WO2024092495A1 - 开关模块的状态检测方法、电路、设备及存储介质 - Google Patents

开关模块的状态检测方法、电路、设备及存储介质 Download PDF

Info

Publication number
WO2024092495A1
WO2024092495A1 PCT/CN2022/128917 CN2022128917W WO2024092495A1 WO 2024092495 A1 WO2024092495 A1 WO 2024092495A1 CN 2022128917 W CN2022128917 W CN 2022128917W WO 2024092495 A1 WO2024092495 A1 WO 2024092495A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch module
voltage
energy storage
storage element
module
Prior art date
Application number
PCT/CN2022/128917
Other languages
English (en)
French (fr)
Inventor
李朋涛
龚晓峰
庄朝晖
彭龙
马国龙
Original Assignee
宁德时代新能源科技股份有限公司
宁德时代(上海)智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司, 宁德时代(上海)智能科技有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/128917 priority Critical patent/WO2024092495A1/zh
Publication of WO2024092495A1 publication Critical patent/WO2024092495A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current

Definitions

  • the present application relates to the field of switch control technology, and more specifically, to a state detection method, circuit, device and storage medium of a switch module.
  • batteries are increasingly being used in various electrical devices, such as mobile phones, laptops, electric vehicles, electric airplanes, electric ships, etc.
  • the present application provides a state detection method, circuit, device and storage medium for a switch module, which can solve the technical problem that when a switch device is abnormal, the device in the circuit is damaged.
  • an embodiment of the present application provides a method for detecting a state of a switch module, the method comprising:
  • the battery pack When the switch module is disconnected, the battery pack is connected to the switch module, so that the battery pack forms a first charging circuit with the energy storage element through the switch module;
  • the battery pack By connecting the battery pack with the switch module, it is possible to determine whether the switch module is completely disconnected when the switch module is in a disconnected state. If the switch module is not completely disconnected, the battery pack can charge the energy storage element through the switch module, so that the first detection voltage obtained by detection is larger; if the switch module is completely disconnected, the battery pack cannot charge the energy storage element, so that the first detection voltage obtained by detection is smaller. According to the size of the first detection voltage, it can be determined whether the switch module is in a completely disconnected state when disconnected. When the switch module is completely disconnected, the electrical device can switch to the mode when the switch module is disconnected to achieve the corresponding function. When the switch module is not completely disconnected, the electrical device cannot switch to the mode when the switch module is disconnected to operate.
  • connecting the battery pack to the switch module includes: sending a charging signal to the charging control module, so that the charging control module connects the battery pack to the switch module according to the charging signal.
  • the charging signal can control the charging control module to connect the battery pack to the switch module, and determine whether the energy storage element is charged according to the first detection voltage.
  • performing voltage detection on the energy storage element to obtain a first detection voltage includes: sending a first voltage detection signal to the voltage detection module when the battery pack is connected to the switch module; receiving the first detection voltage obtained and sent by the voltage detection module after the voltage detection module performs voltage detection on the energy storage element.
  • the voltage detection module can be used to perform voltage detection on the energy storage element to obtain the first detection voltage. Based on the first detection voltage, it can be determined whether the energy storage element is charged, and then whether the disconnection state of the switch module is abnormal.
  • the charging control module includes at least two current branches; sending a first voltage detection signal to the voltage detection module includes: determining the first current branch in the charging control module connected between the battery pack and the switch module; sending the first voltage detection signal to the voltage detection module, so that the voltage detection module performs voltage detection on the energy storage element through the remaining current branches except the first current branch.
  • the charging control module may include multiple current branches, and the battery pack and the voltage detection module are connected to the switch module through different current branches, which can avoid the voltage detection module being affected by the charging current when performing voltage detection, thereby improving the accuracy of voltage detection.
  • the switch module when the switch module is disconnected, before connecting the battery pack to the switch module, it also includes: when the switch module is turned on, connecting the discharge module to the switch module, so that the discharge module forms a first discharge loop with the energy storage element through the switch module; performing voltage detection on the energy storage element to obtain a second detection voltage; when the second detection voltage reaches a safe voltage range, sending a disconnection signal to the switch module.
  • the energy storage element Before the switch module changes from on to off, the energy storage element can also be discharged through the discharge module to reduce the voltage across the energy storage element and reduce the residual charge on the energy storage element.
  • performing voltage detection on the energy storage element to obtain a second detection voltage includes: determining a second current branch in the charging control module connected between the discharge module and the switch module; and sending a second voltage detection signal to the voltage detection module, so that the voltage detection module performs voltage detection on the energy storage element through the remaining current branches except the second current branch.
  • determining whether the switch module is completely disconnected according to the first detection voltage includes: obtaining a safe voltage range; and controlling the battery pack to stop operating when the first detection voltage exceeds the safe voltage range.
  • the battery pack can be controlled to stop operating to avoid the battery pack generating a large current during operation and causing damage to the energy storage element.
  • an embodiment of the present application also provides a state detection circuit for a switch module, the circuit comprising: a switch module; an energy storage element, the energy storage element being connected to a first end of the switch module; and a control module, the control module being used to connect the second end of the switch module to a battery pack when the switch module is disconnected, and to determine the disconnection state of the switch module based on a first detection voltage of the energy storage element.
  • a state detection circuit for a switch module the circuit comprising: a switch module; an energy storage element, the energy storage element being connected to a first end of the switch module; and a control module, the control module being used to connect the second end of the switch module to a battery pack when the switch module is disconnected, and to determine the disconnection state of the switch module based on a first detection voltage of the energy storage element.
  • the circuit further includes: a charging control module connected between the switch module and the battery pack, and the charging control module is used to connect the battery pack to the switch module when a charging signal is received.
  • the circuit also includes: a voltage detection module, electrically connected to the energy storage element, the voltage detection module being used to perform voltage detection on the energy storage element to obtain a first detection voltage when a first voltage detection signal is received, and/or, when a second voltage detection signal is received, perform voltage detection on the energy storage element to obtain a second detection voltage.
  • a voltage detection module electrically connected to the energy storage element, the voltage detection module being used to perform voltage detection on the energy storage element to obtain a first detection voltage when a first voltage detection signal is received, and/or, when a second voltage detection signal is received, perform voltage detection on the energy storage element to obtain a second detection voltage.
  • the charging control module includes at least two current branches, and the charging control module is used to connect the battery pack with the switch module through the first current branch, and/or, to connect the discharge module with the switch module through the second current branch; the voltage detection module is used to determine a third current branch from multiple current branches when receiving a first voltage detection signal, and perform voltage detection on the energy storage element through the third current branch and the switch module, and/or, when receiving a second voltage detection signal, determine a fourth current branch from multiple current branches, and perform voltage detection on the energy storage element through the fourth current branch and the switch module.
  • the charging control module includes a motor controller, the motor controller includes three bridge arm groups, and each bridge arm group forms a current branch with the switch module.
  • an embodiment of the present application further provides a state detection device for a switch module, the state detection device for the switch module comprising: a processor and a memory storing computer program instructions; when the processor executes the computer program instructions, the state detection device for the switch module implements the state detection method for the switch module in the above embodiment.
  • an embodiment of the present application further provides a computer storage medium, on which computer program instructions are stored.
  • the state detection method of the switch module in the above embodiment is implemented.
  • FIG1 is a schematic flow chart of a method for detecting a state of a switch module provided in an embodiment of the present application
  • FIG2 is a schematic diagram of a module structure of a switch topology circuit provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a module structure of a switch topology circuit provided in another embodiment of the present application.
  • FIG4 is a schematic diagram of a module structure of a switch topology circuit provided in yet another embodiment of the present application.
  • FIG5 is a schematic diagram of a module structure of a switch topology circuit provided in yet another embodiment of the present application.
  • FIG6 is a schematic diagram of a module structure of a switch topology circuit provided in yet another embodiment of the present application.
  • FIG7 is a schematic diagram of a circuit structure corresponding to the embodiment of FIG6 ;
  • FIG8 is a schematic diagram of a module structure of a switch topology circuit provided in yet another embodiment of the present application.
  • FIG9 is a schematic diagram of a circuit structure corresponding to the embodiment of FIG8 ;
  • FIG. 10 is a schematic diagram of the structure of a state detection device for a switch module provided in an embodiment of the present application.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • Power batteries can be used as the main power source for electrical devices (such as vehicles, ships or spacecraft), while energy storage batteries can be used as the charging source for electrical devices. The importance of both is self-evident.
  • power batteries can be batteries in electrical devices, and energy storage batteries can be batteries in charging devices.
  • energy batteries and energy storage batteries can be collectively referred to as batteries.
  • lithium batteries such as lithium-ion batteries or lithium-ion polymer batteries, etc.
  • the battery When the battery is installed in an electrical device, if the remaining power of the battery is insufficient, it needs to be connected to a charging device to charge the battery.
  • the battery pack temperature of electric vehicles is lower than the temperature range required for normal operation. At this time, the charging efficiency of the battery pack is relatively low, and the charging equipment cannot effectively charge the battery pack. Therefore, in low temperature conditions, the battery pack needs to be heated to a temperature range within which the battery pack can operate normally, so that the battery pack can be charged normally through the charging pile.
  • the embodiments of the present application provide a state detection method, circuit, device and storage medium of a switch module.
  • the state detection method of the switch module provided by the embodiments of the present application is first introduced below.
  • the state detection method of the switch module disclosed in the embodiment of the present application can be used, but not limited to, in electrical devices such as vehicles, ships or aircraft.
  • the embodiment of the present application provides an electrical device using a battery pack as a power source, and the electrical device may include an energy storage element, a switch module and a battery pack, and may also include other components with a state detection function of the switch module.
  • the electrical device may be, but not limited to, a mobile phone, a tablet, a laptop computer, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, and the like.
  • FIG1 shows a schematic flow chart of the steps of a method for detecting the state of a switch module provided by an embodiment of the present application.
  • the method for detecting the state of a switch module comprises:
  • the state detection method of the switch module mentioned above can be applied to an electrical device provided with a switch module, and the electrical device may include a switch module, an energy storage element, and a battery pack.
  • the switch module can be connected between the energy storage element and the battery pack.
  • the electrical device can be switched in different modes to achieve different functions. For example, when the switch module is turned on, the battery pack can be electrically connected to the energy storage element. At this time, the electrical device can be combined with other devices through the battery pack and the energy storage element to achieve corresponding functions; when the switch module is disconnected, the battery pack is disconnected from the energy storage element. At this time, the electrical device can achieve another part of the function through the battery pack, such as the charging function or discharging function of the battery pack.
  • the battery pack when the switch module is disconnected, the battery pack may be connected to the switch module, so that the battery pack forms a first charging circuit with the energy storage element through the switch module.
  • the battery pack when the switch module is turned on, the battery pack can be electrically connected to the energy storage element through the switch module and charge the energy storage element.
  • the battery pack cannot be electrically connected to the energy storage element and cannot charge the energy storage element. That is, when the switch module is disconnected, the first charging circuit is in a disconnected state, and the battery pack cannot charge the energy storage element; when the switch module is not disconnected, the first charging circuit is in a conducting state, and the battery pack can charge the energy storage element.
  • the battery pack When the switch module is disconnected, the battery pack is connected to the switch module. If the switch module is fully disconnected, the battery pack cannot charge the energy storage element. If the switch module is not fully disconnected, it is equivalent to the switch module being in the on state, and the battery pack can charge the energy storage element. That is, whether the switch module is fully disconnected can be determined based on whether the energy storage element is charged.
  • the switch module switches between the on state and the off state, if the off state of the switch module is not complete, that is, the switch module is not completely disconnected, the battery pack can still be connected to the energy storage element through the switch module that is not completely disconnected.
  • the electrical device switches to the functional mode that can be achieved when the switch module is disconnected, the battery voltage output by the battery pack is likely to cause damage to the energy storage element.
  • the switch module is a relay
  • the contacts of the relay are sintered, the relay cannot be completely disconnected, and the battery pack can continue to be connected to the energy storage element through the relay.
  • the electrical device switches to the mode when the switch module is disconnected and continues to operate, the energy storage element may be damaged. Therefore, when the switch module is disconnected, it is necessary to detect the disconnection state of the switch module to determine whether the switch module is completely disconnected.
  • the battery pack When the battery pack is connected to the switch module, if the switch module is completely disconnected, the battery pack is not connected to the energy storage element; if the switch module is not completely disconnected, the battery pack can be connected to the energy storage element through the switch module.
  • voltage detection may be performed on the energy storage element to obtain a first detection voltage.
  • the battery pack cannot be electrically connected to the energy storage element; if the disconnection state of the switch module is not completely disconnected, the battery pack can continue to be electrically connected to the energy storage element through the partially conductive switch module.
  • the battery pack can charge the energy storage element by discharging, so that the voltage of the energy storage element increases. That is, according to whether the detected first detection voltage is too high, it can be determined whether the battery pack has charged the energy storage element, and then determine whether the switch module is completely disconnected or not completely disconnected.
  • the switch module can be completely disconnected, when the battery pack is connected to the switch module, the first charging circuit is not conductive, and the battery pack does not charge the energy storage element. If the switch module is not completely disconnected, the first charging circuit is conductive, and the battery pack charges the energy storage element.
  • the abnormal disconnection state can be that the switch module remains in the on state, or the switch module is in a partially on state.
  • the module for detecting voltage may be directly electrically connected to the energy storage element, or may be electrically connected to the energy storage element via a switch module.
  • the voltage across the energy storage element can be directly detected regardless of whether the switch module is disconnected. That is, when the switch module is disconnected, the voltage detected is the voltage of the energy storage element when it is not charged; when the switch module is not completely disconnected, the voltage detected is the voltage of the energy storage element when it is charged.
  • the module can detect the voltage across the energy storage element only when the switch module is not disconnected. That is, when the switch module is not completely disconnected, the voltage detected is the voltage when the energy storage element is charged; when the switch module is completely disconnected, the voltage detected should actually be the battery voltage of the battery pack.
  • both of the above two connection modes can determine whether the switch module is completely disconnected by detecting the first detection voltage, thereby determining whether the disconnection state of the switch module is abnormal.
  • the power-consuming device can switch to the mode when the switch module is disconnected and realize the corresponding functions. At this time, the energy storage element is not connected to the battery pack, and the energy storage element will not be damaged when the power-consuming device operates in this mode. However, when it is determined that the switch module is not completely disconnected, the power-consuming device cannot switch to the mode when the switch module is disconnected to avoid damage to the energy storage element after switching the mode.
  • the battery pack by connecting the battery pack with the switch module, it is possible to determine whether the switch module is completely disconnected when the switch module is in a disconnected state. If the switch module is not completely disconnected, the battery pack can charge the energy storage element through the switch module, so that the first detection voltage obtained by detection is larger; if the switch module is completely disconnected, the battery pack cannot charge the energy storage element, so that the first detection voltage obtained by detection is smaller. According to the size of the first detection voltage, it can be determined whether the switch module is in a completely disconnected state when it is disconnected. When the switch module is completely disconnected, the electrical device can switch to the mode when the switch module is disconnected to achieve the corresponding function. When the switch module is not completely disconnected, the electrical device cannot switch to the mode when the switch module is disconnected to operate.
  • corresponding responses and processing can also be performed according to the judgment result. For example, when the switch module is not completely disconnected, the mode switched to when the switch module is disconnected can be stopped, and an alarm prompt is issued to the user to remind the user that the switch module is abnormal and the energy storage element is not completely disconnected from the battery pack, so that the user or relevant personnel can perform maintenance and repair on the switch module.
  • the above S110 may further include:
  • the electrical device may further include a charging control module, which may be connected between the battery pack and the switch module.
  • the charging control module may connect the battery pack to the switch module or disconnect the battery pack from the switch module.
  • the charging control module may connect the battery pack to the switch module.
  • the charging control module can be a control device in the power-consuming device connected to the battery pack.
  • the control device can be an existing control device in the power-consuming device or a newly added control device to achieve the connection between the switch module and the battery pack.
  • the motor controller is connected between the motor and the battery pack.
  • the motor controller can not only realize the battery voltage conversion of the battery pack, but also control the connection and disconnection between the battery pack and the motor. Therefore, the above-mentioned charging control module can be the motor controller in the electric device.
  • the motor controller can be used as a charging control module, and the conduction and disconnection of the switch device can be controlled under the control of the charging signal, thereby realizing the connection and disconnection between the battery pack and the switch module.
  • the motor controller needs to perform voltage conversion on the battery voltage of the battery pack in the electrical device, such as inverter conversion, voltage regulation conversion, etc.
  • the devices in the motor controller that are electrically connected to the battery pack need to meet the requirements of operating at a higher battery voltage. That is, the devices in the motor controller that are electrically connected to the battery pack should be devices that can operate normally under high voltage and high current.
  • the motor controller is used as a charging control module, even if the charging current when the battery pack charges the energy storage element is high, it will not cause damage to the devices in the motor controller that connect the battery pack and the switch module, thereby achieving stable connectivity between the battery pack and the energy storage element.
  • the charging control module may also be a battery management system BMS.
  • a battery management system connected to the battery pack is usually provided.
  • the battery management system can realize functions such as charge and discharge control of the battery pack and state detection and parameter detection of the battery pack.
  • the battery management system controls the charge and discharge of the battery pack, it is necessary to control the on-off state of the battery pack and the external device, for example, connecting or disconnecting the battery pack and the external device through the charge and discharge switch device.
  • the battery management system can determine the switch device connected between the battery pack and the switch module when receiving the charging signal, and control the switch device to be turned on to connect the battery pack with the switch module.
  • the charging control module can also be other modules or other switching devices in the electrical device connected between the battery pack and the switch module. By reusing the original modules or devices in the electrical device as a charging control module, it is possible to avoid setting up additional switching devices and reduce device costs.
  • the battery pack can be electrically connected to the energy storage element through the charging control module and the switch module.
  • a charging circuit can be formed between the battery pack and the energy storage element to charge the energy storage element.
  • the charging control module is on, if the switch module is disconnected, the energy storage element cannot be charged; if the switch module is not completely disconnected, the energy storage element can be charged.
  • the charging control module is controlled to be turned on by the charging signal, it can be determined whether the disconnection state of the switch module is abnormal based on whether the energy storage element is charged.
  • the charging control module can be controlled to connect the battery pack to the switch module, and determine whether the energy storage element is charged according to the first detection voltage. If the energy storage element is not charged, it can be determined that the switch module is stably disconnected and there is no abnormality in the disconnection state; if the energy storage element is charged, it can be determined that there is an abnormality in the disconnection state of the switch module, that is, the switch module is not completely disconnected.
