WO2020093697A1 - 介质波导滤波器及其输入输出结构 - Google Patents

介质波导滤波器及其输入输出结构 Download PDF

Info

Publication number
WO2020093697A1
WO2020093697A1 PCT/CN2019/090795 CN2019090795W WO2020093697A1 WO 2020093697 A1 WO2020093697 A1 WO 2020093697A1 CN 2019090795 W CN2019090795 W CN 2019090795W WO 2020093697 A1 WO2020093697 A1 WO 2020093697A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
input
waveguide filter
dielectric waveguide
output structure
Prior art date
Application number
PCT/CN2019/090795
Other languages
English (en)
French (fr)
Inventor
张灵芝
何昌委
靳雲玺
黄友胜
丁海
Original Assignee
京信通信技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2020093697A1 publication Critical patent/WO2020093697A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters

Definitions

  • the invention relates to the technical field of communication equipment, in particular to a dielectric waveguide filter and its input-output structure.
  • High dielectric constant dielectric materials can be applied to waveguide devices to obtain dielectric waveguide filters.
  • the dielectric waveguide filter improves the air-filled form of traditional waveguide filters into a form filled with high dielectric constant dielectric materials.
  • the metal layer is attached to the surface of the dielectric material to form an electrical wall, which plays an electromagnetic shielding role. This structure can significantly reduce the size and weight of the waveguide filter.
  • a coaxial connector is generally used as a device for inputting and outputting a dielectric waveguide signal. If the device is used as a part-to-part conversion method, at least two connection cables will be added as connection accessories, which increases the volume and cost of the dielectric waveguide filter, and is unreliable in fixing, which easily affects the performance of the whole machine.
  • the dielectric waveguide filter uses the above input and output structure, so that its volume can be further reduced, which is conducive to the development of miniaturization of base station antennas.
  • the present application provides an input and output structure of a dielectric waveguide filter, including: a dielectric body, an outer wall of the dielectric body is provided with a first metal layer as an electrical wall, and a short circuit layer, the short circuit layer includes A connecting end electrically connected to the first metal layer, and a short wire insulated from the first metal layer; and a substrate, the substrate includes a first surface disposed opposite to the first metal layer, and the A second surface opposite to the first surface. The second surface is provided with a ground layer and an open path insulated from the ground layer. The open path is electrically connected to the short wire and forms an input and output electrode.
  • the first metal layer and the short-circuit layer are interposed between the dielectric body and the substrate, and are electrically connected to the short wiring through the open path on the substrate, so that the open path can become an input and output electrode
  • the signal input and signal output of the dielectric waveguide filter can be realized by opening the line and connecting with other components (welding and fixing).
  • the dielectric waveguide filter reduces the coaxial connectors and cables, reduces the cost, and further reduces the volume; and uses the open path as the input and output electrodes, so that the dielectric waveguide filter is The connection of other components is more flexible; further, the port coupling bandwidth of the waveguide filter can be controlled by changing the size of the short-circuit line, the debugging method is simple, and the adjustment can achieve a very wide port coupling bandwidth.
  • the substrate is provided with a metal via electrically connecting the open line and the short wiring.
  • the substrate is provided with at least two metal vias and a wire electrically connecting two of the metal vias, and one end of the wire passes through one of the metal vias
  • the connecting wire is electrically connected, and the other end of the wire is electrically connected to the open line through another metal via.
  • the first surface is provided with a connecting line
  • the connecting line is provided in one-to-one correspondence with the short-circuit line
  • the open line is electrically connected to the short wire through the connecting line.
  • the connecting wire and the short-circuit wire are fixed by welding.
  • a first insulating groove is provided between the first metal layer and the short-circuit line, the short wire is provided in the first insulating groove, and the first insulating groove
  • the bottom wall is the dielectric layer
  • the first surface is further provided with a second metal layer
  • the second metal layer is provided with a second insulating groove opposite to the first insulating groove
  • the second metal layer is located in the second insulation
  • the metal layer in the groove serves as the connection line.
  • the shape of the second insulating groove and the shape of the first insulating groove are both "concave” or inverted “concave", and the area of the second insulating groove is larger than The area of the first insulating groove; the shape of the connecting wire is the same as or similar to the shape of the short wire, and the area of the connecting wire is smaller than the area of the short wire.
  • a dielectric filling layer is provided in the first insulating groove.
  • the short-circuit layer includes two, the two short-circuit layers are spaced apart, the open circuit includes two, and is electrically connected to the corresponding short-circuit line of the short-circuit layer.
  • one of the open routes may be the input electrode, and the other open route may be the output electrode.
