CN110445227B - 电动汽车车载单相充电系统中高、低频纹波电流抑制方法 - Google Patents

电动汽车车载单相充电系统中高、低频纹波电流抑制方法 Download PDF

Info

Publication number
CN110445227B
CN110445227B CN201910580608.9A CN201910580608A CN110445227B CN 110445227 B CN110445227 B CN 110445227B CN 201910580608 A CN201910580608 A CN 201910580608A CN 110445227 B CN110445227 B CN 110445227B
Authority
CN
China
Prior art keywords
power switch
frequency
capacitor
charging
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910580608.9A
Other languages
English (en)
Other versions
CN110445227A (zh
Inventor
张云
方剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910580608.9A priority Critical patent/CN110445227B/zh
Publication of CN110445227A publication Critical patent/CN110445227A/zh
Application granted granted Critical
Publication of CN110445227B publication Critical patent/CN110445227B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种电动汽车车载单相充电系统中高、低频纹波电流抑制方法,包括:构建由动力电池充电器、辅助电池充电器组成的电动汽车车载单相充电系统;辅助电池充电器由多功能、隔离型DC/DC变换器构成;行车充电模式时,基于辅助电池充电器中的Buck‑Boost基本变换单元,构造了两相交错并联的低压侧拓扑结构,通过基本单元之间移相180度,实现零输出电流纹波,同时该低压侧拓扑结构可实现高频整流;高压侧拓扑结构基于Buck‑Boost基本变换单元,通过储能电容的充放电及功率开关的配合,实现高频逆变;驻车充电模式时,利用辅助电池用隔离型充电拓扑中的高压侧双向Buck‑Boost单元实现电容储能型的有源滤波,实现对储能电容的充放电,达到抑制二次纹波电压的目的。

Description

电动汽车车载单相充电系统中高、低频纹波电流抑制方法
技术领域
本发明涉及电力电子技术的拓扑及控制技术领域,尤其涉及一种基于电动汽车车载单相PWM(脉冲宽度调制)整流充电系统的高、低频纹波电流抑制方法。
背景技术
近年来,全球范围内随着工业和经济的飞速发展,对化石能源的需求量急速增长,造成能源紧缺、环境污染等问题日趋严重。因此,大力发展清洁能源,推动能源变革,实现可持续绿色发展已然成为国际准则。新能源汽车以可再生能源取代化石燃料为能量源,是解决能源短缺与环境污染问题的有效途径之一。电动汽车作为首先发展起来的新能源汽车的重要组成部分,其蓄电池是制约其发展的关键因素,且蓄电池的充电时间和使用寿命均与充电技术息息相关。
在电动汽车诸多充电技术中,车载充电技术越来越受到国内外学术界和工业界的重视。在车载充电系统中,主要分为三相快速充电和单相慢速充电。单相慢速充电因能够有效保护电池,延长电池使用寿命而被广泛应用于家庭驻车充电。单相充电方法有很多,其中单相PWM整流充电技术因具有可控的充电电压、电流和功率因数而受到越来越多的关注。但是,针对单相PWM整流器,其网侧正弦交变的电流和电网电压共同作用产生了两倍频于电网电压频率的脉动无功功率。对于车载动力电池而言,二次脉动充电电流的存在是极其不利的,它会造成电池充电过度发热和温升提高,从而缩短了电池的使用寿命。一般情况下,蓄电池充/放电电流的纹波需要小于其额定电流的10%。因此在车载单相充电系统中,减小单相PWM整流充电系统直流侧二次纹波电压具有重要的研究意义。目前抑制单相PWM整流器输出直流母线二次纹波电压的方法主要有两种:无源滤波和有源滤波。