  • the above S120 may further include:
  • the electrical device may further include a voltage detection module, and the voltage detection module may be electrically connected to the energy storage element to detect the voltage across both ends of the energy storage element.
  • the device can send a first voltage detection signal to the voltage detection module, so that the voltage detection module detects the voltage across the energy storage element.
  • the voltage detection module when the battery pack is connected to the switch module, the voltage detection module is used to detect the voltage of the energy storage element, and a first detection voltage detected by the voltage detection module can be obtained.
  • the first detection voltage may be a voltage value that the voltage detection module can detect after the battery pack is connected to the switch module for a period of time.
  • the first detection voltage may also be a plurality of voltage values that are obtained by periodically performing voltage detection by the voltage detection module when the battery pack is connected to the switch module.
  • the above-mentioned voltage detection module can be a circuit or device that can realize voltage detection, such as a voltage divider circuit, an optocoupler isolation circuit, a voltage detection chip, a voltmeter or an operational amplifier circuit.
  • the input end of the voltage divider circuit can be electrically connected to the energy storage element, and the output end is connected to the voltage detection port.
  • the voltage divider circuit can divide the voltage at both ends of the energy storage element, and send the divided first detection voltage to the processing module of the electrical device, so that the processing module determines the disconnection state of the switch module according to the first detection voltage.
  • the voltage divider circuit can step down the higher voltage at both ends of the energy storage element to obtain a smaller first detection voltage, so as to avoid the first detection voltage being too high and causing damage to the components in the circuit, thereby improving the safety of voltage detection.
  • the voltage detection module as an operational amplifier circuit, the voltage at both ends of the energy storage element can also be amplified or reduced to adjust the output first detection voltage to a suitable voltage range.
  • the input side is electrically connected to the energy storage element, and the output side is connected to the processing module of the electrical device.
  • the processing module can receive corresponding high and low level signals from the output side when the light-emitting element is emitting light and not emitting light, and determine whether the energy storage element is charged according to the high and low level signals.
  • optocoupler isolation the voltage signals on the input side and the output side can be isolated to avoid interference between the voltage signals on both sides of the optocoupler isolation module.
  • the voltage detection module can also be a voltage detection chip, a voltmeter, etc.
  • the detection end of the voltage detection chip is electrically connected to the energy storage element, and the output end is connected to the processing module of the electrical device, so that the voltage of the energy storage element can be detected and the detected voltage signal can be transmitted to the processing module.
  • the voltage detection module when the battery pack is connected to the switch module, the voltage detection module can be controlled by a first voltage detection signal to perform voltage detection on the energy storage element to obtain a first detection voltage. According to the first detection voltage, it can be determined whether the energy storage element is charged, and then whether the disconnection state of the switch module is abnormal.
  • the charging control module includes at least two current branches, and the above S310 may further include:
  • the charging control module may include at least two current branches, each of which can independently connect the switch module to the battery pack.
  • the current branch corresponding to the connection between the battery pack and the switch module can be determined, and the current branch is the first current branch.
  • the device may generate a first voltage detection signal and send it to the voltage detection module.
  • the voltage detection module may be connected to the switch module through other current branches in the charging control module except the first current branch, and then electrically connected to the energy storage element through the switch module to realize voltage detection of the energy storage element.
  • the current branch connecting the battery pack with the switch module and the current branch for voltage detection are different from each other, which can reduce the mutual interference between the charging process of the battery pack to the energy storage element and the voltage detection process of the voltage detection module, and improve the voltage detection accuracy of the voltage detection module.
  • the voltage detection module when the voltage detection module performs voltage detection through a current branch of the charging control module, the voltage detection module is electrically connected to the energy storage element through the charging control module. If the switch module is completely disconnected, the charging control module and the energy storage element are in a disconnected state, and the voltage detection module cannot detect the voltage across the energy storage element. For example, taking the example that multiple current branches of the charging control module have a common intersection, when the switch module is disconnected, the voltage detection module can be connected to the first current branch through the common intersection of multiple current branches. When the first current branch is electrically connected to the battery pack, the voltage value detected by the voltage detection module is the battery voltage of the battery pack.
  • the charging control module may include multiple current branches, and the battery pack may be connected to the switch module through one of the current branches to charge the energy storage element.
  • the voltage detection module may be connected to the switch module through other current branches to perform voltage detection on the energy storage element.
  • the battery pack and the voltage detection module are connected to the switch module through different current branches, which can avoid the voltage detection module being affected by the charging current when performing voltage detection, thereby improving the accuracy of voltage detection.
  • the switch module can be switched between the on state and the off state, so that the electrical device can switch between different modes and realize the corresponding functions.
  • the energy storage element can be electrically connected to the battery pack.
  • the energy storage element will store a certain amount of charge during the operation of the electrical device. The stored charge will cause the voltage at both ends of the energy storage element to increase.
  • the switch module changes from the on state to the off state, the energy storage element can also be charged to reduce the voltage at both ends of the energy storage element.
  • the discharge module when the switch module is turned on, can be connected to the switch module, and the discharge module can be electrically connected to the energy storage element through the turned-on switch module to form a first discharge loop.
  • the energy storage element can discharge the discharge module through the first discharge loop to achieve charge discharge of the energy storage element.
  • the energy storage element when the energy storage element is discharged by the discharge module, the energy storage element may also be subjected to voltage detection.
  • the electrical device includes a voltage detection module, the voltage across the energy storage element may be detected by the voltage detection module to obtain a second detection voltage.
  • the electrical device may also use other voltage detection components to perform voltage detection on the energy storage element.
  • the second detection voltage can be compared with the safe voltage range.
  • the second detection voltage exceeds the safe voltage range, it means that there is still a lot of residual charge on the energy storage element, and the energy storage element can continue to be discharged through the discharge module.
  • the second detection voltage is within the safe voltage range, it can be determined that the residual charge on the energy storage element is small, and a disconnect signal can be sent to the switch module to change the switch module from the on state to the off state.
  • the above-mentioned discharge module can be a discharge device, discharge assembly, etc. that can discharge the energy storage element, such as an inductor, resistor, coil, capacitor, etc.
  • the discharge device can be an existing one in the electrical device, or a newly added discharge device to discharge the energy storage element.
  • the above-mentioned discharge module can be the motor of the electrical device, and the motor can be a three-phase motor or a single-phase motor.
  • the motor can be a three-phase motor or a single-phase motor.
  • each phase of the motor is provided with a corresponding winding inductance, and when the winding inductance is connected to the energy storage element, it can convert the electrical energy released by the energy storage element into heat energy, thereby discharging the energy storage element.
  • the motor controller can be a three-phase bridge, and by controlling the bridge arm group of at least one phase to be turned on, the winding inductance corresponding to the bridge arm group can be connected to the energy storage element through the switch module, thereby realizing the discharge of the energy storage element.
  • the motor as a discharge module and discharging the energy storage element through the winding inductance, there is no need to set up an additional discharge device, and the volume and cost of the device can also be reduced.
  • the discharge module may also be other modules or other components in the electrical device having capacitors, resistors, inductors or coils. By reusing the original components in the electrical device as the discharge module, the size and cost of the device can be reduced without setting up a new discharge module.
  • the discharge module before the switch module changes from on to off, can also be electrically connected to the energy storage element, so that the energy storage element is discharged through the discharge module to reduce the voltage across the energy storage element.
  • the switch module According to the second detection voltage obtained by detection, the switch module can be changed to an off state after the energy storage element is fully discharged, thereby reducing the residual charge on the energy storage element and reducing the voltage across the energy storage element.
  • the charging control module may be the charging control module with multiple current branches in the above embodiment.
  • the current branch connected between the discharge module and the switch module may be determined, and the current branch is the second current branch.
  • the device can send a second voltage detection signal to the voltage detection module.
  • the voltage detection module can determine the second current branch according to the second voltage detection signal, and connect with the switch module through other current branches other than the second current branch, so as to perform voltage detection on the energy storage element through the turned-on switch module.
  • the discharge module discharges the energy storage element
  • a certain discharge current will be generated in the discharge circuit. If the voltage detection module is electrically connected to the energy storage element through the current branch, the voltage value detected by the voltage detection module will be affected by the discharge current and deviate from the actual voltage of the energy storage element. In order to avoid the influence of the discharge current on the detected voltage value, the discharge of the energy storage element and the voltage detection of the energy storage element can be realized through two current branches respectively.
  • the discharge module is connected to the energy storage element through the switch module, and when the energy storage element is discharged, the voltage detection module can detect the voltage of the energy storage element, and determine whether to end the discharge process according to the second detection voltage obtained by the detection.
  • the voltage detection module and the discharge module are respectively connected to the energy storage element through different current branches, so that the voltage detection module will not be affected by the discharge current of the energy storage element when detecting the voltage, thereby improving the accuracy of voltage detection.
  • the device can control the switch module to disconnect and connect the switch module to the battery pack through the first current branch.
  • the first current branch and the second current branch can be different current branches of the charging control module. That is, the discharge process and the charging process of the energy storage element are connected to different current branches respectively.
  • the above S130 may further include:
  • the device may obtain a preset safe voltage range.
  • the safe voltage range should be the voltage range of the energy storage element when it is not charged. That is, when the energy storage element is not electrically connected to the battery pack, the voltage at both ends of the energy storage element should always be within the safe voltage range.
  • the above safety voltage range may be 0-60 V. That is, when the energy storage element is not charged, the voltage across the two ends thereof should be within 60 V.
  • the voltage across the energy storage element should be reduced to less than 60V through the discharge process. That is, the energy storage element can be voltage tested during the discharge process, and the discharge process can be terminated when the second detection voltage detected is lower than 60V.
  • the device may compare the first detection voltage with the safe voltage range.
  • the first detection voltage is within the safe voltage range, it can be determined that the energy storage element is not charged, the battery pack is not electrically connected to the energy storage element, and the switch module is in a completely disconnected state.
  • the first detection voltage exceeds the safe voltage range, it can be determined that the battery pack has charged the energy storage element and the switch module is not completely disconnected. That is, the disconnected state of the switch module is abnormal.
  • the electrical device can switch to the mode when the switch module is disconnected for operation.
  • the electrical device can control the battery pack to stop running, such as controlling the battery pack to stop charging or discharging.
  • the device controls the battery pack to stop running, which can be to send a corresponding instruction to the battery management system of the battery pack so that the battery management system disconnects the battery pack from the external device; it can also be to send a disconnect signal to the switch device connected between the battery pack and other circuits to disconnect the battery pack from the other circuits.
  • An embodiment of the present application further provides a state detection circuit of a switch module, which can be applied to an electrical device.
  • the state detection circuit of the switch module includes a switch module, an energy storage element, and a control module.
  • the first end of the switch module is connected to the energy storage element, and the second end of the switch module can be switched between connection and disconnection with the battery pack.
  • control module can connect the second end of the switch module to the battery pack and perform voltage detection on the energy storage element to obtain a first detection voltage.
  • the first end of the switch module is connected to the energy storage element, and the second end is connected to the battery pack.
  • the switch module is disconnected, if the switch module is completely turned off, the energy storage element is not connected to the battery pack, and the battery pack cannot charge the energy storage element; if the switch module is not completely disconnected, the energy storage element can be electrically connected to the battery pack through the switch module, and the battery pack can charge the energy storage element, so that the voltage at both ends of the energy storage element increases.
  • the control module can determine whether the energy storage element is undergoing a charging process based on the first detection voltage, thereby determining whether the switch module is in a completely disconnected state.
  • the battery pack by connecting the battery pack with the switch module, it is possible to determine whether the switch module is completely disconnected when the switch module is in a disconnected state. If the switch module is not completely disconnected, the battery pack can charge the energy storage element through the switch module, so that the first detection voltage obtained by detection is larger; if the switch module is completely disconnected, the battery pack cannot charge the energy storage element, so that the first detection voltage obtained by detection is smaller. According to the size of the first detection voltage, it can be determined whether the switch module is in a completely disconnected state when it is disconnected. When the switch module is completely disconnected, the electrical device can switch to the mode when the switch module is disconnected to achieve the corresponding function. When the switch module is not completely disconnected, the electrical device cannot switch to the mode when the switch module is disconnected to operate.
  • the state detection circuit of the switch module may further include a charging control module connected between the switch module and the battery pack.
  • the control module can send a charging signal to the charging control module.
  • the charging control module receives the charging signal, it can connect the battery pack to the switch module. After the two ends of the switch module are connected to the battery pack and the energy storage element respectively, if the switch module is completely disconnected, the voltage at both ends of the energy storage element will not increase; if the switch module is not completely disconnected, the battery pack will charge the energy storage element, which will cause the voltage at both ends of the energy storage element to increase.
  • the disconnection state of the switch module can be determined based on the first detection voltage of the energy storage element.
  • the charging control module can be controlled to connect the battery pack to the switch module, and determine whether the energy storage element is charged according to the first detection voltage. If the energy storage element is not charged, it can be determined that the switch module is stably disconnected and the disconnection state is not abnormal; if the energy storage element is charged, it can be determined that the disconnection state of the switch module is abnormal, that is, the switch module is not completely disconnected.
  • the state detection circuit of the switch module may further include a voltage detection module.
  • the voltage detection module may be electrically connected to the energy storage element, and the control module may send a first voltage detection signal or a second voltage detection signal to the voltage detection module.
  • the voltage detection module When receiving the first voltage detection signal, the voltage detection module can perform voltage detection on the energy storage element to obtain a first detection voltage. When receiving the second voltage detection signal, the voltage detection module can perform voltage detection on the energy storage element to obtain a second detection voltage.
  • the control module can send a second voltage detection signal, and the second detection voltage detected by the voltage detection module according to the second voltage detection signal is the voltage of the energy storage element during the discharge process.
  • the control module can send a first voltage detection signal, and the voltage detection module can determine whether the energy storage element is charged according to the first detection voltage detected by the first voltage detection signal, and then determine whether the switch module is completely disconnected when in the disconnected state.
  • the voltage detection module can perform voltage detection on the energy storage element according to the corresponding voltage detection signal. According to the first detection voltage, it can be determined whether the energy storage element is charged, and then whether the switch module is completely disconnected when it is disconnected. According to the second detection voltage, it can be determined whether the voltage at both ends of the energy storage element is reduced to a safe voltage range, and the discharge process is terminated.
  • the charging control module includes at least two current branches.
  • the charging control module When the charging control module connects the battery pack to the switch module, the charging control module can connect the battery pack to the switch module through the first current branch among the multiple current branches.
  • the charging control module connects the discharge module with the switch module
  • the connection between the discharge module and the switch module can be achieved through the second current branch among the multiple current branches.
  • the voltage detection module can determine a third current branch from multiple current branches, and the third current branch is not the same as the first current branch. That is, the voltage detection module can select other current branches other than the first current branch from multiple current branches for voltage detection.
  • the voltage detection module performs voltage detection through the same current branch, and the detection value obtained will be affected by the charging current.
  • the voltage detection module can determine a fourth current branch from multiple current branches, and the fourth current branch is not the same as the second current branch. That is, the voltage detection module can select other current branches other than the second current branch from multiple current branches for voltage detection.
  • the voltage detection module performs voltage detection through the same current branch, and the obtained detection value will be affected by the discharge current.
  • the first current branch and the second current branch can be different current branches.
  • the discharge module discharges the energy storage element through the second current branch
  • the discharge module will also store a certain amount of residual charge. If the battery pack charges the energy storage element through the current branch during discharge, the charging process will be affected by the discharge module.
  • the charging control module may include a motor controller
  • the discharging module may include a motor
  • the motor controller may include a three-phase bridge, and the three-phase bridge includes three bridge arm groups. Each bridge arm group can be connected to the switch module respectively to form a current branch. That is, the motor controller may include three current branches.
  • the motor may include winding inductors respectively connected to the three bridge arm groups.
  • the corresponding winding inductor may serve as a discharge module to discharge the energy storage element to reduce the voltage across the energy storage element.
  • the motor controller can be a three-phase bridge.
  • the motor controller can also be a single-phase bridge.
  • the single-phase bridge includes two bridge arm groups, that is, the single-phase bridge includes two current branches.
  • the motor controller is a single-phase bridge, the motor can be an AC drive motor.
  • the switch module is switched to the disconnected state in order to switch to the motor drive mode or torque mode, so that the battery voltage output by the battery pack drives the motor to run and provide driving power for the electric vehicle. If the switch module is not completely disconnected according to the first detection voltage, the electric vehicle cannot switch to the motor drive mode or torque mode. That is, the electric vehicle cannot enter the driving state.
  • the charging control module may also be a switch device provided in an electrical device and connected to a battery pack.
  • the positive and negative ports of the battery pack may be connected to an external device via a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or other types of transistors, and the charging control module may include a MOSFET or other transistors.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the battery management system of the battery pack may control the conduction and disconnection of the battery pack with a load, a charging device or an energy storage element, and the charging control module may also be a battery management system.
  • the discharge module may also be a discharge device, discharge assembly, etc., such as an inductor, a resistor, a coil, and a capacitor, which can discharge the energy storage element.
  • the switch module When the switch module is turned on, the energy storage element may be electrically connected to the discharge device, and the charge may be discharged through the discharge device to reduce the voltage across the energy storage element.
  • the embodiment of the present application further provides a switch topology circuit, and the state detection method of the switch module can be applied to the switch topology circuit in the following embodiment, as shown in FIG2 , the switch topology circuit can be applied to an electric device, and the electric device includes a motor controller 40, a motor 50, and a battery pack 10.
  • the switch topology circuit includes a DC charging port 30, an energy storage element C, and a switch module 20.
  • the DC charging port 30 can be connected to an external charging device 60. When the external charging device 60 is connected, the DC charging port 30 can receive a charging voltage provided by the external charging device 60.
  • the battery pack 10 is connected to the motor controller 40, and the motor controller 40 is connected to the motor 50.
  • the switch module 20 includes a first end, a second end and a third end.
  • the first end of the switch module 20 is connected to the DC charging port 30
  • the second end is connected to the battery pack 10
  • the third end is connected to the neutral point of the motor 50 .
  • the switch module 20 can connect the ports.
  • the energy storage element C is connected between the first end and the third end of the switch module 20. That is, when the first end of the switch module 20 is turned on, the energy storage element C is connected to the DC charging port 30; when the third end of the switch module 20 is turned on, the energy storage element C is connected to the neutral point of the motor 50.
  • the energy storage element C, the motor controller 40, the motor 50 and the switch module 20 can form a boost current loop, which can receive the charging voltage output by the external charging device 60 through the DC charging port 30, and after boosting the charging voltage, output it to the battery pack 10, so as to charge the battery pack 10 with the boosted charging voltage.