  • the present application also provides a dielectric waveguide filter including the above-mentioned input-output structure.
  • the dielectric waveguide filter utilizes the above-mentioned input-output structure, so that its volume can be further reduced, which is beneficial to the miniaturization of base station antennas.
  • the above-mentioned input-output structure can solve the problems that the ceramic body of the ceramic waveguide has high hardness, cannot be changed after processing, and the port coupling bandwidth is difficult to adjust.
  • the input and output structure is more reliable and fixed, which is conducive to ensuring the reliability of the overall performance Sex.
  • FIG. 1 is a schematic structural diagram of a dielectric waveguide filter described in an embodiment
  • FIG. 2 is an exploded schematic view of the structure of the dielectric waveguide filter described in the embodiment shown in FIG. 1 (schematic diagram of the input and output structure);
  • FIG. 3 is an exploded schematic view of the structure of the dielectric waveguide filter described in another embodiment shown in FIG. 1.
  • dielectric body 110, first metal layer, 120, short-circuit layer, 122, connection terminal, 124, short-circuit line, 130, first insulating groove, 200, substrate, 210, ground layer, 220, open line, 230 , Metal vias, 240, low-pass circuit layer, 242, filter branches, 250, connecting wire, 260, wire, 270, second metal layer, 280, first insulation groove.
  • an element when an element is referred to as “fixed”, “installed”, “fixed” or “installed” on another element, it can be directly on another element or there can also be a centered element .
  • an element When an element is considered to be “connected” to another element, it may be directly connected to another element or there may be a center element at the same time.
  • an element when an element is “electrically connected” to another element, the two may be detachable or non-removable, such as welding, electrical bonding, metal plating, etc., which can be achieved in the prior art , No more cumbersome here.
  • first and second involved in the present invention do not represent a specific number and order, but are only used to distinguish names.
  • an input-output structure of a dielectric waveguide filter including: a dielectric body 100, a first metal layer 110 as an electrical wall is provided on an outer wall of the dielectric body 100, and A short-circuit layer 120, the short-circuit layer 120 includes a connection terminal 122 electrically connected to the first metal layer 110, and a short wire insulated from the first metal layer 110; and a substrate 200, the substrate 200 includes a first A surface 202 and a second surface 204 opposite to the first surface 202, the second surface 204 is provided with a ground layer 210 and an open path 220 insulated from the ground layer 210, the open path 220 is electrically connected to the short wire and forms an input Output electrode.
  • the first metal layer 110 and the short-circuit layer 120 are interposed between the dielectric body 100 and the substrate 200 and pass through the open path on the substrate 200
  • the 220 is electrically connected with the short wire, so that the open path 220 can become an input and output electrode, so that the open path 220 can be connected with other components (welding and fixing) to realize signal input and signal output of the dielectric waveguide filter.
  • the dielectric waveguide filter reduces the coaxial connectors and cables, reduces the cost, and further reduces the volume; and uses the open line 220 as the input and output electrodes, making the dielectric waveguide filter
  • the connection with other components is more flexible; further, the port coupling bandwidth of the waveguide filter can be controlled by changing the size of the short-circuit line 124, the debugging method is simple, and the adjustment can achieve a wide port coupling bandwidth.
  • the substrate 200 is provided with a metal via 230 for electrically connecting the open line 220 and the short wiring. Furthermore, the electrical connection between the open line 220 provided on the second surface 204 and the short wire provided on the first surface 202 can be realized in the form of a metal via 230, so that the electrical connection between the open line 220 and the short wire is more reliable.
  • the substrate 200 is provided with at least two metal vias 230 and a wire 260 electrically connecting the two metal vias, and one end of the wire 260 passes through one of the metal vias 230 is electrically connected to the connecting wire 250, and the other end of the wire 260 is electrically connected to the open line 220 through another metal via 230.
  • the open route 220 can be flexibly set on the ground layer to avoid interference from other lines.
  • the conductive wire 260 may be disposed in the substrate 200 and be electrically connected to the connecting wire 250 and the open line 220 in the form of metal vias. The specific number of the wire can be set according to actual needs, and is not limited here.
  • the first surface 202 is provided with a connection line 250 that is electrically connected to the short-circuit line 124 in one-to-one correspondence, and the connection line 250 is electrically connected to the open line 220 through the metal via 230.
  • the connecting wire 250 can be formed on the substrate 200, and the open circuit 220 and the metal via 230 are manufactured by using printed circuit board technology, and then the connecting wire 250 and the short circuit 124 are electrically connected (such as welding, electrical bonding, etc.) ,
  • the structure on the dielectric body 100 and the substrate 200 can be designed and manufactured separately, and then combined to improve production efficiency while ensuring the performance of the waveguide filter (avoid (Excessive manufacturing processes are performed on the medium body 100).
