WO2021238211A1 - 介质波导滤波器与通信装置 - Google Patents

介质波导滤波器与通信装置 Download PDF

Info

Publication number
WO2021238211A1
WO2021238211A1 PCT/CN2020/141703 CN2020141703W WO2021238211A1 WO 2021238211 A1 WO2021238211 A1 WO 2021238211A1 CN 2020141703 W CN2020141703 W CN 2020141703W WO 2021238211 A1 WO2021238211 A1 WO 2021238211A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
waveguide filter
dielectric waveguide
closed annular
hole
Prior art date
Application number
PCT/CN2020/141703
Other languages
English (en)
French (fr)
Inventor
丁海
谢懿非
党志南
林显添
Original Assignee
京信通信技术(广州)有限公司
京信射频技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司, 京信射频技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2021238211A1 publication Critical patent/WO2021238211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters

Definitions

  • the present invention relates to the field of antenna communication technology, in particular to a dielectric waveguide filter and a communication device.
  • the filter is a frequency selection device and an indispensable part of communication equipment.
  • the filter is a frequency selection device and an indispensable part of communication equipment.
  • the miniaturization of devices is the key to the development of its communication equipment, and miniaturization, high performance, and low power consumption filters are the keys to the miniaturization of 5G equipment.
  • Dielectric waveguide filters are also the key to the miniaturization of 5G equipment. It has all the characteristics of 5G equipment miniaturization, so it has a wide range of application prospects in 5G communication equipment.
  • the dielectric waveguide filter improves the air filling form of the traditional waveguide filter into a high-dielectric constant ceramic material filling.
  • the ceramic dielectric material is formed by die-casting to play the role of signal transmission and structural support.
  • the metal material is attached to the surface of the ceramic dielectric material.
  • the electric wall plays the role of electromagnetic shielding.
  • a communication device includes a dielectric waveguide filter and a circuit board (for example, a multilayer PCB board).
  • the dielectric waveguide filter includes a dielectric body, and the surface of the dielectric body is metalized and processed by silver (which can be understood as an electroplating process) to form a conductive layer on the outer surface of the dielectric body.
  • the upper surface of the medium body is provided with a frequency adjusting hole, and the lower surface is provided with a port blocking ring and a port metalized hole corresponding to the position of the frequency adjusting hole.
  • soldering if the operating temperature profile is not appropriate, it is easy to cause the solder to react with the conductive layer of the metallized hole wall of the port, so that the pin pin, the solder and the conductive layer (such as the silver layer) are combined. Falling off, low connection reliability; 4. After the ceramic dielectric filter is soldered with pin pins, it is then soldered to the pad of the circuit board, and the production efficiency is low due to multiple soldering.
  • a dielectric waveguide filter includes: a dielectric body, the dielectric body includes a first surface and a second surface disposed opposite to each other, the first surface is provided with a circuit board The first pad or the mating part corresponding to the position of the inner conductor of the radio frequency connector, the first surface is also provided with a port hole adjacent to the mating part and extending toward the second surface; the conductive layer, so The conductive layer is provided on the surface of the dielectric body, the conductive layer includes a first conductive layer and a second conductive layer, the conductive layer on the first surface is provided with a blocking ring, and the first conductive layer The isolation ring is separated from the second conductive layer, the docking part and the port hole are both located in the enclosed area of the inner contour line of the isolation ring, and the first conductive layer is provided in the port hole The hole wall and the surface of the butt joint.
  • the structure formed by the port hole, the docking part and the first conductive layer is equivalent to a port coupling structure, which is used to connect with a circuit board or a radio frequency connector to realize the input or output of the dielectric waveguide filter.
  • the first conductive layer on the butt joint is connected to the first pad of the circuit board or the inner conductor of the radio frequency connector by welding, so that the dielectric waveguide filter can be connected to the circuit board or the radio frequency connector.
  • the pin needle is welded in the metallized hole of the port and then connected with the first pad of the circuit board or the inner conductor of the radio frequency connector by welding.
  • the port hole is a closed annular hole or a non-closed annular hole arranged circumferentially around the docking part.
  • the non-closed annular hole includes a first end and a second end opposed to each other; the first end and the second end are spaced apart, and the distance between the first end and the butting part
  • the line connecting the center line is the first boundary line
  • the line connecting the second end to the center line of the butting part is the second boundary line
  • the clamp between the first boundary line and the second boundary line The angle is ⁇ , and 0° ⁇ 360°.
  • two or more of the non-closed annular holes are sequentially arranged at equal intervals around the center line of the butting part; the first end of one of the non-closed annular holes and the adjacent other
  • the distance between the closest two points of the second end of the non-closed annular hole is W1, and W1 ⁇ 1mm.
  • a frequency adjustment structure is provided on the second surface, and the frequency adjustment structure is arranged corresponding to the position of the first conductive layer.
  • a communication device includes the dielectric waveguide filter, and further includes a circuit board or a radio frequency connector, and the first pad of the circuit board or the inner conductor of the radio frequency connector corresponds to the position of the docking part, The first pad of the circuit board or the inner conductor of the radio frequency connector is welded and connected to the first conductive layer of the mating part.
  • the structure formed by the port hole, the docking part and the first conductive layer is equivalent to a port coupling structure, which is used to connect with a circuit board or a radio frequency connector to realize the input or output of the dielectric waveguide filter.
