency cycle; if the current flowing through the battery is greater than the optimal current value, control to make the first phase bridge arm and the second phase bridge arm lower
  • the duty cycle in one carrier frequency cycle is smaller than the duty cycle in the current carrier frequency cycle until the current value flowing through the battery reaches the optimal current value.
  • the present disclosure also provides a vehicle including a battery and the above-mentioned battery energy processing device provided by the present disclosure.
  • the battery and the energy storage element are charged and discharged through the first inductance and the second inductance, so as to realize the heating of the battery.
  • the first inductor and the second inductor are in different working states.
  • the double-inductor interleaved control method in this scheme has a smaller ripple current in the circuit when the output current is the same. , Thereby significantly improving the electromagnetic compatibility performance of the battery energy processing device.
  • Fig. 1 is a structural block diagram of a battery energy processing device provided by an exemplary embodiment
  • Fig. 2 is a schematic diagram of a circuit structure in a battery energy processing device provided by an exemplary embodiment
  • 3a to 3f are schematic diagrams of current directions in six stages in a current cycle provided by an exemplary embodiment
  • 4a to 4c are respectively schematic diagrams of current directions in the last three stages of a current cycle provided by another exemplary embodiment
  • Fig. 5 is a schematic diagram of a circuit structure in a battery energy processing device provided by another exemplary embodiment
  • Fig. 6a is a graph showing the change of current in a circuit with time when an inductor is used for heating according to an exemplary embodiment
  • Fig. 6b is a graph of the current change with time in the circuit when the two inductors in the solution are used for heating according to an exemplary embodiment
  • Fig. 7 is a flowchart of a battery energy processing method provided by an exemplary embodiment
  • Fig. 8 is a flowchart of a battery energy processing method provided by another exemplary embodiment
  • Fig. 9 is a structural block diagram of a vehicle provided by an exemplary embodiment
  • Fig. 10 is a structural block diagram of a vehicle provided by another exemplary embodiment.
  • Fig. 1 is a structural block diagram of a battery energy processing device provided by an exemplary embodiment.
  • the battery energy processing device may include a first inductor L1, a second inductor L2, a first phase bridge arm 10, a second phase bridge arm 20, an energy storage element 30, and a controller 40.
  • the first end (left end) of the first inductor L1 is connected to the anode (+) of the battery; the first end (left end) of the second inductor L2 is connected to the anode of the battery; the midpoint A of the first phase bridge arm 10 is connected to The second end (right end) of the first inductor L1 is connected; the midpoint B of the second phase bridge arm 20 is connected to the second end (right end) of the second inductor L2.
  • the first end 10a of the first phase bridge arm 10 and the first end 20a of the second phase bridge arm 20 are jointly connected to form a first bus end.
  • the second end 10b of the first phase bridge arm 10 and the second phase bridge arm 20 The second terminals 20b are commonly connected to form a second bus terminal, and the second bus terminal is connected to the negative electrode (-) of the battery.
  • the first end (upper end in FIG. 1) of the energy storage element 30 is connected to the first confluence end, and the second end (lower end in Fig. 1) of the energy storage element 30 is connected to the second confluence end.
  • the controller 40 is respectively connected to the first phase bridge arm 10 and the second phase bridge arm 20.
  • the controller 40 is configured to control the first phase bridge arm 10 and the second phase bridge arm 20 so that the battery passes through the first inductor L1 and the second phase bridge arm.
  • the second inductor L2 is charged and discharged to heat the battery. Among them, the first inductor L1 and the second inductor L2 are in different working states.
  • Fig. 2 is a schematic diagram of a circuit structure in a battery energy processing device provided by an exemplary embodiment.
  • the first phase bridge arm 10 includes an upper bridge arm S1 and a lower bridge arm S2
  • the second phase bridge arm 20 includes an upper bridge arm S3 and a lower bridge arm S4.
  • each bridge arm exemplarily includes a triode and a diode connected in parallel.
  • the triode can also be replaced with other switching tubes, for example, insulated gate bipolar transistor (IGBT), metal-oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET) Wait.
  • IGBT insulated gate bipolar transistor
  • MOSFET metal-oxide semiconductor field effect transistor
  • the energy storage element 30 is exemplarily shown in the form of a capacitor, and the energy storage element 30 may also be an inductor or other types of energy storage elements.
  • the first terminal L1a of the first inductor L1 is connected to the positive pole (+) of the battery; the first terminal L2a of the second inductor L2 is connected to the positive pole of the battery; the midpoint A of the first phase bridge arm 10 is connected to the first inductor L1
  • the second end L1b of the second phase bridge arm 20 is connected to the second end L2b of the second inductor L2.
  • the first end 10a of the first phase bridge arm 10 and the first end 20a of the second phase bridge arm 20 are jointly connected to form a first bus end.
  • the second end 10b of the first phase bridge arm 10 and the second phase bridge arm 20 The second terminals 20b are commonly connected to form a second bus terminal, and the second bus terminal is connected to the negative electrode (-) of the battery.
  • the first inductor L1 and the second inductor L2 are always in different working states during the battery heating process, and they are really used as two different inductors.
  • the double-inductance interleaving (different working state) control method in this scheme can compensate and restrict each other to a certain extent.
  • the ripple current in the circuit is small, the electromagnetic compatibility is good, and
  • the heating of the battery is caused by the heating of the battery’s internal resistance caused by the current flowing through the battery when the battery is charged or discharged, and the battery heats up from the inside to the outside, so the heating efficiency of the battery is high.
  • the working states of the two inductors can include: energy storage state, freewheeling state and non-working state .
  • energy storage state when in the state of energy storage, the inductor itself charges, and the voltage across the inductor increases; when in the freewheeling state, the inductor itself discharges, and the voltage across the inductor decreases; when in the non-working state, the inductor itself does not Charging and not discharging, the voltage across the inductor remains unchanged.
  • the controller 40 is configured to control the first phase bridge arm 10 and the second phase bridge arm 20 so that the battery and the energy storage element 30 are charged and discharged through the first inductor L1 and the second inductor L2, In order to realize the heating of the battery.
  • the charging and discharging of the battery and the energy storage element 30 may include the process of battery charging, the process of discharging the energy storage element 30, and/or the process of discharging the battery, and the process of charging the energy storage element 30.
  • FIGS. 3a to 3f are respectively schematic diagrams of current directions in six stages in a current cycle provided by an exemplary embodiment.
  • the controller can control the first-phase bridge arm and the second-phase bridge arm to perform the following six steps in six phases:
  • the above-mentioned third to fourth stage switching does not need to control the action of the bridge arm, but the energy storage element 30 is charged and then automatically discharged to switch the state. In this way, when the current cycle has the same number of steps, the controller control actions are reduced, the controller control process is simplified, and the battery heating is more reliable.
  • the controller also controls the execution of six steps in six stages, respectively.
  • the first three phases can be the same as the first three phases in the previous embodiment (FIG. 3a-FIG. 3c).
  • 4a to 4c are respectively schematic diagrams of current directions in the last three stages of a current cycle provided by another exemplary embodiment.
  • control the upper bridge arm S1 of the first phase bridge arm to turn on, the lower bridge arm S2 of the first phase bridge arm, the upper bridge arm S3 and the lower bridge arm S4 of the second phase bridge arm are turned off, So that the energy storage element 30 charges the battery through the first inductor L1.
  • the current flows from the negative electrode of the battery, and flows back to the positive electrode of the battery through the energy storage element 30, the upper bridge arm S1 of the first phase bridge arm, and the first inductor L1.
  • the bridge arm S4 is turned off, so that the energy storage element 30 charges the battery through the second inductor L2, and the first inductor L1 charges the battery.
  • the current flows from the negative electrode of the battery, one way flows back to the positive electrode of the battery through the energy storage element 30, the upper bridge arm S3 of the second phase bridge arm, and the second inductor L2, and the other way passes through the lower bridge arm of the first phase bridge arm.
  • the arm S2 and the first inductor L1 flow back to the positive electrode of the battery.
  • control the lower bridge arm S4 of the second phase bridge arm to turn on, the upper bridge arm S3 of the second phase bridge arm, the upper bridge arm S1 and the lower bridge arm S2 of the first phase bridge arm are turned off, So that the second inductor L2 charges the battery.
  • the current flows from the second inductor L2, flows through the battery, and flows back to the second inductor L2 via the lower bridge arm S4 of the second phase bridge arm.
  • the states of the first inductance and the second inductance can have several different combinations. Taking FIG. 3a to FIG. 3c and FIG. 4a to FIG. 4c as an example of a current cycle, the six phases of a current cycle may include three combinations.
  • the first combination is that the first inductor is in an energy storage state, and the second inductor is in a non-working state, including the stages of FIG. 3a and FIG. 4a.
  • the controller is configured to control the first phase bridge arm and the second phase bridge arm, so that the battery or the energy storage element 30 is discharged to the first inductor L1, so as to heat the battery.
  • the battery discharges to the first inductor L1
  • the energy storage element 30 discharges to the first inductor L1.
  • the second combination is that the second inductor is in the energy storage state and the first inductor is in the freewheeling state, including the stages of Figure 3b and Figure 4b.
  • the controller is configured to control the first phase bridge arm and the second phase bridge arm so that one of the battery and the energy storage element 30 discharges to the second inductor L2, and the other of the battery and the energy storage element 30 passes through The first inductor L1 is charged to heat the battery.
  • the battery discharges to the second inductor L2, and the energy storage element 30 is charged through the first inductor L1.
  • the energy storage element 30 discharges to the second inductor L2, and the battery passes through the An inductor L1 is charged.
  • one inductance stores energy and one inductance continues to flow.
  • the two inductors work at the same time, because the two inductors are interleaved and complementary, the heating efficiency is enhanced while avoiding large current ripples.
  • the third combination is that the second inductor is in a freewheeling state, and the first inductor is in a non-operating state, including the stages of FIG. 3c and FIG. 4c.
  • the controller is configured to control the first phase bridge arm and the second phase bridge arm, so that the battery or the energy storage element is charged through the second inductor, so as to heat the battery.
  • the energy storage element is charged through the second inductor
  • the battery is charged through the second inductor.
  • the circuit structure in Figure 2 can be set as a circuit dedicated to battery heating, or it can be multiplexed with circuits in related devices in the same device as the battery.
  • the battery is a car battery
  • the first inductor and the second inductor are the inductances in the voltage converter of the vehicle
  • the first phase bridge arm and the second phase bridge arm are the bridge arms in the voltage converter
  • the energy storage element is the bus capacitor .
  • the voltage converter may be a boosted direct current (DC) module.
  • the battery is a vehicle-mounted battery
  • the first-phase bridge arm and the second-phase bridge arm are bridge arms in the motor controller of the vehicle
  • the energy storage element is a bus capacitor.
  • a device with a similar circuit structure can reuse the circuit when the device is not working, which can save hardware layout, reduce line connections, and save space, without increasing the volume of the device, which is conducive to the miniaturization of the device.
  • the original structure of the vehicle is changed to realize battery heating, and the cost of the solution is low.
  • a switch module can be set in the circuit, and the function of the multiplexing circuit can be switched by controlling the opening and closing of the switch module.
  • Fig. 5 is a schematic diagram of a circuit structure in a battery energy processing device provided by another exemplary embodiment.
  • the battery is an on-board battery, and the circuit in the motor controller of the vehicle is multiplexed.
  • the battery energy processing device may further include a first switch module K1 and a second switch. Module K2 and the third switch module K3.
  • the first end of the first switch module K1 (the left end of K1 in Fig. 5) is connected to the positive electrode of the battery, and the second end of the first switch module K1 (the right end of K1 in Fig. 5) is connected to the first end of the energy storage element 30 ( The upper end of the energy storage element 30 in FIG. 5) is connected.
  • the first end of the second switch module K2 (the left end of K2 in Figure 5) is connected to the midpoint of the first phase bridge arm 10, and the second end of the second switch module K2 (the right end of K2 in Figure 5) is connected to the motor G
  • the first phase winding (not shown) is connected.
  • the first end of the third switch module K3 (the left end of K3 in Figure 5) is connected to the midpoint of the second phase bridge arm 20, and the second end of the third switch module K3 (the right end of K3 in Figure 5) is connected to the motor G
  • the second phase winding (not shown) is connected.
  • the controller is configured to control the first switch module K1, the second switch module K2, and the third switch module K3 to turn off, so as to heat the battery. If K1, K2, and K3 are disconnected, the control of the motor by the first phase bridge arm 10 and the second phase bridge arm 20 is disconnected, and converted to battery heating.
  • the circuit design and control strategy are relatively simple and can be quickly converted To the function of heating the battery, the reliability is high.
  • the device may further include a fourth switch module K4.
