WO2021238283A1 - 定位方法和定位装置 - Google Patents

定位方法和定位装置 Download PDF

Info

Publication number
WO2021238283A1
WO2021238283A1 PCT/CN2021/073709 CN2021073709W WO2021238283A1 WO 2021238283 A1 WO2021238283 A1 WO 2021238283A1 CN 2021073709 W CN2021073709 W CN 2021073709W WO 2021238283 A1 WO2021238283 A1 WO 2021238283A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
road section
time
road
positioning
Prior art date
Application number
PCT/CN2021/073709
Other languages
English (en)
French (fr)
Inventor
李建飞
叶爱学
高亚军
温丰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21814321.2A priority Critical patent/EP4141600A4/en
Publication of WO2021238283A1 publication Critical patent/WO2021238283A1/zh
Priority to US17/993,093 priority patent/US20230093020A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • G01C21/3889Transmission of selected map data, e.g. depending on route

Definitions

  • This application relates to the field of map navigation technology, and in particular to a positioning method and a positioning device.
  • Positioning is an indispensable technical link in automatic driving.
  • the common positioning method is to receive GNSS signals through the vehicle's global navigation satellite system (GNSS) receiver, and then obtain the vehicle's position information to determine the vehicle on the map Location.
  • GNSS global navigation satellite system
  • the positioning method provided in the embodiments of the present application can realize precise positioning in a spatially overlapping scene and reduce positioning errors.
  • the first aspect of the embodiments of the present application provides a positioning method, including: determining the identifier of the first road section where the target at the first moment is located; constructing a local topology map at the first moment according to map information,
  • the local topology map at the time includes the identifier of the road section adjacent to the first road section; the location information of the target at the second time is obtained, and in time sequence, the second time is a time after the first time;
  • the identification of at least two road sections corresponding to the target at the second moment is determined; according to the local topology map at the first moment and the location information
  • the identifiers of the at least two road sections corresponding to the target at the second moment are determined, and the identifiers of the road section where the target is located at the second moment are determined.
  • the embodiment of the present application provides a positioning method, which can realize positioning in a spatially overlapping scene and reduce positioning errors.
  • the method includes constructing a local topological map of the target at the first moment based on the pre-stored map information through the identifier of the first road section where the target is located at the first moment. Since the local topological map records the identifier of the road section adjacent to the first road section, These marks do not have the marks of multiple road sections in a spatially overlapping area.
  • the number of road section marks corresponding to the location of the target at the second time is determined according to the map information.
  • the target is in the spatial overlap area, query the local topological map at the first moment, and according to the road segment identifiers included in the local topology map at the first moment, you can determine the specific road section of the target located in the spatial overlap area at the second moment.
  • this method can be used to determine which road section of the multiple road sections overlapped in the height direction is located, thereby reducing positioning errors.
  • the map information can also store the identification of the location layer associated with the road segment, determine the location layer associated with the road segment according to the location of the road segment, and achieve high-precision positioning of the target through the location layer.
  • the map information includes identifiers of road segments and connection relationships between road segments.
  • the map information includes the identifier of the road section and the connection relationship between the road sections, so that according to the road section identifier, the identifier of the road section adjacent to the road section can be queried, thereby constructing a local topology map.
  • the method further includes: acquiring a navigation satellite system signal at the initial moment of the target; and determining the signal of the target at the initial moment according to the navigation satellite system signal; Location information; determine the identifier of the road section where the target is located at the initial moment according to the map information and the location information of the target at the initial moment.
  • the positioning method provided in the embodiment of the present application introduces a scenario where the target is located in a non-spatial overlapping area at the time of initialization. At the moment of initialization after the positioning device is turned on, since the local topology has not been constructed, the initial position of the target and the identification of the road section where the target is located can be determined through the GNSS signal.
  • the method further includes: acquiring a navigation satellite system signal at the initial moment of the target; and determining the signal of the target at the initial moment according to the navigation satellite system signal; Location information; according to the map information, it is determined that the location information of the target at the initial moment corresponds to the identification of at least two road sections; according to the laser point cloud data at the initial moment, by matching the pre-built positioning layer The laser point cloud data determines the identification of the road section where the target is located at the initial moment.
  • the positioning method provided by the embodiments of the present application uses how to determine the identification of the road section where the target is located in a scene where the target is located on a spatially overlapping road segment at the time of initialization, that is, obtain the scene information around the target through a vehicle-mounted laser device, and compare it with the pre-built positioning The scenes in the layers are matched to determine the identification of the road section where the target at the initial moment is located.
  • the second time is determined based on the first time and a preset positioning frequency. For example, if the second time is immediately next to the first time, then It is obtained by adding the duration of the reciprocal of the preset positioning frequency to the first moment.
  • the target can be continuously positioned according to a preset positioning frequency, for example, by periodically acquiring GNSS signals, acquiring the frequency of acquiring GNSS signals according to the current vehicle speed, and so on.
  • the positioning frequency is usually high, usually 5 Hz (Hertz) to 20 Hz.
  • the positioning frequency is 10 Hz and the vehicle speed is 60 kilometers per hour, the driving interval between the two positioning of the target is about 1.67 meters, and it is generally unlikely that the entire road section is not positioned during the driving process.
  • the method further includes: constructing a local topology map at the second time according to the identifier of the second road section and the map information, and
  • the local topology map includes the identifier of the road section adjacent to the second road section.
  • the positioning device can also update the local topology map according to the map information, so that the next positioning time can continue to perform positioning based on the updated local topology map , Especially to realize the positioning of road sections in the spatial overlapping area.
  • the method further includes: determining the location information of the target at a third time, and in chronological order, the third time is a time after the second time ; According to the map information and the location information of the target at the third moment, determine the identifiers of at least two road sections corresponding to the target at the third moment; according to the local topology map at the second moment and the At least two road segment identifiers are used to determine the identifier of the road segment where the target is located at the second moment.
  • the positioning device can assist positioning at each positioning moment according to the local topology map constructed at the previous moment.
  • the method further includes: determining, according to the map information, an identifier of a positioning layer associated with the identifier of the second road section, wherein the map information includes The identification of the positioning layer associated with the identification of the road section; the identification of the positioning layer associated with the identification of the second road section is determined according to the identification of the positioning layer; the second identification is determined based on the associated positioning layer of the identification of the second road section
  • the precise position information of the target at the time, and the accuracy of the precise position information of the target at the second time is higher than the position information of the target at the second time.
  • the positioning device stores the positioning layer constructed in advance for each road section. After the positioning device obtains the road section where the target is located, it can be based on the association relationship between the road section identification and the positioning layer identification , Determine the current positioning layer, and further, you can also perform accurate positioning of the target based on the real-time data obtained by the sensor. The accuracy of the positioning data obtained according to the positioning layer is higher than that of the positioning data obtained through the GNSS signal. Accuracy.
  • the method further includes: displaying the information of the second road segment on the display interface of the mobile phone; and/or broadcasting the information of the second road segment through voice of the mobile phone.
  • the positioning device may be a mobile phone, and the method further includes displaying the information of the second road segment on the display interface of the mobile phone, and/or broadcasting the information of the second road segment by voice, and prompting the user through such a method, Avoid mistakes in the route.
  • the method further includes: displaying the information of the second road section on the display interface of the vehicle-mounted terminal; information.
  • the positioning device may be a vehicle-mounted terminal.
  • the method may further include displaying the information of the second road section and/or broadcasting the information of the second road section on the display interface of the vehicle-mounted terminal, and prompting the user through such a method , To avoid mistakes in the route.
  • a second aspect of the embodiments of the present application provides a positioning device, including: a determining unit, configured to determine an identifier of a first road section where a target at a first moment is located; and a processing unit, configured to construct the first moment according to map information
  • the local topology map at the first time includes the identifiers of the road sections adjacent to the first road segment; the determining unit is further configured to obtain the location information of the target at the second time, in time sequence Above, the second moment is a moment after the first moment; the determining unit is further configured to determine the second moment according to the map information and the location information of the target at the second moment
  • the identification of the at least two road sections corresponding to the target; the determining unit is further configured to determine the identification of the at least two road sections corresponding to the target at the first moment and the local topology map at the second moment Identification, which determines the identification of the road section where the target is located at the second moment.
  • the map information includes identifiers of road segments and connection relationships between road segments.
  • the device further includes: an acquiring unit, configured to acquire a navigation satellite system signal at the initial moment of the target; System signal to determine the location information of the target at the initial moment; the determining unit is further configured to determine the location information of the target at the initial moment based on the map information and the location information of the target at the initial moment The identifier of the road segment where the target is located.
  • the device further includes: an acquiring unit, configured to acquire a navigation satellite system signal at the initial moment of the target; The system signal determines the location information of the target at the initial moment; the determining unit is further configured to determine, according to the map information, that the location information of the target at the initial moment corresponds to the identifiers of at least two road segments The determining unit is further configured to determine the identification of the road section where the target is located at the initial time by matching the laser point cloud data of the pre-built positioning layer according to the laser point cloud data at the initial time.
  • the second moment is determined based on the first moment and a preset positioning frequency.
  • the processing unit is further configured to construct a local topology map at the second moment according to the identifier of the second road section and the map information, and the second The local topology map at the moment includes the identifier of the road section adjacent to the second road section.
  • the determining unit is further configured to: determine the location information of the target at a third time, and in time sequence, the third time is the second time At a later time; according to the map information and the location information of the target at the third time, determine the identifiers of at least two road sections corresponding to the target at the third time; according to the partial topology map at the second time And the identifiers of the at least two road sections, determine the identifier of the road section where the target is located at the second moment.
  • the determining unit is further configured to determine, according to the map information, the identifier of the positioning layer associated with the identifier of the second road section, wherein the map The information includes the identification of the positioning layer associated with the identification of the road section; the positioning layer associated with the identification of the second road section is determined according to the identification of the positioning layer; the associated positioning layer is based on the identification of the second road section
  • the precise position information of the target at the second time is determined, and the accuracy of the precise position information of the target at the second time is higher than the position information of the target at the second time.
  • the device further includes: a display unit, configured to display the information of the second road segment on the display interface of the mobile phone; and/or, a playing unit, configured to use the mobile phone Voice broadcast the information of the second road section.
  • the device further includes: a display unit, configured to display the information of the second road section on the display interface of the vehicle-mounted terminal; and/or, a playback unit, configured to pass The vehicle-mounted terminal voice broadcasts the information of the second road section.
  • a third aspect of the embodiments of the present application provides a positioning device, including a processor and a memory, the processor and the memory are connected to each other, wherein the memory is used to store a computer program, and the computer program includes program instructions,
  • the processor is configured to call the program instructions to execute the positioning method of the first aspect or any one of the possible implementation manners of the first aspect.
  • the fourth aspect of the embodiments of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer can execute any one of the first aspect or the first aspect. A possible way of positioning.
  • the fifth aspect of the embodiments of the present application provides a computer program product containing instructions, which when running on a computer, enables the computer to execute the positioning method of the first aspect or any one of the possible implementation manners of the first aspect.
  • a sixth aspect of the embodiments of the present application provides a chip system, which includes a processor, and is configured to support the function-executing network element to implement the functions involved in the first aspect or any one of the possible implementation manners of the first aspect.
  • the chip system also includes a memory, and the memory is used to store the program instructions and data necessary to execute the function network element.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • a seventh aspect of the embodiments of the present application provides a smart car system, including the positioning device of the second aspect or any one of the possible implementation manners of the second aspect.
  • the positioning method provided by the embodiment of the present application constructs a local topology map at the first time based on the first road segment where the target is located at the first time and map information, and determines all road segments adjacent to the first road segment.
  • a local topology map At the second moment, based on the local topology map to assist positioning, for the scene where the target is located in the spatial overlapping area at the second moment, accurate positioning of the road section where the target is located can be achieved according to the local topology map.
