KR20180004672A - 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질 - Google Patents

이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질 Download PDF

Info

Publication number
KR20180004672A
KR20180004672A KR1020170084337A KR20170084337A KR20180004672A KR 20180004672 A KR20180004672 A KR 20180004672A KR 1020170084337 A KR1020170084337 A KR 1020170084337A KR 20170084337 A KR20170084337 A KR 20170084337A KR 20180004672 A KR20180004672 A KR 20180004672A
Authority
KR
South Korea
Prior art keywords
active material
precursor
cathode active
doped
positive electrode
Prior art date
Application number
KR1020170084337A
Other languages
English (en)
Other versions
KR102026918B1 (ko
Inventor
이혁
조승범
손산수
주진욱
최상순
김종필
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to TW106122406A priority Critical patent/TWI627787B/zh
Priority to CN201780010065.6A priority patent/CN108602689B/zh
Priority to US16/069,710 priority patent/US10637056B2/en
Priority to PCT/KR2017/007114 priority patent/WO2018008952A1/ko
Priority to EP17824508.0A priority patent/EP3388394B1/en
Priority to JP2018558102A priority patent/JP6968428B2/ja
Publication of KR20180004672A publication Critical patent/KR20180004672A/ko
Application granted granted Critical
Publication of KR102026918B1 publication Critical patent/KR102026918B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/70Nickelates containing rare earth, e.g. LaNiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Abstract

본 발명에서는 2000 내지 5:1의 평균입경비를 갖는 양극활물질용 금속 전구체와 도핑원소 포함 원료물질을 음향 공진을 이용하여 혼합하여 상기 도핑원소로 도핑된 전구체를 준비하는 단계; 및 상기 도핑된 전구체를 리튬 원료물질과 혼합한 후 열처리하는 단계를 포함하여, 활물질 표면에서의 손상 및 특성 저하에 대한 우려 없이 다양한 도핑원소로 균일하게 도핑된 이차전지용 양극활물질을 제조하는 방법; 그리고 상기 방법에 의해 제조되어 개선된 구조적 안정성을 갖고, 전지 적용시 용량 감소 최소화 및 사이클 특성 개선 등의 전지 특성을 향상시킬 수 있는 양극활물질이 제공된다.

Description

이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질{PREPARATION METHOD OF POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY PREPARED BY USING THE SAME}
본 발명은 활물질 표면에서의 손상 및 특성 저하에 대한 우려 없이, 도핑원소가 균일하게 도핑되어 우수한 구조 안정성을 나타낼 수 있는 양극활물질의 제조방법 및 이에 따라 제조된 양극활물질에 관한 것이다.
리튬 이차전지는 소형, 경량, 대용량 전지로서 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보통신기기들을 구동할 동력원으로서 리튬 이차전지에 대한 수요가 나날이 증가하고 있다.
리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. 특히, 고온 또는 고전압 하에서는 이러한 문제가 더욱 심각하다. 이러한 이유는 전지내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해되거나 활물질이 열화되고, 또한 전지의 내부저항이 증가되어 생기는 현상 때문이다.
이에 따라 현재 활발하게 연구 개발되어 사용되고 있는 리튬 이차전지용 양극활물질은 층상구조의 LiCoO2이다. LiCoO2는 수명특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 구조적 안정성이 낮아 전지의 고용량화 기술에 적용되기에는 한계가 있다.
이를 대체하기 위한 양극활물질로서, LiNiO2, LiMnO2, LiMn2O4, LiFePO4 또는 Li(NixCoyMnz)O2 등의 다양한 리튬 전이금속 산화물이 개발되었다. 이중, LiNiO2의 경우 높은 방전용량의 전지 특성을 나타내는 장점이 있으나, 간단한 고상반응으로는 합성이 어렵고, 열적 안정성 및 사이클 특성이 낮은 문제점이 있다. 또, LiMnO2, 또는 LiMn2O4 등의 리튬 망간계 산화물은 열적안전성이 우수하고, 가격이 저렴하다는 장점이 있지만, 용량이 작고, 고온 특성이 낮은 문제점이 있다. 특히, LiMn2O4의 경우 저가격 제품에 일부 상품화가 되어 있으나, Mn3 +로 인한 구조변형(Jahn-Teller distortion) 때문에 수명특성이 좋지 않다. 또한, LiFePO4는 낮은 가격과 안전성이 우수하여 현재 하이브리드 자동차(hybrid electric vehicle, HEV)용으로 많은 연구가 이루어지고 있으나, 낮은 전도도로 인해 다른 분야에 적용은 어려운 실정이다.
이 같은 사정으로 인해, LiCoO2의 대체 양극활물질로 최근 가장 각광받고 있는 물질은 Li(NixCoyMnz)O2 (이때, 상기 x, y, z는 각각 독립적인 산화물 조성 원소들의 원자분율로서, 0<x≤1, 0<y≤1, 0<z≤1, 0<x+y+z≤1임)이다. 이 재료는 LiCoO2보다 저가격이며 고용량 및 고전압에 사용될 수 있는 장점이 있으나, 율 특성(rate capability) 및 고온에서의 수명특성이 좋지 않은 단점을 갖고 있다.
이에 따라 양극활물질의 내부에 Al, Ti, Sn, Ag 또는 Zn 등의 물질을 도핑(doping)하거나, 또는 전도성이 좋은 금속을 양극활물질 표면에 건식 또는 습식 코팅(coating)하는 방법 등을 통해 양극활물질의 열 안정성, 용량 특성 또는 사이클 특성 등을 개선하려는 많은 시도들이 이루어지고 있으나, 아직 그 개선 정도는 미흡한 실정이다.
특히 양극활물질을 도핑하는 경우, 양극활물질의 구조 안정성은 향상되지만 용량은 저하되는 문제가 있다. 또, 도핑된 물질의 양극활물질 내 균일 분포가 어렵고, 도핑 물질의 불균일 분포로 인한 활물질 특성 저하의 문제가 있다.
본 발명이 해결하고자 하는 제1 기술적 과제는, 음향 공진을 이용하여 활물질 표면에서의 손상 및 특성 저하에 대한 우려 없이 도핑원소로 균일하게 도핑함으로써, 개선된 구조적 안정성을 갖고, 전지 적용시 용량 감소의 최소화 및 사이클 특성 개선 등의 전지 특성을 향상시킬 수 있는 양극활물질의 제조방법을 제공하는 것이다.
본 발명이 해결하고자 하는 제2 기술적 과제는, 상기 제조방법에 의해 제조되어, 개선된 구조적 안정성을 가지며, 이로써 전지의 용량, 율(rate) 특성 및 사이클 특성을 개선시킬 수 있는 양극활물질을 제공하는 것이다.
본 발명이 해결하고자 하는 제3 기술적 과제는, 상기 양극활물질을 포함하는 양극 및 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면 양극활물질용 금속 전구체와 도핑원소 포함 원료물질을 음향 공진을 이용하여 혼합함으로써 상기 도핑원소로 도핑된 전구체를 준비하는 단계; 및 상기 도핑된 전구체를 리튬 원료물질과 혼합한 후 열처리하는 단계를 포함하며, 상기 양극활물질용 금속 전구체와 도핑원소 포함 원료물질은 2000 내지 5 : 1의 평균 입경비를 갖는 것인 이차전지용 양극활물질의 제조방법을 제공한다.
또한, 본 발명의 다른 일 실시예에 따르면, 상기 제조방법에 의해 제조되어, 금속원소로 도핑된 하기 화학식 2의 리튬 복합금속 산화물을 포함하는 이차전지용 양극활물질을 제공한다:
[화학식 2]
ALi1+aNi1-b-cMbCoc· (1-A)M'sO2
상기 화학식 2에서,
M은 Mn 및 Al로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고,
M'는 Y, Zr, La, Sr, Ga, Mg, Sc, Gd, Sm, Ca, Ce, Fe, Al, Ti, Ta, Nb, W, Mo, 및 Cr로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고
0<A<1, 0≤a≤0.33, 0≤b≤0.5, 0≤c≤0.5, 0<s≤0.2이되, 단 b와 c는 동시에 0.5는 아니다.