  • the first end of the fourth switch module K4 (the left end of K4 in Figure 5) is connected to the positive electrode of the battery, and the second end of the fourth switch module K4 (the right end of K4 in Figure 5) is respectively connected to the first end of the first inductor L1 (The left end of L1 in Fig. 5) and the first end of the second inductor L2 (the left end of L2 in Fig. 5) are connected.
  • the controller is further configured to control the fourth switch module K4 to be turned off, and to control the first switch module K1, the second switch module K2, and the third switch module K3 to turn on, so as to realize the battery driving the motor.
  • Capacitor C is the bus capacitance. It can be seen from Figure 5 that if K4 is disconnected and K1, K2, and K3 are closed, the first inductance L1 and the second inductance L2 are disconnected in the line, and the control of the motor G can be realized through the three-phase bridge arm, that is, the line conversion
  • the design of the switching circuit and the control strategy are relatively simple, and it can be quickly switched to the function of driving the motor with high reliability.
  • the bridge arm action, current flow direction, and charging and discharging state of a current cycle are described.
  • the controller may be configured to control the first phase bridge arm and the second phase bridge arm so that the battery and the energy storage element are cyclically charged and discharged through the first inductor and the second inductor, so as to realize charging and discharging of the battery. Heating.
  • the first inductor and the second inductor are in different working states. That is, the above-mentioned current cycle can be cyclically executed until the condition for stopping the heating of the battery is reached.
  • the condition for stopping battery heating may be, for example, that the battery temperature reaches a predetermined temperature threshold.
  • the predetermined steps are cyclically executed to achieve the purpose of continuously charging the battery.
  • the control strategy is simple, not easy to make mistakes, and has high reliability.
  • Fig. 6a is a graph showing the change of current in the circuit with time when an inductor is used for heating according to an exemplary embodiment.
  • Fig. 6b is a graph showing the change of the current in the circuit with time when the two inductors in the solution are used for heating according to an exemplary embodiment.
  • the abscissa is time
  • the ordinate is the current in the circuit, that is, the current flowing through the power battery.
  • the current ripple in the curve is larger; when two inductors are used for heating, the current ripple in the curve is significantly reduced compared to a single inductor. It can be seen that when the solution of the present disclosure is used to heat the battery, the ripple current in the circuit is small when the same current is output, and therefore, the electromagnetic compatibility performance of the battery energy processing device is significantly improved.
  • Fig. 7 is a flowchart of a battery energy processing method provided by an exemplary embodiment.
  • the method may include step S71: if it is determined that the battery needs to be heated, the first phase bridge arm and the second phase bridge arm are controlled so that the battery is charged and discharged through the first inductor and the second inductor to achieve Heating of the battery. Among them, the first inductor and the second inductor are in different working states.
  • the first end of the first inductor is connected to the anode of the battery
  • the first end of the second inductor is connected to the anode of the battery
  • the midpoint of the first phase bridge arm is connected to the second end of the first inductor
  • the second phase bridge The midpoint of the arm is connected to the second end of the second inductance
  • the first end of the first phase bridge arm and the first end of the second phase bridge arm are connected together to form a first bus end
  • the second end of the first phase bridge arm The second end of the bridge arm of the second phase is connected together to form a second confluence end
  • the second confluence end is connected to the negative electrode of the battery
  • the first end of the energy storage element is connected to the first confluence end
  • the second end of the energy storage element is connected to the The second bus terminal is connected.
  • the first inductance and the second inductance are always in different working states during the heating of the battery, and they are really used as two different inductances.
  • the dual-inductor interleaved (different working state) control method in this solution can compensate each other to a certain extent.
  • the effect of mutual restraint, in the case of outputting the same current, the ripple current in the circuit is small, thereby significantly improving the electromagnetic compatibility performance of the battery energy processing device.
  • the working states of the two inductors may include: energy storage state, freewheeling state, and non-working state. If it is determined that the battery needs to be heated, the step of controlling the first phase bridge arm and the second phase bridge arm so that the battery is charged and discharged through the first inductor and the second inductor to realize the heating of the battery (step S71) may include: If it is determined that the battery needs to be heated, the first phase bridge arm and the second phase bridge arm are controlled so that the battery and the energy storage element are charged and discharged through the first inductor and the second inductor, so as to realize the heating of the battery.
  • the step of controlling the first phase bridge arm and the second phase bridge arm so that the battery and the energy storage element are charged and discharged through the first inductor and the second inductor to realize the heating of the battery may include: controlling the first phase The phase bridge arm and the second phase bridge arm discharge the battery or the energy storage element to the first inductor to heat the battery, wherein the first inductor is in an energy storage state and the second inductor is in a non-working state;
  • the second inductor is in an energy storage state
  • the first inductor is in a freewheeling state
  • the step of controlling the first phase bridge arm and the second phase bridge arm so that the battery and the energy storage element are charged and discharged through the first inductor and the second inductor may include:
  • the above-mentioned 3 to 4 stage switching does not need to control the action of the bridge arm, but the energy storage element is charged and then automatically discharged to switch the state.
  • the controller control actions are reduced, the controller control process is simplified, and the battery heating is more reliable.
  • the step of controlling the first phase bridge arm and the second phase bridge arm so that the battery and the energy storage element are charged and discharged through the first inductor and the second inductor may include:
  • the controller actively controls each step, so that the electric potential energy is larger and the battery heating efficiency is higher.
  • the preset duration may be set according to the switching period of the switching transistors in the bridge arm.
  • the preset duration may be a half cycle of the switching transistors in the bridge arm.
  • the bridge arms alternately switch, so that after a period of time after the freewheeling of one inductor starts, the other inductor starts to store energy again. This can reduce the current impact and the charge can be transferred slowly, which is consistent with the charging of the inductor itself.
  • the discharge characteristics help to extend the service life of the device.
  • the switching frequency or duty cycle in the first phase bridge arm and the second phase bridge arm can be adjusted so that the current value flowing through the battery reaches the optimal current value.
  • the optimal current value is the ideal current value flowing through the battery considering the characteristics of the battery and the circuit. If the first phase bridge arm and the second phase bridge arm are the bridge arms in the voltage converter, the optimal current value can be the smaller of the maximum current value allowed by the battery and the maximum current value allowed by the voltage converter .
  • the maximum allowable current value of the battery is related to factors such as battery SOC, temperature, alternating frequency, voltage, and single cycle re-discharge capacity.
  • the maximum current value allowed by the voltage converter is mainly limited by the junction temperature of the IGBT module chip and the temperature of the inductor coil sensor. According to the current IGBT chip temperature collected by the message, the current temperature collected by the inductor coil sensor and the IGBT chip and the inductor coil sensor's torque limit temperature, The maximum current allowed by the voltage converter can be obtained by looking up the table.
  • the optimal current value can be obtained by the following formula:
  • I_max2 (U_max-OCV)/(R_ac(f))
  • I(f) is the optimal current value
  • I_max1 is the maximum current value allowed by the battery
  • I_max2 is the maximum current value allowed by the voltage converter
  • min is the minimum value
  • C is the pulse charge and discharge that cannot be exceeded in a cycle Capacity
  • f is the alternating frequency of the battery
  • U_max is the maximum voltage of the battery
  • OCV is the open circuit voltage
  • R_ac(f) is the function of the change of the battery's alternating internal resistance with f.
  • the current value flowing through the battery reaches the optimal current value, which uses a simple method to heat the battery
  • the efficiency is gradually maximized, the control is simple and the reliability is high.
  • the step of adjusting the duty ratios of the first phase bridge arm and the second phase bridge arm so that the current value flowing through the battery reaches the optimal current value may include:
  • the duty cycle in each carrier frequency cycle of the first phase bridge arm and the second phase bridge arm will be adjusted according to the duty cycle of the previous carrier frequency cycle to gradually reach the optimal Duty cycle (corresponding to the optimal current value).
  • the duty cycle adjustment frequency is higher, so that the optimal duty cycle and the optimal current value can be quickly reached, so that the battery heating efficiency is quickly improved.
  • the first phase bridge arm and the second phase bridge arm's duty ratio in the current carrier frequency cycle are adjusted according to the comparison result of the current flowing through the battery and the optimal current value.
  • the duty ratio of the one-phase bridge arm and the second-phase bridge arm in the next carrier frequency cycle so that the current value flowing through the battery reaches the optimal current value may include:
  • control makes the duty cycle of the first phase bridge arm and the second phase bridge arm in the next carrier frequency cycle greater than in the current carrier frequency cycle If the current flowing through the battery is greater than the optimal current value, the control will make the duty cycle of the first phase bridge arm and the second phase bridge arm in the next carrier frequency cycle smaller than that in the current carrier frequency cycle Empty ratio until the current value flowing through the battery reaches the optimal current value.
  • the initial duty cycle can be predetermined
  • the step length of the duty cycle adjustment can be predetermined.
  • the initial duty cycle and the step length are used to adjust The duty cycle. In this way, the safety of the battery energy processing device can be ensured, the heating efficiency can be improved, and the heating time can be shortened.
  • Fig. 8 is a flowchart of a battery energy processing method provided by an exemplary embodiment.
  • the battery temperature T that the battery management system can collect before the battery is self-heating. If the temperature T is less than the set temperature value Tmin, then the battery SOC will be collected. If it is determined that the collected SOC is greater than the set SOCmin, then heating will start . Or when the collected SOC ⁇ SOCmin, do not heat. Only when the sampling temperature T and the sampling SOC meet the requirements at the same time, that is, T ⁇ Tmin and sampling SOC>SOCmin, the battery self-heating program can be started. For example, Tmin can be minus 10°C and can be 10%. In addition, if the maximum temperature difference between the cells is considered, the collected battery temperature can be the average value of multiple monitoring points.
  • the current flow direction can be determined first. If the battery charges the energy storage element, the current is greater than 0, and S2 and S4 are controlled to control battery discharge; if the energy storage element charges the battery, the battery current is less than 0, and S1 and S3 are controlled to control current charging.
  • the initial duty cycle is set to D0 when the IGBT switching frequency of the voltage converter and the battery alternating carrier frequency are determined. If the current is greater than 0, the battery charges the energy storage element at this time, and controls S2 to be turned on, and the duty cycle is D0. After a half-period delay, S4 is then controlled to be turned on, and the duty cycle is D0. At the same time, collect the current current value on the circuit at this time. If the current current value is less than the optimal current value, in the next carrier frequency cycle, turn on S2 with a duty cycle of D0+ ⁇ T. After a half-period delay, turn on S4. The duty cycle is D0+ ⁇ T.
  • control S2 If the current current value is greater than the optimal current value, in the next carrier frequency cycle, control S2 to be turned on, with a duty cycle of D0- ⁇ T, and after a half period delay, control S4 to be turned on, with a duty cycle of D0- ⁇ T.
  • the battery temperature T After adjusting the duty cycle, the battery temperature T needs to be collected again, and it is determined whether the battery temperature T reaches the set temperature value Tmin. If the battery current is less than 0, the method of controlling S1 and S3 is similar.
  • Fig. 9 is a structural block diagram of a vehicle provided by an exemplary embodiment. As shown in FIG. 9, the vehicle may include a battery 100 and the above-mentioned battery energy processing device 200 provided in the present disclosure.
  • Fig. 10 is a structural block diagram of a vehicle provided by another exemplary embodiment.
  • the vehicle is a hybrid vehicle.
  • the vehicle may include a battery 100, a voltage converter 300, a bus capacitor 30, a driving motor G1, a driving motor control bridge arm 400, a generator G2, and a generator control bridge arm 500.
  • the aforementioned battery energy processing device 200 includes a voltage converter 300 and a bus capacitor 30.
  • the voltage converter 300 includes a first inductor L1, a second inductor L2 and a two-phase bridge arm.
  • the first bus end of the two-phase bridge arm in the voltage converter 300 is also the first bus end of the drive motor control bridge arm 400 and the generator control bridge arm 500.
  • the second bus end of the two-phase bridge arm in the voltage converter 300 is also the drive motor control bridge arm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电池能量处理装置和方法、车辆。所述装置包括:第一电感(L1),第一电感(L1)的第一端与电池的正极连接;第二电感(L2),第二电感(L2)的第一端与电池的正极连接;第一相桥臂(10),第一相桥臂(10)的中点与第一电感(L1)的第二端连接;第二相桥臂(20),第二相桥臂(20)的中点与第二电感(L2)的第二端连接;储能元件(30),储能元件(30)的第一端与第一汇流端连接,储能元件(30)的第二端与第二汇流端连接;控制器(40),控制器(40)被配置为控制第一相桥臂(10)和第二相桥臂(20),使电池通过第一电感(L1)和第二电感(L2)进行充电和放电,以实现对电池的加热,其中,第一电感(L1)和第二电感(L2)处于不同的工作状态。

