WO2021238482A1 - 显示基板及其制作方法、显示装置 - Google Patents

显示基板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2021238482A1
WO2021238482A1 PCT/CN2021/087439 CN2021087439W WO2021238482A1 WO 2021238482 A1 WO2021238482 A1 WO 2021238482A1 CN 2021087439 W CN2021087439 W CN 2021087439W WO 2021238482 A1 WO2021238482 A1 WO 2021238482A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel defining
layer
defining layer
base substrate
electrode
Prior art date
Application number
PCT/CN2021/087439
Other languages
English (en)
French (fr)
Inventor
王琳琳
崔颖
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/765,397 priority Critical patent/US20220376007A1/en
Publication of WO2021238482A1 publication Critical patent/WO2021238482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display substrate, a manufacturing method thereof, and a display device.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode, abbreviated as OLED
  • OLED Organic Light-Emitting Diode
  • OLED organic light-emitting diode
  • the advantages of wide operating temperature range, simple production process, high luminous efficiency and flexible display have been listed as the next-generation display technology with great development prospects.
  • the film forming method of the organic light-emitting layer of the OLED display substrate includes two methods: evaporation and inkjet printing. Because inkjet printing technology has a high material utilization rate, it is considered to be an important way to achieve large-scale and mass production. However, when inkjet printing, there will be uneven picture. This is because: 1. It is not guaranteed that the inkjet volume of each nozzle is exactly the same. Therefore, after the display substrate is lit, the human eye can distinguish the difference in luminescence uniformity between pixels caused by the volume error; 2. The size of the pixel area is small, the liquid fluidity is poor, and it is difficult to form organic luminescence with uniform film thickness. ⁇ Layer film.
  • the technical problem to be solved by the present disclosure is to provide a display substrate, a manufacturing method thereof, and a display device, which can improve the uniformity of the thickness of the inkjet printing film of the display substrate, thereby improving the display effect of the display device and prolonging the service life of the display substrate .
  • a display substrate including a base substrate, a thin film transistor array layer on the base substrate, a flat layer covering the thin film transistor array layer, and a first electrode and a first electrode on the flat layer.
  • a pixel defining layer, the pixel defining layer defines a plurality of pixel openings, the pixel openings include adjacent first and second sides, the pixel defining layer includes a display area of the display substrate, and A first pixel defining layer parallel to the first side and a second pixel defining layer parallel to the second side, the surface height of the first pixel defining layer is lower than the surface height of the second pixel defining layer, so A groove parallel to the first side is provided on a side surface of the flat layer away from the base substrate, at least part of the first pixel defining layer is located in the groove, and the pixel defining layer further includes surrounding In the third pixel defining layer of the display area, the surface height of the third pixel defining layer is not lower than the surface height of the second pixel defining layer.
  • the orthographic projection of the first pixel defining layer on the base substrate is within the orthographic projection of the groove on the base substrate.
  • the first electrode includes a first sub-electrode portion located in the groove and a second sub-electrode portion located outside the groove, and the first pixel defining layer is away from the base substrate The surface of the second sub-electrode is flush with the surface of the second sub-electrode away from the base substrate.
  • the first sub-electrode portion is connected to the output electrode of the thin film transistor array layer through a via hole penetrating the flat layer.
  • the bottom of the groove and the surface of the output electrode of the thin film transistor array layer away from the base substrate are located on the same horizontal plane.
  • the display substrate includes a plurality of mutually independent first electrodes, and the orthographic projection of the gap between adjacent first electrodes on the base substrate is located at the bottom of the groove on the liner. In the orthographic projection on the base substrate.
  • the thickness of the first electrode is 100-130 nm.
  • the width of the groove in a direction perpendicular to the first side and parallel to the base substrate is 14-16 um.
  • the orthographic projection of the second pixel defining layer on the base substrate and the orthographic projection of the first electrode on the base substrate do not overlap.
  • the surface of the second pixel defining layer close to the base substrate is flush with the surface of the first electrode close to the base substrate.
  • the first pixel defining layer uses a lyophilic material.
  • the second pixel defining layer includes a lyophilic material layer and a lyophobic material layer on a side of the lyophilic material layer away from the base substrate.
  • the embodiment of the present disclosure also provides a display device, including the above-mentioned display substrate.
  • the embodiment of the present disclosure also provides a method for manufacturing a display substrate, which includes sequentially forming a thin film transistor array layer on a base substrate, a flat layer covering the thin film transistor array layer, and a first electrode located on the flat layer And a pixel defining layer, the pixel defining layer defines a plurality of pixel openings, the pixel openings include adjacent first and second sides, the pixel defining layer includes the display area of the display substrate, and A first pixel defining layer parallel to the first side and a second pixel defining layer parallel to the second side, the surface height of the first pixel defining layer is lower than the surface height of the second pixel defining layer,
  • the pixel defining layer further includes a third pixel defining layer surrounding the display area, the surface height of the third pixel defining layer is not lower than the surface height of the second pixel defining layer, and the manufacturing method specifically includes:
  • At least part of the first pixel defining layer is formed in the groove.
  • forming the first electrode includes:
  • the first electrode material layer is patterned to form a plurality of mutually independent first electrodes, and the orthographic projection of the gap between adjacent first electrodes on the base substrate is located at the bottom of the groove at the bottom of the groove. In the orthographic projection on the base substrate.
  • forming the first pixel defining layer includes:
  • An inkjet printing method is used to form the first pixel defining layer in the groove.
  • the first electrode includes a first sub-electrode portion located in the groove and a second sub-electrode portion located outside the groove, which is formed in the groove by an inkjet printing method
  • the first pixel defining layer includes:
  • forming the first pixel defining layer includes:
  • a lyophilic material is used to form the first pixel defining layer.
  • forming the second pixel defining layer includes:
  • a lyophobic material layer is formed on the side of the lyophilic material layer away from the base substrate, and the lyophilic material layer and the lyophobic material layer constitute the second pixel defining layer.
  • the pixel defining layer includes a first pixel defining layer parallel to the first side and a second pixel defining layer parallel to the second side, and the surface height of the first pixel defining layer is lower than the surface height of the second pixel defining layer
  • the first pixel-defining layer can be used to separate pixels of the same color
  • the second pixel-defining layer can be used to separate pixels of different colors, so that after the organic light-emitting material is ink-jet printed in the pixel area defined by the pixel-defining layer, the same
  • the organic light-emitting material of color can flow in the adjacent pixel area along the direction perpendicular to the first side, which is conducive to spreading the organic light-emitting material uniformly, forming an organic light-emitting layer film with uniform film thickness, reducing the uniformity of light emission between pixels, and improving
  • the display effect of the display device prolongs the service life of the display substrate; in addition, a groove parallel to the first side is provided on the surface of the flat layer away from the base substrate
  • Figures 1 to 3 are schematic plan views of the display substrate
  • FIG. 4 is a schematic cross-sectional view of the substrate in the AA' direction according to an embodiment of the disclosure
  • FIG. 5 is a schematic cross-sectional view of the substrate in the AA' direction according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional view of the substrate in the BB' direction according to another embodiment of the present disclosure.
  • the embodiments of the present disclosure provide a display substrate, a manufacturing method thereof, and a display device, which can improve the uniformity of the inkjet printing film thickness of the display substrate, thereby improving the display effect of the display device and prolonging the service life of the display substrate.
  • the pixel defining layer includes a first pixel defining layer parallel to the first side and a first pixel defining layer parallel to the first side.
  • a second pixel defining layer with two parallel sides the surface height of the first pixel defining layer is lower than the surface height of the second pixel defining layer, the first pixel defining layer can be used to separate pixels of the same color, the second The pixel defining layer can be used to separate pixels of different colors, so that after the organic light-emitting material is ink-jet printed in the pixel area defined by the pixel defining layer, the organic light-emitting material of the same color can be in adjacent pixels along the direction perpendicular to the first side.
  • the flow in the area is conducive to spreading the organic light-emitting material uniformly, forming an organic light-emitting layer thin film with uniform film thickness, reducing the difference in light emission uniformity between pixels, improving the display effect of the display device, and prolonging the service life of the display substrate.
  • the first electrode is prepared before the pixel defining layer is formed.
  • the first electrode is generally made of ITO.
  • the thickness of the first electrode is relatively small, generally about 10nm. If the pixel defining layer is formed by dry etching The layer will damage the first electrode and affect the yield of the display substrate; therefore, the pixel defining layer can be made of organic photosensitive materials, and the pixel defining layer can be made by exposure and development. However, since the thickness of the first pixel defining layer is relatively small, During development, the first pixel defining layer is easily detached from the display substrate, which affects the yield of the display substrate.
  • FIGS. 1 to 4 An embodiment of the present disclosure provides a display substrate, as shown in FIGS. 1 to 4, where FIGS. 1 and 3 are the display substrate before the organic light-emitting layer is formed, and FIG. 2 is the display substrate after the organic light-emitting layer is formed, and FIG. 4 It is a schematic cross-sectional view in the direction AA′ of FIG. 1, where the organic light-emitting layer 12 includes a first-color organic light-emitting layer 121, a second-color organic light-emitting layer 122 and a third-color organic light-emitting layer 123.
  • the display substrate includes a base substrate 1, a thin film transistor array layer located on the base substrate 1, a flat layer 9 covering the thin film transistor array layer, and a first electrode 10 and a pixel boundary located on the flat layer 9
  • the pixel defining layer defines a plurality of pixel openings, the pixel openings include adjacent first and second sides, and the pixel defining layer includes the first side and the first side located in the display area of the display substrate.
  • the pixel defining layer further includes a third pixel defining layer 113 surrounding the display area, and the surface height of the third pixel defining layer 113 is not lower than the surface of the second pixel defining layer 112 Highly, when the organic light-emitting material is inkjet printed, the third pixel defining layer 113 can block the organic light-emitting material from flowing out of the display area.
