WO2021238202A1 - 一种复合无钴正极材料及其制备方法 - Google Patents

一种复合无钴正极材料及其制备方法 Download PDF

Info

Publication number
WO2021238202A1
WO2021238202A1 PCT/CN2020/141191 CN2020141191W WO2021238202A1 WO 2021238202 A1 WO2021238202 A1 WO 2021238202A1 CN 2020141191 W CN2020141191 W CN 2020141191W WO 2021238202 A1 WO2021238202 A1 WO 2021238202A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
free
positive electrode
composite
electrode material
Prior art date
Application number
PCT/CN2020/141191
Other languages
English (en)
French (fr)
Inventor
孙明珠
杨红新
江卫军
乔齐齐
许鑫培
马加力
施泽涛
陈思贤
王鹏飞
Original Assignee
蜂巢能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技有限公司 filed Critical 蜂巢能源科技有限公司
Priority to JP2022551002A priority Critical patent/JP7464735B2/ja
Priority to EP20937234.1A priority patent/EP4095946A4/en
Publication of WO2021238202A1 publication Critical patent/WO2021238202A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of lithium batteries, for example, to a composite cobalt-free cathode material and a preparation method thereof.
  • the positive electrode material is a small single crystal material. Due to its small particle size, gas is generated during the high-temperature cycle, and because it is a single crystal material and is a cobalt-free positive electrode material, the DCR is too large and the rate performance is poor. Therefore, there are limitations in the choice of coating materials. When a coating with poor fluidity is co-coated with a small single crystal, the material cannot flow normally and sticks to the inner wall of the equipment, resulting in uneven coating. It can't even be covered normally.
  • the present disclosure provides a composite cobalt-free cathode material and a preparation method thereof.
  • a composite cobalt-free positive electrode material which includes a cobalt-free positive electrode material and also includes a composite coating layer.
  • the composite coating layer uniformly wraps the cobalt-free positive electrode by a coating material and a dispersant. The surface of the material is formed.
  • the coating effect of the material is improved and the gas production in the circulation process is reduced; Co-coating with good dispersant materials improves the rate and cycle performance of cobalt-free single crystal cathode materials.
  • the present disclosure adopts a unique composite coating design idea, which improves the uniformity of material coating and improves the rate performance of the product.
  • the octahedral structure is stabilized by two strong chemical bonding elements of nickel and manganese, and the stability of the material is improved; because the single crystal material has stronger particle strength and better stability during the rolling process
  • the structure and pressure resistance are significantly improved, and the service life of the cobalt-free cathode material is significantly extended.
  • the coating material includes at least one of Al 2 O 3 , TiO 2 , ZrO 2 , MgO, B 2 O 3 , and WO 3
  • the dispersant includes graphite, polyethylene, polyethylene At least one of pyrrolidone, polyvinyl alcohol, polyethylene glycol, and phenol resin.
  • a metal oxide is used as a coating material, and a nano-oxide layer is coated on the surface of a cobalt-free positive electrode single crystal material.
  • the structure of the single crystal material has the characteristic of few grain boundaries inside the particles, It can reduce the side reaction of the cobalt-free positive electrode single crystal material in contact with the electrolyte, improve the surface stability of the cobalt-free positive electrode material, thereby reducing the problem of gas production during the cycle of the battery, and effectively improving the cycle performance of the material under high pressure.
  • the addition of the dispersant enhances the fluidity of the surface coating of the cobalt-free positive electrode material, so that the coating material can be more uniformly coated on the surface of the cobalt-free positive electrode material, forming a porous three-dimensional surface layer material on the surface of the cobalt-free positive electrode material , Improve the coating effect.
  • the mass percentage content of the coating material is 0.1% to 3% of the mass of the cobalt-free cathode material, for example, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5% or 3%. %, etc.; the ratio of the dispersant to the coating material is (1:1000) ⁇ (1:10), such as 1:10, 1:100, 1:200, 1:300, 1:400, 1 :500, 1:600, 1:700, 1:800, 1:900 or 1:1000 etc.
  • An embodiment of the present disclosure provides a method for preparing a composite cobalt-free cathode material as described in an embodiment, and the preparation method includes:
  • metal oxide is used as the coating material to effectively improve the surface stability of the positive electrode material and reduce The problem of gas production during the cycle of the battery, thereby increasing the cycle life of the battery, and at the same time improving the rate performance; due to the poor fluidity of the material itself, the present disclosure adds a dispersant with better fluidity to the coating material for co-packaging Coating makes the coating material that is difficult to disperse more uniformly coated on the surface of the positive electrode material, and then after firing, a porous three-dimensional structured metal oxide and fast ion conductor layer material are formed on the surface of the particles.
  • the preparation method specifically includes:
  • the coating material is a metal oxide, and its mass percentage content is the non-cobalt 0.1% to 3% of the mass of the cobalt single crystal cathode material, such as 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5% or 3%, etc.; the ratio of the dispersant to the coating material is ( 1:1000) ⁇ (1:10), such as 1:10, 1:100, 1:200, 1:300, 1:400, 1:500, 1:600, 1:700, 1:800, 1: 900 or 1:1000 etc.
  • the coated positive electrode material is calcined at 200-800°C for 4-10 hours, and the coating material and the dispersant are uniformly coated on the surface of the particles, such as 200°C, 250°C, 300°C , 350°C, 400°C, 450°C, 500°C, 550°C, 600°C, 650°C, 700°C, 750°C or 800°C, etc.; for example, baking 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 Hours or 10 hours, etc.;
  • the D50 particle size of the precursor is 1 to 4 ⁇ m, such as 1.0 ⁇ m, 1.5 ⁇ m, 2.0 ⁇ m, 2.5 ⁇ m, 3.0 ⁇ m, 3.5 ⁇ m, 4.0 ⁇ m, etc.;
  • the lithium source and the precursor are weighed at a Li/(Ni+Mn) molar ratio of 0.95 to 1.10, such as 0.95, 0.96, 0.97, 0.98, 0.99, 1.0 or 1.1.
  • the temperature of the sintering reaction is 500-1000°C, such as 500°C, 550°C, 600°C, 650°C, 700°C, 750°C, 800°C, 850°C, 900°C, 950°C or 1000, etc.; and react under air or oxygen conditions for 10-25 hours, such as 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 24 hours or 25 hours, etc.
  • 10-25 hours such as 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 24 hours or 25 hours, etc.
  • the obtained cobalt-free single crystal cathode material has a D50 particle size of 1 to 5 ⁇ m, such as 1.0 ⁇ m, 1.5 ⁇ m, 2.0 ⁇ m, 2.5 ⁇ m, 3.0 ⁇ m, 3.5 ⁇ m, 4.0 ⁇ m, 4.5 ⁇ m or 5.0 ⁇ m, etc.
  • the airflow classification frequency is 100-200Hz, such as 100Hz, 110Hz, 120Hz, 130Hz, 140Hz, 150Hz, 160Hz, 170Hz, 180Hz, 190Hz or 200Hz, etc.; sieve particles are used for sieving Screening is performed on a sieve with a diameter of 300-400 mesh, such as 300 mesh, 310 mesh, 320 mesh, 330 mesh, 340 mesh, 350 mesh, 360 mesh, 370 mesh, 380 mesh, 390 mesh, or 400 mesh.
  • FIG. 1 is an SEM image of a composite cobalt-free cathode material prepared in an embodiment of the present disclosure
  • Figure 2 is an SEM image of a composite cobalt-free cathode material prepared in a comparative example of the present disclosure
  • FIG. 3 is a comparison diagram of capacity test of a battery prepared by a composite cobalt-free cathode material obtained in an embodiment of the disclosure and a comparative example;
  • FIG. 4 is a comparison diagram of rate performance test of a battery prepared from a composite cobalt-free cathode material obtained in an embodiment of the disclosure and a comparative example;
  • FIG. 5 is a comparison diagram of the cycle performance test of a battery prepared from a composite cobalt-free cathode material obtained in an embodiment and a comparative example of the disclosure.
  • the present disclosure provides a composite cobalt-free positive electrode material, which includes a cobalt-free positive electrode material, and further includes a composite coating layer formed by uniformly wrapping the surface of the cobalt-free positive electrode material with a coating material and a dispersant .
  • the octahedral structure is stabilized by two strong chemical bonding elements of nickel and manganese, which improves the stability of the material; because the single crystal material has stronger particle strength and better stable structure during the rolling process , The pressure resistance is significantly improved, and the service life of the cobalt-free cathode material is significantly extended.
  • the coating material can be any one or a combination of Al 2 O 3 , TiO 2 , ZrO 2 , MgO, B 2 O 3 , WO 3 , such as Al 2 O 3 , Al 2 O 3 +TiO 2 , TiO 2 +ZrO 2 , Al 2 O 3 +MgO+ZrO 2, etc.
  • the nano-oxide layer is coated on the surface of the cobalt-free positive electrode single crystal material.
  • the single crystal material structure has the characteristic of few grain boundaries inside the particles, it can reduce the cobalt-free positive electrode single crystal material and A side reaction occurs in the electrolyte contact, which improves the surface stability of the cobalt-free cathode material, thereby reducing the problem of gas production during the cycle of the battery, and effectively improving the cycle performance of the material under high pressure.