无源滤波主要有两种方法:在直流母线侧并联大电容和LC(电感电容)谐振电路。这两种方法虽然简单有效,但功率密度较低且不可靠。为了提升单相PWM整流充电系统的功率密度和可靠性,许多学者提出了有源滤波(AF)的方法。有源滤波的方法有很多,从连接方式上可分为直流侧和交流侧AF;从能量储存单元上可分为电感储能型和电容储能型AF。对于直流侧有源滤波器,通常在直流母线和储能元件之间并联一个双向直流变换器,将变换器作为能量传输介质,可将直流母线中二次脉动能量传递到储能元件中,以达到“削峰填谷”的目的。
为了进一步提高系统的功率密度,基于上述的二次纹波电压抑制方法,有学者已经开始研究在电动汽车车载充电系统中,利用系统中存在的硬件电路,在不添加或只添加储能元件的情况下(必要时通过继电器进行硬件重构),实现了单相充电时直流母线侧二次纹波电压的抑制。
上述集成化的二次纹波抑制方法中,辅助电池充电用变换器起着关键的作用,但是这些方法均没有考虑给辅助电池充电时的高频电流纹波,且仍需要额外的储能元件。因此为了有效提高车载动力电池和辅助电池的使用寿命,节约成本和实现高度集成化,需要一种基于车载单相整流充电系统的高、低频纹波电流抑制方法,使其适用于新能源电动汽车。
发明内容
针对新能源电动汽车车载充电系统行车和驻车充电时对辅助电池和动力电池充电电流的性能要求,本发明提供了一种电动汽车车载单相充电系统中高、低频纹波电流抑制方法,本发明提出的辅助电源用多功能、隔离型充电拓扑,分时复用该拓扑,不仅能够抑制在给动力电池充电时(驻车充电)所产生的低频/二次电流纹波,而且能够抑制在给辅助电池充电时(行车充电)所产生的高频电流纹波,详见下文描述:
一种电动汽车车载单相充电系统中高、低频纹波电流抑制方法,所述方法包括以下步骤:
构建由动力电池充电器、辅助电池充电器组成的电动汽车车载单相充电系统;所述辅助电池充电器由多功能、隔离型DC/DC变换器构成;
行车充电模式时,基于辅助电池充电器中的Buck-Boost基本变换单元,构造了两相交错并联的低压侧拓扑结构,通过基本单元之间移相180度,实现零输出电流纹波,同时,该低压侧拓扑结构可实现高频整流;高压侧拓扑结构也基于Buck-Boost基本变换单元,通过储能电容的充放电及功率开关的配合,实现高频逆变;
驻车充电模式时,利用辅助电池用隔离型充电拓扑中的高压侧双向Buck-Boost单元实现电容储能型的有源滤波,实现对储能电容的充放电,达到抑制二次纹波电压的目的。
其中,所述辅助电池充电器具体为:
LV battery的一端与电感L1和L2的一端相连,另一端与功率开关Q4和Q3的源极及电容Ci的一端相连,电感L1的另一端与功率开关Q1的源极、功率开关Q4的漏极以及继电器G的一端相连,电感L2的另一端与功率开关Q2的源极、功率开关Q3的漏极以及高频变压器原边绕组的一端相连,继电器G的另一端与电感Lk的一端相连,Lk的另一端与高频变压器原边绕组的另一端相连,电容Ci的另一端与功率开关Q1和Q2的漏极相连;高频变压器副边绕组的一端与功率开关Q5的源极和功率开关Q6的漏极相连,另一端与电容Cc的一端相连,电容Cc的另一端与功率开关Q6的源极和HV battery的一端相连,HV battery的另一端与功率开关Q5的漏极相连。
进一步地,所述方法还包括:
通过两相电感的交错并联工作,在每个开关周期内电流纹波相互抵消,使得输出电流纹波为零。
其中,所述实现对储能电容的充放电,达到抑制二次纹波电压的目的具体为:
通过对储能电容进行充放电,实现对直流母线侧二次脉动能量的吸收和释放以达到“削峰填谷”的作用,进而抑制住了二次纹波电流。
本发明提供的技术方案的有益效果是:
1、本发明的辅助电源用多功能、隔离型充电拓扑,不仅能够实现在动力电池给低压辅助电池充电时(行车充电)抑制高频充电电流纹波,还能够实现在电网给动力电池进行单相PWM整流充电时(驻车充电)在不增加任何附加电路及无源储能器件的情况下抑制低频/二次纹波电流;
2、本发明提供的多功能充电拓扑在给低压辅助电池充电时所有功率开关管能够在全负载范围内实现ZVS导通。因此,本发明所提的辅助电源用充电拓扑对辅助电池和动力电池具有很好的“友好性”,能够有效提高蓄电池的使用寿命,且该拓扑具有高度集成和高效的优点,在电动汽车实际应用中能够有效降低成本和车载空间。
附图说明
图1为本发明所提动力及辅助蓄电池充电系统结构简图;
图2为本发明所提具有高、低频纹波抑制功能的变换器拓扑结构;
图3为抑制高频纹波电流时电路特征波形图;
图4为单相PWM整流充电及二次纹波抑制等效电路;
图5为单相PWM整流充电时二次纹波抑制特征波形;
图6为低压辅助电池充电时拓扑电流流通路径图;