Description

电池能量处理装置和方法、车辆
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2020年5月29日提交的、发明名称为“电池能量处理装置和方法、车辆”的、中国专利申请号“202010476447.1”的优先权。
技术领域
本公开涉及车辆控制领域,具体地,涉及一种电池能量处理装置和方法、车辆。
背景技术
为解决当前石油能源紧缺和减缓城市空气污染问题,发展电动车辆产业迫在眉睫。而动力电池作为电动车辆的核心动力部件,其充放电性能直接决定了电动车辆的驾驶性能和用户体验。动力电池在低温环境下其放电能力大大减退,极大地影响了电动车辆的续驶里程;动力电池在低温环境下的充电性能和充电时间也无法得到保证。为了保证动力电池在合适的温度范围内工作,以保证其充放电性能及其工作寿命,必要时需要对动力电池进行加热。
车载大功率的电子装置往往产生严重的电磁干扰,导致新能源车辆电磁兼容问题日益突出。对动力电池进行加热的相关技术中,多半存在电路拓扑复杂、电磁干扰严重的缺陷。
公开内容
本公开的目的是提供一种电磁兼容性能良好的电池能量处理装置和方法、车辆。
为了实现上述目的,本公开提供一种电池能量处理装置。所述装置包括:
第一电感,所述第一电感的第一端与所述电池的正极连接;
第二电感,所述第二电感的第一端与所述电池的正极连接;
第一相桥臂,所述第一相桥臂的中点与所述第一电感的第二端连接;
第二相桥臂,所述第二相桥臂的中点与所述第二电感的第二端连接,所述第一相桥臂的第一端和所述第二相桥臂的第一端共接形成第一汇流端,所述第一相桥臂的第二端和所述第二相桥臂的第二端共接形成第二汇流端,所述第二汇流端与所述电池的负极连接;
储能元件,所述储能元件的第一端与所述第一汇流端连接,所述储能元件的第二端与所述第二汇流端连接;
控制器,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池通过所述第一电感和所述第二电感进行充电和放电,以实现对所述电池的加热,其中,所述第一电感和所述第二电感处于不同的工作状态。
可选地,所述工作状态包括:储能状态、续流状态和不工作状态,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池和所述储能元件通过所述第一电感和所述第二电感进行充电和放电,以实现对所述电池的加热。
可选地,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池或所述储能元件向所述第一电感放电,以实现对所述电池的加热,其中,所述第一电感处于储能状态,所述第二电感处于不工作状态。
可选地,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池和所述储能元件中的一者向所述第二电感放电,所述电池和所述储能元件中的另一者通过所述第一电感进行充电,以实现对所述电池的加热,其中,所述第二电感处于储能状态,所述第一电感处于续流状态。
可选地,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池或所述储能元件通过所述第二电感进行充电,以实现对所述电池的加热,其中,所述第二电感处于续流状态,所述第一电感处于不工作状态。
可选地,所述电池为车载电池,所述第一电感和所述第二电感为车辆的电压变换器中的电感,所述第一相桥臂和所述第二相桥臂为所述电压变换器中的桥臂,所述储能元件为母线电容。
可选地,所述电池为车载电池,所述第一相桥臂和所述第二相桥臂为车辆的电机控制器中的桥臂,所述储能元件为母线电容。
可选地,所述装置还包括:
第一开关模块,所述第一开关模块的第一端与所述电池的正极连接,所述第一开关模块的第二端与所述储能元件的第一端连接;
第二开关模块,所述第二开关模块的第一端与所述第一相桥臂的中点连接,所述第二开关模块的第二端与电机的第一相绕组连接;
第三开关模块,所述第三开关模块的第一端与所述第二相桥臂的中点连接,所述第三开关模块的第二端与所述电机的第二相绕组连接;
所述控制器被配置为控制所述第一开关模块、所述第二开关模块和所述第三开关模块断开,以实现对所述电池的加热。
可选地,所述装置还包括:第四开关模块,所述第四开关模块的第一端与所述电池的正极连接,所述第四开关模块的第二端分别与所述第一电感的第一端和所述第二电感的第一端连接;
所述控制器还被配置为控制所述第四开关模块断开,并控制所述第一开关模块、所述第二开关模块和所述第三开关模块闭合,以实现所述电池对所述电机的驱动。
可选地,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池和所述储能元件通过所述第一电感和所述第二电感进行循环充电和放电,以实现对所述电池的加热,其中,所述第一电感和所述第二电感处于不同的工作状态。
本公开还提供一种电池能量处理方法,所述方法包括:
若判定所述电池需要加热,则控制第一相桥臂和第二相桥臂,使所述电池通过第一电感和第二电感进行充电和放电,以实现对所述电池的加热,其中,所述第一电感和所述第二电感处于不同的工作状态,
其中,所述第一电感的第一端与所述电池的正极连接,所述第二电感的第一端与所述电池的正极连接,所述第一相桥臂的中点与所述第一电感的第二端连接,所述第二相桥臂的中点与所述第二电感的第二端连接,所述第一相桥臂的第一端和所述第二相桥臂的第一端共接形成第一汇流端,所述第一相桥臂的第二端和所述第二相桥臂的第二端共接形成第二汇流端,所述第二汇流端与所述电池的负极连接,所述储能元件的第一端与所述第一汇流端连接,所述储能元件的第二端与所述第二汇流端连接。
可选地,所述工作状态包括:储能状态、续流状态和不工作状态。
若判定所述电池需要加热,则控制第一相桥臂和第二相桥臂,使所述电池通过第一电感和第二电感进行充电和放电,以实现对所述电池的加热,包括:若判定所述电池需要加热,则控制第一相桥臂和第二相桥臂,使所述电池和所述储能元件通过第一电感和第二电感进行充电和放电,以实现对所述电池的加热。
可选地,控制第一相桥臂和第二相桥臂,使所述电池和储能元件通过第一电感和第二电感进行充电和放电,以实现对所述电池的加热,包括:
控制所述第一相桥臂和所述第二相桥臂,使所述电池或所述储能元件向所述第一电感放电,以实现对所述电池的加热,其中,所述第一电感处于储能状态,所述第二电感处于不工作状态;
或者,
控制所述第一相桥臂和所述第二相桥臂,使所述电池和所述储能元件中的一者向所述第二电感放电,所述电池和所述储能元件中的另一者通过所述第一电感进行充电,以实现对所述电池的加热,其中,所述第二电感处于储能状态,所述第一电感处于续流状态;
或者,
控制所述第一相桥臂和所述第二相桥臂,使所述电池或所述储能元件通过所述第二电感进行充电,以实现对所述电池的加热,其中,所述第二电感处于续流状态,所述第一电感处于不工作状态。
可选地,控制第一相桥臂和第二相桥臂,使所述电池和储能元件通过第一电感和第二电 感进行充电和放电,包括:
控制所述第一相桥臂的下桥臂导通,所述第一相桥臂的上桥臂、所述第二相桥臂的上桥臂和下桥臂关断,以使所述电池对所述第一电感充电;
控制所述第一相桥臂的上桥臂和所述第二相桥臂的下桥臂导通,所述第一相桥臂的下桥臂和所述第二相桥臂的上桥臂关断,以使所述电池对所述第二电感充电,所述第一电感对所述储能元件充电;
控制所述第二相桥臂的上桥臂导通,所述第二相桥臂的下桥臂、所述第一相桥臂的上桥臂和下桥臂关断,以使所述第二电感对所述储能元件充电;
控制所述第二相桥臂的上桥臂导通,所述第二相桥臂的下桥臂、所述第一相桥臂的上桥臂和下桥臂关断,以使所述储能元件经所述第二电感对所述电池充电;
控制所述第一相桥臂的上桥臂和所述第二相桥臂的下桥臂导通,所述第一相桥臂的下桥臂和所述第二相桥臂的上桥臂关断,以使所述储能元件经所述第一电感对所述电池充电,所述第二电感对所述电池充电;
控制所述第一相桥臂的下桥臂导通,所述第一相桥臂的上桥臂、所述第二相桥臂的上桥臂和下桥臂关断,以使所述第一电感对所述电池充电。
可选地,控制第一相桥臂和第二相桥臂,使所述电池和储能元件通过第一电感和第二电感进行充电和放电,包括:
控制所述第一相桥臂的下桥臂导通,所述第一相桥臂的上桥臂、所述第二相桥臂的上桥臂和下桥臂关断,以使所述电池对所述第一电感充电;
控制所述第一相桥臂的上桥臂和所述第二相桥臂的下桥臂导通,所述第一相桥臂的下桥臂和所述第二相桥臂的上桥臂关断,以使所述电池对所述第二电感充电,所述第一电感对所述储能元件充电;
控制所述第二相桥臂的上桥臂导通,所述第二相桥臂的下桥臂、所述第一相桥臂的上桥臂和下桥臂关断,以使所述第二电感对所述储能元件充电;
控制所述第一相桥臂的上桥臂导通,所述第一相桥臂的下桥臂、所述第二相桥臂的上桥臂和下桥臂关断,以使所述储能元件经所述第一电感对所述电池充电;
控制所述第一相桥臂的下桥臂和所述第二相桥臂的上桥臂导通,所述第一相桥臂的上桥臂和所述第二相桥臂的下桥臂关断,以使所述储能元件经所述第二电感对所述电池充电,所述第一电感对所述电池充电;
控制所述第二相桥臂的下桥臂导通,所述第二相桥臂的上桥臂、所述第一相桥臂的上桥臂和下桥臂关断,以使所述第二电感对所述电池充电。
可选地,在所述第一电感和所述第二电感中的一者为储能状态,另一者为续流状态的阶 段中,在控制用于进行电感续流的桥臂进行动作之后,延迟预设时长再控制用于进行电感储能的桥臂进行动作。
