WO2024045085A1 - 电池加热拓扑电路及用电装置 - Google Patents

电池加热拓扑电路及用电装置 Download PDF

Info

Publication number
WO2024045085A1
WO2024045085A1 PCT/CN2022/116353 CN2022116353W WO2024045085A1 WO 2024045085 A1 WO2024045085 A1 WO 2024045085A1 CN 2022116353 W CN2022116353 W CN 2022116353W WO 2024045085 A1 WO2024045085 A1 WO 2024045085A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
switch
heating
battery
charging
Prior art date
Application number
PCT/CN2022/116353
Other languages
English (en)
French (fr)
Inventor
吴凯
马国龙
Original Assignee
宁德时代新能源科技股份有限公司
宁德时代(上海)智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司, 宁德时代(上海)智能科技有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/116353 priority Critical patent/WO2024045085A1/zh
Priority to CN202280008225.4A priority patent/CN117044099A/zh
Publication of WO2024045085A1 publication Critical patent/WO2024045085A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery heating topology circuit and an electrical device.
  • batteries are increasingly used in various electrical devices, such as mobile phones, laptops, battery cars, electric vehicles, electric aircraft, electric ships, etc.
  • This application provides a battery heating topology circuit and an electrical device, which can achieve compatibility with low-voltage charging equipment and heat the battery pack.
  • inventions of the present application provide a battery heating topology circuit, which is applied to an electrical device.
  • the electrical device includes a motor controller and a motor.
  • the circuit includes:
  • the switch module includes a first end, a second end and a third end, which are respectively connected to the DC charging port, the battery pack and the neutral point of the motor;
  • An energy storage element is connected between the first end and the third end of the switch module.
  • the voltage boost of the battery pack can be achieved by adjusting the connection between the ports of the switch module. Charging function and heating function.
  • the DC charging port can input the DC charging voltage provided by the external charging device into the boost circuit formed by the motor controller and the motor.
  • the boost circuit can increase the DC charging voltage. After boosting, the battery pack is charged, so that the battery pack can be compatible with external charging equipment with lower charging voltage.
  • the heating circuit formed by the energy storage element, motor controller and motor can discharge and charge the battery pack, so that the internal resistance of the battery pack increases during the charge and discharge cycle. Convert electrical energy into thermal energy to heat the battery pack.
  • the switch module can heat the battery pack so that the temperature of the battery pack meets corresponding requirements.
  • the first pole of the DC charging port is connected to the first end of the switch module, and the second pole is connected to the second pole of the battery pack; the first pole of the battery pack is connected to the second end of the switch module, and the first pole of the battery pack is connected to the second end of the switch module.
  • the two poles are connected to the first end of the energy storage element.
  • the switch module includes: a first switch, a first end of the first switch is connected to the first pole of the DC charging port, and a second end of the first switch is connected to the first pole of the battery pack; a second switch , the first end of the second switch is connected to the first pole of the DC charging port, the second end of the second switch is connected to the second end of the energy storage element; the third switch, the first end of the third switch is connected to the center of the motor The second end of the third switch is connected to the second end of the energy storage element.
  • the battery heating topology circuit further includes a heating module, and the energy storage element is disposed in the heating module.
  • the energy storage element is disposed in the heating module.
  • the energy storage element includes a first capacitor, and the first capacitor is disposed in the switch module.
  • the battery heating topology circuit further includes a heating module.
  • the heating module includes a second capacitor and a fourth switch.
  • the first end of the second capacitor is connected to the second pole of the battery pack, and the second capacitor is an energy storage element.
  • the first terminal of the fourth switch is connected to the neutral point of the motor, and the second terminal of the fourth switch is connected to the second terminal of the second capacitor and the third terminal of the switch module respectively.
  • the motor controller includes a three-phase bridge.
  • the three-phase bridge includes three bridge arm groups.
  • the bridge arm group includes an upper bridge arm and a lower bridge arm connected in series.
  • the first pole and the second pole of the battery pack are respectively connected with The first input terminal and the second input terminal of the motor controller are connected;
  • the upper bridge arm is connected to the first input terminal of the motor controller,
  • the lower bridge arm is connected to the second input terminal of the motor controller, and the common terminal of the three bridge arm groups is
  • the nodes are respectively connected to the three-phase input terminals of the motor;
  • the common node is the connection point of the upper bridge arm and the lower bridge arm;
  • the motor controller is used to drive the upper bridge arm and the lower bridge arm in at least one bridge arm group when forming a heating circuit.
  • the bridge arms are turned on alternately, charging and discharging the battery pack cyclically to heat the battery pack. By driving at least one bridge arm group to cyclically charge and discharge the battery pack, the heating function of the battery pack can
  • embodiments of the present application further provide an electrical device, which includes a battery heating topology circuit as in the first aspect.
  • Figure 1 is a schematic diagram of the module structure of a battery heating topology circuit provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the module structure of a battery heating topology circuit provided by another embodiment of the present application.
  • Figure 3 is a schematic diagram of the module structure of a battery heating topology circuit provided by another embodiment of the present application.
  • Figure 4 is a schematic diagram of the module structure of a battery heating topology circuit provided by yet another embodiment of the present application.
  • Figure 5 is a schematic diagram of the module structure of a battery heating topology circuit provided by another embodiment of the present application.
  • Figure 6 is a schematic diagram of the circuit structure corresponding to the embodiment of Figure 5;
  • Figure 7 is a schematic diagram of the module structure of a battery heating topology circuit provided by yet another embodiment of the present application.
  • FIG. 8 is a schematic diagram of the circuit structure corresponding to the embodiment of FIG. 7 .
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • Power batteries can be used as the main power source for electrical devices (such as vehicles, ships, or spacecrafts, etc.), while energy storage batteries can be used as charging sources for electrical devices.
  • the power battery may be a battery in a power-consuming device
  • the energy storage battery may be a battery in a charging device.
  • both power batteries and energy storage batteries may be collectively referred to as batteries.
  • lithium batteries such as lithium-ion batteries or lithium-ion polymer batteries.
  • the battery When the battery is installed in a power-consuming device, if the remaining power of the battery is insufficient, it needs to be connected to a charging device to charge the battery.
  • the battery pack In low-temperature environments, because the temperature of the battery pack of an electric vehicle is lower than the temperature range required for normal operation, the charging efficiency of the battery pack is relatively low at this time, and the charging equipment cannot effectively charge the battery pack. Therefore, under low temperature conditions, the battery pack needs to be heated to a temperature range within which the battery pack can operate normally, so that the battery pack can be charged normally through the charging pile.
  • an energy storage element can be installed in the electric vehicle, and the energy storage element can be connected to the motor controller and the motor in the electric vehicle.
  • a current loop can be formed through the energy storage component, motor controller, motor and battery pack. This current loop can affect the battery pack through the bridge arm device in the motor controller and the inductor in the motor. Carry out alternate charging and discharging, and achieve heating of the battery pack through the charge and discharge cycle of the battery pack.
  • the electric vehicle when connected to the charging equipment of a low-voltage platform, even in a low-temperature environment, the electric vehicle can alternately charge and discharge the battery pack to heat the battery pack to a suitable temperature range. Charging equipment that is not compatible with this low-voltage platform cannot be charged.
  • embodiments of the present application provide a battery heating topology circuit and a power device. The following first introduces the battery heating topology circuit provided by the embodiment of the present application.
  • the battery heating topology circuit disclosed in the embodiment of the present application can be, but is not limited to, used in electrical devices such as vehicles, ships, or aircrafts.
  • Embodiments of the present application provide an electrical device that uses a battery pack as a power source.
  • the electrical device may include a motor controller and a motor, and may also include other components with voltage conversion functions.
  • the electrical device may be, but is not limited to Mobile phones, tablets, laptops, electric toys, power tools, battery cars, electric vehicles, ships, spacecraft, etc.
  • FIG. 1 shows a schematic module structure diagram of a battery heating topology circuit provided by an embodiment of the present application.
  • the battery heating topology circuit can be applied to an electrical device.
  • the electrical device includes a motor controller 40 and a motor 50.
  • the battery heating topology circuit includes a DC charging port 30, a battery pack 10, an energy storage element C and a switch module 20.
  • an electric vehicle is used as an example in which an electrical device according to an embodiment of the present application is used.
  • the DC charging port 30 can be connected to the external charging device 60 .
  • the DC charging port 30 can receive the charging voltage provided by the external charging device 60 .
  • the battery pack 10 is connected to the motor controller 40 , and the motor controller 40 is connected to the motor 50 .
  • the switch module 20 includes a first end, a second end and a third end.
  • the first end of the switch module 20 is connected to the DC charging port 30
  • the second end is connected to the battery pack 10
  • the third end is connected to the neutral point of the motor 50 connect.
  • the switch module 20 can connect various ports.
  • the energy storage element is connected between the first end and the third end of the switch module 20 . That is, when the first end of the switch module 20 is turned on, the energy storage element C is connected to the DC charging port 30 ; when the third end of the switch module 20 is turned on, the energy storage element C is connected to the neutral point of the motor 50 .
  • the energy storage element C, the motor controller 40, the motor 50 and the switch module 20 can form a boost current loop, and the boost current loop can pass through the DC charging port.
  • the boost current loop can pass through the DC charging port. 30 receives the charging voltage output by the external charging device 60, boosts the charging voltage, and outputs it to the battery pack 10, so that the battery pack 10 is charged with the boosted charging voltage.
  • the energy storage element C, the motor controller 40, the motor 50 and the switch module 20 can form a heating current loop, and the heating current loop can connect the battery pack 10 and the storage device.
  • the energy components C are charged and discharged alternately to form an oscillation circuit.
  • the oscillating current flows through the battery pack 10
  • the internal resistance of the battery pack 10 generates ohmic heat driven by the current, thereby heating the battery pack 10 .
  • the battery pack 10 can be electrically connected to the motor controller 40 , and the motor controller 40 is electrically connected to the motor 50 .
  • the battery pack 10 can output a DC voltage to the motor controller 40, and the motor controller 40 can perform DC-AC conversion on the DC voltage, generate a three-phase AC voltage, and input the three-phase AC voltage to the three-phase input terminal of the motor 50.
  • the motor 50 is driven by three-phase AC voltage to run the vehicle.
  • the switch module 20 can realize switching in different modes of the electrical device by controlling the connection between each terminal.
  • the electrical device as an electric vehicle as an example, the electric vehicle can implement a motor drive mode, a DC charging mode, a boost charging mode, and a battery. Switch between package heating modes.
  • the first end, the second end and the third end of the switch module 20 are disconnected from each other.