  • the first conductive layer on the butt joint is connected to the first pad of the circuit board or the inner conductor of the radio frequency connector by welding, so that the dielectric waveguide filter can be connected to the circuit board or the radio frequency connector.
  • the pin needle is welded in the metallized hole of the port and then connected with the first pad of the circuit board or the inner conductor of the radio frequency connector by welding.
  • FIG. 1 is a schematic structural diagram of a first surface of a dielectric waveguide filter according to an embodiment of the present invention
  • Figure 2 is a cross-sectional structure diagram at A-A of Figure 1;
  • FIG. 3 is a schematic diagram of the structure of the second surface of the dielectric waveguide filter according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the side of the circuit board for welding with the dielectric waveguide filter according to an embodiment of the present invention
  • Figure 5 is a sectional structural view at B-B of Figure 4.
  • FIG. 9 is a schematic diagram of the structure of the first surface of the dielectric waveguide filter according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the structure of the first surface of the dielectric waveguide filter according to still another embodiment of the present invention.
  • Dielectric waveguide filter 11. Dielectric body; 111. Butt joint; 112, port hole; 1121, first boundary line; 1122, second boundary line; 113, frequency adjustment hole; 12, conductive layer; 121, first A conductive layer; 122, a second conductive layer; 123, a partition ring; 20, a circuit board; 21, a metalized via; 22, a first pad; 23, a third conductive layer; 231, an opening area; 24, a wire ; 25. The second pad.
  • FIG. 3 shows a schematic diagram of the second surface of the dielectric waveguide filter 10 according to an embodiment of the present invention.
  • the medium body 11 includes a first surface and a second surface that are oppositely disposed.
  • the first surface corresponds to the surface illustrated in FIG. 1 and the upper surface illustrated in FIG. 2; the second surface corresponds to the surface illustrated in FIG. 3 and the lower surface illustrated in FIG. 2.
  • the conductive layer 12 is disposed on the surface of the dielectric body 11, and the conductive layer 12 includes a first conductive layer 121 and a second conductive layer 122.
  • the conductive layer 12 on the first surface is provided with a blocking ring 123, and the first conductive layer 121 is isolated from the second conductive layer 122 by the blocking ring 123.
  • the mating part 111 and the port hole 112 are both located in the area enclosed by the inner contour line of the partition ring 123, and the first conductive layer 121 is provided on the hole wall of the port hole 112 and the surface of the mating part 111.
  • the connector is connected, so there is no need to weld and connect the pin needle 21 with the circuit board 20 or the pin needle 21 of the radio frequency connector after welding the pin needle 21 in the metalized hole of the port as in the traditional technology.
  • the risk of the dielectric body 11 from being welded to the pin pin 21 can be avoided, and the surface unevenness caused by the pin pin 21 can be avoided, and the metallized hole of the port can be avoided.
  • the fall of the middle pin 21 reduces reliability and can improve production efficiency.
  • the non-closed annular hole is provided with opposite ends, and the opposite ends of the non-closed annular hole are spaced apart and are not connected to each other, that is, the non-closed annular hole is, for example, a non-closed annular hole , Non-closed form of square ring hole or non-closed form of elliptical ring hole.
  • FIG. 8 shows a schematic structural diagram of the first surface of the dielectric waveguide filter 10 according to another embodiment of the present invention
  • FIG. 9 shows the present invention.
  • FIG. 10 shows a schematic diagram of the structure of the first surface of the dielectric waveguide filter 10 according to another embodiment of the present invention.
  • the cross-sectional view at CC in Figure 10 is shown.
  • the port hole 112 is a non-closed annular hole arranged circumferentially around the mating part 111. In this way, when the port hole 112 is circumferentially arranged around the mating part 111, the product performance can be made reliable.
  • the non-closed annular hole includes a first end and a second end opposite to each other.
  • the first end and the second end are spaced apart, a line connecting the first end to the center line of the mating part 111 is a first boundary line 1121, and a line connecting the second end to the center line of the mating part 111 is a second boundary line 1122.
  • the angle between the first boundary line 1121 and the second boundary line 1122 is ⁇ , and 0° ⁇ 360°.
  • the non-closed annular hole extends from the first end to the second end, and the first end and the second end are spaced apart, so as to realize the part of the non-closed annular hole around the butting part 111 It is arranged circumferentially instead of completely surrounding the circumference of the butt joint 111.
  • can be 30°, 45°, 90°, 135°, 180°, 225°, 250°, 300° or Other angles.
  • connection part between the butting part 111 and the surrounding structure is relatively reduced, resulting in the weakening of the connection strength between the butting part 111 and the surrounding structure.
  • the risk of tearing and breaking of the butting part 111 easily occurs under the action of a large external force.
  • the two non-closed annular holes are arranged symmetrically about the center line of the mating part 111.
  • the angle between the first boundary line 1121 of one of the non-closed annular holes and the second boundary line 1122 of the other non-closed annular hole is a, and a ⁇ 60°.
  • the diameter of the inner contour line of the non-closed annular hole is d1
  • the diameter of the outer contour line of the non-closed annular hole is d2, and d2-d1 ⁇ 0.85mm.
  • the structural strength of the butting part 111 can be strengthened to avoid the undesirable phenomenon of fracture when the butting part 111 is subjected to external force.
  • the distance between the first end of one non-closed annular hole and the second end of another adjacent non-closed annular hole is W1, and W1 ⁇ 1mm. In this way, the product performance is better and it is convenient for processing and production.
  • two or more non-closed annular holes are sequentially arranged at equal intervals around the center line of the butting part 111.
  • FIG. 8 illustrates that there are three non-closed annular holes, and the three non-closed annular holes are sequentially arranged at equal intervals around the center line of the docking part 111. In this way, the product performance is better and it is convenient for processing and production.