可选地,在所述加热期间,调节所述第一相桥臂和所述第二相桥臂中的开关频率或占空比,以使流经所述电池的电流值达到最优电流值。
可选地,在所述加热期间,调节所述第一相桥臂和所述第二相桥臂的占空比,以使流经所述电池的电流值达到最优电流值,包括:
在所述加热期间,根据流经所述电池的电流与所述最优电流值的比较结果以及所述第一相桥臂和所述第二相桥臂在当前载频周期中的占空比,调节所述第一相桥臂和所述第二相桥臂在下一个载频周期中的占空比,以使流经所述电池的电流值达到所述最优电流值。
可选地,在所述加热期间,根据流经所述电池的电流与所述最优电流值的比较结果以及所述第一相桥臂和所述第二相桥臂在当前载频周期中的占空比,调节所述第一相桥臂和所述第二相桥臂在下一个载频周期中的占空比,以使流经所述电池的电流值达到所述最优电流值,包括:
在所述电池充电或放电期间,若流经所述电池的电流小于所述最优电流值,则控制使所述第一相桥臂和所述第二相桥臂在下一个载频周期中的占空比大于在当前载频周期中的占空比;若流经所述电池的电流大于所述最优电流值,则控制使所述第一相桥臂和所述第二相桥臂在下一个载频周期中的占空比小于在当前载频周期中的占空比,直至流经所述电池的电流值达到所述最优电流值。
本公开还提供一种车辆,包括电池和本公开提供的上述电池能量处理装置。
通过上述技术方案,电池和储能元件之间通过第一电感和第二电感进行充电和放电,以实现对电池的加热。并且,在电池加热期间,第一电感和第二电感处于不同的工作状态。与采用一个电感或者对多个电感采用相同工作状态的电池加热控制方式相比,本方案中的这种双电感交错控制的方式,在输出相同电流的情况下,电路中的纹波电流较小,从而显著提升了电池能量处理装置的电磁兼容性能。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是一示例性实施例提供的电池能量处理装置的结构框图;
图2是一示例性实施例提供的电池能量处理装置中的电路结构示意图;
图3a-图3f分别是一示例性实施例提供的一个电流周期中的六个阶段的电流方向示意 图;
图4a-图4c分别是另一示例性实施例提供的一个电流周期中后三个阶段的电流方向示意图;
图5是又一示例性实施例提供的电池能量处理装置中的电路结构示意图;
图6a是一示例性实施例提供的利用一个电感进行加热时电路中电流随时间变化的曲线图;
图6b是一示例性实施例提供的利用本方案中的两个电感进行加热时电路中电流随时间变化的曲线图;
图7是一示例性实施例提供的电池能量处理方法的流程图;
图8是另一示例性实施例提供的电池能量处理方法的流程图;
图9是一示例性实施例提供的车辆的结构框图;
图10是又一示例性实施例提供的车辆的结构框图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
图1是一示例性实施例提供的电池能量处理装置的结构框图。该电池能量处理装置可以包括第一电感L1、第二电感L2、第一相桥臂10、第二相桥臂20、储能元件30和控制器40。
其中,第一电感L1的第一端(左端)与电池的正极(+)连接;第二电感L2的第一端(左端)与电池的正极连接;第一相桥臂10的中点A与第一电感L1的第二端(右端)连接;第二相桥臂20的中点B与第二电感L2的第二端(右端)连接。第一相桥臂10的第一端10a和第二相桥臂20的第一端20a共接形成第一汇流端,第一相桥臂10的第二端10b和第二相桥臂20的第二端20b共接形成第二汇流端,第二汇流端与电池的负极(—)连接。
储能元件30的第一端(图1中的上端)与第一汇流端连接,储能元件30的第二端(图1中的下端)与第二汇流端连接。
控制器40分别与第一相桥臂10、第二相桥臂20连接,控制器40被配置为控制第一相桥臂10和第二相桥臂20,使电池通过第一电感L1和第二电感L2进行充电和放电,以实现对电池的加热。其中,第一电感L1和第二电感L2处于不同的工作状态。
图2是一示例性实施例提供的电池能量处理装置中的电路结构示意图。如图2所示,第一相桥臂10包括上桥臂S1和下桥臂S2,第二相桥臂20包括上桥臂S3和下桥臂S4。在图2中,每一个桥臂示例性地包括并联连接的三极管和二极管。其中,三极管还可以用其 他开关管来代替,例如,绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)等。在图2中,储能元件30示例性地以电容的形式示出,储能元件30还可以是电感等其他类型的储能元件。
其中,第一电感L1的第一端L1a与电池的正极(+)连接;第二电感L2的第一端L2a与电池的正极连接;第一相桥臂10的中点A与第一电感L1的第二端L1b连接;第二相桥臂20的中点B与第二电感L2的第二端L2b连接。第一相桥臂10的第一端10a和第二相桥臂20的第一端20a共接形成第一汇流端,第一相桥臂10的第二端10b和第二相桥臂20的第二端20b共接形成第二汇流端,第二汇流端与电池的负极(—)连接。
在本方案中,第一电感L1和第二电感L2在电池加热的过程中,始终都处于不同的工作状态,真正地作为两个不同的电感来使用。本方案中的这种双电感交错(不同的工作状态)控制的方式,能够在一定程度上起到互相弥补、互相制约的作用,电路中的纹波电流较小,电磁兼容性较好,并且,电池发热是由于电池充电或放电时,流经电池的电流使得电池内阻发热造成的,电池由内向外升温,因此,电池的加热效率高。
根据图2所示的电路结构图,在电池加热期间,可以设置为经历多种不同电流流向的阶段,对应地,两个电感的工作状态可以包括:储能状态、续流状态和不工作状态。其中,当处于储能状态时,电感本身进行充电,电感两端电压增大;当处于续流状态时,电感本身进行放电,电感两端电压减小;当处于不工作状态时,电感本身不充电也不放电,电感两端电压保持不变。
在上述不同的工作状态的基础上,具体地,使两个电感在储能、续流和不工作这三种状态中分别处于其中的两种状态,可选状态的多样化不仅使可设置的电流流向策略多样化,而且能够通过试验的方式对多种策略进行比较,并从中选取出纹波电流相对较小的、较优的电流流向策略。
在又一实施例中,控制器40被配置为控制第一相桥臂10和第二相桥臂20,使电池和储能元件30通过第一电感L1和第二电感L2进行充电和放电,以实现对电池的加热。
其中,电池和储能元件30进行充电和放电,可以包括电池充电,储能元件30放电的过程,和/或,电池放电,储能元件30充电的过程。
举例来说,图3a-图3f分别是一示例性实施例提供的一个电流周期中的六个阶段的电流方向示意图。在该实施例的一个电流周期中,控制器可以控制第一相桥臂和第二相桥臂分别在六个阶段中执行以下六个步骤:
1、控制第一相桥臂的下桥臂S2导通,第一相桥臂的上桥臂S1、第二相桥臂的上桥臂S3和下桥臂S4关断,以使电池对第一电感L1充电。如图3a所示,电流从电池正极流出, 经第一电感L1、第一相桥臂的下桥臂S2流回电池负极。
2、控制第一相桥臂的上桥臂S1和第二相桥臂的下桥臂S4导通,第一相桥臂的下桥臂S2和第二相桥臂的上桥臂S3关断,以使电池对第二电感L2充电,第一电感L1对储能元件30充电。如图3b所示,电流从电池正极流出,一路经第一电感L1、第一相桥臂的上桥臂S1、储能元件30流回电池负极,另一路经第二电感L2、第二相桥臂的下桥臂S4流回电池负极。
3、控制第二相桥臂的上桥臂S3导通,第二相桥臂的下桥臂S4、第一相桥臂的上桥臂S1和下桥臂S2关断,以使第二电感L2对储能元件30充电。如图3c所示,电流从电池正极流出,经第二电感L2、第二相桥臂的上桥臂S3、储能元件30流回电池负极。
4、控制第二相桥臂的上桥臂S3导通,第二相桥臂的下桥臂S4、第一相桥臂的上桥臂S1和下桥臂S2关断,以使储能元件30经第二电感L2对电池充电。如图3d所示,电流从电池负极流出,经储能元件30、第二相桥臂的上桥臂S3、第二电感L2流回电池正极。
5、控制第一相桥臂的上桥臂S1和第二相桥臂的下桥臂S4导通,第一相桥臂的下桥臂S2和第二相桥臂的上桥臂S3关断,以使储能元件30经第一电感L1对电池充电,第二电感L1对电池充电。如图3e所示,电流从电池负极流出,一路经储能元件30、第一相桥臂的上桥臂S1、第一电感L1流回电池正极,另一路经第二相桥臂的下桥臂S4、第二电感L2流回电池正极。
6、控制第一相桥臂的下桥臂S2导通,第一相桥臂的上桥臂S1、第二相桥臂的上桥臂S3和下桥臂S4关断,以使第一电感L1对电池充电。如图3f所示,电流从电池负极流出,经第一相桥臂的下桥臂S2、第一电感L1流回电池正极。
该实施例中,在上述的第三到第四阶段的切换不需要控制桥臂的动作,而是由储能元件30充电以后又自动放电来切换状态。这样,在电流周期具有相同数目的步骤的情况下,减少了控制器控制的动作,简化了控制器的控制流程,使得电池加热更加可靠。
在另一实施例中,控制器也是控制分别在六个阶段中执行六个步骤。在该实施例的一个电流周期中,前三个阶段可以与上一实施例中的前三个阶段(图3a-图3c)相同。图4a-图4c分别是另一示例性实施例提供的一个电流周期中后三个阶段的电流方向示意图。
在第四个阶段中:控制第一相桥臂的上桥臂S1导通,第一相桥臂的下桥臂S2、第二相桥臂的上桥臂S3和下桥臂S4关断,以使储能元件30经第一电感L1对电池充电。如图4a所示,电流从电池负极流出,经储能元件30、第一相桥臂的上桥臂S1、第一电感L1流回电池正极。