  • the neutral point of the motor 50 on both sides of the third terminal can be connected to the energy storage element C.
  • the energy storage element C, the motor controller 40, the motor 50 and the switch module 20 can form a heating current loop, which can alternately charge and discharge between the battery pack 10 and the energy storage element C to form an oscillation circuit.
  • the oscillating current flows through the battery pack 10
  • the internal resistance of the battery pack 10 generates ohmic heat under the current drive, thereby heating the battery pack 10.
  • the battery pack 10 can be electrically connected to the motor controller 40, and the motor controller 40 is electrically connected to the motor 50.
  • the battery pack 10 can output a DC voltage to the motor controller 40, and the motor controller 40 can convert the DC voltage into an AC voltage to generate a three-phase AC voltage, and input the three-phase AC voltage to the three-phase input terminal of the motor 50.
  • the motor 50 is driven by the three-phase AC voltage to achieve vehicle travel.
  • the switch module 20 can realize switching between different modes of the electrical device by controlling the connectivity between various ends. Taking the electrical device as an electric vehicle as an example, the electric vehicle can realize switching between motor drive mode, DC charging mode, boost charging mode and battery pack heating mode.
  • the battery pack 10 can provide a DC voltage. After the motor controller 40 converts the DC voltage into a three-phase AC voltage, the three-phase AC voltage can be output to the motor 50 to drive the motor 50 to operate.
  • the DC charging port 30 When the DC charging port 30 is connected to the external charging device 60, it can receive the DC charging voltage input by the external charging device 60.
  • the DC charging mode When the DC charging voltage is higher than the working voltage of the battery pack 10, the DC charging mode can be entered to directly charge the battery pack 10 with the DC charging voltage; when the DC charging voltage is lower than the working voltage of the battery pack 10, the boost charging mode can be entered to boost the DC charging voltage so that the boosted voltage value is higher than the working voltage of the battery pack 10, so as to charge the battery pack 10 with the boosted voltage.
  • the working voltage of the battery pack 10 can be the maximum working voltage of the battery pack 10.
  • the first end and the second end of the switch module 20 are connected.
  • the DC charging port 30 can be directly connected to the battery pack 10.
  • the external charging device 60, the DC charging port 30 and the battery pack 10 constitute a direct charging circuit to realize direct charging of the battery pack 10.
  • the first end of the switch module 20 is connected to the third end.
  • the switch module 20, the motor controller 40 and the motor 50 can form a boost circuit.
  • the DC charging port 30 is connected to the input end of the boost circuit, and the battery pack 10 is connected to the output end of the boost circuit.
  • the boost circuit can boost the DC charging voltage input by the external charging device 60 and output it to the battery pack 10, so as to charge the battery pack 10 with the boosted DC voltage.
  • the third end of the switch module 20 connects the neutral point of the motor 50 to the energy storage element C, and the energy storage element C, the switch module 20, the motor controller 40 and the motor 50 can form a heating circuit.
  • the heating circuit can realize the cyclic charging and discharging of the battery pack 10, so that the internal resistance of the battery pack 10 converts electrical energy into thermal energy through the oscillating current generated during the charging and discharging cycle, thereby heating the battery pack 10.
  • the heating circuit can control the battery pack 10 to discharge the energy storage element C so that the energy storage element C is charged by storing charge; after the energy storage element C stores the charge, the heating circuit can control the energy storage element C to release the stored charge to charge the battery pack 10.
  • One discharge-charge process of the battery pack 10 is a complete charge-discharge cycle.
  • the electrical device adjusts the connectivity between the ends of the switch module 20 to achieve switching in different modes, in order to avoid short circuits, open circuits and other faults in the topological circuits in each mode, it is necessary to ensure that the ends of the switch module 20 can be fully turned on or off.
  • the electrical device operates in the battery pack heating mode.
  • the electrical device can switch to the motor drive mode.
  • the switch module 20 switches between different modes by connecting and disconnecting various terminals, since the third terminal of the switch module 20 needs to remain on in both the boost charging mode and the battery pack heating mode, and the third terminal of the switch module 20 needs to remain disconnected in the motor drive mode, when the electric device is switched from the boost charging mode to the motor drive mode, or from the battery pack heating mode to the motor drive mode, it is necessary to ensure that the switch module 20 can fully disconnect the energy storage element C from the neutral point of the motor 50.
  • the switch module 20 can disconnect the neutral point of the motor 50 from the energy storage element C.
  • the motor controller 40 can also be selectively turned on so that the battery pack 10 can be connected to the energy storage element C through the motor controller 40 and the motor 50.
  • the switch module 20 fully disconnects the energy storage element C from the neutral point of the motor 50, even if the motor controller 40 is selectively turned on, the battery pack 10 cannot form a complete current loop with the energy storage element C through the motor controller 40 and the motor 50. However, if the energy storage element C and the neutral point of the motor 50 are not disconnected or not fully disconnected, the battery pack 10 can form a complete loop with the energy storage element C through the motor controller 40 and the motor 50 during the time period when the motor controller 40 is turned on, and the battery pack 10 can supply power to the energy storage element C by outputting the battery voltage.
  • the switch module 20 By selectively turning on the motor controller 40, when the switch module 20 disconnects the neutral point of the motor 50 from the energy storage element C, it can be determined whether the disconnection state is abnormal. If the neutral point of the motor 50 is not completely disconnected from the energy storage element C, when the motor controller 40 is turned on, the battery pack 10 can charge the energy storage element C, thereby increasing the voltage across the energy storage element C. If the neutral point of the motor 50 is completely disconnected from the energy storage element C, when the motor controller 40 is turned on, the battery pack 10 cannot be electrically connected to the energy storage element C, nor can it charge the energy storage element C, and the voltage across the energy storage element C will not be affected by the battery voltage of the battery pack 10.
  • the disconnection state of the switch module 20 is abnormal. For example, when it is detected that the voltage at both ends of the energy storage element C does not exceed the preset safety voltage range, it can be determined that the third end of the switch module 20 is completely disconnected. At this time, the neutral point of the motor 50 is not electrically connected to the energy storage element C, and the electrical device can switch to the motor drive mode to drive the motor 50 to run. When it is detected that the voltage at both ends of the energy storage element C increases and exceeds the preset safety voltage range, it means that the third end of the switch module 20 has not been completely disconnected.
  • the battery pack 10 charges the energy storage element C, thereby increasing the voltage at both ends of the energy storage element C.
  • the switch module 20 since the switch module 20 is not completely disconnected, if it is switched to the motor drive mode and the motor 50 is driven to run, the energy storage element C will be damaged. Therefore, when the electrical device detects that the switch module 20 is not completely turned off, it will not switch to the motor drive mode for operation. It is understandable that the electrical device can also issue an alarm prompt to the user to prompt the user that the switch module 20 has not been completely disconnected.
  • the boost charging function and the heating function of the battery pack 10 can be realized by adjusting the connection between the ports of the switch module 20.
  • the DC charging port 30 can charge the battery pack 10 after boosting the DC charging voltage provided by the external charging device 60.
  • the neutral point of the motor 50 is connected to the energy storage element C at the third end of the switch module 20, the battery pack 10 can be discharged and charged in a cycle, thereby heating the battery pack 10.
  • the battery pack 10 When the third end of the switch module 20 is completely disconnected, the battery pack 10, the motor controller 40 and the motor 50 can form a motor drive circuit to drive the motor 50 to operate normally.
  • the switch module 20 disconnects the neutral point of the motor 50 from the energy storage element C, it indicates that the electrical device switches from the state of boost charging or the state of heating the battery pack to the state of driving the motor 50 to operate.
  • the motor controller 40 can connect the battery pack 10 and the energy storage element C by selective conduction. If the switch module 20 can completely disconnect the neutral point of the motor 50 from the energy storage element C, the voltage across the energy storage element C will not exceed the safe voltage range; if the switch module 20 fails to completely disconnect, the voltage across the energy storage element C will be too high when the battery pack 10 is charged.
  • the disconnection state of the switch module 20 can be determined, that is, whether the switch module 20 completely disconnects the neutral point of the motor 50 from the energy storage element C, thereby avoiding driving the motor 50 when the switch element is not completely disconnected and causing damage to the device.
  • the first pole of the DC charging port 30 may be connected to the first end of the switch module 20, and the second pole of the DC charging port 30 may be connected to the second pole of the battery pack 10.
  • the first pole of the battery pack 10 may be connected to the second end of the switch module 20, and the second pole of the battery pack 10 may be connected to the first end of the energy storage element C.
  • the switch module 20 may connect the first end with the third end by connecting the second end of the energy storage element C, the neutral point of the motor 50 and the first pole of the DC charging port 30; the switch module 20 may connect the neutral point of the motor 50 with the energy storage element C through the third end by connecting the second end of the energy storage element C with the neutral point of the motor 50.
  • the electrical device When the second end of the energy storage element C, the neutral point of the motor 50 and the first pole of the DC charging port 30 are connected to a common node, the electrical device operates in a boost charging mode, and the energy storage element C, the motor 50 and the motor controller 40 are equivalent to forming a boost circuit.
  • the two ends of the DC charging port 30 are respectively connected to the two ends of the energy storage element C.
  • the DC charging port 30 is connected to the input end of the boost circuit, and the output end of the boost circuit is connected to the battery pack 10.
  • the DC charging voltage input by the external charging device 60 can be boosted in the boost circuit to charge the battery pack 10.
  • the electrical device When the second end of the energy storage element C is connected to the neutral point of the motor 50, the electrical device operates in the battery pack heating mode, and the energy storage element C, the motor 50 and the motor controller 40 constitute a heating circuit, and the DC charging port 30 is not connected to the heating circuit.
  • the heating circuit can alternately discharge and charge the battery pack 10, so as to convert electrical energy into heat energy to heat the battery pack 10 during the charge and discharge cycle.
  • the energy storage element C, the neutral point of the motor 50 and the DC charging port 30 through the switch module 20 By adjusting the connectivity between the energy storage element C, the neutral point of the motor 50 and the DC charging port 30 through the switch module 20, the energy storage element C, the motor 50 and the motor controller 40 can form a boost circuit or a heating circuit.
  • a boost circuit is formed, and the DC charging voltage output by the external charging device 60 can be boosted; when the DC charging port 30 is not connected, a heating circuit is formed, and the battery pack 10 can be alternately charged and discharged to heat the battery pack 10.
  • the electrical device can enter the motor drive mode, and the battery pack 10, the motor controller 40 and the motor 50 constitute a motor drive circuit. If the switch module 20 can completely disconnect the second end of the energy storage element C from the neutral point of the motor 50, when the battery pack 10 supplies power to the motor 50, the three-phase AC voltage will not flow into the energy storage element C through the neutral point of the motor 50; if the switch module 20 fails to disconnect the second end of the energy storage element C from the neutral point of the motor 50 or fails to disconnect completely, when the battery pack 10 supplies power to the motor 50, the three-phase AC voltage will flow into the energy storage element C through the neutral point of the motor 50, which may easily cause damage to the energy storage element C.
  • the switch module 20 can change the connection between the second end of the energy storage element C and the neutral point of the motor 50 from connected to disconnected through on-off control, so that the electrical device switches from the boost charging mode or the battery pack heating mode to the motor driving mode.
  • the motor controller 40 can selectively turn on to connect the battery pack 10 and the energy storage element C. If the disconnection state of the switch module 20 is completely disconnected, when the motor controller 40 is turned on, the battery pack 10 is not connected to the energy storage element C, and the battery pack 10 does not charge the energy storage element C.
  • the disconnection state of the switch module 20 is not completely disconnected, when the motor controller 40 is turned on, the battery pack 10 and the energy storage element C can be connected through the switch module 20 that is not completely disconnected, so that the voltage across the energy storage element C increases. At this time, the disconnection state of the switch module 20 can be determined by detecting the voltage across the energy storage element C.
  • the switch module 20 may include a first switch K1 , a second switch K2 , and a third switch K3 .
  • a first end of the first switch K1 is connected to a first pole of the DC charging port 30 , and a second end of the first switch K1 is connected to a first pole of the battery pack 10 .
  • a first end of the second switch K2 is connected to a first pole of the DC charging port 30 , and a second end of the second switch K2 is connected to a second end of the energy storage element C.
  • a first end of the third switch K3 is connected to the neutral point of the motor 50 , and a second end of the third switch K3 is connected to the second end of the energy storage element C.
  • first pole and the second pole of each module can be positive and negative respectively, the second pole of each module can be directly connected, and the first pole of each module is connected through the first switch K1, the second switch K2 or the third switch K3.
  • the external charging device 60 can directly charge the battery pack 10 through the DC charging port 30 .
  • the third switch K3 When the third switch K3 is turned on, the first end of the energy storage element C is connected to the second pole of the battery pack 10 , and the second end is connected to the neutral point of the motor 50 .
  • the DC charging interface is connected to the current loop formed by the energy storage element C, the motor 50 and the motor controller 40.
  • the voltage input source is the external charging device 60, and the current loop formed by the motor 50 and the motor controller 40 is a boost circuit.
  • the current loop formed by the DC charging interface and the energy storage element C, the motor 50 and the motor controller 40 is disconnected.
  • the voltage input source is the battery pack 10
  • the current loop formed by the energy storage element C, the motor 50 and the motor controller 40 is a heating circuit.
  • the neutral point of the motor 50 is disconnected from the energy storage element C. If the third switch K3 is not completely disconnected, when the motor controller 40 is selectively turned on, the battery pack 10 can be electrically connected to the energy storage element C through the motor controller 40 and the motor 50, and output the battery voltage to charge the energy storage element C. If the third switch K3 is completely disconnected, when the motor controller 40 is selectively turned on, the battery pack 10 is not connected to the energy storage element C, and the voltage across the energy storage element C will not be affected by the battery pack 10.
  • the above-mentioned first switch K1, second switch K2 and third switch K3 can be relays. It can be understood that the current flowing through the relay is usually a large current. Under the action of large current and high voltage, the relay is prone to arcing, causing the contacts of the relay to sinter. When the contacts of the relay are sintered, the relay cannot be disconnected, which will cause a high safety hazard. Therefore, after the third switch K3 of the switch module 20 changes from the on state to the off state, it is necessary to control the motor controller 40 to turn on for a period of time and detect the voltage at both ends of the energy storage element C.
  • the above-mentioned electrical device is an electric vehicle
  • the battery voltage of the battery pack 10 of the electric vehicle is about 800V
  • the safety range of the voltage across the energy storage element C can be within 60V. That is, after the third switch K3 is disconnected, the motor controller 40 can be controlled to be turned on for a period of time. If the voltage across the energy storage element C exceeds 60V, it means that the third switch K3 is not completely disconnected, and the battery pack 10 charges the energy storage element C. If the voltage across the energy storage element C does not reach 60V, it means that the third switch K3 is completely turned off. The battery pack 10 is not connected to the energy storage element C through the neutral point of the motor 50.
  • the above-mentioned switch topology circuit may further include a heating module 70, and the energy storage element C is disposed in the heating module 70.
  • the heating module 70 is detachably connected to the switch module 20.
  • the energy storage element C in the heating module 70 can be connected in series between the common node of the second switch K2 and the third switch K3 and the second pole of the battery pack 10.
  • the heating module 70 By setting the energy storage element C in the heating module 70, and making the heating module 70 detachably connected to the switch module 20.
  • the heating module 70 When the heating module 70 is connected to the switch module 20, the energy storage element C can be connected to the switch topology circuit.
  • the heating module 70 is disconnected from the switch module 20, the energy storage element C is not connected to the switch topology circuit.
  • the electric device can use the heating module 70 as an optional module for the user to select the heating function. In addition, if the user does not select the heating function, the heating function can be added by installing the heating module 70.
  • the voltage input source is the external charging device 60.
  • the motor controller 40 and the motor 50 can form a boost circuit to boost the DC charging voltage input by the external charging device 60.
  • the external charging device 60 is not connected to the current loop.
  • the switch topology circuit can realize the boost charging of the battery pack 10 or the heating of the battery pack 10 through the adjustment of the switch module 20.
  • the switch topology circuit can realize the boost charging of the battery pack 10, but cannot realize the heating of the battery pack 10.
  • the energy storage element C includes a first capacitor C1 , and the first capacitor C1 may be disposed in the switch module 20 .
  • a first capacitor C1 may also be provided in the switch module 20.
  • the first capacitor C1 connects the various ports of the switch module 20 to the neutral points of the DC charging port 30, the battery pack 10 and the motor 50 respectively, thereby enabling the connection between the neutral points of the DC charging port 30, the battery pack 10 and the motor 50 and the first capacitor C1 when controlling the connectivity between the various ports.
  • the energy storage element C By arranging the energy storage element C to be integrated in the switch module 20, the number of modules in the electrical device can be reduced, the assembly process in the production process can be reduced, and the production efficiency can be improved.
  • FIG. 7 shows a schematic diagram of a circuit structure corresponding to the embodiment of FIG. 6 , and the following are the conduction states of each switch of the switch topology circuit in each mode:
  • the first switch K1 , the second switch K2 and the third switch K3 are all in the disconnected state, and the battery pack 10 drives the motor 50 to operate through the motor controller 40 .
  • the first switch K1 is turned on, and the second switch K2 and the third switch K3 are turned off. At this time, both ends of the DC charging port 30 are directly connected to the first pole and the second pole of the battery pack 10 .
  • the first switch K1 is turned off, and the second switch K2 and the third switch K3 are turned on.
  • the external charging device 60, the DC charging port 30, the first capacitor C1, the motor controller 40, and the motor 50 form a complete boost current loop.
  • the first switch K1 and the second switch K2 are disconnected, and the third switch K3 is turned on. At this time, the first capacitor C1 and the motor controller 40 and the motor 50 form a complete heating current loop.
  • the switch topology circuit may further include a heating module 70.
  • the heating module 70 may include a second capacitor C2 and a fourth switch K4.
  • the first end of the second capacitor C2 is connected to the second electrode of the battery pack 10.
  • the second capacitor C2 is an energy storage element C.
  • the heating module 70 can connect the second end of the second capacitor C2 to the neutral point of the motor 50 when the fourth switch K4 is turned on. At this time, the first end of the second capacitor C2 is connected to the second pole of the battery pack 10, and the second end is connected to the neutral point of the motor 50.
  • the second capacitor C2 can form a heating circuit with the motor controller 40 and the motor 50 to alternately charge and discharge the battery pack 10.
  • the switch topology circuit may further include a heating module 70 provided with a second capacitor C2.
  • a heating module 70 provided with a second capacitor C2.