  • the pixel opening may be rectangular, the pixel opening includes adjacent first and second sides, the first side is perpendicular to the second side, and the pixel defining layer includes a first pixel defining layer parallel to the first side and The second pixel defining layer parallel to the second side, the surface height of the first pixel defining layer is lower than the surface height of the second pixel defining layer, the first pixel defining layer can be used to separate pixels of the same color, the second pixel defining layer
  • the layer can be used to separate pixels of different colors, so that after the organic light-emitting material is ink-jet printed in the pixel area defined by the pixel defining layer, the organic light-emitting material of the same color can be in the adjacent pixel area along the direction perpendicular to the first side Flowing is conducive to spreading the organic light-emitting material uniformly, forming a uniform thickness of the organic light-emitting layer thin film, reducing the difference in light-emitting uniformity between pixels, improving the display effect of the display
  • the first pixel defining layer with a smaller thickness is located in the groove.
  • the groove can increase the contact area between the first pixel defining layer and the display substrate.
  • the pixel defining layer has a certain anchoring force, which can prevent the first pixel defining layer from falling off the display substrate and can ensure the yield of the display substrate.
  • the display substrate also includes an organic light-emitting layer located on the side of the pixel defining layer away from the base substrate and a second electrode located on the side of the organic light-emitting layer away from the base substrate.
  • the display substrate may be a first electrode.
  • the electrode is an anode and the second electrode is a cathode; it is also possible that the first electrode is a cathode and the second electrode is an anode.
  • the display substrate provided by the embodiments of the present disclosure may be a top-emitting type.
  • the first electrode close to the base substrate is in an opaque state
  • the second electrode far away from the base substrate is in a transmissive state.
  • the display substrate may also be a bottom emission type.
  • the first electrode close to the base substrate is in a light-transmitting state
  • the second electrode far from the base substrate is in an opaque state.
  • the display substrate may also be a double-sided light emitting type. In this case, the first electrode close to the base substrate and the second electrode far away from the base substrate are both in a light-transmitting state.
  • the material of the first electrode or the second electrode can be, for example, ITO (Indium Tin Oxide, indium tin oxide), IZO (Indium Zinc Oxide, indium zinc oxide) or IGZO (Indium Gallium Zinc Oxide, indium gallium zinc oxide), etc.
  • the first electrode or the second electrode may include, for example, an ITO (Indium Tin Oxide, indium tin oxide) layer, an Ag (silver) layer, and ITO that are stacked in sequence. Floor.
  • the base substrate 1 may be a flexible substrate or a rigid substrate, and the rigid substrate may be a glass substrate or a quartz substrate.
  • the extension direction of the first side may be the row direction of the display substrate, and the extension direction of the second side may be the column direction of the display substrate; or, the extension direction of the first side may be the column direction of the display substrate.
  • the extension direction of the two sides may be the row direction of the display substrate.
  • the value of N may be equal to the number of pixel rows included in the display substrate, and when the value of N is equal to the number of pixel rows included in the display substrate, the pixel defining layers extending in the row direction are all the first Pixel defining layer; when the value of N is less than the number of pixel rows included in the display substrate, the pixel defining layer whose extending direction is the row direction may include, in addition to the first pixel defining layer, the surface height and the first pixel defining layer For the fourth pixel defining layer with different surface heights, the surface height of the fourth pixel defining layer should be greater than the surface height of the first pixel defining layer to separate pixels of different colors.
  • the surface height of the fourth pixel defining layer may be equal to the second The
  • the first pixel defining layer 111 may be partially located in the groove 13; in some embodiments, as shown in FIG. The projection is located in the orthographic projection of the groove 13 on the base substrate 1 so that the anchoring force of the groove to the first pixel defining layer can be maximized, and the first pixel defining layer 111 can be prevented from falling off the display substrate.
  • the size of the groove 13 can be appropriately increased, and the groove 13 is in a direction perpendicular to the first side and parallel to the base substrate 1.
  • the width on the top can be 14-16um.
  • the first electrode 10 includes a first sub-electrode portion 101 located in the groove 13 and a second sub-electrode portion 102 located outside the groove 13.
  • the surface of the first pixel defining layer 111 away from the base substrate 1 is flush with the surface of the second sub-electrode portion 102 away from the base substrate 1.
  • the first pixel defining layer 111 is completely located in the groove 13, which minimizes the risk of the first pixel defining layer 111 falling off the display substrate; and, the first pixel defining layer 111 is far away from the surface of the base substrate 1 and the The surface of the second sub-electrode portion 102 away from the base substrate 1 forms a flat surface, which can provide a flat surface for the subsequent formation of the organic light-emitting layer, so that after the organic light-emitting layer solution is printed in the pixel area, the organic light-emitting layer solution can be
  • the direction perpendicular to the first side fully flows in the adjacent pixel area and spreads uniformly, thereby forming an organic light-emitting layer thin film with a uniform film thickness, reducing the difference in light-emitting uniformity between pixels.
  • the thickness of the first electrode 10 may be appropriately increased.
  • the thickness of the first electrode may be 100-130 nm, such as 120 nm.
  • the thin film transistor array layer includes an active layer 4, a gate insulating layer 5, a gate electrode 6, an interlayer insulating layer 7, a source electrode 81 and a drain electrode 82 on the base substrate 1.
  • An electrode 10 can be connected to the drain 82 (that is, the output electrode of the thin film transistor array layer) through a via hole penetrating the planarization layer 9, and can be the first sub-electrode portion 101 and the drain 82 connected, or it can be the second sub-electrode portion 102 is connected to the source 81.
  • the first sub-electrode portion 101 may be connected to the output electrode of the thin film transistor array layer, that is, the drain 82 through the via hole penetrating the flat layer 9, so that the depth of the via hole can be reduced and the first electrode The reliability of the connection between 10 and the drain 82.
  • the groove bottom of the groove 13 and the surface of the drain 82 away from the base substrate 1 are on the same horizontal plane, that is, the groove 13 penetrates the entire flat layer, which is equivalent to the height of the via hole being 0.
  • a sub-electrode portion 101 can directly contact the drain 82 at the bottom of the groove, and the first sub-electrode portion 101 and the drain 82 are in surface contact, which can ensure that the first sub-electrode portion 101 and the drain 82 are in contact with each other. Connection reliability.
  • the display substrate includes a plurality of mutually independent first electrodes 10, and the first electrodes 10 correspond to pixels one to one.
  • the gaps between adjacent first electrodes 10 are
  • the orthographic projection on the base substrate 1 may be located outside the orthographic projection of the groove 13 on the base substrate 1; as shown in FIG.
  • the boundary layer 111 is far from the flatness of the surface composed of the base substrate 1, and the orthographic projection of the gap between the adjacent first electrodes 10 on the base substrate 1 is located at the bottom of the groove 13 in the bottom of the groove 13 In the orthographic projection on the base substrate 1.
  • the other areas are flat surfaces, which can provide a flat surface for the subsequent formation of the organic light-emitting layer.
  • the organic light-emitting layer solution can fully flow in the adjacent pixel area along the direction perpendicular to the first side and spread uniformly, thereby forming an organic light-emitting layer thin film with uniform film thickness, reducing the difference in light emission uniformity between pixels.
  • the pixel defining layer can be made by inkjet printing.
  • FIG. 6 is a schematic cross-sectional view of the display substrate shown in FIG. 2 in the BB' direction.
  • the second pixel defining layer 112 may be formed on a flat surface, and the second pixel defining layer 112 is close to the substrate.
  • the surface on the side of the base substrate 1 may be flush with the surface of the first electrode 10 on the side close to the base substrate 1, and no groove is provided in the area of the flat layer corresponding to the second pixel defining layer 112, so that the first electrode 10
  • the surface height of the two-pixel defining layer 112 is relatively large, and pixels of different colors can be separated. As shown in FIG.
  • the orthographic projection of the surface of the second pixel defining layer 112 away from the base substrate on the base substrate is located on the front of the surface of the second pixel defining layer 112 near the base substrate on the base substrate.
  • the side surface of the second pixel defining layer 112 is a slope surface, so that when the organic light emitting layer 12 and the second electrode are subsequently formed, the organic light emitting layer 12 and the second electrode can be prevented from being broken.
  • the second pixel defining layer 112 may also be formed in the groove, for example, a groove is provided in the area of the flat layer corresponding to the second pixel defining layer 112, and the orthographic projection of part or all of the second pixel defining layer 112 on the base substrate Falling into the orthographic projection of the groove on the base substrate, the groove can increase the contact area between the second pixel defining layer and the display substrate, have a certain anchoring force on the second pixel defining layer 112, and prevent the second pixel The defining layer 112 falls off from the display substrate to ensure the yield rate of the display substrate.
  • the organic light-emitting layer solution When the organic light-emitting layer solution is ink-jet printed in the pixel area, the organic light-emitting layer solution will cover the first pixel defining layer 111 but not the second pixel defining layer 112.
  • the orthographic projection of the second pixel defining layer 112 on the base substrate 1 and the orthographic projection of the first electrode 10 on the base substrate do not overlap, so that it can be adjacent to each other.
  • the first electrodes 10 of the pixels are independent of each other.
  • the first pixel defining layer 111 is made of a lyophilic material
  • the second pixel defining layer 112 includes a lyophilic material layer and a layer located on the lyophilic material layer away from the base substrate 1 Liquid repellent material layer on the side.
  • the first pixel defining layer 111 is designed as a lyophilic material
  • the second pixel defining layer 112 is designed as a combination of a lyophilic material layer and a lyophobic material layer
  • the lyophilic material layer is arranged close to the base substrate 1.
  • the organic light-emitting layer is formed by the inkjet printing process, if one nozzle ejects ink to a pixel area to form an organic light-emitting layer in the pixel area, due to the error of the ink ejection amount among multiple nozzles, each pixel area will be caused The thickness of the organic light-emitting layer formed inside is uneven, which in turn leads to uneven brightness of light emitted by each pixel area.
  • the extension direction of the first side is the row direction of the display substrate
  • the extension direction of the second side is the column direction of the display substrate as an example
  • adjacent The N pixels of the N pixels have the same color
  • the first pixel boundary layer is spaced between the N pixels. Because the surface height of the first pixel boundary layer is relatively small, the adjacent N pixel areas are connected, so inkjet printing When printing ink in a pixel area, the ink can circulate between adjacent N pixel areas, so that the difference in ink volume between different pixel areas can be evened, so that in the adjacent N pixel areas, each pixel
  • the thickness of the organic light-emitting layer formed by the region is uniform.