在第五个阶段中:控制第一相桥臂的下桥臂S2和第二相桥臂的上桥臂S3导通,第一相桥臂的上桥臂S1和第二相桥臂的下桥臂S4关断,以使储能元件30经第二电感L2对电 池充电,第一电感L1对电池充电。如图4b所示,电流从电池负极流出,一路经储能元件30、第二相桥臂的上桥臂S3、第二电感L2流回电池正极,另一路经第一相桥臂的下桥臂S2、第一电感L1流回电池正极。
在第六个阶段中:控制第二相桥臂的下桥臂S4导通,第二相桥臂的上桥臂S3、第一相桥臂的上桥臂S1和下桥臂S2关断,以使第二电感L2对电池充电。如图4c所示,电流从第二电感L2流出,流经电池、经第二相桥臂的下桥臂S4流回第二电感L2。
与上一实施例(图3a-图3f)相比,在该实施例(图3a-图3c、图4a-图4c)中,电流周期具有相同数目的步骤,控制器主动控制每一个步骤,使得电势能较大,电池加热的效率较高。
在本公开的方案中,第一电感和第二电感的状态可以有几种不同的组合。以图3a-图3c、图4a-图4c作为一个电流周期的实施例为例,一个电流周期的六个阶段可以包括三种组合。
第一种组合是第一电感处于储能状态,第二电感处于不工作状态,包括图3a和图4a的阶段。其中,控制器被配置为控制第一相桥臂和第二相桥臂,使电池或储能元件30向第一电感L1放电,以实现对电池的加热。其中,在图3a的阶段中,电池向第一电感L1放电,在图4a的阶段中,储能元件30向第一电感L1放电。
这种组合中,只用一个电感储能。由于另一个电感不工作,因此在一定程度上限制了流经电池的电流不会太大,使得产生的电流波纹较小。
第二种组合是第二电感处于储能状态,第一电感处于续流状态,包括图3b和图4b的阶段。其中,控制器被配置为控制第一相桥臂和第二相桥臂,使电池和储能元件30中的一者向第二电感L2放电,电池和储能元件30中的另一者通过第一电感L1进行充电,以实现对电池的加热。
其中,在图3b的阶段中,电池向第二电感L2放电,储能元件30通过第一电感L1进行充电,在图4b的阶段中,储能元件30向第二电感L2放电,电池通过第一电感L1进行充电。
这种组合中,一个电感储能,一个电感续流,虽然两个电感同时工作,但由于二者产生交错互补的态势,因此在避免产生较大电流波纹的同时,增强了加热效率。
第三种组合是第二电感处于续流状态,第一电感处于不工作状态,包括图3c和图4c的阶段。其中,控制器被配置为控制第一相桥臂和第二相桥臂,使电池或储能元件通过第二电感进行充电,以实现对电池的加热。其中,在图3c的阶段中,储能元件通过第二电感进行充电,在图4c的阶段中,电池通过第二电感进行充电。
这种组合中,只用一个电感续流。由于另一个电感不工作,因此在一定程度上限制了 流经电池的电流不会太大,使得产生的电流波纹较小。
图2中的电路结构可以设置为专用于电池加热的电路,也可以复用与电池在同一装置中的相关器件中的电路。例如,电池为车载电池,第一电感和第二电感为车辆的电压变换器中的电感,第一相桥臂和第二相桥臂为电压变换器中的桥臂,储能元件为母线电容。电压变换器可以为升压直流电(Direct Current,DC)模块。又如,电池为车载电池,第一相桥臂和第二相桥臂为车辆的电机控制器中的桥臂,储能元件为母线电容。
这样,具有相似电路结构的器件,在该器件不工作的时候复用其中的电路,能够节省硬件的布置,减少线路连接,并节省空间,不增大器件的体积,利于器件的小型化,不改变车辆的原有结构,实现电池加热,方案成本低。
若复用其他器件中的电路,可以在线路中设置开关模块,通过控制开关模块的开闭,达到对复用电路的功能进行切换的目的。图5是又一示例性实施例提供的电池能量处理装置中的电路结构示意图。在图5的实施例中,电池为车载电池,复用的是车辆的电机控制器中的电路,在图2的基础上,该电池能量处理装置还可以包括第一开关模块K1、第二开关模块K2和第三开关模块K3。
第一开关模块K1的第一端(图5中K1的左端)与电池的正极连接,第一开关模块K1的第二端(图5中K1的右端)与储能元件30的第一端(图5中储能元件30的上端)连接。
第二开关模块K2的第一端(图5中K2的左端)与第一相桥臂10的中点连接,第二开关模块K2的第二端(图5中K2的右端)与电机G的第一相绕组(未示出)连接。
第三开关模块K3的第一端(图5中K3的左端)与第二相桥臂20的中点连接,第三开关模块K3的第二端(图5中K3的右端)与电机G的第二相绕组(未示出)连接。
该实施例中,控制器被配置为控制第一开关模块K1、第二开关模块K2和第三开关模块K3断开,以实现对电池的加热。若K1、K2和K3断开,则断开了第一相桥臂10和第二相桥臂20对电机的控制,转换为用于电池加热,电路设计和控制策略都比较简单,能够快速转换到为电池加热的功能,可靠性高。
如图5所示,该装置还可以包括第四开关模块K4。第四开关模块K4的第一端(图5中K4的左端)与电池的正极连接,第四开关模块K4的第二端(图5中K4的右端)分别与第一电感L1的第一端(图5中L1的左端)和第二电感L2的第一端(图5中L2的左端)连接。
该实施例中,控制器还被配置为控制第四开关模块K4断开,并控制第一开关模块K1、第二开关模块K2和第三开关模块K3闭合,以实现电池对电机的驱动。电容C为母线电容。由图5可知,若K4断开,K1、K2和K3闭合,则在线路中断开了第一电感L1和第二电感L2,通过三相桥臂可实现对电机G的控制,即线路转换为电机控制器的功能,该切换电路 的设计和控制策略都比较简单,能够快速转换到驱动电机的功能,可靠性高。
上述实施例中描述了一个电流周期的桥臂动作、电流流向和充放电状态。在又一实施例中,控制器可以被配置为控制第一相桥臂和第二相桥臂,使电池和储能元件通过第一电感和第二电感进行循环充电和放电,以实现对电池的加热。其中,第一电感和第二电感处于不同的工作状态。也就是,可以循环执行上述的电流周期,直至达到停止电池加热的条件为止。停止电池加热的条件例如可以是电池温度达到预定的温度阈值。
该实施例中,将预定的步骤循环执行,以达到持续不断地为电池充电的目的,同时,控制策略简单,不易出错,可靠性高。
图6a是一示例性实施例提供的利用一个电感进行加热时电路中电流随时间变化的曲线图。图6b是一示例性实施例提供的利用本方案中的两个电感进行加热时电路中电流随时间变化的曲线图。其中,横坐标为时间,纵坐标为电路中电流,即流经动力电池的电流。如图6a和图6b所示,当只利用一个电感进行加热时,曲线中电流的纹波较大;而利用两个电感进行加热时,曲线中的电流纹波相比单电感明显减小。可见,利用本公开的方案为电池加热时,在输出相同电流的情况下,电路中的纹波电流较小,因此,显著提升了电池能量处理装置的电磁兼容性能。
本公开还提供一种电池能量处理方法。图7是一示例性实施例提供的电池能量处理方法的流程图。如图7所示,该方法可以包括步骤S71:若判定电池需要加热,则控制第一相桥臂和第二相桥臂,使电池通过第一电感和第二电感进行充电和放电,以实现对电池的加热。其中,第一电感和第二电感处于不同的工作状态。
其中,第一电感的第一端与电池的正极连接,第二电感的第一端与电池的正极连接,第一相桥臂的中点与第一电感的第二端连接,第二相桥臂的中点与第二电感的第二端连接,第一相桥臂的第一端和第二相桥臂的第一端共接形成第一汇流端,第一相桥臂的第二端和第二相桥臂的第二端共接形成第二汇流端,第二汇流端与电池的负极连接,储能元件的第一端与第一汇流端连接,储能元件的第二端与第二汇流端连接。
在本方案中,第一电感和第二电感在电池加热的过程中,始终都处于不同的工作状态,真正地作为两个不同的电感来使用。与采用一个电感或者对多个电感采用相同工作状态的电池加热控制方式相比,本方案中的这种双电感交错(不同的工作状态)控制的方式,能够在一定程度上起到互相弥补、互相制约的作用,在输出相同电流的情况下,电路中的纹波电流较小,从而显著提升了电池能量处理装置的电磁兼容性能。
可选地,两个电感的工作状态可以包括:储能状态、续流状态和不工作状态。若判定电池需要加热,则控制第一相桥臂和第二相桥臂,使电池通过第一电感和第二电感进行充电和放电,以实现对电池的加热的步骤(步骤S71)可以包括:若判定电池需要加热,则控 制第一相桥臂和第二相桥臂,使电池和储能元件通过第一电感和第二电感进行充电和放电,以实现对电池的加热。
在上述不同的工作状态的基础上,具体地,使两个电感在储能、续流和不工作这三种状态中分别处于其中的两种状态,可选状态的多样化不仅使可设置的电流流向策略多样化,而且能够通过试验的方式对多种策略进行比较,并从中选取出纹波电流相对较小的、较优的电流流向策略。
可选地,控制第一相桥臂和第二相桥臂,使电池和储能元件通过第一电感和第二电感进行充电和放电,以实现对电池的加热的步骤可以包括:控制第一相桥臂和第二相桥臂,使电池或储能元件向第一电感放电,以实现对电池的加热,其中,第一电感处于储能状态,第二电感处于不工作状态;
或者可以包括:控制第一相桥臂和第二相桥臂,使电池和储能元件中的一者向第二电感放电,电池和储能元件中的另一者通过第一电感进行充电,以实现对电池的加热,其中,第二电感处于储能状态,第一电感处于续流状态;
或者可以包括:控制第一相桥臂和第二相桥臂,使电池或储能元件通过第二电感进行充电,以实现对电池的加热,其中,第二电感处于续流状态,第一电感处于不工作状态。