  • the connecting wire 250 and the short-circuit wire 124 are fixed by welding. In this way, the connection strength between the dielectric body 100 and the substrate 200 body can be ensured.
  • the substrate 200 may be provided on the dielectric body 100, and then the ground layer 210, the open circuit 220 machine, and the metal via 230 are manufactured.
  • a first insulating groove 130 is provided between the first metal layer 110 and the short-circuit line 124, and the bottom wall of the first insulating groove 130 It is a dielectric layer; the first surface is also provided with a second metal layer 270, the second metal layer 270 is provided with a second insulating groove 280 opposite to the first insulating groove 130, the second metal layer 270 is located in the second insulating recess
  • the metal layer in the groove 280 serves as the connection line 250.
  • the first insulating groove 130 can be provided on the first metal layer 110 and the short-circuit line 124 can be formed by surrounding.
  • This embodiment is simple and reliable, and can ensure that the first metal layer 110 and the short-circuit line 124 are basically on the same plane
  • a second metal layer 270 is provided on the first surface of the substrate 200
  • a second insulating groove 280 is provided on the second metal layer 270 to form a connection line 250.
  • the closeness of the bonding between a metal layer 110 and the second metal layer 270, and by welding the first metal layer 110 and the second metal layer 270, as well as the short-circuit line 124 and the connection line 250, the short-circuit line 124 and the connection line 250 are welded Securely fixed.
  • the short-circuit wire 124 or / and the first insulating groove 130 of different sizes can be processed to adjust the port coupling bandwidth of the dielectric waveguide filter.
  • the adjustment method is simple and easy to implement.
  • the shape of the second insulating groove 280 and the shape of the first insulating groove 130 are both “concave” or inverted “concave” (allowing for manufacturing errors), And the area of the second insulating groove 280 is larger than the area of the first insulating groove 130; the shape of the connecting wire 250 is the same as or similar to the shape of the short-circuit wire 124 (manufacturing errors are allowed), and the area of the connecting wire 250 is smaller than the short-circuit wire 124 area. In this way, the connection of the connection line 250 can be avoided, which affects the set port coupling bandwidth of the dielectric waveguide filter.
  • the second insulating groove 280 and the first insulating groove 130, and the connecting wire 250 and the short wire 124 belong to similar patterns (same shape, but different sizes).
  • the shape is the same or similar means that the shape of the two may be the same or may be approximately the same, as long as the above requirements are met.
  • the thickness of the first metal layer 110 and the short-circuit line 124 are equal or approximately equal (a certain manufacturing error is allowed).
  • a dielectric filling layer is provided in the first insulating groove 130.
  • the medium filling layer may be a gas medium, a solid medium, or the like.
  • the material of the dielectric body 100 is a ceramic dielectric material. Further, the material of the dielectric body is ceramic dielectric material.
  • the short-circuit layer 120 includes two, the two short-circuit layers 120 are spaced apart, and the open route 220 includes two, and The short-circuit line 124 of the corresponding short-circuit layer 120 is electrically connected.
  • one of the open paths 220 may be an input electrode, and the other open path 220 may be an output electrode.
  • a low-pass circuit layer 240 that is not short-circuited is further provided on the substrate 200, and one end of the low-pass circuit layer 240 is connected to a short-circuit line 124 is electrically connected, and the other end is electrically connected to a corresponding open route 220.
  • the dielectric waveguide filter of the present application can perform large-order modes. For the amplitude suppression, the large width of the out-of-band suppression can be achieved 3 times the frequency.
  • the low-pass circuit layer 240 can be disposed at any position on the substrate 200 as long as it does not short-circuit with the open line 220, the ground layer 210, or the connection line 250.
  • the low-pass circuit layer 240 is a stripline, and the stripline is provided with a filter branch 242. In this way, the broadband harmonic suppression can be performed more accurately by setting the length of the filter branch 242.
  • the low-pass circuit layer may also be disposed on the dielectric body.
  • a dielectric waveguide filter is also provided, including the above-mentioned input-output structure, and the material of the dielectric body 100 is a high dielectric constant ceramic dielectric.
  • the dielectric waveguide filter utilizes the above-mentioned input-output structure, so that its volume can be further reduced, which is beneficial to the miniaturization of base station antennas.
  • the above-mentioned input-output structure can solve the problems that the ceramic body of the ceramic waveguide has high hardness, cannot be changed after processing, and the port coupling bandwidth is difficult to adjust.
  • the input and output structure is more reliable and fixed, which is conducive to ensuring the reliability of the overall performance Sex.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种介质波导滤波器及其输入输出结构,该介质波导滤波器的输入输出结构包括:介质本体,介质本体的外壁设有作为电壁的第一金属层及短路层,短路层包括与第一金属层电连接的连接端、以及与第一金属层绝缘设置的短接线;及基板,基板包括第一表面、以及与第一表面相对的第二表面,第二表面设有接地层及与接地层绝缘设置的开路线,开路线与短接线电连接、并形成输入输出电极。该输入输出结构通过在基板上形成输入输出电极,与现有技术相比,减少了同轴连接器和线缆,降低了成本,且进一步减小了体积;该介质波导滤波器利用了上述输入输出结构,使得其体积可以进一步缩小,有利于基站天线小型化发展。