  • the dispersant can be any one or a combination of graphite, polyethylene, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, and phenolic resin, such as graphite, polyvinyl + polyvinyl alcohol, polyvinyl alcohol + poly Ethylene glycol, etc., coat the surface of the cobalt-free positive electrode material to enhance the fluidity, so that the coating material can be more uniformly coated on the surface of the cobalt-free positive electrode material, forming a porous three-dimensional surface layer on the surface of the cobalt-free positive electrode material Material to improve the coating effect.
  • the composite cobalt-free cathode material provided in this implementation is obtained by the following preparation method:
  • the coating material uses 0.1wt% metal oxide Al 2 O 3
  • the dispersant uses graphite
  • the dispersant and coating The material ratio is 1:500. Under the action of the blade shearing force, the interface between the positive electrode material and the coating material achieves a fusion effect;
  • the coated cathode material is fired at 700°C for 10 hours, and the dispersant and the coating material are evenly coated on the surface of the particles;
  • the material is subjected to airflow classification with a classification frequency of 108 Hz and 325 mesh sieving to remove powders below 0.1 ⁇ m and greater than 15 ⁇ m, and the final product is a single crystal material with a D50 particle size of 3.5 ⁇ m and the chemical expression is LiNi 0.65 Mn 0.35 O 2 .
  • the composite cobalt-free cathode material provided in this implementation is obtained by the following preparation method:
  • the coating material is 0.1wt% of metal oxide TiO 2
  • the dispersant is graphite
  • the dispersing agent is combined with the coating material.
  • the ratio is (1:400), under the action of the blade shearing force, the interface between the positive electrode material and the coating material achieves a fusion effect;
  • the coated cathode material is fired at 650°C for 10 hours, and the dispersant and the coating material are evenly coated on the surface of the particles;
  • the materials are classified by airflow with a classification frequency of 120Hz and sieved with 350 meshes to remove powders below 0.1 ⁇ m and greater than 15 ⁇ m, and the final product is a single crystal material with a D50 particle size of 2.5 ⁇ m and the chemical expression is LiNi 0.35 Mn 0.65 O 2 .
  • the composite cobalt-free cathode material provided in this implementation is obtained by the following preparation method:
  • the coating material uses metal oxide MgO with a content of 0.3wt%
  • the dispersant uses graphite
  • the ratio of the dispersant to the coating material 1:400 under the action of the blade shearing force, the interface between the positive electrode material and the coating material achieves a fusion effect
  • the coated cathode material is fired at 800°C for 8 hours, and the dispersant and the coating material are evenly coated on the surface of the particles;
  • the material is subjected to airflow classification with a classification frequency of 108 Hz and 300 mesh sieving to remove powders below 0.1 ⁇ m and larger than 15 ⁇ m, and the final product is a single crystal material with a D50 particle size of 4 ⁇ m and the chemical expression is LiNi 0.35 Mn 0.65 O 2 .
  • the uncoated cobalt-free cathode material LiNi 0.65 Mn 0.35 O 2 and a single crystal material with a D50 particle size of 3.5 ⁇ m was used as a comparative example.
  • the comparative example 0.5C, 50cls cycle capacity is 96.8%, 0.5C/0.1C discharge capacity is 0.93, 1C/0.1C discharge capacity is 0.85, 2C/0.1C discharge capacity is 0.76, 3C/0.1C discharge capacity
  • the capacity is 0.71; while the composite cobalt-free cathode material obtained by the preparation method of the present disclosure, namely Example 1, Example 2, Example 3, 0.5C, 50cls average cycle capacity is 99.0%, 0.5C/0.1C average discharge capacity It is 0.96, the average discharge capacity of 1C/0.1C is 0.90, the average discharge capacity of 2C/0.1C is 0.83, and the average discharge capacity of 3C/0.1C is 0.78.
  • the composite cobalt-free positive electrode material product obtained by adopting the preparation method of the cobalt-free positive electrode material provided in the present disclosure is superior to the comparative example in terms of the cycle capacity retention rate and the discharge capacity.
  • the present disclosure adopts metal oxide as the coating material, and adds a dispersant with better fluidity to the coating material for co-coating, which effectively improves the surface stability of the cobalt-free single crystal material and reduces the cycle time of the battery.
  • the problem of gas production in the process can improve the cycle life of the battery and increase the rate performance at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本公开提供了一种复合无钴正极材料,涉及锂电池技术领域,包括无钴正极材料,还包括复合包覆层,复合包覆层由包覆材料和分散剂均匀包裹无钴正极材料表面形成。采用金属氧化物作为包覆材料,有效改善正极材料的表面稳定性。