아울러, 본 발명의 또 다른 일 실시예에 따르면, 상기 양극활물질을 포함하는 양극 및 리튬 이차전지를 제공한다.
본 발명에 따른 양극활물질의 제조방법은, 도핑된 리튬 복합금속 산화물을 포함하는 양극활물질의 제조시, 음향 공진을 이용함으로써 활물질 표면에서의 손상 및 특성 저하에 대한 우려 없이 도핑원소로 리튬 복합금속 산화물을 균일하게 도핑할 수 있으며, 그 결과 종래 방법에 따른 도핑시에 비해 양극활물질의 구조적 안정성을 더욱 증가시키고, 이로써 전지의 용량, 율(rate) 특성 및 사이클 특성을 더욱 개선시킬 수 있다. 또 상기 방법에 따르면, 종래 방법에 의한 혼합시 발생되는 교반 편차에 의한 데드 존을 최소화할 수 있고, 활물질 제조과정에서의 미분 분진 발생을 억제할 수 있으며, 정량계측이 용이하다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 실시예 1-1에서 제조한 도핑 전구체를 주사 전자 현미경(Scanning Electron Microscope, SEM)을 이용하여 관찰한 사진이다.
도 2는 비교예 1-1에서 제조한 도핑 전구체를 SEM을 이용하여 관찰한 사진이다.
도 3은 비교예 1-2에서 제조한 도핑 전구체를 SEM을 이용하여 관찰한 사진이다.
도 4는 실시예 1-1에 따른 양극활물질의 제조시, 금속 전구체(a)), 도핑된 전구체(b)) 및 양극활물질(c))을 SEM으로 관찰한 사진이다.
도 5는 비교예 1-1에 따른 양극활물질의 제조시, 금속 전구체(a)), 도핑된 전구체(b)) 및 양극활물질(c))을 SEM으로 관찰한 사진이다.
도 6는 실시예 1-2에서 금속 전구체와 도핑원소 포함 원료물질의 혼합물에 대한 음향 공진 처리 후 수득한 도핑 전구체에 대한 SEM 관찰사진이다.
도 7는 실시예 1-3에서 금속 전구체와 도핑원소 포함 원료물질의 혼합물에 대한 음향 공진 처리 후 수득한 도핑 전구체에 대한 SEM 관찰사진이다.
도 8는 비교예 1-3에서 금속 전구체와 도핑원소 포함 원료물질의 혼합물에 대한 음향 공진 처리 후 수득한 도핑 전구체에 대한 SEM 관찰사진이다.
도 9은 비교예 1-4에서 금속 전구체와 도핑원소 포함 원료물질의 혼합물에 대한 음향 공진 처리 후 수득한 도핑 전구체에 대한 SEM 관찰사진이다.
도 10은 실시예 1-4에 따른 양극활물질의 제조 공정 중, 도핑된 전구체와 리튬 원료물질의 혼합 후 수득한 결과물에 대한 SEM 관찰사진이다.
도 11은 비교예 1-1에 따른 양극활물질의 제조 공정 중, 도핑된 전구체와 리튬 원료물질의 혼합 후 수득한 결과물에 대한 SEM 관찰사진이다.
도 12는 실시예 1-4 및 비교예 1-5에서 제조한 양극활물질 포함 하프 코인 셀의 방전 특성을 관찰한 그래프이다.
도 13은 실시예 1-6에서 제조한 양극활물질 표면을 관찰한 SEM 사진이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
종래 도핑된 양극활물질의 제조는 양극활물질 또는 그 전구체와 도핑원소 포함 원료물질의 건식 혼합 또는 습식 혼합 후 열처리에 의해 수행되었다. 건식 혼합의 경우 공정은 간단하지만, 균일 분산이 되지 않거나 도핑 물질이 응집되기 쉽고, 또 미분 사용시 분진이 발생하는 문제가 있었다. 또, 습식 혼합의 경우 건식에 비해 균일 분산 및 도핑이 가능하지만 공정이 복합한 단점이 있다. 또 상기 건식과 습식 방법 모두 혼합시 교반 편차에 따른 데드 존 발생 그리고 연속 공정에 의한 혼합 가능성의 문제가 있었다.
이에 대해 본 발명에서는 도핑된 양극활물질의 제조시, 양극활물질용 금속 전구체와 도핑원소 포함 원료물질을 음향 공진을 이용하여 혼합하고, 또 상기 음향 공진 조건에 맞추어 금속 전구체와 도핑원소 포함 원료물질의 입자 크기를 함께 제어함으로써, 활물질 표면에서의 손상 및 특성 저하에 대한 우려없이 도핑원소로 상기 금속 전구체를 균일하게 도핑하고, 교반 편차에 의한 데드 존을 최소화할 수 있으며, 그 결과 종래 방법에 따른 도핑시에 비해 양극활물질의 구조적 안정성을 보다 크게 증가시키고, 이로써 전지의 용량, 율(rate) 특성 및 사이클 특성을 더욱 개선시킬 수 있다.
즉, 발명의 일 실시예에 따른 이차전지용 양극활물질의 제조방법은,
양극활물질용 금속 전구체와 도핑원소 포함 원료물질을 음향 공진을 이용하여 혼합하여, 상기 도핑원소로 도핑된 전구체를 준비하는 단계(단계 1); 및
상기 도핑된 전구체를 리튬 원료물질과 혼합 후 열처리하는 단계(단계 2)를 포함한다. 이때, 상기 양극활물질용 금속 전구체와 도핑원소 포함 원료물질은 2000 내지 5 : 1의 평균입경비를 갖는 것이다.
이하 각 단계별로 상세히 설명하면, 본 발명의 일 실시예에 따른 양극활물질의 제조방법에 있어서, 단계 1은 도핑된 전구체를 준비하는 단계이다.
구체적으로, 상기 단계 1은 양극활물질용 금속 전구체와 도핑원소 포함 원료물질을 음향 공진(Acoustic Resonance)을 이용하여 혼합함으로써 수행될 수 있다.
음향 공진에 의한 혼합시, 음향 진동을 혼합 대상 물질에 가하면 음향 에너지가 혼합 대상의 물질을 직접 진동시키게 되는데, 이때 특정 음향 진동의 주파수에서 공진이 발생하고, 공진에 의해 혼합이 일어나게 된다. 이 같은 음향 공진에 의한 혼합은 통상의 유성식 혼합기(planetary mixer)나 고속 혼합기(speed mixer)에 설치된 임펠러 교반에 의한 혼합이나 초음파 혼합과는 다르다. 음향 공진에 의한 혼합은 혼합 과정에서 발생되는 낮은 진동수와 높은 강도의 음향 에너지(acoustic energy)가 빠른 가속도(g-forces)로 혼합계(mixing system) 전체에 걸쳐 균일한 전단력이 발휘하며 전단장(shear field)을 형성함으로써, 급속 유동화 및 분산이 가능하도록 한다. 또, 음향 공진에 의한 혼합은 음향 에너지의 진동수가 초음파 혼합에 비해 수백배 이상 더 낮기 때문에 혼합 규모가 더 클 수 있다. 또, 벌크 유동(bulk flow)에 의해 혼합이 일어나는 임펠러 교반과는 달리, 혼합이 혼합계 전체에 걸쳐 미소 규모의 혼합이 다발적으로 일어나기 때문에 균일 분산이 가능하다.
더욱이 본 발명에서 양극활물질용 금속 전구체에 대한 도핑을 위해 사용되는 이트리아 안정화 지르코니아 등과 같은 도핑원소 포함 원료물질은 전구체에 대한 혼화성 및 반응성이 매우 낮기 때문에 균일 도핑이 일어나기 어렵다. 이에 대해 본 발명에서는 음향 공진에 의한 혼합을 수행함으로써 도핑원소 포함 원료물질의 분산성을 높이고, 전구체에 대한 반응성을 높여 전구체 표면에 대한 균일 도핑이 가능하다.
