WO2021238481A1 - Oled显示基板及其制作方法、显示装置 - Google Patents

Oled显示基板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2021238481A1
WO2021238481A1 PCT/CN2021/087438 CN2021087438W WO2021238481A1 WO 2021238481 A1 WO2021238481 A1 WO 2021238481A1 CN 2021087438 W CN2021087438 W CN 2021087438W WO 2021238481 A1 WO2021238481 A1 WO 2021238481A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
oled display
display substrate
electrode
Prior art date
Application number
PCT/CN2021/087438
Other languages
English (en)
French (fr)
Inventor
李伟
夏晶晶
周斌
苏同上
郭清化
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/624,735 priority Critical patent/US20220246709A1/en
Publication of WO2021238481A1 publication Critical patent/WO2021238481A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations

Definitions

  • the present disclosure relates to the field of display technology, in particular to an OLED display substrate, a manufacturing method thereof, and a display device.
  • OLED Organic Electro-luminescent Display
  • OLED has many advantages such as self-luminescence, low working voltage, lightness and thinness, flexibility, and high color saturation, and has been widely used in fields such as display and lighting.
  • the manufacturing process of an organic electroluminescent device includes: forming a thin film transistor (TFT) on a base substrate, and sequentially forming an anode, a pixel defining layer, a light emitting layer, and a cathode on the base substrate on which the thin film transistor is formed. Wherein, the anode is electrically connected to the drain of the thin film transistor.
  • TFT thin film transistor
  • the technical problem to be solved by the present disclosure is to provide an OLED display substrate, a manufacturing method thereof, and a display device, which can ensure the display effect of the display device.
  • an OLED display substrate which includes a base substrate and a thin film transistor, a first electrode, and a light-emitting layer sequentially disposed on the base substrate, the thin film transistor including an active layer; the OLED display substrate further It includes a light-shielding layer arranged between the active layer and the first electrode, and the light-shielding layer is multiplexed as an insulating layer of the OLED display substrate.
  • the light shielding layer has a transmittance of less than 10% for light with a wavelength below 600 nm.
  • the OLED display substrate includes a flat layer located between the active layer and the first electrode, the light-shielding layer is multiplexed as the flat layer, and the flat layer uses light-shielding organic silicon oxide. Alkyl resin.
  • the thickness of the flat layer is 2-4 um.
  • the light-shielding organosiloxane resin includes a transparent organosiloxane resin and light-absorbing particles doped in the transparent organosiloxane resin.
  • the weight percentage of the light-absorbing particles to the transparent organosiloxane resin is 1 ⁇ 2:40.
  • the light-absorbing particles use at least one of the following: carbon black, graphene, and carbon nanotubes.
  • the OLED display substrate further includes alignment marks arranged at the periphery of the display area, and the alignment marks and the flat layer are made of the same material.
  • the embodiment of the present disclosure also provides a display panel including the OLED display substrate as described above.
  • the embodiment of the present disclosure also provides a display device, which includes the above-mentioned OLED display substrate.
  • the embodiments of the present disclosure also provide a manufacturing method of an OLED display substrate, which includes sequentially forming a thin film transistor, a first electrode, and a light-emitting layer on a base substrate, the thin film transistor includes an active layer, and the manufacturing method further includes:
  • a light shielding layer is formed between the active layer and the first electrode, and the light shielding layer is multiplexed as an insulating layer of the OLED display substrate.
  • the OLED display substrate includes a flat layer between the active layer and the first electrode, and forming the flat layer includes:
  • the light-absorbing particles are mixed into the organosiloxane resin solution, and after stirring, the organosiloxane resin solution is coated on the base substrate on which the thin film transistor is formed, and the flat layer is formed after curing.
  • the weight percentage of the light-absorbing particles to the organosiloxane resin is 1-2:40.
  • the light-absorbing particles use at least one of the following: carbon black, graphene, and carbon nanotubes.
  • the manufacturing method further includes:
  • the flat layer is patterned to form a pattern of the flat layer and an alignment mark located at the periphery of the display area.
  • forming the first electrode includes:
  • Coat photoresist on the first electrode material layer use the alignment mark to align the mask with the base substrate, and use the mask as a shield to align the photoresist Expose, and form photoresist retention area and photoresist removal area after development;
  • the first electrode material layer in the photoresist removal area is etched, and the remaining photoresist is stripped to form the first electrode.
  • the OLED display substrate further includes a light-shielding layer arranged between the active layer and the first electrode.
  • the light-shielding layer can shield the light emitted by the light-emitting layer to prevent the light emitted by the light-emitting layer from hitting the active layer and affect The characteristics of thin film transistors, in this way, stabilize the light-emitting characteristics of the OLED display substrate and increase the light-emitting stability; in addition, the light-shielding layer can block the light emitted by the light-emitting layer while also shielding the external environment incident on the OLED display substrate.
  • the light shielding layer is made of an insulating layer, which can prevent the light shielding layer from being made of metal, which is easy to short-circuit with other conductive patterns, and will affect other conductive patterns.
  • the problem of the influence caused by the electrical signal transmitted on the OLED display substrate can further ensure the display performance of the OLED display substrate; in addition, the light shielding layer is multiplexed as the insulating layer of the OLED display substrate, so there is no need to specially make the light shielding layer through additional manufacturing processes, which can reduce the production The number of processes for the OLED display substrate shortens the production cycle of the OLED display substrate and reduces the production cost of the OLED display substrate.
  • FIG. 1 is a schematic diagram of the structure of an OLED display substrate according to an embodiment of the disclosure
  • FIG. 2 is a schematic plan view of an OLED display substrate according to an embodiment of the disclosure.
  • 3 to 7 are schematic diagrams of the process of manufacturing an OLED display substrate according to an embodiment of the disclosure.
  • the embodiments of the present disclosure provide an OLED display substrate, a manufacturing method thereof, and a display device, which can ensure the display effect of the display device.
  • the embodiment of the present disclosure provides an OLED display substrate, including a base substrate and a thin film transistor, a first electrode, and a light emitting layer sequentially arranged on the base substrate, the thin film transistor including an active layer; the OLED display
  • the substrate further includes a light shielding layer disposed between the active layer and the first electrode, and the light shielding layer is multiplexed as an insulating layer of the OLED display substrate.
  • the OLED display substrate further includes a light-shielding layer arranged between the active layer and the first electrode.
  • the light-shielding layer can shield the light emitted by the light-emitting layer and prevent the light emitted by the light-emitting layer from reaching the active layer. In this way, the light-emitting characteristics of the OLED display substrate are stabilized, and the light-emitting stability is increased; in addition, the light-shielding layer can block the light emitted by the light-emitting layer, and at the same time, it can also protect the outside world incident to the OLED display substrate.
  • the light shielding layer is made of an insulating layer, which can prevent the light shielding layer from being made of metal and easily short-circuit with other conductive patterns, and will be conductive to other The problem of the influence of the electrical signal transmitted on the pattern can further ensure the display performance of the OLED display substrate; in addition, the light-shielding layer is multiplexed as the insulating layer of the OLED display substrate, so there is no need to specially make the light-shielding layer through additional manufacturing processes, which can reduce The number of processes for manufacturing the OLED display substrate shortens the production cycle of the OLED display substrate, and reduces the production cost of the OLED display substrate.
  • the light-shielding layer should be able to shield light with a wavelength below 600nm.
  • the light-shielding layer has a transmittance of less than 10% for light with a wavelength below 600nm, which can effectively prevent light from affecting the film.
  • the influence of transistor performance stabilizes the light-emitting characteristics of the OLED display substrate and increases the light-emitting stability.