Description

一种复合无钴正极材料及其制备方法 技术领域
本公开涉及锂电池领域,例如涉及一种复合无钴正极材料及其制备方法。
背景技术
随着新能源汽车逐渐发展普及,人们对锂离子电池的相关资源也更加关注。其中,镍锰层状材料因具有能量密度高、成本较低、循环寿命较长等优势,已经成为近年来的研究热点。研究发现单晶材料的颗粒强度和循环次数较多晶更高,但是加工过程中存在较大的问题,导致包覆效果差、表层脱落,最终导致界面破坏,从而使得与电解液之间的副反应增多,产气导致循环变差,实际应用受到限制。
正极材料为小单晶材料,由于其粒度小而导致高温循环过程产气,又因其为单晶材料且为无钴正极材料而导致DCR偏大,倍率性能差。所以,在包覆材料的选择上存在局限性,流动性较差的包覆物与小单晶共同包覆时出现材料无法正常流动而粘于设备内壁的情况,导致包覆不均匀,严重时甚至无法正常包覆。
公开内容
本公开提供了一种复合无钴正极材料及其制备方法。
本公开在一实施例中提供了一种复合无钴正极材料,包括无钴正极材料,还包括复合包覆层,所述复合包覆层由包覆材料和分散剂均匀包裹所述无钴正极材料表面形成。
在本公开提供的一实施例中,通过增加一种不影响材料包覆性能的物质与包覆功能的物质共同进行包覆,从而提高材料的包覆效果,减少循环过程中产气;通过添加流动性好的分散剂材料共包覆,提升无钴单晶正极材料的倍率和循环性能。本公开采用独特的复合包覆设计思路,改善了材料包覆的均匀性, 提高了产品的倍率性能。本公开中
在一实施例中,所述无钴正极材料为无钴单晶正极材料,其化学表达式为LiNi xMn yO 2,0.3≤x≤1.0,例如0.3、0.4、0.5、0.6、0.7、0.8、0.9或1.0等,x+y=1,D50粒径为1~5μm,例如1.0μm、1.5μm、2.0μm、2.5μm、3.0μm、3.5μm、4.0μm、4.5μm或5.0μm等。
在本公开提供的一实施例中,通过镍锰两种强化学键元素稳定八面体结构,改善了材料的稳定性;由于单晶材料在辊压过程中具有较强的颗粒强度和较好的稳定结构,耐压性得到显著提高,无钴正极材料的使用寿命显著延长。
在一实施例中,所述包覆材料包括Al 2O 3、TiO 2、ZrO 2、MgO、B 2O 3、WO 3中的至少一种,所述分散剂包括石墨、聚乙烯、聚乙烯吡咯烷酮、聚乙烯醇、聚乙二醇、酚醛树脂中的至少一种。
在本公开提供的一实施例中,采用金属氧化物作为包覆材料,在无钴正极单晶材料表面包覆纳米氧化物层,又由于单晶材料结构具有颗粒内部晶界少的特点,因此能够减少无钴正极单晶材料跟电解液接触发生副反应,改善了无钴正极材料的表面稳定性,从而减少电池在循环过程中的产气问题,有效改善材料在高压下的循环性能。分散剂的加入对无钴正极材料表面包覆起到了增强流动性的作用,使得包覆材料能够更加均匀地包覆于无钴正极材料表面,在无钴正极材料表面形成多孔三维结构的表层材料,改善包覆效果。
在一实施例中,所述包覆材料的质量百分比含量为所述无钴正极材料质量的0.1%~3%,例如0.1%、0.5%、1%、1.5%、2%、2.5%或3%等;所述分散剂与所述包覆材料的比例为(1:1000)~(1:10),例如1:10、1:100、1:200、1:300、1:400、1:500、1:600、1:700、1:800、1:900或1:1000等。
本公开在一实施例中提供了一种如一实施例所述的复合无钴正极材料的制备方法,所述的制备方法包括:
(1)制备无钴单晶正极材料;
(2)将所述无钴单晶正极材料和所述包覆材料、所述分散剂进行干法混料,得到混合物;
(3)将所述混合物于在200~800℃下焙烧4~10小时,得到复合无钴正极材料产品,例如200℃、250℃、300℃、350℃、400℃、450℃、500℃、550℃、600℃、650℃、700℃、750℃或800℃等;例如焙烧4小时、5小时、6小时、7 小时、8小时、9小时或10小时等。
在本公开提供的一实施例中,为改善包覆效果,使包覆物可以均匀地包覆在正极材料的表面,采用金属氧化物作为包覆材料,有效改善正极材料的表面稳定性,减少电池在循环过程中的产气问题,从而提高电池的循环寿命,同时可以提高倍率性能;由于材料本身的流动性较差,本公开在包覆材料中增加流动性更好的分散剂进行共包覆,使难于分散的包覆材料更均匀地包覆在正极材料表面,再经过焙烧,在颗粒表面形成多孔三维结构的金属氧化物及快离子导体层材料。
在一实施例中,所述的制备方法具体包括:
S1、将锂源和前驱体Ni xMn 1-x(OH) 2进行称量,并混合均匀;
S2、将所述混合后的物料进行烧结,将烧结反应后的块状物料进行破碎,得到所述无钴单晶正极材料;