Description

介质波导滤波器及其输入输出结构 技术领域
本发明涉及通信设备技术领域,特别是涉及一种介质波导滤波器及其输入输出结构。
背景技术
随着通信系统的高速发展进入到5G时代,部件的小型化是其通信设备发展的关键,波导滤波器作为无线通信中的关键部件,也必将朝着小型化方向发展。
高介电常数的介质材料可以应用在波导器件上获得介质波导滤波器,介质波导滤波器将传统波导滤波器的空气填充形式改进成高介电常数介质材料填充的形式,介质材料通过成型后起到传输信号和结构支撑的作用,而金属层附着在介质材料表面形成电壁,起到电磁屏蔽作用,这种结构能明显的减小波导滤波器的尺寸和重量。
目前,传统的介质波导滤波器中,一般情况下,通常采用同轴连接器作为介质波导信号输入输出的装置。该装置如果作为部件与部件的转换方式,会增加至少两根连接线缆作为连接配件,使得介质波导滤波器增加了体积,也增加了成本,而且固定不可靠,容易影响整机性能。
发明内容
基于此,有必要提供一种介质波导滤波器及其输入输出结构,该输入输出结构通过在基板上形成输入输出电极,与现有技术相比,减少了同轴连接器和线缆,降低了成本,且进一步减小了体积;该介质波导滤波器利用了上述输入输出结构,使得其体积可以进一步缩小,有利于基站天线小型化发展。
其技术方案如下:
一方面,本申请提供一种介质波导滤波器的输入输出结构,包括:介质本体,所述介质本体的外壁设有作为电壁的第一金属层、以及短路层,所述短路层包括与所述第一金属层电连接的连接端、以及与所述第一金属层绝缘设置的 短接线;及基板,所述基板包括与所述第一金属层相对设置的第一表面、以及与所述第一表面相对的第二表面,所述第二表面设有接地层及与所述接地层绝缘设置的开路线,所述开路线与所述短接线电连接、并形成输入输出电极。
上述介质波导滤波器的输入输出结构使用时,介质本体及基板之间夹设有第一金属层及短路层,并通过基板上的开路线与短接线电连接,使得开路线能够成为输入输出电极,如此可以通过开路线与与其他部件连接(焊接固定等),实现介质波导滤波器的信号输入及信号输出。如此,该介质波导滤波器与现有技术相比,减少了同轴连接器和线缆,降低了成本,且进一步减小了体积;且利用开路线作为输入输出电极,使得介质波导滤波器与其他部件的连接更加灵活;进一步地,可以通过改变短路线尺寸来控制波导滤波器的端口耦合带宽,调试方法简单,且调节可以达到很宽的端口耦合带宽。
下面进一步对技术方案进行说明:
在其中一个实施例中,所述基板设有电连接所述开路线及所述短接线的金属过孔。
在其中一个实施例中,所述基板上设有至少两个所述金属过孔及电连接其中两个所述金属过孔的导线,所述导线的一端通过其中一个所述金属过孔与所述连接线电连接,且所述导线的另一端通过另一个所述金属过孔与所述开路线电连接。
在其中一个实施例中,所述第一表面设有连接线,所述连接线与所述短路线一一对应设置,所述开路线通过所述连接线与短接线电连接。
在其中一个实施例中,所述连接线与所述短路线焊接固定。
在其中一个实施例中,所述第一金属层与所述短路线之间设有第一绝缘凹槽,所述短接线设于所述第一绝缘凹槽内,所述第一绝缘凹槽的底壁为介质层;
所述第一表面还设有第二金属层,所述第二金属层设有与所述第一绝缘凹槽相对的第二绝缘凹槽,所述第二金属层中位于所述第二绝缘凹槽内的金属层作为所述连接线。
在其中一个实施例中,所述第二绝缘凹槽的形状与所述第一绝缘凹槽的形状均呈“凹”字形或倒“凹”字形,且所述第二绝缘凹槽的面积大于所述第一 绝缘凹槽的面积;所述连接线的形状与所述短接线的形状相同或近似,且所述连接线的面积小于所述短接线的面积。
在其中一个实施例中,所述第一绝缘凹槽内设有介质填充层。
在其中一个实施例中,所述短路层包括两条,两条所述短路层之间间隔设置,所述开路线包括两条,且与对应的所述短路层的短路线电连接。如此,其中一条开路线可为输入电极,另外一条开路线可为输出电极。