  • the heating module 70 When the heating module 70 is not connected to the switch topology circuit, there is only the first capacitor C1, and the cyclic charging and discharging heating function of the battery pack 10 cannot be realized; when the heating module 70 is connected to the switch topology circuit, the second capacitor C2, the motor controller 40, and the motor 50 can form a heating circuit to alternately charge and discharge the battery pack 10, thereby heating the battery pack 10.
  • the first switch K1 is disconnected, the second switch K2, the third switch K3 and the fourth switch K4 are turned on, and the first capacitor C1 and the second capacitor C2 are used as a voltage source to boost the voltage.
  • the energy storage element C is the first capacitor C1 and the second capacitor C2. If the second capacitor C2 is located in the heating module 70, the heating module 70 is detachably connected to the switch module 20, and when the heating module 70 is not connected to the switch module 20, the energy storage element C is the first capacitor C1.
  • the first switch K1, the second switch K2 and the third switch K3 are disconnected, and the fourth switch K4 is turned on.
  • the second capacitor C2 the motor 50, the motor controller 40 and the battery pack 10 form an oscillation circuit to heat the battery pack 10.
  • the energy storage element C is the second capacitor C2.
  • the second capacitor C2 is connected to the neutral point of the motor 50 through the fourth switch K4, and the switch module 20 can realize the connection and disconnection between the neutral point of the motor 50 and the energy storage element C by controlling the conduction and disconnection of the fourth switch K4.
  • the fourth switch K4 When the fourth switch K4 is completely disconnected, the motor 50 can be disconnected from the energy storage element C; when the fourth switch K4 is not completely disconnected, for example, when the relay is sintered, the neutral point of the motor 50 can still be electrically connected to the energy storage element C through the fourth switch K4. Therefore, by detecting the voltage across the energy storage element C, it can be determined whether the battery pack 10 is connected to the energy storage element C, and then determine whether the fourth switch K4 is completely disconnected.
  • a first end of the fourth switch K4 is connected to the neutral point of the motor 50 , and a second end of the fourth switch K4 is respectively connected to the second end of the second capacitor C2 and the third end of the switch module 20 .
  • the fourth switch K4 When the fourth switch K4 is turned on, the two ends of the second capacitor C2 are connected to the negative electrode loop of the heating module 70 and the neutral point of the motor 50, respectively.
  • the second capacitor C2, the motor controller 40, the motor 50 and the battery pack 10 can form a complete heating current loop. Since the battery pack 10 still needs to be heated at this time, the external charging device 60 cannot be connected to the current loop, and the first end of the switch module 20 needs to remain disconnected. Since the capacitance of the second capacitor C2 can meet the capacitance requirements of the energy storage element C in the heating circuit, the second and third ends of the switch module 20 can remain disconnected, and the first capacitor C1 is not connected to the heating circuit.
  • the battery pack 10 can be heated by the second capacitor C2.
  • FIG9 shows a schematic diagram of the circuit structure corresponding to the embodiment of FIG8 .
  • FIG9 further includes a second capacitor C2 and a fourth switch K4 .
  • the first switch K1 , the second switch K2 , the third switch K3 and the fourth switch K4 are all disconnected, and the battery pack 10 drives the motor 50 to operate through the motor controller 40 .
  • the first switch K1 is turned on, and the second switch K2 , the third switch K3 and the fourth switch K4 are turned off. At this time, both ends of the DC charging port 30 are directly connected to the first pole and the second pole of the battery pack 10 .
  • the first switch K1 is disconnected, and the second switch K2, the third switch K3 and the fourth switch K4 are turned on.
  • the external charging device 60, the DC charging port 30, the first capacitor C1, the second capacitor C2 and the motor controller 40, the motor 50 form a complete boost current loop.
  • the first switch K1 , the second switch K2 and the third switch K3 are disconnected, and the fourth switch K4 is turned on.
  • the second capacitor C2 and the motor controller 40 and the motor 50 form a complete heating current loop.
  • the switch module 20 can connect the first end and the third end under a first preset condition, so that the boost circuit boosts the DC charging voltage input by the external charging device 60 to charge the battery pack 10.
  • the first preset condition may include that the DC charging voltage of the external charging device 60 is lower than the working voltage of the battery pack 10.
  • the size of the DC charging voltage of the external charging device 60 can be detected.
  • the DC charging voltage is lower than the operating voltage of the battery pack 10, it is determined that the first preset condition is met. At this time, the battery pack 10 cannot be charged directly by the DC charging voltage. It is necessary to connect the first end and the third end of the switch module 20 to boost the DC charging voltage through the boost circuit.
  • the switch topology circuit is compatible to achieve charging of the battery pack 10.
  • the switch module 20 may connect the second end with the third end under a second preset condition, so that the heating circuit cyclically charges and discharges the battery pack 10, thereby heating the battery pack 10.
  • the second preset condition may include that the battery temperature of the battery pack 10 is lower than a temperature threshold.
  • the second end and the third end of the switch module 20 can be connected to achieve heating of the battery pack 10 to increase the battery temperature of the battery pack 10.
  • a heating circuit can be formed by the switch module 20 to charge and discharge the battery pack 10, thereby heating the battery pack 10 so that the battery temperature of the battery pack 10 reaches a normal temperature range.
  • the battery temperature of the battery pack 10 needs to be detected.
  • the battery pack 10 needs to be heated by the heating circuit first so that the battery temperature reaches a suitable temperature range before the external charging device 60 can be connected to the battery pack 10 to charge the battery pack 10.
  • the output voltage of the external charging device 60 needs to be detected to determine whether the connection mode between the external charging device 60 and the battery pack 10 is a DC charging mode or a boost charging mode according to the output voltage.
  • the motor controller 40 may include a three-phase bridge, and the three-phase bridge includes three bridge arm groups.
  • the bridge arm group includes an upper bridge arm and a lower bridge arm connected in series, and the first pole and the second pole of the battery pack 10 are connected to the first input terminal and the second input terminal of the motor controller 40, respectively.
  • the upper bridge arm in the bridge arm group is connected to the first input terminal of the motor controller 40, and the lower bridge arm is connected to the second input terminal of the motor controller 40.
  • the common nodes of the three bridge arm groups are respectively connected to the three-phase input terminals of the motor 50, and the common node is the connection point of the upper bridge arm and the lower bridge arm.
  • the motor controller 40 can drive the upper bridge arm and the lower bridge arm of at least one bridge arm group among the three bridge arm groups to be alternately turned on to cyclically charge and discharge the battery pack 10, thereby heating the battery pack 10.
  • Each phase of the motor 50 also includes a winding inductance. After the winding inductance is connected to the corresponding bridge arm group, it can form a charge and discharge circuit with the battery pack 10 and the energy storage element C. By controlling the upper bridge arm and the lower bridge arm to be alternately turned on, the battery pack 10 can be alternately discharged and charged. When the motor controller 40 drives a bridge arm group to be alternately turned on, the battery pack 10 can be cyclically charged and discharged. By increasing the number of bridge arm groups driven by the motor controller 40, the power of discharging or charging the battery pack 10 can be increased. Accordingly, when the charging and discharging power increases, the oscillating current generated by the battery pack 10 during the charging and discharging process also increases, so that the internal resistance of the battery pack 10 generates more heat, thereby improving the heating power and heating efficiency.
  • the heating power and heating efficiency of the battery pack 10 can be adjusted.
  • the number of driven bridge arm groups can be increased to quickly increase the battery temperature of the battery pack 10.
  • the number of driven bridge arm groups can be reduced to reduce the power consumed during the heating process.
  • the above-mentioned motor controller 40 can drive the upper bridge arm and the lower bridge arm of at least one bridge arm group among the three bridge arm groups to be alternately turned on when forming a boost circuit, so as to boost the DC charging voltage of the external charging device 60 and then charge the battery pack 10 with the boosted voltage.
  • an inductor In a typical Boost boost circuit, an inductor, a diode and a switch tube are included, wherein the inductor can store or release energy by suppressing the current, the diode can limit the current direction, and the switch tube can store and release charge by alternately turning on and off the inductor.
  • the common node in the bridge arm group is connected to a phase of the motor 50, the winding inductance of the motor 50 on this phase can be used as the inductor in the Boost boost circuit, the reverse diode of the upper bridge arm can be used as a diode, and the lower bridge arm can be used as a switch tube.
  • the boost function of the Boost boost circuit can be realized, and the DC charging voltage input by the external charging device 60 can be boosted.
  • the boost multiple can be adjusted, so that the boosted DC charging voltage can be greater than the working voltage of the battery pack 10, so that the boosted voltage can charge the battery pack 10.
  • the DC charging voltage can be boosted.
  • Increasing the number of driven bridge arm groups will not change the magnitude of the boosted voltage, but can increase the output power of the boost circuit. Therefore, by adjusting the number of driven bridge arm groups in the motor controller 40, the charging power of the battery pack 10 during the charging process can be increased. According to the actual charging power required by the battery pack 10, a corresponding number of bridge arm groups can be driven.
  • the motor controller 40 can selectively turn on the upper bridge arm of one of the bridge arm groups.
  • the upper bridge arm can be controlled to be turned on by sending high and low level pulse signals to the upper bridge arm of the corresponding bridge arm group. If the valid signal is high level, the upper bridge arm is turned on when the high level is received and turned off when the low level is received.
  • the high and low level pulse signals can be PWM signals.
  • the battery pack 10 can output the battery voltage of the battery pack 10 through the turned-on upper bridge arm and the inductance of the motor 50 connected to the bridge arm group. If the switch module 20 fails to completely disconnect the neutral point of the motor 50 from the energy storage element C, the battery voltage can charge the energy storage element C when the upper bridge arm is turned on; if the switch module 20 has completely disconnected the neutral point of the motor 50 from the energy storage element C, the battery voltage cannot charge the energy storage element C when the upper bridge arm is turned on.
  • the switch module 20 disconnects the neutral point of the motor 50 from the energy storage element C, which means that the switch module 20 disconnects the switch connecting the energy storage element C and the neutral point of the motor 50.
  • the switch connected between the first capacitor C1 and the neutral point of the motor 50 is the third switch K3
  • the switch module 20 can control the third switch K3 to disconnect, so as to disconnect the neutral point of the motor 50 from the energy storage element C.
  • the voltage across the energy storage element C is the voltage Vc1 across the first capacitor C1.
  • the switch connected between the second capacitor C2 and the neutral point of the motor 50 is the fourth switch K4, and the switch module 20 can control the fourth switch K4 to be disconnected to disconnect the neutral point of the motor 50 from the energy storage element C.
  • the voltage across the energy storage element C is the voltage Vc2 across the second capacitor C2.
  • the third switch K3 and the fourth switch K4 may be relays, which are prone to electric shock and sintering under high current and high voltage, so that the relays cannot be completely disconnected.
  • FIG. 10 shows a schematic diagram of the hardware structure of a state detection device for a switch module provided in an embodiment of the present application.
  • the state detection device of the switch module may include a processor 1001 and a memory 1002 storing computer program instructions.
  • the above-mentioned processor 1001 may include a central processing unit (CPU), or an application specific integrated circuit (ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 1002 may include a large capacity memory for data or instructions.
  • the memory 1002 may include a hard disk drive (HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a universal serial bus (USB) drive, or a combination of two or more of these.
  • the memory 1002 may include a removable or non-removable (or fixed) medium.
  • the memory 1002 may be inside or outside the state detection device of the switch module.
  • the memory 1002 is a non-volatile solid-state memory.
  • the memory may include read-only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical or other physical/tangible memory storage devices.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk storage media devices typically, magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical or other physical/tangible memory storage devices.
  • the memory includes one or more tangible (non-transitory) readable storage media (e.g., memory devices) encoded with software including computer-executable instructions, and when the software is executed (e.g., by one or more processors), it is operable to perform the operations described with reference to the method according to an aspect of the present disclosure.
  • the processor 1001 implements any one of the switch module state detection methods in the above embodiments by reading and executing computer program instructions stored in the memory 1002 .
  • the state detection device of the switch module may further include a communication interface 1003 and a bus 1010. As shown in Fig. 10, the processor 1001, the memory 1002, and the communication interface 1003 are connected via the bus 1010 and communicate with each other.
  • the communication interface 1003 is mainly used to implement communication between various modules, devices, units and/or equipment in the embodiments of the present application.
  • Bus 1010 includes hardware, software or both, and the parts of the state detection device of switch module are coupled to each other.
  • bus may include accelerated graphics port (AGP) or other graphics bus, enhanced industrial standard architecture (EISA) bus, front side bus (FSB), hypertransport (HT) interconnection, industrial standard architecture (ISA) bus, infinite bandwidth interconnection, low pin count (LPC) bus, memory bus, micro channel architecture (MCA) bus, peripheral component interconnection (PCI) bus, PCI-Express (PCI-X) bus, serial advanced technology attachment (SATA) bus, video electronics standard association local (VLB) bus or other suitable bus or two or more of these combinations.
  • AGP accelerated graphics port
  • EISA enhanced industrial standard architecture
  • FAB front side bus
  • HT hypertransport
  • ISA industrial standard architecture
  • LPC low pin count
  • MCA micro channel architecture
  • PCI peripheral component interconnection
  • PCI-X PCI-Express
  • SATA serial advanced technology attachment
  • VLB video electronics standard association local
  • bus 1010 may include one or
  • the state detection device of the switch module can implement the state detection method of the switch module in the above embodiment.
  • the embodiment of the present application can provide a computer storage medium for implementation.
  • the computer storage medium stores computer program instructions; when the computer program instructions are executed by the processor, any of the state detection methods of the switch module in the above embodiment is implemented.