  • a frequency adjustment structure is provided on the second surface, and the frequency adjustment structure is arranged corresponding to the position of the first conductive layer 121.
  • the arrangement of the frequency adjustment structure corresponding to the position of the first conductive layer 121 means that after the frequency adjustment structure is arranged on the second surface, the first conductive layer 121 is arranged in the projection area where the frequency adjustment structure falls on the first surface.
  • the frequency adjustment The projection area of the structure falling on the first surface is the area enclosed by the contour line of the partition ring 123.
  • the frequency adjustment structure can be configured as a slot type, a hole type, or other structures capable of adjusting the frequency of the dielectric filter.
  • the frequency adjustment hole 113 can be used to adjust the frequency of the dielectric waveguide filter 10 accordingly, so that the dielectric waveguide filter 10 can meet the usage requirements. It should be noted that the wall of the frequency adjustment hole 113 is provided with a conductive layer 12.
  • the butting portion 111 is flush or substantially flush with the portion other than the butting portion 111 on the first surface.
  • substantially flush refers to the convex or concave phenomenon caused by the actual machining error of the butt part 111 relative to the part other than the butt part 111 on the first surface.
  • the butt part 111 is butt on the first surface.
  • the deviation distance between parts other than the part 111 is, for example, within 1 mm, and the specific deviation distance is not limited here.
  • the number of butting parts 111 on the dielectric waveguide filter 10 is not limited, and may be one, two or other numbers.
  • the two mating parts 111 are respectively arranged in a one-to-one correspondence with the circuit board 20 or the two pin pins 21 of the radio frequency connector .
  • the structure formed by the port hole 112, the docking part 111 and the first conductive layer 121 is equivalent to a port coupling structure, which is used to connect with the circuit board 20 or the radio frequency connector to realize the input or output of the dielectric waveguide filter 10 .
  • the dielectric waveguide filter 10 and the circuit board 20 or the radio frequency can be realized by performing an alignment welding connection between the first conductive layer 121 on the mating part 111 and the first pad 22 of the circuit board 20 or the inner conductor of the radio frequency connector.
  • the connector is connected, so there is no need to weld and connect the pin needle 21 with the circuit board 20 or the pin needle 21 of the radio frequency connector after welding the pin needle 21 in the metalized hole of the port as in the traditional technology.
  • the risk of the dielectric body 11 from being welded to the pin pin 21 can be avoided, and the surface unevenness caused by the pin pin 21 can be avoided, and the metallized hole of the port can be avoided.
  • the fall of the middle pin 21 reduces reliability and can improve production efficiency.
  • the mating part 111 is a circular surface, the diameter of the mating part 111 is d1, the diameter of the first pad 22 is d3, and d1 ⁇ d3, the butting
  • the first conductive layer 121 of the part 111 is connected to the first pad 22 by soldering. In this way, during soldering, the first pad 22 is located directly below the mating part 111, and the solder on the first pad 22 climbs to the mating part 111 in the vertical direction, so that the first pad 22 and the mating part 111 are welded stably Fixed together.
  • the area within the inner contour line of the closed annular hole corresponds to the butting part 111, or the area inside the inner contour line of the non-closed annular hole corresponds to the butting part 111, that is, the diameter of the butting part 111 is d1 and not
  • the inner contour diameter d1 of the closed annular hole is the same.
  • a third conductive layer 23 is provided on the outer surface of the circuit board 20.
  • the middle layer of the circuit board 20 is provided with a wire 24 electrically connected to the first pad 22.
  • the wire 24 is electrically connected to the first pad 22 through the metalized via 21.
  • An opening area 231 is provided on the third conductive layer 23.
  • the opening area 231 is arranged correspondingly to the enclosed area of the outer contour line of the partition ring 123.
  • a number of second pads 25 are also provided on the third conductive layer 23, and the second pads 25 are connected to the second conductive layer 122 by welding.
  • the opening area 231 is set corresponding to the enclosed area of the outer contour line of the partition ring 123, which means that the center position of the opening area 231 is the same as the enclosed area of the outer contour line of the partition ring 123 or is allowed due to processing errors. The deviation of the range.
  • the diameter d4 of the opening area 231 is the same as the diameter d5 of the outer contour line of the partition ring 123 or there is a deviation in the allowable range due to machining errors.
  • the opening area 231 and the outer contour line of the partition ring 123 are both circular openings and are arranged coaxially.
  • the port hole 112 does not need to be circumferentially arranged around the butt joint 111, but is only arranged on the adjacent side of the butt joint 111 and located in the area enclosed by the inner contour line of the partition ring 123.
  • the port hole 112 The specific shape is not limited here, and can be set accordingly according to the actual product.
  • the dielectric material of the dielectric body 11 is selected as a high dielectric constant material, which can be made by integral molding, which can not only play a role in transmitting signals, but also play a role in structural support; it is preferable to use high dielectric constant materials.
  • the ceramic dielectric material of the electrical constant can be made by die-casting, which can significantly reduce the size and weight of the entire dielectric waveguide filter 10.
  • the conductive layer 12 of the dielectric body 11, for example, can be formed by electroplating, which plays a role of electromagnetic shielding, and the conductive layer 12 can be a silver-plated layer or other metal layer.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明涉及一种介质波导滤波器与通信装置, 介质波导滤波器包括介质本体与导电层。端口孔, 对接部位及第一导电层所形成的结构相当于端口耦合结构, 与电路板或射频连接器相连, 实现介质波导滤波器的信号输入输出。对接部位上的第一导电层与电路板的第一焊盘或射频连接器的内导体进行对位焊接连接, 可以实现介质波导滤波器与电路板或射频连接器相连, 这样无需如传统技术中通过在端口金属化孔中焊接设置pin针后再与电路板或射频连接器进行对位焊接连接。如此, 由于无需在端口金属化孔中焊接设置pin针, 能避免焊接pin针导致的介质本体碎裂风险, 还能避免由于焊接pin针导致表面不平整, 避免端口金属化孔中pin针脱落降低可靠性, 以及能提高生产效率。