  • the embodiment of the present disclosure also provides a display device, including the above-mentioned display substrate.
  • the display device includes but is not limited to: radio frequency unit, network module, audio output unit, input unit, sensor, display unit, user input unit, interface unit, memory, processor, power supply and other components.
  • the structure of the above display device does not constitute a limitation on the display device, and the display device may include more or less of the above components, or combine some components, or arrange different components.
  • the display device includes, but is not limited to, a display, a mobile phone, a tablet computer, a television, a wearable electronic device, a navigation display device, and the like.
  • the display device may be any product or component with a display function, such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc., wherein the display device also includes a flexible circuit board, a printed circuit board, and a backplane.
  • a display function such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc.
  • the display device also includes a flexible circuit board, a printed circuit board, and a backplane.
  • the embodiment of the present disclosure also provides a method for manufacturing a display substrate, which includes sequentially forming a thin film transistor array layer on a base substrate, a flat layer covering the thin film transistor array layer, and a first electrode located on the flat layer And a pixel defining layer, the pixel defining layer defines a plurality of pixel openings, the pixel openings include adjacent first and second sides, and the pixel defining layer includes a first pixel parallel to the first side A defining layer and a second pixel defining layer parallel to the second side, the surface height of the first pixel defining layer is lower than the surface height of the second pixel defining layer, and the pixel defining layer further includes surrounding the The third pixel defining layer in the display area, the surface height of the third pixel defining layer is not lower than the surface height of the second pixel defining layer, and the manufacturing method specifically includes:
  • At least part of the first pixel defining layer is formed in the groove.
  • the pixel defining layer includes a first pixel defining layer parallel to the first side and a second pixel defining layer parallel to the second side.
  • the surface height of the first pixel defining layer is lower than the surface of the second pixel defining layer Height
  • the first pixel defining layer can be used to separate pixels of the same color
  • the second pixel defining layer can be used to separate pixels of different colors, so that after inkjet printing organic light-emitting materials in the pixel area defined by the pixel defining layer,
  • the organic light-emitting material of the same color can flow in the adjacent pixel area along the direction perpendicular to the first side, which is conducive to uniform spreading of the organic light-emitting material, forming an organic light-emitting layer film with uniform film thickness, and reducing the uniformity of light emission between pixels.
  • a groove parallel to the first side is provided on the surface of the flat layer away from the base substrate, and the first pixel defining layer with a smaller thickness is located in the groove Inside, the groove can increase the contact area between the first pixel defining layer and the display substrate, and has a certain anchoring force on the first pixel defining layer, which can prevent the first pixel defining layer from falling off the display substrate, and can ensure the display substrate Yield.
  • forming the first electrode includes:
  • the first electrode material layer is patterned to form a plurality of mutually independent first electrodes, and the orthographic projection of the gap between adjacent first electrodes on the base substrate is located at the bottom of the groove at the bottom of the groove. In the orthographic projection on the base substrate.
  • the display substrate includes a plurality of mutually independent first electrodes 10, and the first electrodes 10 correspond to pixels one to one.
  • the gaps between adjacent first electrodes 10 are
  • the orthographic projection on the base substrate 1 may be located outside the orthographic projection of the groove 13 on the base substrate 1; as shown in FIG.
  • the flatness of the surface formed by the surface of the base substrate 1 and the surface of the first pixel defining layer 111 away from the base substrate 1, and the orthographic projection of the gap between the adjacent first electrodes 10 on the base substrate 1 is located where The bottom of the groove 13 is in an orthographic projection on the base substrate 1.
  • the other areas are flat surfaces, which can provide a flat surface for the subsequent formation of the organic light-emitting layer, so that after the organic light-emitting layer solution is printed in the pixel area, the organic light-emitting layer
  • the light-emitting layer solution can fully flow in the adjacent pixel area along the direction perpendicular to the first side and spread uniformly, thereby forming an organic light-emitting layer thin film with a uniform film thickness, reducing the difference in light emission uniformity between pixels.
  • forming the first pixel defining layer includes:
  • An inkjet printing method is used to form the first pixel defining layer in the groove.
  • the first pixel defining layer can be made by inkjet printing, which will not cause damage to the first electrode 10 and ensure the yield rate of the display substrate. .
  • forming the second pixel defining layer includes:
  • An inkjet printing method is used to form the second pixel defining layer.
  • the second pixel defining layer can be made by inkjet printing, which will not cause damage to the first electrode 10 and can ensure the yield rate of the display substrate. .
  • the second pixel defining layer 112 may be formed on a flat surface. As shown in FIG. 6, the second pixel defining layer 112 may be formed on a flat surface. The second pixel defining layer 112 is close to the base substrate 1. The surface of the side can be flush with the surface of the first electrode 10 on the side close to the base substrate 1, and no groove is provided in the area of the flat layer corresponding to the second pixel defining layer 112, so that the second pixel defining layer The surface height of 112 is relatively large, and pixels of different colors can be separated. As shown in FIG.
  • the orthographic projection of the surface of the second pixel defining layer 112 away from the base substrate on the base substrate is located on the front of the surface of the second pixel defining layer 112 near the base substrate on the base substrate.
  • the side surface of the second pixel defining layer 112 is a slope surface, so that when the organic light emitting layer 12 and the second electrode are subsequently formed, the organic light emitting layer 12 and the second electrode can be prevented from being broken.
  • the second pixel defining layer 112 may also be formed in the groove, for example, a groove is provided in the area of the flat layer corresponding to the second pixel defining layer 112, and the orthographic projection of part or all of the second pixel defining layer 112 on the base substrate Falling into the orthographic projection of the groove on the base substrate, the groove can increase the contact area between the second pixel defining layer and the display substrate, have a certain anchoring force on the second pixel defining layer 112, and prevent the second pixel The defining layer 112 falls off from the display substrate to ensure the yield rate of the display substrate.
  • the first electrode includes a first sub-electrode portion located in the groove and a second sub-electrode portion located outside the groove, which is formed in the groove by an inkjet printing method
  • the first pixel defining layer includes:
  • the first electrode 10 includes a first sub-electrode portion 101 located in the groove 13 and a second sub-electrode portion 102 located outside the groove 13.
  • the first pixel defining layer The surface 111 away from the base substrate 1 is flush with the surface of the second sub-electrode portion 102 away from the base substrate 1.
  • the first pixel defining layer 111 is completely located in the groove 13, which minimizes the risk of the first pixel defining layer 111 falling off the display substrate; and, the first pixel defining layer 111 is far away from the surface of the base substrate 1 and the The surface of the second sub-electrode portion 102 away from the base substrate 1 forms a flat surface, which can provide a flat surface for the subsequent formation of the organic light-emitting layer, so that after the organic light-emitting layer solution is printed in the pixel area, the organic light-emitting layer solution can be
  • the direction perpendicular to the first side fully flows in the adjacent pixel area and spreads uniformly, thereby forming an organic light-emitting layer thin film with a uniform film thickness, reducing the difference in light-emitting uniformity between pixels.
  • the organic light-emitting layer solution When the organic light-emitting layer solution is ink-jet printed in the pixel area, the organic light-emitting layer solution will cover the first pixel defining layer 111 but not the second pixel defining layer 112.
  • forming the first pixel defining layer includes:
  • a lyophilic material is used to form the first pixel defining layer.
  • forming the second pixel defining layer includes:
  • a lyophobic material layer is formed on the side of the lyophilic material layer away from the base substrate, and the lyophilic material layer and the lyophobic material layer constitute the second pixel defining layer.
  • the first pixel defining layer 111 is designed as a lyophilic material
  • the second pixel defining layer 112 is designed as a combination of a lysophilic material layer and a lyophobic material layer
  • the lyophilic material layer is arranged on It is close to the side of the base substrate 1, so that when the organic light-emitting layer solution is ink-jet printed in the pixel area, it can effectively avoid the serious climbing phenomenon at the edge of the pixel, thereby improving the uniformity of the film thickness of the organic light-emitting layer.
  • the manufacturing method of the display substrate of this embodiment includes the following steps:
  • Step 1 As shown in Figure 5, a light-shielding metal layer 2, a buffer layer 3, an active layer 4, a gate insulating layer 5, a gate 6, an interlayer insulating layer 7, a source 81, and a drain are formed on the base substrate 1. Pole 82 and flat layer 9;
  • the base substrate 1 may be a glass substrate or a quartz substrate, and may also be a flexible base.
  • the light-shielding metal layer 2 can be Cu, Al, Ag, Mo, Cr, Nd, Ni, Mn, Ti, Ta, W and other metals and alloys of these metals.
  • the light-shielding metal layer 2 can be a single-layer structure Or multilayer structure, multilayer structure such as Cu ⁇ Mo, Ti ⁇ Cu ⁇ Ti, Mo ⁇ Al ⁇ Mo, etc.
  • the buffer layer 3 can be selected from oxides, nitrides or oxynitride compounds.
  • a layer of semiconductor material can be deposited on the buffer layer 3 to form the active layer 4.
  • the PECVD method can be used to deposit a thickness of
  • the gate insulating layer 5 can be selected from oxides, nitrides or oxynitride compounds.
  • the gate metal layer can be Cu, Al, Ag, Mo, Cr, Nd, Ni, Mn, Ti, Ta, W and other metals and alloys of these metals.
  • the gate metal layer can be a single layer structure or multiple layers Structure, multilayer structure such as Cu ⁇ Mo, Ti ⁇ Cu ⁇ Ti, Mo ⁇ Al ⁇ Mo, etc.
  • the gate metal layer Coat a layer of photoresist on the gate metal layer, and use a mask to expose the photoresist so that the photoresist forms a photoresist unreserved area and a photoresist reserved area, where the photoresist reserved area corresponds to In the area where the pattern of the gate metal layer is located, the unreserved area of the photoresist corresponds to the area other than the above pattern; the development process is performed, the photoresist in the unreserved area of the photoresist is completely removed, and the photoresist in the remaining area of the photoresist The thickness remains the same; the gate metal layer in the unreserved area of the photoresist is completely etched by the etching process, and the remaining photoresist is stripped to form a pattern of the gate metal layer.