图7为二次纹波电压抑制时电容存储能量的拓扑电流流通路径图;
图8为二次纹波电压抑制时电容释放能量的拓扑电流流通路径图。
上述附图中主要符号名称:
Q1-Q6,Qr1-Qr4分别为变换器的功率开关;S1-S6、Sr1-Sr4为功率开关Q1-Q6和Qr1-Qr4的开关信号,L1和L2为直流输出滤波电感,Lk为变压器等效漏感与外串电感之和,Ci和Cc为储能电容,Cbus为直流母线支撑电容;T为高频变压器;us为网侧输入电压,is为网侧输入电流,Ls为网侧输入滤波电感;Vh1和Vh2分别为电感Lk两端的电压;iLk为经过电感的电流,iL1和iL2分别为经过直流输出滤波电感的电流;iL_EST为经过高频变压器高压侧绕组的电流;uCc为储能电容Cc的端电压,其中uCc_max为电容电压的最大值,uCc_min为最小值,HV battery为高压动力电池,LV battery为低压辅助电池。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。
实施例1
(1)拓扑结构
在电动汽车车载充电系统中,通过合理设计辅助电池用充电拓扑结构,可实现针对辅助电池(低压电池)充电时的高频纹波电流抑制以及动力电池(高压电池)单相PWM整流充电时低频纹波电流的抑制。动力及辅助电池充电系统结构如图1所示。
图1中,动力电池充电器由单相PWM整流器和DC/DC变换器所组成,其工作在驻车充电模式下,且功率流通路径如虚线箭头所示,单相交流电源us的一端与输入滤波电感LS的一端相连,另一端与功率开关Qr2的源极,即功率开关Qr3的漏极相连;电感LS的另一端与功率开关Qr1的源极,即功率开关Qr4的漏极相连,功率开关Qr1和Qr3的漏极与双向直流变换器输入侧的一端相连,功率开关Qr2和Qr4的源极与双向直流变换器输入侧的另一端相连,双向直流变换器输出侧的一端与电容Cbus的一端及HV battery的一端相连,另一端与电容Cbus及HVbattery的另一端相连。
辅助电池充电器由所提的多功能、隔离型DC/DC变换器构成,其工作在行车充电模式下,且功率流通路径如实线箭头所示。LV battery的一端与电感L1和L2的一端相连,另一端与功率开关Q4和Q3的源极及电容Ci的一端相连,电感L1的另一端与功率开关Q1的源极、功率开关Q4的漏极以及继电器G的一端相连,电感L2的另一端与功率开关Q2的源极、功率开关Q3的漏极以及高频变压器原边绕组的一端相连,继电器G的另一端与电感Lk的一端相连,Lk的另一端与高频变压器原边绕组的另一端相连,电容Ci的另一端与功率开关Q1和Q2的漏极相连;高频变压器副边绕组的一端与功率开关Q5的源极和功率开关Q6的漏极相连,另一端与电容Cc的一端相连,电容Cc的另一端与功率开关Q6的源极和HV battery的一端相连,HVbattery的另一端与功率开关Q5的漏极相连。
图1中,高压动力电池充电器由单相H桥构成,其中包含四个功率开关Qr1-Qr4、网侧滤波电感Ls以及直流母线支撑电容Cbus;辅助电池充电器由六个功率开关Q1-Q6、高频变压器T、直流滤波电感L1和L2、外串电感Lk以及储能电容Ci和Cc所组成。
在图1中,辅助电池充电拓扑工作在两种模式:驻车充电模式和行车充电模式。驻车充电主要是在车辆处于静态停车时电网给动力电池充电,行车充电主要是在车辆处于动态行驶时动力电池给辅助电池充电。在驻车充电时,为了抑制单相PWM整流充电时产生的低频(二次)电流纹波,则利用了辅助电池充电拓扑的高压侧部分(图1中虚线框部分),因此在工作时需要借助继电器G将低压侧部分切断,以避免因在抑制低频纹波电流时在低压侧电路中产生环流(环流路径:高频变压器低压侧绕组-外串电感Lk-直流滤波电感L1-直流滤波电感L2-高频变压器低压侧绕组),进而减小了系统额外的损耗。
(2)行车时辅助电池充电高频纹波电流抑制的原理及方法
对于辅助电池充电器,为了抑制低压辅助蓄电池侧的高频电流纹波,本发明实施例基于Buck-Boost基本变换单元,构造了两相交错并联的低压侧拓扑,通过基本单元之间移相180度,理论上可实现零输出电流纹波,由此所构成的H桥结构同时可实现高频整流的工作过程;高压侧(直流母线侧)拓扑结构同样是基于Buck-Boost基本变换单元构成的,通过储能电容Cc的充放电及功率开关的配合,可实现高频逆变的工作工程。因此,经过高频变压器进行原、副边能量的传输,便构成了隔离型直流充电拓扑结构,其等效电路如图2所示。