  • the terms “comprises,” “comprising,” or any other variations thereof are intended to cover non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements includes not only those elements but also other elements not explicitly listed, or also includes elements that are inherent to such process, method, article, or apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种开关模块的状态检测方法、电路、设备及存储介质,开关模块的状态检测方法包括:在开关模块断开的情况下,将电池包与开关模块连通,以使电池包通过开关模块与储能元件形成第一充电回路;对储能元件进行电压检测,得到第一检测电压;根据第一检测电压确定开关模块是否完全断开。

Description

开关模块的状态检测方法、电路、设备及存储介质 技术领域
本申请涉及开关控制技术领域,并且更具体地,涉及一种开关模块的状态检测方法、电路、设备及存储介质。
背景技术
随着新能源技术的发展,电池越来越广泛地应用于各种用电装置,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船等。
以用电装置中的电动汽车为例,在低温环境下,电动汽车内的电池包的充电效率较低,需要对电池包进行加热,将电池包的温度加热至电池包的运行温度范围,才能够通过充电设备为电池包进行高效充电。此外,现有的电动汽车通常采用高压系统,需要在高压充电平台下进行充电。然而,由于以往所布设的充电设备大多为低压平台,无法兼容高压系统的电动汽车。
现有的用电装置为了实现新的功能,通常会在用电装置原有的模块和器件基础上增加新的拓扑电路设计,并通过开关器件的通断控制实现各个功能的切换。然而,在开关器件发生异常时,将会导致电路内部的器件发生损坏。
发明内容
本申请提供了一种开关模块的状态检测方法、电路、设备及存储介质,能够解决开关器件发生异常时对电路中的器件造成损坏的技术问题。
第一方面,本申请实施例提供了一种一种开关模块的状态检测方法,方法包括:
在开关模块断开的情况下,将电池包与开关模块连通,以使电池包通过开关模块与储能元件形成第一充电回路;
对储能元件进行电压检测,得到第一检测电压;
根据第一检测电压确定开关模块是否完全断开。
通过将电池包与开关模块进行连通,可以在开关模块处于断开状态时,确定开 关模块是否完全断开。若开关模块未完全断开,电池包能够通过开关模块为储能元件进行充电,使得检测得到的第一检测电压较大;若开关模块完全断开,电池包无法为储能元件进行充电,使得检测得到的第一检测电压较小。根据第一检测电压的大小即可确定开关模块在断开时是否为完全断开状态,在开关模块完全断开时,用电装置可以切换至开关模块断开时的模式下运行,以实现相应的功能。在开关模块未完全断开时,用电装置无法切换至开关模块断开时的模式下运行。
在一些实施例中,将电池包与开关模块连通,包括:向充电控制模块发送充电信号,以使充电控制模块根据充电信号将电池包与开关模块连通。通过充电信号,可以控制充电控制模块将电池包与开关模块连通,并根据第一检测电压确定储能元件是否进行了充电。
在一些实施例中,对储能元件进行电压检测,得到第一检测电压,包括:在电池包与开关模块连通的情况下,向电压检测模块发送第一电压检测信号;接收电压检测模块对储能元件进行电压检测后得到并发送的第一检测电压。通过设置电压检测模块,能够在电池包与开关模块连通时,通过电压检测模块对储能元件进行电压检测,以得到第一检测电压。根据该第一检测电压,可以判断储能元件是否进行了充电,进而确定开关模块的断开状态是否发生异常。
在一些实施例中,充电控制模块包括至少两个电流支路;向电压检测模块发送第一电压检测信号,包括:确定充电控制模块中连接于电池包与开关模块之间的第一电流支路;向电压检测模块发送第一电压检测信号,以使电压检测模块通过除第一电流支路以外的其余电流支路对储能元件进行电压检测。充电控制模块可以包括多个电流支路,电池包和电压检测模块通过不同的电流支路与开关模块连通,能够避免电压检测模块在进行电压检测时受到充电电流的影响,提升电压检测的精确度。
在一些实施例中,在开关模块断开的情况下,将电池包与开关模块连通之前,还包括:在开关模块导通的情况下,将放电模块与开关模块连通,以使放电模块通过开关模块与储能元件形成第一放电回路;对储能元件进行电压检测,得到第二检测电压;在第二检测电压达到安全电压范围内的情况下,向开关模块发送断开信号。在开关模块由导通变为断开前,还可以通过放电模块对储能元件进行放电,以降低储能元件的两端电压,减少储能元件上的残余电荷。
在一些实施例中,对储能元件进行电压检测,得到第二检测电压,包括:确定 充电控制模块中连接于放电模块与开关模块之间的第二电流支路;向电压检测模块发送第二电压检测信号,以使电压检测模块通过除第二电流支路以外的其余电流支路对储能元件进行电压检测。通过设置电压检测模块与放电模块分别经过不同的电流支路接入储能元件,能够使得电压检测模块在检测电压时,不会受到储能元件的放电电流的影响,提升电压检测的精确性。
在一些实施例中,根据第一检测电压确定开关模块是否完全断开,包括:获取安全电压范围;在第一检测电压超出安全电压范围的情况下,控制电池包停止运行。在第一检测电压过大时,可以控制电池包停止运行,以避免电池包在运行时产生较大的电流而导致储能元件发生损坏。
第二方面,本申请实施例还提供一种开关模块的状态检测电路,电路包括:开关模块;储能元件,储能元件与开关模块的第一端连接;控制模块,控制模块用于在开关模块断开的情况下,将开关模块的第二端与电池包连通,并根据储能元件的第一检测电压确定开关模块的断开状态。通过将电池包与开关模块进行连通,可以在开关模块处于断开状态时,根据检测得到的第一检测电压确定开关模块是否完全断开。在开关模块完全断开时,用电装置可以切换至开关模块断开时的模式下运行,以实现相应的功能。在开关模块未完全断开时,用电装置无法切换至开关模块断开时的模式下运行。
在一些实施例中,电路还包括:充电控制模块,连接于开关模块与电池包之间,充电控制模块用于在接收到充电信号时,将电池包与开关模块连通。
在一些实施例中,电路还包括:电压检测模块,与储能元件电连接,电压检测模块用于在接收到第一电压检测信号时,对储能元件进行电压检测以得到第一检测电压,和/或,在接收到第二电压检测信号时,对储能元件进行电压检测以得到第二检测电压。
在一些实施例中,充电控制模块包括至少两个电流支路,充电控制模块用于通过第一电流支路将电池包与开关模块连通,和/或,通过第二电流支路将放电模块与开关模块连通;电压检测模块,用于在接收到第一电压检测信号时,从多个电流支路中确定第三电流支路,并通过第三电流支路和开关模块对储能元件进行电压检测,和/或,在接收到第二电压检测信号时,从多个电流支路中确定第四电流支路,并通过第四电流支路和开关模块对储能元件进行电压检测。
在一些实施例中,充电控制模块包括电机控制器,电机控制器包括三个桥臂组,每个桥臂组与开关模块形成一条电流支路。
第三方面,本申请实施例还提供一种开关模块的状态检测设备,开关模块的状态检测设备包括:处理器以及存储有计算机程序指令的存储器;处理器执行计算机程序指令时,使得开关模块的状态检测设备实现上述实施例中的开关模块的状态检测方法。
第四方面,本申请实施例还提供一种计算机存储介质,计算机存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时,实现上述实施例中的开关模块的状态检测方法。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一实施例提供的开关模块的状态检测方法的流程示意图;
图2为本申请一实施例提供的开关拓扑电路的模块结构示意图;
图3为本申请另一实施例提供的开关拓扑电路的模块结构示意图;
图4为本申请又一实施例提供的开关拓扑电路的模块结构示意图;
图5为本申请再一实施例提供的开关拓扑电路的模块结构示意图;
图6为本申请又一实施例提供的开关拓扑电路的模块结构示意图;
图7为图6实施例对应的电路结构示意图;
图8为本申请再一实施例提供的开关拓扑电路的模块结构示意图;
图9为图8实施例对应的电路结构示意图;
图10为本申请一实施例提供的开关模块的状态检测设备的结构示意图。
在附图中,附图并未按照实际的比例绘制。
附图中:
10、电池包;20、开关模块;30、直流充电端口;40、电机控制器;50、电机;60、外部充电设备;70、加热模块;K1、第一开关;K2、第二开关;K3、第三开关;K4、第四开关;C、储能元件;C1、第一电容;C2、第二电容。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
目前,随着新能源技术的发展,电池越来越广泛地应用于各种用电装置,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船等。随着电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
动力电池可作为用电装置(例如车辆、船舶或航天器等)的主要动力源,而储能电池可作为用电装置的充电来源,二者的重要性均不言而喻。作为示例而非限定,在一些应用场景中,动力电池可为用电装置中的电池,储能电池可为充电装置中的电池。为了便于描述,在下文中,动力电池和储能电池均可统称为电池。
目前,市面上的电池多为可充电的蓄电池,最常见的是锂电池,例如锂离子电池或锂离子聚合物电池等等。在电池设置于用电装置时,若电池的剩余电量不足时,需要与充电装置连接,为电池充电。
而在低温环境下,由于电动汽车的电池包的温度低于其正常工作所需的温度范围,此时电池包的充电效率较为底下,充电设备无法有效对电池包进行充电。因此,在低温条件下,需要对电池包进行加热,将电池包的温度加热至电池包能够正常运行的温度范围内,才能够通过充电桩为电池包进行正常充电。
由于电动汽车的充电平台不断发展,现有的电动汽车已经逐渐普及高压系统,例如800V高压充电平台。而以往所布设的充电设备则由于布设时间较为久远,通常仅为低压平台,例如400V充电桩。对于高压平台的电动汽车,在接入低压平台的充电设备时,即使在低温环境下,电动汽车能够通过对电池包进行交替充电和放电,将电池包的温度加热至合适的温度范围内,也无法兼容该低压平台的充电设备实现充电。
目前,为了解决电池在低温条件下的低效率问题以及充电设备的低电压问题,通常会在电动汽车原有的模块和器件上进行拓扑电路设计,通过增加新的开关模块和储能器件,采用开关控制的方式实现原有功能和新增功能的模式切换。然而,在开关模块发生异常时,例如未能充分导通或充分关断,将会导致用电装置的电子器件发生损坏。
为了解决上述技术问题,本申请实施例提供了一种开关模块的状态检测方法、电路、设备及存储介质。下面首先对本申请实施例所提供的开关模块的状态检测方法进行介绍。
本申请实施例公开的开关模块的状态检测方法可以但不限用于车辆、船舶或飞行器等用电装置中。本申请实施例提供一种使用电池包作为电源的用电装置,用电装置中可以包括储能元件、开关模块以及电池包,也可以包括其他具备开关模块的状态检测功能的部件。用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。
图1示出了本申请一个实施例提供的开关模块的状态检测方法的步骤流程示意图。开关模块的状态检测方法包括:
S110,在开关模块断开的情况下,将电池包与开关模块连通,以使所述电池包通过所述开关模块与储能元件形成第一充电回路;
S120,对储能元件进行电压检测,得到第一检测电压;
S130,根据第一检测电压确定开关模块是否完全断开。
上述开关模块的状态检测方法可以应用于设置有开关模块的用电装置中,用电装置可以包括有开关模块、储能元件以及电池包等。开关模块可以连接在储能元件与电池包之间。通过对开关模块的通断控制,能够使得用电装置在不同的模式下进行切换,以实现不同的功能。例如,开关模块导通时,电池包能够与储能元件电连接,此时用电装置能够通过电池包和储能元件与其他器件相结合,以实现相应的功能;而在开关模块断开时,电池包则与储能元件断开,此时用电装置可以通过电池包实现另一部分功能,例如,电池包的充电功能或放电功能等。
在S110中,在开关模块断开的情况下,可以将电池包与开关模块进行连通,以使得电池包通过开关模块与储能元件形成第一充电回路。
可以理解的是,在开关模块导通时,电池包能够通过开关模块与储能元件电连接,并为储能元件进行充电。在开关模块断开时,电池包无法与储能元件电连接,无法为储能元件进行充电。即,在开关模块断开时,第一充电回路为断开状态,电池包无法对储能元件进行充电;而在开关模块未断开时,第一充电回路为导通状态,此时电池包能够对储能元件进行充电。
在开关模块断开的情况下,将电池包与开关模块连通,若开关模块充分断开, 则电池包无法对储能元件进行充电;若开关模块断开不充分,则相当于开关模块为导通状态,此时电池包能够为储能元件进行充电。即,根据储能元件是否进行了充电,即可确定开关模块是否充分断开。
在开关模块进行导通状态和断开状态的切换时,若开关模块的断开状态不彻底,即开关模块未能完全断开时,电池包仍能够通过未完全断开的开关模块与储能元件连通。此时用电装置若切换为开关模块断开时所能够实现的功能模式,则电池包输出的电池电压容易造成储能元件的损坏。例如,在开关模块为继电器时,若继电器的触点发生烧结,则继电器无法完全断开,电池包能够通过继电器继续与储能元件保持连通。在该状态下,若用电装置切换至开关模块断开时的模式并继续运行,储能元件可能发生损坏。因此,在开关模块断开时,需要对开关模块的断开状态进行检测,以确定开关模块是否完全断开。
在将电池包与开关模块进行连通时,若开关模块完全断开,则电池包与储能元件之间不连通;若开关模块未完全断开,则电池包能够通过开关模块与储能元件进行连通。
在S120中,在电池包与开关模块导通时,可以对储能元件进行电压检测,以得到第一检测电压。
若开关模块的断开状态为完全断开,则电池包无法与储能元件电连接;若开关模块的断开状态为未完全断开,则电池包能够通过部分导通的开关模块继续与储能元件电连接。在电池包与储能元件电连接时,电池包能够通过放电对储能元件进行充电,以使得储能元件的电压升高。即,根据检测到的第一检测电压是否偏高,可以确定电池包是否对储能元件进行了充电,进而确定开关模块为完全断开还是未完全断开。
在S130中,在获取到第一检测电压后,可以根据第一检测电压确定开关模块是否完全断开。即,开关模块断开的情况下,储能元件是否与电池包连通。
若开关模块能够完全断开,则电池包与开关模块连通时,第一充电回路不导通,电池包不会对储能元件进行充电。若开关模块未完全断开,则第一充电回路导通,电池包对储能元件进行了充电。
根据上述分析,在得到第一检测电压后,根据第一检测电压的大小,可以确定电池包是否对储能元件进行了充电。若确定储能元件未充电,则可以确定开关模块的断开状态为完全断开;若确定储能元件进行了充电,则可以确定开关模块的断开状态 发生异常。其中,断开状态异常可以是开关模块仍保持导通状态,也可以是开关模块处于部分导通状态。
需要说明的是,在对储能元件进行电压检测时,检测电压的模块可以是直接与储能元件电连接,也可以是通过开关模块与储能元件电连接。
在检测电压的模块直接与储能元件电连接时,无论开关模块是否断开,均能直接检测到储能元件两端的电压。即,开关模块断开时,检测到的是储能元件未充电时的电压;开关模块未完全断开时,检测到的是储能元件充电时的电压。
在检测电压的模块通过开关模块与储能元件电连接时,仅在开关模块未断开时,该模块才能够检测到储能元件两端的电压。即,开关模块未完全断开时,检测到的是储能元件充电时的电压;开关模块完全断开时,其所检测到的电压实际应为电池包的电池电压。
在上述检测电压的模块与储能元件的两种连接方式中,开关模块未完全断开时所检测到的电压与完全断开时所检测到的电压并不相同。因此,上述两种连接方式均能够通过检测得到的第一检测电压确定开关模块是否完全断开,从而确定开关模块的断开状态是否发生异常。
可以理解的是,在确定开关模块为完全断开时,用电装置可以切换为开关模块断开时的模式,并实现相应功能,此时储能元件与电池包不连通,用电装置在该模式下运行时,储能元件不会发生损坏。而在确定开关模块未完全断开时,用电装置为了避免切换模式后储能元件发生损坏,不能切换至开关模块断开时的模式下运行。
在本实施例中,通过将电池包与开关模块进行连通,可以在开关模块处于断开状态时,确定开关模块是否完全断开。若开关模块未完全断开,电池包能够通过开关模块为储能元件进行充电,使得检测得到的第一检测电压较大;若开关模块完全断开,电池包无法为储能元件进行充电,使得检测得到的第一检测电压较小。根据第一检测电压的大小即可确定开关模块在断开时是否为完全断开状态,在开关模块完全断开时,用电装置可以切换至开关模块断开时的模式下运行,以实现相应的功能。在开关模块未完全断开时,用电装置无法切换至开关模块断开时的模式下运行。
需要说明的是,在根据第一检测电压确定开关模块是否完全断开时,还可以根据判断结果进行相应的响应和处理。例如开关模块未能完全断开时,可以停止切换至开关模块断开时的模式,并向用户发出报警提示,以提醒用户开关模块发生异常,储 能元件未与电池包完全断开,从而使得用户或相关人员对开关模块进行维护与修理。
根据本申请的一些实施例,上述S110,还可以包括:
S210,向充电控制模块发送充电信号,以使充电控制模块根据充电信号将电池包与开关模块连通。
在S210中,用电装置内还可以包括充电控制模块,充电控制模块可以连接在电池包与开关模块之间。充电控制模块可以将电池包与开关模块连通或者将电池包与开关模块断开。在装置向充电控制模块发送充电信号时,充电控制模块可以将电池包与开关模块进行连通。
上述充电控制模块可以是用电装置中与电池包连接的控制器件。该控制器件可以是用电装置中原有的,也可以是为了实现开关模块与电池包的连通而新增的控制器件。
以用电装置为电动汽车、电动轮船、电动飞机等包含电机控制器和电机的设备为例,电机控制器连接在电机与电池包之间,电机控制器既能够实现电池包的电池电压转换,也能够控制电池包与电机的连通与断开。因此,上述充电控制模块可以为用电装置内的电机控制器。通过将电机控制器内的开关器件的两端分别与电池包和开关模块连接,即可将电机控制器作为充电控制模块,在充电信号的控制下控制开关器件的导通和关断,从而实现电池包与开关模块的连通与断开。
可以理解的是,由于电机控制器在用电装置中需要对电池包的电池电压进行电压变换,例如逆变变换、调压变换等,电机控制器内的与电池包电连接的器件需要满足在较高的电池电压下运行的要求。即,电机控制器内与电池包电连接的器件应当为能够在高电压、高电流下正常运行的器件。在以电机控制器作为充电控制模块时,即使电池包为储能元件充电时的充电电流较高,也不会对电机控制器内连接电池包和开关模块的器件造成损坏,实现电池包与储能元件的稳定连通。
作为一种可选的实施方式,上述充电控制模块还可以是电池管理系统BMS。
在包含有电池包的用电装置中,通常设置有与电池包连接的电池管理系统,电池管理系统能够实现电池包的充放电控制以及电池包的状态检测和参数检测等功能。电池管理系统在对电池包进行充放电控制时,需要对电池包与外部设备的通断状态进行控制,例如,通过充放电开关器件将电池包与外部设备进行连通或断开。将电池管理系统作为充电控制模块,电池管理系统可以在接收到充电信号时,确定连接于电池 包与开关模块之间的开关器件,并控制该开关器件导通,以将电池包与开关模块进行连通。
上述充电控制模块还可以是用电装置中连接于电池包与开关模块之间的其他模块或其他开关器件等,通过对用电装置中原有的模块或器件复用为充电控制模块,能够避免设置额外的开关器件,降低器件成本。
可以理解的是,电池包可以通过充电控制模块和开关模块与储能元件电连接。在充电控制模块和开关模块均为导通状态时,电池包与储能元件之间才能构成充电回路,以对储能元件进行充电。在充电控制模块导通时,若开关模块断开,则储能元件不能够进行充电;若开关模块未完全断开,则储能元件能够进行充电。在通过充电信号控制充电控制模块导通时,根据储能元件是否进行了充电,即可确定开关模块的断开状态是否发生异常。
在本实施例中,通过向充电控制模块发送充电信号,可以控制充电控制模块将电池包与开关模块连通,并根据第一检测电压确定储能元件是否进行了充电。若储能元件未进行充电,则可以确定开关模块稳定断开,断开状态未发生异常;若储能元件进行了充电,则可以确定开关模块的断开状态发生了异常,即开关模块未能完全断开。