S3、将所述无钴单晶正极材料和所述包覆材料、所述分散剂加入混料机进行干法混料,所述包覆材料采用金属氧化物,其质量百分比含量为所述无钴单晶正极材料质量的0.1%~3%,例如0.1%、0.5%、1%、1.5%、2%、2.5%或3%等;所述分散剂与所述包覆材料的比例为(1:1000)~(1:10),例如1:10、1:100、1:200、1:300、1:400、1:500、1:600、1:700、1:800、1:900或1:1000等。
S4、包覆后的所述正极材料在200~800℃下进行4~10小时焙烧,所述包覆材料与所述分散剂均匀地包覆在颗粒表面,例如200℃、250℃、300℃、350℃、400℃、450℃、500℃、550℃、600℃、650℃、700℃、750℃或800℃等;例如焙烧4小时、5小时、6小时、7小时、8小时、9小时或10小时等;
S5、将焙烧后的物料进行气流分级和筛分,得到最终产品。
在一实施例中,所述步骤S1中,所述前驱体的D50粒径为1~4μm,例如1.0μm、1.5μm、2.0μm、2.5μm、3.0μm、3.5μm或4.0μm等;所述锂源和所述前驱体按Li/(Ni+Mn)摩尔比0.95~1.10进行称量,例如0.95、0.96、0.97、0.98、0.99、1.0或1.1等。
在一实施例中,所述步骤S2中,烧结反应的温度为500~1000℃,例如500℃、550℃、600℃、650℃、700℃、750℃、800℃、850℃、900℃、950℃或1000等;并在空气或者氧气条件下反应10~25小时,例如10小时、11小时、12小时、13小时、14小时、15小时、16小时、17小时、18小时、19小时、20小 时、21小时、22小时、23小时、24小时或25小时等。
在一实施例中,所述步骤S2中,采用机械磨或气流磨进行破碎,得到的所述无钴单晶正极材料的D50粒径为1~5μm,例如1.0μm、1.5μm、2.0μm、2.5μm、3.0μm、3.5μm、4.0μm、4.5μm或5.0μm等。
在一实施例中,所述步骤S5中,气流分级频率为100~200Hz,例如100Hz、110Hz、120Hz、130Hz、140Hz、150Hz、160Hz、170Hz、180Hz、190Hz或200Hz等;筛分采用筛孔粒径为300~400目的筛子进行过筛,例如300目、310目、320目、330目、340目、350目、360目、370目、380目、390目或400目等。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开一个实施例制备得到的复合无钴正极材料的SEM图;
图2为本公开一个对比例制备得到的复合无钴正极材料的SEM图
图3为本公开一个实施例和对比例得到的复合无钴正极材料制备得到的电池的容量测试对比图;
图4为本公开一个实施例和对比例得到的复合无钴正极材料制备得到的电池的倍率性能测试对比图;
图5为本公开一个实施例和对比例得到的复合无钴正极材料制备得到的电池的循环性能测试对比图。
具体实施例
下面结合附图并通过具体实施方式来进一步说明本公开的技术方案。
在一个实施例中,本公开提供了一种复合无钴正极材料,包括无钴正极材料,还包括复合包覆层,复合包覆层由包覆材料和分散剂均匀包裹无钴正极材料表面形成。
无钴正极材料为无钴单晶正极材料,化学表达式为LiNi xMn yO 2,满足0.3≤x≤1.0,x+y=1,如LiNi 0.65Mn 0.35O 2、LiNi 0.35Mn 0.65O 2、LiNi 0.5Mn 0.5O 2等。采用上述无钴单晶正极材料,通过镍锰两种强化学键元素稳定八面体结构,改善了材料的稳定性;由于单晶材料在辊压过程中具有较强的颗粒强度和较好的稳 定结构,耐压性得到显著提高,无钴正极材料的使用寿命显著延长。
包覆材料可以是Al 2O 3、TiO 2、ZrO 2、MgO、B 2O 3、WO 3中的任意一种或多种的组合,如Al 2O 3、Al 2O 3+TiO 2、TiO 2+ZrO 2、Al 2O 3+MgO+ZrO 2等。采用上述金属氧化物作为包覆材料,在无钴正极单晶材料表面包覆纳米氧化物层,又由于单晶材料结构具有颗粒内部晶界少的特点,因此能够减少无钴正极单晶材料跟电解液接触发生副反应,改善了无钴正极材料的表面稳定性,从而减少电池在循环过程中的产气问题,有效改善材料在高压下的循环性能。
分散剂可以是石墨、聚乙烯、聚乙烯吡咯烷酮、聚乙烯醇、聚乙二醇、酚醛树脂中的任意一种或多种的组合,如石墨、聚乙烯+聚乙烯醇、聚乙烯醇+聚乙二醇等,对无钴正极材料表面包覆起到增强流动性的作用,使得包覆材料能够更加均匀地包覆于无钴正极材料表面,在无钴正极材料表面形成多孔三维结构的表层材料,改善包覆效果。