其中,LV battery的一端与电感L1和L2的一端(正极)相连,另一端与功率开关Q4和Q3的源极及电容Ci的一端相连,电感L1的另一端(负极)与功率开关Q1的源极、功率开关Q4的漏极以及继电器G的一端相连,电感L2的另一端(负极)与功率开关Q2的源极、功率开关Q3的漏极以及高频变压器原边绕组的一端相连,继电器G的另一端与电感Lk的一端(正极)相连,Lk的另一端(负极)与高频变压器原边绕组的另一端相连,电容Ci的另一端与功率开关Q1和Q2的漏极相连;高频变压器副边绕组的一端与功率开关Q5的源极和功率开关Q6的漏极相连,另一端与电容Cc的一端相连,电容Cc的另一端与功率开关Q6的源极和HV battery的一端相连,HV battery的另一端与功率开关Q5的漏极相连。
为了更好地阐释变换器的工作原理,故需作出以下假设:
1)所有元器件都是理想型器件,忽略功率开关的导通电阻以及电感和电容的寄生串联电阻ESR;
2)电感L1,L2和Lk的电流iL1、iL2、iLk以及电容Ci、Cc、和Cbus的电压uCi、uCc、和uCbus都是线性变化的;
3)电容Ci、Cc、和Cbus的电压都设为定值;
4)电流与电压的正方向为图2中所标示的方向;
5)电压匹配比k=Uhigh/(4NUlow)>1。
设t0=0,t3=DTS,t6=TS;若忽略死区的影响,即d=0,此时特征波形图如图3所示,则有:
Figure BDA0002112966250000061
则各节点电流可表示为:
Figure BDA0002112966250000062
从特征波形图中可以看出,在一个周期内电路是对称工作的,故有iL(t6)=-iL(t0),因此可得到:
Figure BDA0002112966250000063
由于电路是对称的,故传输功率可由如下表达式得到:
Figure BDA0002112966250000064
另外,由于Buck-Boost变换单元的占空比为0.5,故储能电容Ci的平均电压为:
UCc=2Ulow
在[t0-t3]期间,电感L1两端的电压为Ulow,电感L2两端的电压为Ulow-UCc;在[t3-t6]期间,电感L1两端的电压为Ulow-UCc,电感L2两端的电压为Ulow。假设设L1和L2的电感均为L,则有:
Figure BDA0002112966250000071
Figure BDA0002112966250000072
其中,iL1(t)和iL2(t)分别为直流滤波电感L1和L2的瞬时电流值。令电感L1和L2的电流初始值分别为I1和I2,根据KCL(基尔霍夫电流定律)可得,充电电流iout为:
iout=iL1(t)+iL2(t)
=I1+I2,t0≤t≤t6
由上式可知,充电电流为一恒定值,如果在电感L1和L2的电感值相同的情况下,理论上充电电流是不含有高频电流纹波的,也就是说此方法理论上可抑制辅助电池侧的高频电流纹波。
(3)驻车时动力电池单相充电低频电流纹波的抑制原理及方法
在驻车时,电网会对高压动力电池充电,此时低压蓄电池充电模块处于待机状态,因此,利用辅助电池用隔离型充电拓扑中的高压侧单元实现电容储能型的有源滤波,其中传输能量用的电感为高频变压器的高压侧绕组,储存能量的电容为高压侧储能电容Cc。其等效电路图如图4所示,该电路工作的特征波形如图5所示。从特征波形图中可以看出,作为有源滤波的高压侧双向Buck-Boost变换单元分别工作在Buck和Boost模式,从而实现对储能电容的充放电,进而达到抑制二次纹波电压的目的。
实施例2
下面以图1所示的电动汽车车载充电系统中动力及辅助电池充电系统结构图,图2和图4的拓扑等效电路图以及图3和图5的拓扑稳定运行时的主要特征波形,对本发明的原理及方法进行说明。下面分别对动力电池给低压辅助电池进行充电时高频纹波电流抑制和电网对动力电池进行单相PWM整流充电时低频纹波电流抑制进行说明。
一、行车时辅助电池充电高频纹波电流抑制的原理及方法
变换器所有功率开关管驱动信号的占空比是固定的,均为0.5,功率开关Q1-Q6的驱动信号为S1-S6,驱动信号S6(S3、S4)在S5(S2、S1)的基础上移相180度,且驱动信号S5会超前驱动信号S1一定的角度,变换器传输功率的大小及方向是由该移相角(对应的移相占空比为D)确定的。当动力电池给辅助蓄电池充电时,电路运行的特征波形图如图4所示,对应的拓扑电流流通路径图如图6所示,其中Ts为半个开关周期。
模态1[t0-t1]:t0时刻之前,开关管Q6导通,经过变压器原边及等效漏感的电流为正。拓扑的电流流通路径如图6(a)所示。t0时刻开关管Q6关断,此时它们的寄生电容在充电,同时开关管Q5的寄生电容处于放电状态,开关管Q2、Q4导通,低压侧储能电容Ci处于放电状态。到t1时刻,开关管Q6的寄生电容充电完毕,此模态结束;