  • the light shielding layer also has a shielding effect on other wavelengths of light.
  • the OLED display substrate includes:
  • the light-shielding metal layer 2 provided on the base substrate 1;
  • the buffer layer 3 on the side of the light-shielding metal layer 2 away from the base substrate 1;
  • the active layer 4 located on the buffer layer 3;
  • the gate insulating layer 5 located on the side of the active layer 4 away from the base substrate;
  • the gate 6 located on the side of the gate insulating layer 5 away from the base substrate 1;
  • the source electrode 8 and the drain electrode 9 located on the side of the interlayer insulating layer 7 away from the base substrate 1;
  • the flat layer 11 located on the side of the passivation layer 10 away from the base substrate 1;
  • the first electrode 13 located on the side of the flat layer 11 away from the base substrate 1;
  • the first electrode 13 may be an anode or a cathode.
  • the insulating layer located between the active layer and the first electrode includes a gate insulating layer 5, an interlayer insulating layer 7, a passivation layer 10, and a flat layer 11.
  • these insulating layers are all transparent insulating layers.
  • one of the gate insulating layer 5, the interlayer insulating layer 7, the passivation layer 10, and the flattening layer 11 can be light-shielding, so as to block the light and prevent the light from irradiating the active layer of the thin film transistor. Layer up.
  • these insulating layers are designed as light-shielding insulating layers, the light transmittance can be further reduced and the performance of the thin film transistor can be ensured.
  • the light-shielding layer may be a flat layer, and the thickness of the flat layer is relatively large.
  • the flat layer is designed as a light-shielding layer, which can effectively shield light.
  • the flat layer is designed to be light-shielding, it is also possible to use light-shielding flat layer materials to make alignment marks.
  • the production methods of the light-emitting layer of OLED display substrates include vacuum evaporation technology and inkjet printing technology.
  • Vacuum evaporation technology has disadvantages such as low material utilization rate, only suitable for small molecule light-emitting materials, large equipment investment, and not suitable for large-size products.
  • Inkjet printing technology is suitable for large-molecule luminescent materials and small-molecule luminescent materials, with high material utilization, low equipment costs, high productivity, and easier production of large-scale and large-size products.
  • inkjet printing technology requires relatively high flatness of the flat layer. If the flatness of the flat layer is not high, the inkjet printing technology will not be able to form a uniform thickness of the light-emitting layer in the pixel area, and the uneven thickness of the light-emitting layer will cause light emission The unevenness seriously affects the display effect.
  • an organosiloxane resin with better leveling properties can be used to make the flat layer, which can meet the flatness requirements of the inkjet printing technology for the flat layer.
  • Ordinary organosiloxane resin is a transparent material and has no light-shielding function.
  • light-absorbing particles can be added to the ordinary organosiloxane resin to make the organosiloxane resin have light-shielding properties.
  • the siloxane resin makes a flat layer, and the flat layer is multiplexed as a light-shielding layer.
  • the light-absorbing particles can be specifically at least one of the following: carbon black, graphene, and carbon nanotubes.
  • the light-absorbing particles are doped in a transparent organosiloxane resin solution and stirred uniformly, and coated on the substrate for curing. Flat layer with shading performance.
  • the light-absorbing particles are not limited to the above-mentioned materials, and other materials with light-absorbing properties can also be used.
  • the weight percentage of the light-absorbing particles to the transparent organosiloxane resin may be 1 to 2:40, and the above ratio can make the light-shielding organosiloxane resin
  • the transmittance to light with a wavelength of 600 nm or less is less than 10%.
  • the thickness of the flat layer can be 2-4 um.
  • the light can be effectively blocked to prevent the light from irradiating the active layer of the thin film transistor, and it can have good flatness, which provides conditions for inkjet printing technology.
  • the OLED display substrate of this embodiment is a top reflective OLED display substrate.
  • the first electrode is generally made of opaque reflective metal.
  • the entire layer of reflective metal is sputtered on the substrate, and the reflective metal is coated with light.
  • a mask is used to expose and develop the photoresist to form a pattern of the photoresist, and the reflective metal is etched using the pattern of the photoresist as a mask to form a pattern of the first electrode.
  • the reflective metal made in the whole layer will cover the alignment marks made before, making it difficult to align during exposure and easy to occur.
  • the counterpoint alarm affects the production cycle and has a serious impact on the quality of the display substrate.
  • the alignment mark can be made of the same material as the flat layer, and the thickness of the flat layer is much larger than the thickness of the reflective metal. In this way, after making the alignment mark with the same material of the flat layer, even if the reflective metal covers the alignment mark , because the thickness of the alignment mark is much greater than that of the reflective metal, the outline of the alignment mark can still be clearly exposed, so that when the photoresist on the reflective metal is exposed and developed, the alignment mark can be used to perform the mask on the mask. Alignment ensures the alignment accuracy of the mask plate, thereby ensuring the product quality of the display substrate. In order not to affect the display of the display substrate, as shown in FIG. 2, the alignment mark 15 is provided on the periphery of the display area (the part within the dashed line frame).
  • the embodiment of the present disclosure also provides a display panel including the OLED display substrate as described above.
  • the embodiment of the present disclosure also provides a display device, which includes the above-mentioned OLED display substrate.
  • the display device includes but is not limited to: radio frequency unit, network module, audio output unit, input unit, sensor, display unit, user input unit, interface unit, memory, processor, power supply and other components.
  • the structure of the foregoing display device does not constitute a limitation on the display device, and the display device may include more or less of the foregoing components, or combine certain components, or arrange different components.
  • the display device includes, but is not limited to, a display, a mobile phone, a tablet computer, a television, a wearable electronic device, a navigation display device, and the like.
  • the display device may be any product or component with a display function, such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc., wherein the display device also includes a flexible circuit board, a printed circuit board, and a backplane.
  • a display function such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc.
  • the display device also includes a flexible circuit board, a printed circuit board, and a backplane.
  • the embodiments of the present disclosure also provide a manufacturing method of an OLED display substrate, which includes sequentially forming a thin film transistor, a first electrode, and a light-emitting layer on a base substrate, the thin film transistor includes an active layer, and the manufacturing method further includes:
  • a light shielding layer is formed between the active layer and the first electrode, and the light shielding layer is multiplexed as an insulating layer of the OLED display substrate.
  • the OLED display substrate further includes a light-shielding layer arranged between the active layer and the first electrode.
  • the light-shielding layer can shield the light emitted by the light-emitting layer and prevent the light emitted by the light-emitting layer from reaching the active layer. In this way, the light-emitting characteristics of the OLED display substrate are stabilized, and the light-emitting stability is increased; in addition, the light-shielding layer can block the light emitted by the light-emitting layer, and at the same time, it can also protect the outside world incident to the OLED display substrate.
  • the light shielding layer is made of an insulating layer, which can prevent the light shielding layer from being made of metal and easily short-circuit with other conductive patterns, and will be conductive to other The problem of the influence of the electrical signal transmitted on the pattern can further ensure the display performance of the OLED display substrate; in addition, the light-shielding layer is multiplexed as the insulating layer of the OLED display substrate, so there is no need to specially make the light-shielding layer through additional manufacturing processes, which can reduce The number of processes for manufacturing the OLED display substrate shortens the production cycle of the OLED display substrate, and reduces the production cost of the OLED display substrate.
  • the light-shielding layer should be able to shield light with a wavelength below 600nm.
  • the light-shielding layer has a transmittance of less than 10% for light with a wavelength below 600nm, which can effectively prevent light from affecting the film.