상기 음향 공진에 의한 혼합은 통상의 음향 공진기기를 이용하여 수행될 수 있으며, 구체적으로는 어쿠스틱 믹스(acoustic mixer)를 이용하여 수행될 수 있다.
음향 공진에 의한 혼합 공정은 사용되는 양극활물질용 금속 전구체와 도핑원소 포함 원료물질의 입자 크기비, 더 나아가 각각의 종류에 따라 혼합 조건이 달라질 수 있으며, 금속 전구체 및 활물질 표면에 대한 손상 및 손실을 최소화하면서 균일하고 우수한 효율로 도핑 효율을 얻기 위해서는 상기 금속 전구체와 도핑원소 포함 원료물질의 입자 크기를 최적화하는 것이 바람직할 수 있으며, 더 나아가 각각의 종류를 함께 최적화하는 것이 보다 바람직할 수 있다.
구체적으로 상기 양극활물질용 금속 전구체와 도핑원소 포함 원료물질의 평균입경비는 2000 내지 5 : 1일 수 있으며, 보다 구체적으로는 1000 내지 5 : 1 또는 300 내지 5 : 1, 보다 더 구체적으로는 7.5 내지 5 : 1일 수 있다. 상기한 평균입경비의 조건을 충족할 때 전구체 입자에 대한 손상 및 손실 없이 보다 우수한 효율로 도핑원소 포함 원료물질을 균일 분산시킬 수 있다.
보다 구체적으로는 상기 도핑원소 포함 원료물질의 평균입경(D50)이 4nm 내지 5㎛, 혹은 10nm 내지 5㎛, 보다 더 구체적으로는 50nm 내지 3㎛이고, 상기 양극활물질용 금속 전구체의 평균입경(D50)이 10㎛ 내지 20㎛인 조건 하에서 양극활물질용 금속 전구체와 도핑원소 포함 원료물질은, 평균입경비는 2000 내지 5 : 1일 수 있으며, 보다 구체적으로는 1000 내지 5 : 1이거나, 또는 300 내지 5 : 1, 보다 더 구체적으로는 7.5 내지 5 : 1일 수 있다.
또, 상기한 입자 크기 조건을 충족하는 양극활물질용 금속 전구체와 도핑원소 포함 원료물질에 대한, 음향 공진에 의한 혼합은 50g 내지 90g의 음향 에너지를 인가함으로써 수행될 수 있으며, 보다 구체적으로는 50g 내지 90g의 음향 에너지를 1분 내지 5분간 인가함으로써 수행될 수 있다. 이때, 상기 단위 g는 중력 가속도를 의미한다(100g=980m/s2).
또, 상기 양극활물질용 금속 전구체의 구조에 따라 도핑물질과 금속 전구체의 혼합 양상이 달라질 수 있다.
구체적으로, 본 발명에 있어서 상기 양극활물질용 금속 전구체는 복수 개의 1차 입자가 응집된 2차 입자일 수 있으며, 이때 상기 1차 입자는 판상의 형태를 갖는 것일 수 있다. 이때 1차 입자의 판 두께에 따라 2차 입자상의 금속 전구체의 치밀도가 달라지게 되고, 그 결과로서 상기 금속 전구체에 대한 도핑원소의 도핑 양상이 달라질 수 있다. 따라서, 1차 입자의 판상 두께에 따라 상기 음향 공진시 조건을 최적화함으로써 보다 균일하고 효율적인 도핑이 가하다.
구체적으로, 양극활물질용 금속 전구체와 도핑원소 포함 원료물질이 상기한 평균입경비를 충족하는 조건 하에서, 상기 양극활물질용 금속 전구체를 형성하는 1차 입자가 판상의 형태를 가지고, 또 판의 평균 두께가 150nm 이하, 보다 구체적으로는 80nm 내지 130nm인 것일 수 있다. 통상, 판 형상을 갖는 1차 입자의 응집으로 이루어진 금속 전구체의 경우, 판 형상의 1차 입자 사이에 공극이 형성되어 2차 입자상의 금속 전구체는 넓은 비표면적을 가질 수 있다. 그러나, 이 경우 1차 입자 사이의 공극 내로 도핑원소의 도입이 용이하지 않기 때문에 도핑되는 도핑원소의 양이 적거나 또는 공극 내가 비어진 채로 남을 수 있으며, 도핑원소에 의한 도핑은 2차 입자상의 금속 전구체 표면에서 주로 일어날 수 있다. 이에 대해 상기 음향 공진에 의한 혼합이 50g 내지 90g의 힘을 1 내지 4분간 인가하여 수행될 경우, 판 상의 1차 입자 사이 공극내로 균일하게 도핑원소가 도입됨으로써 우수한 도핑 효율을 나타낼 수 있으며, 그 결과로서 활물질의 구조 안정성을 향상시킬 수 있다.
본 발명에 있어서, '판상' 또는 '판 형태'는 서로 대응 또는 대면하는 두 면이 편평하고, 수평방향의 크기가 수직 방향의 크기보다 큰 입단(aggregate) 구조를 의미하며, 완전한 판 형상은 물론 판 형상과 유사한 형상인 플레이크(flake)상, 비늘상 등도 포함할 수 있다. 또, 상기 판 형상의 1차 입자에 있어서의 평균 판 두께는 주사전자현미경(SEM)을 이용하여 관찰한 1차 입자의 판 두께의 평균값이다.
또, 양극활물질용 금속 전구체와 도핑원소 포함 원료물질이 상기한 평균입경비를 충족하는 조건 하에서, 상기 양극활물질용 금속 전구체를 형성하는 1차 입자가 판상의 형태를 가지고, 또 판의 평균 두께가 150nm 초과, 구체적으로는 200nm 내지 250nm인 경우, 상기 금속 전구체는 판 형태의 1차 입자간 공극이 적은 밀집 구조의 2차 입자상일 수 있다. 통상 상기한 두께를 갖는 1차 입자로 이루어진 전구체의 경우, 두께가 얇은 판 형태의 1차 입자를 포함하는 금속 전구체에 비해 도핑원소의 1차 입자간 공극내 도입이 더 어렵기 때문에 도핑원소가 전구체 표면상에 주로 위치하게 되는데, 이때, 2차 입자상 표면에 국부적으로 도핑원소의 응집이 발생할 수 있다. 이에 대해 상기 음향 공진에 의한 혼합이 60g 내지 90g의 힘을 2분 내지 5분간 인가하여 수행될 경우, 2차 입자상의 전구체 표면 상에 도핑원소가 균일하게 도포된 도포원소의 층이 형성되게 된다. 이 경우, 활물질 표면측에서의 도핑된 리튬 복합금속 산화물의 함량이 증가하고, 그 결과 활물질 표면의 안정성을 높일 수 있다.
한편, 본 발명의 일 실시예에 따른 양극활물질의 제조방법에 있어서, 상기 도핑원소는 구체적으로 Y, Zr, La, Sr, Ga, Mg, Sc, Gd, Sm, Ca, Ce, Fe, Al, Ti, Ta, Nb, W, Mo, 또는 Cr 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 원소를 포함할 수 있다.
보다 구체적으로 상기 도핑원소는 활물질 입자의 제조시 소성 공정 중 입자 성장을 억제하여 활물질의 구조적 안정성을 향상시킬 수 있는 주기율표 6족(VIB족)에 해당하는 원소일 수 있다. 보다 더 구체적으로, 상기 도핑원소는 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있으며, 보다 구체적으로는 W 및 Cr 로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있다.
또, 상기 도핑원소는 보다 구체적으로 주기율표 13족(IIIA족)에 해당하는 원소일 수 있으며, 보다 더 구체적으로는 B, Al, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있다.
또, 상기 도핑원소는 보다 구체적으로 3족(IIIB족) 및 4족(IV족) 원소로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있으며, 보다 구체적으로는 Ti, Sc, Y, Zr 및 La로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있다.