模态2[t1-t2]:t1时刻开关管Q6关断,且经过等效漏感的电流仍为正,在Q5导通之前,此时由KCL定律可知电流经过开关管Q5反并联二极管续流。同样,开关管Q2、Q4仍然导通,低压侧储能电容Ci仍处于放电状态。拓扑的电流流通路径如图6(b)所示。此模态一直持续到t2时刻,即驱动信号S5到来时刻;
模态3[t2-t3]:t2时刻开关管Q5ZVS(零电压开关)导通,拓扑的电流流通路径如图6(c)所示。此时低压侧钳位电容Ci处于充电状态。但在这一阶段,经过漏感的电流方向会由正变负,即高压侧储能电容Cc会经历从释放能量到储存能量的过程。在t3时刻,开关管Q2、Q4即将关断,此模态结束;
模态4[t3-t4]:t3时刻开关管Q2、Q4关断,此时经过等效漏感的电流为负,高压侧储能电容Cc处于充电状态,同时变压器原边电流会给开关管Q2、Q4的寄生电容充电,且开关管Q1、Q3的寄生电容处于放电状态,低压侧钳位电容Ci处于充电状态。拓扑的电流流通路径如图6(d)所示。当Q2、Q4的寄生电容放电完毕时,此模态结束;
模态5[t4-t5]:t4时刻开关管Q2、Q4的寄生电容充满电,开关管Q1、Q3的寄生电容放电完毕,此时电流经过Q1、Q3的反并联二极管续流。该阶段为实现开关管Q1、Q3的ZVS导通做准备。拓扑的电流流通路径如图6(e)所示。此模态一直持续到t5时刻,即驱动信号S1、S3到来时刻;
模态6[t5-t6]:t5时刻开关管Q1、Q3的ZVS导通,此时低压侧钳位电容处于放电状态。在这一阶段,储能电容Ci会和变压器原边绕组一起向低压蓄电池传输能量。拓扑的电流流通路径如图6(f)所示。在t6时刻,开关管Q6即将关断,此模态结束。
以上为半个周期内电路的工作原理及电流流通路径,由于电路工作过程的对称性,另半个周期电路的工作原理与前半个周期类似,不再赘述。
通过两相电感(L1和L2)的交错并联工作,在每个开关周期内电流纹波(交流分量)相互抵消,从而使得输出电流纹波理论上为零。
二、驻车时动力电池单相充电低频电流纹波抑制的原理及方法
从特征波形图中可以看出,作为有源滤波的高压侧双向Buck-Boost变换单元分别工作在Buck和Boost模式,从而实现对储能电容的充放电。
(1)Buck模式(储存能量)
模态1[t0-t1]:t0时刻,开关管Q5开通,此时单相PWM整流直流侧的瞬时输出功率大于平均输出功率,超出的该部分脉动功率通过功率开关Q5传输到了高频变压器的高压侧绕组,因此在这一阶段高压侧绕组的电流在增大,拓扑的电流流通路径如图7(a)所示。该模态持续到t1时刻,即开关管Q5关断时刻。
模态2[t1-t2]:t1时刻,开关管Q5关断,Q6开通,储存在变压器高压侧绕组中的能量会转移到储能电容Cc中去,即储能电容处于充电状态,拓扑的电流流通路径如图7(b)所示。该模态持续到t2时刻,即开关管Q6关断时刻。
在这一阶段,变换器一直工作在Buck模式,目的就是起到“削峰”的作用,即将多余的能量暂存到储能电容中去。
(2)Boost模式(释放能量)
模态1[t3-t4]:t3时刻,开关管Q6开通,此时单相PWM整流直流侧的瞬时输出功率小于平均输出功率,储存在电容Cc中的能量通过开关管Q6传递到变压器高压侧绕组中,因此在这一阶段高压侧绕组的电流在反向增大,拓扑的电流流通路径如图8(a)所示。该模态持续到t1时刻,即开关管Q5关断时刻。
模态2[t4-t5]:t4时刻,开关管Q6关断,Q5开通,暂存在电容Cc中和变压器高压侧绕组中的能量会转移到直流侧母线中去,此时储能电容处于放电状态,拓扑的电流流通路径如图8(b)所示。该模态持续到t5时刻,即开关管Q5关断时刻。
在这一阶段,变换器一直工作在Boost模式,目的就是起到“填谷”的作用,即将暂存在电容中的能量转移到直流母线中去以补偿母线中功率不足的部分。
通过对储能电容进行充放电,可实现对直流母线侧二次脉动能量的吸收和释放以达到“削峰填谷”的作用,进而抑制住了二次纹波电流。
本发明实施例对各器件的型号除做特殊说明的以外,其他器件的型号不做限制,只要能完成上述功能的器件均可。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种电动汽车车载单相充电系统中高、低频纹波电流抑制方法,其特征在于,所述方法包括以下步骤:
构建由动力电池充电器、辅助电池充电器组成的电动汽车车载单相充电系统;所述辅助电池充电器由多功能、隔离型DC/DC变换器构成;