  • the battery pack 10, the motor controller 40 and the motor 50 form a current loop, and the battery pack 10 can provide DC
  • the motor controller 40 converts the DC voltage into a three-phase AC voltage, it can drive the motor 50 to run.
  • the DC charging port 30 When the DC charging port 30 is connected to the external charging device 60 , it can receive the DC charging voltage input by the external charging device 60 .
  • the DC charging mode When the DC charging voltage is higher than the working voltage of the battery pack 10, the DC charging mode can be entered, and the battery pack 10 can be charged directly through the DC charging voltage; when the DC charging voltage is lower than the working voltage of the battery pack 10, the DC charging mode can be entered. Entering the boost charging mode, the DC charging voltage is boosted so that the boosted voltage value is higher than the working voltage of the battery pack 10 , so that the battery pack 10 is charged with the boosted voltage.
  • the working voltage of the battery pack 10 may be the maximum working voltage of the battery pack 10 .
  • the first end and the second end of the switch module 20 are connected.
  • the DC charging port 30 can be directly connected to the battery pack 10.
  • the external charging device 60, the DC charging port 30 and the battery pack 10 form a direct charging circuit. , to realize direct charging of the battery pack 10 .
  • the switch module 20 In the boost charging mode, the first end and the third end of the switch module 20 are connected. At this time, the switch module 20, the motor controller 40 and the motor 50 can form a boost circuit, and the DC charging port 30 is connected to the input of the boost circuit. terminal is connected, and the battery pack 10 is connected to the output terminal of the boost circuit.
  • the boost circuit can boost the DC charging voltage input by the external charging device 60 and output it to the battery pack 10 to pass the boosted DC voltage. Charge the battery pack 10.
  • the second end and the third end of the switch module 20 are connected.
  • the energy storage element C, the switch module 20, the motor controller 40 and the motor 50 can form a heating circuit.
  • the heating circuit can realize cyclic charging and discharging of the battery pack 10, so that the internal resistance of the battery pack 10 can convert electrical energy into thermal energy through the oscillating current generated during the charge and discharge cycle, thereby realizing heating of the battery pack 10.
  • the heating circuit can control the battery pack 10 to discharge the energy storage element C, so that the energy storage element C is charged by storing charge; when the energy storage element C stores After charging, the heating circuit can control the energy storage element C to release the stored charge to charge the battery pack 10 .
  • One discharge-charge process of the battery pack 10 is a complete charge-discharge cycle.
  • the battery pack 10 can be realized by adjusting the connectivity between the ports of the switch module 20 boost charging function and heating function.
  • the DC charging port 30 can input the DC charging voltage provided by the external charging device 60 into the boost circuit formed by the motor controller 40 and the motor 50.
  • the boost circuit The DC charging voltage can be boosted to charge the battery pack 10 so that the battery pack 10 can be compatible with an external charging device 60 with a lower charging voltage.
  • the heating circuit formed by the energy storage element C, the motor controller 40 and the motor 50 can perform a discharge and charge cycle on the battery pack 10, so that the internal resistance of the battery pack 10 During the charge and discharge cycle, electrical energy is converted into thermal energy, thereby heating the battery pack 10 .
  • the switch module 20 can heat the battery pack 10 so that the temperature of the battery pack 10 meets corresponding requirements.
  • the switch module 20 can also boost the charging voltage, so that the battery pack 10 can be compatible with the low-voltage external charging device 60 .
  • the first pole of the DC charging port 30 can be connected to the first end of the switch module 20, and the second pole of the DC charging port 30 can be connected to the second pole of the battery pack 10. connect.
  • the first pole of the battery pack 10 may be connected to the second end of the switch module 20
  • the second pole of the battery pack 10 may be connected to the first end of the energy storage element C.
  • the switch module 20 realizes the connection between the first end and the third end by connecting the second end of the energy storage element C, the neutral point of the motor 50 and the first pole of the DC charging port 30; the switch module 20 realizes the second end.
  • the way to connect the first end and the third end may be to connect the second end of the energy storage element C with the neutral point of the motor 50 .
  • the battery heating topology circuit When the second end of the energy storage element C, the neutral point of the motor 50 and the first pole of the DC charging port 30 are connected to a common node, the battery heating topology circuit operates in the boost charging mode, and the energy storage element C and the motor 50 and the motor controller 40 are equivalent to forming a boost circuit.
  • the two ends of the DC charging port 30 are respectively connected to the two ends of the energy storage element C.
  • the DC charging port 30 is connected to the input end of the boost circuit.
  • the output end is connected to the battery pack 10, and the DC charging voltage input by the external charging device 60 can be boosted in the boost circuit to charge the battery pack 10.
  • the battery heating topological circuit works in the battery pack heating mode.
  • the energy storage element C, the motor 50 and the motor controller 40 constitute a heating circuit.
  • the DC charging port 30 is not connected to the heating circuit.
  • the heating circuit can alternately discharge and charge the battery pack 10 to convert electrical energy into thermal energy to heat the battery pack 10 during the charge and discharge cycle.
  • the energy storage element C, the neutral point of the motor 50 and the DC charging port 30 through the switch module 20 can form a boost circuit or a heating circuit.
  • a boost circuit is formed, and the DC charging voltage output by the external charging device 60 can be boosted at this time; when the DC charging port 30 is not connected, a heating circuit is formed, At this time, the battery pack 10 can be charged and discharged alternately to heat the battery pack 10 .
  • the above-mentioned switch module 20 may include a first switch K1, a second switch K2, and a third switch K3.
  • the first terminal of the first switch K1 is connected to the first pole of the DC charging port 30 , and the second terminal of the first switch K1 is connected to the first pole of the battery pack 10 .
  • the first end of the second switch K2 is connected to the first pole of the DC charging port 30 , and the second end of the second switch K2 is connected to the second end of the energy storage element C.
  • the first end of the third switch K3 is connected to the neutral point of the motor 50 , and the second end of the third switch K3 is connected to the second end of the energy storage element C.
  • first pole and the second pole of each module mentioned above can be the positive pole and the negative pole respectively, the second poles of each module can be directly connected, and the first pole of each module can be connected through the first switch K1 and the second switch respectively. K2 or the third switch K3 is connected.
  • the external charging device 60 can directly charge the battery through the DC charging port 30 .
  • the battery pack 10 is charged.
  • the third switch K3 When the third switch K3 is turned on, the first end of the energy storage element C is connected to the second pole of the battery pack 10 , and the second end is connected to the neutral point of the motor 50 .
  • the DC charging interface is connected to the current loop formed by the energy storage element C, the motor 50 and the motor controller 40.
  • the voltage input source is the external charging device 60.
  • the current loop formed by the motor 50 and the motor controller 40 is a boost circuit.
  • the second switch K2 is turned off and the third switch K3 is turned on, the DC charging interface is disconnected from the current loop formed by the energy storage element C, the motor 50 and the motor controller 40.
  • the voltage input source is the battery pack 10, and the storage
  • the current loop formed by the energy element C, the motor 50 and the motor controller 40 is a heating circuit.
  • the above-mentioned battery heating topology circuit may also include a heating module 70, and the energy storage element C is disposed in the heating module 70.
  • the heating module 70 is detachably connected to the switch module 20.
  • the energy storage element C in the heating module 70 can be connected in series between the common node of the second switch K2 and the third switch K3 and the battery pack 10. between the second pole.
  • the heating module 70 and the switch module 20 are detachably connected.
  • the heating module 70 When the heating module 70 is connected to the switch module 20, the energy storage element C can be connected to the battery heating topology circuit.
  • the heating module 70 When the heating module 70 is disconnected from the switch module 20, the energy storage element C is not connected to the battery electric heating topology circuit.
  • the heating module 70 can be used as an optional module for users to choose the heating function. In addition, if the user does not select the heating function, he can also add the heating function by installing the heating module 70 .
  • the voltage input source is the external charging device 60.
  • the motor controller 40 and the motor 50 can form a boost circuit to input the voltage to the external charging device 60.
  • the DC charging voltage is boosted.
  • the external charging device 60 is not connected to the current loop.
  • the energy storage element C needs to be set to store charge when the battery pack 10 is discharged, and the energy storage element C releases the charge to the battery pack 10 Charge to form an alternating cycle of charge and discharge. Therefore, when the heating module 70 is connected to the switch module 20, the battery heating topology circuit can realize boost charging of the battery pack 10 or heating of the battery pack 10 through the adjustment of the switch module 20.
  • the battery heating topology circuit can realize the boost charging of the battery pack 10 at this time, but cannot realize the charging of the battery pack 10. heating.
  • the energy storage element C includes a first capacitor C1 , and the first capacitor C1 may be disposed in the switch module 20 .
  • the switch module 20 can also be provided with a first capacitor C1.
  • the first capacitor C1 can control each port by connecting each port of the switch module 20 to the neutral point of the DC charging port 30, the battery pack 10 and the motor 50 respectively. When the connection relationship among them is established, the neutral points of the DC charging port 30, the battery pack 10 and the motor 50 are connected to the first capacitor C1.
  • the number of modules in the electrical device can be reduced, the assembly process in the production process can be reduced, and the production efficiency can be improved.
  • Figure 6 shows a schematic diagram of the circuit structure corresponding to the embodiment of Figure 5. The following is the conduction state of each switch in the battery heating topology circuit in each mode:
  • the first switch K1, the second switch K2, and the third switch K3 are all in the off state.
  • the battery pack 10 drives the motor 50 to run through the motor controller 40.
  • the first switch K1 is turned on, and the second switch K2 and the third switch K3 are turned off. At this time, both ends of the DC charging port 30 are directly connected to the first pole and the second pole of the battery pack 10 .
  • the first switch K1 is turned off, and the second switch K2 and the third switch K3 are turned on.
  • the external charging device 60, the DC charging port 30, the first capacitor C1, the motor controller 40, and the motor 50 Form a complete boost current loop.
  • the first switch K1 and the second switch K2 are turned off, and the third switch K3 is turned on.
  • the first capacitor C1, the motor controller 40, and the motor 50 form a complete heating current loop.
  • the above-mentioned battery heating topology circuit may also include a heating module 70.
  • the heating module 70 may include a second capacitor C2 and a fourth switch K4.
  • the first end of the second capacitor C2 is connected to the battery.
  • the second capacitor C2 is the energy storage element C.
  • the heating module 70 can connect the second end of the second capacitor C2 to the neutral point of the motor 50 when the fourth switch K4 is turned on. At this time, the first end of the second capacitor C2 is connected to the second pole of the battery pack 10 , and the second end is connected to the neutral point of the motor 50 .
  • the second capacitor C2 can form a heating circuit with the motor controller 40 and the motor 50 to alternately charge and discharge the battery pack 10 .
  • the battery heating topology circuit may further include a heating module 70 provided with the second capacitor C2.
  • the capacitance value of the first capacitor C1 does not meet the capacitance requirement of the energy storage element C required for charging and discharging the battery pack 10 in the heating circuit.