  • the pattern of the gate metal layer includes the gate 6.
  • the interlayer insulating layer 7 can be selected from oxides, nitrides or oxynitride compounds.
  • the source and drain metal layers can be Cu, Al, Ag, Mo, Cr, Nd, Ni, Mn, Ti, Ta, W and other metals and alloys of these metals.
  • the source and drain metal layers can be a single layer structure Or multilayer structure, multilayer structure such as Cu ⁇ Mo, Ti ⁇ Cu ⁇ Ti, Mo ⁇ Al ⁇ Mo, etc.
  • the unreserved photoresist area corresponds to the area other than the above pattern; the development process, the photoresist in the unreserved area of the photoresist is completely removed, and the photoresist in the remaining area is completely removed.
  • the thickness of the resist remains unchanged; the source and drain metal layers in the unreserved area of the photoresist are completely etched by the etching process, and the remaining photoresist is stripped to form the pattern of the source and drain metal layers.
  • the pattern of the source and drain metal layers includes the driver The source 81 and drain 82 of the thin film transistor.
  • the organic siloxane resin solution can be coated on the base substrate, and the flat layer 9 can be formed after the pre-baking and post-baking processes are cured.
  • the flatness of the flat layer 9 can meet the flatness requirements of inkjet printing. 9 is exposed and developed to form a groove 13, and the groove bottom of the groove 13 has a via hole exposing the drain 82.
  • Step 2 As shown in FIG. 5, the first electrode 10 is formed;
  • a first electrode material layer can be formed on the flat layer 9, a photoresist is coated on the first electrode material layer, the photoresist is exposed, and after development, a photoresist reserved area and a photoresist are formed. Resist removal area; the first electrode material layer in the photoresist removal area is etched, and the remaining photoresist is stripped to form the first electrode 10.
  • the first electrode material can be ITO with a thickness of 120nm.
  • the electrode 10 is connected to the drain 82 through a via hole penetrating the flat layer 9.
  • Step 3 As shown in FIGS. 5 and 6, forming a pixel defining layer
  • the pixel defining layer can be prepared by ink-jet printing organic insulating materials.
  • the pixel defining layer includes a first pixel defining layer 111 and a second pixel defining layer 112 located in the display area.
  • the substrate is peeled off, and the printing volume of the pixel defining layer ink is controlled so that the first pixel defining layer 111 just fills up the groove 13 after drying, the first pixel defining layer 111 is away from the surface of the base substrate 1 and the first electrode 10 is located in the groove The outer part away from the surface of the base substrate 1 is flush.
  • Step 4 As shown in FIGS. 5 and 6, an organic light-emitting layer 12 is formed.
  • an organic light-emitting layer can be formed on the base substrate 1 after step 3 by inkjet printing technology. Because the first pixel defining layer 111 is far away from the surface of the base substrate 1 and the part of the first electrode 10 outside the groove is far away from all sides.
  • the surface of the base substrate 1 forms a flat surface, which can provide a flat surface for printing the organic light-emitting layer, so that after the organic light-emitting layer solution is printed in the pixel area, the organic light-emitting layer solution can extend along with the first pixel defining layer 111
  • the direction perpendicular to the direction fully flows in the adjacent pixel area, spreads uniformly, and then forms an organic light-emitting layer thin film with a uniform film thickness, which reduces the difference in light emission uniformity between pixels.
  • the organic light-emitting layer 12 may include a first-color organic light-emitting layer 121, a second-color organic light-emitting layer 122, and a third-color organic light-emitting layer 123.
  • the display substrate as shown in FIG. 5 and FIG. 6 can be obtained, and then the second electrode, the encapsulation layer and other results can be produced, and then the OLED display substrate can be obtained.
  • sequence number of each step cannot be used to limit the sequence of each step.
  • sequence of each step is changed without creative work. It is also within the protection scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示基板及其制作方法、显示装置,属于显示技术领域。显示基板包括衬底基板,位于衬底基板上的薄膜晶体管阵列层,覆盖薄膜晶体管阵列层的平坦层,以及位于平坦层上的第一电极和像素界定层,像素界定层限定出多个像素开口,像素开口包括相邻的第一边和第二边,像素界定层包括与第一边平行的第一像素界定层和与第二边平行的第二像素界定层,第一像素界定层的表面高度低于第二像素界定层的表面高度,平坦层远离衬底基板的一侧表面设置有与第一边平行的凹槽,至少部分第一像素界定层位于凹槽内。本公开能够提高显示基板喷墨打印成膜的厚度的均一性,提高显示装置的显示效果,延长显示基板的使用寿命。

Description

显示基板及其制作方法、显示装置 技术领域
本公开涉及显示技术领域,特别是指一种显示基板及其制作方法、显示装置。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管,简称OLED)显示装置由于具有薄、轻、宽视角、主动发光、发光颜色连续可调、成本低、响应速度快、能耗小、驱动电压低、工作温度范围宽、生产工艺简单、发光效率高及可柔性显示等优点,已被列为极具发展前景的下一代显示技术。