另一方面,本申请还提供了一种介质波导滤波器,包括上述的输入输出结构。
该介质波导滤波器利用了上述输入输出结构,使得其体积可以进一步缩小,有利于基站天线小型化发展。此外,利用上述输入输出结构可以解决陶瓷波导的瓷体硬度大,加工成型后不可改变,端口耦合带宽很难调节的问题,同时该输入输出结构连接固定更加可靠,有利于保证整机性能的可靠性。
附图说明
图1为一实施例中所述的介质波导滤波器的结构示意图;
图2为图1所示的一实施例中所述的介质波导滤波器的结构爆炸示意图(输入输出结构示意图);
图3为图1所示的另一实施例中所述的介质波导滤波器的结构爆炸示意图。
附图标记说明:
100、介质本体,110、第一金属层,120、短路层,122、连接端,124、短路线,130、第一绝缘凹槽,200、基板,210、接地层,220、开路线,230、金属过孔,240、低通电路层,242、滤波枝节,250、连接线,260、导线,270、第二金属层,280、第一绝缘凹槽。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本发明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。进一步地,当一个元件与另一个元件“电连接”,二者可以是可拆卸连接方式,也可以不可拆卸连接方式,如焊接、电粘接、镀金属层等,在现有技术中可以实现,在此不再累赘。当元件与另一个元件相互垂直或近似垂直是指二者的理想状态是垂直,但是因制造及装配的影响,可以存在一定的垂直误差。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明中涉及的“第一”、“第二”不代表具体的数量及顺序,仅仅是用于名称的区分。
如图1至图2所示,本实施例中,提供一种介质波导滤波器的输入输出结构,包括:介质本体100,介质本体100的外壁设有作为电壁的第一金属层110、以及短路层120,短路层120包括与第一金属层110电连接的连接端122、以及与第一金属层110绝缘设置的短接线;及基板200,基板200包括靠近第一金属层110设置的第一表面202、以及与第一表面202相对的第二表面204,第二表面204设有接地层210及与接地层210绝缘设置的开路线220,开路线220与短接线电连接、并形成输入输出电极。
如图1至图2所示,上述介质波导滤波器的输入输出结构使用时,介质本体100及基板200之间夹设有第一金属层110及短路层120,并通过基板200上的开路线220与短接线电连接,使得开路线220能够成为输入输出电极,如此可以通过开路线220与与其他部件连接(焊接固定等),实现介质波导滤波器的信号输入及信号输出。如此,该介质波导滤波器与现有技术相比,减少了同轴连接器和线缆,降低了成本,且进一步减小了体积;且利用开路线220作为输 入输出电极,使得介质波导滤波器与其他部件的连接更加灵活;进一步地,可以通过改变短路线124尺寸来控制波导滤波器的端口耦合带宽,调试方法简单,且调节可以达到很宽的端口耦合带宽。
在上述实施例的基础上,如图2所示,一实施例中,基板200设有电连接开路线220及短接线的金属过孔230。进而可以通过金属过孔230的形式实现设置在第二表面204上的开路线220与设置在第一表面202上的短接线的电连接,使得开路线220与短接线的电连接更加可靠。
在上述任一实施例的基础上,一实施例中,基板200设有至少两个金属过孔230、以及电连接其中两个金属过孔的导线260,导线260的一端通过其中一个金属过孔230与连接线250电连接,且导线260另一端通过另一个金属过孔230与开路线220电连接。如此,可以在接地层上灵活的设置开路线220,避开其他线路的干涉。该导线260可以设置于基板200内,并通过金属过孔的形式实现与连接线250及开路线220的电连接。该导线的具体数量可以根据实际需要进行设置,在此不做限制。