  • the heating module 70 is not connected to the battery heating topology circuit, it only has the first capacitor C1 and cannot realize the cyclic charging and discharging heating function of the battery pack 10; when the heating module 70 is connected to the battery heating topology circuit, the second capacitor can be used.
  • the motor controller 40, and the motor 50 form a heating circuit to alternately charge and discharge the battery pack 10, thereby heating the battery pack 10.
  • the first end of the fourth switch K4 is connected to the neutral point of the motor 50 , and the second end of the fourth switch K4 is respectively connected to the second end of the second capacitor C2 and the third end of the switch module 20 .
  • both ends of the second capacitor C2 have been connected to the negative circuit of the heating module 70 and the neutral point of the motor 50 respectively.
  • the second capacitor C2 the motor controller 40, the motor 50 and the battery pack 10 can form a complete heating current loop. Since the battery pack 10 still needs to be heated at this time, the external charging device 60 cannot be connected to the current loop, and the first end of the switch module 20 needs to remain disconnected. Since the capacitance of the second capacitor C2 can meet the capacitance requirement of the energy storage element C in the heating circuit, the second end and the third end of the switch module 20 can remain disconnected. At this time, the first capacitor C1 is not connected. in the heating circuit. The battery pack 10 can be heated through the second capacitor C2.
  • Figure 8 shows a schematic circuit structure diagram corresponding to the embodiment of Figure 7. Compared with the schematic circuit structure diagram shown in Figure 6, Figure 8 also includes a second capacitor C2 and a fourth switch K4.
  • the first switch K1 , the second switch K2 , the third switch K3 and the fourth switch K4 are all turned off. At this time, the battery pack 10 drives the motor 50 to run through the motor controller 40 .
  • the first switch K1 is turned on, and the second switch K2, the third switch K3 and the fourth switch K4 are turned off. At this time, both ends of the DC charging port 30 are directly connected to the first pole and the first pole of the battery pack 10. Two-pole connection.
  • the first switch K1 is turned off, and the second switch K2, the third switch K3, and the fourth switch K4 are turned on.
  • the external charging device 60, the DC charging port 30, the first capacitor C1, and the second switch K4 are turned on.
  • Capacitor C2, motor controller 40, and motor 50 form a complete boost current loop.
  • the first switch K1, the second switch K2 and the third switch K3 are turned off, and the fourth switch K4 is turned on.
  • the second capacitor C2, the motor controller 40 and the motor 50 form a complete heating current. loop.
  • the above-mentioned switch module 20 can conduct the first terminal and the third terminal under the first preset condition, so that the boost circuit boosts the DC charging voltage input by the external charging device 60. , to charge the battery pack 10.
  • the first preset condition may include that the DC charging voltage of the external charging device 60 is lower than the operating voltage of the battery pack 10 .
  • the DC charging voltage of the external charging device 60 can be detected.
  • the DC charging voltage is lower than the working voltage of the battery pack 10, it is determined that the first preset condition is met. , at this time, the battery pack 10 cannot be charged directly through the DC charging voltage. It is necessary to connect the first end and the third end of the switch module 20 to boost the DC charging voltage through a boost circuit.
  • the battery heating topology circuit can be compatible to achieve charging of the battery pack 10 .
  • the above-mentioned switch module 20 can connect the second terminal and the third terminal under the second preset condition, so that the heating circuit can cycle charge and discharge the battery pack 10, thereby heating the battery pack 10 .
  • the second preset condition may include that the battery temperature of the battery pack 10 is lower than the temperature threshold.
  • the third key of the switch module 20 can be used. The second terminal and the third terminal are connected to realize heating of the battery pack 10 to increase the battery temperature of the battery pack 10 .
  • a heating circuit can be formed through the switch module 20 to charge and discharge the battery pack 10, thereby heating the battery pack 10, so that the battery temperature of the battery pack 10 reaches Normal temperature range.
  • the battery temperature of the battery pack 10 needs to be detected.
  • the battery pack 10 needs to be heated through the heating circuit first, so that the battery temperature reaches a suitable temperature range, and then the external charging device 60 can be connected to the battery pack 10 to charge the battery pack 10 .
  • the output voltage of the external charging device 60 needs to be detected to determine whether the connection mode between the external charging device 60 and the battery pack 10 is a DC charging mode or a boost charging mode based on the output voltage. .
  • the above-mentioned motor controller 40 may include a three-phase bridge, and the three-phase bridge includes three bridge arm groups.
  • the bridge arm group includes an upper bridge arm and a lower bridge arm connected in series.
  • the first pole and the second pole of the battery pack 10 are respectively connected to the first input terminal and the second input terminal of the motor controller 40 .
  • the upper bridge arm in the bridge arm group is connected to the first input end of the motor controller 40
  • the lower bridge arm is connected to the second input end of the motor controller 40
  • the common nodes of the three bridge arm groups are respectively connected to the three input ends of the motor 50.
  • the phase input terminals are connected, and the common node is the connection point between the upper bridge arm and the lower bridge arm.
  • the motor controller 40 can drive the upper bridge arm and the lower bridge arm of at least one of the three bridge arm groups to conduct alternately to cyclically charge and discharge the battery pack 10, thereby heating the battery pack. 10.
  • Each phase of the motor 50 also includes a winding inductor. After the winding inductor is connected to the corresponding bridge arm group, it can form a charge and discharge circuit with the battery pack 10 and the energy storage element C. By controlling the upper and lower bridge arms to alternately conduct, the battery pack 10 can be alternately discharged and charged. When the motor controller 40 drives a bridge arm group to conduct alternate conduction, the battery pack 10 can be charged and discharged cyclically. By increasing the number of bridge arm groups driven by the motor controller 40, the power when discharging or charging the battery pack 10 can be increased.
  • the battery pack 10 when the charging and discharging power increases, the battery pack 10 generates energy during the charging and discharging process.
  • the oscillating current also increases, causing the internal resistance of the battery pack 10 to generate more heat, thereby increasing the heating power and heating efficiency.
  • the heating power and heating efficiency of the battery pack 10 can be adjusted.
  • the number of driven bridge arm groups can be increased to quickly increase the battery temperature of the battery pack 10 .
  • the number of driven bridge arm groups can be reduced to reduce the power consumed during the heating process.
  • the motor controller 40 can drive the lower bridge arm again after a first preset time interval. conduction.
  • the following description takes a complete cycle of charging and discharging process of the battery pack 10 as an example.
  • the heating circuit can alternately charge and discharge between the energy storage element C and the battery pack 10.
  • the energy storage element C can be the one in the embodiment shown in Figure 6.
  • the motor controller 40 can drive the upper bridge arm to be turned on and the lower bridge arm to be turned off.
  • the voltage of the battery pack 10 is higher than the voltage across the energy storage element C, and the current can flow to the energy storage element C through the upper bridge arm and the winding inductance corresponding to the bridge arm group in the motor 50 to charge the energy storage element C.
  • This current loop is a discharge energy storage loop.
  • the battery pack 10 discharges the energy storage element C.
  • the motor controller 40 can drive the upper bridge arm to disconnect and the lower bridge arm to disconnect. Since the winding inductance in the current loop inhibits the change of the current, the reverse direction on the lower bridge arm The diode can form a current loop with the winding inductor and energy storage element C. At this time, the direction of the current flowing through the energy storage element C does not change, but the current size gradually decreases. In the second stage, the winding inductor can release the stored charge to Continue to charge the energy storage element C. This current loop is a discharge energy release circuit. At this time, the winding inductance charges the energy storage element C.
  • both the upper arm and the lower arm are in a disconnected state, and the current loop formed by the reverse diode of the lower arm continues to charge the energy storage element C.
  • the upper bridge arm continues to remain in the off state, and the lower bridge arm also remains in the off state.
  • the suppression effect of the winding inductance on the current change ends.
  • the reverse diode of the upper arm can form a current loop with the winding inductance and energy storage element C.
  • the energy storage element C can release the previously stored charge.
  • the current flows into the battery pack 10 through the reverse diode of the upper arm, and has a negative impact on the battery.
  • Pack 10 for charging This current loop is a charging energy storage loop. At this time, the energy storage element C charges the battery pack 10 .
  • the upper bridge arm and the lower bridge arm are both disconnected, that is, the sum of the times of the second stage and the third stage is the time when the motor controller 40 drives the upper bridge.
  • the motor controller 40 can drive the upper bridge arm to disconnect and the lower bridge arm to conduct. Since the winding inductance in the current loop inhibits the change of the current, the lower bridge arm interacts with the winding inductance and storage. The energy element C forms a current loop, and the winding inductor can continue to discharge the energy storage element C. This current loop is a charging and energy releasing circuit. At this time, the winding inductor discharges the energy storage element C.
  • the cyclic charge and discharge between the energy storage element C and the battery pack 10 can be realized.
  • the internal resistance of the battery pack 10 can convert electrical energy into thermal energy, thereby heating the battery pack 10 .
  • the motor controller 40 when forming a boost circuit, can drive the upper bridge arm and the lower bridge arm of at least one of the three bridge arm groups to be alternately conductive to charge the external device. After the DC charging voltage of 60 is boosted, the battery pack 10 is charged with the boosted voltage.
  • Boost circuit there are inductors, diodes and switching tubes.
  • the inductor can store or release energy by suppressing the current, the diode can limit the direction of the current, and the switching tube can alternately conduct and discharge energy.
  • the cutoff controls the inductor for charge storage and charge release.
  • the common node in the bridge arm group is connected to a certain phase of the motor 50.
  • the winding inductance of the motor 50 on this phase can be used as the inductor in the Boost circuit.
  • the reverse direction of the upper bridge arm The diode can be used as a diode, and the lower arm can be used as a switching tube.
  • the boosting function of the Boost circuit can be realized, and the DC charging voltage input by the external charging device 60 can be boosted.
  • the voltage boosting factor can be adjusted, so that the boosted DC charging voltage can be greater than the working voltage of the battery pack 10, so that the boosted DC charging voltage can The voltage can charge the battery pack 10 .
  • the DC charging voltage can be boosted.
  • Increasing the number of driven bridge arm groups will not change the boosted voltage, but it can increase the output power of the boost circuit. Therefore, by adjusting the number of bridge arm groups driven in the motor controller 40, the charging power of the battery pack 10 during the charging process can be increased. According to the actual charging power required by the battery pack 10, a corresponding number of bridge arm groups can be driven.
  • the present application also provides an electrical device, including a battery of the heating topology circuit in any of the above embodiments, and the heating topological circuit is used to realize heating or external charging of the battery pack for the electrical device.
  • the device's voltage boosting device can be any of the aforementioned devices or systems that apply battery heating topology circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种电池加热拓扑电路,应用于用电装置,用电装置包括电机控制器及电机,电路包括:直流充电端口,用于与外部充电设备连接;电池包,与电机控制器连接;储能元件;开关模块,包括第一端、第二端和第三端,分别与直流充电端口、电池包和电机的中性点连接。