  • the road section can also be associated with the positioning layer through map information, and the continuity relationship of the road section in the constructed local topology map is used to avoid loading the wrong positioning layer in the spatial overlapping area to cause positioning. mistake.
  • the association between the road segment ID and the positioning layer solves the problem of loading positioning layers in the spatial stacking scene, and the precise positioning of the target can be achieved based on the correct positioning layer.
  • FIG. 1 is a schematic diagram of a spatial overlap scene in an embodiment of the application
  • Fig. 2 is a schematic diagram of an embodiment of road section information in map information
  • Figure 3 is a schematic diagram of a positioning method in an embodiment of the application.
  • FIG. 4 is a schematic diagram of an embodiment of a partial topology diagram in an embodiment of the application.
  • FIG. 5 is a schematic diagram of an embodiment of a positioning method in an embodiment of the application.
  • FIG. 6 is a schematic diagram of an embodiment of the positioning method according to an embodiment of the application in a spatial overlap scenario
  • FIG. 7 is a schematic diagram of a partial topology diagram of a vehicle during driving in an embodiment of the application.
  • FIG. 8 is a schematic diagram of another embodiment of the positioning method according to an embodiment of the application in a spatial overlap scenario
  • FIG. 9 is a schematic diagram of an embodiment of a positioning device in an embodiment of the application.
  • FIG. 10 is a schematic diagram of another embodiment of the positioning device in the embodiment of the application.
  • the embodiments of the present application provide a positioning method and device, which can realize positioning in a spatially overlapping scene and reduce positioning errors.
  • the term "and/or” in this application can be an association relationship describing associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, and A and B exist at the same time , The case of B alone, where A and B can be singular or plural.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or” relationship.
  • "at least one” refers to one or more
  • “multiple” refers to two or more.
  • “The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • Map Including ordinary navigation maps and high-precision maps.
  • Ordinary navigation maps can be used for navigation or search, including roads, information points, administrative division boundaries, etc., and are map data for human drivers.
  • the map information needs to include the identifier of the road section and the connection relationship between the road sections.
  • High-precision maps are machine-oriented map data for autonomous vehicles. The accuracy is higher than that of ordinary maps. It can be used for high-precision positioning, navigation, or route planning.
  • the high-precision map should meet the lane-level autonomous driving navigation, including the road segment identification and the connection relationship between the road segments, and can also contain road detail information, such as lane lines, lane centerlines, and the curvature, slope, heading, and cross slope of the road Such as mathematical parameters, etc., can truly reflect the shape of the road.
  • Positioning layer A priori data used for positioning, usually including road and surrounding environmental information, which can be used for precise positioning of vehicles.
  • the positioning layer is constructed in different ways, and the layer data used for positioning in the positioning layer contains the same type of information as the sensor used.
  • the laser positioning layer contains the point cloud information of the surrounding environment
  • the vector positioning layer contains the information used to locate the vector elements in the environment.
  • the laser positioning layer is obtained by surveying and mapping the road and the periphery of the road by sensors such as lidar.
  • the specific types of positioning layers involved in the embodiments of the present application are not limited.
  • Spatial overlap is also called elevation overlap or multi-layer overlap. Vehicles often encounter spatial overlapping scenes during driving. Spatial overlapping scenes refer to the two roads that are consistent in latitude and longitude (that is, x and y in the position coordinate system (x, y, z) are the same or similar), and The elevation is not consistent (that is, the z value is different), that is, there is overlap in the height direction. Common spatial overlap scenes are, for example, elevated roads. The elevated roads and ground roads overlap completely or partially on the longitude and latitude planes. In addition, there may also be scenes where multiple layers of roads overlap, such as ground roads, first-level elevated roads above ground roads, and second-level elevated roads above the first-level elevated roads. Please refer to FIG. 1, which shows a schematic diagram of a spatial overlap scene in an embodiment of the present application. In FIG. 1, the area 101 of the elevated road and the area of the ground road 102 are the spatial overlap area.
  • the roads of different layers correspond to different positioning layers.
  • the positioning layer corresponding to the ground layer contains ground road information but does not contain the road information of elevated road sections.
  • the laser positioning layer contains the surrounding environment point cloud information.
  • the laser positioning layer corresponding to the ground road contains the ground road and surrounding information, such as the bridge pillars under the viaduct, and the viaduct road corresponds to The laser positioning layer does not contain bridge column information.
  • the autonomous vehicle passes the above road section, if there is no elevation positioning function, the autonomous vehicle cannot distinguish whether the current position is on an elevated road or a ground road. If the wrong positioning layer is loaded, it will cause positioning errors.
  • Road section The start and end points of the road section in the embodiment of this application include road intersections, including level intersections, such as crossroads, T-junctions, Y-shaped intersections, or level roundabouts, and grade intersections, such as interchanges Grade separation and separated grade separation. It can be seen that a road section is a road area in the road that is not affected by interweaving, diversion and merging.
  • a road usually includes multiple road sections. Although multiple road sections belong to the same road, each road section has a different road section ID, and each road section has a unique road section ID corresponding to it. Different road sections can be distinguished according to the road section ID.
  • the map information includes the identification of the road section and the connection relationship between the road sections.
  • the map information may be high-precision map information.
  • the example and the map information in the following examples are all introduced with high-precision map information as an example.
  • an existing high-precision map can be downloaded directly, or a high-precision map can be constructed.
  • a road section identifier is set for the road section in the high-precision map.
  • the road may include one Or multiple lanes, the minimum granularity of road marking information in the high-precision map can be the road segment in the overall road.
  • the number of lanes in the road segment in the overall road is the same as the number of lanes on the road. It can be one lane or multiple lanes.
  • the road section ID is road ID; or further, it can also be a road section of a single lane on the road. A road section of a single lane includes only one lane, and the corresponding road section ID is lane ID.
  • the road sections involved in the embodiments of this application are accurate to the whole The section of the road is introduced as an example.
  • the high-precision map further includes a link parameter of the road section, and the link parameter is the identification of the positioning layer corresponding to the road section.
  • the database of the positioning device also includes a pre-built positioning layer for each road section. Once the road section of the target to be positioned is determined, the corresponding positioning layer of the road section is determined according to the link parameter, and the corresponding positioning layer can be loaded. To achieve the precise positioning of the target.
  • GNSS Global Navigation Satellite System, including Global Positioning System (GPS), China BeiDou Navigation Satellite System (BDS), GLONASS Navigation System, and Galileo Satellite Navigation System (Galileo satellite navigation system, Galileo), etc.
  • GPS Global Positioning System
  • BDS BeiDou Navigation Satellite System
  • GLONASS Navigation System GLONASS Navigation System
  • Galileo Satellite Navigation System Galileo satellite navigation system, Galileo
  • FIG 2 shows a schematic diagram of an embodiment of the road segment information in the map information.
  • the road segment information stored in the map information includes road segment ID, road category, road type, number of lanes, adjacent roads, associated positioning layers, etc. .
  • the specific content contained in the road section information in the map information is not limited.
  • the map information includes the link ID information and the associated positioning layer, according to the association relationship, after the link ID is determined, the corresponding positioning layer can be associated with it for precise positioning of the target.
  • the positioning method provided in the embodiment of the present application may be used for positioning of an autonomous vehicle, or positioning of a common vehicle, etc., and the specifics are not limited here.
  • FIG. 3 is a schematic diagram of a positioning method in an embodiment of this application.
  • the initial position of the vehicle can be determined by receiving the GNSS signal, that is, the current position (x1, y1) when the positioning device is turned on.
  • the moment when the initial position is acquired is the first moment.
  • the positioning device can obtain map information near the initial location according to the initial location.
  • the positioning device may also obtain heading information (yaw) of the target, which is not specifically limited here.
  • the positioning device can judge whether the initial position of the target is located in the spatial overlap area through the map information. Specifically, if the current location (x1, y1) in the map corresponds to two or more road segment IDs, it means that the initial position of the target is located in the spatial overlap area. If the current location (x1, y1) corresponds to one road segment ID in the map, it means that the initial location is located in a non-spatial overlapping area, then step 304 is executed.
  • the positioning device matches different layers to determine the current positioning layer based on the positioning method of the prior positioning layer.
  • the road section associated with the successfully matched positioning layer is the road section where the target is located at the initial moment.
  • the identification of the road segment is determined according to the identification of the matching positioning layer.
  • the laser positioning method includes: for the spatial overlap area, pre-build a priori positioning layer of each layer of road scene with lidar, and obtain the road scene information around the initial position through the on-board laser device during positioning, respectively Match with the pre-built positioning layer. If it is successfully matched with a certain layer in the multi-layer road scene, the corresponding positioning layer can be loaded for positioning.
  • the positioning layer of the corresponding ground road is obtained; when the vehicle is located on the elevated road, the positioning layer of the elevated road is obtained.
  • the positioning module can query from the high-precision map according to the initial position (x1, y1), and directly determine the identification of the road section where the vehicle is located.
  • the positioning module queries the high-precision map according to the initialization position (x1, y1). Since the initialization position (x1, y1) is located in a non-spatial overlapping area, the road section ID where the initialization position is located can be uniquely determined. In addition, by obtaining the link value corresponding to the link ID according to the link ID, the positioning layer associated with the initial position can be directly determined for precise positioning of the initial position.
  • step 303 or step 304 after determining the road section where the initial position is located, querying the road section ID adjacent to the road section in the high-precision map according to the road section ID, and constructing the local topological map at the first moment.
  • the local topology map includes the link IDs of all the links adjacent to the initial position.
  • the local topology map can indicate all other road sections that can be reached from the current road section.
  • Figure 4 is a schematic diagram of an embodiment of the partial topology diagram in the embodiment of the application.
  • the road to which the current position belongs is Current road in the partial topology diagram; query Nextroad according to the information in the high-precision map , That is, the road sections that can be directly accessed from the current location, and the road section IDs of all road sections that can be directly accessed from the current location are saved in the data table of the local topology map.
  • the positioning device records the most recently passed road section before the first moment, it can be recorded in the data table of the local topology map and recorded as Last road.
  • the positioning device can determine the current position of the vehicle through GNSS signals while the vehicle is running.
  • the frequency at which the positioning device obtains the GNSS signal can be pre-set, for example, according to a preset time interval. The faster the frequency of acquiring GNSS signals is higher.
  • the positioning frequency of the vehicle is not specifically limited here. It is understandable that the frequency of vehicle positioning is usually high, usually 5 Hz to 20 Hz, such as 10 Hz, etc. This embodiment does not limit the specific positioning frequency of the positioning device, and the positioning frequency can ensure that the vehicle passes through each section of the road as it travels. The area is always positioned.
  • the positioning device acquires the current real-time position as (x2, y2).
  • the high-precision map By querying the high-precision map, it can be judged whether the current position is in the spatial overlap area. If it is not in the spatial overlap area, it can be determined according to The high-precision map directly gives the road section ID corresponding to the current location; if it is in the spatial overlap area, query the local topology map to determine the road section ID of the road section where the current location is located.
  • the location is not in the spatial overlap area, if the current location (x2, y2) corresponds to two or two in the high-precision map If there are more than one road segment ID, the location is in the spatial overlap area, and the specific road segment where the vehicle is located needs to be determined by querying the local topology map.
  • the local topology map includes the road section ID of the road section where the vehicle is located at the first moment, and the road section IDs of all road sections adjacent to the road section. Query from the road section ID list (next road) of the road section adjacent to the road section to determine the road section ID The link ID of the link in the list that covers the current location (x2, y2).
  • the scenario where a road section directly adjoins multiple road sections on different floors in the spatial overlap area is not considered, for example: direct access through elevators Scenes of different parking floors. Therefore, in the link ID list of next road in the local topology map, there are no multi-layered road sections corresponding to the same spatial overlapping area among the road sections corresponding to all the road section IDs. Based on this premise, when the current position (x2, y2) at the second moment is in the spatial overlapping area, the position (x2, y2) corresponds to at least two road segment IDs in the high-precision map, and there is only one of the at least two road segment IDs.
  • the link ID may be located in the next road link ID list of the partial topology map at the first moment, and there is no case where two or more link IDs are all located in the next road link ID list of the partial topology map at the first moment.
  • the positioning layer can be determined according to the road segment ID to further obtain the current height of the vehicle.
  • Accurate location information specifically, according to the link ID, based on the link value corresponding to the link ID, the associated positioning layer can be determined, and the positioning device loads the corresponding positioning layer. If it is a laser positioning layer, it is obtained from the on-board laser device The laser point cloud information around the road section is matched with the pre-built positioning layer to obtain the precise positioning of the vehicle.
  • the positioning device outputs the current position and the road section ID information of the GNSS signal positioning, or according to the matching information of the current sensor information and the positioning layer, can output the current high-precision horizontal coordinates and the road section ID information.
  • the positioning device updates the local topology map
  • the high-precision map is queried for the road section ID adjacent to the road section according to the road section ID, and the local topology map can be updated, that is, the local topology map at the second moment is constructed.