Description

介质波导滤波器与通信装置 技术领域
本发明涉及天线通信技术领域,特别是涉及一种介质波导滤波器与通信装置。
背景技术
滤波器是一种选频器件,是通信设备不可或缺的一部分。随着通信系统的高速发展进入到5G时代,器件的小型化是其通信设备发展的关键,而小型化、高性能、低功耗滤波器又是5G设备小型化的关键,介质波导滤波器同时具有5G设备小型化的所有特点,因此在5G通信设备中具有广泛的应用前景。介质波导滤波器将传统波导滤波器的空气填充形式改进成高介电常数陶瓷材料填充,陶瓷介质材料通过压铸成型,起到传输信号和结构支撑的作用,金属材料附着在瓷介质材料表面,作为电壁,起到电磁屏蔽作用。
传统技术中,通信装置包括介质波导滤波器与电路板(例如为多层PCB板)。其中,介质波导滤波器包括介质本体,介质本体的表面做金属化被银(可以理解为电镀工艺)处理,形成位于介质本体外表面上的导电层。介质本体的上表面设置有频率调节孔,下表面有端口隔断环及与频率调节孔位置对应设置的端口金属化孔。端口隔断环绕端口金属化孔设置,使得端口金属化孔的孔壁导电层与介质本体其余区域的导电层完全隔离开。端口金属化孔中焊接设置有pin针,电路板设有与pin针相对应的焊盘,pin针与焊盘对应焊接相连。
然而,生产过程中,采用高温锡膏在约220℃(具体例如240℃)的炉温环境下,在端口金属化孔内焊接设置pin针时,必须注意锡量的控制及焊接温度 曲线的控制,当锡量与焊接温度曲线不合适时,将导致如下不良现象:1、pin针受热膨胀会导致挤裂陶瓷介质滤波器;2、pin针焊接到端口金属化孔内后,导致介质波导滤波器的下表面凸凹不平;3、焊接时,工作温度曲线不合适时容易导致焊锡与端口金属化孔孔壁的导电层发生反应,使得pin针、焊锡与导电层(例如银层)相结合后脱落,连接可靠性低;4、陶瓷介质滤波器加pin针焊接后,再与电路板的焊盘焊接,多次焊接导致生产效率低。
发明内容
基于此,有必要克服现有技术的缺陷,提供一种介质波导滤波器与通信装置,它能够降低陶瓷介质碎裂风险,提高表面平整度,增强可靠性,以及提高生产效率。
其技术方案如下:一种介质波导滤波器,所述介质波导滤波器包括:介质本体,所述介质本体包括相对设置的第一表面与第二表面,所述第一表面上设有与电路板的第一焊盘或射频连接器的内导体位置对应的对接部位,所述第一表面上还设有与所述对接部位相邻并朝向所述第二表面延伸的端口孔;导电层,所述导电层设于所述介质本体的表面上,所述导电层包括第一导电层与第二导电层,所述第一表面上的所述导电层设有隔断环,所述第一导电层通过所述隔断环与所述第二导电层相隔离,所述对接部位与所述端口孔均位于所述隔断环内轮廓线的围成区域,所述第一导电层设于所述端口孔的孔壁及所述对接部位的表面上。
上述的介质波导滤波器,端口孔、对接部位及第一导电层所形成的结构相当于是端口耦合结构,用于与电路板或射频连接器相连,实现介质波导滤波器的输入或输出。其中,通过对接部位上的第一导电层与电路板的第一焊盘或射 频连接器的内导体进行对位焊接连接,便可以实现介质波导滤波器与电路板或射频连接器相连,这样无需如传统技术中通过在端口金属化孔中焊接设置pin针后再与电路板的第一焊盘或射频连接器的内导体进行对位焊接连接。如此,由于无需在端口金属化孔中焊接设置pin针,能避免焊接pin针导致的介质本体碎裂风险,还能避免由于焊接pin针导致表面不平整,能避免端口金属化孔中pin针脱落降低可靠性,以及能提高生产效率。
在其中一个实施例中,所述端口孔为绕所述对接部位周向设置的封闭式环形孔或非封闭式环形孔。
在其中一个实施例中,所述非封闭式环形孔包括相对的第一端和第二端;所述第一端和所述第二端间隔设置,所述第一端至所述对接部位的中心线的连线为第一边界线,所述第二端至所述对接部位的中心线的连线为第二边界线,所述第一边界线与所述第二边界线之间的夹角为β,且0°<β<360°。
在其中一个实施例中,所述非封闭式环形孔为两个以上,两个以上所述非封闭式环形孔绕所述对接部位的中心线依次间隔设置。
在其中一个实施例中,所述非封闭式环形孔为两个,两个所述非封闭式环形孔关于所述对接部位的中心线中心对称设置;其中一个所述非封闭式环形孔的第一边界线与另一个所述非封闭式环形孔的第二边界线之间的夹角为a,且a≥60°;所述非封闭式环形孔的内轮廓线直径为d1,所述非封闭式环形孔的外轮廓线直径为d2,且d2-d1≥0.85mm。
在其中一个实施例中,两个以上所述非封闭式环形孔绕所述对接部位的中心线依次等间隔设置;其中一个所述非封闭式环形孔第一端与相邻的另一个所述非封闭式环形孔第二端的最近两点间的距离为W1,且W1≥1mm。
在其中一个实施例中,所述第二表面上设有频率调节结构,所述频率调节 结构与所述第一导电层位置对应设置。
一种通信装置,包括所述的介质波导滤波器,还包括电路板或射频连接器,所述电路板的第一焊盘或所述射频连接器的内导体与所述对接部位位置相对应,所述电路板的第一焊盘或所述射频连接器的内导体与所述对接部位的第一导电层焊接相连。
上述的通信装置,端口孔、对接部位及第一导电层所形成的结构相当于是端口耦合结构,用于与电路板或射频连接器相连,实现介质波导滤波器的输入或输出。其中,通过对接部位上的第一导电层与电路板的第一焊盘或射频连接器的内导体进行对位焊接连接,便可以实现介质波导滤波器与电路板或射频连接器相连,这样无需如传统技术中通过在端口金属化孔中焊接设置pin针后再与电路板的第一焊盘或射频连接器的内导体进行对位焊接连接。如此,由于无需在端口金属化孔中焊接设置pin针,能避免焊接pin针导致的介质本体碎裂风险,还能避免由于焊接pin针导致表面不平整,能避免端口金属化孔中pin针脱落降低可靠性,以及能提高生产效率。
附图说明
图1为本发明一实施例所述的介质波导滤波器的第一表面的结构示意图;
图2为图1在A-A处的剖视结构图;
图3为本发明一实施例所述的介质波导滤波器的第二表面的结构示意图;
图4为本发明一实施例所述的电路板用于与介质波导滤波器相焊接的一面的结构示意图;
图5为图4在B-B处的剖视结构图;
图6为本发明一实施例所述的通信装置的剖视图;
图7为图6在P处的放大结构示意图;
图8为本发明另一实施例所述的介质波导滤波器的第一表面的结构示意图;
图9为本发明又一实施例所述的介质波导滤波器的第一表面的结构示意图;