行车充电模式时,基于辅助电池充电器中的Buck-Boost基本变换单元,构造了两相交错并联的低压侧拓扑结构,通过基本变换单元之间移相180度,实现零输出电流纹波;同时,该低压侧拓扑结构可实现高频整流;高压侧拓扑结构也基于Buck-Boost基本变换单元,通过储能电容的充放电及功率开关的配合,实现高频逆变;
驻车充电模式时,利用辅助电池用隔离型充电拓扑中的高压侧双向Buck-Boost单元实现电容储能型的有源滤波,实现对储能电容的充放电,达到抑制二次纹波电压的目的;
所述动力电池充电器由单相PWM整流器和DC/DC变换器所组成,其工作在驻车充电模式下,单相交流电源us的一端与输入滤波电感LS的一端相连,另一端与功率开关Qr2的源极,功率开关Qr3的漏极相连;电感LS的另一端与功率开关Qr1的源极,功率开关Qr4的漏极相连,功率开关Qr1和Qr3的漏极与双向直流变换器输入侧的一端相连,功率开关Qr2和Qr4的源极与双向直流变换器输入侧的另一端相连,双向直流变换器输出侧的一端与电容Cbus的一端及HVbattery的一端相连,另一端与电容Cbus及HV battery的另一端相连;
所述辅助电池充电器具体为:
LV battery的一端与电感L1和L2的一端相连,另一端与功率开关Q4和Q3的源极及电容Ci的一端相连,电感L1的另一端与功率开关Q1的源极、功率开关Q4的漏极以及继电器G的一端相连,电感L2的另一端与功率开关Q2的源极、功率开关Q3的漏极以及高频变压器原边绕组的一端相连,继电器G的另一端与电感Lk的一端相连,Lk的另一端与高频变压器原边绕组的另一端相连,电容Ci的另一端与功率开关Q1和Q2的漏极相连;高频变压器副边绕组的一端与功率开关Q5的源极和功率开关Q6的漏极相连,另一端与电容Cc的一端相连,电容Cc的另一端与功率开关Q6的源极和HV battery的一端相连,HV battery的另一端与功率开关Q5的漏极相连。
2.根据权利要求1所述的一种电动汽车车载单相充电系统中高、低频纹波电流抑制方法,其特征在于,所述方法还包括:
通过两相电感的交错并联工作,在每个开关周期内电流纹波相互抵消,使得输出电流纹波为零。
3.根据权利要求1所述的一种电动汽车车载单相充电系统中高、低频纹波电流抑制方法,其特征在于,所述实现对储能电容的充放电,达到抑制二次纹波电压的目的具体为:
通过对储能电容进行充放电,实现对直流母线侧二次脉动能量的吸收和释放以达到“削峰填谷”的作用,进而抑制住了二次纹波电流。
CN201910580608.9A 2019-06-28 2019-06-28 电动汽车车载单相充电系统中高、低频纹波电流抑制方法 Active CN110445227B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910580608.9A CN110445227B (zh) 2019-06-28 2019-06-28 电动汽车车载单相充电系统中高、低频纹波电流抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910580608.9A CN110445227B (zh) 2019-06-28 2019-06-28 电动汽车车载单相充电系统中高、低频纹波电流抑制方法

Publications (2)

Publication Number Publication Date
CN110445227A CN110445227A (zh) 2019-11-12
CN110445227B true CN110445227B (zh) 2023-02-07

Family

ID=68428703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910580608.9A Active CN110445227B (zh) 2019-06-28 2019-06-28 电动汽车车载单相充电系统中高、低频纹波电流抑制方法

Country Status (1)

Country Link
CN (1) CN110445227B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271914B (zh) * 2020-09-16 2022-08-02 浙江吉利控股集团有限公司 一种车载充电机的充电纹波抑制电路及其控制方法
CN116686182A (zh) * 2021-01-29 2023-09-01 华为数字能源技术有限公司 一种双向dc/dc变换器及其控制方法及车辆