根据本申请的一些实施例,上述S120,还可以包括:
S310,在电池包与开关模块连通的情况下,向电压检测模块发送第一电压检测信号;
S320,接收电压检测模块对储能元件进行电压检测后得到并发送的第一检测电压。
在S310中,用电装置还可以包括电压检测模块,电压检测模块可以与储能元件电连接,以检测储能元件的两端电压。
在电池包与开关模块连通时,装置可以向电压检测模块发送第一电压检测信号,以使电压检测模块对储能元件的两端电压进行检测。
在S320中,在电池包与开关模块连通时,通过电压检测模块对储能元件进行电压检测,可以获取电压检测模块检测得到的第一检测电压。
可以理解的是,在电池包与开关模块连通时,第一检测电压可以是电压检测模块可以在电池包与开关模块连通一段时间后进行检测得到的电压值。第一检测电压也可以是在电池包与开关模块连通时,通过电压检测模块周期性地进行电压检测所得到 的多个电压值。
上述电压检测模块可以为分压电路、光耦隔离电路、电压检测芯片、电压表或者运放电路等能够实现电压检测的电路或器件。以分压电路为例,分压电路的输入端可以与储能元件电连接,输出端则与电压检测端口连接,分压电路可以将储能元件的两端电压进行分压,并将分压后的第一检测电压发送至用电装置的处理模块,以使处理模块根据第一检测电压判断开关模块的断开状态。可以理解的是,分压电路可以将储能元件两端的较高电压进行降压以得到较小的第一检测电压,避免第一检测电压过高而导致电路中的器件发生损坏,提升电压检测的安全性。同样地,通过设置电压检测模块为运放电路,也可以对储能元件两端的电压进行放大或缩小,以将输出的第一检测电压调整至合适的电压范围内。
在电压检测模块为光耦隔离电路时,输入侧与储能元件电连接,输出侧则与用电装置的处理模块连接。根据输入侧检测到的储能元件的两端电压,可以调整输入侧的发光元件的发光状态,处理模块则能够在发光元件发光与不发光时从输出侧分别接收到对应的高低电平信号,并根据高低电平信号确定储能元件是否进行了充电。通过光耦隔离,能够将输入侧与输出侧的电压信号进行隔离,避免光耦隔离模块两侧的电压信号互相产生干扰。
上述电压检测模块还可以是电压检测芯片、电压表等。电压检测芯片的检测端与储能元件电连接,输出端与用电装置的处理模块连接,可以对储能元件进行电压检测,并将检测到的电压信号传输至处理模块。
在本实施例中,通过设置电压检测模块,能够在电池包与开关模块连通时,通过第一电压检测信号控制电压检测模块对储能元件进行电压检测,以得到第一检测电压。根据该第一检测电压,可以判断储能元件是否进行了充电,进而确定开关模块的断开状态是否发生异常。
根据本申请的一些实施例,充电控制模块包括至少两个电流支路,上述S310,还可以包括:
S410,确定充电控制模块中连接于电池包与开关模块之间的第一电流支路;
S420,向电压检测模块发送第一电压检测信号,以使电压检测模块通过除第一电流支路以外的其余电流支路对储能元件进行电压检测。
在S410中,充电控制模块可以包括至少两个电流支路,每个电流支路均能够 单独实现开关模块与电池包的连通。在充电控制模块将电池包与开关模块连通时,可以确定充电控制模块实现电池包与开关模块连通所对应的电流支路,该电流支路即为第一电流支路。
在S420中,装置在确定第一电流支路后,可以生成第一电压检测信号并发送至电压检测模块。电压检测模块在接收到该第一电压检测信号后,可以通过充电控制模块中除第一电流支路以外的其他电流支路与开关模块连接,进而通过开关模块与储能元件电连接,实现对储能元件的电压检测。
充电控制模块的多个电流支路中,设置将电池包与开关模块连通的电流支路与进行电压检测的电流支路不为同一电流支路,能够降低电池包对储能元件的充电过程与电压检测模块的电压检测过程之间的相互干扰,提升电压检测模块的电压检测精准度。
可以理解的是,在电压检测模块通过充电控制模块的某个电流支路进行电压检测时,电压检测模块是通过充电控制模块与储能元件实现电连接。若开关模块为完全断开,则充电控制模块与储能元件之间为断开状态,此时电压检测模块无法检测到储能元件两端的电压。例如,以充电控制模块的多个电流支路具有公共交点为例,在开关模块断开时,电压检测模块可以通过多个电流支路的公共交点与第一电流支路连通,在第一电流支路与电池包电连接时,电压检测模块所检测到的电压值即为电池包的电池电压。
在本实施例中,充电控制模块可以包括多个电流支路,电池包可以通过其中一个电流支路与开关模块连通,以对储能元件进行充电。电压检测模块则可以通过其他的电流支路与开关模块连通,进而对储能元件进行电压检测。电池包和电压检测模块通过不同的电流支路与开关模块连通,能够避免电压检测模块在进行电压检测时受到充电电流的影响,提升电压检测的精确度。
根据本申请的一些实施例,上述S110之前,还可以包括:
S510,在开关模块导通的情况下,将放电模块与开关模块连通,以使放电模块通过开关模块与储能元件形成第一放电回路;
S520,对储能元件进行电压检测,得到第二检测电压;
S530,在第二检测电压达到安全电压范围内的情况下,向开关模块发送断开信号。
开关模块可以在导通状态与断开状态之间进行切换,以使用电装置能够在不同的模式下进行切换,并实现相应的功能。在开关模块导通时,储能元件能够与电池包进行电连接,此时无论是对电池包进行充电,还是电池包进行放电,储能元件在用电装置运行的过程中,将会存储一定的电荷。该存储电荷将会导致储能元件的两端电压升高。为了避免储能元件的两端电压过高,在开关模块由导通状态变为断开时,还可以对储能元件进行电荷泄放,以降低储能元件的两端电压。
在S510中,在开关模块导通时,可以将放电模块与开关模块进行连通,放电模块可以通过导通的开关模块与储能元件电连接,形成第一放电回路。储能元件可以通过第一放电回路对放电模块进行放电,实现储能元件的电荷泄放。
在S520中,在通过放电模块对储能元件进行放电时,还可以对储能元件进行电压检测。在用电装置包括电压检测模块时,可以通过电压检测模块对储能元件的两端电压进行检测,以得到第二检测电压。在其他实施方式中,用电装置也可以是采用其他电压检测组件对储能元件进行电压检测。
在S530中,在获取第二检测电压后,可以将第二检测电压与安全电压范围进行比较。在第二检测电压超出安全电压范围时,表示储能元件上仍存在较多的残余电荷,此时可以通过放电模块继续对储能元件进行放电。在第二检测电压位于安全电压范围内时,可以确定储能元件上的残余电荷较少,此时可以向开关模块发送断开信号,以使开关模块由导通状态变为断开状态。
上述放电模块可以是电感、电阻、线圈以及电容等能够对储能元件进行放电的放电器件、放电组件等。放电器件可以是用电装置中原有的,也可以是为了实现储能元件的放电而新增的放电器件。
以用电装置为包含电机控制器和电机的设备为例,上述放电模块可以为用电装置的电机,该电机可以为三相电机或单相电机。以三相电机为例,电机的每一相上设置有相应的绕组电感,绕组电感在与储能元件连通时,能够将储能元件释放的电能转换为热能,从而对储能元件进行放电。在电机为三相电机时,电机控制器可以为三相桥,通过控制至少一相的桥臂组进行导通,即可将该桥臂组对应的绕组电感通过开关模块与储能元件连通,从而实现储能元件的放电。并且,将电机作为放电模块,通过绕组电感对储能元件进行放电,不需要额外设置放电器件,还能够降低装置体积和成本。
作为一种可选的实施方式,上述放电模块还可以是用电装置中具有电容、电阻、电感或线圈的其他模块或其他组件。通过将用电装置中原有的器件复用为放电模块,不额外设置新的放电模块,还能够降低装置的体积和成本。
在本实施例中,在开关模块由导通变为断开前,还可以通过放电模块与储能元件进行电连接,使得储能元件通过放电模块进行放电,以降低储能元件的两端电压。根据检测得到的第二检测电压,可以在对储能元件进行充分的放电后,再将开关模块变为断开状态,从而减少了储能元件上的残余电荷,降低了储能元件的两端电压。
根据本申请的一些实施例,上述S520之前,还可以包括:
S610,确定充电控制模块中连接于放电模块与开关模块之间的第二电流支路;
S620,向电压检测模块发送第二电压检测信号,以使电压检测模块通过除第二电流支路以外的其余电流支路对储能元件进行电压检测。
在S610中,充电控制模块可以是上述实施例中的具有多个电流支路的充电控制模块。在放电模块与开关模块通过充电控制模块电连接时,可以确定连接于放电模块与开关模块之间的电流支路,该电流支路即为第二电流支路。
在S620中,在确定将放电模块与储能元件连通的第二电流支路后,装置可以向电压检测模块发送第二电压检测信号。电压检测模块可以根据第二电压检测信号确定第二电流支路,并通过第二电流支路以外的其他电流支路与开关模块连通,以通过导通的开关模块对储能元件进行电压检测。
可以理解的是,在放电模块对储能元件进行放电时,该放电回路上将会产生一定的放电电流。若电压检测模块通过该电流支路与储能元件电连接,则电压检测模块检测到的电压值将会受到放电电流的影响,与储能元件的实际电压产生偏差。为了避免放电电流对检测到的电压值的影响,可以分别通过两个电流支路实现储能元件的放电和储能元件的电压检测。
在本实施例中,放电模块通过开关模块与储能元件连通,并对储能元件进行放电时,电压检测模块可以对储能元件的电压进行检测,并根据检测得到的第二检测电压确定是否结束放电流程。在储能元件进行放电的过程中,充电控制模块包括多个电流支路时,电压检测模块与放电模块分别通过不同的电流支路接入储能元件,能够使得电压检测模块在检测电压时不会受到储能元件的放电电流的影响,提升电压检测的精确性。
根据本申请的一些实施例,放电模块通过第二电流支路对储能元件进行放电后,装置可以控制开关模块断开,并通过第一电流支路将开关模块与电池包连通。第一电流支路和第二电流支路可以为充电控制模块的不同电流支路。即,储能元件的放电过程和充电过程分别连接不同的电流支路,在电池包与开关模块连通时,电池包不会与放电模块连通,从而使得电池包对储能元件的充电过程不会受到放电模块的影响。
根据本申请的一些实施例,上述S130,还可以包括:
S710,获取安全电压范围;
S720,在第一检测电压超出安全电压范围的情况下,控制电池包停止运行。
在S710中,装置可以获取预先设置的安全电压范围。
可以理解的是,储能元件在与电池包电连接时,电池包对储能元件进行充电将会导致储能元件的两端电压升高。为了能够通过安全电压范围识别出储能元件是否进行了充电,该安全电压范围应当为储能元件在未进行充电时的电压范围。即,储能元件未与电池包电连接时,其两端电压应当始终位于安全电压范围内。
上述安全电压范围可以是0-60V。即,储能元件在未进行充电时,其两端电压应当为60V以内。
以安全电压范围为60V以内为例,上述通过放电模块对储能元件进行放电时,应当通过放电过程将储能元件的两端电压降低至60V以内。即,在放电过程中可以对储能元件进行电压检测,在检测到的第二检测电压低于60V时,即可结束放电过程。
在S720中,装置可以将第一检测电压与安全电压范围进行比较,在第一检测电压处于安全电压范围内时,可以确定储能元件未进行充电,电池包未与储能元件电连接,开关模块为完全断开状态。在第一检测电压超出安全电压范围时,则可以确定电池包对储能元件进行了充电,开关模块并未完全断开。也即开关模块的断开状态发生异常。
在确定开关模块完全断开后,用电装置可以切换至开关模块断开时的模式下进行运行。而在确定开关模块未完全断开时,由于储能元件仍能通过开关模块与电池包连接,为了避免用电装置运行时导致储能元件或其他器件受到损坏,用电装置无法切换至开关模块断开时的模式下进行运行。此时装置可以控制电池包停止运行,例如控制电池包停止充电或放电等。可以理解的是,装置控制电池包停止运行,可以是向电池包的电池管理系统发送相应指令,以使电池管理系统将电池包与外部器件断开连接; 也可以是向连接于电池包与其他电路之间的开关器件发送断开信号,以将电池包与其他电路进行断开。
本申请实施例还提供了一种开关模块的状态检测电路,该开关模块的状态检测电路可以应用于用电装置中,开关模块的状态检测电路包括开关模块、储能元件以及控制模块。
开关模块的第一端与储能元件连接,开关模块的第二端与电池包之间可以在连连通和断开之间进行切换。
在开关模块断开时,控制模块可以将开关模块的第二端与电池包连通,并对储能元件进行电压检测,得到第一检测电压。
开关模块的第一端与储能元件连接,第二端与电池包连接。在开关模块断开时,若开关模块完全关断,则储能元件与电池包未连通,电池包无法对储能元件进行充电;若开关模块并未完全断开,则储能元件能够通过开关模块与电池包电连接,电池包能够对储能元件进行充电,使得储能元件的两端电压升高。控制模块根据第一检测电压,可以判断出储能元件是否经历充电过程,从而确定开关模块是否为完全断开状态。
在本实施例中,通过将电池包与开关模块进行连通,可以在开关模块处于断开状态时,确定开关模块是否完全断开。若开关模块未完全断开,电池包能够通过开关模块为储能元件进行充电,使得检测得到的第一检测电压较大;若开关模块完全断开,电池包无法为储能元件进行充电,使得检测得到的第一检测电压较小。根据第一检测电压的大小即可确定开关模块在断开时是否为完全断开状态,在开关模块完全断开时,用电装置可以切换至开关模块断开时的模式下运行,以实现相应的功能。在开关模块未完全断开时,用电装置无法切换至开关模块断开时的模式下运行。
根据本申请的一些实施例,上述开关模块的状态检测电路还可以包括充电控制模块,充电控制模块连接于开关模块与电池包之间。
控制模块可以向充电控制模块发送充电信号,充电控制模块在接收到充电信号时,可以将电池包与开关模块连通。开关模块的两端分别与电池包和储能元件连通后,若开关模块完全断开,则储能元件的两端电压不会升高;若开关模块未完全断开,则电池包对储能元件进行充电将会导致储能元件的两端电压升高。根据储能元件的第一检测电压即可确定开关模块的断开状态。
在本实施例中,通过向充电控制模块发送充电信号,可以控制充电控制模块将 电池包与开关模块连通,并根据第一检测电压确定储能元件是否进行了充电。若储能元件未进行充电,则可以确定开关模块稳定断开,断开状态未发生异常;若储能元件进行了充电,则可以确定开关模块的断开状态发生了异常,即开关模块未能完全断开。
根据本申请的一些实施例,上述开关模块的状态检测电路还可以包括电压检测模块。
电压检测模块可以与储能元件电连接,控制模块可以向电压检测模块发送第一电压检测信号或第二电压检测信号。
电压检测模块在接收到第一电压检测信号时,可以对储能元件进行电压检测,以得到第一检测电压。电压检测模块在接收到第二电压检测信号时,可以对储能元件进行电压检测,以得到第二检测电压。
根据上述开关模块的状态检测方法的实施例中可以确定的是,在通过放电模块对储能元件进行放电时,控制模块可以发出第二电压检测信号,电压检测模块根据第二电压检测信号所检测到的第二检测电压即为储能元件在放电过程中的电压。在通过电池包对储能元件进行充电时,控制模块可以发出第一电压检测信号,电压检测模块根据第一电压检测信号所检测到的第一检测电压可以确定储能元件是否进行了充电,进而确定开关模块在断开的状态下是否为完全断开状态。
在本实施例中,电压检测模块可以根据相应的电压检测信号对储能元件进行电压检测。根据第一检测电压可以确定储能元件是否进行了充电,进而确定开关模块在断开的状态下是否为完全断开状态。根据第二检测电压则可以确定储能元件的两端电压是否降低至安全电压范围内,并结束放电过程。
根据本申请的一些实施例,上述充电控制模块包括至少两个电流支路。
充电控制模块在将电池包与开关模块连通时,可以通过多个电流支路中的第一电流支路实现电池包与开关模块的连通。
充电控制模块在将放电模块与开关模块连通时,可以通过多个电流支路中的第二电流支路实现放电模块与开关模块的连通。
电压检测模块在接收到第一电压检测信号时,可以从多个电流支路中确定第三电流支路,该第三电流支路与第一电流支路并非同一支路。即,电压检测模块可以从多个电流支路中选择第一电流支路以外的其他电流支路进行电压检测。
可以理解的是,在电池包对储能元件的充电过程中,将会产生为一定的充电电 流,电压检测模块通过同一电流支路进行电压检测,所得到的检测值将会受到充电电流的影响。通过设置不同的电流支路分别实现充电和电压检测,能够提升电压检测的准确性。
电压检测模块在接收到第二压检测信号时,可以从多个电流支路中确定第四电流支路,该第四电流支路与第二电流支路并非同一支路。即,电压检测模块可以从多个电流支路中选择第二电流支路以外的其他电流支路进行电压检测。
可以理解的是,在放电模块对储能元件的放电过程中,将会产生为一定的放电电流,电压检测模块通过同一电流支路进行电压检测,所得到的检测值将会受到放电电流的影响。通过设置不同的电流支路分别实现放电和电压检测,能够提升电压检测的准确性。
上述实施例中,第一电流支路与第二电流支路可以为不同的电流支路。在放电模块通过第二电流支路对储能元件进行放电时,放电模块还会存储一定的残余电荷。若电池包通过放电时的电流支路对储能元件进行充电,则充电过程将会受到放电模块的影响。通过设置放电和充电过程采用不同的电流支路,能够避免放电模块及其所在的电流支路对充电过程产生影响。
根据本申请的一些实施例,在用电装置为电动汽车、电动轮船或电动飞机等具有电机控制器和电机的装置时,上述充电控制模块可以包括电机控制器,放电模块可以包括电机。
电机控制器可以包括三相桥,三相桥包括三个桥臂组。每个桥臂组可以分别与开关模块进行连通,从而形成一条电流支路。即,电机控制器可以包括三条电流支路。
电机可以包括分别与三个桥臂组连接的绕组电感。在单个桥臂组与开关模块连通时,对应的绕组电感可以作为放电模块,对储能元件进行放电,以降低储能元件的两端电压。
可以理解的是,在用电装置为电动汽车时,电机控制器可以为三相桥。在用电装置为其他电子设备时,电机控制器还可以是单相桥。可以理解的是,单相桥包括两个桥臂组,即单相桥包括两条电流支路。在电机控制器为单相桥时,电机可以为交流驱动电机。
以电动汽车为例,开关模块切换至断开状态,是为了切换至电机驱动模式或扭矩模式下运行,以通过电池包输出的电池电压驱动电机运行,为电动汽车提供行驶动 力。若根据第一检测电压确定开关模块未完全断开,则电动汽车无法切换至电机驱动模式或扭矩模式下运行。即电动汽车无法进入行驶状态。
根据本申请的一些实施例,上述充电控制模块还可以是设置于用电装置中,与电池包连接的开关器件。例如,电池包的正极端口和负极端口可以通过MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化层半导体场效晶体管)或其他类型的晶体管与外部器件连接,则充电控制模块可以包括MOSFET或其他晶体管。电池包的电池管理系统可以控制电池包与负载、充电设备或储能元件的导通和断开,则上述充电控制模块还可以是电池管理系统。
根据本申请的一些实施例,上述放电模块还可以是电感、电阻、线圈以及电容等能够对储能元件进行放电的放电器件、放电组件等。在开关模块导通时,储能元件可以与上述放电器件电连接,并通过放电器件进行电荷泄放,以降低储能元件的两端电压。
本申请实施例还提供了一种开关拓扑电路,上述开关模块的状态检测方法可以应用于以下实施例中的开关拓扑电路中,如图2所示,该开关拓扑电路可以应用于用电装置中,用电装置包括有电机控制器40、电机50以及电池包10。开关拓扑电路包括直流充电端口30、储能元件C以及开关模块20。
直流充电端口30能够与外部充电设备60进行连接,在外部充电设备60接入时,直流充电端口30可以接收外部充电设备60提供的充电电压。电池包10与电机控制器40连接,电机控制器40与电机50连接。
开关模块20包括第一端、第二端和第三端,开关模块20的第一端与直流充电端口30连接,第二端与电池包10连接,第三端则与电机50的中性点连接。
开关模块20可以将各个端口之间进行连通。储能元件C连接在开关模块20的第一端与第三端之间。即,在开关模块20的第一端导通时,储能元件C与直流充电端口30连接;在开关模块20的第三端导通时,储能元件C与电机50的中性点连接。
在开关模块20将其第一端与第三端连通时,储能元件C、电机控制器40、电机50以及开关模块20能够形成一个升压电流回路,该升压电流回路能够通过直流充电端口30接收外部充电设备60输出的充电电压,并对该充电电压进行升压后,输出至电池包10,以通过升压后的充电电压为电池包10进行充电。
在开关模块20导通第三端时,能够将第三端两侧的电机50的中性点与储能元 件C连通,此时储能元件C、电机控制器40、电机50以及开关模块20能够形成一个加热电流回路,该加热电流回路能够在电池包10与储能元件C之间交替进行充电和放电,形成振荡电路。在充电和放电循环的过程中,振荡电流流过电池包10时,电池包10的内阻在电流驱动下产生欧姆热,从而实现对电池包10的加热。