图10为本发明再一实施例所述的介质波导滤波器的第一表面的结构示意图;
图11为图10在C-C处的剖视结构图;
图12为传统的介质波导滤波器的S参数图;
图13为本发明一实施例的所述的介质波导滤波器的S参数图。
10、介质波导滤波器;11、介质本体;111、对接部位;112、端口孔;1121、第一边界线;1122、第二边界线;113、频率调节孔;12、导电层;121、第一导电层;122、第二导电层;123、隔断环;20、电路板;21、金属化过孔;22、第一焊盘;23、第三导电层;231、开口区;24、导线;25、第二焊盘。
具体实施方式
参阅图1与图2,图1示出了本发明一实施例所述的介质波导滤波器10的第一表面的结构示意图;图2为图1在A-A处的剖视结构示意图。本发明一实施例提供的一种介质波导滤波器10,介质波导滤波器10包括介质本体11与导电层12。
请参阅图1至图3,图3示出了本发明一实施例所述的介质波导滤波器10的第二表面的结构示意图。介质本体11包括相对设置的第一表面与第二表面。第一表面对应于图1示意出的表面,以及图2示意出的上表面;第二表面对应于图3示意出的表面,以及图2示意出的下表面。
请参阅图4至图6,图4示意出了本发明一实施例所述的电路板20用于与 介质波导滤波器10相焊接的一面的结构示意图;图5为图4在B-B处的剖视结构图;图6示意出了本发明一实施例所述的通信装置的剖视图。第一表面上设有与电路板20的第一焊盘22或射频连接器的内导体位置对应的对接部位111,第一表面上还设有与对接部位111相邻并朝向第二表面延伸的端口孔112。导电层12设于介质本体11的表面上,导电层12包括第一导电层121与第二导电层122。第一表面上的导电层12设有隔断环123,第一导电层121通过隔断环123与第二导电层122相隔离。对接部位111与端口孔112均位于隔断环123内轮廓线的围成区域,第一导电层121设于端口孔112的孔壁及对接部位111的表面上。
需要说明的是,隔断环123设有内轮廓线与外轮廓线,内轮廓线位于外轮廓线内部,内轮廓线与外轮廓线之间的区域为隔断环123,内轮廓线与外轮廓线之间的区域没有导电层12,裸露出介质本体11的壁面。具体的实现方式为,可以在介质本体11的整个表面上镀设导电层12后,将内轮廓线与外轮廓线之间的区域的导电层12进行移除处理,或者,在介质本体11的内轮廓线与外轮廓线之间的区域不进行镀设导电层12,而是直接在介质本体11的其它区域进行镀设导电层12,这样就省去了移除内轮廓线与外轮廓线之间的区域的导电层12的步骤。此外,还可以在介质本体11的整个表面上镀设导电层12后,将在介质本体11的第一表面上的导电层12按预设形状去除从而开设出隔断环123的外轮廓线,再在隔断环123的外轮廓线内设置第一导电层121形成隔断环123的内轮廓线。
请参阅图6与图7,图7为图6在P处的放大结构示意图。上述的介质波导滤波器10,端口孔112、对接部位111及第一导电层121所形成的结构相当于是端口耦合结构,用于与电路板20或射频连接器相连,实现介质波导滤波器10 的输入或输出。其中,通过对接部位111上的第一导电层121与电路板20的第一焊盘22或射频连接器的内导体进行对位焊接连接,便可以实现介质波导滤波器10与电路板20或射频连接器相连,这样无需如传统技术中通过在端口金属化孔中焊接设置pin针21后再与电路板20或射频连接器的pin针21进行对位焊接连接。如此,由于无需在端口金属化孔中焊接设置pin针21,能避免焊接pin针21导致的介质本体11碎裂风险,还能避免由于焊接pin针21导致表面不平整,能避免端口金属化孔中pin针21脱落降低可靠性,以及能提高生产效率。
请参阅图1与图3,在一个实施例中,端口孔112为绕对接部位111周向设置的封闭式环形孔。当端口孔112绕对接部位111周向设置时,能使得产品性能可靠。需要解释的是,封闭式环形孔的两端相互连通,形成例如封闭形式的圆环状孔、封闭形式的方形环状孔或封闭形式的椭圆形环状孔。而非封闭式环形孔设有相对的两端,非封闭式环形孔的相对两端之间有间隔,并没有相互连通,也就是,非封闭式环形孔例如为非封闭形式的圆环状孔、非封闭形式的方形环状孔或非封闭形式的椭圆形环状孔。
此外,请参阅图8、图9或图10与图11,图8示出了本发明另一实施例所述的介质波导滤波器10的第一表面的结构示意图,图9示出了本发明又一实施例所述的介质波导滤波器10的第一表面的结构示意图,图10示出了本发明再一实施例所述的介质波导滤波器10的第一表面的结构示意图,图11示意出了图10在C-C处的剖视图。在另一个实施例中,端口孔112为绕对接部位111周向设置的非封闭式环形孔。如此,当端口孔112绕对接部位111周向设置时,能使得产品性能可靠。
请参阅图12及图13,图12为传统的介质波导滤波器10的S参数图,图 13为本发明一实施例的所述的介质波导滤波器10的S参数图。可以发现在近端抑制指标相当的情况下,本实施例的介质波导滤波器10的远端抑制有改善。另外,当端口孔112的深度越浅时,介质波导滤波器10的远端抑制改善越明显。端口孔112的深度指的是端口孔112由第一表面朝向第二表面延伸的距离。
请再参阅图9,进一步地,非封闭式环形孔包括相对的第一端和第二端。第一端和第二端间隔设置,第一端至对接部位111的中心线的连线为第一边界线1121,第二端至对接部位111的中心线的连线为第二边界线1122。第一边界线1121与第二边界线1122之间的夹角为β,且0°<β<360°。如此,沿非封闭式环形孔的长度方向,非封闭式环形孔由第一端延伸至第二端,第一端与第二端的间隔设置,从而实现非封闭式环形孔绕对接部位111的部分周向设置而不是完整地绕对接部位111的周向设置。同时,可以通过调节第一边界线1121与第二边界线1122之间的夹角β,β可以为30°、45°、90°、135°、180°、225°、250°、300°或其他角度。
需要说明的是,非封闭式环形孔可以是一个、二个、三个、四个或其它数量,在此不进行限定。当非封闭式环形孔的数量较多时,多到一定值时两个以上非封闭式环形孔首尾相连便相当于是一个封闭式环形孔,此外,非封闭式环形孔的深度随着数量增多可以做的更小,当非封闭式环形孔的深度变小时能有利提高产品的电气性能。但是随着非封闭式环形孔的开孔数量增大,开孔区域面积相应增大,此时对接部位111与其周围结构连接部位相对减小,导致对接部位111与其周围结构的连接强度变弱,容易在较大外力作用下出现对接部位111撕裂断开风险。