实施例1
本实施提供的一种复合无钴正极材料,其由以下制备方法获得:
S1、将氢氧化锂和D50粒径为3μm的前驱体Ni 0.65Mn 0.35(OH) 2按Li/(Ni+Mn)摩尔比为1.02进行称量,并混合均匀;
S2、在900℃、空气或者氧气条件下反应20小时,将反应烧结出来的块状物料采用机械磨或气流磨进行破碎,得到D50粒径为3.5μm的单晶材料;
S3、将正极材料和包覆材料、分散剂加入混料机进行干法混料,包覆材料采用含量为0.1wt%的金属氧化物Al 2O 3,分散剂采用石墨,分散剂与包覆材料的比例为1:500,在刀片剪切力的作用下,正极材料与包覆材料界面达到融合效果;
S4、包覆后的正极材料在700℃下焙烧10小时,分散剂与包覆材料均匀地包覆在颗粒表面;
S5、最后将物料进行分级频率108Hz的气流分级和325目过筛,去除0.1μm以下和大于15μm的粉体,得到最终产品即D50粒径为3.5μm的单晶材料且化学表达式为LiNi 0.65Mn 0.35O 2
实施例2
本实施提供的一种复合无钴正极材料,由以下制备方法获得:
S1、将氢氧化锂和D50粒径为2μm的前驱体Ni 0.35Mn 0.65(OH) 2按Li/(Ni+Mn)摩尔比为0.98进行称量,并混合均匀;
S2、在850℃、空气或者氧气条件下反应18小时,将反应烧结出来的块状物料采用机械磨或气流磨进行破碎;
S3、将正极材料和包覆材料、分散剂加入混料机进行干法混料,包覆材料采用含量为0.1wt%的金属氧化物TiO 2,分散剂采用石墨,分散剂与包覆材料的比例为(1:400),在刀片剪切力的作用下,正极材料与包覆材料界面达到融合效果;
S4、包覆后的正极材料在650℃下焙烧10小时,分散剂与包覆材料均匀地包覆在颗粒表面;
S5、最后将物料进行分级频率120Hz的气流分级和350目过筛,去除0.1μm以下和大于15μm的粉体,得到最终产品即D50粒径为2.5μm的单晶材料且化学表达式为LiNi 0.35Mn 0.65O 2
实施例3
本实施提供的一种复合无钴正极材料,由以下制备方法获得:
S1、将氢氧化锂和D50粒径为4μm的前驱体Ni 0.65Mn 0.35(OH) 2按Li/(Ni+Mn)摩尔比为1.04进行称量,并混合均匀;
S2、在850℃、空气或者氧气条件下反应23小时,将反应烧结出来的块状物料采用机械磨或气流磨进行破碎;
S3、将正极材料和包覆材料、分散剂加入混料机进行干法混料,包覆材料采用含量为0.3wt%的金属氧化物MgO,分散剂采用石墨,分散剂与包覆材料的比例为1:400,在刀片剪切力的作用下,正极材料与包覆材料界面达到融合效果;
S4、包覆后的正极材料在800℃下焙烧8小时,分散剂与包覆材料均匀地包覆在颗粒表面;
S5、最后将物料进行分级频率108Hz的气流分级和300目过筛,去除0.1μm 以下和大于15μm的粉体,得到最终产品即D50粒径为4μm的单晶材料且化学表达式为LiNi 0.35Mn 0.65O 2
对比例
以未进行包覆的无钴正极材料LiNi 0.65Mn 0.35O 2,D50粒径为3.5μm的单晶材料为对比例。
将上述实施例获得的产品与未进行包覆的产品性能对比如下表所示:
Figure PCTCN2020141191-appb-000001
由上表可知,对比例0.5C,50cls循环容量为96.8%,0.5C/0.1C放电容量为0.93,1C/0.1C放电容量为0.85,2C/0.1C放电容量为0.76,3C/0.1C放电容量为0.71;而采用本公开的制备方法获得的复合无钴正极材料即实施例1、实施例2、实施例3,0.5C,50cls平均循环容量为99.0%,0.5C/0.1C平均放电容量为0.96,1C/0.1C平均放电容量为0.90,2C/0.1C平均放电容量为0.83,3C/0.1C平均放电容量为0.78。由此可见,通过采用本公开提供的无钴正极材料制备方法获得的复合无钴正极材料产品,不论是循环容量保持率,还是放电容量均较对比例更为优异。
同时,由图1和图2对比可以看出,实施例1获得的产品表面颗粒均匀性明显更好,因此产品表面稳定性更高。再由图2、3、4可知,实施例1产品与对比例产品的充放电性能差异较小,但实施例1产品的倍率性能和循环保持率显著优于对比例产品。
综上所述,本公开采用金属氧化物作为包覆材料,在包覆材料中增加流动性更好的分散剂进行共包覆,有效改善无钴单晶材料的表面稳定性,减少电池在循环过程中的产气问题,从而提高电池的循环寿命,同时可以提高倍率性能。