一个电感工作,另一个电感不工作时,在一定程度上限制了流经电池的电流不会太大,使得产生的电流波纹较小。一个电感储能,一个电感续流时,虽然两个电感同时工作,但由于二者产生交错互补的态势,因此在避免产生较大电流波纹的同时,增强了加热效率。
可选地,控制第一相桥臂和第二相桥臂,使电池和储能元件通过第一电感和第二电感进行充电和放电的步骤可以包括:
1、控制第一相桥臂的下桥臂导通,第一相桥臂的上桥臂、第二相桥臂的上桥臂和下桥臂关断,以使电池对第一电感充电;
2、控制第一相桥臂的上桥臂和第二相桥臂的下桥臂导通,第一相桥臂的下桥臂和第二相桥臂的上桥臂关断,以使电池对第二电感充电,第一电感对储能元件充电;
3、控制第二相桥臂的上桥臂导通,第二相桥臂的下桥臂、第一相桥臂的上桥臂和下桥臂关断,以使第二电感对储能元件充电;
4、控制第二相桥臂的上桥臂导通,第二相桥臂的下桥臂、第一相桥臂的上桥臂和下桥臂关断,以使储能元件经第二电感对电池充电;
5、控制第一相桥臂的上桥臂和第二相桥臂的下桥臂导通,第一相桥臂的下桥臂和第二相桥臂的上桥臂关断,以使储能元件经第一电感对电池充电,第二电感对电池充电;
6、控制第一相桥臂的下桥臂导通,第一相桥臂的上桥臂、第二相桥臂的上桥臂和下桥臂关断,以使第一电感对电池充电。
该实施例中,在上述的3到4阶段的切换不需要控制桥臂的动作,而是由储能元件充电以后又自动放电来切换状态。这样,在电流周期具有相同数目的步骤的情况下,减少了控制器控制的动作,简化了控制器的控制流程,使得电池加热更加可靠。
可选地,控制第一相桥臂和第二相桥臂,使电池和储能元件通过第一电感和第二电感进行充电和放电的步骤可以包括:
1、控制第一相桥臂的下桥臂导通,第一相桥臂的上桥臂、第二相桥臂的上桥臂和下桥臂关断,以使电池对第一电感充电;
2、控制第一相桥臂的上桥臂和第二相桥臂的下桥臂导通,第一相桥臂的下桥臂和第二相桥臂的上桥臂关断,以使电池对第二电感充电,第一电感对储能元件充电;
3、控制第二相桥臂的上桥臂导通,第二相桥臂的下桥臂、第一相桥臂的上桥臂和下桥臂关断,以使第二电感对储能元件充电;
4、控制第一相桥臂的上桥臂导通,第一相桥臂的下桥臂、第二相桥臂的上桥臂和下桥臂关断,以使储能元件经第一电感对电池充电;
5、控制第一相桥臂的下桥臂和第二相桥臂的上桥臂导通,第一相桥臂的上桥臂和第二相桥臂的下桥臂关断,以使储能元件经第二电感对电池充电,第一电感对电池充电;
6、控制第二相桥臂的下桥臂导通,第二相桥臂的上桥臂、第一相桥臂的上桥臂和下桥臂关断,以使第二电感对电池充电。
在该实施例中,控制器主动控制每一个步骤,使得电势能较大,电池加热的效率较高。
关于上述实施例中的方法,其中各个步骤执行操作的具体方式已经在有关该装置的实施例中进行了详细描述,此处将不做详细阐述说明。
在又一实施例中,在第一电感和第二电感中的一者为储能状态,另一者为续流状态的阶段中,在控制用于进行电感续流的桥臂进行动作之后,延迟预设时长再控制用于进行电感储能的桥臂进行动作。
预设时长可以根据桥臂中开关管的开关周期来设定,例如,预设时长可以为桥臂中开关管的半周期。
举例来说,在图3b的阶段中,需要控制用于进行第一电感L1续流的第一相桥臂的下桥臂S2关断,并控制用于进行第二电感L2储能的第二相桥臂的下桥臂S4导通。则先控制第一相桥臂的下桥臂S2关断,关断之后,经过桥臂开关管的半周期,再控制第二相桥臂的下桥臂S4导通。
又如,在图3e的阶段中,需要控制用于进行第一电感L1储能的第一相桥臂的上桥臂S1导通,并控制用于进行第二电感L2续流的第二相桥臂的上桥臂S3关断。则先控制第二相桥臂的上桥臂S3关断,关断之后,经过桥臂开关管的半周期,再控制第一相桥臂的上桥 臂S1导通。
通过上述延迟的操作,桥臂交替地开关,使得在一电感续流开始一段时间后,另一电感再开始储能,这样能够减小电流冲击,电荷能够缓慢地转移,这符合电感本身的充放电特性,有利于延长装置的使用寿命。
在又一实施例中,在加热期间,可以调节第一相桥臂和第二相桥臂中的开关频率或占空比,以使流经电池的电流值达到最优电流值。
其中,最优电流值是综合考虑电池和电路特性的流经电池的理想电流值。若第一相桥臂和第二相桥臂为电压变换器中的桥臂,则最优电流值可以是电池允许的最大电流值和电压变换器允许的最大电流值二者中的较小值。
电池允许的最大电流值与电池SOC、温度、交变频率、电压、单个周期重放电容量等因素有关。电压变换器允许的最大电流值主要受IGBT模块芯片结温、电感线圈传感器温度限制,根据报文采集的当前IGBT芯片温度、电感线圈传感器采集的当前温度和IGBT芯片和电感线圈传感器限扭温度,可以通过查表的方式得出电压变换器允许的最大电流。
具体地,最优电流值可以通过以下公式来得到:
I(f)=min(I_max1,I_max2)
I_max1=C﹡f
I_max2=(U_max-OCV)/(R_ac(f))
其中,I(f)为最优电流值,I_max1为电池允许的最大电流值,I_max2为电压变换器允许的最大电流值,min为求最小值,C为一个循环中脉冲充、放电不能超过的容量,f为电池交变频率,U_max为电池最大电压,OCV为开路电压,R_ac(f)为电池交流内阻随f变化的函数。
该实施例中,通过调节第一相桥臂和第二相桥臂中的开关频率或占空比,使流经电池的电流值达到最优电流值,其利用了简便的方法,使电池加热的效率逐步达到最大化,控制简单且可靠性高。
在又一实施例中,在加热期间,调节第一相桥臂和第二相桥臂的占空比,以使流经电池的电流值达到最优电流值的步骤可以包括:
在加热期间,根据流经电池的电流与最优电流值的比较结果以及第一相桥臂和第二相桥臂在当前载频周期中的占空比,调节第一相桥臂和第二相桥臂在下一个载频周期中的占空比,以使流经电池的电流值达到最优电流值。
也就是,在第一相桥臂和第二相桥臂的每一个载频周期中的占空比,都会视上一载频周期中的占空比的情况来调整,以逐步达到最优的占空比(对应于最优电流值)。这样,占空比调节的频率较高,从而能够快速达到最优的占空比和最优电流值,使得电池加热的效 率得到快速提升。
在又一实施例中,在加热期间,根据流经电池的电流与最优电流值的比较结果以及第一相桥臂和第二相桥臂在当前载频周期中的占空比,调节第一相桥臂和第二相桥臂在下一个载频周期中的占空比,以使流经电池的电流值达到最优电流值的步骤可以包括:
在电池充电或放电期间,若流经电池的电流小于最优电流值,则控制使第一相桥臂和第二相桥臂在下一个载频周期中的占空比大于在当前载频周期中的占空比;若流经电池的电流大于最优电流值,则控制使第一相桥臂和第二相桥臂在下一个载频周期中的占空比小于在当前载频周期中的占空比,直至流经电池的电流值达到最优电流值。
也就是,通过占空比的闭环控制,使得电路中的电流最终处于最优电流值(或者因满足停止加热条件而在达到最优电流值之前停止加热)。具体地,可以预先确定初始的占空比,并预先确定占空比调节的步长,在占空比的闭环控制过程中,利用初始的占空比和步长来调节下一载频周期中的占空比。这样,既能保证电池能量处理装置的安全,又能提高加热效率,缩短加热时间。
图8是一示例性实施例提供的电池能量处理方法的流程图。如图8所示,电池自加热前,电池管理系统可以采集的电池温度T,若温度T小于设定温度值Tmin,则采集电池SOC,若判定采集的SOC大于设定的SOCmin,则开始加热。或者采集的SOC<SOCmin时,则不加热。只有当采样温度T和采样SOC同时满足要求即T<Tmin并且采样SOC>SOCmin时,能启动电池自加热程序。例如,Tmin可以为零下10℃,可以为10%。另外,若考虑电芯间最大温差,采集的电池温度可以为多个监测点平均值。
当启动电池自加热程序后,可以先判定电流的流向。若电池给储能元件充电,则电流大于0,控制S2、S4来控制电池放电;若储能元件给电池充电,则电池电流小于0,控制S1、S3来控制电流充电。
加热程序启动后,在电压变换器的IGBT开关频率和电池交变载频确定的情况下,设定初始占空比为D0。若电流大于0,此时电池给储能元件充电,控制S2导通,占空比为D0,延迟半周期后,再控制S4导通,占空比为D0。同时采集此时电路上的当前电流值,若当前电流值小于最优电流值,则在下一个载频周期中,导通S2,占空比为D0+ΔT,延迟半周期后,导通S4,占空比为D0+ΔT。若当前电流值大于最优电流值,则在下一个载频周期中,控制S2导通,占空比为D0-ΔT,延迟半周期后,再控制S4导通,占空比为D0-ΔT。在调整占空比后,需要重新采集电池温度T,并判定电池温度T是否达到设定的温度值Tmin。若电池电流小于0,控制S1、S3的方法类似。
本公开还提供一种车辆。图9是一示例性实施例提供的车辆的结构框图。如图9所示,该车辆可以包括电池100和本公开提供的上述电池能量处理装置200。
图10是又一示例性实施例提供的车辆的结构框图。该实施例中,车辆为混合动力车辆。如图10所示,该车辆可以包括电池100、电压变换器300、母线电容30、驱动电机G1、驱动电机控制桥臂400、发电机G2、发电机控制桥臂500。其中,上述的电池能量处理装置200包括电压变换器300和母线电容30。电压变换器300包括第一电感L1、第二电感L2和两相桥臂。电压变换器300中两相桥臂的第一汇流端也是驱动电机控制桥臂400、发电机控制桥臂500的第一汇流端,电压变换器300中两相桥臂的第二汇流端也是驱动电机控制桥臂400、发电机控制桥臂500的第二汇流端。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (20)