请参阅图8与图9,在一个实施例中,非封闭式环形孔为两个以上,两个以上非封闭式环形孔绕对接部位111的中心线依次间隔设置。
请参阅图9,进一步地,本实施例中,非封闭式环形孔为两个,两个非封闭式环形孔关于对接部位111的中心线中心对称设置。具体而言,其中一个非封闭式环形孔的第一边界线1121与另一个非封闭式环形孔的第二边界线1122之间的夹角为a,且a≥60°。此外,可选地,非封闭式环形孔的内轮廓线直径为d1,非封闭式环形孔的外轮廓线直径为d2,且d2-d1≥0.85mm。如此,一方面,能保证电气性能,结构的可靠性,另一方面,能加强对接部位111的结构强度,避免对接部位111受外力作用时出现断裂的不良现象。
进一步地,其中一个非封闭式环形孔第一端与相邻的另一个非封闭式环形孔第二端的最近两点间的距离为W1,且W1≥1mm。如此,产品性能更好,便于加工生产。
在一个实施例中,两个以上非封闭式环形孔绕对接部位111的中心线依次等间隔设置。作为一个示例,请再参阅图8,图8示意出的非封闭式环形孔为三个,三个非封闭式环形孔绕对接部位111的中心线依次等间隔设置。如此,产品性能更好,便于加工生产。
在一个实施例中,第二表面上设有频率调节结构,频率调节结构与第一导电层121位置对应设置。
频率调节结构与第一导电层121的位置对应设置,是指在第二表面设置频率调节结构后,在频率调节结构落在第一表面的投影区域内设置第一导电层121,换言之,频率调节结构落在第一表面的投影区域为隔断环123内轮廓线的围成区域。
需要说明的是,频率调节结构可以设置为槽型、孔型或其他能够对介质滤波器的频率进行调节的结构。
请参阅图2、图6、图7或图11,进一步地,频率调节结构设置为频率调节 孔113,频率调节孔113的位置与第一导电层121的位置对应设置。如此,利用频率调节孔113能够对介质波导滤波器10的频率进行相应的调节,使得介质波导滤波器10满足使用需求。其中,需要说明的是,频率调节孔113的孔壁设有导电层12。
请参阅图2、图6、图7或图11,在一个实施例中,对接部位111与第一表面上对接部位111以外的部位齐平或基本齐平。其中,基本齐平指的是对接部位111相对于第一表面上对接部位111以外的部位而言,可以因为实际加工误差而导致的外凸或内凹现象,对接部位111与第一表面上对接部位111以外的部位之间的偏差距离例如为1mm以内,具体偏差距离为多少,在此不进行限定。
需要说明的是,介质波导滤波器10上的对接部位111的数量不进行限制,可以是一个、两个或其它数量。当介质波导滤波器10上的端口耦合结构为两个时,相应地,对接部位111为两个,两个对接部位111分别与电路板20或射频连接器的两个pin针21一一对应设置。
在一个实施例中,请再参阅图6与图7,一种通信装置,包括上述任一实施例所述的介质波导滤波器10,还包括电路板20或射频连接器。电路板20的第一焊盘22或射频连接器的内导体与对接部位111位置相对应。电路板20的第一焊盘22或射频连接器的内导体与对接部位111的第一导电层121焊接相连。
上述的通信装置,端口孔112、对接部位111及第一导电层121所形成的结构相当于是端口耦合结构,用于与电路板20或射频连接器相连,实现介质波导滤波器10的输入或输出。其中,通过对接部位111上的第一导电层121与电路板20的第一焊盘22或射频连接器的内导体进行对位焊接连接,便可以实现介质波导滤波器10与电路板20或射频连接器相连,这样无需如传统技术中通过在端口金属化孔中焊接设置pin针21后再与电路板20或射频连接器的pin针 21进行对位焊接连接。如此,由于无需在端口金属化孔中焊接设置pin针21,能避免焊接pin针21导致的介质本体11碎裂风险,还能避免由于焊接pin针21导致表面不平整,能避免端口金属化孔中pin针21脱落降低可靠性,以及能提高生产效率。
请再参阅图5、图7及图9,在一个实施例中,对接部位111为圆形面,对接部位111的直径为d1,第一焊盘22的直径为d3,且d1≤d3,对接部位111的第一导电层121通过焊锡与第一焊盘22焊接相连。如此,焊接时,第一焊盘22位于对接部位111的正下方,第一焊盘22上的焊锡沿着竖向方向爬到对接部位111,使得第一焊盘22与对接部位111稳定地焊接固定在一起。需要说明的是,封闭式环形孔的内轮廓线以内区域对应于对接部位111,或者说非封闭式环形孔的内轮廓线以内区域对应于对接部位111,即对接部位111的直径为d1与非封闭式环形孔的内轮廓线直径d1相同。
请参阅图4、图5及图7,在一个实施例中,电路板20的外表面设有第三导电层23。电路板20的中间层设有与第一焊盘22电性连接的导线24。具体而言,导线24通过金属化过孔21与第一焊盘22实现电性连接。第三导电层23上设有开口区231。开口区231与隔断环123外轮廓线的围成区域对应设置。第三导电层23上还设有若干个第二焊盘25,第二焊盘25与第二导电层122焊接相连。
需要说明的是,开口区231与隔断环123外轮廓线的围成区域对应设置,指的是开口区231的中心位置与隔断环123外轮廓线的围成区域相同或因为加工误差而存在允许范围的偏差。此外,开口区231的直径d4与隔断环123外轮廓线的直径d5相同或因为加工误差而存在允许范围的偏差。具体而言,开口区231与隔断环123外轮廓线均为圆形开口,并同轴设置。
作为一个可选的方案,端口孔112并不需要绕对接部位111周向设置,只是设置于对接部位111的邻侧并位于隔断环123内轮廓线的围成区域内即可,端口孔112的具体形状在此也不进行限定,可以根据实际产品相应设置。
需要说明的是,介质本体11的介质材料选为高介电常数材质,可以通过一体成型方式制得,不仅能够起到传输信号的作用,还能起到结构支撑的作用;优选为采用高介电常数的陶瓷介质材质,可以通过压铸成型的方式制得,能够显著减小整个介质波导滤波器10的尺寸和重量。介质本体11的导电层12,例如可以通过电镀的方式形成,起到电磁屏蔽的作用,导电层12可以为镀银层或其他金属层。