Description

电池加热拓扑电路及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池加热拓扑电路及用电装置。
背景技术
随着新能源技术的发展,电池越来越广泛地应用于各种用电装置,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船等。
以电动汽车为例,在低温环境下,电动汽车内的电池包的充电效率较低,需要对电池包进行加热,将电池包的温度加热至电池包的运行温度范围,才能够通过充电设备为电池包进行高效充电。
此外,现有的电动汽车通常采用高压系统,需要在高压充电平台下进行充电。然而,由于以往所布设的充电设备大多为低压平台,无法兼容高压系统的电动汽车。
发明内容
本申请提供了一种电池加热拓扑电路及用电装置,能够实现对低压充电设备的兼容以及对电池包进行加热升温。
第一方面,本申请实施例提供了一种电池加热拓扑电路,应用于用电装置,用电装置包括电机控制器及电机,电路包括:
直流充电端口,用于与外部充电设备连接;
电池包,与电机控制器连接;
开关模块,包括第一端、第二端和第三端,分别与直流充电端口、电池包和电机的中性点连接;
储能元件,连接于所述开关模块的第一端与第三端之间。
本申请实施例的技术方案中,通过设置开关模块的各个端口分别与 直流充电端口、电池包和电机的中性点进行连接,能够通过调整开关模块各个端口之间的连通实现电池包的升压充电功能和加热功能。在开关模块的第一端与第三端连通时,直流充电端口可以将外部充电设备提供的直流充电电压输入由电机控制器和电机形成的升压电路中,该升压电路可以对直流充电电压进行升压后为电池包进行充电,使得电池包能够兼容充电电压较低的外部充电设备。在开关模块的第二端与第三端连通时,储能元件、电机控制器和电机形成的加热电路能够对电池包进行放电和充电的循环,使得电池包的内阻在充放电循环过程中将电能转换为热能,从而对电池包进行加热。开关模块能够对电池包进行加热以使得电池包的温度满足相应需求。
在一些实施例中,直流充电端口的第一极与开关模块的第一端连接,第二极与电池包的第二极连接;电池包的第一极与开关模块的第二端连接,第二极与储能元件的第一端连接。通过将各个模块的第一极通过开关模块进行连通,能够通过开关模块对各个模块之间进行连通,以实现不同的功能。
在一些实施例中,开关模块包括:第一开关,第一开关的第一端与直流充电端口的第一极连接,第一开关的第二端与电池包的第一极连接;第二开关,第二开关的第一端与直流充电端口的第一极连接,第二开关的第二端与储能元件的第二端连接;第三开关,第三开关的第一端与电机的中性点连接,第三开关的第二端与储能元件的第二端连接。通过设置多个开关,能够通过开关的导通和断开实现各个模块之间的连通,从而在不同连通方式下实现加热功能、升压充电功能或直充功能。
在一些实施例中,电池加热拓扑电路还包括加热模块,储能元件设置于加热模块内。通过将储能元件设置在加热模块内,能够使用户对加热功能进行灵活选配。
在一些实施例中,储能元件包括第一电容,第一电容设置于开关模块内。通过在开关模块内直接设置储能元件,能够降低电路中的模块数量,减少生产过程中的装配连接工序,提升生产效率。
在一些实施例中,电池加热拓扑电路还包括加热模块,加热模块 包括第二电容和第四开关,第二电容的第一端与电池包的第二极连接,第二电容为储能元件。通过设置第二电容作为加热模块,能够通过加热模块内的储能元件实现电池包的加热,使得用户能够对加热功能进行灵活选配。
在一些实施例中,第四开关的第一端与电机的中性点连接,第四开关的第二端分别与第二电容的第二端以及开关模块的第三端连接。通过第四开关的通断,能够实现加热回路的导通与断开,从而实现电池包的加热功能的开启与停止。
在一些实施例中,电机控制器包括三相桥,三相桥包括三个桥臂组,桥臂组包括串联的上桥臂和下桥臂,电池包的第一极和第二极分别与电机控制器的第一输入端和第二输入端连接;上桥臂与电机控制器的第一输入端连接,下桥臂与电机控制器的第二输入端连接,三个桥臂组的公共节点分别与电机的三相输入端连接;公共节点为上桥臂和下桥臂的连接点;电机控制器,用于在形成加热电路时,驱动至少一个桥臂组中的上桥臂和下桥臂交替导通,对电池包进行循环充电和放电以加热电池包。通过驱动至少一个桥臂组对电池包进行循环充电和放电,能够实现电池包的加热功能。
第二方面,本申请实施例还提供一种用电装置,用电装置包括如第一方面的电池加热拓扑电路。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一实施例提供的电池加热拓扑电路的模块结构示意图;
图2为本申请另一实施例提供的电池加热拓扑电路的模块结构示意图;
图3为本申请又一实施例提供的电池加热拓扑电路的模块结构示意图;
图4为本申请再一实施例提供的电池加热拓扑电路的模块结构示意图;
图5为本申请又一实施例提供的电池加热拓扑电路的模块结构示意图;
图6为图5实施例对应的电路结构示意图;
图7为本申请再一实施例提供的电池加热拓扑电路的模块结构示意图;
图8为图7实施例对应的电路结构示意图。
在附图中,附图并未按照实际的比例绘制。
附图中:
10、电池包;20、开关模块;30、直流充电端口;40、电机控制器;50、电机;60、外部充电设备;70、加热模块;K1、第一开关;K2、第二开关;K3、第三开关;K4、第四开关;C、储能元件;C1、第一电容;C2、第二电容。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申 请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
目前,随着新能源技术的发展,电池越来越广泛地应用于各种用电装置,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船等。随着电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
动力电池可作为用电装置(例如车辆、船舶或航天器等)的主要动力源,而储能电池可作为用电装置的充电来源,二者的重要性均不言而喻。作为示例而非限定,在一些应用场景中,动力电池可为用电装置中的电池, 储能电池可为充电装置中的电池。为了便于描述,在下文中,动力电池和储能电池均可统称为电池。
目前,市面上的电池多为可充电的蓄电池,最常见的是锂电池,例如锂离子电池或锂离子聚合物电池等等。在电池设置于用电装置时,若电池的剩余电量不足时,需要与充电装置连接,为电池充电。
而在低温环境下,由于电动汽车的电池包的温度低于其正常工作所需的温度范围,此时电池包的充电效率较为底下,充电设备无法有效对电池包进行充电。因此,在低温条件下,需要对电池包进行加热,将电池包的温度加热至电池包能够正常运行的温度范围内,才能够通过充电桩为电池包进行正常充电。
在现有的用电装置中,以用电装置为电动汽车为例,电动汽车内可以设置一储能元件,该储能元件可以与电动汽车内的电机控制器和电机连接。在电动汽车的电池包温度较低时,可以通过储能元件、电机控制器、电机以及电池包形成电流回路,该电流回路能够通过电机控制器内的桥臂器件与电机内的电感对电池包进行交替充电和放电,通过对电池包的充放电循环实现电池包的加热。
发明人注意到,由于电动汽车的充电平台不断发展,现有的电动汽车已经逐渐普及高压系统,例如800V高压充电平台。而以往所布设的充电设备则由于布设时间较为久远,通常仅为低压平台,例如400V充电桩。对于高压平台的电动汽车,在接入低压平台的充电设备时,即使在低温环境下,电动汽车能够通过对电池包进行交替充电和放电,将电池包的温度加热至合适的温度范围内,也无法兼容该低压平台的充电设备实现充电。
为了解决上述技术问题,本申请实施例提供了一种电池加热拓扑电路及用电装置。下面首先对本申请实施例所提供的电池加热拓扑电路进行介绍。
本申请实施例公开的电池加热拓扑电路可以但不限用于车辆、船舶或飞行器等用电装置中。本申请实施例提供一种使用电池包作为电源的用电装置,用电装置中可以包括电机控制器以及电机,也可以包括其他具备电压变换功能的部件,例如,用电装置可以为但不限于手机、平板、笔记 本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。
图1示出了本申请一个实施例提供的电池加热拓扑电路的模块结构示意图,该电池加热拓扑电路可以应用于用电装置中,用电装置包括有电机控制器40以及电机50。电池加热拓扑电路包括直流充电端口30、电池包10、储能元件C以及开关模块20。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为电动汽车为例进行说明。
直流充电端口30能够与外部充电设备60进行连接,在外部充电设备60接入时,直流充电端口30可以接收外部充电设备60提供的充电电压。电池包10与电机控制器40连接,电机控制器40与电机50连接。
开关模块20包括第一端、第二端和第三端,开关模块20的第一端与直流充电端口30连接,第二端与电池包10连接,第三端则与电机50的中性点连接。开关模块20可以将各个端口之间进行连通。储能元件连接在开关模块20的第一端与第三端之间。即,在开关模块20的第一端导通时,储能元件C与直流充电端口30连接;在开关模块20的第三端导通时,储能元件C与电机50的中性点连接。
在开关模块20将其第一端与第三端连通时,储能元件C、电机控制器40、电机50以及开关模块20能够形成一个升压电流回路,该升压电流回路能够通过直流充电端口30接收外部充电设备60输出的充电电压,并对该充电电压进行升压后,输出至电池包10,以通过升压后的充电电压为电池包10进行充电。
在开关模块20将其第二端与第三端连通时,储能元件C、电机控制器40、电机50以及开关模块20能够形成一个加热电流回路,该加热电流回路能够在电池包10与储能元件C之间交替进行充电和放电,形成震荡电路。在充电和放电循环的过程中,震荡电流流过电池包10时,电池包10的内阻在电流驱动下产生欧姆热,从而实现对电池包10的加热。
在用电装置为电动汽车时,为了能够驱动电动汽车的电机50以实现汽车行驶,电池包10可以与电机控制器40电连接,电机控制器40则与电机50电连接。电池包10可以输出直流电压至电机控制器40,电机控制 器40可以对该直流电压进行直流-交流转换,生成三相交流电压,并将三相交流电压输入至电机50的三相输入端,电机50在三相交流电压的驱动下运行以实现汽车行驶。