Claims (10)

  1. 一种复合无钴正极材料,包括无钴正极材料,还包括复合包覆层,所述复合包覆层由包覆材料和分散剂均匀包裹所述无钴正极材料表面形成。
  2. 根据权利要求1所述的一种复合无钴正极材料,其中,所述无钴正极材料为无钴单晶正极材料,其化学表达式为LiNi xMn yO 2,0.3≤x≤1.0,x+y=1,D50粒径为1~5μm。
  3. 根据权利要求1所述的一种复合无钴正极材料,其中,所述包覆材料包括Al 2O 3、TiO 2、ZrO 2、MgO、B 2O 3、WO 3中的至少一种,所述分散剂包括石墨、聚乙烯、聚乙烯吡咯烷酮、聚乙烯醇、聚乙二醇、酚醛树脂中的至少一种。
  4. 根据权利要求1所述的一种复合无钴正极材料,其中,所述包覆材料的质量百分比含量为所述无钴正极材料质量的0.1%~3%,所述分散剂与所述包覆材料的比例为(1:1000)~(1:10)。
  5. 一种如权利要求1-4任意一项所述的复合无钴正极材料的制备方法,所述的制备方法包括:
    (1)制备无钴单晶正极材料;
    (2)将所述无钴单晶正极材料和所述包覆材料、所述分散剂进行干法混料,得到混合物;
    (3)将所述混合物于在200~800℃下焙烧4~10小时,得到复合无钴正极材料产品。
  6. 根据权利要求5所述的一种复合无钴正极材料的制备方法,其中,具体包括:
    S1、将锂源和前驱体Ni xMn 1-x(OH) 2进行称量,并混合均匀;
    S2、将所述混合后的物料进行烧结,将烧结反应后的块状物料进行破碎,得到所述无钴单晶正极材料;
    S3、将所述无钴单晶正极材料和所述包覆材料、所述分散剂加入混料机进行干法混料,所述包覆材料采用金属氧化物,其质量百分比含量为所述无钴单晶正极材料质量的0.1%~3%,所述分散剂与所述包覆材料的比例为(1:1000)~(1:10);
    S4、包覆后的所述正极材料在200~800℃下进行4~10小时焙烧,所述包覆材料与所述分散剂均匀地包覆在颗粒表面;
    S5、将焙烧后的物料进行气流分级和筛分,得到最终产品。
  7. 根据权利要求6所述的一种复合无钴正极材料制备方法,其中,所述步骤S1中,所述前驱体的D50粒径为1~4μm,所述锂源和所述前驱体按Li/(Ni+Mn)摩尔比0.95~1.10进行称量。
  8. 根据权利要求6所述的一种复合无钴正极材料制备方法,其中,所述步骤S2中,烧结反应的温度为500~1000℃,并在空气或者氧气条件下反应10~25小时。
  9. 根据权利要求6所述的一种复合无钴正极材料制备方法,其中,所述步骤S2中,采用机械磨或气流磨进行破碎,得到的所述无钴单晶正极材料的D50粒径为1~5μm。
  10. 根据权利要求6所述的一种复合无钴正极材料制备方法,其中,所述步骤S5中,气流分级频率为100~200Hz,筛分采用筛孔粒径为300~400目的筛子进行过筛。
PCT/CN2020/141191 2020-05-25 2020-12-30 一种复合无钴正极材料及其制备方法 WO2021238202A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022551002A JP7464735B2 (ja) 2020-05-25 2020-12-30 コバルトフリー複合正極材料及びその製造方法
EP20937234.1A EP4095946A4 (en) 2020-05-25 2020-12-30 COMPOSITE COBALT-FREE POSITIVE ELECTRODE MATERIAL AND PRODUCTION METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010452133.8 2020-05-25
CN202010452133.8A CN113725403A (zh) 2020-05-25 2020-05-25 一种复合无钴正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021238202A1 true WO2021238202A1 (zh) 2021-12-02

Family

ID=78671155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141191 WO2021238202A1 (zh) 2020-05-25 2020-12-30 一种复合无钴正极材料及其制备方法

Country Status (4)

Country Link
EP (1) EP4095946A4 (zh)
JP (1) JP7464735B2 (zh)
CN (1) CN113725403A (zh)
WO (1) WO2021238202A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975983A (zh) * 2022-05-06 2022-08-30 四川新锂想能源科技有限责任公司 高镍低钴材料及其制备方法、电池正极
EP4159897A4 (en) * 2021-12-24 2023-12-13 Beijing Easpring Material Technology Co., Ltd. POSITIVE SINGLE CRYSTAL MULTI-ELEMENT ELECTRODE MATERIAL AND PRODUCTION METHOD AND APPLICATION THEREOF

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335470B (zh) * 2021-12-29 2023-03-10 北京卫蓝新能源科技有限公司 一种改性正极材料及其制备方法和应用
CN114068937B (zh) * 2022-01-14 2022-04-22 蜂巢能源科技股份有限公司 无钴正极材料及其制备方法和应用
CN114497534B (zh) * 2022-01-27 2023-10-31 蜂巢能源科技(马鞍山)有限公司 一种无钴正极材料、其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855384A (zh) * 2014-03-25 2014-06-11 海宁美达瑞新材料科技有限公司 一种稀土掺杂改性的锂离子电池三元正极材料及其制备方法
CN104617303A (zh) * 2015-01-13 2015-05-13 海宁美达瑞新材料科技有限公司 一种复合改性的锂离子电池正极材料及其制备方法
CN107221668A (zh) * 2017-07-11 2017-09-29 深圳市贝特瑞纳米科技有限公司 一种复合层状正极材料、其制备方法及用途
US20180248182A1 (en) * 2015-11-18 2018-08-30 GM Global Technology Operations LLC Forming sulfur-based positive electrode active materials