进一步地,如图2所示,第一表面202设有与短路线124一一对应电连接的连接线250,连接线250通过金属过孔230与开路线220电连接。如此可以在基板200上形成连接线250,并通过利用印刷电路板技术制造出开路线220及金属过孔230,然后利用连接线250与短路线124的电连接(如焊接、电粘接等),实现在与介质本体100进行集成印刷电路板获得输入输出电极,进而介质本体100及基板200上的结构可以分开设计制造,再进行组合,可以提高生产效率,同时保证波导滤波器的性能(避免在介质本体100上进行过多的制造工序)。
更进一步地,一实施例中,连接线250与短路线124焊接固定。如此可以保证介质本体100与基板200本体的连接强度。
当然了,在其他实施例中,也可以在介质本体100上设置基板200,然后再进行接地层210、开路线220机及金属过孔230的制造。
在上述任一实施例的基础上,如图2所示,一实施例中,第一金属层110与短路线124之间设有第一绝缘凹槽130,第一绝缘凹槽130的底壁为介质层;第一表面还设有第二金属层270,第二金属层270设有与第一绝缘凹槽130相对 的第二绝缘凹槽280,第二金属层270中位于第二绝缘凹槽280内的金属层作为连接线250。进而可以通过在第一金属层110上设置第一绝缘凹槽130,并围设形成短路线124,该实施方式简单又可靠,可以保证第一金属层110与短路线124基本在同一个平面上,减少制造误差;同理,在基板200的第一表面上设置第二金属层270,并在第二金属层270上设置第二绝缘凹槽280、围设形成连接线250,如此,提高第一金属层110与第二金属层270的贴合紧密程度,同时可以通过焊接第一金属层110与第二金属层270、以及短路线124与连接线250,使得短路线124与连接线250焊接固定牢靠。此外,只需加工出不同尺寸的短路线124或/及第一绝缘凹槽130,即可实现本介质波导滤波器的端口耦合带宽的调整,调节方式简单,易于实施。
具体地,如图2所示,一实施例中,第二绝缘凹槽280的形状与第一绝缘凹槽130的形状均呈“凹”字形或倒“凹”字形(允许有制造误差),且第二绝缘凹槽280的面积大于第一绝缘凹槽130的面积;该连接线250的形状与短路线124的形状相同或近似(允许有制造误差),且连接线250的面积小于短路线124的面积。如此,可以避免连接线250的连接,影响设定好的介质波导滤波器的端口耦合带宽。第二绝缘凹槽280与第一绝缘凹槽130、以及连接线250与短接线124,二者属于相似图形(形状相同,但大小不一样)。
需要说明的是,“形状相同或近似”是指二者的形状可以是一样的,也可以是近似一样的,只要满足上述要求即可。
具体地,该第一金属层110与短路线124的厚度相等或近似相等(允许有一定的制造误差)。
此外,一实施例中,第一绝缘凹槽内130设有介质填充层。如此可以通过在第一绝缘凹槽130内填充介质填充层来调整介质波导滤波器的端口耦合带宽。该介质填充层可为气体介质、固体介质等。
在上述任一实施例的基础上,一实施例中,介质本体100的材质为陶瓷介质材料。进一步地,介质本体的材质为陶瓷介质材料。
在上述任一实施例的基础上,如图2及图3所示,一实施例中,短路层120包括两条,两条短路层120之间间隔设置,开路线220包括两条,且与对应的 短路层120的短路线124电连接。如此,其中一条开路线220可为输入电极,另外一条开路线220可为输出电极。
在上述任一实施例的基础上,如图2及图3所示,一实施例中,基板200上还设有不短路的低通电路层240,低通电路层240的一端与一条短路线124电连接、且另一端与对应的一条开路线220电连接。如此,可以与低通电路层240集成共同构成了一种具有宽频谐波抑制的介质波导滤波器,与传统的介质波导滤波器相比,本申请的介质波导滤波器可以将高次模进行大幅度的抑制,可以将带外抑制大宽度做到3倍频外。该低通电路层240可以设置于基板200上的任意位置上,只要不与开路线220、接地层210或连接线250发生短路即可。