开关模块20可以通过控制各个端之间的连通实现用电装置不同模式下的切换,以用电装置为电动汽车为例,电动汽车可以实现电机驱动模式、直流充电模式、升压充电模式以及电池包加热模式之间的切换。
在电机驱动模式下,开关模块20的第一端、第二端和第三端之间相互断开,此时电池包10、电机控制器40以及电机50构成电流回路,电池包10能够提供直流电压,电机控制器40将直流电压转换为三相交流电压后,可以驱动电机50运行。
直流充电端口30与外部充电设备60连接时,可以接收外部充电设备60输入的直流充电电压。在该直流充电电压高于电池包10的工作电压时,可以进入直流充电模式,直接通过该直流充电电压为电池包10进行充电;在该直流充电电压低于电池包10的工作电压时,可以进入升压充电模式,对该直流充电电压进行升压,使得升压后的电压值高于电池包10的工作电压,以通过升压后的电压为电池包10进行充电。可以理解的是,上述电池包10的工作电压可以是电池包10的最大工作电压。
在直流充电模式下,开关模块20的第一端和第二端连通,此时直流充电端口30可以直接与电池包10连接,外部充电设备60、直流充电端口30以及电池包10构成直充电路,以实现对电池包10的直充。
在升压充电模式下,开关模块20的第一端与第三端连通,此时开关模块20、电机控制器40以及电机50能够形成升压电路,直流充电端口30与该升压电路的输入端连接,电池包10则与该升压电路的输出端连接,升压电路可以将外部充电设备60输入的直流充电电压进行升压后,输出至电池包10,以通过升压后的直流电压为电池包10进行充电。
在电池包加热模式下,开关模块20的第二端与第三端连通,此时储能元件C、开关模块20、电机控制器40以及电机50能够形成加热电路。该加热电路可以实现对电池包10的循环充放电,以在充放电循环过程中通过产生的震荡电流使得电池包10的内阻将电能转换为热能,实现电池 包10的加热升温。
在对电池包10进行充放电时的一个完整充放电循环中,加热电路可以控制电池包10对储能元件C进行放电,以使得储能元件C通过存储电荷进行充电;在储能元件C存储电荷后,加热电路可以控制储能元件C释放存储的电荷,以对电池包10进行充电。电池包10的一次放电-充电过程即为一个完整的充放电循环。
在本实施例中,通过设置开关模块20的各个端口分别与直流充电端口30、电池包10和电机50的中性点进行连接,能够通过调整开关模块20各个端口之间的连通实现电池包10的升压充电功能和加热功能。在开关模块20的第一端与第三端连通时,直流充电端口30可以将外部充电设备60提供的直流充电电压输入由电机控制器40和电机50形成的升压电路中,该升压电路可以对直流充电电压进行升压后为电池包10进行充电,使得电池包10能够兼容充电电压较低的外部充电设备60。在开关模块20的第二端与第三端连通时,储能元件C、电机控制器40和电机50形成的加热电路能够对电池包10进行放电和充电的循环,使得电池包10的内阻在充放电循环过程中将电能转换为热能,从而对电池包10进行加热。开关模块20能够对电池包10进行加热以使得电池包10的温度满足相应需求。在外部充电设备60所能够提供的充电电压较低时,开关模块20还能够实现充电电压的升压,以使得电池包10能够兼容低压的外部充电设备60。
请参照图2,根据本申请的一些实施例,上述直流充电端口30的第一极可以与开关模块20的第一端连接,直流充电端口30的第二极可以与电池包10的第二极连接。电池包10的第一极可以与开关模块20的第二端连接,电池包10的第二极可以与储能元件C的第一端连接。
开关模块20实现第一端与第三端连通的方式可以是将储能元件C的第二端、电机50的中性点以及直流充电端口30的第一极进行连通;开关模块20实现第二端与第三端连通的方式可以是将储能元件C的第二端与电机50的中性点进行连通。
在储能元件C的第二端、电机50的中性点以及直流充电端口30的第一极连接于公共节点时,电池加热拓扑电路工作在升压充电模式下,储 能元件C、电机50和电机控制器40相当于构成了升压电路,直流充电端口30的两端分别与储能元件C的两端连接,此时直流充电端口30与升压电路的输入端连接,升压电路的输出端则与电池包10连接,外部充电设备60输入的直流充电电压可以在升压电路中进行升压后,为电池包10进行充电。
在储能元件C的第二端与电机50的中性点连通时,电池加热拓扑电路工作在电池包加热模式下,储能元件C、电机50和电机控制器40相当于构成了加热电路,此时直流充电端口30并未与该加热电路连通。加热电路可以对电池包10进行交替放电和充电,以在充放电循环过程中将电能转换为热能对电池包10进行加热。
通过开关模块20对储能元件C、电机50的中性点以及直流充电端口30之间的连通关系进行调整,可以使得储能元件C、电机50和电机控制器40形成升压电路或加热电路,在直流充电端口30接入时,形成的是升压电路,此时可以将外部充电设备60输出的直流充电电压进行升压;在直流充电端口30未接入时,形成的是加热电路,此时可以对电池包10进行交替充放电以加热电池包10。
请参照图3,根据本申请的一些实施例,上述开关模块20可以包括第一开关K1、第二开关K2和第三开关K3。
第一开关K1的第一端与直流充电端口30的第一极连接,第一开关K1的第二端与电池包10的第一极连接。
第二开关K2的第一端与直流充电端口30的第一极连接,第二开关K2的第二端与储能元件C的第二端连接。
第三开关K3的第一端与电机50的中性点连接,第三开关K3的第二端与储能元件C的第二端连接。
可以理解的是,上述各个模块的第一极和第二极可以分别为正极和负极,各个模块的第二极可以直接连通,各个模块的第一极则分别通过第一开关K1、第二开关K2或第三开关K3进行连通。
在第一开关K1导通时,直流充电端口30的第一极和第二极分别与电池包10的第一极和第二极连接,此时外部充电设备60可以通过直流充 电端口30直接为电池包10进行充电。
在第二开关K2导通时,直流充电端口30的第一极和第二极分别与储能元件C的第二端和第一端连接。
在第三开关K3导通时,储能元件C的第一端与电池包10的第二极连接,第二端则与电机50的中性点连通。
在第二开关K2导通、第三开关K3导通时,直流充电接口接入储能元件C、电机50和电机控制器40形成的电流回路中,此时电压输入源为外部充电设备60,电机50和电机控制器40形成的电流回路为升压电路。在第二开关K2断开、第三开关K3导通时,直流充电接口与储能元件C、电机50和电机控制器40形成的电流回路断开,此时电压输入源为电池包10,储能元件C、电机50和电机控制器40形成的电流回路为加热电路。
请参照图4,根据本申请的一些实施例,上述电池加热拓扑电路还可以包括加热模块70,储能元件C设置于加热模块70内。
加热模块70与开关模块20可拆卸连接,在加热模块70与开关模块20连接时,加热模块70内的储能元件C可以串联在第二开关K2和第三开关K3的公共节点与电池包10的第二极之间。
通过将储能元件C设置在加热模块70内,并使得加热模块70与开关模块20之间可拆卸连接。在加热模块70与开关模块20连接时,储能元件C可以接入电池加热拓扑电路中。在加热模块70与开关模块20断开时,储能元件C则未接入电池电加热拓扑电路中。对于电动汽车,可以将加热模块70作为选配模块,以供用户进行加热功能的选配。此外,用户在未选择加热功能的情况下,还可以通过安装加热模块70实现加热功能的增配。
需要说明的是,在升压充电模式下,电压输入源为外部充电设备60,此时即使没有储能元件C,电机控制器40和电机50也能够形成升压电路,将外部充电设备60输入的直流充电电压进行升压。而在电池包加热模式下,外部充电设备60未接入该电流回路中,此时需要设置储能元件C在电池包10放电时进行电荷存储,并通过储能元件C释放电荷对电池包10进行充电,从而形成充放电的交替循环。因此,在加热模块70与开关模 块20连接时,该电池加热拓扑电路能够通过开关模块20的调整实现对电池包10的升压充电或者对电池包10的加热。而在加热模块70与开关模块20断开时,由于储能元件C未接入电流回路,此时该电池加热拓扑电路能够实现对电池包10的升压充电,而无法实现对电池包10的加热。
请参照图5,根据本申请的一些实施例,上述储能元件C包括第一电容C1,第一电容C1可以设置于开关模块20内。
开关模块20内还可以设置有第一电容C1,第一电容C1通过将开关模块20的各个端口分别与直流充电端口30、电池包10和电机50的中性点连接,可以在控制各个端口之之间的连通关系时,实现直流充电端口30、电池包10和电机50的中性点与第一电容C1的连接。
通过设置储能元件C集成在开关模块20内,能够减少用电装置中的模块数量,降低生产过程中的装配工序,提升生产效率。
图6示出了图5实施例对应的电路结构示意图,以下是电池加热拓扑电路在各个模式下各个开关的导通状态:
在电机驱动模式下,第一开关K1、第二开关K2和第三开关K3均为断开状态,此时电池包10通过电机控制器40驱动电机50运行。
在直流充电模式下,第一开关K1导通,第二开关K2和第三开关K3为断开状态,此时直流充电端口30的两端直接与电池包10的第一极和第二极连接。
在升压充电模式下,第一开关K1断开,第二开关K2和第三开关K3导通,此时外部充电设备60、直流充电端口30、第一电容C1与电机控制器40、电机50构成完整的升压电流回路。
在电池包加热模式下,第一开关K1和第二开关K2断开,第三开关K3导通,此时第一电容C1与电机控制器40、电机50构成完整的加热电流回路。
请参照图7,根据本申请的一些实施例,上述电池加热拓扑电路还可以包括加热模块70,加热模块70可以包括第二电容C2和第四开关K4,第二电容C2的第一端与电池包10的第二极连接。第二电容C2为储能元件C。
加热模块70可以在第四开关K4导通时,将第二电容C2的第二端与电机50的中性点连接。此时第二电容C2的第一端与电池包10的第二极连接,第二端则与电机50的中性点连接。第二电容C2能够与电机控制器40和电机50构成加热电路,对电池包10进行交替充电和放电。