Claims (12)

  1. 一种介质波导滤波器,其特征在于,所述介质波导滤波器包括:
    介质本体,所述介质本体包括相对设置的第一表面与第二表面,所述第一表面上设有与电路板的第一焊盘或射频连接器的内导体位置对应的对接部位,所述第一表面上还设有与所述对接部位相邻并朝向所述第二表面延伸的端口孔;
    导电层,所述导电层设于所述介质本体的表面上,所述导电层包括第一导电层与第二导电层,所述第一表面上的所述导电层设有隔断环,所述第一导电层通过所述隔断环与所述第二导电层相隔离,所述对接部位与所述端口孔均位于所述隔断环内轮廓线的围成区域,所述第一导电层设于所述端口孔的孔壁及所述对接部位的表面上。
  2. 根据权利要求1所述的介质波导滤波器,其特征在于,所述端口孔为绕所述对接部位周向设置的封闭式环形孔或非封闭式环形孔。
  3. 根据权利要求2所述的介质波导滤波器,其特征在于,所述非封闭式环形孔包括相对的第一端和第二端;所述第一端和所述第二端间隔设置,所述第一端至所述对接部位的中心线的连线为第一边界线,所述第二端至所述对接部位的中心线的连线为第二边界线,所述第一边界线与所述第二边界线之间的夹角为β,且0°<β<360°。
  4. 根据权利要求3所述的介质波导滤波器,其特征在于,所述非封闭式环形孔为两个以上,两个以上所述非封闭式环形孔绕所述对接部位的中心线依次间隔设置。
  5. 根据权利要求4所述的介质波导滤波器,其特征在于,所述非封闭式环形孔为两个,两个所述非封闭式环形孔关于所述对接部位的中心线中心对称设置;其中一个所述非封闭式环形孔的第一边界线与另一个所述非封闭式环形孔 的第二边界线之间的夹角为a,且a≥60°;所述非封闭式环形孔的内轮廓线直径为d1,所述非封闭式环形孔的外轮廓线直径为d2,且d2-d1≥0.85mm。
  6. 根据权利要求4所述的介质波导滤波器,其特征在于,两个以上所述非封闭式环形孔绕所述对接部位的中心线依次等间隔设置;其中一个所述非封闭式环形孔第一端与相邻的另一个所述非封闭式环形孔第二端的最近两点间的距离为W1,且W1≥1mm。
  7. 根据权利要求1所述的介质波导滤波器,其特征在于,所述第二表面上设有频率调节结构,所述频率调节结构与所述第一导电层位置对应设置。
  8. 根据权利要求7所述的介质波导滤波器,其特征在于,所述频率调节结构设置为频率调节孔,所述频率调节孔的位置与所述第一导电层的位置对应设置。
  9. 根据权利要求1~8任意一项所述的介质波导滤波器,其特征在于,所述对接部位与所述第一表面上对接部位以外的部位齐平或基本齐平。
  10. 一种通信装置,其特征在于,包括如权利要求1~9任意一项所述的介质波导滤波器,还包括电路板或射频连接器,所述电路板的第一焊盘或所述射频连接器的内导体与所述对接部位位置相对应,所述电路板的第一焊盘或所述射频连接器的内导体与所述对接部位的第一导电层焊接相连。
  11. 根据权利要求10所述的通信装置,其特征在于,所述对接部位为圆形面,所述对接部位的直径为d1,所述第一焊盘的直径为d3,且d1≤d3,所述对接部位的所述第一导电层通过焊锡与所述第一焊盘焊接相连。
  12. 根据权利要求10所述的通信装置,其特征在于,所述电路板的外表面设有第三导电层,所述电路板的中间层设有与所述第一焊盘电性连接的导线;所述第三导电层上设有开口区,所述开口区与所述隔断环外轮廓线的围成区域 对应设置;所述第三导电层上还设有若干个第二焊盘,所述第二焊盘与所述第二导电层焊接相连。
PCT/CN2020/141703 2020-05-29 2020-12-30 介质波导滤波器与通信装置 WO2021238211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010477401.1A CN111478002B (zh) 2020-05-29 2020-05-29 介质波导滤波器与通信装置
CN202010477401.1 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021238211A1 true WO2021238211A1 (zh) 2021-12-02