  • the local topology map at the second time includes the road segment IDs of all road segments adjacent to the road segment where the vehicle is located at the second time.
  • the local topology map can indicate all other road sections that can be reached from the road section where the vehicle is located at the second moment.
  • the positioning device may repeatedly perform positioning, and repeat step 305 and step 306. For example, at the third moment, the current location (x3, y3) is obtained, and based on the local topology map at the second moment and (x3, y3), the road section of the target at the third moment can be determined. If the road section of the target changes, according to the height The adjacent road section information queried in the refined map maintains the local topology map. According to the link ID of the currently located link, query the link ID adjacent to it in the high-precision map; if the current link ID changes, update the local topology map, delete the link ID of the road that has been traversed, and update the current link ID and its adjacent links Road segment ID.
  • the positioning device can continuously obtain updated location information, continuously maintain a partial topology map, and continuously obtain the road section where the target is located. I won't repeat them here.
  • the partial topology map also includes the current road segment ID (current road) and the last road segment ID (last road).
  • the positioning device constructs a local topology map of the vehicle at the current time according to the road section information pre-stored in the high-precision map, and determines the next time based on the local topology map and the location information of the next time The specific road section where the vehicle in the overlapping area is located.
  • the link parameter can be stored in the high-precision map to indicate the location layer associated with the road segment. In this way, in the spatial overlap area, the location layer associated with the road segment can be determined based on the correctness.
  • the positioning layer realizes the accurate positioning of the spatial overlapping area.
  • the positioning accuracy for similar scenes is low, and this application can better distinguish similar scenes by using the correlation of the topology.
  • FIG. 5 is a schematic diagram of an embodiment of the positioning method in the embodiment of this application.
  • the database of the vehicle positioning device contains a high-definition map (HD-map) and a positioning layer.
  • HD-map high-definition map
  • the specific positioning process of the positioning device is as follows:
  • the positioning device constructs a local topology map according to the link ID obtained in step S1, stores the link ID in the local topology map (also called a local topology data table), and according to the link information stored in the high-precision map, Store the road section IDs of all road sections adjacent to the road section corresponding to the road section ID in the local topology data table;
  • the positioning device obtains the real-time positioning result (x, y) according to the GNSS signal, and obtains the current road section ID according to the partial topology map.
  • the specific embodiment mode participates in step 305 in the embodiment corresponding to FIG. 3, and will not be repeated here. It is understandable that when positioning based on GNSS signals, the positioning accuracy is low, and the positioning accuracy is easily affected by the surrounding environment. Generally, the accuracy of positioning based on GNSS signals in an open and unobstructed area is meter-level, while positioning under obstructions The accuracy is even worse.
  • the positioning device may also store positioning layer data in a database in advance, and store the link ID and associated positioning map in the link information of the high-precision map.
  • Layer at this time, query the high-precision map based on the road segment ID, you can determine and load the location layer corresponding to the current road segment for high-precision positioning in the next step, and can achieve positioning accuracy above decimeter level, such as decimeter level or centimeter class.
  • the positioning device can also determine whether the road section ID has changed, that is, whether the road section is changed, if it changes, the local topology data table is updated, and if there is no change, other operations are performed, such as keeping the local topology data table unchanged.
  • the positioning device can also perform high-precision positioning according to the loaded positioning layer and the sensor data obtained in real time, and output the current positioning position and the road section ID where the vehicle is located.
  • FIG. 6 is a schematic diagram of an embodiment of the positioning method according to the embodiment of this application in a spatial overlap scenario
  • the scenario is: there is an overlap area on the viaduct with the ground road, that is, there are two floors at the same latitude and longitude position, and the vehicle drives from the lower left position of the ground road to the upper right.
  • the road section information is pre-stored in the high-precision map. Different road sections have different road section IDs. As shown in Figure 6, the start and end points of the road sections are road intersections.
  • the ground road includes road section 1001 (section ID is 1001), road section 1002, and road section. 1003, the viaduct road includes road section 1004, road section 1005, and road section 1006, of which road section 1002 and road section 1005 are spatially overlapping road sections.
  • the high-precision map also stores the link parameter of the road segment.
  • the link value is the identifier of the positioning layer.
  • the link value corresponding to ID1001 is "100_600_0-4"
  • the positioning layer associated with road segment 1001 can be determined according to the link value.
  • a link can correspond to one or more positioning layers.
  • a positioning layer includes a part of the environmental information of a link.
  • the link value of a link ID is multiple .
  • the link of road segment 1002 is "100_600_0-0", “200_600_0-4" and "200_700_0-3", that is, road segment 1002 corresponds to three local location layers, and these three location layers respectively contain parts of road segment 1002 Environmental information.
  • the ID of the current road section will be queried as 1002 and 1005, and the ID of the road section where the current position is located can be determined as 1002 according to the constructed partial topology map.
  • the positioning device determines the positioning layer corresponding to the current position of the target.
  • the positioning layer is loaded according to the association relationship between the link ID and the positioning layer.
  • the positioning layers corresponding to road segment 1002 are "100_600_0-0", “200_600_0-4" and “200_700_0-3". Since the road section 1002 corresponds to multiple positioning layers, the positioning device can match the three positioning layers "100_600_0-0", “200_600_0-4" and "200_700_0-3" according to the real-time measurement data of the sensor to determine the current position corresponds to The positioning layer of is "100_600_0-0".
  • the positioning device may directly determine "100_600_0-0" of the three positioning layers associated with the road segment 1002 as the current positioning layer according to the current position (x, y).
  • the positioning device loads the positioning layer corresponding to the current position of the target, matches it according to the real-time measurement data of the sensor, and determines the current high-precision real-time position (x', y') of the target.
  • the method for high-precision positioning based on the positioning layer is an existing technology, and the specific process will not be repeated here.
  • FIG. 8 is a schematic diagram of another embodiment of the positioning method according to the embodiment of this application in a spatial overlap scenario
  • This scenario is: There is an overlap area between the section 2006 on the viaduct (the section ID is 2006) and the section 2003 of the ground road, that is, there are two upper and lower levels at the same latitude and longitude position.
  • the surface road can lead to the viaduct through the ramp section 2004.
  • the starting and ending points of the road section are road intersections.
  • the self-driving vehicle enters from the left side of the road on the ground, and drives to the right side of the viaduct road through the ramp.
  • the local topology map next road includes road section 2002 and road section 2004; when road section 2004 is reached, the local topology map is updated Next road is road section 2006; when reaching road section 2006, according to the location information, the road section ID corresponding to the current position can be obtained, including 2006 and 2003, because next road in the local topology map is the road section ID 2006 in the road section list, excluding the road section ID 2003, therefore, it can be determined that the road segment where the vehicle is currently located is road segment 2006.
  • the positioning device determines the positioning layer corresponding to the current position of the target, and performs precise positioning according to the positioning layer, and the details are not repeated here.
  • FIG. 9 is a schematic diagram of an embodiment of the positioning device in the embodiment of the present application.
  • the positioning device has a navigation function. It can be a vehicle-mounted device with navigation function, such as a car navigator, etc.; it can also be a mobile terminal with navigation function, such as a mobile phone, a tablet computer, or a wearable device.
  • the specific product form of the positioning device is There is no limit.
  • the positioning device includes:
  • the determining unit 901 is configured to determine the identifier of the first road section where the target at the first moment is located;
  • the processing unit 902 is configured to construct a local topology map at the first moment according to map information, where the local topology map at the first moment includes the identifier of the road section adjacent to the first road section;
  • the determining unit 901 is further configured to obtain position information of the target at a second time, and in time sequence, the second time is a time after the first time;
  • the determining unit 901 is further configured to determine the identifiers of at least two road sections corresponding to the target at the second time according to the map information and the location information of the target at the second time;
  • the determining unit 901 is further configured to determine the target at the second time according to the local topology map at the first time and the identifiers of the at least two road sections corresponding to the target at the second time The identification of the road section.
  • the map information includes identifiers of road segments and connection relationships between road segments.
  • the device further includes: an acquiring unit 903, configured to acquire a navigation satellite system signal at the initial moment of the target; and the determining unit 901, further configured to determine the initial The location information of the target at the time; the determining unit 901 is further configured to determine the identifier of the road section where the target is located at the initial time according to the map information and the location information of the target at the initial time .
  • the device further includes: an acquiring unit 903, configured to acquire a navigation satellite system signal at the initial moment of the target; and the determining unit 901, further configured to determine the initial The location information of the target at the time; the determining unit 901 is further configured to determine, according to the map information, that the location information of the target at the initial time corresponds to the identifiers of at least two road segments; the determining unit 901 , Is also used to determine the identification of the road section where the target is located at the initial moment by matching the laser point cloud data of the pre-built positioning layer according to the laser point cloud data at the initial moment.
  • the second moment is determined based on the first moment and a preset positioning frequency.
  • the processing unit 902 is further configured to construct a local topology diagram at the second time according to the identifier of the second road section and the map information, and the local topology diagram at the second time includes the The identification of the road section adjacent to the second road section.
  • the determining unit 901 is further configured to: determine the location information of the target at a third time, and in time sequence, the third time is a time after the second time; according to the map Information and the location information of the target at the third time, the identification of at least two road sections corresponding to the target at the third time is determined; Identification, which determines the identification of the road section where the target is located at the second moment.
  • the determining unit 901 is further configured to determine, according to the map information, the identifier of the positioning layer associated with the identifier of the second road section, wherein the map information includes the position associated with the identifier of the road section.
  • the identification of the layer; the positioning layer associated with the identification of the second road section is determined according to the identification of the positioning layer; the positioning layer associated with the identification of the second road section is determined at the second moment Accurate location information, the accuracy of the precise location information of the target at the second moment is higher than the location information of the target at the second moment.
  • the device further includes: a display unit 904, configured to display the information of the second road segment on the display interface of the mobile phone; and/or, a playing unit 905, configured to broadcast the second road segment by voice of the mobile phone Information.
  • a display unit 904 configured to display the information of the second road segment on the display interface of the mobile phone
  • a playing unit 905 configured to broadcast the second road segment by voice of the mobile phone Information.
  • the device further includes: a display unit 904, configured to display the information of the second road segment on the display interface of the vehicle-mounted terminal; Information on the second section.
  • a display unit 904 configured to display the information of the second road segment on the display interface of the vehicle-mounted terminal; Information on the second section.
  • FIG. 10 is a schematic diagram of another embodiment of the positioning device in the embodiment of the application.
  • the positioning method in the embodiments of the present application can be implemented by program codes in the memory, and the specific deployment is shown in Figure 10.
  • the positioning device includes: a processor, a memory, a peripheral interface, an input/output (I/O) subsystem, among them Through the communication bus or signal line to communicate.
  • I/O input/output
  • Memory used to store computer program instructions. It can be accessed by the processor, peripheral interface, and input/output (I/O) subsystem. It may include high-speed random access memory, or non-volatile memory, such as flash memory, magnetic disks, or other solid-state storage devices. HD-Map can be pre-stored in the memory in advance, or it can be downloaded from the network or the cloud to the storage through the interface
  • Processor Used to call the computer program instructions in the memory to perform the function of height positioning of the autonomous vehicle.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the foregoing processor may be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP, a digital signal processor (DSP), or an application specific integrated circuit (application-specific integrated circuit).
  • Specific integrated circuit, ASIC ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like. Combining the steps of the method disclosed in this application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the device may include multiple processors or the processors may include multiple processing units.
  • the processor may be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the memory is used to store computer instructions executed by the processor.
  • the memory can be a storage circuit or a memory.
  • the memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • the memory may be independent of the processor, or may be a storage unit in the processor, which is not limited here. Although only one memory is shown in the figure, the device may also include multiple memories or the memory may include multiple storage units.
  • the transceiver is used to implement content interaction between the processor and other units or network elements.
  • the transceiver may be a communication interface of the device, a transceiver circuit or a communication unit, or a transceiver.
  • the transceiver may also be a communication interface or a transceiver circuit of the processor.
  • the transceiver may be a transceiver chip.
  • the transceiver may also include a sending unit and/or a receiving unit.
  • the transceiver may include at least one communication interface.
  • the transceiver may also be a unit implemented in the form of software.
  • the processor may interact with other units or network elements through a transceiver. For example, the processor obtains or receives content from other network elements through the transceiver. If the processor and the transceiver are two physically separate components, the processor can interact with other units of the device without going through the transceiver.
  • the processor, memory, and transceiver may be connected to each other through a bus.
  • the bus can be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and so on.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Abstract