在开关模块20内设置有第一电容C1的情况下,电池加热拓扑电路还可以包括设置有第二电容C2的加热模块70。通过设置第一电容C1和第二电容C2的电容值,能够使得第一电容C1的容值不满足加热电路中对电池包10进行充放电所需的储能元件C的容值需求。则加热模块70未接入电池加热拓扑电路时,仅有第一电容C1,无法实现对电池包10的循环充放电加热功能;在加热模块70接入电池加热拓扑电路时,可以通过第二电容C2与电机控制器40、电机50构成加热电路,以对电池包10进行交替充放电,从而加热电池包10。
根据本申请的一些实施例,上述第四开关K4的第一端与电机50的中性点连接,第四开关K4的第二端分别与第二电容C2的第二端以及开关模块20的第三端连接。
在第四开关K4导通时,第二电容C2的两端已经分别与加热模块70的负极回路和电机50的中性点连接。此时第二电容C2、电机控制器40、电机50以及电池包10能够组成完整的加热电流回路。由于此时还需要对电池包10进行加热,不能将外部充电设备60接入电流回路中,开关模块20的第一端需要保持断开状态。由于第二电容C2的容值能够满足加热电路中对于储能元件C的容值需求,则开关模块20的第二端与第三端可以保持断开状态,此时第一电容C1未接入加热电路中。通过第二电容C2即可实现对电池包10进行加热。
图8示出了图7实施例对应的电路结构示意图,与图6示出的电路结构示意图相比,图8中还包括第二电容C2以及第四开关K4。
在电机驱动模式下,第一开关K1、第二开关K2、第三开关K3和第四开关K4均断开,此时电池包10通过电机控制器40驱动电机50运行。
在直流充电模式下,第一开关K1导通,第二开关K2、第三开关K3和第四开关K4断开,此时直流充电端口30的两端直接与电池包10的 第一极和第二极连接。
在升压充电模式下,第一开关K1断开,第二开关K2、第三开关K3和第四开关K4导通,此时外部充电设备60、直流充电端口30、第一电容C1、第二电容C2与电机控制器40、电机50构成完整的升压电流回路。
在电池包加热模式下,第一开关K1、第二开关K2和第三开关K3断开,第四开关K4导通,此时第二电容C2与电机控制器40、电机50构成完整的加热电流回路。
根据本申请的一些实施例,上述开关模块20可以在第一预设条件下将第一端与第三端导通,以使升压电路将外部充电设备60输入的直流充电电压进行升压后,为电池包10进行充电。该第一预设条件可以包括外部充电设备60的直流充电电压低于电池包10的工作电压。
在外部充电设备60接入直流充电端口30时,可以对外部充电设备60的直流充电电压的大小进行检测,在该直流充电电压低于电池包10的工作电压时,确定满足第一预设条件,此时无法直接通过直流充电电压对电池包10进行充电,需要将开关模块20的第一端与第三端连通,通过升压电路对直流充电电压进行升压。
通过第一预设条件,可以在外部充电设备60的电压较高时,将其直接与电池包10连接,对电池包10进行充电;而在外部充电设备60提供的电压较低时,则通过开关模块20的第一端与第三端连通,对该电压进行升压处理。对于输出电压为高压或低压的外部充电设备60,电池加热拓扑电路均能够进行兼容,以实现对电池包10的充电。
根据本申请的一些实施例,上述开关模块20可以在第二预设条件下将第二端与第三端进行连通,以使加热电路对电池包10进行循环充电和放电,从而加热电池包10。该第二预设条件可以包括电池包10的电池温度低于温度阈值。
通过对电池包10的电池温度进行检测,可以在电池包10的电池温度低于温度阈值时,确定电池包10处于低温环境下,满足第二预设条件,此时可以通过开关模块20的第二端与第三端连通,实现对电池包10 的加热,以提升电池包10的电池温度。
通过第二预设条件,可以在电池包10的电池温度较低时,通过开关模块20形成加热电路,对电池包10进行充电和放电,从而加热电池包10,使得电池包10的电池温度达到正常温度范围。
可以理解的是,由于电池包10在低温环境下的充电效率较低,在外部充电设备60接入直流充电接口时,还需要对电池包10的电池温度进行检测,在电池温度较低时,需要先通过加热电路对电池包10进行加热,使得电池温度达到合适的温度范围内,才能够将外部充电设备60与电池包10进行连通,以对电池包10进行充电。在将外部充电设备60与电池包10连通前,还需要检测外部充电设备60的输出电压,以根据该输出电压确定外部充电设备60与电池包10的连接方式为直流充电方式还是升压充电方式。
请参照图6或图8,根据本申请的一些实施例,上述电机控制器40可以包括三相桥,三相桥包括三个桥臂组。桥臂组包括串联的上桥臂和下桥臂,电池包10的第一极和第二极分别与电机控制器40的第一输入端和第二输入端连接。
桥臂组中的上桥臂与电机控制器40的第一输入端连接,下桥臂则与电机控制器40的第二输入端连接,三个桥臂组的公共节点分别与电机50的三相输入端连接,该公共节点即为上桥臂和下桥臂的连接点。
电机控制器40可以在形成加热电路时,驱动三个桥臂组中至少一个桥臂组的上桥臂和下桥臂交替导通,以对电池包10进行循环充电和放电,从而加热电池包10。
由于电机50的三相输入端分别与电机控制器40的三个桥臂组连通。电机50每一相中还包括有绕组电感,该绕组电感与对应的桥臂组连通后,可以与电池包10和储能元件C形成充放电回路。通过控制上桥臂和下桥臂交替导通,可以对电池包10进行交替放电和充电。在电机控制器40驱动一个桥臂组进行交替导通时,即可实现对电池包10进行循环充放电。而通过增加电机控制器40所驱动的桥臂组的数量,能够提升对电池包10进行放电或充电时的功率,相应地,在充放电功率增大时,电池 包10在充放电过程中产生的震荡电流也随之增大,使得电池包10的内阻产生更多热量,提升加热功率和加热效率。
通过设置加热电路中所驱动的桥臂组的数量,可以对电池包10的加热功率和加热效率进行调整。在电池包10需要快速升温或者电池温度与合适的温度范围存在较大差异时,可以增加驱动的桥臂组数量,以快速提升电池包10的电池温度。在电池包10的电池温度与合适的温度范围较为接近或者电池包10的剩余电量较低时,则可以减小驱动的桥臂组数量,以降低加热过程中所消耗的功率。
根据本申请的一些实施例,上述电机控制器40可以在驱动上桥臂和下桥臂交替导通的过程中,在驱动上桥臂断开后,间隔第一预设时间再驱动下桥臂导通。以下以电池包10的一次完整的循环充电和放电过程为例进行说明。
在电池包10的单次循环充电和放电过程中,加热电路可以在储能元件C和电池包10之间进行交替充放电,该储能元件C可以为上述图6示出的实施例中的第一电容C1或图8示出的实施例中的第二电容C2。
在对电池包10进行循环充放电前,储能元件C中并未存储电荷,则充放电循环过程是从电池包10放电开始。
请参照图6或图8,在第一阶段中,以三个桥臂组中的某一个桥臂组为例,电机控制器40可以驱动上桥臂导通,下桥臂断开,此时电池包10的电压高于储能元件C两端电压,电流可以通过导通的上桥臂和电机50中与该桥臂组对应的绕组电感流向储能元件C,对储能元件C进行充电。该电流回路为放电储能回路,此时电池包10对储能元件C进行放电。
在第二阶段中,电机控制器40可以驱动上桥臂断开,下桥臂也断开,由于此时电流回路中的绕组电感对电流的变化起到抑制作用,下桥臂上的反向二极管可以与绕组电感、储能元件C构成电流回路,此时流过储能元件C的电流方向未发生变化,但电流大小逐渐减小,在第二阶段中绕组电感能够释放存储的电荷,以继续为储能元件C进行充电。该电流回路为放电释能电路,此时绕组电感对储能元件C进行充电。
可以理解的是,该第二阶段中上桥臂和下桥臂均为断开状态,由下桥臂的反向二极管构成电流回路继续为储能元件C进行充电。
在第三阶段中,上桥臂继续保持断开状态、下桥臂也保持断开状态,在第二阶段中绕组电感对电流变化的抑制作用结束。此时上桥臂的反向二极管可以与绕组电感、储能元件C构成电流回路,储能元件C可以释放之前所存储的电荷,电流通过上桥臂的反向二极管流入电池包10,对电池包10进行充电。该电流回路为充电储能回路,此时储能元件C对电池包10进行充电。
可以理解的是,在第二阶段和第三阶段中,上桥臂和下桥臂均为断开状态,即第二阶段与第三阶段的时间之和即为电机控制器40在驱动上桥臂断开与驱动下桥臂导通之间所间隔的第一预设时间。
在第四阶段中,电机控制器40可以驱动上桥臂断开,下桥臂导通,由于此时电流回路中的绕组电感对电流的变化起到抑制作用,下桥臂与绕组电感、储能元件C构成电流回路,绕组电感能够继续为储能元件C进行放电。该电流回路为充电释能电路,此时绕组电感对储能元件C进行放电。
通过上述第一阶段至第四阶段的不断循环,能够实现储能元件C与电池包10之间的循环充放电。在循环充放电的过程中电池包10的内阻能够将电能转换为热能,从而实现电池包10的加热。
根据本申请的一些实施例,上述电机控制器40可以在形成升压电路时,驱动三个桥臂组中至少一个桥臂组的上桥臂和下桥臂交替导通,以对外部充电设备60的直流充电电压进行升压后,通过升压后的电压为电池包10充电。
在一个典型的Boost升压电路中,包括有电感、二极管以及开关管,其中电感可以通过对电流的抑制作用进行储能或释能、二极管可以限制电流方向,开关管则可以通过交替导通和截止控制电感进行电荷存储和电荷释放。以一个桥臂组为例,该桥臂组中的公共节点与电机50的某一相连接,电机50在该相上的绕组电感可以作为Boost升压电路中的电感,上桥臂的反向二极管可以作为二极管、下桥臂可以作为开关管。通过控制 上桥臂和下桥臂交替导通,即可实现Boost升压电路的升压功能,将外部充电设备60输入的直流充电电压进行升压。通过调整上桥臂和下桥臂的导通时间的占空比,即可实现升压倍数的调整,从而使得升压后的直流充电电压能够大于电池包10的工作电压,使得升压后的电压能够为电池包10进行充电。
通过驱动任意一个桥臂组以及电机50中对应该桥臂组的绕组电感,即可实现直流充电电压的升压。增加驱动的桥臂组数量不会改变升压后的电压大小,但可以提升升压电路的输出功率。因此,通过调整电机控制器40内驱动的桥臂组数量,能够增大电池包10在充电过程中的充电功率。根据电池包10所需的实际充电功率,可以驱动相应数量的桥臂组。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一实施例中加热拓扑电路的电池,并且加热拓扑电路用于为用电装置实现电池包的加热或外部充电设备的升压,用电装置可以是前述任一应用电池加热拓扑电路的设备或系统。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (9)