OLED显示基板的有机发光层的成膜方式包括蒸镀和喷墨打印两种方式。由于喷墨打印技术具有较高的材料利用率,因此被认为是实现大尺寸、量产化的重要方式。但是喷墨打印时,会存在画面不均匀的现象,这是因为:一、不能保证每个喷嘴的喷墨量完全一致。因此,显示基板点亮后人眼即可分辨出由此体积误差导致的像素间发光均匀性差异;二、像素区域的尺寸较小,液体流动性较差,很难形成膜厚均一的有机发光层薄膜。
发明内容
本公开要解决的技术问题是提供一种显示基板及其制作方法、显示装置,能够提高显示基板喷墨打印成膜的厚度的均一性,从而提高显示装置的显示效果,延长显示基板的使用寿命。
为解决上述技术问题,本公开的实施例提供技术方案如下:
一方面,提供一种显示基板,包括衬底基板,位于所述衬底基板上的薄膜晶体管阵列层,覆盖所述薄膜晶体管阵列层的平坦层,以及位于所述平坦层上的第一电极和像素界定层,所述像素界定层限定出多个像素开口,所述像素开口包括相邻的第一边和第二边,所述像素界定层包括位于所述显示基 板的显示区域内、与所述第一边平行的第一像素界定层和与所述第二边平行的第二像素界定层,所述第一像素界定层的表面高度低于所述第二像素界定层的表面高度,所述平坦层远离所述衬底基板的一侧表面设置有与所述第一边平行的凹槽,至少部分所述第一像素界定层位于所述凹槽内,所述像素界定层还包括包围所述显示区域的第三像素界定层,所述第三像素界定层的表面高度不低于所述第二像素界定层的表面高度。
一些实施例中,所述第一像素界定层在所述衬底基板上的正投影位于所述凹槽在所述衬底基板上的正投影内。
一些实施例中,所述第一电极包括位于所述凹槽内的第一子电极部分和位于所述凹槽外的第二子电极部分,所述第一像素界定层远离所述衬底基板的表面与所述第二子电极部分远离所述衬底基板的表面齐平。
一些实施例中,所述第一子电极部分通过贯穿所述平坦层的过孔与所述薄膜晶体管阵列层的输出电极连接。
一些实施例中,所述凹槽的槽底与所述薄膜晶体管阵列层的输出电极远离所述衬底基板一侧的表面位于同一水平面。
一些实施例中,所述显示基板包括多个相互独立的第一电极,相邻第一电极之间的间隙在所述衬底基板上的正投影位于所述凹槽的槽底在所述衬底基板上的正投影内。
一些实施例中,所述第一电极的厚度为100-130nm。
一些实施例中,所述凹槽在垂直于所述第一边且平行于所述衬底基板的方向上的宽度为14-16um。
一些实施例中,所述第二像素界定层在所述衬底基板上的正投影与所述第一电极在所述衬底基板上的正投影不重叠。
一些实施例中,所述第二像素界定层靠近所述衬底基板一侧的表面与所述第一电极靠近所述衬底基板一侧的表面齐平。
一些实施例中,所述第一像素界定层采用亲液性材料。
一些实施例中,所述第二像素界定层包括亲液性材料层以及位于所述亲 液性材料层远离所述衬底基板一侧的疏液性材料层。
本公开实施例还提供了一种显示装置,包括如上所述的显示基板。
本公开实施例还提供了一种显示基板的制作方法,包括在衬底基板上依次形成薄膜晶体管阵列层,覆盖所述薄膜晶体管阵列层的平坦层,以及位于所述平坦层上的第一电极和像素界定层,所述像素界定层限定出多个像素开口,所述像素开口包括相邻的第一边和第二边,所述像素界定层包括位于所述显示基板的显示区域内、与所述第一边平行的第一像素界定层和与所述第二边平行的第二像素界定层,所述第一像素界定层的表面高度低于所述第二像素界定层的表面高度,所述像素界定层还包括包围所述显示区域的第三像素界定层,所述第三像素界定层的表面高度不低于所述第二像素界定层的表面高度,所述制作方法具体包括:
在所述平坦层远离所述衬底基板的一侧表面形成与所述第一边平行的凹槽;
在所述凹槽内形成至少部分所述第一像素界定层。
一些实施例中,形成所述第一电极包括:
在形成有所述凹槽的平坦层上形成第一电极材料层;
对所述第一电极材料层进行构图形成多个相互独立的第一电极,相邻第一电极之间的间隙在所述衬底基板上的正投影位于所述凹槽的槽底在所述衬底基板上的正投影内。
一些实施例中,形成所述第一像素界定层包括:
采用喷墨打印的方法在所述凹槽内形成所述第一像素界定层。
一些实施例中,所述第一电极包括位于所述凹槽内的第一子电极部分和位于所述凹槽外的第二子电极部分,采用喷墨打印的方法在所述凹槽内形成所述第一像素界定层包括:
形成表面与所述第二子电极部分远离所述衬底基板的表面齐平的所述第一像素界定层。
一些实施例中,形成所述第一像素界定层包括:
采用亲液性材料形成所述第一像素界定层。
一些实施例中,形成所述第二像素界定层包括:
形成亲液性材料层;
在所述亲液性材料层远离所述衬底基板的一侧形成疏液性材料层,所述亲液性材料层和所述疏液性材料层组成所述第二像素界定层。
本公开的实施例具有以下有益效果:
上述方案中,像素界定层包括与第一边平行的第一像素界定层和与第二边平行的第二像素界定层,第一像素界定层的表面高度低于第二像素界定层的表面高度,第一像素界定层可以用来间隔开颜色相同的像素,第二像素界定层可以用来间隔开颜色不同的像素,这样在像素界定层限定出的像素区域喷墨打印有机发光材料后,相同颜色的有机发光材料可以沿与第一边垂直的方向在相邻像素区域内流动,有利于有机发光材料的铺展均匀,形成膜厚均一的有机发光层薄膜,降低像素间发光均匀性差异,提高显示装置的显示效果,延长显示基板的使用寿命;另外,在平坦层远离衬底基板的一侧表面设置有与第一边平行的凹槽,厚度较小的第一像素界定层位于凹槽内,凹槽能够增加第一像素界定层与显示基板的接触面积,对第一像素界定层有一定的锚定力,这样能够防止第一像素界定层从显示基板上脱落,能够保证显示基板的良率。
附图说明
图1-图3为显示基板的平面示意图;
图4为本公开一实施例显示基板在AA’方向上的截面示意图;
图5为本公开另一实施例显示基板在AA’方向上的截面示意图;
图6为本公开另一实施例显示基板在BB’方向上的截面示意图。
1 衬底基板
2 遮光金属层
3 缓冲层
4 有源层
5 栅绝缘层
6 栅极
7 层间绝缘层
81 源极
82 漏极
9 平坦层
10 第一电极
101 第一子电极部分
102 第二子电极部分
111 第一像素界定层
112 第二像素界定层
113 第三像素界定层
12 有机发光层
121 第一颜色有机发光层
122 第二颜色有机发光层
123 第三颜色有机发光层
13 凹槽
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开的实施例提供一种显示基板及其制作方法、显示装置,能够提高显示基板喷墨打印成膜的厚度的均一性,从而提高显示装置的显示效果,延长显示基板的使用寿命。
为了形成膜厚均一的有机发光层薄膜,可以在显示基板上形成两种不同厚度的像素界定层,进而形成两种表面高度不同的像素界定层,其中,表面高度为像素界定层远离衬底基板一侧的表面与衬底基板靠近像素界定层的一 侧表面之间的距离,一些实施例中,所述像素界定层包括与所述第一边平行的第一像素界定层和与所述第二边平行的第二像素界定层,所述第一像素界定层的表面高度低于所述第二像素界定层的表面高度,第一像素界定层可以用来间隔开颜色相同的像素,第二像素界定层可以用来间隔开颜色不同的像素,这样在像素界定层限定出的像素区域喷墨打印有机发光材料后,相同颜色的有机发光材料可以沿与第一边垂直的方向在相邻像素区域内流动,有利于有机发光材料的铺展均匀,形成膜厚均一的有机发光层薄膜,降低像素间发光均匀性差异,提高显示装置的显示效果,延长显示基板的使用寿命。
显示基板的制程中,是在形成像素界定层之前制备第一电极,第一电极一般采用ITO制作,第一电极的厚度比较小,一般为10nm左右,如果采用干法刻蚀的方式形成像素界定层,会对第一电极造成损伤,影响显示基板的良率;因此,像素界定层可以采用有机感光材料,通过曝光显影的方式制作像素界定层,但由于第一像素界定层的厚度比较小,在进行显影时,第一像素界定层容易从显示基板上脱落,影响显示基板的良率。
本公开实施例提供一种显示基板,如图1-图4所示,其中,图1和图3为形成有机发光层之前的显示基板,图2为形成有机发光层之后的显示基板,图4为图1在AA’方向上的截面示意图,其中,有机发光层12包括第一颜色有机发光层121、第二颜色有机发光层122和第三颜色有机发光层123。显示基板包括衬底基板1,位于所述衬底基板1上的薄膜晶体管阵列层,覆盖所述薄膜晶体管阵列层的平坦层9,以及位于所述平坦层9上的第一电极10和像素界定层,所述像素界定层限定出多个像素开口,所述像素开口包括相邻的第一边和第二边,所述像素界定层包括位于显示基板的显示区域内、与所述第一边平行的第一像素界定层111和与所述第二边平行的第二像素界定层112,所述第一像素界定层111的表面高度低于所述第二像素界定层112的表面高度,所述平坦层9远离所述衬底基板1的一侧表面设置有与所述第一边平行的凹槽13,至少部分所述第一像素界定层111位于所述凹槽13内。
进一步,如图3所示,像素界定层还包括包围所述显示区域的第三像素 界定层113,所述第三像素界定层113的表面高度不低于所述第二像素界定层112的表面高度,在喷墨打印有机发光材料时,第三像素界定层113可以阻挡有机发光材料流出显示区域。
本实施例中,像素开口可以为矩形,像素开口包括相邻的第一边和第二边,第一边与第二边垂直,像素界定层包括与第一边平行的第一像素界定层和与第二边平行的第二像素界定层,第一像素界定层的表面高度低于第二像素界定层的表面高度,第一像素界定层可以用来间隔开颜色相同的像素,第二像素界定层可以用来间隔开颜色不同的像素,这样在像素界定层限定出的像素区域喷墨打印有机发光材料后,相同颜色的有机发光材料可以沿与第一边垂直的方向在相邻像素区域内流动,有利于有机发光材料的铺展均匀,形成膜厚均一的有机发光层薄膜,降低像素间发光均匀性差异,提高显示装置的显示效果,延长显示基板的使用寿命;另外,在平坦层远离衬底基板的一侧表面设置有与第一边平行的凹槽,厚度较小的第一像素界定层位于凹槽内,凹槽能够增加第一像素界定层与显示基板的接触面积,对第一像素界定层有一定的锚定力,这样能够防止第一像素界定层从显示基板上脱落,能够保证显示基板的良率。
本领域技术人员应当理解,显示基板还包括位于像素界定层远离衬底基板一侧的有机发光层以及位于有机发光层远离衬底基板一侧的第二电极,在此基础上,可以是第一电极为阳极,第二电极为阴极;也可以是第一电极为阴极,第二电极为阳极。
本公开实施例提供的显示基板可以为顶发光型,在此情况下,靠近衬底基板的第一电极呈不透光态,远离衬底基板的第二电极呈透光态。显示基板也可以为底发光型,在此情况下,靠近衬底基板的第一电极呈透光态,远离衬底基板的第二电极呈不透光态。显示基板当然还可以为双面发光型,在此情况下,靠近衬底基板的第一电极和远离衬底基板的第二电极均呈透光态。
在第一电极或第二电极呈透光态的情况下,第一电极或第二电极的材料例如可以为ITO(Indium Tin Oxide,氧化铟锡)、IZO(Indium Zinc Oxide, 氧化铟锌)或IGZO(Indium Gallium Zinc Oxide,铟镓锌氧化物)等。在第一电极或第二电极呈不透光态的情况下,第一电极或第二电极例如可以包括依次层叠设置的ITO(Indium Tin Oxide,氧化铟锡)层、Ag(银)层以及ITO层。
衬底基板1可以为柔性基板或刚性基板,刚性基板可以为玻璃基板或石英基板。
本实施例中,第一边的延伸方向可以是显示基板的行方向,第二边的延伸方向可以是显示基板的列方向;或者,第一边的延伸方向可以是显示基板的列方向,第二边的延伸方向可以是显示基板的行方向。
以第一边的延伸方向为显示基板的行方向,第二边的延伸方向为显示基板的列方向为例,显示基板的每列像素中,相邻的N个像素颜色相同,N的取值为大于2的整数,N的取值可以等于显示基板包括的像素行数,在N的取值等于显示基板包括的像素行数时,延伸方向为行方向的像素界定层均为所述第一像素界定层;在N的取值小于显示基板包括的像素行数时,延伸方向为行方向的像素界定层除包括所述第一像素界定层外,还可以包括表面高度与第一像素界定层的表面高度不同的第四像素界定层,第四像素界定层的表面高度应大于第一像素界定层的表面高度,以间隔开颜色不同的像素,第四像素界定层的表面高度可以等于第二像素界定层的表面高度。