一种定位方法,涉及定位领域,应用于空间重叠场景中的目标定位,可以减少空间重叠场景下的定位错误,该方法包括根据地图信息中预先存储的路段的标识和路段之间的连接关系,构建目标在当前时刻的局部拓扑图,通过局部拓扑图确定下一时刻,位于空间重叠区域的目标所在的具体路段,此外,在地图信息中还可以存储路段关联的定位图层,根据定位的路段确定与之关联的定位图层,以实现高精度定位。

Description

定位方法和定位装置
本申请要求于2020年5月25日提交中国专利局、申请号为202010452141.2、发明名称为“定位方法和定位装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及地图导航技术领域,尤其涉及一种定位方法和定位装置。
背景技术
近年来,自动驾驶的技术研究越来越受到关注。自动驾驶目前主流的技术方案为高精度定位与高精度地图配合。
定位是自动驾驶中不可缺失的技术环节,常见的定位方法是通过车辆的全球导航卫星系统(global navigation satellite system,GNSS)接收器,接收GNSS信号,进而得到车辆的位置信息,确定地图上的车辆位置。
对于空间在高度方向上重叠的场景,例如城市高架桥与地面道路重叠场景、多层停车场场景等,由于重叠部分的道路往往具有相同或相近的经度和纬度,难以具体确定车辆位于重叠道路的哪一层,从而导致定位出现错误。
因此,需要一种方案,其可以在高度方向上重叠的场景下实现准确定位。
发明内容
本申请实施例提供的定位方法,可以实现空间重叠场景中的精确定位,减少定位错误。
本申请实施例的第一方面提供了一种定位方法,包括:确定第一时刻的目标所在的第一路段的标识;根据地图信息,构建所述第一时刻的局部拓扑图,所述第一时刻的局部拓扑图包括与所述第一路段邻接的路段的标识;得到第二时刻的所述目标的位置信息,在时间顺序上,所述第二时刻为所述第一时刻之后的时刻;根据所述地图信息和所述第二时刻的所述目标的位置信息,确定所述第二时刻的所述目标对应的至少两个路段的标识;根据所述第一时刻的局部拓扑图和所述第二时刻的所述目标对应的所述至少两个路段的标识,确定所述第二时刻的所述目标所在的路段的标识。
本申请实施例提供了一种定位方法,可以实现在空间重叠场景中的定位,减少定位错误。该方法包括根据预先存储的地图信息,通过第一时刻的目标所在的第一路段的标识构建目标第一时刻的局部拓扑图,由于局部拓扑图中记录了与第一路段邻接的路段的标识,这些标识中不存在一个空间重叠区域中的多条路段的标识,第二时刻根据地图信息确定第二时刻的目标的位置对应的路段的标识的数量,若对应至少两个路段的标识,即代表目标处于空间重叠区域,查询第一时刻的局部拓扑图,根据第一时刻的局部拓扑图中包括的路段的标识,即可确定第二时刻,位于空间重叠区域的目标所在的具体路段路段,从而定位到目标位于哪条路段上的第二位置,应用本方法可以确定位于目标位于高度方向上重叠的多条路段中的具体哪一条路段,从而减少定位错误。此外,在地图信息中还可以存储路段关联的定位图层的标识,根据定位的路段确定与路段关联的定位图层,通过定位图层实现对目标的高精度定位。
在第一方面的一种可能的实现方式中,所述地图信息包括路段的标识和路段之间的连接关系。
本申请实施例提供的定位方法,地图信息包括路段的标识和路段之间的连接关系,从而 根据路段的标识,可以查询与该路段邻接的路段的标识,从而构建出局部拓扑图。
在第一方面的一种可能的实现方式中,所述方法还包括:获取所述目标的初始时刻的导航卫星系统信号;根据所述导航卫星系统信号,确定所述初始时刻的所述目标的位置信息;根据所述地图信息和所述初始时刻的所述目标的位置信息,确定所述初始时刻的所述目标所在的路段的标识。
本申请实施例提供的定位方法,介绍了目标在初始化时刻位于非空间重叠区域的场景。定位装置开启后的初始化时刻,由于还未构建局部拓扑图,可以通过GNSS信号确定目标的初始位置,以及目标所在的路段的标识。
在第一方面的一种可能的实现方式中,所述方法还包括:获取所述目标的初始时刻的导航卫星系统信号;根据所述导航卫星系统信号,确定所述初始时刻的所述目标的位置信息;根据所述地图信息,确定所述初始时刻的所述目标的位置信息对应于至少两个路段的标识;根据所述初始时刻的激光点云数据,通过匹配预先构建的定位图层的激光点云数据,确定所述初始时刻的所述目标所在的路段的标识。
本申请实施例提供的定位方法,通过目标在初始化时刻即位于空间重叠路段的场景下,如何确定目标所在的路段的标识,即通过车载的激光设备获取目标周围的场景信息,与预先构建的定位图层中的场景进行匹配,由此确定初始时刻的目标所在的路段的标识。
在第一方面的一种可能的实现方式中,所述第二时刻基于所述第一时刻和预设的定位频率确定,例如,如果第二时刻是紧邻第一时刻的下一时刻,那么可以通过第一时刻加上经过预设的定位频率的倒数的时长而得到。
本申请实施例提供的定位方法,目标可以根据预设的定位频率不断进行定位,例如通过周期性获取GNSS信号,获取根据当前车速调整获取GNSS信号的频率等。可以理解的是,定位频率通常较高,通常为5Hz(赫兹)到20Hz。例如,定位频率为10Hz,车速为60千米/小时,则目标两次定位之间行驶间隔约为1.67米,一般不会出现整个路段行驶过程中均未定位的情况。
在第一方面的一种可能的实现方式中,所述方法还包括:根据所述第二路段的标识和所述地图信息,构建所述第二时刻的局部拓扑图,所述第二时刻的局部拓扑图包括与所述第二路段邻接的路段的标识。
本申请实施例提供的定位方法,在确定目标所在的第二路段后,定位装置还可以根据地图信息更新局部拓扑图,由此,下一定位时刻,可以继续基于该更新的局部拓扑图进行定位,尤其是实现在空间重叠区域的路段的定位。
在第一方面的一种可能的实现方式中,所述方法还包括:确定第三时刻的所述目标的位置信息,在时间顺序上,所述第三时刻为所述第二时刻之后的时刻;根据所述地图信息和所述目标的第三时刻的位置信息,确定所述第三时刻的所述目标对应的至少两个路段的标识;根据所述第二时刻的局部拓扑图和所述至少两个路段的标识,确定所述第二时刻的所述目标所在的路段的标识。
本申请实施例提供的定位方法,定位装置可以在每个定位时刻,根据上一时刻构建的局部拓扑图辅助进行定位。
在第一方面的一种可能的实现方式中,所述方法还包括:根据所述地图信息,确定与所 述第二路段的标识关联的定位图层的标识,其中,所述地图信息包括与路段的标识关联的定位图层的标识;根据所述定位图层的标识确定所述第二路段的标识关联的定位图层;根据所述第二路段的标识的关联的定位图层确定第二时刻的所述目标的精确位置信息,所述第二时刻的所述目标的精确位置信息的精度高于所述第二时刻的所述目标的位置信息。
本申请实施例提供的定位方法,定位装置存储了每个路段预先构建的定位图层,在定位装置获取目标所在的路段后,即可根据路段的标识与定位图层的标识之间的关联关系,确定当前定位图层,进一步地,还可以根据传感器获取的实时数据,基于该定位图层进行目标的精确定位,根据定位图层获取的定位数据的精度高于通过GNSS信号获取的定位数据的精度。
在第一方面的一种可能的实现方式中,所述方法还包括:在手机的显示界面中显示所述第二路段的信息;和/或,通过手机语音播报所述第二路段的信息。
本申请实施例提供的定位方法,定位装置可以是手机,该方法还包括,在手机的显示界面显示第二路段的信息,和/或语音播报第二路段的信息,通过这样的方法提示用户,避免路线出现差错。
在第一方面的一种可能的实现方式中,所述方法还包括:在车载终端的显示界面中显示所述第二路段的信息;和/或,通过车载终端语音播报所述第二路段的信息。
本申请实施例提供的定位方法,定位装置可以是车载终端,该方法还包括,在车载终端的显示界面显示第二路段的信息和/或语音播报第二路段的信息,通过这样的方法提示用户,避免路线出现差错。
本申请实施例第二方面提供了一种定位装置,包括:确定单元,用于确定第一时刻的目标所在的第一路段的标识;处理单元,用于根据地图信息,构建所述第一时刻的局部拓扑图,所述第一时刻的局部拓扑图包括与所述第一路段邻接的路段的标识;所述确定单元,还用于得到第二时刻的所述目标的位置信息,在时间顺序上,所述第二时刻为所述第一时刻之后的时刻;所述确定单元,还用于根据所述地图信息和所述第二时刻的所述目标的位置信息,确定所述第二时刻的所述目标对应的至少两个路段的标识;所述确定单元,还用于根据所述第一时刻的局部拓扑图和所述第二时刻的所述目标对应的所述至少两个路段的标识,确定所述第二时刻的所述目标所在的路段的标识。
在第二方面的一种可能的实现方式中,所述地图信息包括路段的标识和路段之间的连接关系。
在第二方面的一种可能的实现方式中,所述装置还包括:获取单元,用于获取所述目标的初始时刻的导航卫星系统信号;所述确定单元,还用于根据所述导航卫星系统信号,确定所述初始时刻的所述目标的位置信息;所述确定单元,还用于根据所述地图信息和所述初始时刻的所述目标的位置信息,确定所述初始时刻的所述目标所在的路段的标识。
在第二方面的一种可能的实现方式中,所述装置还包括:获取单元,用于获取所述目标的初始时刻的导航卫星系统信号;所述确定单元,还用于根据所述导航卫星系统信号,确定所述初始时刻的所述目标的位置信息;所述确定单元,还用于根据所述地图信息,确定所述初始时刻的所述目标的位置信息对应于至少两个路段的标识;所述确定单元,还用于根据所述初始时刻的激光点云数据,通过匹配预先构建的定位图层的激光点云数据,确定所述初始时刻的所述目标所在的路段的标识。
在第二方面的一种可能的实现方式中,所述第二时刻基于所述第一时刻和预设的定位频率确定。
在第二方面的一种可能的实现方式中,所述处理单元,还用于根据所述第二路段的标识和所述地图信息,构建所述第二时刻的局部拓扑图,所述第二时刻的局部拓扑图包括与所述第二路段邻接的路段的标识。
在第二方面的一种可能的实现方式中,所述确定单元,还用于:确定第三时刻的所述目标的位置信息,在时间顺序上,所述第三时刻为所述第二时刻之后的时刻;根据所述地图信息和所述目标的第三时刻的位置信息,确定所述第三时刻的所述目标对应的至少两个路段的标识;根据所述第二时刻的局部拓扑图和所述至少两个路段的标识,确定所述第二时刻的所述目标所在的路段的标识。
在第二方面的一种可能的实现方式中,所述确定单元,还用于:根据所述地图信息,确定与所述第二路段的标识关联的定位图层的标识,其中,所述地图信息包括与路段的标识关联的定位图层的标识;根据所述定位图层的标识确定所述第二路段的标识关联的定位图层;根据所述第二路段的标识的关联的定位图层确定第二时刻的所述目标的精确位置信息,所述第二时刻的所述目标的精确位置信息的精度高于所述第二时刻的所述目标的位置信息。
在第二方面的一种可能的实现方式中,所述装置还包括:显示单元,用于在手机的显示界面中显示所述第二路段的信息;和/或,播放单元,用于通过手机语音播报所述第二路段的信息。
在第二方面的一种可能的实现方式中,所述装置还包括:显示单元,用于在车载终端的显示界面中显示所述第二路段的信息;和/或,播放单元,用于通过车载终端语音播报所述第二路段的信息。
本申请实施例第三方面提供了一种定位装置,包括处理器和存储器,所述处理器和所述存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器用于调用所述程序指令,执行上述第一方面或第一方面任意一种可能实现方式的定位方法。
本申请实施例第四方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面或第一方面任意一种可能实现方式的定位方法。
本申请实施例第五方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面或第一方面任意一种可能实现方式的定位方法。
本申请实施例第六方面提供了一种芯片系统,该芯片系统包括处理器,用于支持执行功能网元实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能。在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存执行功能网元必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第七方面提供了一种智能车系统,包括上述第二方面或第二方面任意一种可能实现方式的定位装置。
其中,第二方面、第三方面、第四方面、第五方面、第六方面或第七方面中任一种实现方式所带来的技术效果可参见第一方面中相应实现方式所带来的技术效果,此处不再赘述。
本申请实施例提供的定位方法,通过第一时刻目标所在的第一路段以及地图信息,构建第一时刻的局部拓扑图,确定所有与所述第一路段邻接的路段,在第一时刻之后的第二时刻,基于该局部拓扑图辅助定位,对于第二时刻目标位于空间重叠区域的场景,根据该局部拓扑图可以实现准确定位目标所在的路段。
本申请实施例提供的定位方法中,通过地图信息还可以将路段与定位图层相关联,利用构建的局部拓扑图中路段的连续性关系,避免在空间重叠区域加载错误的定位图层造成定位错误。在合规的前提下,利用路段ID与定位图层的关联关系解决了空间层叠场景下的定位图层加载问题,根据正确的定位图层可以实现目标的精确定位。
附图说明
图1为本申请实施例中空间重叠场景的示意图;
图2为地图信息中路段信息的一个实施例示意图;