  1. 一种电池加热拓扑电路,应用于用电装置,所述用电装置包括电机控制器及电机,所述电路包括:
    直流充电端口,用于与外部充电设备连接;
    电池包,与所述电机控制器连接;
    开关模块,包括第一端、第二端和第三端,分别与所述直流充电端口、所述电池包和所述电机的中性点连接;
    储能元件,连接于所述开关模块的第一端与第三端之间。
  2. 根据权利要求1所述的电池加热拓扑电路,其中,所述直流充电端口的第一极与所述开关模块的第一端连接,第二极与所述电池包的第二极连接;
    所述电池包的第一极与所述开关模块的第二端连接,第二极与所述储能元件的第一端连接。
  3. 根据权利要求2所述的电池加热拓扑电路,其中,所述开关模块包括:
    第一开关,所述第一开关的第一端与所述直流充电端口的第一极连接,所述第一开关的第二端与所述电池包的第一极连接;
    第二开关,所述第二开关的第一端与所述直流充电端口的第一极连接,所述第二开关的第二端与所述储能元件的第二端连接;
    第三开关,所述第三开关的第一端与所述电机的中性点连接,所述第三开关的第二端与所述储能元件的第二端连接。
  4. 根据权利要求3所述的电池加热拓扑电路,其中,所述电池加热拓 扑电路还包括加热模块,所述储能元件设置于加热模块内。
  5. 根据权利要求3所述的电池加热拓扑电路,其中,所述储能元件包括第一电容,所述第一电容设置于所述开关模块内。
  6. 根据权利要求3所述的电池加热拓扑电路,其中,所述电池加热拓扑电路还包括加热模块,所述加热模块包括第二电容和第四开关,所述第二电容的第一端与所述电池包的第二极连接,所述第二电容为所述储能元件。
  7. 根据权利要求6所述的电池加热拓扑电路,其中,所述第四开关的第一端与所述电机的中性点连接,所述第四开关的第二端分别与所述第二电容的第二端以及所述开关模块的第三端连接。
  8. 根据权利要求1所述的电池加热拓扑电路,其中,所述电机控制器包括三相桥,所述三相桥包括三个桥臂组,所述桥臂组包括串联的上桥臂和下桥臂,所述电池包的第一极和第二极分别与所述电机控制器的第一输入端和第二输入端连接;
    所述上桥臂与所述电机控制器的第一输入端连接,所述下桥臂与所述电机控制器的第二输入端连接,三个桥臂组的公共节点分别与所述电机的三相输入端连接;所述公共节点为所述上桥臂和所述下桥臂的连接点;
    所述电机控制器,用于在形成加热电路时,驱动至少一个桥臂组中的上桥臂和下桥臂交替导通,对所述电池包进行循环充电和放电以加热所述电池包。
  9. 一种用电装置,所述用电装置包括如权利要求1-8中任一项所述的 电池加热拓扑电路。
PCT/CN2022/116353 2022-08-31 2022-08-31 电池加热拓扑电路及用电装置 WO2024045085A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/116353 WO2024045085A1 (zh) 2022-08-31 2022-08-31 电池加热拓扑电路及用电装置
CN202280008225.4A CN117044099A (zh) 2022-08-31 2022-08-31 电池加热拓扑电路及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116353 WO2024045085A1 (zh) 2022-08-31 2022-08-31 电池加热拓扑电路及用电装置