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355824A (ja) 2003-05-27 2004-12-16 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質および正極
US20090194747A1 (en) 2008-02-04 2009-08-06 Vale Inco Limited Method for improving environmental stability of cathode materials for lithium batteries
JPWO2012176471A1 (ja) 2011-06-24 2015-02-23 株式会社豊田自動織機 リチウム含有複合酸化物粉末およびその製造方法
CN104966833B (zh) * 2015-07-28 2017-07-14 宁德时代新能源科技股份有限公司 正极材料、其制备方法及包含该正极材料的锂离子电池
CN105280912B (zh) * 2015-11-26 2018-11-13 中信大锰矿业有限责任公司大新锰矿分公司 一种氧化物包覆锂离子电池正极材料镍锰酸锂的制备方法
EP3609002A4 (en) * 2017-11-06 2020-08-05 LG Chem, Ltd. LITHIUM MANGANESE POSITIVE ELECTRODE ACTIVE MATERIAL WITH A SPINEL STRUCTURE, AS WELL AS POSITIVE ELECTRODE AND LITHIUM SECONDARY BATTERY CONTAINING IT
CN108390022B (zh) * 2017-12-29 2020-12-25 桑德新能源技术开发有限公司 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池
CN109904447B (zh) * 2019-03-29 2022-02-25 蜂巢能源科技有限公司 锂离子电池及电动车
CN110391417B (zh) * 2019-07-16 2020-07-31 湖南长远锂科股份有限公司 一种类单晶富锂锰基正极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855384A (zh) * 2014-03-25 2014-06-11 海宁美达瑞新材料科技有限公司 一种稀土掺杂改性的锂离子电池三元正极材料及其制备方法
CN104617303A (zh) * 2015-01-13 2015-05-13 海宁美达瑞新材料科技有限公司 一种复合改性的锂离子电池正极材料及其制备方法
US20180248182A1 (en) * 2015-11-18 2018-08-30 GM Global Technology Operations LLC Forming sulfur-based positive electrode active materials
CN107221668A (zh) * 2017-07-11 2017-09-29 深圳市贝特瑞纳米科技有限公司 一种复合层状正极材料、其制备方法及用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095946A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4159897A4 (en) * 2021-12-24 2023-12-13 Beijing Easpring Material Technology Co., Ltd. POSITIVE SINGLE CRYSTAL MULTI-ELEMENT ELECTRODE MATERIAL AND PRODUCTION METHOD AND APPLICATION THEREOF
CN114975983A (zh) * 2022-05-06 2022-08-30 四川新锂想能源科技有限责任公司 高镍低钴材料及其制备方法、电池正极

Also Published As

Publication number Publication date
EP4095946A4 (en) 2024-02-07
JP7464735B2 (ja) 2024-04-09
JP2023514855A (ja) 2023-04-11
EP4095946A1 (en) 2022-11-30
CN113725403A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2021238202A1 (zh) 一种复合无钴正极材料及其制备方法
KR102400921B1 (ko) 충전식 리튬 이온 배터리용 양극 물질 및 이의 제조 방법
CN108306014B (zh) 一种单晶镍钴锰酸锂正极材料及其制备方法和应用
JP6026997B2 (ja) リチウム二次電池の正極活物質及びリチウム二次電池
KR102521605B1 (ko) 재충전가능 리튬 이온 배터리용 양극 물질
KR20180004672A (ko) 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질
JP3355126B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP2018098173A (ja) 球形又は類球形リチウム電池の正極材料、電池、製造方法及び応用
JP2005310744A (ja) 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池
JPWO2018193994A1 (ja) 全固体リチウムイオン二次電池
KR102384975B1 (ko) 리튬전극의 제조방법 및 이를 포함하는 리튬이차전지
JP6088923B2 (ja) リチウム二次電池用正極活物質又はその前駆体の製造方法
JP2014067546A (ja) リチウム二次電池の正極活物質及びリチウム二次電池
JP2023513389A (ja) コバルトフリーの層状正極材料及び調製方法、リチウムイオン電池
CN113113590B (zh) 一种核壳结构的单晶正极材料及其制备方法
CN110808373A (zh) 单晶钴酸锂及其制备方法和作为锂电池正极材料的应用
JP2014049407A (ja) リチウム二次電池用正極活物質の製造方法
EP4216313A1 (en) Positive electrode material, positive electrode plate and battery
JP3709446B2 (ja) リチウム二次電池用正極活物質及びその製造方法
CN112670500A (zh) 一种高压实的快充正极材料及其制备方法
JP6624631B2 (ja) リチウム遷移金属複合酸化物及びその製造方法
WO2021082314A1 (zh) 锂离子电池的正极材料及其制备方法
CN111224094B (zh) 一种锂离子电池正极材料及其制备方法、锂离子电池
JP2016072188A (ja) 非水系電解質二次電池用正極活物質用の被覆複合酸化物粒子の製造方法及び当該製造方法によって製造される被覆複合酸化物粒子を用いた非水系電解質二次電池
CN116247197B (zh) 一种球形高电压镍锰酸锂正极材料及其制备方法、锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551002

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020937234

Country of ref document: EP

Effective date: 20220823

NENP Non-entry into the national phase

Ref country code: DE