图3为本申请实施例中定位方法示意图;
图4为本申请实施例中局部拓扑图的一个实施例示意图;
图5为本申请实施例中定位方法的一个实施例示意图;
图6为本申请实施例的定位方法在空间重叠场景下一个实施例示意图;
图7为本申请实施例中车辆行驶过程中的局部拓扑图示意图;
图8为本申请实施例的定位方法在空间重叠场景下另一个实施例示意图;
图9为本申请实施例中定位装置的一个实施例示意图;
图10为本申请实施例中定位装置的另一个实施例示意图。
具体实施方式
本申请实施例提供了一种定位方法及装置,可以实现空间重叠场景中的定位,减少定位错误。
下面结合附图,对本申请的实施例进行描述。
本申请中出现的术语“和/或”,可以是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。本申请中,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列 出的或对于这些过程、方法、产品或设备固有的其它单元。
为了便于理解,下面对本申请实施例涉及的部分技术术语进行简要介绍:
1、地图:包括普通的导航地图和高精地图,普通的导航地图可用于导航或搜索,包含道路、信息点、行政区划边界等,是供人类驾驶员使用的地图数据。本申请实施例提供的定位方法,地图信息需要包括路段的标识,以及路段之间的连接关系。高精度地图是面向机器的供自动驾驶汽车使用的地图数据,精度比普通地图的精度高,可用于高精度定位、导航或路线规划等。高精地图要满足车道级的自动驾驶导航,包括路段的标识和路段之间的连接关系,还可以包含道路细节信息,如车道线、车道中心线,以及道路的曲率、坡度、航向、横坡等数学参数等,可以真实地反映道路形状。
2、定位图层:用于定位的先验数据,通常包括道路以及道路周边的环境信息,可以用于车辆的精确定位。定位图层的类型有多种,针对不同的传感器,定位图层的构建方式不同,且定位图层中用于定位的图层数据包含与所用传感器能感知信息相同类型的内容。常见的比如激光定位图层包含周边环境的点云信息,矢量定位图层包含环境中用于定位矢量要素信息。其中,激光定位图层通过激光雷达等传感器对道路及道路周边进行测绘而得到。对于本申请实施例中涉及的定位图层的具体类型不做限定。
3、空间重叠:空间重叠也被称为高程重叠或多层重叠。车辆在行驶过程经常会遇到存在空间重叠场景,空间重叠场景是指,两条道路中存在在经纬度上一致(即位置坐标系(x,y,z)中x和y相同或相近),并且高程不一致(即z值不同),即在高度方向上存在重叠。常见的空间重叠场景例如高架路,高架路与地面道路在经度和纬度平面上存在全部或者部分重叠。此外,还可能存在多层道路重叠的场景,例如地面道路,地面道路之上的第一层高架道路,以及第一层高架道路之上的第二层高架道路。请参见图1,其示出了本申请实施例中空间重叠场景的示意图,图1中高架路中的101区域与地面道路102区域为空间重叠区域。
对于空间重叠的多层道路,不同层的道路对应不同的定位图层,例如,地面层对应的定位图层包含地面道路信息,不包含高架路段的道路信息。以激光定位图层为例,激光定位图层包含周边的环境点云信息,地面道路对应的激光定位图层包含地面道路及周边的信息,例如高架桥下方的桥柱等信息,而高架桥道路对应的激光定位图层则不包含桥柱信息。
当自动驾驶车辆通过上述路段时,若没有高程定位功能,则自动驾驶车辆无法区分出当前位置是处于高架道路,或者是处于地面道路,若加载了错误的定位图层,将导致定位发生错误。
4、路段:本申请实施例中的路段,其起止点包括道路交叉口,包括平面交叉口,例如十字路口、丁字路口、Y形路口或平面环形交叉口等,以及立体交叉口,例如互通式立体交叉口以及分离式立体交叉。可见,路段是道路中不受交织、分流和合流影响的道路区域。一条道路中通常包括多个路段,多个路段虽然属于同一道路,但每个路段具有不同的路段ID,每个路段具有唯一的与之对应的路段ID,根据路段ID可以区分不同的路段。需要说明的是,对于分离式的交叉口,例如图1所示的场景,虽然高架道路与地面道路并不在同一平面,但存在空间重叠,在高度方向观察,重叠区域边界也可以属于交叉口,即可以作为路段的起止点。
为实现本申请实施例中空间重叠场景下的定位方法,需要预先获取地图信息,地图信息 包括路段的标识,以及路段之间的连接关系,具体的,地图信息可以是高精地图信息,本实施例及以下实施例中地图信息均以高精地图信息为例进行介绍。可选地,可以直接下载已有的高精地图,或者构建高精地图,本申请实施例中,高精地图中为路段设置了路段标识(ID),需要说明的是,道路中可能包括一条或多条车道,高精地图中对于道路标识信息的最小粒度可以为整体道路中的路段,整体道路中的路段的车道数量与道路的车道数量相同,可以为一条车道或多条车道,对应的路段ID为road ID;或者进一步地,还可以为道路中的单个车道的路段,单个车道的路段仅包括一条车道,对应的路段ID为lane ID,本申请实施例中涉及的路段以精确至整体道路中的路段为例进行介绍。可选地,高精地图还包括路段的link参数,link参数为路段对应的定位图层的标识。可选地,定位装置的数据库中还包括预先构建的每条路段的定位图层,一旦确定待定位目标所在路段,根据link参数确定路段对应的定位图层,即可加载对应的定位图层用于实现目标的精确定位。
5、GNSS:全球导航卫星系统,包括全球定位系统(global positioning system,GPS)、中国北斗卫星导航系统(BeiDou navigation satellite system,简称BDS)、格洛纳斯(GLONASS)导航系统,以及伽利略卫星导航系统(Galileo satellite navigation system,Galileo)等。本申请实施例对于GNSS的具体类型不做限定。
请参见图2,其示出了地图信息中路段信息的一个实施例示意图,地图信中存储的路段信息包括路段ID、道路类别、道路类型、车道数量、邻接的道路、关联的定位图层等。本申请实施例中对于地图信息中路段信息包含的具体内容不做限定。
由于地图信息中包含路段ID信息与关联的定位图层,根据该关联关系,在确定路段ID后,即可关联与之对应的定位图层,用于实现目标的精确定位。
本申请实施例提供的定位方法可以用于自动驾驶车辆的定位,或者普通车辆的定位等,具体此处不做限定。
请参见图3,为本申请实施例中定位方法示意图;
301、获取目标的初始位置;
定位装置开启后,可通过接收通过GNSS信号确定车辆的初始位置,即定位装置开启时的当前位置(x1,y1)。为描述方便,假设获取初始位置的时刻为第一时刻。定位装置根据初始位置可以获取初始位置附近的地图信息。可选地,定位装置还可以获取目标的航向信息(yaw),具体此处不做限定。
302、判断初始位置是否位于空间重叠区域;若是,则执行步骤303;若否,则执行步骤304。
定位装置可以通过地图信息判断该目标的初始位置是否位于空间重叠区域,具体地,若当前位置(x1,y1)在地图中对应的路段ID大于或等于两个,代表目标的初始位置位于空间重叠区域,则执行步骤303,若当前位置(x1,y1)在地图中对应的路段ID为一个,代表初始位置位于非空间重叠区域,则执行步骤304。
303、通过匹配先验定位图层以确定第一时刻目标所在的路段的标识;
若当前位置(x1,y1)在地图中对应的路段ID大于或等于两个,代表目标的初始位置位于空间重叠区域,即在该经纬度处,存在高度方向上重叠的至少两条路段。当初始位置位于空间重叠区域时,定位装置基于先验定位图层的定位方法分别匹配不同图层以确定当前定位 图层,匹配成功的定位图层关联的路段即为在初始时刻目标所在的路段,根据匹配的定位图层的标识确定该路段的标识。基于先验定位图层的定位方法多种,例如激光定位,或基于矢量地图的定位。可选地,激光定位的方法包括:对于空间重叠区域,用激光雷达预先构建每层道路场景的先验定位图层,在定位时,通过车载的激光设备获取初始位置周围的道路场景信息,分别与预先构建的定位图层进行匹配,若与多层道路场景中的某一层匹配成功,则可以加载对应的定位图层进行定位。示例性的,当车辆位于地面道路时,获取对应的地面道路的定位图层;当车辆位于高架路时,获取高架路的定位图层。
304、直接确定第一时刻目标所在的路段的标识;
当初始位置处于非空间重叠区域时,定位模块可以根据初始化位置(x1,y1),从高精地图中查询,直接确定车辆所在的路段的标识。
可选地,此时定位模块根据初始化位置(x1,y1),查询高精地图,由于该初始化位置(x1,y1)位于非空间重叠区域,可以唯一确定该初始化位置所在的路段ID。此外,根据路段ID获取该路段ID对应的link值,可以直接确定与初始位置关联的定位图层,用于初始位置的精确定位。
305、根据初始位置所在的路段的标识和高精地图,生成局部拓扑图;
包括通过步骤303或步骤304确定初始位置所在的路段之后,根据该路段ID在高精地图中查询与该路段邻接的路段ID,构建第一时刻的局部拓扑图。
局部拓扑图中包括所有与该初始位置邻接的路段的路段ID。局部拓扑图可以指示从当前路段可以通往的所有其他路段。
请参见图4,为本申请实施例中局部拓扑图的一个实施例示意图,如图所示,当前位置所属的道路即为局部拓扑图中的Current road;根据高精地图中的信息查询Next road,即从当前位置可以直接通往的路段,将所有从当前位置可以直接通往的路段的路段ID保存到局部拓扑图的数据表中。可选的,若定位装置记录了在第一时刻之前最近经过的路段,可以记录在局部拓扑图的数据表中,记为Last road。
306、获取当前位置,并确定目标在当前时刻所在的路段的标识;
定位装置在车辆行驶的过程中可以通过GNSS信号确定车辆的当前位置,定位装置获取GNSS信号的频率可以预先设定,例如,根据预设的时间间隔获取,获取结合当前时刻的车速获取,车速越快获取GNSS信号的频率越高。对于车辆的定位频率具体此处不做限定。可以理解的是,车辆定位的频率通常较高,通常为5Hz到20Hz,例如10Hz等,本实施例对于定位装置的具体定位频率不做限定,定位频率可以保证车辆随着行驶过程经过每个路段区域时均得到定位。
在第一时刻之后的第二时刻,定位装置获取当前的实时位置为(x2,y2),通过查询高精地图,可以判断当前位置是否处于空间重叠区域,若不处于空间重叠区域,则可以根据高精地图直接给出当前位置对应的路段ID;若处于空间重叠区域,则查询局部拓扑图,以确定当前位置所在路段的路段ID。可选地,若当前位置(x2,y2)在高精地图中对应唯一的路段ID,则该位置不处于空间重叠区域,若当前位置(x2,y2)在高精地图中对应两个或两个以上的路段ID,则该位置处于空间重叠区域,需要通过查询局部拓扑图确定该车辆所在的具体路段。
局部拓扑图中包括第一时刻车辆所在路段的路段ID,以及所有与该路段邻接的路段的路 段ID,从与该路段邻接的路段的路段ID列表(next road)中查询,可以确定在路段ID列表中且覆盖当前所在位置(x2,y2)的路段的路段ID。
需要说明的是,在一些可能的实现方式中,本申请实施例涉及的空间重叠场景中,不考虑一个路段直接邻接空间重叠区域的不同层的多个路段的场景,例如:通过电梯直接通往不同停车楼层的场景。因此,局部拓扑图中next road的路段ID列表中,所有路段ID对应的路段中不存在同一空间重叠区域对应的多层路段。基于该前提,第二时刻的当前位置(x2,y2)处于空间重叠区域时,(x2,y2)位置在高精地图中对应于至少两个路段ID,该至少两个路段ID中仅有一个路段ID可能位于第一时刻局部拓扑图的next road的路段ID列表,不存在两个或两个以上路段ID均位于第一时刻局部拓扑图的next road的路段ID列表的情况。
因此,查询高精地图中第二时刻的当前位置(x2,y2)对应的路段ID,并根据第一时刻的局部拓扑图中next road的路段ID列表,即可确定第二时刻所处的唯一的路段的路段ID。根据路段ID可以确定车辆位于空间重叠区域中的具体哪一层的路段上,确定了高度方向上的信息。
可选地,由于根据GNSS信号定位的位置(x2,y2)的精度较低,在对车辆位置的精度要求较高的场景下,可以根据路段ID确定定位图层,进一步获取车辆当前所在的高精度的位置信息,具体的,根据路段ID,基于路段ID对应的link值,可以确定关联的定位图层,定位装置加载对应的定位图层,若为激光定位图层,则根据车载激光设备获取路段周边的激光点云信息,与预先构建的定位图层进行匹配,即可获取车辆的精确定位。
定位装置输出GNSS信号定位的当前的位置和所在的路段ID信息,或根据当前传感器信息与定位图层的匹配信息,可以输出当前高精度的水平坐标,及所在的路段ID信息。
307、定位装置更新局部拓扑图;
根据步骤305确定的第二时刻车辆所在的路段后,根据该路段ID在高精地图中查询与该路段邻接的路段ID,可以更新局部拓扑图,即构建第二时刻的局部拓扑图。
第二时刻的局部拓扑图中包括所有与第二时刻车辆所在路段邻接的路段的路段ID。局部拓扑图可以指示从第二时刻车辆所在路段可以通往的所有其他路段。
可选地,根据预设的查询规则,定位装置可以重复进行定位,重复执行步骤305和步骤306。例如,第三时刻,获取当前位置(x3,y3),基于第二时刻的局部拓扑图以及(x3,y3),可以确定第三时刻目标所处路段,若目标所处路段发生变化,根据高精地图中查询的邻接路段信息维护局部拓扑图。根据当前定位的路段的路段ID在高精地图中查询与其邻接的路段ID;若当前路段ID变化,则更新局部拓扑图,删除已走过的道路的路段ID,更新当前路段ID及与其邻接的路段ID。类似地,定位装置可以不断获取更新的位置信息,不断维护局部拓扑图,连续地获取目标所在的路段。此处不再赘述。可选地,局部拓扑图中还包括当前道路的路段ID(current road),以及上一路段的路段ID(last road)。