Publications (1)

Publication Number Publication Date
WO2024045085A1 true WO2024045085A1 (zh) 2024-03-07

Family

ID=88635907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116353 WO2024045085A1 (zh) 2022-08-31 2022-08-31 电池加热拓扑电路及用电装置

Country Status (2)

Country Link
CN (1) CN117044099A (zh)
WO (1) WO2024045085A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111347893A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机控制电路、动力电池的充电方法及加热方法
CN111660875A (zh) * 2020-06-04 2020-09-15 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN212579628U (zh) * 2019-12-31 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN216942773U (zh) * 2021-12-29 2022-07-12 宁波吉利罗佑发动机零部件有限公司 电池加热装置及车载控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111347893A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机控制电路、动力电池的充电方法及加热方法
CN212579628U (zh) * 2019-12-31 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN111660875A (zh) * 2020-06-04 2020-09-15 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN216942773U (zh) * 2021-12-29 2022-07-12 宁波吉利罗佑发动机零部件有限公司 电池加热装置及车载控制系统

Also Published As

Publication number Publication date
CN117044099A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US20240072562A1 (en) Power battery charging method, motor control circuit, and vehicle
WO2021244642A1 (zh) 电池能量处理装置、方法及车辆
US20230097060A1 (en) Energy conversion device and vehicle
CN212588110U (zh) 充放电系统
WO2021244641A1 (zh) 电池能量处理装置、方法及车辆
CN114050330A (zh) 电池系统及供电系统
JP2003102132A (ja) 蓄電電源装置及びその充電制御方法
CN214112341U (zh) 电池能量处理装置及车辆
WO2021244649A1 (zh) 能量转换装置及其安全控制方法
CN210941434U (zh) 一种能量管理系统及车辆
CN114614550A (zh) 一种电池管理系统的电路拓扑和控制方法
Nagata et al. Multi-port converter integrating two PWM converters for multi-power-source systems
CN213734669U (zh) 一种能量转换装置及车辆
WO2024045085A1 (zh) 电池加热拓扑电路及用电装置
CN112993418A (zh) 储能系统
CN110783969B (zh) 电池管理系统和电池系统
CN112787362A (zh) 一种主动均衡电路及方法
CN218102673U (zh) 一种电池包系统
CN218829613U (zh) 直流变换器、储能逆变器、储能系统、光储系统、风光储系统
CN217720747U (zh) 均衡电路、充电电路及车载充电机
CN115882733B (zh) 一种全桥开关电源和推免式开关电源复合的拓扑电路
WO2023168628A1 (zh) 动力电池电压调节系统及其控制方法和控制装置
CN114530637B (zh) 一种串联锂电池包电压平衡装置及控制方法
WO2024092495A1 (zh) 开关模块的状态检测方法、电路、设备及存储介质
WO2023207495A1 (zh) 电池自加热装置、方法及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956911

Country of ref document: EP

Kind code of ref document: A1