또, 상기 도핑원소는 보다 구체적으로 5족(V족) 원소에 해당하는 원소일 수 있으며, 보다 더 구체적으로는 V, Nb, 및 Ta로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있다.
또, 상기 도핑원소 포함 원료물질은, 상기한 도핑원소를 포함하는 Al2O3와 같은 산화물, 수산화물 또는 옥시수산화물 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 도핑원소 포함 원료물질는 그 자체로도 우수한 리튬 이온전도성을 가질뿐더러, 이로부터 유래된 금속원소로 도핑시 보다 우수한 도핑 효과와 함께 활물질 구조 안정성을 더욱 향상시킬 수 있는 세라믹계 이온전도체일 수 있다. 상기 세라믹계 이온전도체는 구체적으로 이온전도성의 세라믹 및 메탈세라믹(metal ceramic) 중 적어도 하나를 포함하는 것일 수 있다.
상기 이온전도성 세라믹은 구체적으로 이트리아 안정화 지르코니아(yttria stabilized zirconia, YSZ), 칼시아 안정화 지르코니아(calcia stabilized zirconia, CSZ), 스칸디아 안정화 지르코니아(scandia-stabilized zirconia, SSZ) 등과 같은, Y, Ca, Ni 또는 Sc이 도핑된 지르코니아(ZrO2)계 산화물; 가돌리니아 도핑된 세리아(gadolinia doped ceria, GDC), 사마륨 도핑된 세리아(samarium doped ceria, SDC), 이트리아 도핑된 세리아(yttria-doped ceria, YDC) 등과 같은 Gd, Y 또는 Sm이 도핑된 세리아(CeO2)계 산화물; 란타늄 스트론튬 갈레이트 마그네사이트(lanthanum strontium gallate magnesite, LSGM), 란타늄 스트론튬 망가네이트(lanthanum strontium manganite, LSM) 또는 란타늄 스트론튬 코발트 페라이트(lanthanum strontium cobalt ferrite, LSCF) 등과 같은 란타늄계 산화물 등일 수 있으며, 이들 중 1종 단독으로, 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 이온전도성 세라믹에 있어서, 상기 YSZ는 산화지르코늄(지르코니아)에 산화이트륨(이트리아)을 첨가하여 상온에서도 안정하도록 만든 세라믹 재료이다. 상기 YSZ는 지르코니아에 이트리아가 첨가됨으로써 Zr4 + 이온 중 일부가 Y3+로 대체될 수 있다. 이에 따라 4개의 O2- 이온 대신 3개의 O2- 이온으로 대체되며 결과적으로 산소 결핍(oxygen vacancy)이 만들어질 수 있다. 이렇게 생성된 산소 결핍 때문에 YSZ는 O2-이온 전도성를 갖게 되며 온도가 높을수록 전도도가 좋아진다. 구체적으로 상기 YSZ는 Zr(1-x)YxO2 -x/2이며, 이때 0.01≤x≤0.30이고, 보다 구체적으로는 0.08≤x≤0.10일 수 있다. 한편, 본 발명에 있어서 상온은 특별히 정의되지 않은 한 23±5℃에서의 온도범위를 의미한다. 상기 YSZ는 Zr(1-x)YxO2 -x/2(이때, 0.01≤x≤0.30일 수 있고, 보다 구체적으로는 0.08≤x≤0.10)일 수 있다.
한편, 상기 메탈세라믹은 세라믹과 금속분말을 혼합소결하여 제조한 것으로, 내열성과 경도가 높은 세라믹의 특성과 소성변형이나 전기전도도를 갖는 금속의 특성을 모두 갖는다. 구체적으로 상기 메탈세라믹에 있어서 세라믹은 상기한 이온전도성 세라믹일 수 있고, 상기 금속은 니켈, 몰리브덴 또는 코발트 등일 수 있다. 보다 구체적으로는 상기 메탈세라믹은 니켈-이트리아 안정화 지르코니아 서멧(Ni-YSZ cermet) 등의 서멧일 수 있다.
또, 본 발명의 일 실시예에 따른 양극활물질의 제조방법에 있어서, 상기 도핑원소 포함 원료물질의 평균 입경(D50)은 4nm 내지 5㎛일 수 있다. 상기 범위 내의 평균 입경을 가질 때, 음향 공진법에 의한 혼합시 균일 분산이 가능하고, 또 높은 효율로 전구체에 도핑될 수 있다. 보다 구체적으로 상기 도핑원소 포함 원료물질의 평균 입경(D50)은 10nm 내지 5㎛, 보다 더 구체적으로는 50nm 내지 3㎛일 수 있다.
본 발명에 있어서, 상기 도핑원소 포함 원료물질의 평균 입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 상기 도핑원소 포함 원료물질의 평균 입경(D50)은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있으며, 구체적으로 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.
또, 본 발명의 일 실시예에 따른 양극활물질의 제조방법에 있어서, 상기 도핑원소 포함 원료물질은 최종 제조되는 양극활물질에서의 리튬 복합금속 산화물에 도핑되는 도핑원소 포함 원료물질 유래 금속원소의 함량에 따라 그 사용량이 적절히 선택될 수 있다. 구체적으로, 상기 도핑원소 포함 원료물질은 양극활물질용 금속전구체 및 도핑원소 포함 원료물질의 총 함량에 대하여, 500ppm 내지 20,000ppm의 함량으로, 보다 구체적으로는 1,000ppm 내지 8,000ppm의 양으로 사용될 수 있다.
한편, 본 발명의 일 실시예에 따른 양극활물질의 제조방법에 있어서, 상기 양극활물질용 금속 전구체는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 리튬 복합금속 산화물을 형성할 수 있는 물질로서, 구체적으로 양극활물질용 금속 함유 산화물, 수산화물, 옥시수산화물 또는 인산화물일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또, 상기 양극활물질용 금속은 구체적으로 니켈, 코발트 망간 및 알루미늄으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 금속원소를 포함하는 것일 수 있다.
상기 양극활물질용 금속 전구체는 통상의 제조방법에 의해 제조될 수 있다. 일례로, 공침법에 의해 제조될 경우, 양극활물질용 금속 함유 원료물질의 수용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하여 공침 반응 시킴으로써 제조될 수 있다.
이때, 상기 양극활물질용 금속 함유 원료물질로는, 목적으로 하는 활물질을 구성하는 리튬 복합금속 산화물의 조성에 따라 결정될 수 있다. 구체적으로는 상기 리튬 복합금속 산화물을 구성하는 금속을 포함하는 수산화물, 옥시수산화물, 질산염, 할로겐화물, 탄산염, 아세트산염, 옥살산염, 시트르산염 또는 황산염 등이 사용될 수 있다. 상기 양극활물질용 금속은 Fe, Ni, Co, Mn, Cr, Zr, Nb, Cu, V, Mo, Ti, Zn, Al, Ga 및 Mg로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합 금속일 수 있으며, 보다 구체적으로는 Ni, Co, Mn 및 Al로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합금속일 수 있다.
구체적으로, 상기 양극활물질이 리튬 복합금속 화합물로서, 리튬-니켈-코발트-망간계 화합물을 포함하는 경우, 그 전구체로서 양극활물질용 금속 함유 수산화물의 제조를 위한 원료물질로는, 니켈(Ni) 함유 원료물질, 코발트(Co) 함유 원료물질 그리고 망간(Mn) 함유 원료물질이 사용될 수 있다. 상기 각 금속 원소 포함 원료물질은 통상 양극활물질의 제조시 사용되는 것이라면 특별한 제한없이 사용가능하다. 일예로, 상기 Co 함유 원료물질로는 구체적으로 Co(OH)2, CoO, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O 또는 Co(SO4)2ㆍ7H2O 등일 수 있으며, 상기한 화합물 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 양극활물질용 금속 함유 원료물질은 최종 제조되는 양극활물질에서의 리튬 복합금속 산화물 내 금속들의 함량을 고려하여 적절한 함량비로 사용하는 것이 바람직하다.