根据本申请实施例提供的定位方法,定位装置根据高精地图中预先存储的路段信息,构建车辆当前时刻的局部拓扑图,通过局部拓扑图以及下一时刻的位置信息确定下一时刻,位于空间重叠区域的车辆所在的具体路段,此外,在高精地图中还可以存储link参数,指示路段关联的定位图层,这样在空间重叠区域,基于路段ID可以确定路段关联的定位图层,基于正确的定位图层实现空间重叠区域的准确定位。
直接根据激光设备获取道路场景信息匹配定位图层进行定位时,对于相似的场景的定位准确度低,而本申请利用拓扑的关联性可以更好的区分相似场景。
请参见图5,为本申请实施例中定位方法的一个实施例示意图;
车辆定位装置的数据库中包含高清地图(HD-map)以及定位图层。定位装置的具体定位过程如下:
S1、获取初始二维位置(x,y),根据HD-map数据库查询该位置所属路段ID,若查询结果唯一,代表该位置不属于空间重叠区域,可以直接给出初始化位置,以及对应的路段ID;若查询结果不唯一,则该位置处于空间重叠区域,定位装置可以通过其他方法,例如利用传感器感知路段周边场景识别的方式确定当前所在路段,获取路段ID;
S2、定位装置根据S1步骤中获取的路段ID构建局部拓扑图,将该路段ID存入局部拓扑图(也可称为局部拓扑数据表)中,并根据高精地图中存储的路段信息,在该局部拓扑数据表中存入与该路段ID对应的路段邻接的所有路段的路段ID;
S3、定位装置根据GNSS信号获取实时定位结果(x,y),以及局部拓扑图获取当前所在的路段ID。具体实施例方式参加图3对应的实施例中步骤305,此处不再赘述。可以理解的是,由于根据GNSS信号进行定位时,定位精度较低,且定位精度易受周边环境影响,通常在空旷无遮挡区域基于GNSS信号定位的精度为米级,而有遮挡情况下的定位精度则更差,对于需要高精度定位的场景,本申请实施例中,定位装置还可以预先在数据库中存储定位图层数据,并在高精地图的路段信息中存储路段ID及关联的定位图层,此时,基于路段ID查询高精地图,可以确定并加载当前所在路段对应的定位图层用于下一步进行高精度定位,可以实现分米级以上的定位精度,例如分米级或厘米级。此外,定位装置还可以判断路段ID是否发生变化,即所处路段是否改变,若改变,则更新局部拓扑数据表,若未发生变化则进行其他操作,例如保持局部拓扑数据表不变。
S4、定位装置还可以根据加载的定位图层,以及实时获取的传感器数据进行高精度的定位,输出当前定位位置以及车辆所在的路段ID。
请参见图6,为本申请实施例的定位方法在空间重叠场景下一个实施例示意图;
该场景为:高架桥上与地面道路存在重叠区域,即在同一经纬度位置有上下两层,车辆从地面道路左下侧位置驶往右上方。
高精地图中预先存储了道路的路段信息,不同路段具有不同的路段ID,如图6示,路段的起止点为道路交叉口,地面道路包括路段1001(路段ID为1001)、路段1002和路段1003,高架桥道路包括路段1004、路段1005和路段1006,其中路段1002和路段1005为空间重叠路段。
高精地图中还存储了路段的link参数,link值为定位图层的标识,例如,ID1001对应的link值为“100_600_0-4”,根据link值可以确定路段1001关联的定位图层。可选地,实际应用中由于路段长度不同,一个路段可以对应一个或多个定位图层,一个定位图层包括一个路段的环境信息中的部分,此时,一个路段ID的link值为多个。例如,路段1002的link为“100_600_0-0”、“200_600_0-4”和“200_700_0-3”,即路段1002对应了三个局部的定位图层,这三个定位图层分别包含路段1002的部分环境信息。
当自动驾驶车辆从地面道路左侧驶入,通过高架桥下到达路段1003,自动驾驶车辆会不 断根据当前位置查询当前所在道路,请参见图7,为本申请实施例中车辆行驶过程中的局部拓扑图示意图。
当经过高架桥下时,会查询到当前所在路段ID为1002和1005,根据构建的局部拓扑图可以确定当前的位置所在的路段ID为1002。
进一步地,当获取到路段ID信息以后,定位装置确定目标当前位置对应的定位图层。
可选地,根据路段ID和定位图层的关联关系加载定位图层。例如,路段1002对应的定位图层为“100_600_0-0”、“200_600_0-4”和“200_700_0-3”。由于路段1002对应多个定位图层,定位装置可以根据传感器实时的测量数据分别与三个定位图层“100_600_0-0”、“200_600_0-4”和“200_700_0-3”进行匹配,确定当前位置对应的定位图层为“100_600_0-0”。
可选地,定位装置可以根据当前位置(x,y),直接确定路段1002关联的三个定位图层中的“100_600_0-0”为当前定位图层。
定位装置加载目标当前位置对应的定位图层,根据传感器实时的测量数据进行匹配,确定目标当前高精度的实时位置(x',y')。基于定位图层进行高精度定位的方法为已有技术,具体过程此处不再赘述。
请参见图8,为本申请实施例的定位方法在空间重叠场景下另一个实施例示意图;
该场景为:高架桥上路段2006(路段ID为2006)与地面道路的路段2003存在重叠区域,即在同一经纬度位置有上下两层。地面道路通过匝道路段2004可以通往高架桥。如图6示,路段的起止点为道路交叉口。自动驾驶车辆从地面道路左侧驶入,通过匝道驶往高架桥道路右侧。
车辆在路段2001行驶时,变道驶往匝道路段2004,到达高架桥后,经路段2006,驶往路段2007。
自动驾驶车辆会不断根据当前位置查询当前所在道路的位置信息,并维护局部拓扑图,在路段2001时,局部拓扑图中next road包括路段2002和路段2004;到达路段2004时,更新局部拓扑图中next road为路段2006;到达路段2006时,根据定位的位置信息,可以获取当前位置对应的路段ID包括2006和2003,由于局部拓扑图中next road为路段列表中路段ID为2006,不包括路段ID 2003,因此,可以确定车辆当前所处的路段为路段2006。当获取到路段ID信息以后,定位装置确定目标当前位置对应的定位图层,并根据定位图层进行精确定位,具体此处不再赘述。
上面介绍了本申请提供的定位方法,下面对实现该定位方法的定位装置进行介绍,请参见图9,为本申请实施例中定位装置的一个实施例示意图。
该定位装置具有导航功能,可以是具有导航功能的车载装置,例如车载导航仪等;也可以是具有导航功能的移动终端,例如手机、平板电脑或可穿戴设备等,定位装置的具体产品形态此处不做限定。
该定位装置,包括:
确定单元901,用于确定第一时刻的目标所在的第一路段的标识;
处理单元902,用于根据地图信息,构建所述第一时刻的局部拓扑图,所述第一时刻的局部拓扑图包括与所述第一路段邻接的路段的标识;
所述确定单元901,还用于得到第二时刻的所述目标的位置信息,在时间顺序上,所述第二时刻为所述第一时刻之后的时刻;
所述确定单元901,还用于根据所述地图信息和所述第二时刻的所述目标的位置信息,确定所述第二时刻的所述目标对应的至少两个路段的标识;
所述确定单元901,还用于根据所述第一时刻的局部拓扑图和所述第二时刻的所述目标对应的所述至少两个路段的标识,确定所述第二时刻的所述目标所在的路段的标识。
可选地,所述地图信息包括路段的标识和路段之间的连接关系。
可选地,所述装置还包括:获取单元903,用于获取所述目标的初始时刻的导航卫星系统信号;所述确定单元901,还用于根据所述导航卫星系统信号,确定所述初始时刻的所述目标的位置信息;所述确定单元901,还用于根据所述地图信息和所述初始时刻的所述目标的位置信息,确定所述初始时刻的所述目标所在的路段的标识。
可选地,所述装置还包括:获取单元903,用于获取所述目标的初始时刻的导航卫星系统信号;所述确定单元901,还用于根据所述导航卫星系统信号,确定所述初始时刻的所述目标的位置信息;所述确定单元901,还用于根据所述地图信息,确定所述初始时刻的所述目标的位置信息对应于至少两个路段的标识;所述确定单元901,还用于根据所述初始时刻的激光点云数据,通过匹配预先构建的定位图层的激光点云数据,确定所述初始时刻的所述目标所在的路段的标识。
可选地,所述第二时刻基于所述第一时刻和预设的定位频率确定。
可选地,所述处理单元902,还用于根据所述第二路段的标识和所述地图信息,构建所述第二时刻的局部拓扑图,所述第二时刻的局部拓扑图包括与所述第二路段邻接的路段的标识。
可选地,所述确定单元901,还用于:确定第三时刻的所述目标的位置信息,在时间顺序上,所述第三时刻为所述第二时刻之后的时刻;根据所述地图信息和所述目标的第三时刻的位置信息,确定所述第三时刻的所述目标对应的至少两个路段的标识;根据所述第二时刻的局部拓扑图和所述至少两个路段的标识,确定所述第二时刻的所述目标所在的路段的标识。
可选地,述确定单元901,还用于:根据所述地图信息,确定与所述第二路段的标识关联的定位图层的标识,其中,所述地图信息包括与路段的标识关联的定位图层的标识;根据所述定位图层的标识确定所述第二路段的标识关联的定位图层;根据所述第二路段的标识的关联的定位图层确定第二时刻的所述目标的精确位置信息,所述第二时刻的所述目标的精确位置信息的精度高于所述第二时刻的所述目标的位置信息。
可选地,所述装置还包括:显示单元904,用于在手机的显示界面中显示所述第二路段的信息;和/或,播放单元905,用于通过手机语音播报所述第二路段的信息。
可选地,所述装置还包括:显示单元904,用于在车载终端的显示界面中显示所述第二路段的信息;和/或,播放单元905,用于通过车载终端语音播报所述第二路段的信息。
请参见图10,为本申请实施例中定位装置的另一个实施例示意图。
本申请实施例中的定位方法可以通过存储器中程序代码来实现,具体部署见图10:该定位装置包括:处理器、存储器、外设接口、输入/输出(I/O)子系统,他们之间通过通信总线或信号线来通信。
存储器:用于存储计算机程序指令。可以被处理器,外设接口和输入/输出(I/O)子系统访问。可以包括高速随机存取存储器,或者非易失性存储器,如闪存,磁盘,或其他固态存储器件。HD-Map可以提前预先存储在存储器中,也可用通过接口从网路端或云端下载到存储其中
处理器:用于调用存储器中的计算机程序指令,执行自动驾驶车辆高程定位的功能。
本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。虽然图中仅仅示出了一个处理器,该装置可以包括多个处理器或者处理器包括多个处理单元。具体的,处理器可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。
存储器用于存储处理器执行的计算机指令。存储器可以是存储电路也可以是存储器。存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。存储器可以独立于处理器,也可以是处理器中的存储单元,在此不做限定。虽然图中仅仅示出了一个存储器,该装置也可以包括多个存储器或者存储器包括多个存储单元。
收发器用于实现处理器与其他单元或者网元的内容交互。具体的,收发器可以是该装置的通信接口,也可以是收发电路或者通信单元,还可以是收发信机。收发器还可以是处理器的通信接口或者收发电路。一种可能的实现方式,收发器可以是一个收发芯片。该收发器还可以包括发送单元和/或接收单元。在一种可能的实现方式中,该收发器可以包括至少一个通信接口。在另一种可能的实现方式中,该收发器也可以是以软件形式实现的单元。在本申请的各实施例中,处理器可以通过收发器与其他单元或者网元进行交互。例如:处理器通过该收发器获取或者接收来自其他网元的内容。若处理器与收发器是物理上分离的两个部件,处理器可以不经过收发器与该装置的其他单元进行内容交互。
一种可能的实现方式中,处理器、存储器以及收发器可以通过总线相互连接。总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结 构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。
本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的各实施例中,为了方面理解,进行了多种举例说明。然而,这些例子仅仅是一些举例,并不意味着是实现本申请的最佳实现方式。
计算机程序产品和存储介质角度:
上述实施例,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现,当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机执行指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上对本申请所提供的技术方案进行了详细介绍,本申请中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (23)