在上述任一实施例的基础上,如图2及图3所示,一实施例中,低通电路层240为带状线,带状线设有滤波枝节242。如此可以通过设置滤波枝节242的长度更加精确地进行宽频谐波抑制。
当然了,在其他实施例中,该低通电路层还可以设置于介质本体上。
如图1至图3所示,一实施例中,还提供了一种介质波导滤波器,包括上述的输入输出结构,介质本体100的材质为高介电常数的陶瓷介质。
该介质波导滤波器利用了上述输入输出结构,使得其体积可以进一步缩小,有利于基站天线小型化发展。此外,利用上述输入输出结构可以解决陶瓷波导的瓷体硬度大,加工成型后不可改变,端口耦合带宽很难调节的问题,同时该输入输出结构连接固定更加可靠,有利于保证整机性能的可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种介质波导滤波器的输入输出结构,其特征在于,包括:
    介质本体,所述介质本体的外壁设有作为电壁的第一金属层、以及短路层,所述短路层包括与所述第一金属层电连接的连接端、以及与所述第一金属层绝缘设置的短接线;及
    基板,所述基板包括与所述第一金属层相对设置的第一表面、以及与所述第一表面相对的第二表面,所述第二表面设有接地层及与所述接地层绝缘设置的开路线,所述开路线与所述短接线电连接、并形成输入输出电极。
  2. 根据权利要求1所述的介质波导滤波器的输入输出结构,其特征在于,所述基板设有电连接所述开路线及所述短接线的金属过孔。
  3. 根据权利要求2所述的介质波导滤波器的输入输出结构,其特征在于,所述基板上设有至少两个所述金属过孔及电连接其中两个所述金属过孔的导线,所述导线的一端通过其中一个所述金属过孔与所述连接线电连接,且所述导线的另一端通过另一个所述金属过孔与所述开路线电连接。
  4. 根据权利要求1所述的介质波导滤波器的输入输出结构,其特征在于,所述第一表面设有连接线,所述连接线与所述短路线一一对应设置,所述开路线通过所述连接线与短接线电连接。
  5. 根据权利要求4所述的介质波导滤波器的输入输出结构,其特征在于,所述连接线与所述短路线焊接固定。
  6. 根据权利要求4所述的介质波导滤波器的输入输出结构,其特征在于,所述第一金属层与所述短路线之间设有第一绝缘凹槽,所述短接线设于所述第一绝缘凹槽内,所述第一绝缘凹槽的底壁为介质层;
    所述第一表面还设有第二金属层,所述第二金属层设有与所述第一绝缘凹槽相对的第二绝缘凹槽,所述第二金属层中位于所述第二绝缘凹槽内的金属层作为所述连接线。
  7. 根据权利要求6所述的介质波导滤波器的输入输出结构,其特征在于,所述第二绝缘凹槽的形状与所述第一绝缘凹槽的形状均呈“凹”字形或倒“凹”字形,且所述第二绝缘凹槽的面积大于所述第一绝缘凹槽的面积;所述连接线 的形状与所述短接线的形状相同或近似,且所述连接线的面积小于所述短接线的面积。
  8. 根据权利要求6所述的介质波导滤波器的输入输出结构,其特征在于,所述第一绝缘凹槽内设有介质填充层。
  9. 根据权利要求1至8任一项所述的介质波导滤波器的输入输出结构,其特征在于,所述短路层包括两条,两条所述短路层之间间隔设置,所述开路线包括两条,且与对应的所述短路层的短路线电连接。
  10. 一种介质波导滤波器,其特征在于,包括如权利要求1至9任一项所述的输入输出结构。
PCT/CN2019/090795 2018-11-08 2019-06-11 介质波导滤波器及其输入输出结构 WO2020093697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811322421.0 2018-11-08
CN201811322421.0A CN109449546B (zh) 2018-11-08 2018-11-08 介质波导滤波器及其输入输出结构