  • the influence of transistor performance stabilizes the light-emitting characteristics of the OLED display substrate and increases the light-emitting stability.
  • the light shielding layer also has a shielding effect on other wavelengths of light.
  • the OLED display substrate includes: a base substrate 1; a light-shielding metal layer 2 provided on the base substrate 1; a buffer layer on the side of the light-shielding metal layer 2 away from the base substrate 1 3; Active layer 4 located on the buffer layer 3; Gate insulating layer 5 located on the side of the active layer 4 away from the base substrate; Gate 6 located on the side of the gate insulating layer 5 away from the base substrate 1; Located on the gate 6
  • the interlayer insulating layer 7 on the side away from the base substrate 1; the source 8 and the drain 9 on the side of the interlayer insulating layer 7 away from the base substrate 1; the source 8 and the drain 9 are away from the base substrate 1
  • the passivation layer 10 on one side; the flat layer 11 located on the side of the passivation layer 10 away from the base substrate 1; the first electrode 13 located on the side of the flat layer 11 away from the base substrate 1; the first electrode 13 located away from the substrate
  • the insulating layer located between the active layer and the first electrode includes the gate insulating layer 5, the interlayer insulating layer 7, the passivation layer 10 and the flat layer 11.
  • these insulating layers are all transparent insulating layers.
  • one of the gate insulating layer 5, the interlayer insulating layer 7, the passivation layer 10, and the planarization layer 11 may be light-shielding, so as to block the light and prevent the light from irradiating the active layer of the thin film transistor.
  • these insulating layers are designed as light-shielding insulating layers, the light transmittance can be further reduced and the performance of the thin film transistor can be ensured.
  • Forming the flat layer includes:
  • the light-absorbing particles are mixed into the organosiloxane resin solution, and after stirring, the organosiloxane resin solution is coated on the base substrate on which the thin film transistor is formed, and the flat layer is formed after curing.
  • the light-absorbing particles may use at least one of the following: carbon black, graphene, and carbon nanotubes.
  • the light-absorbing particles are doped in a transparent organosiloxane resin solution and stirred uniformly, and then coated on the substrate for curing to obtain a flat layer with light-shielding properties.
  • the light-absorbing particles are not limited to the above materials, and other materials with light-absorbing properties can also be used.
  • the weight percentage of the light-absorbing particles to the organosiloxane resin may be 1 to 2:40, and the above ratio can make the light-shielding organosiloxane resin have a wavelength of The transmittance of light below 600nm is less than 10%.
  • the flat layer is designed to be light-shielding, and the light-shielding flat layer material can also be used to make alignment marks.
  • the OLED display substrate of this embodiment is a top reflective OLED display substrate.
  • the first electrode is generally made of opaque reflective metal.
  • the entire layer of reflective metal is sputtered on the substrate, and the reflective metal is coated with light.
  • a mask is used to expose and develop the photoresist to form a pattern of the photoresist, and the reflective metal is etched using the pattern of the photoresist as a mask to form a pattern of the first electrode.
  • the reflective metal made in the whole layer will cover the alignment marks made before, making it difficult to align during exposure and easy to occur.
  • the counterpoint alarm affects the production cycle and has a serious impact on the quality of the display substrate.
  • the alignment mark can be made of the same material as the flat layer, and the thickness of the flat layer is much larger than the thickness of the reflective metal. In this way, after making the alignment mark with the same material of the flat layer, even if the reflective metal covers the alignment mark , because the thickness of the alignment mark is much greater than that of the reflective metal, the outline of the alignment mark can still be clearly exposed, so that when the photoresist on the reflective metal is exposed and developed, the alignment mark can be used to perform the mask on the mask. Alignment ensures the alignment accuracy of the mask plate, thereby ensuring the product quality of the display substrate. Therefore, after the flat layer is formed after curing, the manufacturing method further includes:
  • the flat layer is patterned to form a pattern of the flat layer and an alignment mark located at the periphery of the display area. In this way, when the first electrode is formed later, the alignment mark can be used to align the mask to ensure the alignment accuracy of the mask, thereby ensuring the product quality of the display substrate.
  • the manufacturing method of the OLED display substrate of this embodiment includes the following steps:
  • Step 1 As shown in Fig. 3, a light-shielding metal layer 2, a buffer layer 3, an active layer 4, a gate insulating layer 5, a gate 6, an interlayer insulating layer 7, a source 8, a drain are formed on the base substrate 1. Pole 9 and passivation layer 10;
  • the base substrate 1 may be a glass substrate or a quartz substrate.
  • the light-shielding metal layer 2 can be Cu, Al, Ag, Mo, Cr, Nd, Ni, Mn, Ti, Ta, W and other metals and alloys of these metals.
  • the light-shielding metal layer 2 can be a single-layer structure Or multilayer structure, multilayer structure such as Cu ⁇ Mo, Ti ⁇ Cu ⁇ Ti, Mo ⁇ Al ⁇ Mo, etc.
  • the buffer layer 3 can be selected from oxides, nitrides or oxynitride compounds.
  • a layer of semiconductor material can be deposited on the buffer layer 3 to form the active layer 4.
  • the PECVD method can be used to deposit a thickness of
  • the gate insulating layer 5 can be selected from oxides, nitrides or oxynitride compounds.
  • the gate metal layer can be Cu, Al, Ag, Mo, Cr, Nd, Ni, Mn, Ti, Ta, W and other metals and alloys of these metals.
  • the gate metal layer can be a single layer structure or multiple layers Structure, multilayer structure such as Cu ⁇ Mo, Ti ⁇ Cu ⁇ Ti, Mo ⁇ Al ⁇ Mo, etc.
  • the gate metal layer Coat a layer of photoresist on the gate metal layer, and use a mask to expose the photoresist so that the photoresist forms a photoresist unreserved area and a photoresist reserved area, where the photoresist reserved area corresponds to In the area where the pattern of the gate metal layer is located, the unreserved area of the photoresist corresponds to the area other than the above pattern; the development process is performed, the photoresist in the unreserved area of the photoresist is completely removed, and the photoresist in the remaining area of the photoresist The thickness remains the same; the gate metal layer in the unreserved area of the photoresist is completely etched by the etching process, and the remaining photoresist is stripped to form a pattern of the gate metal layer.
  • the pattern of the gate metal layer includes the gate 6.
  • the interlayer insulating layer 7 can be selected from oxides, nitrides or oxynitride compounds.
  • the source and drain metal layers can be Cu, Al, Ag, Mo, Cr, Nd, Ni, Mn, Ti, Ta, W and other metals and alloys of these metals.
  • the source and drain metal layers can be a single layer structure Or multilayer structure, multilayer structure such as Cu ⁇ Mo, Ti ⁇ Cu ⁇ Ti, Mo ⁇ Al ⁇ Mo, etc.
  • the unreserved photoresist area corresponds to the area other than the above pattern; the development process, the photoresist in the unreserved area of the photoresist is completely removed, and the photoresist in the remaining area is completely removed.
  • the thickness of the resist remains unchanged; the source and drain metal layers in the unreserved area of the photoresist are completely etched by the etching process, and the remaining photoresist is stripped to form the pattern of the source and drain metal layers.
  • the pattern of the source and drain metal layers includes the driver The source 8 and drain 9 of the thin film transistor.
  • the passivation layer 10 can be selected from oxides, nitrides or oxynitride compounds, such as SiO.
  • Step 2 As shown in FIG. 4, a flat layer 11 that shields light is formed;
  • the light-absorbing particles are mixed into the organosiloxane resin solution, and after stirring uniformly, the organosiloxane resin solution is coated on the base substrate 1 on which the thin film transistor is formed, and after curing through the pre-baking and post-baking processes
  • the flatness layer 11 is formed, and the flatness of the flatness layer 11 can meet the flatness requirements of inkjet printing, and the transmittance of the flatness layer 11 to light with a wavelength below 600 nm is less than 10%.
  • Step 3 As shown in FIG. 5, a via hole 12 penetrating the passivation layer 10 and the planarization layer 11 is formed;
  • a photoresist can be coated on the flat layer 11, and the photoresist can be exposed and developed to form a photoresist retention area and a photoresist removal area.
  • the flat layer 11 and the passivation layer in the photoresist removal area 10 Perform dry etching to form via holes 12, and then strip the photoresist.
  • the material of the flat layer is also used to form an alignment mark 15 as shown in FIG. 2 on the periphery of the display area.
  • Step 4 As shown in FIG. 6, a first electrode 13 is formed
  • a first electrode material layer may be formed on the flat layer 11, a photoresist may be coated on the first electrode material layer, and the alignment mark 15 may be used to connect the mask to the base substrate 1. Alignment, using the mask as a shield, exposing the photoresist, and forming a photoresist retention area and a photoresist removal area after development; etching the first electrode material layer in the photoresist removal area Etching and stripping the remaining photoresist to form the first electrode 13.
  • the first electrode 13 may be an anode, and the first electrode material may be a reflective metal, such as Al or Ag.
  • Step 5 As shown in FIG. 7, a pixel defining layer 14 is formed
  • a layer of photosensitive material may be formed on the base substrate 1 that has undergone step 4, and the photosensitive material layer may be exposed and developed to form a pattern of the pixel defining layer 14.
  • the pixel defining layer 14 defines the pixel opening area.
  • the light-emitting layer is formed by inkjet printing technology in the pixel opening area.
  • the OLED display substrate prepared in this embodiment can not only ensure the flatness of the flat layer and meet the needs of inkjet printing technology, but also solve the problem of instability of the active layer of the thin film transistor after being exposed to light; in addition, it is still in the display area. Alignment marks are formed on the periphery to ensure the normal progress of the patterning process of the first electrode.
  • sequence number of each step cannot be used to limit the sequence of each step.
  • sequence of each step is changed without creative work. It is also within the protection scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供了一种OLED显示基板及其制作方法、显示装置,属于显示技术领域。其中,OLED显示基板,包括衬底基板和依次设置在所述衬底基板上的薄膜晶体管、第一电极和发光层,所述薄膜晶体管包括有源层;所述OLED显示基板还包括设置在所述有源层和所述第一电极之间的遮光层,所述遮光层复用为所述OLED显示基板的绝缘层。本公开的技术方案能够保证显示装置的显示效果。

Description

OLED显示基板及其制作方法、显示装置 技术领域
本公开涉及显示技术领域,特别是指一种OLED显示基板及其制作方法、显示装置。
背景技术
有机电致发光器件(Organic Electro-luminescent Display,简称OLED)因具有自发光、工作电压低、轻薄、可柔性化以及色彩饱和度高等诸多优点,在显示、照明等领域得到广泛的应用。
有机电致发光器件的制作过程包括:在衬底基板上形成薄膜晶体管(Thin Film Transistor,简称TFT),在形成有薄膜晶体管的衬底基板上依次形成阳极、像素界定层、发光层以及阴极,其中,阳极与薄膜晶体管的漏极电连接。
然而,由于发光层发出的光中部分光经过有机电致发光器件中膜层的折射与反射后会射到薄膜晶体管的有源层上,从而会影响薄膜晶体管的特性,造成薄膜晶体管阈值电压(Vth)的不稳定和关态电流(Ioff)的增加,影响发光效果。尤其是现有的低温多晶硅(Low temperature Poly-silicon,简称LTPS)薄膜晶体管,由于低温多晶硅对光非常敏感,发光层发出的光射到低温多晶硅层会引起光生电子产生,从而会显著影响薄膜晶体管的特性,进而影响显示装置的显示效果。
发明内容
本公开要解决的技术问题是提供一种OLED显示基板及其制作方法、显示装置,能够保证显示装置的显示效果。
为解决上述技术问题,本公开的实施例提供技术方案如下:
一方面,提供一种OLED显示基板,包括衬底基板和依次设置在所述衬底基板上的薄膜晶体管、第一电极和发光层,所述薄膜晶体管包括有源层;所述OLED显示基板还包括设置在所述有源层和所述第一电极之间的遮光层,所述遮光层复用为所述OLED显示基板的绝缘层。
一些实施例中,所述遮光层对波长为600nm以下的光线的透过率低于10%。
一些实施例中,所述OLED显示基板包括位于所述有源层和所述第一电极之间的平坦层,所述遮光层复用为所述平坦层,所述平坦层采用遮光有机硅氧烷树脂。
一些实施例中,所述平坦层的厚度为2-4um。
一些实施例中,所述遮光有机硅氧烷树脂包括透明有机硅氧烷树脂和掺杂在所述透明有机硅氧烷树脂中的吸光粒子。
一些实施例中,所述遮光有机硅氧烷树脂中,所述吸光粒子与所述透明有机硅氧烷树脂的重量百分比为1~2:40。
一些实施例中,所述吸光粒子采用以下至少一种:炭黑、石墨烯和碳纳米管。
一些实施例中,所述OLED显示基板还包括设置在显示区域周边的对位标记,所述对位标记与所述平坦层采用相同的材料制作。
本公开实施例还提供了一种显示面板,包括如上所述的OLED显示基板。
本公开实施例还提供了一种显示装置,包括如上所述的OLED显示基板。
本公开实施例还提供了一种OLED显示基板的制作方法,包括在衬底基板上依次形成薄膜晶体管、第一电极和发光层,所述薄膜晶体管包括有源层,所述制作方法还包括:
在所述有源层和所述第一电极之间形成遮光层,所述遮光层复用为所述OLED显示基板的绝缘层。
一些实施例中,所述OLED显示基板包括位于所述有源层和所述第一电极之间的平坦层,形成所述平坦层包括:
将吸光粒子混入有机硅氧烷树脂溶液中,搅拌均匀后将有机硅氧烷树脂溶液涂覆在形成有所述薄膜晶体管的衬底基板上,固化后形成所述平坦层。
一些实施例中,所述有机硅氧烷树脂溶液中,所述吸光粒子与有机硅氧烷树脂的重量百分比为1~2:40。
一些实施例中,所述吸光粒子采用以下至少一种:炭黑、石墨烯和碳纳 米管。
一些实施例中,固化后形成所述平坦层之后,所述制作方法还包括:
对所述平坦层进行构图形成平坦层的图形和位于显示区域周边的对位标记。
一些实施例中,形成所述第一电极包括:
在所述平坦层上形成第一电极材料层;
在所述第一电极材料层上涂覆光刻胶,利用所述对位标记将掩膜板与所述衬底基板进行对位,以所述掩膜板为遮挡,对所述光刻胶进行曝光,显影后形成光刻胶保留区域和光刻胶去除区域;
对光刻胶去除区域的第一电极材料层进行刻蚀,剥离剩余的光刻胶,形成所述第一电极。
本公开的实施例具有以下有益效果:
上述方案中,OLED显示基板还包括设置在有源层和第一电极之间的遮光层,遮光层可以对发光层发出的光进行遮挡,防止发光层发出的光射到有源层上,影响薄膜晶体管特性,这样一来,稳定了OLED显示基板的发光特性,增加发光稳定性;此外,遮光层在对发光层发出的光进行遮挡的同时,还可以对入射至OLED显示基板内的外界环境光进行阻挡,防止外界环境光射到有源层上,影响薄膜晶体管特性;另外,遮光层采用绝缘层,这样可以避免遮光层采用金属制作容易与其他导电图形发生短路,并且会对其他导电图形上传输的电信号产生影响的问题,能够进一步保证OLED显示基板的显示性能;再者,遮光层复用为OLED显示基板的绝缘层,这样无需通过额外的制作工艺专门制作遮光层,能够减少制作OLED显示基板的工艺次数,缩短OLED显示基板的生产周期,降低OLED显示基板的生产成本。
附图说明
图1为本公开实施例OLED显示基板的结构示意图;
图2为本公开实施例OLED显示基板的平面示意图;
图3-图7为本公开实施例制作OLED显示基板的流程示意图。
附图标记
1衬底基板
2遮光金属层
3缓冲层
4有源层
5栅绝缘层
6栅极
7层间绝缘层
8源极
9漏极
10钝化层
11平坦层
12过孔
13阳极
14像素界定层
15对位标记
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开实施例提供一种OLED显示基板及其制作方法、显示装置,能够保证显示装置的显示效果。
本公开的实施例提供一种OLED显示基板,包括衬底基板和依次设置在所述衬底基板上的薄膜晶体管、第一电极和发光层,所述薄膜晶体管包括有源层;所述OLED显示基板还包括设置在所述有源层和所述第一电极之间的遮光层,所述遮光层复用为所述OLED显示基板的绝缘层。
本实施例中,OLED显示基板还包括设置在有源层和第一电极之间的遮光层,遮光层可以对发光层发出的光进行遮挡,防止发光层发出的光射到有 源层上,影响薄膜晶体管特性,这样一来,稳定了OLED显示基板的发光特性,增加发光稳定性;此外,遮光层在对发光层发出的光进行遮挡的同时,还可以对入射至OLED显示基板内的外界环境光进行阻挡,防止外界环境光射到有源层上,影响薄膜晶体管特性;另外,遮光层采用绝缘层,这样可以避免遮光层采用金属制作容易与其他导电图形发生短路,并且会对其他导电图形上传输的电信号产生影响的问题,能够进一步保证OLED显示基板的显示性能;再者,遮光层复用为OLED显示基板的绝缘层,这样无需通过额外的制作工艺专门制作遮光层,能够减少制作OLED显示基板的工艺次数,缩短OLED显示基板的生产周期,降低OLED显示基板的生产成本。
经验证发现,波长为600nm以下的光线对薄膜晶体管的有源层的性能影响较大,波长为600nm以下的光线照射到薄膜晶体管的有源层上,将会显著影响薄膜晶体管的阈值电压和关态电流,因此,遮光层应当能够对波长为600nm以下的光线进行遮挡,具体地,所述遮光层对波长为600nm以下的光线的透过率可以低于10%,这样可以有效避免光线对薄膜晶体管性能的影响,稳定OLED显示基板的发光特性,增加发光稳定性。当然,遮光层对其他波长的光线也有遮挡作用。
一具体实施例中,如图1所示,OLED显示基板包括:
衬底基板1;
设置在衬底基板1上的遮光金属层2;
位于遮光金属层2远离衬底基板1一侧的缓冲层3;
位于缓冲层3上的有源层4;
位于有源层4远离衬底基板一侧的栅绝缘层5;
位于栅绝缘层5远离衬底基板1一侧的栅极6;
位于栅极6远离衬底基板1一侧的层间绝缘层7;
位于层间绝缘层7远离衬底基板1一侧的源极8和漏极9;
位于源极8和漏极9远离衬底基板1一侧的钝化层10;
位于钝化层10远离衬底基板1一侧的平坦层11;
位于平坦层11远离衬底基板1一侧的第一电极13;
位于第一电极13远离衬底基板1一侧的像素界定层14。
其中,第一电极13可以为阳极也可以为阴极。
本实施例中,位于有源层和第一电极之间的绝缘层包括栅绝缘层5、层间绝缘层7、钝化层10和平坦层11,相关技术中,这些绝缘层都是透明绝缘层,本实施例中,栅绝缘层5、层间绝缘层7、钝化层10和平坦层11中的一者可以为遮光的,以对光线进行遮挡,避免光线照射到薄膜晶体管的有源层上。
如果将这些绝缘层中的两个以上的绝缘层设计为遮光绝缘层,可以进一步降低光线的透过率,保证薄膜晶体管的性能。
一些实施例中,遮光层可以采用平坦层,平坦层的厚度比较大,将平坦层设计为遮光层,可以有效地对光线进行遮挡。另外,将平坦层设计为遮光的,还可以利用遮光的平坦层材料制作对位标记。
目前OLED显示基板的发光层的制作方法有真空蒸镀技术和喷墨打印技术,真空蒸镀技术存在材料利用率低、仅适用于小分子发光材料、设备投资大、不适用大尺寸产品等缺点,喷墨打印技术适用于大分子发光材料和小分子发光材料,且材料利用率高,设备成本低,高产能,更易于大规模、大尺寸产品的生产。
但喷墨打印技术对平坦层的平坦度要求比较高,如果平坦层的平坦度不高,会导致喷墨打印技术无法在像素区域内形成厚度均一的发光层,发光层厚度不均匀会导致发光不均匀,严重影响显示效果。为了保证平坦层的平坦度,可以采用流平性较好的有机硅氧烷树脂制作平坦层,能够满足喷墨打印技术对平坦层的平坦度要求。普通的有机硅氧烷树脂为透明材料,没有遮光功能,本实施例中可以在普通的有机硅氧烷树脂中添加吸光粒子,从而使得有机硅氧烷树脂具有遮光性能,利用具有遮光性能的有机硅氧烷树脂制作平坦层,并将平坦层复用为遮光层。
其中吸光粒子具体可以采用以下至少一种:炭黑、石墨烯和碳纳米管,将吸光粒子掺杂在透明有机硅氧烷树脂溶液中搅拌均匀,涂覆在基板上进行固化后即可得到具有遮光性能的平坦层。当然,吸光粒子并不局限于采用上 述材料,还可以采用其他具有吸光性能的材料。
一些实施例中,所述遮光有机硅氧烷树脂中,所述吸光粒子与所述透明有机硅氧烷树脂的重量百分比可以为1~2:40,采用上述比例可以使得遮光有机硅氧烷树脂对波长为600nm以下的光线的透过率低于10%。
为了保证平坦层的平坦度,平坦层的厚度可以为2-4um。在平坦层的厚度为2-4um时,可以有效地对光线进行遮挡,避免光线照射到薄膜晶体管的有源层上,并且能够具有良好的平坦度,为喷墨打印技术提供条件。
本实施例的OLED显示基板为顶反射OLED显示基板,第一电极一般采用不透明的反光金属制作,在制作第一电极时,是在基板上整层溅射反光金属,在反光金属上涂覆光刻胶,利用掩膜板对光刻胶进行曝光显影,形成光刻胶的图形,以光刻胶的图形为掩膜对反光金属进行刻蚀,形成第一电极的图形。在利用掩膜板对光刻胶进行曝光显影之前,需要将掩膜板与基板进行对位,但是整层制作的反光金属会覆盖之前制作的对位标记,使得曝光时不易对位,易发生对位报警,影响生产节拍,并对显示基板的品质产生严重影响。
本实施例中,可以利用平坦层相同的材料制作对位标记,平坦层的厚度远大于反光金属的厚度,这样在利用平坦层相同的材料制作对位标记后,即使反光金属覆盖了对位标记,由于对位标记的厚度远大于反光金属的厚度,对位标记的轮廓仍可以清晰地暴露出来,这样在对反光金属上的光刻胶曝光显影时,可以利用对位标记对掩膜板进行对位,保证掩膜板的对位精度,进而保证显示基板的产品品质。为了不影响显示基板的显示,如图2所示,对位标记15设置在显示区域(虚线框内部分)的周边。
本公开实施例还提供了一种显示面板,包括如上所述的OLED显示基板。
本公开实施例还提供了一种显示装置,包括如上所述的OLED显示基板。该显示装置包括但不限于:射频单元、网络模块、音频输出单元、输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、处理器、以及电源等部件。本领域技术人员可以理解,上述显示装置的结构并不构成对显示装置的限定,显示装置可以包括上述更多或更少的部件,或者组合某些部件, 或者不同的部件布置。在本公开实施例中,显示装置包括但不限于显示器、手机、平板电脑、电视机、可穿戴电子设备、导航显示设备等。
所述显示装置可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,所述显示装置还包括柔性电路板、印刷电路板和背板。
本公开实施例还提供了一种OLED显示基板的制作方法,包括在衬底基板上依次形成薄膜晶体管、第一电极和发光层,所述薄膜晶体管包括有源层,所述制作方法还包括:
在所述有源层和所述第一电极之间形成遮光层,所述遮光层复用为所述OLED显示基板的绝缘层。
本实施例中,OLED显示基板还包括设置在有源层和第一电极之间的遮光层,遮光层可以对发光层发出的光进行遮挡,防止发光层发出的光射到有源层上,影响薄膜晶体管特性,这样一来,稳定了OLED显示基板的发光特性,增加发光稳定性;此外,遮光层在对发光层发出的光进行遮挡的同时,还可以对入射至OLED显示基板内的外界环境光进行阻挡,防止外界环境光射到有源层上,影响薄膜晶体管特性;另外,遮光层采用绝缘层,这样可以避免遮光层采用金属制作容易与其他导电图形发生短路,并且会对其他导电图形上传输的电信号产生影响的问题,能够进一步保证OLED显示基板的显示性能;再者,遮光层复用为OLED显示基板的绝缘层,这样无需通过额外的制作工艺专门制作遮光层,能够减少制作OLED显示基板的工艺次数,缩短OLED显示基板的生产周期,降低OLED显示基板的生产成本。
经验证发现,波长为600nm以下的光线对薄膜晶体管的有源层的性能影响较大,波长为600nm以下的光线照射到薄膜晶体管的有源层上,将会显著影响薄膜晶体管的阈值电压和关态电流,因此,遮光层应当能够对波长为600nm以下的光线进行遮挡,具体地,所述遮光层对波长为600nm以下的光线的透过率可以低于10%,这样可以有效避免光线对薄膜晶体管性能的影响,稳定OLED显示基板的发光特性,增加发光稳定性。当然,遮光层对其他波长的光线也有遮挡作用。
一具体实施例中,如图1所示,OLED显示基板包括:衬底基板1;设置在衬底基板1上的遮光金属层2;位于遮光金属层2远离衬底基板1一侧的缓冲层3;位于缓冲层3上的有源层4;位于有源层4远离衬底基板一侧的栅绝缘层5;位于栅绝缘层5远离衬底基板1一侧的栅极6;位于栅极6远离衬底基板1一侧的层间绝缘层7;位于层间绝缘层7远离衬底基板1一侧的源极8和漏极9;位于源极8和漏极9远离衬底基板1一侧的钝化层10;位于钝化层10远离衬底基板1一侧的平坦层11;位于平坦层11远离衬底基板1一侧的第一电极13;位于第一电极13远离衬底基板1一侧的像素界定层14。其中,位于有源层和第一电极之间的绝缘层包括栅绝缘层5、层间绝缘层7、钝化层10和平坦层11,相关技术中,这些绝缘层都是透明绝缘层,本实施例中,栅绝缘层5、层间绝缘层7、钝化层10和平坦层11中的一者可以为遮光的,以对光线进行遮挡,避免光线照射到薄膜晶体管的有源层上。
如果将这些绝缘层中的两个以上的绝缘层设计为遮光绝缘层,可以进一步降低光线的透过率,保证薄膜晶体管的性能。
如果将这些绝缘层中的两个以上的绝缘层设计为遮光绝缘层,可以进一步降低光线的透过率,保证薄膜晶体管的性能。形成所述平坦层包括:
将吸光粒子混入有机硅氧烷树脂溶液中,搅拌均匀后将有机硅氧烷树脂溶液涂覆在形成有所述薄膜晶体管的衬底基板上,固化后形成所述平坦层。具体地,吸光粒子可以采用以下至少一种:炭黑、石墨烯和碳纳米管。将吸光粒子掺杂在透明有机硅氧烷树脂溶液中搅拌均匀,涂覆在基板上进行固化后即可得到具有遮光性能的平坦层。当然,吸光粒子并不局限于采用上述材料,还可以采用其他具有吸光性能的材料。
一些实施例中,所述有机硅氧烷树脂溶液中,所述吸光粒子与有机硅氧烷树脂的重量百分比可以为1~2:40,采用上述比例可以使得遮光有机硅氧烷树脂对波长为600nm以下的光线的透过率低于10%。
本实施例中,将平坦层设计为遮光的,还可以利用遮光的平坦层材料制作对位标记。
本实施例的OLED显示基板为顶反射OLED显示基板,第一电极一般采 用不透明的反光金属制作,在制作第一电极时,是在基板上整层溅射反光金属,在反光金属上涂覆光刻胶,利用掩膜板对光刻胶进行曝光显影,形成光刻胶的图形,以光刻胶的图形为掩膜对反光金属进行刻蚀,形成第一电极的图形。在利用掩膜板对光刻胶进行曝光显影之前,需要将掩膜板与基板进行对位,但是整层制作的反光金属会覆盖之前制作的对位标记,使得曝光时不易对位,易发生对位报警,影响生产节拍,并对显示基板的品质产生严重影响。
本实施例中,可以利用平坦层相同的材料制作对位标记,平坦层的厚度远大于反光金属的厚度,这样在利用平坦层相同的材料制作对位标记后,即使反光金属覆盖了对位标记,由于对位标记的厚度远大于反光金属的厚度,对位标记的轮廓仍可以清晰地暴露出来,这样在对反光金属上的光刻胶曝光显影时,可以利用对位标记对掩膜板进行对位,保证掩膜板的对位精度,进而保证显示基板的产品品质。因此,固化后形成所述平坦层之后,所述制作方法还包括:
对所述平坦层进行构图形成平坦层的图形和位于显示区域周边的对位标记。这样之后形成第一电极时,可以利用对位标记对掩膜板进行对位,保证掩膜板的对位精度,进而保证显示基板的产品品质。
以平坦层为遮光平坦层为例,一具体实施例中,如图3-图7所示,本实施例的OLED显示基板的制作方法包括以下步骤:
步骤1、如图3所示,在衬底基板1上形成遮光金属层2、缓冲层3、有源层4、栅绝缘层5、栅极6、层间绝缘层7、源极8、漏极9和钝化层10;
其中,衬底基板1可为玻璃基板或石英基板。
具体地,可以采用溅射或热蒸发的方法在衬底基板1上沉积厚度约为
Figure PCTCN2021087438-appb-000001
的遮光金属层2,遮光金属层2可以是Cu,Al,Ag,Mo,Cr,Nd,Ni,Mn,Ti,Ta,W等金属以及这些金属的合金,遮光金属层2可以为单层结构或者多层结构,多层结构比如Cu\Mo,Ti\Cu\Ti,Mo\Al\Mo等。在遮光金属层上涂覆一层光刻胶,采用掩膜板对光刻胶进行曝光,使光刻胶形成光刻胶未保留区域和光刻胶保留区域,其中,光刻胶保留区域对应于遮光金 属层的图形所在区域,光刻胶未保留区域对应于上述图形以外的区域;进行显影处理,光刻胶未保留区域的光刻胶被完全去除,光刻胶保留区域的光刻胶厚度保持不变;通过刻蚀工艺完全刻蚀掉光刻胶未保留区域的遮光金属层,剥离剩余的光刻胶,形成遮光金属层2的图形。
之后,可以采用等离子体增强化学气相沉积(PECVD)方法在衬底基板1上沉积厚度为
Figure PCTCN2021087438-appb-000002
的缓冲层3,缓冲层3可以选用氧化物、氮化物或者氧氮化合物。
之后,可以在缓冲层3上沉积一层半导体材料形成有源层4。
之后,可以采用PECVD方法在衬底基板1上沉积厚度为
Figure PCTCN2021087438-appb-000003
的栅绝缘层5,栅绝缘层5可以选用氧化物、氮化物或者氧氮化合物。
之后可以在栅绝缘层5上采用溅射或热蒸发的方法沉积厚度约为
Figure PCTCN2021087438-appb-000004
Figure PCTCN2021087438-appb-000005
的栅金属层,栅金属层可以是Cu,Al,Ag,Mo,Cr,Nd,Ni,Mn,Ti,Ta,W等金属以及这些金属的合金,栅金属层可以为单层结构或者多层结构,多层结构比如Cu\Mo,Ti\Cu\Ti,Mo\Al\Mo等。在栅金属层上涂覆一层光刻胶,采用掩膜板对光刻胶进行曝光,使光刻胶形成光刻胶未保留区域和光刻胶保留区域,其中,光刻胶保留区域对应于栅金属层的图形所在区域,光刻胶未保留区域对应于上述图形以外的区域;进行显影处理,光刻胶未保留区域的光刻胶被完全去除,光刻胶保留区域的光刻胶厚度保持不变;通过刻蚀工艺完全刻蚀掉光刻胶未保留区域的栅金属层,剥离剩余的光刻胶,形成栅金属层的图形,栅金属层的图形包括栅极6。