  1. 一种定位方法,其特征在于,包括:
    确定第一时刻的目标所在的第一路段的标识;
    根据地图信息,构建所述第一时刻的局部拓扑图,所述第一时刻的局部拓扑图包括与所述第一路段邻接的路段的标识;
    得到第二时刻的所述目标的位置信息,在时间顺序上,所述第二时刻为所述第一时刻之后的时刻;
    根据所述地图信息和所述第二时刻的所述目标的位置信息,确定所述第二时刻的所述目标对应的至少两个路段的标识;
    根据所述第一时刻的局部拓扑图和所述第二时刻的所述目标对应的所述至少两个路段的标识,确定所述第二时刻的所述目标所在的路段的标识。
  2. 根据权利要求1所述的方法,其特征在于,所述地图信息包括路段的标识和路段之间的连接关系。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述方法还包括:
    获取所述目标的初始时刻的导航卫星系统信号;
    根据所述导航卫星系统信号,确定所述初始时刻的所述目标的位置信息;
    根据所述地图信息和所述初始时刻的所述目标的位置信息,确定所述初始时刻的所述目标所在的路段的标识。
  4. 根据权利要求1或2所述的方法,其特征在于,
    所述方法还包括:
    获取所述目标的初始时刻的导航卫星系统信号;
    根据所述导航卫星系统信号,确定所述初始时刻的所述目标的位置信息;
    根据所述地图信息,确定所述初始时刻的所述目标的位置信息对应于至少两个路段的标识;
    根据所述初始时刻的激光点云数据,通过匹配预先构建的定位图层的激光点云数据,确定所述初始时刻的所述目标所在的路段的标识。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述第二时刻基于所述第一时刻和预设的定位频率确定。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第二路段的标识和所述地图信息,构建所述第二时刻的局部拓扑图,所述第二时刻的局部拓扑图包括与所述第二路段邻接的路段的标识。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    确定第三时刻的所述目标的位置信息,在时间顺序上,所述第三时刻为所述第二时刻之后的时刻;
    根据所述地图信息和所述目标的第三时刻的位置信息,确定所述第三时刻的所述目标对应的至少两个路段的标识;
    根据所述第二时刻的局部拓扑图和所述至少两个路段的标识,确定所述第二时刻的所述 目标所在的路段的标识。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述地图信息,确定与所述第二路段的标识关联的定位图层的标识,其中,所述地图信息包括与路段的标识关联的定位图层的标识;
    根据所述定位图层的标识确定所述第二路段的标识关联的定位图层;
    根据所述第二路段的标识的关联的定位图层确定第二时刻的所述目标的精确位置信息,所述第二时刻的所述目标的精确位置信息的精度高于所述第二时刻的所述目标的位置信息。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    在手机的显示界面中显示所述第二路段的信息;和/或,
    通过手机语音播报所述第二路段的信息。
  10. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    在车载终端的显示界面中显示所述第二路段的信息;和/或,
    通过车载终端语音播报所述第二路段的信息。
  11. 一种定位装置,其特征在于,包括:
    确定单元,用于确定第一时刻的目标所在的第一路段的标识;
    处理单元,用于根据地图信息,构建所述第一时刻的局部拓扑图,所述第一时刻的局部拓扑图包括与所述第一路段邻接的路段的标识;
    所述确定单元,还用于得到第二时刻的所述目标的位置信息,在时间顺序上,所述第二时刻为所述第一时刻之后的时刻;
    所述确定单元,还用于根据所述地图信息和所述第二时刻的所述目标的位置信息,确定所述第二时刻的所述目标对应的至少两个路段的标识;
    所述确定单元,还用于根据所述第一时刻的局部拓扑图和所述第二时刻的所述目标对应的所述至少两个路段的标识,确定所述第二时刻的所述目标所在的路段的标识。
  12. 根据权利要求11所述的装置,其特征在于,所述地图信息包括路段的标识和路段之间的连接关系。
  13. 根据权利要求11或12所述的装置,其特征在于,所述装置还包括:
    获取单元,用于获取所述目标的初始时刻的导航卫星系统信号;
    所述确定单元,还用于根据所述导航卫星系统信号,确定所述初始时刻的所述目标的位置信息;
    所述确定单元,还用于根据所述地图信息和所述初始时刻的所述目标的位置信息,确定所述初始时刻的所述目标所在的路段的标识。
  14. 根据权利要求11或12所述的装置,其特征在于,所述装置还包括:
    获取单元,用于获取所述目标的初始时刻的导航卫星系统信号;
    所述确定单元,还用于根据所述导航卫星系统信号,确定所述初始时刻的所述目标的位置信息;
    所述确定单元,还用于根据所述地图信息,确定所述初始时刻的所述目标的位置信息对应于至少两个路段的标识;
    所述确定单元,还用于根据所述初始时刻的激光点云数据,通过匹配预先构建的定位图 层的激光点云数据,确定所述初始时刻的所述目标所在的路段的标识。
  15. 根据权利要求11至14中任一项所述的装置,其特征在于,
    所述第二时刻基于所述第一时刻和预设的定位频率确定。
  16. 根据权利要求11至15中任一项所述的装置,其特征在于,
    所述处理单元,还用于根据所述第二路段的标识和所述地图信息,构建所述第二时刻的局部拓扑图,所述第二时刻的局部拓扑图包括与所述第二路段邻接的路段的标识。
  17. 根据权利要求16所述的装置,其特征在于,所述确定单元,还用于:
    确定第三时刻的所述目标的位置信息,在时间顺序上,所述第三时刻为所述第二时刻之后的时刻;
    根据所述地图信息和所述目标的第三时刻的位置信息,确定所述第三时刻的所述目标对应的至少两个路段的标识;
    根据所述第二时刻的局部拓扑图和所述至少两个路段的标识,确定所述第二时刻的所述目标所在的路段的标识。
  18. 根据权利要求11至17中任一项所述的装置,其特征在于,所述确定单元,还用于:
    根据所述地图信息,确定与所述第二路段的标识关联的定位图层的标识,其中,所述地图信息包括与路段的标识关联的定位图层的标识;
    根据所述定位图层的标识确定所述第二路段的标识关联的定位图层;
    根据所述第二路段的标识的关联的定位图层确定第二时刻的所述目标的精确位置信息,所述第二时刻的所述目标的精确位置信息的精度高于所述第二时刻的所述目标的位置信息。
  19. 根据权利要求11至18中任一项所述的装置,其特征在于,所述装置还包括:
    显示单元,用于在手机的显示界面中显示所述第二路段的信息;和/或,
    播放单元,用于通过手机语音播报所述第二路段的信息。
  20. 根据权利要求11至18中任一项所述的装置,其特征在于,所述装置还包括:
    显示单元,用于在车载终端的显示界面中显示所述第二路段的信息;和/或,
    播放单元,用于通过车载终端语音播报所述第二路段的信息。
  21. 一种定位装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器用于调用所述程序指令,执行如权利要求1至10中任一项所述的方法。
  22. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求1至10中任一项所述的方法。
  23. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在计算机上运行时,使得计算机执行如权利要求1至10中任一项所述的方法。
PCT/CN2021/073709 2020-05-25 2021-01-26 定位方法和定位装置 WO2021238283A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21814321.2A EP4141600A4 (en) 2020-05-25 2021-01-26 POSITIONING METHOD AND APPARATUS
US17/993,093 US20230093020A1 (en) 2020-05-25 2022-11-23 Positioning method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010452141.2 2020-05-25
CN202010452141.2A CN113721599B (zh) 2020-05-25 2020-05-25 定位方法和定位装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/993,093 Continuation US20230093020A1 (en) 2020-05-25 2022-11-23 Positioning method and apparatus