如图4所示,第一像素界定层111可以是部分位于凹槽13内;一些实施例中,如图5所示,所述第一像素界定层111在所述衬底基板1上的正投影位于所述凹槽13在所述衬底基板1上的正投影内,这样能够最大化凹槽对第一像素界定层的锚定力,避免第一像素界定层111从显示基板上脱落。
本实施例中,由于凹槽13需要容纳第一像素界定层111,凹槽13的尺寸可以适当增大,凹槽13在垂直于所述第一边且平行于所述衬底基板1的方向上的宽度可以为14-16um。
一些实施例中,如图5所示,所述第一电极10包括位于所述凹槽13内的第一子电极部分101和位于所述凹槽13外的第二子电极部分102,所述第 一像素界定层111远离所述衬底基板1的表面与所述第二子电极部分102远离所述衬底基板1的表面齐平。这样第一像素界定层111完全位于凹槽13内,最大程度降低了第一像素界定层111从显示基板上脱落的风险;并且,第一像素界定层111远离衬底基板1的表面与所述第二子电极部分102远离所述衬底基板1的表面组成一平坦的表面,可以为后续形成有机发光层提供平坦的表面,这样在像素区域打印有机发光层溶液后,有机发光层溶液能够沿与第一边垂直的方向在相邻像素区域内充分流动,铺展均匀,进而形成膜厚均一的有机发光层薄膜,降低像素间发光均匀性差异。
为了避免在制作像素界定层的时候损伤到第一电极10,可以适当增加第一电极10的厚度,本实施例中,第一电极的厚度可以为100-130nm,比如120nm。
如图4和图5所示,薄膜晶体管阵列层包括位于衬底基板1上的有源层4、栅绝缘层5、栅极6、层间绝缘层7、源极81和漏极82,第一电极10可以通过贯穿平坦层9的过孔与漏极82(即薄膜晶体管阵列层的输出电极)连接,可以是第一子电极部分101与漏极82连接,也可以是第二子电极部分102与源极81连接,由于第二子电极部分102与漏极82之间间隔的平坦层的厚度较大,第一子电极部分101与漏极82之间间隔的平坦层的厚度较小,因此,可以是所述第一子电极部分101通过贯穿所述平坦层9的过孔与所述薄膜晶体管阵列层的输出电极即漏极82连接,这样可以降低过孔的深度,保证第一电极10与漏极82之间连接的可靠性。
一些实施例中,凹槽13的槽底与漏极82远离所述衬底基板1一侧的表面位于同一水平面,即凹槽13贯穿整个平坦层,相当于过孔的高度为0,这样第一子电极部分101可以在凹槽的槽底与漏极82直接接触,第一子电极部分101与漏极82之间为面接触,可以保证第一子电极部分101与漏极82之间的连接可靠性。
本实施例中,所述显示基板包括多个相互独立的第一电极10,所述第一电极10与像素一一对应,如图4所示,相邻第一电极10之间的间隙在所述 衬底基板1上的正投影可以位于所述凹槽13在衬底基板1的正投影外;如图5所示,为了保证第二子电极部分远离衬底基板1的表面与第一像素界定层111远离衬底基板1的表面组成的面的平坦性,相邻第一电极10之间的间隙在所述衬底基板1上的正投影位于所述凹槽13的槽底在所述衬底基板1上的正投影内。这样在形成像素界定层后,除第二像素界定层112所在区域,其他区域均为平坦的表面,可以为后续形成有机发光层提供平坦的表面,这样在像素区域打印有机发光层溶液后,有机发光层溶液能够沿与第一边垂直的方向在相邻像素区域内充分流动,铺展均匀,进而形成膜厚均一的有机发光层薄膜,降低像素间发光均匀性差异。
为了避免采用构图工艺制作像素界定层时对第一电极10造成损伤,可以采用喷墨打印的方式制作像素界定层。
图6为图2所示显示基板在BB’方向上的截面示意图,如图6所示,第二像素界定层112可以形成在平坦的表面上,所述第二像素界定层112靠近所述衬底基板1一侧的表面可以与所述第一电极10靠近所述衬底基板1一侧的表面齐平,在平坦层对应第二像素界定层112的区域未设置凹槽,这样可以使得第二像素界定层112的表面高度比较大,可以间隔开颜色不同的像素。如图6所示,第二像素界定层112远离衬底基板一侧的表面在衬底基板上的正投影位于第二像素界定层112靠近衬底基板一侧的表面在衬底基板上的正投影内,即第二像素界定层112的侧表面为坡面,这样在后续形成有机发光层12和第二电极时,可以避免有机发光层12和第二电极发生断裂。
当然,第二像素界定层112也可以形成在凹槽内,比如在平坦层对应第二像素界定层112的区域设置凹槽,部分或者全部第二像素界定层112在衬底基板上的正投影落入凹槽在衬底基板上的正投影内,这样凹槽能够增加第二像素界定层与显示基板的接触面积,对第二像素界定层112有一定的锚定力,能够防止第二像素界定层112从显示基板上脱落,保证显示基板的良率。
在像素区域内喷墨打印有机发光层溶液时,有机发光层溶液会覆盖第一像素界定层111,但不会覆盖第二像素界定层112。
如图6所示,所述第二像素界定层112在所述衬底基板1上的正投影与所述第一电极10在所述衬底基板上的正投影不重叠,这样可以保证相邻像素的第一电极10为相互独立的。
一些实施例中,所述第一像素界定层111采用亲液性材料,所述第二像素界定层112包括亲液性材料层以及位于所述亲液性材料层远离所述衬底基板1一侧的疏液性材料层。将第一像素界定层111设计为亲液性材料,将第二像素界定层112设计为亲液性材料层和疏液性材料层的组合,且亲液性材料层设置在靠近衬底基板1的一侧,这样在像素区域内喷墨打印有机发光层溶液时,可以有效避免像素边缘出现严重的攀爬现象,从而提高有机发光层的膜厚均一性。
利用喷墨打印工艺形成有机发光层时,若一个喷嘴对应给一个像素区域喷墨,以在该像素区域内形成有机发光层,由于多个喷嘴间喷墨量的误差,因而会导致各个像素区域内形成的有机发光层的厚度不均一,进而导致各个像素区域发出光的亮度不均一。
由于本公开实施例提供的显示基板中,以第一边的延伸方向为显示基板的行方向,第二边的延伸方向为显示基板的列方向为例,显示基板的每列像素中,相邻的N个像素颜色相同,N个像素之间以第一像素界定层间隔,由于第一像素界定层的表面高度比较小,相邻的N个像素区域之间是连通的,因此通过喷墨打印在像素区域内打印墨水时,墨水可以在相邻的N个像素区域之间流通,因而能够均匀化不同像素区域之间的墨水体积差异,从而使得相邻的N个像素区域中,每个像素区域形成的有机发光层的厚度是均匀的。
本公开实施例还提供了一种显示装置,包括如上所述的显示基板。该显示装置包括但不限于:射频单元、网络模块、音频输出单元、输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、处理器、以及电源等部件。本领域技术人员可以理解,上述显示装置的结构并不构成对显示装置的限定,显示装置可以包括上述更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,显示装置包括但不限于显示器、手 机、平板电脑、电视机、可穿戴电子设备、导航显示设备等。
所述显示装置可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,所述显示装置还包括柔性电路板、印刷电路板和背板。
本公开实施例还提供了一种显示基板的制作方法,包括在衬底基板上依次形成薄膜晶体管阵列层,覆盖所述薄膜晶体管阵列层的平坦层,以及位于所述平坦层上的第一电极和像素界定层,所述像素界定层限定出多个像素开口,所述像素开口包括相邻的第一边和第二边,所述像素界定层包括与所述第一边平行的第一像素界定层和与所述第二边平行的第二像素界定层,所述第一像素界定层的表面高度低于所述第二像素界定层的表面高度,所述像素界定层还包括包围所述显示区域的第三像素界定层,所述第三像素界定层的表面高度不低于所述第二像素界定层的表面高度,所述制作方法具体包括:
在所述平坦层远离所述衬底基板的一侧表面形成与所述第一边平行的凹槽;
在所述凹槽内形成至少部分所述第一像素界定层。
本实施例中,像素界定层包括与第一边平行的第一像素界定层和与第二边平行的第二像素界定层,第一像素界定层的表面高度低于第二像素界定层的表面高度,第一像素界定层可以用来间隔开颜色相同的像素,第二像素界定层可以用来间隔开颜色不同的像素,这样在像素界定层限定出的像素区域喷墨打印有机发光材料后,相同颜色的有机发光材料可以沿与第一边垂直的方向在相邻像素区域内流动,有利于有机发光材料的铺展均匀,形成膜厚均一的有机发光层薄膜,降低像素间发光均匀性差异,提高显示装置的显示效果,延长显示基板的使用寿命;另外,在平坦层远离衬底基板的一侧表面设置有与第一边平行的凹槽,厚度较小的第一像素界定层位于凹槽内,凹槽能够增加第一像素界定层与显示基板的接触面积,对第一像素界定层有一定的锚定力,这样能够防止第一像素界定层从显示基板上脱落,能够保证显示基板的良率。
一些实施例中,形成所述第一电极包括:
在形成有所述凹槽的平坦层上形成第一电极材料层;
对所述第一电极材料层进行构图形成多个相互独立的第一电极,相邻第一电极之间的间隙在所述衬底基板上的正投影位于所述凹槽的槽底在所述衬底基板上的正投影内。
本实施例中,所述显示基板包括多个相互独立的第一电极10,所述第一电极10与像素一一对应,如图4所示,相邻第一电极10之间的间隙在所述衬底基板1上的正投影可以位于所述凹槽13在衬底基板1的正投影外;如图5所示,为了保证第一电极10位于凹槽13外的第二子电极部分远离衬底基板1的表面与第一像素界定层111远离衬底基板1的表面组成的面的平坦性,相邻第一电极10之间的间隙在所述衬底基板1上的正投影位于所述凹槽13的槽底在所述衬底基板1上的正投影内。这样在形成像素界定层后,除第二像素界定层112所在区域,其他区域均为平坦的表面,可以为后续形成有机发光层提供平坦的表面,这样在像素区域打印有机发光层溶液后,有机发光层溶液能够沿与第一边垂直的方向在相邻像素区域内充分流动,铺展均匀,进而形成膜厚均一的有机发光层薄膜,降低像素间发光均匀性差异。
一些实施例中,形成所述第一像素界定层包括:
采用喷墨打印的方法在所述凹槽内形成所述第一像素界定层。为了避免采用构图工艺制作像素界定层时对第一电极10造成损伤,可以采用喷墨打印的方式制作第一像素界定层,这样不会对第一电极10造成损伤,能够保证显示基板的良率。
一些实施例中,形成所述第二像素界定层包括:
采用喷墨打印的方法形成第二像素界定层。为了避免采用构图工艺制作像素界定层时对第一电极10造成损伤,可以采用喷墨打印的方式制作第二像素界定层,这样不会对第一电极10造成损伤,能够保证显示基板的良率。
第二像素界定层112可以形成在平坦的表面上,如图6所示,第二像素界定层112可以形成在平坦的表面上,所述第二像素界定层112靠近所述衬 底基板1一侧的表面可以与所述第一电极10靠近所述衬底基板1一侧的表面齐平,在平坦层对应第二像素界定层112的区域未设置凹槽,这样可以使得第二像素界定层112的表面高度比较大,可以间隔开颜色不同的像素。如图6所示,第二像素界定层112远离衬底基板一侧的表面在衬底基板上的正投影位于第二像素界定层112靠近衬底基板一侧的表面在衬底基板上的正投影内,即第二像素界定层112的侧表面为坡面,这样在后续形成有机发光层12和第二电极时,可以避免有机发光层12和第二电极发生断裂。
当然,第二像素界定层112也可以形成在凹槽内,比如在平坦层对应第二像素界定层112的区域设置凹槽,部分或者全部第二像素界定层112在衬底基板上的正投影落入凹槽在衬底基板上的正投影内,这样凹槽能够增加第二像素界定层与显示基板的接触面积,对第二像素界定层112有一定的锚定力,能够防止第二像素界定层112从显示基板上脱落,保证显示基板的良率。
一些实施例中,所述第一电极包括位于所述凹槽内的第一子电极部分和位于所述凹槽外的第二子电极部分,采用喷墨打印的方法在所述凹槽内形成所述第一像素界定层包括:
形成表面与所述第二子电极部分远离所述衬底基板的表面齐平的所述第一像素界定层。
如图5所示,所述第一电极10包括位于所述凹槽13内的第一子电极部分101和位于所述凹槽13外的第二子电极部分102,所述第一像素界定层111远离所述衬底基板1的表面与所述第二子电极部分102远离所述衬底基板1的表面齐平。这样第一像素界定层111完全位于凹槽13内,最大程度降低了第一像素界定层111从显示基板上脱落的风险;并且,第一像素界定层111远离衬底基板1的表面与所述第二子电极部分102远离所述衬底基板1的表面组成一平坦的表面,可以为后续形成有机发光层提供平坦的表面,这样在像素区域打印有机发光层溶液后,有机发光层溶液能够沿与第一边垂直的方向在相邻像素区域内充分流动,铺展均匀,进而形成膜厚均一的有机发光层薄膜,降低像素间发光均匀性差异。
在像素区域内喷墨打印有机发光层溶液时,有机发光层溶液会覆盖第一像素界定层111,但不会覆盖第二像素界定层112。
一些实施例中,形成所述第一像素界定层包括:
采用亲液性材料形成所述第一像素界定层。
一些实施例中,形成所述第二像素界定层包括:
形成亲液性材料层;
在所述亲液性材料层远离所述衬底基板的一侧形成疏液性材料层,所述亲液性材料层和所述疏液性材料层组成所述第二像素界定层。
本实施例中,将第一像素界定层111设计为亲液性材料,将第二像素界定层112设计为亲液性材料层和疏液性材料层的组合,且亲液性材料层设置在靠近衬底基板1的一侧,这样在像素区域内喷墨打印有机发光层溶液时,可以有效避免像素边缘出现严重的攀爬现象,从而提高有机发光层的膜厚均一性。
一具体实施例中,本实施例的显示基板的制作方法包括以下步骤:
步骤1、如图5所示,在衬底基板1上形成遮光金属层2、缓冲层3、有源层4、栅绝缘层5、栅极6、层间绝缘层7、源极81、漏极82和平坦层9;
其中,衬底基板1可为玻璃基板或石英基板,还可以为柔性基底。
具体地,可以采用溅射或热蒸发的方法在衬底基板1上沉积厚度约为
Figure PCTCN2021087439-appb-000001
的遮光金属层2,遮光金属层2可以是Cu,Al,Ag,Mo,Cr,Nd,Ni,Mn,Ti,Ta,W等金属以及这些金属的合金,遮光金属层2可以为单层结构或者多层结构,多层结构比如Cu\Mo,Ti\Cu\Ti,Mo\Al\Mo等。在遮光金属层上涂覆一层光刻胶,采用掩膜板对光刻胶进行曝光,使光刻胶形成光刻胶未保留区域和光刻胶保留区域,其中,光刻胶保留区域对应于遮光金属层的图形所在区域,光刻胶未保留区域对应于上述图形以外的区域;进行显影处理,光刻胶未保留区域的光刻胶被完全去除,光刻胶保留区域的光刻胶厚度保持不变;通过刻蚀工艺完全刻蚀掉光刻胶未保留区域的遮光金属层,剥离剩余的光刻胶,形成遮光金属层2的图形。
之后,可以采用等离子体增强化学气相沉积(PECVD)方法在衬底基板1上沉积厚度为
Figure PCTCN2021087439-appb-000002
的缓冲层3,缓冲层3可以选用氧化物、氮化物或者氧氮化合物。
之后,可以在缓冲层3上沉积一层半导体材料形成有源层4。
之后,可以采用PECVD方法在衬底基板1上沉积厚度为
Figure PCTCN2021087439-appb-000003
的栅绝缘层5,栅绝缘层5可以选用氧化物、氮化物或者氧氮化合物。
之后可以在栅绝缘层5上采用溅射或热蒸发的方法沉积厚度约为
Figure PCTCN2021087439-appb-000004
Figure PCTCN2021087439-appb-000005
的栅金属层,栅金属层可以是Cu,Al,Ag,Mo,Cr,Nd,Ni,Mn,Ti,Ta,W等金属以及这些金属的合金,栅金属层可以为单层结构或者多层结构,多层结构比如Cu\Mo,Ti\Cu\Ti,Mo\Al\Mo等。在栅金属层上涂覆一层光刻胶,采用掩膜板对光刻胶进行曝光,使光刻胶形成光刻胶未保留区域和光刻胶保留区域,其中,光刻胶保留区域对应于栅金属层的图形所在区域,光刻胶未保留区域对应于上述图形以外的区域;进行显影处理,光刻胶未保留区域的光刻胶被完全去除,光刻胶保留区域的光刻胶厚度保持不变;通过刻蚀工艺完全刻蚀掉光刻胶未保留区域的栅金属层,剥离剩余的光刻胶,形成栅金属层的图形,栅金属层的图形包括栅极6。
之后,可以采用PECVD方法在衬底基板1上沉积厚度为
Figure PCTCN2021087439-appb-000006
的层间绝缘层7,层间绝缘层7可以选用氧化物、氮化物或者氧氮化合物。
之后可以在层间绝缘层7上采用溅射或热蒸发的方法沉积厚度约为
Figure PCTCN2021087439-appb-000007
的源漏金属层,源漏金属层可以是Cu,Al,Ag,Mo,Cr,Nd,Ni,Mn,Ti,Ta,W等金属以及这些金属的合金,源漏金属层可以为单层结构或者多层结构,多层结构比如Cu\Mo,Ti\Cu\Ti,Mo\Al\Mo等。在源漏金属层上涂覆一层光刻胶,采用掩膜板对光刻胶进行曝光,使光刻胶形成光刻胶未保留区域和光刻胶保留区域,其中,光刻胶保留区域对应于源漏金属层的图形所在区域,光刻胶未保留区域对应于上述图形以外的区域;进行显影处理,光刻胶未保留区域的光刻胶被完全去除,光刻胶保留区域的光刻胶厚度保持不变;通过刻蚀工艺完全刻蚀掉光刻胶未保留区域的源漏金属层,剥离 剩余的光刻胶,形成源漏金属层的图形,源漏金属层的图形包括驱动薄膜晶体管的源极81和漏极82。
之后可以在衬底基板上涂覆有机硅氧烷树脂溶液,经过前烘、后烘工艺固化后形成平坦层9,平坦层9的平坦度可以满足喷墨打印对平坦度的要求,对平坦层9进行曝光显影,形成凹槽13,凹槽13的槽底具有暴露出漏极82的过孔。
步骤2、如图5所示,形成第一电极10;
具体地,可以在平坦层9上形成第一电极材料层,在所述第一电极材料层上涂覆光刻胶,对所述光刻胶进行曝光,显影后形成光刻胶保留区域和光刻胶去除区域;对光刻胶去除区域的第一电极材料层进行刻蚀,剥离剩余的光刻胶,形成所述第一电极10,第一电极材料可以采用ITO,厚度为120nm,第一电极10通过贯穿平坦层9的过孔与漏极82连接。
步骤3、如图5和图6所示,形成像素界定层;
具体地,可以采用喷墨打印有机绝缘材料的方式制备像素界定层,像素界定层包括位于显示区域的第一像素界定层111和第二像素界定层112,为了避免第一像素界定层111从显示基板上脱落,通过控制像素界定层墨水的打印量使得第一像素界定层111干燥后刚好填平凹槽13,第一像素界定层111远离衬底基板1的表面与第一电极10位于凹槽外的部分远离衬底基板1的表面齐平。
步骤4、如图5和图6所示,形成有机发光层12。
具体地,可以在经过步骤3的衬底基板1通过喷墨打印技术形成有机发光层,由于第一像素界定层111远离衬底基板1的表面与第一电极10位于凹槽外的部分远离所述衬底基板1的表面组成一平坦的表面,可以为打印有机发光层提供平坦的表面,这样在像素区域打印有机发光层溶液后,有机发光层溶液能够沿与第一像素界定层111的延伸方向垂直的方向在相邻像素区域内充分流动,铺展均匀,进而形成膜厚均一的有机发光层薄膜,降低像素间发光均匀性差异。其中,有机发光层12可以包括第一颜色有机发光层121、 第二颜色有机发光层122和第三颜色有机发光层123。
经过上述步骤即可得到如图5和图6所示的显示基板,之后可以制作第二电极、封装层等结果,即可得到OLED显示基板。
在本公开各方法实施例中,所述各步骤的序号并不能用于限定各步骤的先后顺序,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,对各步骤的先后变化也在本公开的保护范围之内。
需要说明,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于实施例而言,由于其基本相似于产品实施例,所以描述得比较简单,相关之处参见产品实施例的部分说明即可。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护 范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种显示基板,包括衬底基板,位于所述衬底基板上的薄膜晶体管阵列层,覆盖所述薄膜晶体管阵列层的平坦层,以及位于所述平坦层上的第一电极和像素界定层,所述像素界定层限定出多个像素开口,所述像素开口包括相邻的第一边和第二边,所述像素界定层包括位于所述显示基板的显示区域内、与所述第一边平行的第一像素界定层和与所述第二边平行的第二像素界定层,其特征在于,所述第一像素界定层的表面高度低于所述第二像素界定层的表面高度,所述平坦层远离所述衬底基板的一侧表面设置有与所述第一边平行的凹槽,至少部分所述第一像素界定层位于所述凹槽内,所述像素界定层还包括包围所述显示区域的第三像素界定层,所述第三像素界定层的表面高度不低于所述第二像素界定层的表面高度。
  2. 根据权利要求1所述的显示基板,其特征在于,所述第一像素界定层在所述衬底基板上的正投影位于所述凹槽在所述衬底基板上的正投影内。
  3. 根据权利要求2所述的显示基板,其特征在于,所述第一电极包括位于所述凹槽内的第一子电极部分和位于所述凹槽外的第二子电极部分,所述第一像素界定层远离所述衬底基板的表面与所述第二子电极部分远离所述衬底基板的表面齐平。
  4. 根据权利要求3所述的显示基板,其特征在于,所述第一子电极部分通过贯穿所述平坦层的过孔与所述薄膜晶体管阵列层的输出电极连接。
  5. 根据权利要求3所述的显示基板,其特征在于,所述凹槽的槽底与所述薄膜晶体管阵列层的输出电极远离所述衬底基板一侧的表面位于同一水平面。
  6. 根据权利要求1所述的显示基板,其特征在于,所述显示基板包括多个相互独立的第一电极,相邻第一电极之间的间隙在所述衬底基板上的正投影位于所述凹槽的槽底在所述衬底基板上的正投影内。
  7. 根据权利要求1所述的显示基板,其特征在于,所述第一电极的厚度为100-130nm。
  8. 根据权利要求1所述的显示基板,其特征在于,所述凹槽在垂直于所述第一边且平行于所述衬底基板的方向上的宽度为14-16um。
  9. 根据权利要求1所述的显示基板,其特征在于,所述第二像素界定层在所述衬底基板上的正投影与所述第一电极在所述衬底基板上的正投影不重叠。
  10. 根据权利要求9所述的显示基板,其特征在于,所述第二像素界定层靠近所述衬底基板一侧的表面与所述第一电极靠近所述衬底基板一侧的表面齐平。
  11. 根据权利要求1所述的显示基板,其特征在于,所述第一像素界定层采用亲液性材料。
  12. 根据权利要求1所述的显示基板,其特征在于,所述第二像素界定层包括亲液性材料层以及位于所述亲液性材料层远离所述衬底基板一侧的疏液性材料层。
  13. 一种显示装置,其特征在于,包括如权利要求1-12中任一项所述的显示基板。
  14. 一种显示基板的制作方法,包括在衬底基板上依次形成薄膜晶体管阵列层,覆盖所述薄膜晶体管阵列层的平坦层,以及位于所述平坦层上的第一电极和像素界定层,所述像素界定层限定出多个像素开口,所述像素开口包括相邻的第一边和第二边,所述像素界定层包括位于所述显示基板的显示区域内、与所述第一边平行的第一像素界定层和与所述第二边平行的第二像素界定层,其特征在于,所述第一像素界定层的表面高度低于所述第二像素界定层的表面高度,所述像素界定层还包括包围所述显示区域的第三像素界定层,所述第三像素界定层的表面高度不低于所述第二像素界定层的表面高度,所述制作方法具体包括:
    在所述平坦层远离所述衬底基板的一侧表面形成与所述第一边平行的凹槽;
    在所述凹槽内形成至少部分所述第一像素界定层。
  15. 根据权利要求14所述的显示基板的制作方法,其特征在于,形成所 述第一电极包括:
    在形成有所述凹槽的平坦层上形成第一电极材料层;
    对所述第一电极材料层进行构图形成多个相互独立的第一电极,相邻第一电极之间的间隙在所述衬底基板上的正投影位于所述凹槽的槽底在所述衬底基板上的正投影内。
  16. 根据权利要求15所述的显示基板的制作方法,其特征在于,形成所述第一像素界定层包括:
    采用喷墨打印的方法在所述凹槽内形成所述第一像素界定层。
  17. 根据权利要求16所述的显示基板的制作方法,其特征在于,所述第一电极包括位于所述凹槽内的第一子电极部分和位于所述凹槽外的第二子电极部分,采用喷墨打印的方法在所述凹槽内形成所述第一像素界定层包括:
    形成表面与所述第二子电极部分远离所述衬底基板的表面齐平的所述第一像素界定层。
  18. 根据权利要求14所述的显示基板的制作方法,其特征在于,形成所述第一像素界定层包括:
    采用亲液性材料形成所述第一像素界定层。
  19. 根据权利要求14所述的显示基板的制作方法,其特征在于,形成所述第二像素界定层包括:
    形成亲液性材料层;
    在所述亲液性材料层远离所述衬底基板的一侧形成疏液性材料层,所述亲液性材料层和所述疏液性材料层组成所述第二像素界定层。
PCT/CN2021/087439 2020-05-28 2021-04-15 显示基板及其制作方法、显示装置 WO2021238482A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/765,397 US20220376007A1 (en) 2020-05-28 2021-04-15 Display substrate, method for forming the same and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010465889.6A CN111710694B (zh) 2020-05-28 2020-05-28 显示基板及其制作方法、显示装置
CN202010465889.6 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021238482A1 true WO2021238482A1 (zh) 2021-12-02

Family

ID=72538209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087439 WO2021238482A1 (zh) 2020-05-28 2021-04-15 显示基板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US20220376007A1 (zh)
CN (1) CN111710694B (zh)
WO (1) WO2021238482A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230784A1 (zh) * 2022-05-30 2023-12-07 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710694B (zh) * 2020-05-28 2022-10-25 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN112186016B (zh) * 2020-09-29 2022-07-12 京东方科技集团股份有限公司 一种显示面板、其制备方法及显示装置
CN112968045B (zh) * 2021-02-02 2022-11-25 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN113161397B (zh) * 2021-03-31 2023-12-26 京东方科技集团股份有限公司 显示基板、显示装置及其制备方法
CN113555407B (zh) * 2021-07-21 2024-06-11 合肥京东方卓印科技有限公司 有机电致发光显示基板及其制备方法、显示装置
CN118414704A (zh) * 2022-11-28 2024-07-30 京东方科技集团股份有限公司 显示基板和显示装置
WO2024152268A1 (zh) * 2023-01-18 2024-07-25 京东方科技集团股份有限公司 显示基板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070200488A1 (en) * 2006-02-27 2007-08-30 Naoyuki Ito Display device
CN101689559A (zh) * 2008-06-06 2010-03-31 松下电器产业株式会社 有机电致发光显示屏及其制造方法
CN207199626U (zh) * 2017-07-17 2018-04-06 广东聚华印刷显示技术有限公司 顶发射显示器件
CN107887417A (zh) * 2016-09-30 2018-04-06 三星显示有限公司 显示装置
CN111146242A (zh) * 2018-11-02 2020-05-12 乐金显示有限公司 有机发光显示装置
CN111710694A (zh) * 2020-05-28 2020-09-25 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107323A1 (ja) * 2008-02-28 2009-09-03 パナソニック株式会社 有機elディスプレイパネル
KR20150012503A (ko) * 2013-07-25 2015-02-04 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조방법
CN103545457B (zh) * 2013-10-28 2016-06-29 京东方科技集团股份有限公司 发光器件、阵列基板、显示装置及发光器件的制造方法
CN107731871B (zh) * 2017-09-29 2020-05-08 上海天马微电子有限公司 显示面板及其制作方法和显示装置
KR102011952B1 (ko) * 2017-11-30 2019-08-19 엘지디스플레이 주식회사 전계발광표시장치와 이의 제조방법
KR20200031418A (ko) * 2018-09-14 2020-03-24 엘지디스플레이 주식회사 유기발광 표시장치
CN109920825B (zh) * 2019-03-14 2022-04-12 京东方科技集团股份有限公司 像素界定结构及其制作方法、显示面板及显示装置
KR20220077177A (ko) * 2020-11-30 2022-06-09 삼성디스플레이 주식회사 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070200488A1 (en) * 2006-02-27 2007-08-30 Naoyuki Ito Display device
CN101689559A (zh) * 2008-06-06 2010-03-31 松下电器产业株式会社 有机电致发光显示屏及其制造方法
CN107887417A (zh) * 2016-09-30 2018-04-06 三星显示有限公司 显示装置
CN207199626U (zh) * 2017-07-17 2018-04-06 广东聚华印刷显示技术有限公司 顶发射显示器件
CN111146242A (zh) * 2018-11-02 2020-05-12 乐金显示有限公司 有机发光显示装置
CN111710694A (zh) * 2020-05-28 2020-09-25 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230784A1 (zh) * 2022-05-30 2023-12-07 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN111710694A (zh) 2020-09-25
CN111710694B (zh) 2022-10-25
US20220376007A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
WO2021238482A1 (zh) 显示基板及其制作方法、显示装置
CN110120463B (zh) 显示基板及其制备方法、显示装置
US10615231B2 (en) Organic light emitting diode substrate, method for manufacturing the same, and display panel
WO2020207124A1 (zh) 显示基板及其制造方法、显示装置
US9373814B2 (en) Organic light-emitting diode (OLED) display panel, pixel define layer (PDL) and preparation method thereof
US10991902B2 (en) Organic light emitting diode substrate and preparation method thereof, and display panel
US9722005B2 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
US10937998B1 (en) Display panel and method for preparing the same, and display device
CN109346505B (zh) 一种有机发光显示面板、其制备方法及显示装置
WO2021169988A1 (zh) Oled显示基板及其制作方法、显示装置
WO2021093687A1 (zh) 显示基板及其制备方法、显示装置
JP2016081562A (ja) 表示装置、表示装置の製造方法および電子機器
JP2014099402A (ja) 発光ディスプレイバックプレーン、ディスプレイデバイス、及び画素定義層の製造方法
KR20140067645A (ko) 유기전계 발광소자 및 이의 제조 방법
CN109962177B (zh) 一种oled基板及其制备方法、oled显示装置
WO2021088832A1 (zh) 电子设备、显示装置、显示基板及其制造方法
CN111785760B (zh) 一种显示基板及其制备方法、显示装置
JP2007258157A (ja) エレクトロルミネッセント素子を含む画像表示システムおよびその製造方法
WO2020224010A1 (zh) Oled 显示面板及其制备方法
CN108987608A (zh) Oled显示面板及其制造方法、显示装置
WO2021238645A1 (zh) 显示用基板及其制备方法、显示装置
CN111863908B (zh) 显示基板及其制作方法、显示装置
CN109599430B (zh) Oled基板及其制备方法、oled显示装置
US11404505B2 (en) Display substrate, ink-jet printing method thereof, and display apparatus
WO2020233485A1 (zh) 发光器件及其制造方法、掩膜板、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813699

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21813699

Country of ref document: EP

Kind code of ref document: A1