CN113315376A (zh) * 2021-06-21 2021-08-27 哈尔滨工业大学 基于电流纹波优化的可变重数dcdc变换器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200990558Y (zh) * 2006-05-10 2007-12-12 周春香 新型软开关零纹波双向dc/dc非隔离变换器
CN101505104A (zh) * 2009-03-12 2009-08-12 浙江大学 一种具有输出电流纹波抵消作用的对称整流电路
CN105141167A (zh) * 2014-12-05 2015-12-09 艾思玛新能源技术(上海)有限公司苏州高新区分公司 一种光伏逆变器交错移相的控制方法及光伏逆变器
CN105391287A (zh) * 2015-11-23 2016-03-09 中国矿业大学 基于双耦合电感和单开关的零输入电流纹波高增益变换器
CN105554952A (zh) * 2016-01-22 2016-05-04 江苏大学 一种基于二次型Buck的交错并联LED驱动电路及其工作方法
CN108123633A (zh) * 2016-11-25 2018-06-05 南京航空航天大学 一种无电解电容纹波抑制的高效率光伏并网逆变器
CN109004829A (zh) * 2018-07-06 2018-12-14 天津大学 一种低电流纹波耦合电感双向直流变换器
CN109039038A (zh) * 2018-07-04 2018-12-18 天津大学 基于虚拟阻抗的电容储能型单相整流器二次纹波抑制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200990558Y (zh) * 2006-05-10 2007-12-12 周春香 新型软开关零纹波双向dc/dc非隔离变换器
CN101505104A (zh) * 2009-03-12 2009-08-12 浙江大学 一种具有输出电流纹波抵消作用的对称整流电路
CN105141167A (zh) * 2014-12-05 2015-12-09 艾思玛新能源技术(上海)有限公司苏州高新区分公司 一种光伏逆变器交错移相的控制方法及光伏逆变器
CN105391287A (zh) * 2015-11-23 2016-03-09 中国矿业大学 基于双耦合电感和单开关的零输入电流纹波高增益变换器
CN105554952A (zh) * 2016-01-22 2016-05-04 江苏大学 一种基于二次型Buck的交错并联LED驱动电路及其工作方法
CN108123633A (zh) * 2016-11-25 2018-06-05 南京航空航天大学 一种无电解电容纹波抑制的高效率光伏并网逆变器
CN109039038A (zh) * 2018-07-04 2018-12-18 天津大学 基于虚拟阻抗的电容储能型单相整流器二次纹波抑制方法
CN109004829A (zh) * 2018-07-06 2018-12-14 天津大学 一种低电流纹波耦合电感双向直流变换器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《A Low-Current Ripple and Wide Voltage-Gain Range Bidirectional DC–DC Converter With Coupled Inductor》;Yun Zhang et al.;《IEEE Transactions on Power Electronics》;20190610;全文 *
《应用于车载充电机的高效率交错并联PFC设计》;刘秋花 等;《福州大学学报》;20181207;全文 *

Also Published As

Publication number Publication date
CN110445227A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
US9419522B1 (en) ZVS DC/DC converter for converting voltage between a battery and a DC link in a hybrid energy storage system and method thereof
Gu et al. Hybrid-switching full-bridge DC–DC converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers
CN109104108B (zh) 一种带有有源箝位的软开关型单级式高频隔离整流器
CN110445227B (zh) 电动汽车车载单相充电系统中高、低频纹波电流抑制方法
CN109980978B (zh) 一种变换器及其调制方法
CN103944397A (zh) Boost型隔离DC/DC变换器及其控制方法
CN108988634B (zh) 一种三相交错式双向大变比dcdc变换器及其控制方法
Stillwell et al. Design of a 1 kV bidirectional DC-DC converter with 650 V GaN transistors
Wang et al. Design and implementation of a bidirectional isolated dual-active-bridge-based DC/DC converter with dual-phase-shift control for electric vehicle battery
WO2022078121A1 (zh) 充电装置和车辆
CN110601525A (zh) 新能源汽车集成车载充电变换系统
CN102832838A (zh) 基于磁集成的隔离型单级双Sepic逆变器
CN110198124B (zh) 开关电容型三相交错并联双向宽增益直流变换器
Bhargavi et al. A comparative study of phase shifted full bridge and high-frequency resonant transistor dc-dc converters for ev charging application
Bandeira et al. A t-type isolated zero voltage switching DC–DC converter with capacitive output
Chen et al. High step-up interleaved converter with three-winding coupled inductors and voltage multiplier cells
Lee et al. Bidirectional DC-DC converter with multiple switched-capacitor cells
Dhanalakshmi et al. A Review on Two-Stage Back End DC-DC Converter in On-Board Battery Charger for Electric Vehicle
CN112436747B (zh) 一种电驱动系统、动力总成及电动汽车
Tan et al. Effective voltage balance control for three-level bidirectional dc-dc converter based electric vehicle fast charger
Lim et al. Nonisolated two-phase bidirectional DC-DC converter with zero-voltage-transition for battery energy storage system
Sutar et al. Design and Implementation of Quasi Z-source Converter Based Battery Charger for Electric Vehicles
Prajapati et al. Modelling and analysis of a PFC based EV battery charger using Cuk-SEPIC converter
Lee et al. Design and control method of ZVT interleaved bidirectional LDC for mild-hybrid electric vehicle
Huang et al. Soft-switching PWM full-bridge DC-DC converter with energy recovery transformer and auxiliary passive lossless snubbers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant