WO2021243796A1 - 具有双药负载和分阶缓释功能的新型纳米纤维血管支架材料及其制备方法 - Google Patents
具有双药负载和分阶缓释功能的新型纳米纤维血管支架材料及其制备方法 Download PDFInfo
- Publication number
- WO2021243796A1 WO2021243796A1 PCT/CN2020/100530 CN2020100530W WO2021243796A1 WO 2021243796 A1 WO2021243796 A1 WO 2021243796A1 CN 2020100530 W CN2020100530 W CN 2020100530W WO 2021243796 A1 WO2021243796 A1 WO 2021243796A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rbs
- sio
- pla
- solution
- ethanol
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/042—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/028—Other inorganic materials not covered by A61L31/022 - A61L31/026
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/10—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
- A61L2300/102—Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/252—Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
- A61L2300/256—Antibodies, e.g. immunoglobulins, vaccines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
- A61L2300/406—Antibiotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/42—Anti-thrombotic agents, anticoagulants, anti-platelet agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/602—Type of release, e.g. controlled, sustained, slow
- A61L2300/604—Biodegradation
Definitions
- the invention belongs to the technical field of preparation of nano-medicine carriers and vascular stent materials, and specifically relates to a novel nano-fiber vascular stent material with dual-drug loading and hierarchical slow-release functions and a preparation method thereof.
- vascular stents have gone through the development process of metal stents, drug-coated stents and bioabsorbable stents.
- metal stents drug-coated stents
- bioabsorbable stents In order to avoid the problems of scar tissue regeneration, inflammatory reaction, artery restenosis and blockage caused by the metal stent, a drug film is plated on the surface of the metal stent. The drug is slowly released to inhibit the growth of scar tissue around the stent to maintain the coronary artery. Unblocked.
- the metal stent has high hardness, strong toughness, and lack of biocompatibility. The body will treat it as a foreign body, forming a traumatic area at the contact site of the metal stent and the arterial membrane, causing local inflammation.
- the ideal vascular stent should have the characteristics of flexibility, good traceability, anti-thrombosis, good biocompatibility, reliable expansion performance, good supporting force, and compliance with fluid mechanics.
- each type of stent has its own characteristics, there is no stent that fully meets the above characteristics.
- the development of a stent with ideal characteristics has become one of the goals of scientific researchers' unremitting efforts. For example, Rao Xi et al.
- a vascular stent material composed of a zinc alloy substrate, a polymer coating with amino-rich functional groups, and a drug-loaded polylactic acid-glycolic acid copolymer coating (Rao Xi; Hu Haolu; Yang Jihan; Zhang Yongping, with a drug slow Zinc alloy vascular stent material with super-flexible coating, Chinese invention patent publication number CN110180038A); Liu Jun et al. disclosed a drug-embedded nanogel body-coated vascular stent (Liu Jun; Chen Qixian, 1 A nano drug sustained-release device as a vascular stent outsourcing, Chinese Invention Patent Publication No.
- Lin Chunmei discloses a vascular stent coating with drug sustained-release function (Lin Chunmei, a vascular stent coating with drug sustained-release function and Its preparation method, Chinese Invention Patent Publication No. CN106139259A); Chu Chenglin et al. disclosed a drug-releasing vascular stent (Chu Chenglin; Pu Yuepu; Lin Pinghua; Xue Xiaoyan; Shen Gang to prevent restenosis after stent operation). Drug sustained-release vascular stent and its preparation method, Chinese Invention Patent Publication No. CN1557507).
- the present invention designs a new type of nanofiber vascular stent material, which is implanted into the coronary arteries of the heart to support the narrow occluded blood vessels.
- the antibody coupled to the outer layer of the stent stimulates cells to form epithelial tissues to reduce the risk of thrombosis; because the outer layer of the stent polymer decomposes, the polymer-loaded antibiotic is slowly released (the first stage), which inhibits the division and growth of abnormal cells ; Due to the decomposition of the nitric oxide donor bound to the polymer in the inner layer of the stent, nitric oxide free radicals are slowly released (the second stage) to expand blood vessels and inhibit tumor growth.
- the present invention discloses a method for preparing a novel nanofiber vascular stent material.
- the stent material has the function of loading dual drugs and slowly releasing drugs layer by layer.
- the stent material is expected to be used clinically as a multifunctional vascular stent, implanted in the coronary arteries of the heart, to support the blood vessels of the lesion, reduce the risk of thrombosis, inhibit cell pathology, free radical expansion of blood vessels, inhibit tumor growth and other functions. The effect of postoperative treatment.
- nanofiber vascular stent materials with dual-drug loading and hierarchical slow-release functions.
- the purpose of the present invention is to overcome the above-mentioned problems in the prior art, and to design a new type of nanofiber vascular stent that integrates multiple functions such as supporting focal blood vessels, reducing the risk of thrombosis, inhibiting cell pathology, expanding blood vessels by free radicals, and inhibiting tumor growth. Material.
- the present invention relates to a novel nanofiber vascular stent material with dual-drug loading and hierarchical slow-release functions and a preparation method thereof, which specifically includes the following steps:
- the effect of the invention is: a novel nanofiber vascular stent material with dual-drug loading and hierarchical slow-release functions and a preparation method thereof are disclosed.
- TEOS silicon source
- biocompatible chitosan CS as the bonding site
- the intrinsically rigid and flexible chitosan-coated beaded silica nanofibers were prepared by electrospinning technology SiO 2 /CS, using CS's –NH 3 + site and NO donor RBS Fe 4 S 3 (NO) 7 – self-assembly to form SiO 2 /CS-RBS self-assembly; adding degradable polymer material to polymerize Lactic acid PLA is blended with SiO 2 /CS-RBS to form an electrospinning precursor and electrospins to prepare SiO 2 /CS-RBS/PLA nanocomposite fiber material; the PLA is coupled with immunoglobulin lgG antibody, and then Load antibiotics such as penicillin PG into the PLA network framework to prepare a new
- the new vascular scaffold material has multiple functions with clear layers: 1) lgG antibody stimulates cells to form epithelial tissues, reducing the risk of thrombosis; 2) PG released from the PLA carrier inhibits the division and growth of abnormal cells and avoids proliferating cells Block blood vessels; 3) When PLA is degraded, the donor bound to CS releases NO free radicals to expand blood vessels, inhibit tumor growth, and achieve the purpose of cancer prevention and anticancer.
- Figure 1 The preparation process of SiO 2 /CS-RBS/lgG-PLA-PG new nanofiber vascular stent material, the schematic diagram of dual-drug loading and staged slow-release principle.
- electrospinning precursor solution into a 5mL plastic syringe for electrospinning; where the voltage is (-3kV, 5kV), the spinning curing distance is 10cm, the needle size is 0.2mm, and the jet speed is 0.2mm s -1 , The translation speed is 100mm min -1 ; the SiO 2 /CS nanocomposite fiber material is prepared, and then freeze-dried to obtain a super-elastic three-dimensional ceramic fiber scaffold.
- Disperse SiO 2 /CS in ethanol add NO donor RBS, namely Fe 4 S 3 (NO) 7 - sodium salt aqueous solution dropwise under magnetic stirring, to form a homogeneous SiO 2 /CS-RBS self-assembly solution.
- NO donor RBS namely Fe 4 S 3 (NO) 7 - sodium salt
- Prepare a 10wt% PLA ethanol solution mix it with SiO 2 /CS-RBS, form a homogeneous solution under magnetic stirring, use it as the electrospinning precursor solution, and perform electrospinning to obtain SiO 2 /CS- RBS/PLA nanocomposite fiber material.
- the carboxy-amine coupling reaction was used to couple PLA on SiO 2 /CS-RBS/PLA with immunoglobulin lgG antibody, and then incubate with 5U mL -1 penicillin PG aqueous solution for 6 hours, perform PG drug loading, and freeze-dry After processing, the SiO 2 /CS-RBS/lgG-PLA-PG new nanofiber vascular stent material was prepared.
- electrospinning precursor solution into a 5mL plastic syringe and perform electrospinning; where the voltage is (-3kV, 10kV), the spinning curing distance is 15cm, the needle size is 0.4mm, and the jet speed is 0.4mm s -1 , The translation speed is 200mm min -1 ; the SiO 2 /CS nanocomposite fiber material is prepared, and then freeze-dried to obtain a super-elastic three-dimensional ceramic fiber scaffold.
- Disperse SiO 2 /CS in ethanol add NO donor RBS, namely Fe 4 S 3 (NO) 7 - sodium salt aqueous solution dropwise under magnetic stirring, to form a homogeneous SiO 2 /CS-RBS self-assembly solution.
- NO donor RBS namely Fe 4 S 3 (NO) 7 - sodium salt
- a PLA ethanol solution with a mass fraction of 15 wt% was prepared, mixed with SiO 2 /CS-RBS, and a homogeneous solution was formed under magnetic stirring, which was used as the electrospinning precursor solution for electrospinning to obtain SiO 2 /CS- RBS/PLA nanocomposite fiber material.
- the carboxy-amine coupling reaction was used to couple PLA on SiO 2 /CS-RBS/PLA with immunoglobulin lgG antibody, and then incubate with 10 U mL-1 penicillin PG aqueous solution for 12 hours, perform PG drug loading, and freeze-dry After treatment, SiO 2 /CS-RBS/lgG-PLA-PG new nanofiber vascular stent material was prepared.
- electrospinning precursor solution into a 5mL plastic syringe and perform electrospinning; where the voltage is (-3kV, 15kV), the spinning curing distance is 20cm, the needle size is 0.6mm, and the jet speed is 0.6mm s -1 , The translation speed is 300mm min -1 ; the SiO 2 /CS nanocomposite fiber material is prepared, and then freeze-dried to obtain a super-elastic three-dimensional ceramic fiber scaffold.
- Disperse SiO 2 /CS in ethanol add NO donor RBS, namely Fe 4 S 3 (NO) 7 - sodium salt aqueous solution dropwise under magnetic stirring, to form a homogeneous SiO 2 /CS-RBS self-assembly solution.
- NO donor RBS namely Fe 4 S 3 (NO) 7 - sodium salt
- Prepare a 20wt% PLA ethanol solution mix it with SiO 2 /CS-RBS, form a homogeneous solution under magnetic stirring, and use it as the electrospinning precursor solution for electrospinning to obtain SiO 2 /CS- RBS/PLA nanocomposite fiber material.
- the PLA on SiO 2 /CS-RBS/PLA was coupled with immunoglobulin lgG antibody, and then incubated with 15U mL -1 penicillin PG aqueous solution for 18h, and the drug loading of PG was carried out and freeze-dried After processing, the SiO 2 /CS-RBS/lgG-PLA-PG new nanofiber vascular stent material was prepared.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Vascular Medicine (AREA)
- Epidemiology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Inorganic Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
一种具有双药负载和分阶缓释功能的新型纳米纤维血管支架材料及其制备方法,该支架材料外层偶联的免疫球蛋白lgG抗体刺激细胞形成上皮组织,降低形成血栓的风险;由于支架外层聚乳酸的分解,缓慢释放其负载的青霉素,抑制不正常细胞的分裂和生长;由于支架内层壳聚糖结合的一氧化氮供体分解,缓慢释放一氧化氮自由基,以扩张血管和抑制肿瘤生长;该支架材料具备负载青霉素和一氧化氮双重药物,并逐层分阶段缓释药物的功能,有望在临床上作为新型多功能血管支架,植入病人的心脏冠状动脉血管,达到支撑病灶血管、降低血栓风险、抑制细胞病变、自由基扩张血管、抑制肿瘤生长等诸多术后治疗效果。
Description
本发明属于纳米药物载体和血管支架材料的制备技术领域,具体涉及一种具有双药负载和分阶缓释功能的新型纳米纤维血管支架材料及其制备方法。
在心脏血管扩张手术之后,30%的病人在半年内会面临血管变窄的问题。由于手术后病人的血管无法正常恢复,会产生很多细胞而将血管阻塞,导致病人需要再做一次绕道手术或血管成形术。为了避免手术后血管变窄和阻塞,需要在病灶段置入内支架,以达到支撑狭窄的闭塞段血管,防止血管弹性回缩及再塑形,保持管腔内血流畅通的目的。20世纪80年代初,医生设想用支架撑开僵化、狭窄的心脏冠状动脉。目前,血管支架已历经了金属支架、药物涂层支架和生物可吸收支架的研制过程。为了避免金属支架引发的疤痕组织再生、炎症反应、动脉重新狭窄和堵塞等问题,在金属支架表面镀上了一层药膜,药物缓慢释放,可抑制疤痕组织在支架周围生长,以保持冠状动脉畅通。然而,金属支架硬度大、韧性强,且缺乏生物相容性,机体会把它当成异物,在金属支架和动脉膜接触部位形成创伤区,引起局部的炎症反应。21世纪初,科学家报道了第三代生物可吸收血管支架。此类支架在植入7~10天后开始被机体吸收,3个月后完全消失,6个月后近80%的动脉仍然保持畅通,这种可溶性支架有望给病人留下多次导管治疗的机会。
理想的血管支架应具备灵活、示踪性好、抗血栓、生物相容性好、扩张性能可靠、支撑力好、符合流体力学等特征。在当前临床应用中,尽管每种支架都有其各自的特性,但尚未有完全满足上述特征的支架,开发理想特征的支架,已成为科研人员不懈努力的目标之一。例如,饶席等公开了一种由锌合金基体、富氨基官能团聚合涂层、载药聚乳酸-羟基乙酸共聚物涂层组成的血管支架材料(饶席;胡豪侣;杨济涵;张永平,具药物缓释功能超高柔性涂层的锌合金血管支架材料,中国发明专利公开号CN110180038A);刘俊等公开了一种内包埋有药物的纳米凝胶本体包覆血管支架(刘俊;陈麒先,一种作为血管支架外包的纳米药物缓释装置,中国发明专利公开号CN208243663U);林春梅公开了一种具有药物缓释功能的血管支架涂层(林春梅,一种具有药物缓释功能血管支架涂层及其制备方法,中国发明专利公开号CN106139259A);储成林等公开了一种可防止支架术后血管再狭窄的药物缓释型血管支架(储成林;浦跃朴;林萍华;薛小燕;沈刚,防再狭窄药物缓释型血管支架及其制备方法,中国发明专利公开号 CN1557507)。
本发明在药物涂层支架的基础上,设计了新型纳米纤维血管支架材料,将此支架材料植入心脏冠状动脉血管,用于支撑狭窄的闭塞段血管。该支架外层偶联的抗体刺激细胞形成上皮组织,以降低形成血栓的风险;因支架外层聚合物分解,缓慢释放聚合物负载的抗生素(第一阶段),抑制不正常细胞的分裂和生长;因支架内层聚合物结合的一氧化氮供体分解,缓慢释放一氧化氮自由基(第二阶段),以扩张血管和抑制肿瘤生长。基于上述设计,本发明公开了一种新型纳米纤维血管支架材料的制备方法,该支架材料具备负载双重药物,并逐层分阶段药物缓释的功能。该支架材料有望在临床上作为多功能化的血管支架,植入心脏冠状动脉血管,实现支撑病灶血管、降低血栓风险、抑制细胞病变、自由基扩张血管、抑制肿瘤生长等集多种功能于一体的术后治疗效果。截止目前,尚未有具备双药负载和分阶缓释功能的纳米纤维血管支架材料的国内外文献和专利报道。
发明内容
本发明的目的在于克服上述现有技术存在的问题,设计一种集支撑病灶血管、降低血栓风险、抑制细胞病变、自由基扩张血管、抑制肿瘤生长等多种功能于一体的新型纳米纤维血管支架材料。
为实现上述目的,本发明涉及的一种具有双药负载和分阶缓释功能的新型纳米纤维血管支架材料及其制备方法,具体包括以下步骤:
(1)称取2g相对分子质量为1万的壳聚糖CS,滴加2mL醋酸溶解,再加入50mL乙醇分散,在磁力搅拌下形成均质溶液;向该均质溶液中加入5mL正硅酸乙酯TEOS,磁力搅拌6h,制得略带粘性的透明TEOS/CS电纺前驱体溶液;
(2)将上述的电纺前驱体溶液装入5mL塑料注射器,进行电纺丝;其中电压为5–20kV、纺丝固化距离为10–30cm、针头尺寸为0.2–0.8mm、喷射速度为0.2–0.8mm s
–1、平移速度为50–500mm min
–1;制得二氧化硅/壳聚糖纳米复合纤维材料SiO
2/CS,然后进行冷冻干燥处理,获得超弹性三维陶瓷纤维支架;
(3)将上述的壳聚糖包覆的串珠状二氧化硅纳米纤维SiO
2/CS分散在乙醇中,在磁力搅拌下,逐滴添加一氧化氮供体陆森黑盐RBS即Fe
4S
3(NO)
7
–钠盐的水溶液,形成均质的SiO
2/CS-RBS自组装体溶液;
(4)配制质量分数为10–30wt%聚乳酸PLA乙醇溶液,与上述的SiO
2/CS-RBS自组装体溶液混合,在磁力搅拌下形成均质溶液,将其作为电纺前驱体溶液,进行电纺丝,制得SiO
2/CS-RBS/PLA纳米复合纤维材料;
(5)采用羧-胺偶联反应将上述的SiO
2/CS-RBS/PLA上聚乳酸PLA与免疫球白lgG抗体偶联,然后与5–25U mL
–1青霉素PG的水溶液共同孵育6–24h, 执行PG的药物负载,冷冻干燥处理,制得SiO
2/CS-RBS/lgG-PLA-PG新型纳米纤维血管支架材料备用;
(6)将SiO
2/CS-RBS/lgG-PLA-PG放置1–15天,用乙醇轻微冲洗,冷冻干燥,产物用电子天平称重,对比不同放置时间产物的质量,计算出不同降解时间内,因聚乳酸PLG分解而造成的lgG-PLA-PG质量的损失量,测定PG的紫外-可见吸收光谱,特征吸收峰为210–215nm,计算PG的药物释放浓度;
(7)将降解后所得SiO
2/CS-RBS自组装体分散在乙醇中,放置1–15天,采用格里斯反应和比色法测定不同降解时间内,该乙醇溶液中一氧化氮NO的浓度变化,计算SiO
2/CS-RBS中RBS释放的一氧化氮浓度。
本发明的效果是:公开了一种具有双药负载和分阶缓释功能的新型纳米纤维血管支架材料及其制备方法。以正硅酸乙酯TEOS为硅源,生物相容性壳聚糖CS为键合位点,通过静电纺丝技术制备本征刚性、结构柔性的壳聚糖包覆串珠状二氧化硅纳米纤维SiO
2/CS,采用CS的–NH
3
+位点与NO供体RBS的Fe
4S
3(NO)
7
–自组装,形成SiO
2/CS-RBS自组装体;加入可降解高分子材料聚乳酸PLA,与SiO
2/CS-RBS共混形成电纺前驱体进行电纺丝,制得SiO
2/CS-RBS/PLA纳米复合纤维材料;其中的PLA与免疫球蛋白lgG抗体偶联,然后将抗生素如青霉素PG负载进入PLA网络骨架中,制得SiO
2/CS-RBS/lgG-PLA-PG层层组装的新型纳米纤维血管支架材料。该新型血管支架材料具备层次清晰的多种功能:1)lgG抗体刺激细胞形成上皮组织,降低形成血栓的风险;2)从PLA载体内释放的PG抑制不正常细胞的分裂和生长,避免增生细胞堵塞血管;3)当PLA降解后CS上结合的供体释放NO自由基以扩张血管,抑制肿瘤生长,达到防癌抗癌之目的。
图1.SiO
2/CS-RBS/lgG-PLA-PG新型纳米纤维血管支架材料的制备过程,双药负载和分阶缓释的原理示意图。
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1
本实施例涉及的SiO
2/CS-RBS/lgG-PLA-PG新型纳米纤维血管支架材料的制备过程,双药负载和分阶缓释的原理示意图如图1所示,具体步骤如下:
称取2g相对分子质量为1万的CS,滴加2mL醋酸溶解,再加入50mL乙醇分散,在磁力搅拌下形成均质溶液;向该均质溶液中加入5mL TEOS,磁力搅拌6h,制得略带粘性的透明TEOS/CS电纺前驱体溶液。将此电纺前驱体溶液装入5mL塑料注射器,进行电纺丝;其中电压为(–3kV,5kV)、纺丝固化 距离为10cm、针头尺寸为0.2mm、喷射速度为0.2mm s
–1、平移速度为100mm min
–1;制得SiO
2/CS纳米复合纤维材料,然后进行冷冻干燥处理,获得超弹性三维陶瓷纤维支架。
将SiO
2/CS分散在乙醇中,在磁力搅拌下逐滴添加NO供体RBS即Fe
4S
3(NO)
7
–钠盐的水溶液,形成均质SiO
2/CS-RBS自组装体溶液。配制质量分数为10wt%的PLA乙醇溶液,与SiO
2/CS-RBS混合,在磁力搅拌下形成均质溶液,将其作为电纺前驱体溶液,进行电纺丝,制得SiO
2/CS-RBS/PLA纳米复合纤维材料。采用羧-胺偶联反应,将SiO
2/CS-RBS/PLA上PLA与免疫球白lgG抗体偶联,然后与5U mL
–1青霉素PG的水溶液共同孵育6h,执行PG的药物负载,冷冻干燥处理,制得SiO
2/CS-RBS/lgG-PLA-PG新型纳米纤维血管支架材料。
将SiO
2/CS-RBS/lgG-PLA-PG分别放置1、3、5、7、9、11、13和15天,用乙醇轻微冲洗,冷冻干燥,产物用电子天平称重,对比不同放置时间产物的质量,计算出不同降解时间内,因PLG分解而造成的lgG-PLA-PG质量的损失量,测定PG的紫外-可见吸收光谱,特征吸收峰为212nm,计算PG的药物释放浓度。将降解后所得SiO
2/CS-RBS自组装体分散在乙醇中,分别放置1、3、5、7、9、11、13和15天,采用格里斯反应和比色法测定不同降解时间内,该乙醇溶液中NO的浓度变化,计算SiO
2/CS-RBS中RBS释放的NO浓度。
实施例2
本实施例涉及的SiO
2/CS-RBS/lgG-PLA-PG新型纳米纤维血管支架材料的制备过程,双药负载和分阶缓释的原理示意图如图1所示,具体步骤如下:
称取2g相对分子质量为1万的CS,滴加2mL醋酸溶解,再加入50mL乙醇分散,在磁力搅拌下形成均质溶液;向该均质溶液中加入5mL TEOS,磁力搅拌6h,制得略带粘性的透明TEOS/CS电纺前驱体溶液。将此电纺前驱体溶液装入5mL塑料注射器,进行电纺丝;其中电压为(–3kV,10kV)、纺丝固化距离为15cm、针头尺寸为0.4mm、喷射速度为0.4mm s
–1、平移速度为200mm min
–1;制得SiO
2/CS纳米复合纤维材料,然后进行冷冻干燥处理,获得超弹性三维陶瓷纤维支架。
将SiO
2/CS分散在乙醇中,在磁力搅拌下逐滴添加NO供体RBS即Fe
4S
3(NO)
7
–钠盐的水溶液,形成均质SiO
2/CS-RBS自组装体溶液。配制质量分数为15wt%的PLA乙醇溶液,与SiO
2/CS-RBS混合,在磁力搅拌下形成均质溶液,将其作为电纺前驱体溶液,进行电纺丝,制得SiO
2/CS-RBS/PLA纳米复合纤维材料。采用羧-胺偶联反应,将SiO
2/CS-RBS/PLA上PLA与免疫球白lgG抗体偶联,然后与10U mL
–1青霉素PG的水溶液共同孵育12h,执行PG的药物负载,冷冻干燥处理,制得SiO
2/CS-RBS/lgG-PLA-PG新型纳米纤维血管支架 材料。
将SiO
2/CS-RBS/lgG-PLA-PG分别放置1、3、5、7、9、11、13和15天,用乙醇轻微冲洗,冷冻干燥,产物用电子天平称重,对比不同放置时间产物的质量,计算出不同降解时间内,因PLG分解而造成的lgG-PLA-PG质量的损失量,测定PG的紫外-可见吸收光谱,特征吸收峰为213nm,计算PG的药物释放浓度。将降解后所得SiO
2/CS-RBS自组装体分散在乙醇中,分别放置1、3、5、7、9、11、13和15天,采用格里斯反应和比色法测定不同降解时间内,该乙醇溶液中NO的浓度变化,计算SiO
2/CS-RBS中RBS释放的NO浓度。
实施例3
本实施例涉及的SiO
2/CS-RBS/lgG-PLA-PG新型纳米纤维血管支架材料的制备过程,双药负载和分阶缓释的原理示意图如图1所示,具体步骤如下:
称取2g相对分子质量为1万的CS,滴加2mL醋酸溶解,再加入50mL乙醇分散,在磁力搅拌下形成均质溶液;向该均质溶液中加入5mL TEOS,磁力搅拌6h,制得略带粘性的透明TEOS/CS电纺前驱体溶液。将此电纺前驱体溶液装入5mL塑料注射器,进行电纺丝;其中电压为(–3kV,15kV)、纺丝固化距离为20cm、针头尺寸为0.6mm、喷射速度为0.6mm s
–1、平移速度为300mm min
–1;制得SiO
2/CS纳米复合纤维材料,然后进行冷冻干燥处理,获得超弹性三维陶瓷纤维支架。
将SiO
2/CS分散在乙醇中,在磁力搅拌下逐滴添加NO供体RBS即Fe
4S
3(NO)
7
–钠盐的水溶液,形成均质SiO
2/CS-RBS自组装体溶液。配制质量分数为20wt%的PLA乙醇溶液,与SiO
2/CS-RBS混合,在磁力搅拌下形成均质溶液,将其作为电纺前驱体溶液,进行电纺丝,制得SiO
2/CS-RBS/PLA纳米复合纤维材料。采用羧-胺偶联反应,将SiO
2/CS-RBS/PLA上PLA与免疫球白lgG抗体偶联,然后与15U mL
–1青霉素PG的水溶液共同孵育18h,执行PG的药物负载,冷冻干燥处理,制得SiO
2/CS-RBS/lgG-PLA-PG新型纳米纤维血管支架材料。
将SiO
2/CS-RBS/lgG-PLA-PG分别放置1、3、5、7、9、11、13和15天,用乙醇轻微冲洗,冷冻干燥,产物用电子天平称重,对比不同放置时间产物的质量,计算出不同降解时间内,因PLG分解而造成的lgG-PLA-PG质量的损失量,测定PG的紫外-可见吸收光谱,特征吸收峰为214nm,计算PG的药物释放浓度。将降解后所得SiO
2/CS-RBS自组装体分散在乙醇中,分别放置1、3、5、7、9、11、13和15天,采用格里斯反应和比色法测定不同降解时间内,该乙醇溶液中NO的浓度变化,计算SiO
2/CS-RBS中RBS释放的NO浓度。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些 改进和润饰也应视为本发明的保护范围。
Claims (1)
- 一种具有双药负载和分阶缓释功能的新型纳米纤维血管支架材料及其制备方法,其特征在于,该方法具体包括以下步骤:(1)称取2g相对分子质量为1万的壳聚糖CS,滴加2mL醋酸溶解,再加入50mL乙醇分散,在磁力搅拌下形成均质溶液;向该均质溶液中加入5mL正硅酸乙酯TEOS,磁力搅拌6h,制得略带粘性的透明TEOS/CS电纺前驱体溶液;(2)将上述的电纺前驱体溶液装入5mL塑料注射器,进行电纺丝;其中电压为5–20kV、纺丝固化距离为10–30cm、针头尺寸为0.2–0.8mm、喷射速度为0.2–0.8mm s –1、平移速度为50–500mm min –1;制得二氧化硅/壳聚糖纳米复合纤维材料SiO 2/CS,然后进行冷冻干燥处理,获得超弹性三维陶瓷纤维支架;(3)将上述的壳聚糖包覆的串珠状二氧化硅纳米纤维SiO 2/CS分散在乙醇中,在磁力搅拌下,逐滴添加一氧化氮供体陆森黑盐RBS即Fe 4S 3(NO) 7 –钠盐的水溶液,形成均质的SiO 2/CS-RBS自组装体溶液;(4)配制质量分数为10–30wt%聚乳酸PLA乙醇溶液,与上述的SiO 2/CS-RBS自组装体溶液混合,在磁力搅拌下形成均质溶液,将其作为电纺前驱体溶液,进行电纺丝,制得SiO 2/CS-RBS/PLA纳米复合纤维材料;(5)采用羧-胺偶联反应将上述的SiO 2/CS-RBS/PLA上聚乳酸PLA与免疫球白lgG抗体偶联,然后与5–25U mL –1青霉素PG的水溶液共同孵育6–24h,执行PG的药物负载,冷冻干燥处理,制得SiO 2/CS-RBS/lgG-PLA-PG新型纳米纤维血管支架材料备用;(6)将SiO 2/CS-RBS/lgG-PLA-PG放置1–15天,用乙醇轻微冲洗,冷冻干燥,产物用电子天平称重,对比不同放置时间产物的质量,计算出不同降解时间内,因聚乳酸PLG分解而造成的lgG-PLA-PG质量的损失量,测定PG的紫外-可见吸收光谱,特征吸收峰为210–215nm,计算PG的药物释放浓度;(7)将降解后所得SiO 2/CS-RBS自组装体分散在乙醇中,放置1–15天,采用格里斯反应和比色法测定不同降解时间内,该乙醇溶液中一氧化氮NO的浓度变化,计算SiO 2/CS-RBS中RBS释放的一氧化氮浓度。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010498412.8 | 2020-06-04 | ||
CN202010498412.8A CN111603616B (zh) | 2020-06-04 | 2020-06-04 | 具有双药负载和分阶缓释功能的纳米纤维血管支架材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021243796A1 true WO2021243796A1 (zh) | 2021-12-09 |
Family
ID=72196308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/100530 WO2021243796A1 (zh) | 2020-06-04 | 2020-07-07 | 具有双药负载和分阶缓释功能的新型纳米纤维血管支架材料及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111603616B (zh) |
WO (1) | WO2021243796A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115554270A (zh) * | 2022-08-03 | 2023-01-03 | 苏州麦克凯博医疗科技有限公司 | 一种具有pH刺激响应和缓释功能的载药复合材料及其制备方法和应用 |
CN115887422A (zh) * | 2022-12-31 | 2023-04-04 | 兰州交通大学 | 一种高乌甲素膝骨关节镇痛缓释贴及其制备方法 |
CN116139344A (zh) * | 2023-02-20 | 2023-05-23 | 武汉理工大学 | 一种促进成骨细胞生成的骨修复材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004112863A1 (en) * | 2003-06-20 | 2004-12-29 | Mcgill University | Biodegradable membrane-covered implant comprising chitosan |
CN101703813A (zh) * | 2009-11-25 | 2010-05-12 | 南开大学 | 利用内源性no供体构建抗凝血性血管支架材料的方法 |
CN103342759A (zh) * | 2013-07-16 | 2013-10-09 | 南开大学 | 酶催化可控释放一氧化氮的新型生物材料及其制备方法与应用 |
CN103520720A (zh) * | 2013-10-18 | 2014-01-22 | 上海交通大学 | 叶酸偶联羧甲基壳聚糖纳米粒作为光控释放no载体的制法 |
CN106913872A (zh) * | 2017-04-17 | 2017-07-04 | 山东省医学科学院药物研究所 | 阿霉素和no供体纳米复合材料及其制备方法 |
CN107141345A (zh) * | 2017-06-07 | 2017-09-08 | 南京师范大学 | 一种角蛋白生物大分子一氧化氮供体及其合成与应用 |
CN109172876A (zh) * | 2018-09-21 | 2019-01-11 | 杭州巴泰医疗器械有限公司 | 一种同时带有快速释放药物和缓慢释放药物涂层的新型药物支架 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090043380A1 (en) * | 2007-08-09 | 2009-02-12 | Specialized Vascular Technologies, Inc. | Coatings for promoting endothelization of medical devices |
CN104452106A (zh) * | 2014-11-20 | 2015-03-25 | 东华大学 | 一种复合硅基载药纳米粒子的纳米纤维膜的制备方法 |
CN105963778B (zh) * | 2016-06-07 | 2019-03-15 | 扬州市第一人民医院 | 一种内层释放no气体的多结构人工血管支架及其制备方法 |
-
2020
- 2020-06-04 CN CN202010498412.8A patent/CN111603616B/zh not_active Expired - Fee Related
- 2020-07-07 WO PCT/CN2020/100530 patent/WO2021243796A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004112863A1 (en) * | 2003-06-20 | 2004-12-29 | Mcgill University | Biodegradable membrane-covered implant comprising chitosan |
CN101703813A (zh) * | 2009-11-25 | 2010-05-12 | 南开大学 | 利用内源性no供体构建抗凝血性血管支架材料的方法 |
CN103342759A (zh) * | 2013-07-16 | 2013-10-09 | 南开大学 | 酶催化可控释放一氧化氮的新型生物材料及其制备方法与应用 |
CN103520720A (zh) * | 2013-10-18 | 2014-01-22 | 上海交通大学 | 叶酸偶联羧甲基壳聚糖纳米粒作为光控释放no载体的制法 |
CN106913872A (zh) * | 2017-04-17 | 2017-07-04 | 山东省医学科学院药物研究所 | 阿霉素和no供体纳米复合材料及其制备方法 |
CN107141345A (zh) * | 2017-06-07 | 2017-09-08 | 南京师范大学 | 一种角蛋白生物大分子一氧化氮供体及其合成与应用 |
CN109172876A (zh) * | 2018-09-21 | 2019-01-11 | 杭州巴泰医疗器械有限公司 | 一种同时带有快速释放药物和缓慢释放药物涂层的新型药物支架 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115554270A (zh) * | 2022-08-03 | 2023-01-03 | 苏州麦克凯博医疗科技有限公司 | 一种具有pH刺激响应和缓释功能的载药复合材料及其制备方法和应用 |
CN115887422A (zh) * | 2022-12-31 | 2023-04-04 | 兰州交通大学 | 一种高乌甲素膝骨关节镇痛缓释贴及其制备方法 |
CN115887422B (zh) * | 2022-12-31 | 2024-06-07 | 兰州交通大学 | 一种高乌甲素膝骨关节镇痛缓释贴及其制备方法 |
CN116139344A (zh) * | 2023-02-20 | 2023-05-23 | 武汉理工大学 | 一种促进成骨细胞生成的骨修复材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111603616B (zh) | 2021-04-30 |
CN111603616A (zh) | 2020-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021243796A1 (zh) | 具有双药负载和分阶缓释功能的新型纳米纤维血管支架材料及其制备方法 | |
CN104623740B (zh) | 一种药物球囊及其制备方法 | |
US8883190B2 (en) | Urologic devices incorporating collagen inhibitors | |
US8021678B2 (en) | Implantable medical device with polymer coating in a surface area to volume ratio providing surface erosion characteristics | |
RU2008120126A (ru) | Захват эндотелиальных клеток-предшественников элюирующим лекарственные средства имплантируемым медицинским устройством | |
CN102772831A (zh) | 一种可降解载药支架 | |
JP2008526371A (ja) | ブレンドを含む生分解性コーティング組成物 | |
WO2010127584A1 (zh) | 一种凹槽携载式涂层可降解型药物洗脱支架 | |
CN109939271B (zh) | 一种医用生物可降解锌合金支架的涂层结构及其制备方法 | |
EP3818995A1 (en) | Degradable spiral coated stent with controllable gradient, preparation method therefor and use thereof | |
CN101365447A (zh) | 用于治疗再狭窄病变的含有纳米粒子的药物组合物 | |
CN112704686B (zh) | 磷酸钙-雷帕霉素复合药物制备方法、药物涂层球囊制作方法及药物涂层球囊 | |
CN102091355A (zh) | 一种复合涂层冠脉药物洗脱支架及其制备方法 | |
CN101279112A (zh) | 一种表面涂覆有plga共混物药物洗脱性涂层的血管支架 | |
CN111298205A (zh) | 一种载药复合疝气补片 | |
US20230270680A1 (en) | Bioactivatable devices and related methods | |
AU2008202283A1 (en) | Coating agent for drug releasing stent, preparation method thereof and drug releasing stent coated therewith | |
CN101007187A (zh) | 一种复合药物洗脱支架及其药物涂层的制备方法 | |
WO2020087896A1 (zh) | 一种具有抗菌活性的医用可降解聚氨酯及其用途 | |
CN210301826U (zh) | 一种医用生物可降解锌合金支架的涂层结构 | |
CN109172073A (zh) | 一种控释生长因子的静电纺丝纳米纤维膜及食管覆膜记忆支架 | |
CN113289075B (zh) | 一种可降解的组合物及其制备方法和应用 | |
RU2723588C1 (ru) | Способ получения биомедицинского материала "никелид титана-полилактид" с возможностью контролируемой доставки лекарственных средств | |
CN114796627A (zh) | 一种基于白蛋白的双面血管支架及其制备方法 | |
CN117244106A (zh) | 一种完全可吸收防粘连的疝修补补片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20938942 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20938942 Country of ref document: EP Kind code of ref document: A1 |