또, 상기 양극활물질용 금속 함유 원료물질은 물; 또는 물과 균일하게 혼합가능한 유기용매(구체적으로 알코올 등)와 물의 혼합물에 용해시켜 수용액으로서 사용될 수 있다.
또, 상기 양극활물질용 금속 함유 수산화물의 제조에 사용가능한 암모늄 양이온 함유 착물 형성제는 구체적으로 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, 또는 NH4CO3 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물; 또는 물과 균일하게 혼합가능한 유기용매(구체적으로 알코올 등)와 물의 혼합물이 사용될 수 있다.
또, 상기 양극활물질용 금속 함유 수산화물의 제조에 사용가능한 염기성 화합물은 NaOH, KOH, 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물 또는 이들의 수화물일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 염기성 화합물 역시 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로 알코올 등)와 물의 혼합물이 사용될 수 있다.
또, 양극활물질용 상기 금속 함유 수산화물의 입자 형성을 위한 공침 반응은, 금속 함유 원료물질의 수용액의 pH가 8 내지 14인 조건에서 수행될 수 있다. 이를 위해 상기 암모늄 양이온 함유 착물 형성제와 염기성 화합물의 첨가량을 적절히 조절하는 것이 바람직하다. 이때 상기 pH값은 액체의 온도 25℃에서의 pH값을 의미한다. 또, 상기 공침반응은 30℃ 내지 60℃의 온도에서 비활성 분위기하에 수행될 수 있다. 상기와 같은 공침반응의 결과로 전구체로서 양극활물질용 금속 함유 수산화물의 입자가 생성되어 수용액 중에 석출되게 된다.
상기와 같은 제조방법에 의해 제조되는 양극활물질용 금속 전구체는 앞서 설명한 바와 같이, 구체적으로, 본 발명에 있어서 상기 양극활물질용 금속 전구체는 복수 개의 1차 입자가 응집된 2차 입자일 수 있으며, 이때 상기 1차 입자는 판 형태를 갖는 것일 수 있다. 이때 제조 공정에서의 반응 속도 조절을 통해 1차 입자의 판 두께를 조절할 수 있다.
구체적으로, 상기 양극활물질용 금속 전구체는 판의 평균 두께가 150nm 이하, 보다 구체적으로는 80nm 내지 130nm인 복수 개의 1차 입자가 응집된 2차 입자일 수 있고, 또는 판의 평균 두께가 150nm 초과, 구체적으로는 200nm 내지 250nm인 1차 입자가 응집된 2차 입자일 수 있다.
또, 상기 2차 입자상의 양극활물질용 금속 전구체의 평균 입경(D50)은 4㎛ 내지 30㎛일 수 있으며, 보다 구체적으로는 10㎛ 내지 20㎛일 수 있다. 전구체의 평균 입경이 상기한 범위일 때 보다 효율적인 적용이 가능하다. 본 발명에 있어서, 상기 양극활물질용 금속 전구체의 평균 입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 상기 양극활물질용 금속 전구체의 평균 입경(D50)은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있으며, 구체적으로 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.
상기와 같은 음향 공진 처리에 의해 다양한 금속원소로 도핑된 전구체가 제조되게 된다. 이때 도핑된 금속원소는 금속원소의 위치선호도 및 전구체 물질의 결정 구조에 따라 전구체 내에 균일하게 분포할 수도 있고, 또는 전구체의 입자 중심에서부터 표면까지 함량 분포가 증가 또는 감소하는 농도구배를 가지며 존재할 수도 있으며, 또는 전구체의 표면 측에만 존재할 수도 있다.
다음으로 본 발명의 일 실시예에 따른 양극활물질의 제조방법에 있어서, 단계 2는 상기 단계 1에서 제조한 도핑 전구체를 리튬 원료물질과 혼합 후 열처리하여 양극활물질을 제조하는 단계이다.
상기 리튬 원료물질로는 구체적으로 리튬을 포함하는 수산화물, 옥시수산화물, 질산염, 할로겐화물, 탄산염, 아세트산염, 옥살산염 또는 시트르산염 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로 상기 리튬 원료물질은 Li2CO3, LiNO3, LiNO2, LiOH, LiOHㆍH2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, CH3COOLi 및 Li3C6H5O7로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 화합물을 포함할 수 있다.
상기 리튬 원료물질은 최종 제조되는 리튬 복합금속 산화물에서의 리튬 함량에 따라 그 사용량이 결정될 수 있다.
상기 도핑된 전구체와 리튬 원료물질의 혼합은 볼밀, 비즈밀, 고압 호모게나이저, 고속 호모게나이저, 또는 초음파 분산 장치 등을 이용한 통상의 혼합 방법에 의해 수행될 수도 있고, 또는 앞서 도핑을 위한 혼합시와 같이 음향 공진에 의해 수행될 수도 있다.
구체적으로는 도핑된 전구체와 리튬 원료물질과의 균일 혼합 효과를 고려할 때, 음향 공진에 의해 수행될 수 있으며, 보다 구체적으로는 도핑된 전구체와 리튬 원료물질과의 혼합물에 대해 50g 내지 90g의 음향 에너지를 인가함으로써 수행될 수 있으며, 보다 더 구체적으로는 50g 내지 90g의 음향 에너지를 1분 내지 5분간 인가함으로써 수행될 수 있다. 이때, 상기 단위 g는 중력 가속도를 의미한다(100g=980m/s2).
또, 상기 음향 공진에 의한 혼합시 혼합 효율을 높이기 위해 도핑된 전구체와 리튬 원료물질의 평균입경비를 제어할 수 있으며, 구체적으로는 상기 도핑된 전구체와 리튬 원료물질의 평균입경비는 10:1 내지 3:1일 수 있다.
이어서 상기 도핑된 전구체와 리튬 원료물질의 혼합물에 대한 1차 열처리는 700℃ 내지 950℃에서의 온도에서 수행될 수 있다. 1차 열처리시 온도가 700℃ 미만이면 미반응 원료물질의 잔류로 인해 단위무게당 방전 용량의 저하, 사이클 특성의 저하 및 작동 전압의 저하 우려가 있고, 950℃를 초과하면 부반응물의 생성으로 인해 단위무게당 방전용량의 저하, 사이클 특성의 저하 및 작동 전압의 저하 우려가 있다.
또, 상기 1차 열처리는 대기 중에서 또는 산소 분위기하에서 실시될 수 있으며, 5시간 내지 30시간 동안 수행될 수 있다. 상기와 같은 조건에서 수행될 때 혼합물의 입자간의 확산 반응이 충분히 이루어질 수 있다.
상기 단계 2의 결과로, 리튬 복합금속 산화물 입자를 포함하고, 상기 입자의 표면 측에 존재하는 리튬 복합금속 산화물이 상기 도핑원소 포함 원료물질로부터 유래된 금속원소로 도핑된 양극활물질이 제조된다.
또, 본 발명의 일 실시예에 따른 양극활물질의 제조방법은 상기 단계 2에서의 1차 열처리 후, 수득된 결과물에 대한 수세 공정을 더 포함할 수 있다.
상기 수세 공정은 물과의 혼합 등 통상의 수세 방법을 이용하여 수행될 수도 있다. 보다 구체적으로는 상기 결과물과 물과의 혼합이 음향 공진에 의한 혼합으로 수세 공정이 수행될 수 있다. 종래의 수세 방법은 응집 입자 사이 모세관 현상으로 인해 수세 제한성이 있고, 또 과수세시 양극활물질의 특성이 저하되는 문제가 있었다. 이에 대해 음향 공진을 이용하여 물에 의한 수세 공정을 수행할 경우 입자 분산이 용이하여 수세 제한성 없이 우수한 효율로 수세가 이루어 질 수 있고, 또 수세 시간 조정을 통해 양극활물질의 특성 저하를 방지할 수 있다.