  1. 一种电池能量处理装置,其特征在于,所述装置包括:
    第一电感,所述第一电感的第一端与所述电池的正极连接;
    第二电感,所述第二电感的第一端与所述电池的正极连接;
    第一相桥臂,所述第一相桥臂的中点与所述第一电感的第二端连接;
    第二相桥臂,所述第二相桥臂的中点与所述第二电感的第二端连接,所述第一相桥臂的第一端和所述第二相桥臂的第一端共接形成第一汇流端,所述第一相桥臂的第二端和所述第二相桥臂的第二端共接形成第二汇流端,所述第二汇流端与所述电池的负极连接;
    储能元件,所述储能元件的第一端与所述第一汇流端连接,所述储能元件的第二端与所述第二汇流端连接;
    控制器,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池通过所述第一电感和所述第二电感进行充电和放电,以实现对所述电池的加热,其中,所述第一电感和所述第二电感处于不同的工作状态。
  2. 根据权利要求1所述的装置,其特征在于,所述工作状态包括:储能状态、续流状态和不工作状态,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池和所述储能元件通过所述第一电感和所述第二电感进行充电和放电,以实现对所述电池的加热。
  3. 根据权利要求2所述的装置,其特征在于,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池或所述储能元件向所述第一电感放电,以实现对所述电池的加热,其中,所述第一电感处于储能状态,所述第二电感处于不工作状态。
  4. 根据权利要求3所述的装置,其特征在于,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池和所述储能元件中的一者向所述第二电感放电,所述电池和所述储能元件中的另一者通过所述第一电感进行充电,以实现对所述电池的加热,其中,所述第二电感处于储能状态,所述第一电感处于续流状态。
  5. 根据权利要求4所述的装置,其特征在于,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池或所述储能元件通过所述第二电感进行充电,以实现对所述电池的加热,其中,所述第二电感处于续流状态,所述第一电感处于不工作状态。
  6. 根据权利要求1-5中任意一项所述的装置,其特征在于,所述电池为车载电池,所述第一电感和所述第二电感为车辆的电压变换器中的电感,所述第一相桥臂和所述第二相桥臂为所述电压变换器中的桥臂,所述储能元件为母线电容。
  7. 根据权利要求1-6中任意一项所述的装置,其特征在于,所述电池为车载电池,所述第一相桥臂和所述第二相桥臂为车辆的电机控制器中的桥臂,所述储能元件为母线电容。
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    第一开关模块,所述第一开关模块的第一端与所述电池的正极连接,所述第一开关模块的第二端与所述储能元件的第一端连接;
    第二开关模块,所述第二开关模块的第一端与所述第一相桥臂的中点连接,所述第二开关模块的第二端与电机的第一相绕组连接;
    第三开关模块,所述第三开关模块的第一端与所述第二相桥臂的中点连接,所述第三开关模块的第二端与所述电机的第二相绕组连接;
    所述控制器被配置为控制所述第一开关模块、所述第二开关模块和所述第三开关模块断开,以实现对所述电池的加热。
  9. 根据权利要求8所述的装置,其特征在于,所述装置还包括:第四开关模块,所述第四开关模块的第一端与所述电池的正极连接,所述第四开关模块的第二端分别与所述第一电感的第一端和所述第二电感的第一端连接;
    所述控制器还被配置为控制所述第四开关模块断开,并控制所述第一开关模块、所述第二开关模块和所述第三开关模块闭合,以实现所述电池对所述电机的驱动。
  10. 根据权利要求2-9中任意一项所述的装置,其特征在于,所述控制器被配置为控制所述第一相桥臂和所述第二相桥臂,使所述电池和所述储能元件通过所述第一电感和所述第二电感进行循环充电和放电,以实现对所述电池的加热,其中,所述第一电感和所述第二电感处于不同的工作状态。
  11. 一种电池能量处理方法,其特征在于,所述方法包括:
    若判定所述电池需要加热,则控制第一相桥臂和第二相桥臂,使所述电池通过第一电感和第二电感进行充电和放电,以实现对所述电池的加热,其中,所述第一电感和所述第二 电感处于不同的工作状态,
    其中,所述第一电感的第一端与所述电池的正极连接,所述第二电感的第一端与所述电池的正极连接,所述第一相桥臂的中点与所述第一电感的第二端连接,所述第二相桥臂的中点与所述第二电感的第二端连接,所述第一相桥臂的第一端和所述第二相桥臂的第一端共接形成第一汇流端,所述第一相桥臂的第二端和所述第二相桥臂的第二端共接形成第二汇流端,所述第二汇流端与所述电池的负极连接,所述储能元件的第一端与所述第一汇流端连接,所述储能元件的第二端与所述第二汇流端连接。
  12. 根据权利要求11所述的方法,其特征在于,所述工作状态包括:储能状态、续流状态和不工作状态,
    若判定所述电池需要加热,则控制第一相桥臂和第二相桥臂,使所述电池通过第一电感和第二电感进行充电和放电,以实现对所述电池的加热,包括:若判定所述电池需要加热,则控制第一相桥臂和第二相桥臂,使所述电池和所述储能元件通过第一电感和第二电感进行充电和放电,以实现对所述电池的加热。
  13. 根据权利要求12所述的方法,其特征在于,控制第一相桥臂和第二相桥臂,使所述电池和储能元件通过第一电感和第二电感进行充电和放电,以实现对所述电池的加热,包括:
    控制所述第一相桥臂和所述第二相桥臂,使所述电池或所述储能元件向所述第一电感放电,以实现对所述电池的加热,其中,所述第一电感处于储能状态,所述第二电感处于不工作状态;
    或者,
    控制所述第一相桥臂和所述第二相桥臂,使所述电池和所述储能元件中的一者向所述第二电感放电,所述电池和所述储能元件中的另一者通过所述第一电感进行充电,以实现对所述电池的加热,其中,所述第二电感处于储能状态,所述第一电感处于续流状态;
    或者,
    控制所述第一相桥臂和所述第二相桥臂,使所述电池或所述储能元件通过所述第二电感进行充电,以实现对所述电池的加热,其中,所述第二电感处于续流状态,所述第一电感处于不工作状态。
  14. 根据权利要求11-13中任意一项所述的方法,其特征在于,控制第一相桥臂和第二相桥臂,使所述电池和储能元件通过第一电感和第二电感进行充电和放电,包括:
    控制所述第一相桥臂的下桥臂导通,所述第一相桥臂的上桥臂、所述第二相桥臂的上桥臂和下桥臂关断,以使所述电池对所述第一电感充电;
    控制所述第一相桥臂的上桥臂和所述第二相桥臂的下桥臂导通,所述第一相桥臂的下桥臂和所述第二相桥臂的上桥臂关断,以使所述电池对所述第二电感充电,所述第一电感对所述储能元件充电;
    控制所述第二相桥臂的上桥臂导通,所述第二相桥臂的下桥臂、所述第一相桥臂的上桥臂和下桥臂关断,以使所述第二电感对所述储能元件充电;
    控制所述第二相桥臂的上桥臂导通,所述第二相桥臂的下桥臂、所述第一相桥臂的上桥臂和下桥臂关断,以使所述储能元件经所述第二电感对所述电池充电;
    控制所述第一相桥臂的上桥臂和所述第二相桥臂的下桥臂导通,所述第一相桥臂的下桥臂和所述第二相桥臂的上桥臂关断,以使所述储能元件经所述第一电感对所述电池充电,所述第二电感对所述电池充电;
    控制所述第一相桥臂的下桥臂导通,所述第一相桥臂的上桥臂、所述第二相桥臂的上桥臂和下桥臂关断,以使所述第一电感对所述电池充电。
  15. 根据权利要求11-14中任意一项所述的方法,其特征在于,控制第一相桥臂和第二相桥臂,使所述电池和储能元件通过第一电感和第二电感进行充电和放电,包括:
    控制所述第一相桥臂的下桥臂导通,所述第一相桥臂的上桥臂、所述第二相桥臂的上桥臂和下桥臂关断,以使所述电池对所述第一电感充电;
    控制所述第一相桥臂的上桥臂和所述第二相桥臂的下桥臂导通,所述第一相桥臂的下桥臂和所述第二相桥臂的上桥臂关断,以使所述电池对所述第二电感充电,所述第一电感对所述储能元件充电;
    控制所述第二相桥臂的上桥臂导通,所述第二相桥臂的下桥臂、所述第一相桥臂的上桥臂和下桥臂关断,以使所述第二电感对所述储能元件充电;
    控制所述第一相桥臂的上桥臂导通,所述第一相桥臂的下桥臂、所述第二相桥臂的上桥臂和下桥臂关断,以使所述储能元件经所述第一电感对所述电池充电;
    控制所述第一相桥臂的下桥臂和所述第二相桥臂的上桥臂导通,所述第一相桥臂的上桥臂和所述第二相桥臂的下桥臂关断,以使所述储能元件经所述第二电感对所述电池充电,所述第一电感对所述电池充电;
    控制所述第二相桥臂的下桥臂导通,所述第二相桥臂的上桥臂、所述第一相桥臂的上桥臂和下桥臂关断,以使所述第二电感对所述电池充电。
  16. 根据权利要求12-15中任意一项所述的方法,其特征在于,在所述第一电感和所述第二电感中的一者为储能状态,另一者为续流状态的阶段中,在控制用于进行电感续流的桥臂进行动作之后,延迟预设时长再控制用于进行电感储能的桥臂进行动作。
  17. 根据权利要求11-16中任意一项所述的方法,其特征在于,在所述加热期间,调节所述第一相桥臂和所述第二相桥臂中的开关频率或占空比,以使流经所述电池的电流值达到最优电流值。
  18. 根据权利要求17所述的方法,其特征在于,在所述加热期间,调节所述第一相桥臂和所述第二相桥臂的占空比,以使流经所述电池的电流值达到最优电流值,包括:
    在所述加热期间,根据流经所述电池的电流与所述最优电流值的比较结果以及所述第一相桥臂和所述第二相桥臂在当前载频周期中的占空比,调节所述第一相桥臂和所述第二相桥臂在下一个载频周期中的占空比,以使流经所述电池的电流值达到所述最优电流值。
  19. 根据权利要求18所述的方法,其特征在于,在所述加热期间,根据流经所述电池的电流与所述最优电流值的比较结果以及所述第一相桥臂和所述第二相桥臂在当前载频周期中的占空比,调节所述第一相桥臂和所述第二相桥臂在下一个载频周期中的占空比,以使流经所述电池的电流值达到所述最优电流值,包括:
    在所述电池充电或放电期间,若流经所述电池的电流小于所述最优电流值,则控制使所述第一相桥臂和所述第二相桥臂在下一个载频周期中的占空比大于在当前载频周期中的占空比;若流经所述电池的电流大于所述最优电流值,则控制使所述第一相桥臂和所述第二相桥臂在下一个载频周期中的占空比小于在当前载频周期中的占空比,直至流经所述电池的电流值达到所述最优电流值。
  20. 一种车辆,其特征在于,包括电池和权利要求1-10中任一权利要求所述的电池能量处理装置。
PCT/CN2020/130178 2020-05-29 2020-11-19 电池能量处理装置和方法、车辆 WO2021238103A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022573424A JP7518924B2 (ja) 2020-05-29 2020-11-19 電池のエネルギー処理装置及び方法、並びに車両
CA3180352A CA3180352A1 (en) 2020-05-29 2020-11-19 Battery energy processing device and method, and vehicle
EP20937691.2A EP4159533A4 (en) 2020-05-29 2020-11-19 DEVICE AND METHOD FOR PROCESSING BATTERY ENERGY, AND VEHICLE
US17/928,560 US20230238591A1 (en) 2020-05-29 2020-11-19 Battery energy processing device and method, and vehicle
BR112022024118A BR112022024118A2 (pt) 2020-05-29 2020-11-19 Dispositivo e método de processamento de energia de bateria e veículo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010476447.1A CN113733987B (zh) 2020-05-29 2020-05-29 电池能量处理装置和方法、车辆
CN202010476447.1 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021238103A1 true WO2021238103A1 (zh) 2021-12-02