之后,可以采用PECVD方法在衬底基板1上沉积厚度为
Figure PCTCN2021087438-appb-000006
的层间绝缘层7,层间绝缘层7可以选用氧化物、氮化物或者氧氮化合物。
之后可以在层间绝缘层7上采用溅射或热蒸发的方法沉积厚度约为
Figure PCTCN2021087438-appb-000007
的源漏金属层,源漏金属层可以是Cu,Al,Ag,Mo,Cr,Nd,Ni,Mn,Ti,Ta,W等金属以及这些金属的合金,源漏金属层可以为单层结构或者多层结构,多层结构比如Cu\Mo,Ti\Cu\Ti,Mo\Al\Mo等。在源漏金属层上涂覆一层光刻胶,采用掩膜板对光刻胶进行曝光,使光刻胶形成光刻胶未保留区域和光刻胶保留区域,其中,光刻胶保留区域对应于源漏金属层的 图形所在区域,光刻胶未保留区域对应于上述图形以外的区域;进行显影处理,光刻胶未保留区域的光刻胶被完全去除,光刻胶保留区域的光刻胶厚度保持不变;通过刻蚀工艺完全刻蚀掉光刻胶未保留区域的源漏金属层,剥离剩余的光刻胶,形成源漏金属层的图形,源漏金属层的图形包括驱动薄膜晶体管的源极8和漏极9。
之后可以在衬底基板1上采用磁控溅射、热蒸发、PECVD或其它成膜方法沉积厚度为
Figure PCTCN2021087438-appb-000008
的钝化层10,钝化层10可以选用氧化物、氮化物或者氧氮化合物,比如SiO。
步骤2、如图4所示,形成遮光的平坦层11;
具体地,将吸光粒子混入有机硅氧烷树脂溶液中,搅拌均匀后将有机硅氧烷树脂溶液涂覆在形成有所述薄膜晶体管的衬底基板1上,经过前烘、后烘工艺固化后形成所述平坦层11,平坦层11的平坦度可以满足喷墨打印对平坦度的要求,且平坦层11对600nm以下波长的光的透过率小于10%。
步骤3、如图5所示,形成贯穿钝化层10和平坦层11的过孔12;
具体地,可以在平坦层11上涂覆光刻胶,对光刻胶进行曝光显影,形成光刻胶保留区域和光刻胶去除区域,对光刻胶去除区域的平坦层11和钝化层10进行干法刻蚀,形成过孔12,之后剥离光刻胶。其中,在形成平坦层11的图形的同时,还利用平坦层的材料在显示区域外围形成如图2所示的对位标记15。
步骤4、如图6所示,形成第一电极13;
具体地,可以在平坦层11上形成第一电极材料层,在所述第一电极材料层上涂覆光刻胶,利用所述对位标记15将掩膜板与所述衬底基板1进行对位,以所述掩膜板为遮挡,对所述光刻胶进行曝光,显影后形成光刻胶保留区域和光刻胶去除区域;对光刻胶去除区域的第一电极材料层进行刻蚀,剥离剩余的光刻胶,形成所述第一电极13,第一电极13具体可以为阳极,第一电极材料可以采用反光金属、比如Al、Ag。
步骤5、如图7所示,形成像素界定层14;
具体地,可以在经过步骤4的衬底基板1上形成一层感光材料层,对感 光材料层进行曝光显影后形成像素界定层14的图形,像素界定层14限定出像素开口区,之后可以在像素开口区内通过喷墨打印技术形成发光层。
本实施例制备的OLED显示基板,不但可以保证平坦层的平坦度,满足喷墨打印技术的需要,而且还能够解决薄膜晶体管的有源层受到光照后不稳定的问题;另外,还在显示区域外围形成了对位标记,保证了第一电极的构图工艺的正常进行。
在本公开各方法实施例中,所述各步骤的序号并不能用于限定各步骤的先后顺序,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,对各步骤的先后变化也在本公开的保护范围之内。
需要说明,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于实施例而言,由于其基本相似于产品实施例,所以描述得比较简单,相关之处参见产品实施例的部分说明即可。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种OLED显示基板,其特征在于,包括衬底基板和依次设置在所述衬底基板上的薄膜晶体管、第一电极和发光层,所述薄膜晶体管包括有源层;所述OLED显示基板还包括设置在所述有源层和所述第一电极之间的遮光层,所述遮光层复用为所述OLED显示基板的绝缘层。
  2. 根据权利要求1所述的OLED显示基板,其特征在于,所述遮光层对波长为600nm以下的光线的透过率低于10%。
  3. 根据权利要求1所述的OLED显示基板,其特征在于,所述OLED显示基板包括位于所述有源层和所述第一电极之间的平坦层,所述遮光层复用为所述平坦层,所述平坦层采用遮光有机硅氧烷树脂。
  4. 根据权利要求3所述的OLED显示基板,其特征在于,所述平坦层的厚度为2-4um。
  5. 根据权利要求3所述的OLED显示基板,其特征在于,所述遮光有机硅氧烷树脂包括透明有机硅氧烷树脂和掺杂在所述透明有机硅氧烷树脂中的吸光粒子。
  6. 根据权利要求5所述的OLED显示基板,其特征在于,所述遮光有机硅氧烷树脂中,所述吸光粒子与所述透明有机硅氧烷树脂的重量百分比为1~2:40。
  7. 根据权利要求5所述的OLED显示基板,其特征在于,所述吸光粒子采用以下至少一种:炭黑、石墨烯和碳纳米管。
  8. 根据权利要求3所述的OLED显示基板,其特征在于,所述OLED显示基板还包括设置在显示区域周边的对位标记,所述对位标记与所述平坦层采用相同的材料制作。
  9. 一种显示面板,其特征在于,包括如权利要求1-8中任一项所述的OLED显示基板。
  10. 一种显示装置,其特征在于,包括如权利要求1-8中任一项所述的OLED显示基板。
  11. 一种OLED显示基板的制作方法,其特征在于,包括在衬底基板上依次形成薄膜晶体管、第一电极和发光层,所述薄膜晶体管包括有源层,所述制作方法还包括:
    在所述有源层和所述第一电极之间形成遮光层,所述遮光层复用为所述OLED显示基板的绝缘层。
  12. 根据权利要求11所述的OLED显示基板的制作方法,其特征在于,所述OLED显示基板包括位于所述有源层和所述第一电极之间的平坦层,形成所述平坦层包括:
    将吸光粒子混入有机硅氧烷树脂溶液中,搅拌均匀后将有机硅氧烷树脂溶液涂覆在形成有所述薄膜晶体管的衬底基板上,固化后形成所述平坦层。
  13. 根据权利要求12所述的OLED显示基板的制作方法,其特征在于,所述有机硅氧烷树脂溶液中,所述吸光粒子与有机硅氧烷树脂的重量百分比为1~2:40。
  14. 根据权利要求12所述的OLED显示基板的制作方法,其特征在于,所述吸光粒子采用以下至少一种:炭黑、石墨烯和碳纳米管。
  15. 根据权利要求12所述的OLED显示基板的制作方法,其特征在于,固化后形成所述平坦层之后,所述制作方法还包括:
    对所述平坦层进行构图形成平坦层的图形和位于显示区域周边的对位标记。
  16. 根据权利要求15所述的OLED显示基板的制作方法,其特征在于,形成所述第一电极包括:
    在所述平坦层上形成第一电极材料层;
    在所述第一电极材料层上涂覆光刻胶,利用所述对位标记将掩膜板与所述衬底基板进行对位,以所述掩膜板为遮挡,对所述光刻胶进行曝光,显影后形成光刻胶保留区域和光刻胶去除区域;
    对光刻胶去除区域的第一电极材料层进行刻蚀,剥离剩余的光刻胶,形成所述第一电极。
PCT/CN2021/087438 2020-05-28 2021-04-15 Oled显示基板及其制作方法、显示装置 WO2021238481A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/624,735 US20220246709A1 (en) 2020-05-28 2021-04-15 Oled display substrate and method for preparing the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010466224.7A CN111584604A (zh) 2020-05-28 2020-05-28 Oled显示基板及其制作方法、显示装置
CN202010466224.7 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021238481A1 true WO2021238481A1 (zh) 2021-12-02

Family

ID=72127090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087438 WO2021238481A1 (zh) 2020-05-28 2021-04-15 Oled显示基板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US20220246709A1 (zh)
CN (1) CN111584604A (zh)
WO (1) WO2021238481A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584604A (zh) * 2020-05-28 2020-08-25 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600083A (zh) * 2015-01-29 2015-05-06 京东方科技集团股份有限公司 薄膜晶体管阵列基板及其制备方法、显示面板和显示装置
US20160071911A1 (en) * 2014-09-05 2016-03-10 Samsung Display Co., Ltd. Organic light emitting display apparatus and method of manufacturing the same
CN106405922A (zh) * 2016-11-02 2017-02-15 京东方科技集团股份有限公司 显示面板、显示面板的制造方法及显示装置
CN109616497A (zh) * 2018-11-30 2019-04-12 武汉华星光电技术有限公司 Oled显示面板
CN111584604A (zh) * 2020-05-28 2020-08-25 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002108250A (ja) * 2000-09-29 2002-04-10 Sharp Corp アクティブマトリックス駆動型自発光表示装置及びその製造方法
CN205318069U (zh) * 2015-12-30 2016-06-15 京东方科技集团股份有限公司 一种阵列基板和显示装置
CN105446039B (zh) * 2016-01-04 2018-10-12 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN107424935A (zh) * 2017-05-08 2017-12-01 京东方科技集团股份有限公司 薄膜晶体管、显示基板及其制作方法、显示装置
CN108987595A (zh) * 2018-07-13 2018-12-11 京东方科技集团股份有限公司 一种oled基板及显示装置
CN109192736A (zh) * 2018-09-04 2019-01-11 京东方科技集团股份有限公司 薄膜晶体管阵列基板及其制作方法、显示装置
CN111162097B (zh) * 2020-01-03 2022-03-29 武汉天马微电子有限公司 一种显示面板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160071911A1 (en) * 2014-09-05 2016-03-10 Samsung Display Co., Ltd. Organic light emitting display apparatus and method of manufacturing the same
CN104600083A (zh) * 2015-01-29 2015-05-06 京东方科技集团股份有限公司 薄膜晶体管阵列基板及其制备方法、显示面板和显示装置
CN106405922A (zh) * 2016-11-02 2017-02-15 京东方科技集团股份有限公司 显示面板、显示面板的制造方法及显示装置
CN109616497A (zh) * 2018-11-30 2019-04-12 武汉华星光电技术有限公司 Oled显示面板
CN111584604A (zh) * 2020-05-28 2020-08-25 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置

Also Published As

Publication number Publication date
US20220246709A1 (en) 2022-08-04
CN111584604A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
US20210066417A1 (en) Display Substrate and Preparation Method thereof, and Display Apparatus
CN110164873B (zh) 阵列基板的制作方法、阵列基板、显示面板及显示装置
US20160370621A1 (en) Array substrate, manufacturing method thereof and liquid crystal display
US10818732B2 (en) Photosensitive sensor, manufacturing method of the same, and electronic device
CN110400810B (zh) 显示基板及其制作方法、和显示装置
WO2021238482A1 (zh) 显示基板及其制作方法、显示装置
US10615284B2 (en) Thin film transistor and method for fabricating the same, display substrate, display apparatus
WO2019218993A1 (zh) Oled显示基板及其制作方法、显示装置
WO2021036840A1 (zh) 显示基板及其制造方法、显示装置
US8951700B2 (en) Methods of manufacturing optical filters and methods of manufacturing organic light emitting display devices having optical filters
WO2018119879A1 (zh) 薄膜晶体管及其制作方法
CN107302061B (zh) Oled显示基板及其制作方法、显示装置
WO2021249122A1 (zh) Oled显示基板及其制作方法、显示面板、显示装置
TW201418855A (zh) 顯示面板之陣列基板及其製作方法
WO2018214802A1 (zh) Oled基板及其制备方法、显示装置及其制备方法
CN111524957B (zh) 显示基板及其制作方法、显示装置
US20220123095A1 (en) Oled display substrate and manufacturing method thereof, and display device
WO2020224063A1 (zh) 显示面板及其制作方法以及显示装置
WO2021238481A1 (zh) Oled显示基板及其制作方法、显示装置
WO2019015317A1 (zh) 构图方法和阵列基板的制备方法
CN210403734U (zh) 一种显示基板、显示装置
WO2020238892A1 (zh) 阵列基板及其制备方法、显示装置
US20170221967A1 (en) Flexible array substrate structure and manufacturing method for the same
CN108365129B (zh) 一种显示面板及其制作方法、显示装置
CN110993645A (zh) 显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813993

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21813993

Country of ref document: EP

Kind code of ref document: A1