Publications (1)

Publication Number Publication Date
WO2021238283A1 true WO2021238283A1 (zh) 2021-12-02

Family

ID=78671746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073709 WO2021238283A1 (zh) 2020-05-25 2021-01-26 定位方法和定位装置

Country Status (4)

Country Link
US (1) US20230093020A1 (zh)
EP (1) EP4141600A4 (zh)
CN (1) CN113721599B (zh)
WO (1) WO2021238283A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114283343A (zh) * 2021-12-20 2022-04-05 北京百度网讯科技有限公司 基于遥感卫星图像的地图更新方法、训练方法和设备
CN114281917A (zh) * 2022-03-04 2022-04-05 腾讯科技(深圳)有限公司 道路元素的采集方法和装置、存储介质及电子设备
CN115027483A (zh) * 2022-07-29 2022-09-09 北京四维图新科技股份有限公司 叠置道路识别、车辆行驶控制方法、装置及设备
CN115060254A (zh) * 2022-06-08 2022-09-16 中国第一汽车股份有限公司 车辆位置确定方法、装置、电子设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8392117B2 (en) * 2009-05-22 2013-03-05 Toyota Motor Engineering & Manufacturing North America, Inc. Using topological structure for path planning in semi-structured environments
CN103557870A (zh) * 2013-10-09 2014-02-05 董路 一种动态轨迹导航方法及云平台
CN104776855A (zh) * 2015-03-17 2015-07-15 腾讯科技(深圳)有限公司 一种交叉路口的导航方法和装置
CN107782320A (zh) * 2016-08-26 2018-03-09 法乐第(北京)网络科技有限公司 一种车辆定位方法
CN108307314A (zh) * 2016-08-26 2018-07-20 法乐第(北京)网络科技有限公司 一种车辆定位装置
US20190113356A1 (en) * 2017-10-18 2019-04-18 Here Global B.V. Automatic discovery of optimal routes for flying cars and drones
US20200049512A1 (en) * 2018-08-09 2020-02-13 Here Global B.V. Method and apparatus for map matching trace points to a digital map
CN111179152A (zh) * 2018-11-12 2020-05-19 阿里巴巴集团控股有限公司 一种道路标识识别方法及装置、介质、终端

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236567B (zh) * 2013-06-07 2017-10-27 大陆汽车投资(上海)有限公司 车载导航信息的获取方法及车载导航系统
CN104567890A (zh) * 2014-11-24 2015-04-29 朱今兰 一种智能车辆导航辅助系统
CN105868189B (zh) * 2015-01-19 2018-12-28 高德软件有限公司 一种电子地图空间索引建立方法及装置
WO2017161588A1 (zh) * 2016-03-25 2017-09-28 华为技术有限公司 一种定位方法及装置
CN106248094A (zh) * 2016-08-30 2016-12-21 北京京东尚科信息技术有限公司 一种基于导航地图确定最优路线的方法和装置
CN108732603B (zh) * 2017-04-17 2020-07-10 百度在线网络技术(北京)有限公司 用于定位车辆的方法和装置
CN108731691B (zh) * 2017-04-19 2022-12-13 腾讯科技(深圳)有限公司 导航设备的偏航点的确定方法和装置
CN110148170A (zh) * 2018-08-31 2019-08-20 北京初速度科技有限公司 一种应用于车辆定位的定位初始化方法及车载终端
CN111044058A (zh) * 2018-10-11 2020-04-21 北京嘀嘀无限科技发展有限公司 路线规划方法及路线规划装置、计算机设备和存储介质
CN111044056B (zh) * 2018-10-15 2023-10-13 华为技术有限公司 基于道路匹配的定位方法、芯片子系统及电子设备
CN110768819B (zh) * 2018-12-03 2023-03-24 北京嘀嘀无限科技发展有限公司 生成方法、规划方法、装置、终端和可读存储介质
CN110057373B (zh) * 2019-04-22 2023-11-03 上海蔚来汽车有限公司 用于生成高精细语义地图的方法、装置和计算机存储介质
CN110345935B (zh) * 2019-06-04 2020-12-29 中国地质大学(武汉) 一种室内地图匹配定位的方法
CN110749328B (zh) * 2019-08-30 2021-12-28 华为技术有限公司 定位方法与系统、电子设备、车辆与存储介质
CN110728717B (zh) * 2019-09-27 2022-07-15 Oppo广东移动通信有限公司 定位方法及装置、设备、存储介质
CN110992724B (zh) * 2019-11-05 2021-11-19 华为技术有限公司 一种车辆导航方法及终端
CN111124128B (zh) * 2019-12-24 2022-05-17 Oppo广东移动通信有限公司 位置提示方法及相关产品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8392117B2 (en) * 2009-05-22 2013-03-05 Toyota Motor Engineering & Manufacturing North America, Inc. Using topological structure for path planning in semi-structured environments
CN103557870A (zh) * 2013-10-09 2014-02-05 董路 一种动态轨迹导航方法及云平台
CN104776855A (zh) * 2015-03-17 2015-07-15 腾讯科技(深圳)有限公司 一种交叉路口的导航方法和装置
CN107782320A (zh) * 2016-08-26 2018-03-09 法乐第(北京)网络科技有限公司 一种车辆定位方法
CN108307314A (zh) * 2016-08-26 2018-07-20 法乐第(北京)网络科技有限公司 一种车辆定位装置
US20190113356A1 (en) * 2017-10-18 2019-04-18 Here Global B.V. Automatic discovery of optimal routes for flying cars and drones
US20200049512A1 (en) * 2018-08-09 2020-02-13 Here Global B.V. Method and apparatus for map matching trace points to a digital map
CN111179152A (zh) * 2018-11-12 2020-05-19 阿里巴巴集团控股有限公司 一种道路标识识别方法及装置、介质、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4141600A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114283343A (zh) * 2021-12-20 2022-04-05 北京百度网讯科技有限公司 基于遥感卫星图像的地图更新方法、训练方法和设备
CN114283343B (zh) * 2021-12-20 2023-09-26 北京百度网讯科技有限公司 基于遥感卫星图像的地图更新方法、训练方法和设备
CN114281917A (zh) * 2022-03-04 2022-04-05 腾讯科技(深圳)有限公司 道路元素的采集方法和装置、存储介质及电子设备
CN115060254A (zh) * 2022-06-08 2022-09-16 中国第一汽车股份有限公司 车辆位置确定方法、装置、电子设备及存储介质
CN115027483A (zh) * 2022-07-29 2022-09-09 北京四维图新科技股份有限公司 叠置道路识别、车辆行驶控制方法、装置及设备

Also Published As

Publication number Publication date
US20230093020A1 (en) 2023-03-23
EP4141600A4 (en) 2023-11-01
EP4141600A1 (en) 2023-03-01
CN113721599A (zh) 2021-11-30
CN113721599B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2021238283A1 (zh) 定位方法和定位装置
CN111044056B (zh) 基于道路匹配的定位方法、芯片子系统及电子设备
CN108253973B (zh) 高精度地图和标准地图关联的方法及装置
US20170192436A1 (en) Autonomous driving service system for autonomous driving vehicle, cloud server for the same, and method for operating the cloud server
WO2021196899A1 (zh) 导航方法、装置、计算机设备和存储介质
JP7459276B2 (ja) ナビゲーション方法および装置
US20150285649A1 (en) Method and apparatus for determining traffic route in electronic map
US20130006517A1 (en) Providing routes through information collection and retrieval
CN111739323B (zh) 一种路口信息的采集方法及装置
CN111351492A (zh) 用于自动驾驶车辆导航的方法和系统
US10900804B2 (en) Methods and systems for roadwork extension identification using speed funnels
CN111207768B (zh) 导航过程的信息提示方法、装置、设备及存储介质
CN111307167A (zh) 用于通过区域的路线生成的方法和系统
CN115164918B (zh) 语义点云地图构建方法、装置及电子设备
JPWO2007105519A1 (ja) 位置登録装置、経路探索装置、位置登録方法、位置登録プログラムおよび記録媒体
US20200003572A1 (en) Travel assistance device
JP2005326265A (ja) ナビゲーション装置と走行道路に対する変更情報の提示方法
CN103398716A (zh) 路段回避方法及导航设备
CN102538814A (zh) 即时转弯提示方法及位置服务终端
EP4009084A1 (en) Aligning in-vehicle mobile device and vehicle bodies for improved global positioning
CN115547096A (zh) 车辆的引导路线规划方法及装置
CN114440905A (zh) 中间图层的构建方法、装置、电子设备及存储介质
JP6533675B2 (ja) 引継情報送信システム、引継情報送信装置、案内端末、引継情報送信方法、及び引継情報送信プログラム
CN115248046A (zh) 一种地图、地图生成方法、地图使用方法及装置
CN117091620B (zh) 导航方法、装置、计算机设备和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021814321

Country of ref document: EP

Effective date: 20221123

NENP Non-entry into the national phase

Ref country code: DE