수세 시 음향 공진은 20g 내지 90g의 음향 에너지를 10초 내지 30분간 인가함으로써 수행될 수 있다. 상기한 조건으로 수행시 양극활물질의 표면 손상 및 손실에 대한 우려없이, 양극활물질에 잔류하는 미반응 원료물질 및 불순물등을 우수한 효율로 제거할 수 있다. 이때, 상기 단위 g는 중력 가속도를 의미한다(100g=980m/s2).
또, 본 발명의 일 실시예에 따른 양극활물질의 제조방법은 상기 단계 2에서의 열처리 후 또는 상기 수세 공정 후, 수득된 결과물에 대한 표면처리 공정을 더 포함할 수 있다.
상기 표면처리 공정은 통상의 방법에 따라 수행될 수 있으며, 구체적으로는 상기 열처리 후 수득된 결과물과 표면처리제를 음향 공진을 이용하여 혼합 후 추가 열처리(이하 2차 열처리라 함)함으로써 수행될 수 있다.
상기 표면처리제는 Me 원료물질(Me는 Al, Y, B, W, Hf, Nb, Ta, Mo, Si, Sn 및 Zr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소임)과 혼합 후 열처리하는 경우, Me 원료물질로서 Me 포함 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등이 사용될 수 있다. 일례로, 상기 Me가 B인 경우, 붕산, 사붕산리튬, 산화붕소 및 붕산암모늄 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또, 상기 Me가 텅스텐인 경우, 산화텅스텐(VI) 등을 들 수 있다.
표면처리시 음향 공진을 이용함으로써 보다 우수한 효율로 양극활물질 표면에 균일한 표면처리층 형성이 가능하다. 구체적으로 표면처리층 형성을 위한 음향 공진 처리는, 30g 내지 100g의 음향 에너지를 1분 내지 30분간 인가함으로써 수행될 수 있다. 이때, 상기 단위 g는 중력 가속도를 의미한다(100g=980m/s2).
또, 상기 표면처리층 형성을 위한 2차 열처리는 300℃ 내지 900℃에서 수행될 수 있다. Me 원료물질의 녹는점 반응 온도에 따라 다르게 적용될 수 있으며, 2차 열처리 온도가 300℃ 미만이면 표면처리층 형성이 충분하지 않고, 900℃를 초과하면 과소결에 따른 부반응물 생성의 우려가 있다.
또, 상기 열처리시의 분위기는 특별히 한정되지 않으며, 진공, 불활성 또는 대기 분위기하에서 수행될 수 있다.
상기와 같은 표면처리 공정에 의해 활물질 표면 상에 하기 화학식 1의 화합물을 포함하는 표면처리층이 형성될 수 있다:
[화학식 1]
LimMeO(m+n)/2
(상기 화학식 1에서, Me는 Al, Y, B, W, Hf, Nb, Ta, Mo, Si, Sn 및 Zr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소이고, 2≤m≤10이고, n은 Me의 산화수이다)
상기와 같은 제조방법에 따라 제조된 양극활물질은, 종래 건식 혼합법 또는 습식 혼합법에 의한 도핑시와 비교하여 도핑원소가 균일하게 분산 및 도핑됨으로써, 구조 안전성이 크게 향상되고, 그 결과 전지 적용시 용량 감소가 최소화될 수 있다. 동시에 출력 특성, 율 특성 및 사이클 특성이 더욱 향상될 수 있다.
이에 따라 본 발명의 또 다른 일 실시예에 따르면, 상기한 제조방법에 의해 제조된 양극활물질이 제공된다.
구체적으로 상기 양극활물질은, 상기 도핑원소로 도핑된 리튬 복합금속 산화물을 포함한다. 보다 구체적으로, 상기 도핑원소로 도핑된 리튬 복합금속 산화물은 전구체 내에 균일하게 분포할 수도 있고, 또는 전구체의 입자 중심에서부터 표면까지 함량 분포가 증가 또는 감소하는 농도구배를 가지며 존재할 수도 있으며, 또는 전구체의 표면측에만 존재할 수도 있다.
본 발명에 있어서, 리튬 복합금속 산화물 입자의 '표면측'은 입자의 중심을 제외한 표면에 근접한 영역을 의미하며, 구체적으로는 리튬 복합금속 산화물 입자의 표면에서부터 중심까지의 거리, 즉 리튬 복합금속 산화물의 반직경에 대해 입자 표면에서부터 0% 이상 100% 미만, 보다 구체적으로는 입자 표면에서부터 0% 내지 50%, 보다 더 구체적으로는 입자 표면에서부터 0% 내지 30%의 거리에 해당하는 영역을 의미한다.
보다 구체적으로, 상기 세라믹 이온전도체의 금속원소에 의해 도핑된 리튬 복합금속 산화물은 하기 화학식 2의 화합물일 수 있다:
[화학식 2]
ALi1+aNi1-b-cMbCoc· (1-A)M'sO2
상기 화학식 2에서,
M은 Mn 및 Al로 이루어진 군에서 선택되는 적어도 하나의 금속원소이고,
M'는 도핑원소 포함 원료물질로부터 유래된 금속원소로서, 구체적으로는 Y, Zr, La, Sr, Ga, Mg, Sc, Gd, Sm, Ca, Ce, Fe, Al, Ti, Ta, Nb, W, Mo, 및 Cr로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 둘 이상의 혼합 원소일 수 있으며, 보다 구체적으로는 Y, Zr, La, Sr, Ga, Sc, Gd, Sm 및 Ce로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합 원소일 수 있고, 보다 더 구체적으로는 Y 및 Zr로 이루어진 군으로부터 선택되는 적어도 어느 하나의 원소일 수 있으며, 단 M과 M'은 서로 다른 원소일 수 있다.
또, 상기 화학식 2에서, 0<A<1, 0≤a≤0.33, 0≤b≤0.5, 0≤c≤0.5, 0<s≤0.2이되 b와 c는 동시에 0.5는 아니다. 보다 구체적으로는 상기한 A, b, c 및 s를 충족하는 조건에서 0≤a≤0.09일 수 있고, 보다 더 구체적으로는 b, c 및 s를 충족하는 조건에서 0.9<A<1, a=0일 수 있다. 상기 화학식 2에서 a가 0.33 초과인 경우, 리튬 복합금속 입자에 도핑원소 포함 원료물질을 도핑하는 효과가 통상의 도핑 방법으로 금속원소를 도핑하는 경우에 비해 수명 특성 효과 차이가 약 10% 이내로 현저하지 않을 수 있다. 반면 상기 화학식 2에서 a가 0.09 이하, 특히 0인 경우 리튬 복합금속 산화물 입자에 상기 도핑원소 포함 원료물질을 도핑하는 효과가 통상의 도핑방법으로 금속원소를 도핑하는 경우에 비해 수명 특성 효과가 30% 내지 70%까지 현저할 수 있다.
또, 상기 화학식 2에서, M'은 리튬 복합금속 산화물의 입자 내에서 입자 표면에서부터 중심으로 갈수록 점진적으로 감소하는 농도구배로 분포할 수도 있다. 이와 같이 양극활물질 입자 내 위치에 따라 도핑되는 금속의 농도가 점진적으로 변화하는 농도구배로 분포함으로써, 활물질내 급격한 상 경계 영역이 존재하지 않아 결정 구조가 안정화되고 열 안정성이 증가하게 된다. 또, 활물질 입자의 표면 측에서 도핑원소가 고농도로 분포하고, 입자 중심으로 갈수록 농도가 감소하는 농도 구배를 포함하는 경우, 열안정성을 나타내면서도 용량의 감소를 방지할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 양극활물질에 있어서, 도핑원소 M'의 농도가 농도구배를 나타내는 경우, 양극활물질내 포함되는 도핑원소 M' 총 원자량을 기준으로, 입자 중심에서부터 10부피% 이내의 영역(이하 간단히 'Rc10 영역' 이라 한다)과, 입자 표면으로부터 10부피% 이내의 영역(이하 간단히 'Rs10 영역' 이라 한다)에서의 M' 의 농도 차이는 10원자% 내지 90원자%일 수 있고, M"의 농도 차이는 10원자% 내지 90원자%일 수 있다.