Publications (1)

Publication Number Publication Date
WO2020093697A1 true WO2020093697A1 (zh) 2020-05-14

Family

ID=65550801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090795 WO2020093697A1 (zh) 2018-11-08 2019-06-11 介质波导滤波器及其输入输出结构

Country Status (2)

Country Link
CN (1) CN109449546B (zh)
WO (1) WO2020093697A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449546B (zh) * 2018-11-08 2023-09-29 京信通信技术(广州)有限公司 介质波导滤波器及其输入输出结构
CN109818117A (zh) * 2019-03-29 2019-05-28 重庆思睿创瓷电科技有限公司 用于降低功耗的带状线结构、低通滤波器、通信装置及系统
US11437691B2 (en) * 2019-06-26 2022-09-06 Cts Corporation Dielectric waveguide filter with trap resonator
EP4000124A1 (en) 2019-07-16 2022-05-25 Telefonaktiebolaget LM Ericsson (publ) Ceramic waveguide filter
US11239539B1 (en) * 2020-09-04 2022-02-01 Knowles Cazenovia, Inc. Substrate-mountable electromagnetic waveguide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084103A (ja) * 2000-09-06 2002-03-22 Sumitomo Metal Ind Ltd 誘電体フィルタ及びその製造方法
CN201562743U (zh) * 2009-09-19 2010-08-25 深圳市麦捷微电子科技股份有限公司 一种新型ltcc微波带通滤波器
CN108365308A (zh) * 2018-02-05 2018-08-03 重庆思睿创瓷电科技有限公司 介质波导滤波器及其贴装方法
CN109449546A (zh) * 2018-11-08 2019-03-08 京信通信系统(中国)有限公司 介质波导滤波器及其输入输出结构
CN109672011A (zh) * 2018-11-08 2019-04-23 京信通信系统(中国)有限公司 天线及其介质波导滤波器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339204A (ja) * 2000-05-30 2001-12-07 Sumitomo Metal Ind Ltd 小型の誘電体フィルタ
JP4105017B2 (ja) * 2003-04-04 2008-06-18 東光株式会社 導波管型誘電体フィルタ
JP6330784B2 (ja) * 2015-03-13 2018-05-30 株式会社村田製作所 誘電体導波管、誘電体導波管の実装構造、誘電体導波管フィルタおよびMassive MIMOシステム
CN209401807U (zh) * 2018-11-08 2019-09-17 京信通信系统(中国)有限公司 介质波导滤波器及其输入输出结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084103A (ja) * 2000-09-06 2002-03-22 Sumitomo Metal Ind Ltd 誘電体フィルタ及びその製造方法
CN201562743U (zh) * 2009-09-19 2010-08-25 深圳市麦捷微电子科技股份有限公司 一种新型ltcc微波带通滤波器
CN108365308A (zh) * 2018-02-05 2018-08-03 重庆思睿创瓷电科技有限公司 介质波导滤波器及其贴装方法
CN109449546A (zh) * 2018-11-08 2019-03-08 京信通信系统(中国)有限公司 介质波导滤波器及其输入输出结构
CN109672011A (zh) * 2018-11-08 2019-04-23 京信通信系统(中国)有限公司 天线及其介质波导滤波器

Also Published As

Publication number Publication date
CN109449546A (zh) 2019-03-08
CN109449546B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2020093697A1 (zh) 介质波导滤波器及其输入输出结构
CN109672011B (zh) 天线及其介质波导滤波器
KR102443287B1 (ko) 스냅-rf 상호연결
CN203521571U (zh) 扁平状电缆及电子设备
US9843085B2 (en) Directional coupler
CN109638457A (zh) 天线及其移相馈电装置
WO2020113925A1 (zh) 滤波集成式基站天线
WO2024021734A1 (zh) 一种太赫兹波导结构、中间腔体、电路结构及电子设备
TWI820113B (zh) 導體、天線及通信裝置
CN107315098A (zh) 微波共面测试探针及其制作方法
TWI536759B (zh) Antenna device and communication device
JP3826007B2 (ja) 配線接続構造およびこれを用いた送信機
KR20230127958A (ko) 두 개의 상호 연결된 무선 주파수 구성 요소를 갖는 무선 주파수 장치
US20200343642A1 (en) Antenna feed elements with constant inverted phase
CN105914464A (zh) 天线装置
JP4837998B2 (ja) 高周波デバイス実装基板及び通信機器
JPS6016701A (ja) マイクロ波プリント板回路
WO2019220530A1 (ja) 信号伝送構造、信号伝送構造の製造方法、および、高周波信号送受信装置
JP2015159372A (ja) 伝送線路構造体、筐体および電子装置
US9949361B1 (en) Geometrically inverted ultra wide band microstrip balun
CN111129681B (zh) 一种平衡-不平衡变换装置、通信器件及通信系统
CN104681970B (zh) 一种多层陶瓷天线及采用该陶瓷天线的陶瓷pifa天线和其适用的cpw板
CN204230398U (zh) 高频信号传输线路以及电子设备
JP2015046741A (ja) 高周波接続構造
JP2001088097A (ja) ミリ波多層基板モジュール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881363

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19881363

Country of ref document: EP

Kind code of ref document: A1