Family

ID=78724733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130178 WO2021238103A1 (zh) 2020-05-29 2020-11-19 电池能量处理装置和方法、车辆

Country Status (6)

Country Link
US (1) US20230238591A1 (zh)
EP (1) EP4159533A4 (zh)
CN (1) CN113733987B (zh)
BR (1) BR112022024118A2 (zh)
CA (1) CA3180352A1 (zh)
WO (1) WO2021238103A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114537164A (zh) * 2022-02-17 2022-05-27 华为电动技术有限公司 一种动力电池组装置、加热控制系统及电动汽车
CN114572061A (zh) * 2022-03-17 2022-06-03 上海小至科技有限公司 具有电池预加热功能的车用电机系统及控制方法
EP4368444A1 (en) * 2022-11-08 2024-05-15 Xiaomi EV Technology Co., Ltd. Battery self-heating method, and vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114725544A (zh) * 2022-03-28 2022-07-08 华为数字能源技术有限公司 电池管理系统及电池系统
WO2024060122A1 (zh) * 2022-09-22 2024-03-28 宁德时代新能源科技股份有限公司 用于电池的调节电路的调节方法、控制方法和监控方法
CN118082619A (zh) * 2022-11-25 2024-05-28 比亚迪股份有限公司 能量处理装置及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233709A (ja) * 1996-02-29 1997-09-05 Denso Corp 電気自動車用充電器
CN105762434A (zh) * 2016-05-16 2016-07-13 北京理工大学 一种具有自加热功能的电源系统和车辆
CN108312878A (zh) * 2018-02-09 2018-07-24 合肥巨动力系统有限公司 一种车载复用充电机
CN110971173A (zh) * 2018-12-21 2020-04-07 比亚迪股份有限公司 动力电池的充电方法、电机控制电路及车辆
CN110970965A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 开关控制装置及方法、电机控制器和电池组加热控制系统
CN210468040U (zh) * 2019-09-06 2020-05-05 上海伊控动力系统有限公司 一种电动汽车车载电池包自加热系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617473B2 (ja) * 2010-09-21 2014-11-05 株式会社デンソー 電池加熱装置
KR101688485B1 (ko) * 2013-02-28 2016-12-21 삼성에스디아이 주식회사 에너지 저장 장치
CN106787738A (zh) * 2017-03-14 2017-05-31 华中科技大学 一种多相交错并联直流变换器
CN110723005B (zh) * 2018-06-29 2021-09-03 比亚迪股份有限公司 电动汽车的车载充电器及其控制方法、电动汽车
CN110962631B (zh) * 2018-12-29 2020-11-17 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233709A (ja) * 1996-02-29 1997-09-05 Denso Corp 電気自動車用充電器
CN105762434A (zh) * 2016-05-16 2016-07-13 北京理工大学 一种具有自加热功能的电源系统和车辆
CN108312878A (zh) * 2018-02-09 2018-07-24 合肥巨动力系统有限公司 一种车载复用充电机
CN110971173A (zh) * 2018-12-21 2020-04-07 比亚迪股份有限公司 动力电池的充电方法、电机控制电路及车辆
CN110970965A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 开关控制装置及方法、电机控制器和电池组加热控制系统
CN210468040U (zh) * 2019-09-06 2020-05-05 上海伊控动力系统有限公司 一种电动汽车车载电池包自加热系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4159533A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114537164A (zh) * 2022-02-17 2022-05-27 华为电动技术有限公司 一种动力电池组装置、加热控制系统及电动汽车
CN114572061A (zh) * 2022-03-17 2022-06-03 上海小至科技有限公司 具有电池预加热功能的车用电机系统及控制方法
EP4368444A1 (en) * 2022-11-08 2024-05-15 Xiaomi EV Technology Co., Ltd. Battery self-heating method, and vehicle

Also Published As

Publication number Publication date
BR112022024118A2 (pt) 2022-12-27
CN113733987B (zh) 2023-07-14
EP4159533A4 (en) 2023-12-06
US20230238591A1 (en) 2023-07-27
EP4159533A1 (en) 2023-04-05
JP2023527451A (ja) 2023-06-28
CA3180352A1 (en) 2021-12-02
CN113733987A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2021238103A1 (zh) 电池能量处理装置和方法、车辆
US11605967B2 (en) On-board charger
WO2020135733A1 (zh) 电池加热系统及其控制方法
TWI556995B (zh) 一種電動車行車控制系統
JP5558631B2 (ja) 電力変換装置およびそれを備えた車載電源装置
CN106208769B (zh) 电力转换装置
CN113752875B (zh) 车辆电池加热装置和方法、车辆
WO2015096224A1 (zh) 集成驱动及充放电功能的电机控制器
CN114506225B (zh) 无功率输出中断的电池串并联切换主电路及系统、方法
US9906148B2 (en) Method for controlling a full-bridge DC-dc converter
WO2014026460A1 (zh) 一种集成开关磁阻电机驱动与低压电池充电的变换装置
JP2023114972A (ja) モーター駆動システムを用いた車両用バッテリー充電システム
CN110445227B (zh) 电动汽车车载单相充电系统中高、低频纹波电流抑制方法
CN111391717A (zh) 能量转换装置、方法及车辆
TWM648012U (zh) 電池自加熱裝置和具有其的車輛
JP6953634B2 (ja) Dc/dcコンバータを備える車両充電器
JP7518924B2 (ja) 電池のエネルギー処理装置及び方法、並びに車両
KR101726285B1 (ko) 비절연 양방향 직류-직류 컨버터
JP2019146407A (ja) 車両用電源装置
WO2021102998A1 (zh) 电压调节模块、充电模组和充电桩
WO2019180912A1 (ja) 電圧切替式直流電源
CN116365872B (zh) 一种双向直流变换器、控制方法和调节系统
CN217778411U (zh) 电池自加热装置及电动交通工具
WO2023207481A1 (zh) 电池加热系统以及电动交通工具
WO2023231483A1 (zh) 电池电路以及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3180352

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022573424

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022024118

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022024118

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221125

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020937691

Country of ref document: EP

Effective date: 20230102