본 발명에 있어서, 양극활물질 입자 내에서의 도핑원소의 농도구배 구조 및 농도는 전자선 마이크로 애널라이저(Electron Probe Micro Analyzer, EPMA), 유도결합 플라스마-원자 방출 분광법(Inductively Coupled Plasma - Atomic Emission Spectrometer, ICP-AES), 또는 비행 시간형 2차 이온 질량분석기(Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS) 등의 방법을 이용하여 확인할 수 있으며, 구체적으로는 EPMA를 이용하여 양극활물질의 중심에서부터 표면으로 이동하면서 각 금속의 원소비(atomic ratio)를 측정할 수 있다.
또, 본 발명의 일 실시예에 따른 양극활물질은 그 제조시 판 두께가 150nm 초과의 1차 입자로 이루어진 금속 전구체를 사용할 경우, 상기 화학식 2의 리튬 복합금속 산화물로 이루어진 표면처리층을 더 포함할 수 있다. 상기 표면처리층은 리튬 복합금속 산화물 입자의 표면 상에 리튬 복합금속 산화물 입자의 반직경에 대해 0.001 내지 0.1의 두께비로 형성될 수 있으며, 보다 구체적으로는 1nm 내지 1000nm의 두께 범위로 형성될 수 있다.
본 발명의 일 실시예에 따른 상기 양극활물질은 리튬 복합금속 산화물의 1차 입자일 수도 있고, 또는 상기 1차 입자가 조립되어 이루어진 2차 입자 일 수도 있다. 상기 양극활물질이 리튬 복합금속 산화물의 1차 입자일 경우 공기 중의 수분 또는 CO2 등과의 반응에 따른 Li2CO3, LiOH 등의 표면 불순물의 생성이 감소되어 전지 용량 저하 및 가스 발생의 우려가 낮고, 또 우수한 고온 안정성을 나타낼 수 있다. 또, 상기 양극활물질이 1차 입자가 조립된 2차 입자일 경우 출력 특성이 보다 우수할 수 있다. 또 2차 입자일 경우 상기 1차 입자의 평균 입경(D50)은 10nm 내지 200nm일 수 있다. 이 같은 활물질 입자 형태는 활물질을 구성하는 리튬 복합금속 산화물의 조성에 따라 적절히 결정될 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 제조방법에 의해 제조된 양극활물질을 포함하는 양극을 제공한다.
상기 양극은 상기한 양극활물질을 사용하는 것을 제외하고는 당해 기술 분야에 알려져 있는 통상적인 양극 제조 방법으로 제조할 수 있다. 예를 들면, 양극활물질에 용매, 필요에 따라 바인더, 도전재 또는 분산제를 혼합 및 교반하여 슬러리를 제조한 후, 이를 양극 집전체에 도포(코팅)하고 건조하여 양극활물질층을 형성함으로써 양극을 제조할 수 있다.
상기 양극 집전체는 전도성이 높은 금속으로, 상기 양극활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
또, 상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질, 바인더 및 도전재를 용해 및 분산시킬 수 있는 정도이면 충분하다.
상기 바인더로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다. 상기 바인더는 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙, 탄소 나노 튜브 또는 탄소 섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 플루오로카본, 산화아연 또는 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 제조방법에 의해 제조된 양극활물질을 포함하는 리튬 이차전지를 제공한다.
상기 리튬 이차전지는 구체적으로 상기 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함한다.
상기 음극에 사용되는 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. 또한, 상기 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극에 사용되는 바인더 및 도전재는 양극과 마찬가지로 당 분야에 통상적으로 사용될 수 있는 것을 사용할 수 있다. 음극은 음극 활물질 및 상기 첨가제들을 혼합 및 교반하여 음극 활물질 슬러리를 제조한 후, 이를 집전체에 도포하고 압축하여 음극을 제조할 수 있다.
또한, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
본 발명에서 사용되는 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기와 같은 구성을 갖는 리튬 이차전지는, 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입함으로써 제조될 수 있다.
상기한 바와 같이 본 발명에 따른 양극활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩을 제공한다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1-1: 양극활물질의 제조
Ni0 . 83Co0 . 11Mn0 .06(OH)2 전구체(D50=15㎛, 판 형태 1차 입자의 평균 판 두께=95nm)에 대해 이트리아 안정화 지르코니아 (YSZ) 나노분말(D50=50nm)을 2000ppm의 농도로 첨가한 후 어쿠스틱 믹서(LabRAMⅡ)를 이용하여 60g의 음향에너지를 2분간 인가하여, YSZ 도핑원소 포함 원료물질 유래 세라믹 원소(Y 및 Zr)가 도핑된 전구체를 수득하였다.
도핑된 전구체에 대해 LiOH를 1.02의 몰비로 첨가하고 블렌딩 믹서를 이용하여 15000rpm으로 10분간 혼합한 후, 산소 분위기에서 800℃로 열처리하여, Y 및 Zr이 도핑된 리튬 복합금속 산화물의 양극활물질을 제조하였다.
비교예 1-1: 양극활물질의 제조
Ni0 . 83Co0 . 11Mn0 .06(OH)2 전구체(D50=15㎛, 판 형태 1차 입자의 평균 판 두께=95nm)에 대해 YSZ 나노분말(D50=50nm)을 2000ppm의 농도로 첨가한 후 블렌딩 믹서를 이용하여 15000rpm으로 10분간 혼합하여 도핑된 전구체를 수득하였다.
혼합된 전구체에 대해 LiOH를 1.02의 몰비로 첨가하고 블렌딩 믹서를 이용하여 15000rpm으로 10분간 혼합한 후 산소 분위기에서 800℃로 2차 열처리하여 양극활물질을 제조하였다.
비교예 1-2: 양극활물질의 제조
탈이온수를 기계식 교반기(mechanical stirrer)로 교반하면서 YSZ 나노분말(D50=50nm)을 2,000ppm의 농도로 첨가하여 균질한 상태로 만들었다. 이후 Ni0.83Co0.11Mn0.06(OH)2 전구체(D50=15㎛, 판 형태 1차 입자의 평균 판 두께=95nm)를 투입하고 50rpm으로 30분간 혼합하였다. 혼합된 용액을 여과한 후 130℃에서 12시간 건조하였다.
결과로 수득된 반응물에 대해 LiOH를 1.02의 몰비로 첨가하고 블렌딩 믹서를 이용하여 15000rpm으로 10분간 혼합한 후 산소 분위기에서 800℃로 소성하여 양극활물질을 제조하였다.
실험예 1
상기 실시예 1-1 및 비교예 1-1, 1-2에 따른 양극활물질의 제조시, 도핑된 전구체를 주사전자 현미경으로 관찰하였다. 그 결과를 하기 도 1 내지 3에 각각 나타내었다.
확인 결과, 종래 건식 공정(비교예 1-1) 및 습식 공정(비교예 1-2)에 비해 음향 공진법을 이용할 경우 분산에 보다 유리하여 응집이 적고, 전구체 표면에 보다 균일하게 도핑됨을 확인할 수 있다. 또 음향 공진법의 이용시 전구체 표면에서의 손상이 없음을 확인할 수 있으며, 공정시간도 단축되었다.
또, 상기 실시예 1-1 및 비교예 1-1에 따른 양극활물질의 제조시, 사용된 금속 전구체(a)), 도핑 공정 후 도핑된 전구체(b)), 그리고 최종 제조된 양극활물질(c))을 각각 SEM으로 관찰하였다. 그 결과를 도 4 및 5에 나타내었다.
실시예 1-2, 1-3, 및 비교예 1-3, 1-4 : 양극활물질의 제조
전구체 입자와 도핑원소 포함 원료물질의 입자크기를 하기 표 1에 기재된 바와 같이 다양하게 변화시키는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 양극활물질을 제조하였다.