在用电装置为电动汽车时,为了能够驱动电动汽车的电机50以实现汽车行驶,电池包10可以与电机控制器40电连接,电机控制器40则与电机50电连接。电池包10可以输出直流电压至电机控制器40,电机控制器40可以对该直流电压进行直流-交流转换,生成三相交流电压,并将三相交流电压输入至电机50的三相输入端,电机50在三相交流电压的驱动下运行以实现汽车行驶。
开关模块20可以通过控制各个端之间的连通实现用电装置不同模式下的切换,以用电装置为电动汽车为例,电动汽车可以实现电机驱动模式、直流充电模式、升压充电模式以及电池包加热模式之间的切换。
在电机驱动模式下,开关模块20的第一端、第二端和第三端之间相互断开,此时电池包10、电机控制器40以及电机50构成电机驱动回路,电池包10能够提供直流电压,电机控制器40将直流电压转换为三相交流电压后,可以将三相交流电压输出至电机50,以驱动电机50运行。
直流充电端口30与外部充电设备60连接时,可以接收外部充电设备60输入的直流充电电压。在该直流充电电压高于电池包10的工作电压时,可以进入直流充电模式,直接通过该直流充电电压为电池包10进行充电;在该直流充电电压低于电池包10的工作电压时,可以进入升压充电模式,对该直流充电电压进行升压,使得升压后的电压值高于电池包10的工作电压,以通过升压后的电压为电池包10进行充电。可以理解的是,上述电池包10的工作电压可以是电池包10的最大工作电压。
在直流充电模式下,开关模块20的第一端和第二端连通,此时直流充电端口30可以直接与电池包10连接,外部充电设备60、直流充电端口30以及电池包10构成直充电路,以实现对电池包10的直充。
在升压充电模式下,开关模块20的第一端与第三端连通,此时开关模块20、电机控制器40以及电机50能够形成升压电路,直流充电端口30与该升压电路的输入端连接,电池包10则与该升压电路的输出端连接,升压电路可以将外部充电设备60输入的直流充电电压进行升压后,输出至电池包10,以通过升压后的直流电压为电池 包10进行充电。
在电池包加热模式下,开关模块20的第三端将电机50的中性点与储能元件C连通,此时储能元件C、开关模块20、电机控制器40以及电机50能够形成加热电路。该加热电路可以实现对电池包10的循环充放电,以在充放电循环过程中通过产生的振荡电流使得电池包10的内阻将电能转换为热能,实现电池包10的加热升温。
在对电池包10进行充放电时的一个完整充放电循环中,加热电路可以控制电池包10对储能元件C进行放电,以使得储能元件C通过存储电荷进行充电;在储能元件C存储电荷后,加热电路可以控制储能元件C释放存储的电荷,以对电池包10进行充电。电池包10的一次放电-充电过程即为一个完整的充放电循环。
在用电装置通过调整开关模块20的各个端之间的连通关系以实现不同模式下的切换时,为了避免各个模式下的拓扑电路发生短路、断路等故障,需要保障开关模块20的各个端之间能够充分导通或充分关断。例如,外部充电设备60未接入,并且开关模块20的第三端连通储能元件C和电机50的中性点时,用电装置工作在电池包加热模式下。而在开关模块20的第三端断开,使得电机50的中性点与储能元件C断开时,用电装置能够切换至电机驱动模式。可以理解的是,若开关模块20的第三端未断开或未完全断开,则在电机驱动模式下,三相交流电压将会通过电机50的中性点以及未充分断开的开关模块20流入储能元件C中,造成储能元件C损坏。
在开关模块20通过各个端之间的连通和断开以实现不同模式的切换时,由于升压充电模式和电池包加热模式下开关模块20的第三端均需要保持导通,而电机驱动模式下开关模块20的第三端则需要保持断开。用电装置在由升压充电模式转换为电机驱动模式,或者由电池包加热模式转换为电机驱动模式时,需要确保开关模块20能够将储能元件C与电机50的中性点充分断开。
在由升压充电模式或电池包加热模式转换为电机驱动模式时,开关模块20可以将电机50的中性点与储能元件C断开。此时电机控制器40还可以选择性地进行导通,以使电池包10能够通过电机控制器40和电机50与储能元件C相连。
可以理解的是,在开关模块20将储能元件C与电机50的中性点充分断开时,即使电机控制器40选择性地导通,电池包10也无法经过电机控制器40和电机50与储能元件C形成完整的电流回路。但若储能元件C与电机50的中性点未能断开或者未能充分断开时,电机控制器40导通的时间段内,电池包10能够通过电机控制器40和 电机50与储能元件C形成完整回路,此时电池包10能够通过输出电池电压为储能元件C进行供电。
通过电机控制器40进行选择性地导通,能够在开关模块20将电机50的中性点与储能元件C断开时,判断该断开状态是否发生异常。若电机50的中性点未能与储能元件C完全断开,则电机控制器40导通时,电池包10能够对储能元件C进行充电,从而使得储能元件C的两端电压升高。若电机50的中性点与储能元件C为完全断开状态,则电机控制器40导通时,电池包10无法与储能元件C电连接,也无法对储能元件C进行充电,储能元件C的两端电压将不会受到电池包10的电池电压的影响。
通过选择性地导通电机控制器40,并检测储能元件C的两端电压及其变化趋势,能够确定开关模块20的断开状态是否发生异常。例如,在检测到储能元件C的两端电压并未超出预设的安全电压范围时,可以确定开关模块20的第三端完全断开,此时电机50的中性点未与储能元件C电连接,用电装置能够切换至电机驱动模式以驱动电机50运行。而在检测到储能元件C的两端电压发生增大,并超出预设的安全电压范围时,表示开关模块20的第三端未能完全断开,在电机控制器40导通时电池包10为储能元件C充电,从而使得储能元件C的两端电压增大。此时由于开关模块20未完全断开,若切换至电机驱动模式并驱动电机50运行,将会导致储能元件C发生损坏。因此,用电装置在检测到开关模块20未完全关断时,不会切换至电机驱动模式进行运行。可以理解的是,用电装置还可以向用户发出报警提示,以向用户提示开关模块20未能完全断开。
在本实施例中,通过设置开关模块20的各个端口分别与直流充电端口30、电池包10和电机50的中性点进行连接,能够通过调整开关模块20各个端口之间的连通实现电池包10的升压充电功能和加热功能。在开关模块20的第一端与第三端连通时,直流充电端口30可以将外部充电设备60提供的直流充电电压进行升压后为电池包10进行充电。在开关模块20的第三端将电机50的中性点与储能元件C连通时,能够对电池包10进行放电和充电的循环,从而对电池包10进行加热。在开关模块20的第三端完全断开时,电池包10、电机控制器40和电机50能够形成电机驱动电路,以驱动电机50正常运行。在开关模块20将电机50的中性点与储能元件C断开时,表示用电装置从升压充电的状态或加热电池包的状态切换至驱动电机50运行的状态。电机控制器40能够通过选择性导通来连通电池包10与储能元件C,若开关模块20能够将电机 50的中性点与储能元件C完全断开,则储能元件C的两端电压不会超出安全电压范围;若开关模块20未能完全断开,则在电池包10的充电下储能元件C的两端电压将会过高。通过检测储能元件C的两端电压,可以确定开关模块20的断开状态,即开关模块20是否将电机50的中性点与储能元件C完全断开,从而避免在开关元件未完全断开时驱动电机50而导致器件发生损坏。
请参照图3,根据本申请的一些实施例,上述直流充电端口30的第一极可以与开关模块20的第一端连接,直流充电端口30的第二极可以与电池包10的第二极连接。电池包10的第一极可以与开关模块20的第二端连接,电池包10的第二极可以与储能元件C的第一端连接。
开关模块20实现第一端与第三端连通的方式可以是将储能元件C的第二端、电机50的中性点以及直流充电端口30的第一极进行连通;开关模块20通过第三端将电机50的中性点与储能元件C连通的方式可以是将储能元件C的第二端与电机50的中性点进行连通。
在储能元件C的第二端、电机50的中性点以及直流充电端口30的第一极连接于公共节点时,用电装置工作在升压充电模式下,储能元件C、电机50和电机控制器40相当于构成了升压电路,直流充电端口30的两端分别与储能元件C的两端连接,此时直流充电端口30与升压电路的输入端连接,升压电路的输出端则与电池包10连接,外部充电设备60输入的直流充电电压可以在升压电路中进行升压后,为电池包10进行充电。
在储能元件C的第二端与电机50的中性点连通时,用电装置工作在电池包加热模式下,储能元件C、电机50和电机控制器40相当于构成了加热电路,此时直流充电端口30并未与该加热电路连通。加热电路可以对电池包10进行交替放电和充电,以在充放电循环过程中将电能转换为热能对电池包10进行加热。
通过开关模块20对储能元件C、电机50的中性点以及直流充电端口30之间的连通关系进行调整,可以使得储能元件C、电机50和电机控制器40形成升压电路或加热电路,在直流充电端口30接入时,形成的是升压电路,此时可以将外部充电设备60输出的直流充电电压进行升压;在直流充电端口30未接入时,形成的是加热电路,此时可以对电池包10进行交替充放电以加热电池包10。
在储能元件C的第二端与电机50的中性点断开时,用电装置可以进入电机驱 动模式,电池包10、电机控制器40和电机50构成了电机驱动电路。若开关模块20能够将储能元件C的第二端与电机50的中性点完全断开,则电池包10为电机50进行供电时,三相交流电压不会通过电机50的中性点流入储能元件C中;若开关模块20将储能元件C的第二端与电机50的中性点断开时,未能成功断开或者未能完全断开,则电池包10为电机50供电时,三相交流电压将会通过电机50的中性点流入储能元件C,容易导致储能元件C发生损坏。
开关模块20通过通断控制,可以将储能元件C的第二端与电机50的中性点由连通变为断开,从而使得用电装置从升压充电模式或者电池包加热模式切换至电机驱动模式。在开关模块20执行断开操作后,电机控制器40可以通过选择性地导通以连通电池包10和储能元件C。若开关模块20的断开状态为完全断开,则电机控制器40导通时,电池包10与储能元件C未连通,电池包10未对储能元件C进行充电。若开关模块20的断开状态不为完全断开状态,则电机控制器40导通时,电池包10与储能元件C能够通过未完全断开的开关模块20进行连通,使得储能元件C的两端电压发生增大。此时,通过检测储能元件C的两端电压即可确定开关模块20的断开状态。
请参照图4,根据本申请的一些实施例,上述开关模块20可以包括第一开关K1、第二开关K2和第三开关K3。
第一开关K1的第一端与直流充电端口30的第一极连接,第一开关K1的第二端与电池包10的第一极连接。
第二开关K2的第一端与直流充电端口30的第一极连接,第二开关K2的第二端与储能元件C的第二端连接。
第三开关K3的第一端与电机50的中性点连接,第三开关K3的第二端与储能元件C的第二端连接。
可以理解的是,上述各个模块的第一极和第二极可以分别为正极和负极,各个模块的第二极可以直接连通,各个模块的第一极则分别通过第一开关K1、第二开关K2或第三开关K3进行连通。
在第一开关K1导通时,直流充电端口30的第一极和第二极分别与电池包10的第一极和第二极连接,此时外部充电设备60可以通过直流充电端口30直接为电池包10进行充电。
在第二开关K2导通时,直流充电端口30的第一极和第二极分别与储能元件C 的第二端和第一端连接。
在第三开关K3导通时,储能元件C的第一端与电池包10的第二极连接,第二端则与电机50的中性点连通。
在第二开关K2导通、第三开关K3导通时,直流充电接口接入储能元件C、电机50和电机控制器40形成的电流回路中,此时电压输入源为外部充电设备60,电机50和电机控制器40形成的电流回路为升压电路。
在第二开关K2断开、第三开关K3导通时,直流充电接口与储能元件C、电机50和电机控制器40形成的电流回路断开,此时电压输入源为电池包10,储能元件C、电机50和电机控制器40形成的电流回路为加热电路。
在第三开关K3断开时,电机50的中性点与储能元件C之间为断开状态。若第三开关K3未完全断开,则在电机控制器40选择性地导通时,电池包10能够通过电机控制器40和电机50与储能元件C电连接,并输出电池电压为储能元件C充电。若第三开关K3完全断开,则在电机控制器40选择性地导通时,电池包10与储能元件C之间未连通,储能元件C的两端电压不会受到电池包10的影响。
上述第一开关K1、第二开关K2和第三开关K3可以为继电器。可以理解的是,流过继电器的电流通常为大电流,在大电流和高电压的作用下,继电器容易产生拉弧现象,导致继电器的触头发生烧结。在继电器出头烧结时,继电器无法断开,将会产生较高的安全隐患。因此,在开关模块20的第三开关K3由导通状态变为断开状态后,还需要控制电机控制器40导通一段时间,并检测储能元件C的两端电压。在储能元件C的两端电压异常升高时,表示第三开关K3并未完全断开,电池包10通过对储能元件C进行充电使得储能元件C的两端电压升高;在储能元件C的两端电压未发生异常升高时,则表示第三开关K3已经完全断开。
在一种具体的实施方式中,上述用电装置为电动汽车,电动汽车的电池包10的电池电压约为800V,储能元件C的两端电压的安全范围可以是60V以内。即,在断开第三开关K3后,可以控制电机控制器40导通一段时间,若储能元件C的两端电压超出60V,表示第三开关K3未完全断开,电池包10对储能元件C进行了充电。若储能元件C的两端电压未达到60V,则表示第三开关K3完全关断。电池包10与储能元件C未通过电机50的中性点连通。
请参照图5,根据本申请的一些实施例,上述开关拓扑电路还可以包括加热模 块70,储能元件C设置于加热模块70内。
加热模块70与开关模块20可拆卸连接,在加热模块70与开关模块20连接时,加热模块70内的储能元件C可以串联在第二开关K2和第三开关K3的公共节点与电池包10的第二极之间。
通过将储能元件C设置在加热模块70内,并使得加热模块70与开关模块20之间可拆卸连接。在加热模块70与开关模块20连接时,储能元件C可以接入开关拓扑电路中。在加热模块70与开关模块20断开时,储能元件C则未接入开关拓扑电路中。用电装置可以将加热模块70作为选配模块,以供用户进行加热功能的选配。此外,用户在未选择加热功能的情况下,还可以通过安装加热模块70实现加热功能的增配。
需要说明的是,在升压充电模式下,电压输入源为外部充电设备60,此时即使没有储能元件C,电机控制器40和电机50也能够形成升压电路,将外部充电设备60输入的直流充电电压进行升压。而在电池包加热模式下,外部充电设备60未接入该电流回路中,此时需要设置储能元件C在电池包10放电时进行电荷存储,并通过储能元件C释放电荷对电池包10进行充电,从而形成充放电的交替循环。因此,在加热模块70与开关模块20连接时,该开关拓扑电路能够通过开关模块20的调整实现对电池包10的升压充电或者对电池包10的加热。而在加热模块70与开关模块20断开时,由于储能元件C未接入电流回路,此时该开关拓扑电路能够实现对电池包10的升压充电,而无法实现对电池包10的加热。
请参照图6,根据本申请的一些实施例,上述储能元件C包括第一电容C1,第一电容C1可以设置于开关模块20内。
开关模块20内还可以设置有第一电容C1,第一电容C1通过将开关模块20的各个端口分别与直流充电端口30、电池包10和电机50的中性点连接,可以在控制各个端口之间的连通关系时,实现直流充电端口30、电池包10和电机50的中性点与第一电容C1的连接。
通过设置储能元件C集成在开关模块20内,能够减少用电装置中的模块数量,降低生产过程中的装配工序,提升生产效率。
图7示出了图6实施例对应的电路结构示意图,以下是开关拓扑电路在各个模式下各个开关的导通状态:
在电机驱动模式下,第一开关K1、第二开关K2和第三开关K3均为断开状态, 此时电池包10通过电机控制器40驱动电机50运行。
在直流充电模式下,第一开关K1导通,第二开关K2和第三开关K3为断开状态,此时直流充电端口30的两端直接与电池包10的第一极和第二极连接。
在升压充电模式下,第一开关K1断开,第二开关K2和第三开关K3导通,此时外部充电设备60、直流充电端口30、第一电容C1与电机控制器40、电机50构成完整的升压电流回路。
在电池包加热模式下,第一开关K1和第二开关K2断开,第三开关K3导通,此时第一电容C1与电机控制器40、电机50构成完整的加热电流回路。
请参照图8,根据本申请的一些实施例,上述开关拓扑电路还可以包括加热模块70,加热模块70可以包括第二电容C2和第四开关K4,第二电容C2的第一端与电池包10的第二极连接。第二电容C2为储能元件C。
加热模块70可以在第四开关K4导通时,将第二电容C2的第二端与电机50的中性点连接。此时第二电容C2的第一端与电池包10的第二极连接,第二端则与电机50的中性点连接。第二电容C2能够与电机控制器40和电机50构成加热电路,对电池包10进行交替充电和放电。
在开关模块20内设置有第一电容C1的情况下,开关拓扑电路还可以包括设置有第二电容C2的加热模块70。通过设置第一电容C1和第二电容C2的电容值,能够使得第一电容C1的容值不满足加热电路中对电池包10进行充放电所需的储能元件C的容值需求。则加热模块70未接入开关拓扑电路时,仅有第一电容C1,无法实现对电池包10的循环充放电加热功能;在加热模块70接入开关拓扑电路时,可以通过第二电容C2与电机控制器40、电机50构成加热电路,以对电池包10进行交替充放电,从而加热电池包10。
在升压充电模式下,第一开关K1断开,第二开关K2、第三开关K3和第四开关K4导通,第一电容C1和第二电容C2共同作为电压源进行电压升压,此时储能元件C为第一电容C1和第二电容C2。若第二电容C2位于加热模块70内,加热模块70与开关模块20可拆卸连接,并且加热模块70与开关模块20未连接时,储能元件C为第一电容C1。
在电池包加热模式下,第一开关K1、第二开关K2和第三开关K3断开,第四开关K4导通,此时由第二电容C2与电机50、电机控制器40以及电池包10构成振荡 电路,对电池包10进行加热,此时储能元件C为第二电容C2。
在上述实施例中,第二电容C2通过第四开关K4与电机50的中性点连接,开关模块20可以通过控制第四开关K4的导通和断开,实现电机50的中性点与储能元件C的连接与断开。第四开关K4完全断开时,能够将电机50与储能元件C断开;第四开关K4未完全断开时,例如发生继电器烧结时,电机50的中性点仍能够通过第四开关K4与储能元件C电连接。因此,通过检测储能元件C的两端电压,可以确定电池包10是否与储能元件C连通,进而确定第四开关K4是否完全断开。
根据本申请的一些实施例,上述第四开关K4的第一端与电机50的中性点连接,第四开关K4的第二端分别与第二电容C2的第二端以及开关模块20的第三端连接。
在第四开关K4导通时,第二电容C2的两端已经分别与加热模块70的负极回路和电机50的中性点连接。此时第二电容C2、电机控制器40、电机50以及电池包10能够组成完整的加热电流回路。由于此时还需要对电池包10进行加热,不能将外部充电设备60接入电流回路中,开关模块20的第一端需要保持断开状态。由于第二电容C2的容值能够满足加热电路中对于储能元件C的容值需求,开关模块20的第二端与第三端可以保持断开状态,此时第一电容C1未接入加热电路中。通过第二电容C2即可实现对电池包10进行加热。
图9示出了图8实施例对应的电路结构示意图,与图7示出的电路结构示意图相比,图9中还包括第二电容C2以及第四开关K4。
在电机驱动模式下,第一开关K1、第二开关K2、第三开关K3和第四开关K4均断开,此时电池包10通过电机控制器40驱动电机50运行。
在直流充电模式下,第一开关K1导通,第二开关K2、第三开关K3和第四开关K4断开,此时直流充电端口30的两端直接与电池包10的第一极和第二极连接。
在升压充电模式下,第一开关K1断开,第二开关K2、第三开关K3和第四开关K4导通,此时外部充电设备60、直流充电端口30、第一电容C1、第二电容C2与电机控制器40、电机50构成完整的升压电流回路。
在电池包加热模式下,第一开关K1、第二开关K2和第三开关K3断开,第四开关K4导通,此时第二电容C2与电机控制器40、电机50构成完整的加热电流回路。
根据本申请的一些实施例,上述开关模块20可以在第一预设条件下将第一端与第三端导通,以使升压电路将外部充电设备60输入的直流充电电压进行升压后,为 电池包10进行充电。该第一预设条件可以包括外部充电设备60的直流充电电压低于电池包10的工作电压。
在外部充电设备60接入直流充电端口30时,可以对外部充电设备60的直流充电电压的大小进行检测,在该直流充电电压低于电池包10的工作电压时,确定满足第一预设条件,此时无法直接通过直流充电电压对电池包10进行充电,需要将开关模块20的第一端与第三端连通,通过升压电路对直流充电电压进行升压。
通过第一预设条件,可以在外部充电设备60的电压较高时,将其直接与电池包10连接,对电池包10进行充电;而在外部充电设备60提供的电压较低时,则通过开关模块20的第一端与第三端连通,对该电压进行升压处理。对于输出电压为高压或低压的外部充电设备60,开关拓扑电路均能够进行兼容,以实现对电池包10的充电。
根据本申请的一些实施例,上述开关模块20可以在第二预设条件下将第二端与第三端进行连通,以使加热电路对电池包10进行循环充电和放电,从而加热电池包10。该第二预设条件可以包括电池包10的电池温度低于温度阈值。
通过对电池包10的电池温度进行检测,可以在电池包10的电池温度低于温度阈值时,确定电池包10处于低温环境下,满足第二预设条件,此时可以通过开关模块20的第二端与第三端连通,实现对电池包10的加热,以提升电池包10的电池温度。
通过第二预设条件,可以在电池包10的电池温度较低时,通过开关模块20形成加热电路,对电池包10进行充电和放电,从而加热电池包10,使得电池包10的电池温度达到正常温度范围。
可以理解的是,由于电池包10在低温环境下的充电效率较低,在外部充电设备60接入直流充电接口时,还需要对电池包10的电池温度进行检测,在电池温度较低时,需要先通过加热电路对电池包10进行加热,使得电池温度达到合适的温度范围内,才能够将外部充电设备60与电池包10进行连通,以对电池包10进行充电。在将外部充电设备60与电池包10连通前,还需要检测外部充电设备60的输出电压,以根据该输出电压确定外部充电设备60与电池包10的连接方式为直流充电方式还是升压充电方式。
请参照图7或图9,根据本申请的一些实施例,上述电机控制器40可以包括三相桥,三相桥包括三个桥臂组。桥臂组包括串联的上桥臂和下桥臂,电池包10的第一极和第二极分别与电机控制器40的第一输入端和第二输入端连接。
桥臂组中的上桥臂与电机控制器40的第一输入端连接,下桥臂则与电机控制器40的第二输入端连接,三个桥臂组的公共节点分别与电机50的三相输入端连接,该公共节点即为上桥臂和下桥臂的连接点。
电机控制器40可以在形成加热电路时,驱动三个桥臂组中至少一个桥臂组的上桥臂和下桥臂交替导通,以对电池包10进行循环充电和放电,从而加热电池包10。
由于电机50的三相输入端分别与电机控制器40的三个桥臂组连通。电机50每一相中还包括有绕组电感,该绕组电感与对应的桥臂组连通后,可以与电池包10和储能元件C形成充放电回路。通过控制上桥臂和下桥臂交替导通,可以对电池包10进行交替放电和充电。在电机控制器40驱动一个桥臂组进行交替导通时,即可实现对电池包10进行循环充放电。而通过增加电机控制器40所驱动的桥臂组的数量,能够提升对电池包10进行放电或充电时的功率,相应地,在充放电功率增大时,电池包10在充放电过程中产生的振荡电流也随之增大,使得电池包10的内阻产生更多热量,提升加热功率和加热效率。
通过设置加热电路中所驱动的桥臂组的数量,可以对电池包10的加热功率和加热效率进行调整。在电池包10需要快速升温或者电池温度与合适的温度范围存在较大差异时,可以增加驱动的桥臂组数量,以快速提升电池包10的电池温度。在电池包10的电池温度与合适的温度范围较为接近或者电池包10的剩余电量较低时,则可以减小驱动的桥臂组数量,以降低加热过程中所消耗的功率。
根据本申请的一些实施例,上述电机控制器40可以在形成升压电路时,驱动三个桥臂组中至少一个桥臂组的上桥臂和下桥臂交替导通,以对外部充电设备60的直流充电电压进行升压后,通过升压后的电压为电池包10充电。
在一个典型的Boost升压电路中,包括有电感、二极管以及开关管,其中电感可以通过对电流的抑制作用进行储能或释能、二极管可以限制电流方向,开关管则可以通过交替导通和截止控制电感进行电荷存储和电荷释放。以一个桥臂组为例,该桥臂组中的公共节点与电机50的某一相连接,电机50在该相上的绕组电感可以作为Boost升压电路中的电感,上桥臂的反向二极管可以作为二极管、下桥臂可以作为开关管。通过控制上桥臂和下桥臂交替导通,即可实现Boost升压电路的升压功能,将外部充电设备60输入的直流充电电压进行升压。通过调整上桥臂和下桥臂的导通时间的占空比,即可实现升压倍数的调整,从而使得升压后的直流充电电压能够大于电池包10 的工作电压,使得升压后的电压能够为电池包10进行充电。
通过驱动任意一个桥臂组以及电机50中对应该桥臂组的绕组电感,即可实现直流充电电压的升压。增加驱动的桥臂组数量不会改变升压后的电压大小,但可以提升升压电路的输出功率。因此,通过调整电机控制器40内驱动的桥臂组数量,能够增大电池包10在充电过程中的充电功率。根据电池包10所需的实际充电功率,可以驱动相应数量的桥臂组。
在开关模块20将电机50的中性点与储能元件C断开后,电机控制器40可以选择性地导通其中一个桥臂组的上桥臂。在一种具体实施方式中,控制上桥臂导通的方式可以是向对应桥臂组的上桥臂发送高低电平脉冲信号,若有效信号为高电平,则上桥臂在接收到高电平时导通,接收到低电平时截止。上述高低电平脉冲信号可以为PWM信号。
在上桥臂导通时,电池包10可以通过导通的上桥臂和该桥臂组所连接电机50的电感输出电池包10的电池电压。若开关模块20未能将电机50的中性点与储能元件C完全断开,则该电池电压能够在上桥臂导通时为储能元件C进行充电;若该开关模块20已经将电机50的中性点与储能元件C完全断开,则该电池电压在上桥臂导通时无法对储能元件C进行充电。通过检测储能元件C的两端电压,可以根据该两端电压确定电池包10是否对储能元件C进行了充电,从而进一步确定开关模块20是否将电机50的中性点与储能元件C完全断开。
上述开关模块20将电机50的中性点与储能元件C断开,是指开关模块20将连通储能元件C和电机50的中性点的开关进行断开。例如,在上述实施例中,在储能元件C包括第一电容C1时,连接在第一电容C1与电机50的中性点之间的开关为第三开关K3,开关模块20可以控制第三开关K3断开,以将电机50的中性点与储能元件C断开。如图7所示,此时储能元件C的两端电压即为第一电容C1两端的电压Vc1。
而在储能元件C包括第二电容C2时,连接在第二电容C2与电机50的中性点之间的开关为第四开关K4,开关模块20可以控制第四开关K4断开,以将电机50的中性点与储能元件C断开。如图9所示,此时储能元件C的两端电压即为第二电容C2两端的电压Vc2。
第三开关K3和第四开关K4可以为继电器,继电器在大电流和高电压下容易发生触电烧结,从而使得继电器无法完全断开。通过电机控制器40的上桥臂导通,可 以根据电池包10是否能够为储能元件C进行充电,来确定连接在中性点与储能元件C之间的继电器是否发生烧结。
图10示出了本申请实施例提供的开关模块的状态检测设备的硬件结构示意图。
开关模块的状态检测设备可以包括处理器1001以及存储有计算机程序指令的存储器1002。
具体地,上述处理器1001可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器1002可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器1002可包括硬盘驱动器(Hard DiskDrive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器1002可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器1002可在开关模块的状态检测设备的内部或外部。在特定实施例中,存储器1002是非易失性固态存储器。
存储器可包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的一方面的方法所描述的操作。
处理器1001通过读取并执行存储器1002中存储的计算机程序指令,以实现上述实施例中的任意一种开关模块的状态检测方法。
在一个示例中,开关模块的状态检测设备还可包括通信接口1003和总线1010。其中,如图10所示,处理器1001、存储器1002、通信接口1003通过总线1010连接并完成相互间的通信。
通信接口1003,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线1010包括硬件、软件或两者,将开关模块的状态检测设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准 架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线1010可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该开关模块的状态检测设备可以实现上述实施例中的开关模块的状态检测方法。
另外,结合上述实施例中的开关模块的状态检测方法,本申请实施例可提供一种计算机存储介质来实现。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种开关模块的状态检测方法。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (14)

  1. 一种开关模块的状态检测方法,所述方法包括:
    在开关模块断开的情况下,将电池包与开关模块连通,以使所述电池包通过所述开关模块与储能元件形成第一充电回路;
    对所述储能元件进行电压检测,得到第一检测电压;
    根据所述第一检测电压确定所述开关模块是否完全断开。
  2. 根据权利要求1所述的开关模块的状态检测方法,其中,所述将电池包与开关模块连通,包括:
    向充电控制模块发送充电信号,以使所述充电控制模块根据充电信号将所述电池包与所述开关模块连通。
  3. 根据权利要求2所述的开关模块的状态检测方法,其中,所述对所述储能元件进行电压检测,得到第一检测电压,包括:
    在所述电池包与所述开关模块连通的情况下,向电压检测模块发送第一电压检测信号;
    接收所述电压检测模块对所述储能元件进行电压检测后得到并发送的第一检测电压。
  4. 根据权利要求3所述的开关模块的状态检测方法,其中,所述充电控制模块包括至少两个电流支路;所述向电压检测模块发送第一电压检测信号,包括:
    确定所述充电控制模块中连接于所述电池包与所述开关模块之间的第一电流支路;
    向电压检测模块发送第一电压检测信号,以使所述电压检测模块通过除所述第一电流支路以外的其余电流支路对所述储能元件进行电压检测。
  5. 根据权利要求4所述的开关模块的状态检测方法,其中,所述在开关模块断开的情况下,将电池包与开关模块连通之前,还包括:
    在开关模块导通的情况下,将放电模块与开关模块连通,以使所述放电模块通过所述开关模块与所述储能元件形成第一放电回路;
    对所述储能元件进行电压检测,得到第二检测电压;
    在所述第二检测电压达到安全电压范围内的情况下,向所述开关模块发送断开信号。
  6. 根据权利要求5所述的开关模块的状态检测方法,其中,所述对所述储能元件进行电压检测,得到第二检测电压,包括:
    确定所述充电控制模块中连接于所述放电模块与所述开关模块之间的第二电流支路;
    向电压检测模块发送第二电压检测信号,以使所述电压检测模块通过除所述第二电流支路以外的其余电流支路对所述储能元件进行电压检测。
  7. 根据权利要求1所述的开关模块的状态检测方法,其中,所述根据所述第一检测电压确定所述开关模块是否完全断开,包括:
    获取安全电压范围;
    在所述第一检测电压超出所述安全电压范围的情况下,控制所述电池包停止运行。
  8. 一种开关模块的状态检测电路,所述电路包括:
    开关模块;
    储能元件,所述储能元件与所述开关模块的第一端连接;
    控制模块,所述控制模块用于在开关模块断开的情况下,将所述开关模块的第二端与所述电池包连通,并根据所述储能元件的第一检测电压确定所述开关模块是否完全断开。
  9. 根据权利要求8所述的开关模块的状态检测电路,其中,所述电路还包括:
    充电控制模块,连接于所述开关模块与所述电池包之间,所述充电控制模块用于在接收到充电信号时,将所述电池包与所述开关模块连通。
  10. 根据权利要求9所述的开关模块的状态检测电路,其中,所述电路还包括:
    电压检测模块,与所述储能元件电连接,所述电压检测模块用于在接收到第一电压检测信号时,对所述储能元件进行电压检测以得到第一检测电压,和/或,在接收到 第二电压检测信号时,对所述储能元件进行电压检测以得到第二检测电压。
  11. 根据权利要求10所述的开关模块的状态检测电路,其中,所述充电控制模块包括至少两个电流支路,所述充电控制模块用于通过第一电流支路将所述电池包与所述开关模块连通,和/或,通过第二电流支路将放电模块与所述开关模块连通;
    所述电压检测模块,用于在接收到第一电压检测信号时,从多个电流支路中确定第三电流支路,并通过所述第三电流支路和所述开关模块对所述储能元件进行电压检测,和/或,在接收到第二电压检测信号时,从多个电流支路中确定第四电流支路,并通过所述第四电流支路和所述开关模块对所述储能元件进行电压检测。
  12. 根据权利要求11所述的开关模块的状态检测电路,其中,所述充电控制模块包括电机控制器,所述电机控制器包括三个桥臂组,每个所述桥臂组与所述开关模块形成一条电流支路。
  13. 一种开关模块的状态检测设备,所述开关模块的状态检测设备包括:处理器以及存储有计算机程序指令的存储器;
    所述处理器执行所述计算机程序指令时,使得所述开关模块的状态检测设备实现如权利要求1至7所述的开关模块的状态检测方法。
  14. 一种计算机存储介质,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时,实现如权利要求1至7所述的开关模块的状态检测方法。
PCT/CN2022/128917 2022-11-01 2022-11-01 开关模块的状态检测方法、电路、设备及存储介质 WO2024092495A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128917 WO2024092495A1 (zh) 2022-11-01 2022-11-01 开关模块的状态检测方法、电路、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128917 WO2024092495A1 (zh) 2022-11-01 2022-11-01 开关模块的状态检测方法、电路、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024092495A1 true WO2024092495A1 (zh) 2024-05-10

Family

ID=90929111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128917 WO2024092495A1 (zh) 2022-11-01 2022-11-01 开关模块的状态检测方法、电路、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024092495A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768407A (zh) * 2003-03-31 2006-05-03 Neclamilion能源株式会社 用于检测继电器触点的熔接的方法和装置
CN104442406A (zh) * 2014-10-31 2015-03-25 惠州市亿能电子有限公司 一种判断高压继电器粘连的方法
JP2017135035A (ja) * 2016-01-28 2017-08-03 トヨタ自動車株式会社 リレー固着検出システム
CN109342941A (zh) * 2018-12-07 2019-02-15 珠海格力电器股份有限公司 继电器检测装置、及其检测方法
CN111707934A (zh) * 2020-05-14 2020-09-25 华为技术有限公司 一种开关检测器、开关检测器的使用方法及车辆
CN112924859A (zh) * 2021-01-26 2021-06-08 东风汽车集团股份有限公司 一种电动汽车高压预充回路及继电器粘连状态检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768407A (zh) * 2003-03-31 2006-05-03 Neclamilion能源株式会社 用于检测继电器触点的熔接的方法和装置
CN104442406A (zh) * 2014-10-31 2015-03-25 惠州市亿能电子有限公司 一种判断高压继电器粘连的方法
JP2017135035A (ja) * 2016-01-28 2017-08-03 トヨタ自動車株式会社 リレー固着検出システム
CN109342941A (zh) * 2018-12-07 2019-02-15 珠海格力电器股份有限公司 继电器检测装置、及其检测方法
CN111707934A (zh) * 2020-05-14 2020-09-25 华为技术有限公司 一种开关检测器、开关检测器的使用方法及车辆
CN112924859A (zh) * 2021-01-26 2021-06-08 东风汽车集团股份有限公司 一种电动汽车高压预充回路及继电器粘连状态检测方法

Similar Documents

Publication Publication Date Title
US11616375B2 (en) Rechargeable battery systems and rechargeable battery system operational methods
US10819124B2 (en) Fast charging method and related device for series battery pack
TWI645647B (zh) 充電系統及其控制方法
US9912178B2 (en) Rechargeable battery systems and rechargeable battery system operational methods
US20160134160A1 (en) Systems and methods for battery management
CN102064592B (zh) 一种大功率电池装置
US20210028630A1 (en) Charging device, charging method, and terminal
CN102195333A (zh) 直流电源装置
EP2666226B1 (en) Rechargeable battery system and corresponding method
US20200335992A1 (en) Supercapacitor based energy storage device
US20180316198A1 (en) Charging control device
JP2014090595A (ja) 蓄電システム及び電源システム
EP3506457B1 (en) Charging power system with low standby power consumption and method of controlling the same
CN102185354A (zh) 一种用于电动自行车的锂电池组智能充放电管理控制系统
WO2013129231A1 (ja) 電源装置
CN104348215A (zh) 充电器、电池模块、用于识别与监控充电器的系统与方法
EP3518370A1 (en) Dual-battery mobile terminal and wireless charging system thereof
CN103460547A (zh) 充电器及供电系统
CN111404245B (zh) 能量转换装置及其安全控制方法
JP5196650B2 (ja) バッテリ充放電試験装置
KR101358763B1 (ko) 전력저장용 단위 랙의 연결을 위한 전압 평준화 장치 및 이를 포함하는 전력저장 시스템
CN202111486U (zh) 用于电动自行车的锂电池组智能充放电管理控制系统
CN104838559A (zh) 充电设备
CN104102258A (zh) 电子设备中的电路、电子设备及其为电池供电的方法
KR20090092890A (ko) 배터리 시스템의 배터리 균등 충전장치