Family

ID=71765411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141703 WO2021238211A1 (zh) 2020-05-29 2020-12-30 介质波导滤波器与通信装置

Country Status (2)

Country Link
CN (1) CN111478002B (zh)
WO (1) WO2021238211A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478002B (zh) * 2020-05-29 2021-06-22 京信射频技术(广州)有限公司 介质波导滤波器与通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321518A (ja) * 1994-05-30 1995-12-08 Taiyo Yuden Co Ltd 誘電体共振器
US20190372189A1 (en) * 2017-02-16 2019-12-05 Huawei Technologies Co., Ltd. Dielectric Filter, Transceiver Device, And Base Station
CN111048874A (zh) * 2019-12-11 2020-04-21 深圳市华臻科技有限公司 介质滤波器及其制作方法
CN210576353U (zh) * 2019-12-06 2020-05-19 薛冰 一种具备新型负耦合结构的介质滤波器
CN111478002A (zh) * 2020-05-29 2020-07-31 京信射频技术(广州)有限公司 介质波导滤波器与通信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541893B2 (en) * 2005-05-23 2009-06-02 Cts Corporation Ceramic RF filter and duplexer having improved third harmonic response
CN204167457U (zh) * 2014-09-01 2015-02-18 摩比天线技术(深圳)有限公司 射频模块的微波介质谐振装置
US10587025B2 (en) * 2016-11-08 2020-03-10 LGS Innovations LLC Ceramic filter with window coupling
CN208142318U (zh) * 2018-05-25 2018-11-23 南京乾海通信技术有限公司 一种新型的介质滤波器
WO2020087378A1 (zh) * 2018-10-31 2020-05-07 华为技术有限公司 一种介质滤波器及通信设备
CN109449557B (zh) * 2018-11-01 2024-04-30 京信通信技术(广州)有限公司 介质谐振块、介质波导滤波器及其耦合结构
CN210142705U (zh) * 2019-07-23 2020-03-13 京信通信技术(广州)有限公司 介质滤波器组件及其介质滤波器
CN111162353A (zh) * 2020-01-15 2020-05-15 深圳市大富科技股份有限公司 一种介质滤波器及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321518A (ja) * 1994-05-30 1995-12-08 Taiyo Yuden Co Ltd 誘電体共振器
US20190372189A1 (en) * 2017-02-16 2019-12-05 Huawei Technologies Co., Ltd. Dielectric Filter, Transceiver Device, And Base Station
CN210576353U (zh) * 2019-12-06 2020-05-19 薛冰 一种具备新型负耦合结构的介质滤波器
CN111048874A (zh) * 2019-12-11 2020-04-21 深圳市华臻科技有限公司 介质滤波器及其制作方法
CN111478002A (zh) * 2020-05-29 2020-07-31 京信射频技术(广州)有限公司 介质波导滤波器与通信装置

Also Published As

Publication number Publication date
CN111478002B (zh) 2021-06-22
CN111478002A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
US6992544B2 (en) Shielded surface mount coaxial connector
KR101399666B1 (ko) 다층 전자 패키지 상호 연결용 광대역 무선주파수 커넥터
JP4814911B2 (ja) 高周波遷移線の垂直遷移構造
CN204834609U (zh) 基于改进型bga的高频垂直互连电路
JPH03205772A (ja) 自動整列高周波プッシュオンコネクタ
TW201644092A (zh) 垂直轉接結構
JP2007115771A (ja) Lsiピン
US3596138A (en) Interboard feed-thru for joining printed and integrated circuits
WO2020088620A1 (zh) 一种介质滤波器及通信设备
WO2021179758A1 (zh) 滤波器及其介质谐振器
US10992015B2 (en) Coupling comprising a guide member embedded within a blind via of a post-wall waveguide and extending into a hollow tube waveguide
WO2020093697A1 (zh) 介质波导滤波器及其输入输出结构
WO2021238211A1 (zh) 介质波导滤波器与通信装置
JP6907918B2 (ja) コネクタおよびコネクタ平面線路接続構造
CN104678230A (zh) 一种三维微波组件测试装置
US11870124B2 (en) Balance-unbalance conversion apparatus, communications device, and communications system
CN211879575U (zh) 介质滤波耦合结构与通信装置
JP5251603B2 (ja) 信号伝達用通信体及びカプラ
KR20230127958A (ko) 두 개의 상호 연결된 무선 주파수 구성 요소를 갖는 무선 주파수 장치
JPS6016701A (ja) マイクロ波プリント板回路
CN112018067A (zh) 基于宽带传输的bga陶瓷垂直互联结构及管壳
CN214046157U (zh) 介质波导滤波器及其印制电路板
CN110011002B (zh) 一种自匹配式超宽带微波绝缘子
JP2003100941A (ja) 配線基板とその実装構造
CN105048037A (zh) 一种基于siw加载交指槽线结构的微带带通滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02.05.2023.)

122 Ep: pct application non-entry in european phase

Ref document number: 20937985

Country of ref document: EP

Kind code of ref document: A1