실시예 1-2 실시예 1-3 비교예 1-3 비교예 1-4
금속 전구체에서의 1차 입자의 평균 판 두께(nm) 100 230 100 230
금속 전구체 평균입경(D50)
(㎛)
15 15 15 15
도핑원소 포함 원료물질의 평균입경(D50)
(㎛)
2 3 3.5 4
상기 표 1에서, 제조한 금속 전구체에 있어서의 1차 입자의 평균 판 두께는 주사전자현미경을 이용하여 관찰, 측정하였고, 2차 입자상의 금속 전구체의 평균 입경 및 도핑원소 포함 원료물질의 평균입경은 금속전구체 및 도핑원소 포함 원료물질를 각각 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출한 것이다.
실험예 2
상기 실시예 1-2, 1-3 및 비교예 1-3, 1-4에서 제조한 전구체를 SEM을 이용하여 관찰하고, 그 결과를 도 6 내지 9에 각각 나타내었다.
확인결과, D50이 15㎛인 금속 전구체와, D50이 2㎛ 또는 3㎛인 도핑원소 포함 원료물질을 각각 혼합한 실시예 1-2 및 1-3의 경우, 균일 혼합으로 균질상태의 전구체가 관찰된 반면, 전구체 입자와 도핑원소 포함 원료물질의 평균 입경비가 2000 내지 5:1의 조건을 충족하지 않는 평균 입경을 갖는 금속 전구체와 도핑원소 포함 원료물질을 사용한 비교예 1-3 및 1-4의 경우 전구체 표면에 도핑원소 포함 원료물질이 전구체 표면에 부분적으로 응집되어 분포되어 있음을 확인할 수 있으며, 도핑물질이 응집되어 부분적으로 존재하는 것이 관찰되었다.
실시예 1-4: 양극활물질의 제조
Ni0 . 83Co0 . 11Mn0 .06(OH)2 전구체(D50=15㎛, 판 형태 1차 입자의 평균 판 두께=95nm)에 대해 이트리아 안정화 지르코니아 (YSZ) 나노분말(D50=50nm)을 2000ppm의 농도와 Al2O3 나노분말(D50=50nm)를 2000ppm의 농도로 첨가한 후 어쿠스틱 믹서(LabRAMⅡ)를 이용하여 60g의 음향에너지를 2분간 인가하여, YSZ 도핑원소 포함 원료물질 유래 세라믹 원소(Y 및 Zr)와 Al2O3가 복합 도핑된 전구체를 수득하였다.
도핑된 전구체에 대해 LiOH를 1.02의 몰비로 첨가하고 어쿠스틱 믹서(LabRAMⅡ)를 이용하여 80g의 음향에너지를 2분간 인가하여 혼합한 후, 산소 분위기에서 800℃로 열처리하여, Y, Zr 및 Al이 도핑된 리튬 복합금속 산화물의 양극활물질을 제조하였다.
비교예 1-5: 양극활물질의 제조
Ni0 . 83Co0 . 11Mn0 .06(OH)2 전구체(D50=15㎛, 판 형태 1차 입자의 평균 판 두께=95nm)에 대해 이트리아 안정화 지르코니아 (YSZ) 나노분말(D50=50nm)을 2000ppm의 농도와 Al2O3 나노분말(D50=50nm)를 2000ppm의 농도로 첨가한 후 블랜딩 믹서를 이용하여 15000rpm으로 10분간 혼합하여, YSZ 도핑원소 포함 원료물질 유래 세라믹 원소(Y 및 Zr)와 Al2O3가 복합 도핑된 전구체를 수득하였다.
도핑된 전구체에 대해 LiOH를 1.02의 몰비로 첨가하고 블렌딩 믹서를 이용하여 15000rpm으로 10분간 혼합한 후 산소 분위기에서 800℃로 2차 열처리하여, Y, Zr 및 Al이 도핑된 리튬 복합금속 산화물의 양극활물질을 제조하였다.
실험예 3
상기 실시예 1-4에서 도핑된 전구체와 리튬 원료물질의 혼합 후 수득된 결과물을 열처리에 앞서 SEM으로 관찰하였다. 그 결과를 도 10에 나타내었다. 비교를 위하여 상기 비교예 1-1에 따른 양극활물질 제조시 도핑된 전구체와 리튬 원료물질의 혼합 후 수득된 결과물에 대해서도 SEM으로 관찰하고, 그 결과를 도 11에 나타내었다.
관찰 결과, 실시예 1-4의 경우 비교예 1-1에서의 블랜딩 믹싱 공정에 비해 도핑된 전구체와 리튬 원료물질에 대한 어쿠스틱 믹싱 공정 시간이 짧았음에도 불구하고, 도핑된 전구체와 리튬 원료물질이 균일하게 혼합되어 전구체 입자 표면에 리튬 원료물질이 균일하게 분산 도포되었다. 또 도핑된 전구체 입자 표면 및 벌크에 대한 손상 또한 관찰되지 않았다. 이로부터 도핑된 양극활물질의 제조시 도핑 전구체의 제조공정 외에도, 도핑 후 리튬 원료물질과의 혼합시 음향 공진을 인가함으로써 표면 손상 없이 보다 우수한 표면 특성을 갖는 양극활물질의 제조가 가능함을 확인할 수 있다.
실험예 4
상기 실시예 1-4에서 제조한 양극활물질과, 도전재로서 super P 그리고 바인더로서 PVDF를 92.5:2.5:5의 중합비로 혼합하여 양극형성용 조성물을 제조하였다. 이를 알루미늄 호일에 도포한 후 롤프레스를 이용하여 균일하게 압착하고, 130℃ 진공오븐에서 12시간 진공건조하여 리튬 이차전지용 양극을 제조하였다. 상기 양극을 사용하여 2032 규격의 하프코인 셀(half coin cell)을 제조한 후 용량특성을 평가하였다. 이때 비교를 위하여 상기 비교예 1-5에서 제조한 양극활물질을 이용하여 하프코인 셀을 제조하여 사용하였다.
구체적으로 용량 특성은 리튬 이차전지를 25℃에서 0.2C의 정전류(CC)로 4.25V가 될 때까지 충전하고, 이후 4.25V의 정전압(CV)으로 충전하여 충전전류가 0.05mAh가 될 때까지 1회째의 충전을 행하였다. 이후 20분간 방치한 다음 0.2C의 정전류로 2.5V가 될 때까지 방전하였다. 이를 통해 방전 용량을 평가하고 비교하였다. 그 결과를 하기 표 2 및 도 12에 나타내었다.
방전용량(mAh/g) 방전효율(%)
비교예 1-5 193.6 88.5
실시예 1-4 201.6 89.4
일반적으로 양극활물질에 대해 도핑을 하게 되면, 전지의 용량특성이 감소하게 되며, 추가적으로 균일하지 못한 도핑물질 또는 도핑원료물질의 잔여 및 응집으로 인해 표면에 불순물로 작용할 수 있는 입자가 생성되어 전지 특성을 감소시킬 수 있다. 실험결과, 실시예 1-4의 양극활물질을 포함하는 전지는, 비교예 1-5에 비해 보다 높은 용량 특성을 나타내었으며, 이로부터 본 발명에 따른 제조방법에 의해 제조된 양극활물질에서의 도핑 효율이 더 높음을 알 수 있다.
실시예 1-5: 양극활물질의 제조
Ni0 . 83Co0 . 11Mn0 .06(OH)2 전구체(D50=15㎛, 판 형태 1차 입자의 평균 판 두께=95nm)에 대해 이트리아 안정화 지르코니아 (YSZ) 나노분말(D50=50nm)을 2000ppm의 농도와 Al2O3 나노분말 (D50=50nm)를 2000ppm의 농도로 첨가한 후 어쿠스틱 믹서(LabRAMⅡ)를 이용하여 60g의 음향에너지를 2분간 인가하여, YSZ 도핑원소 포함 원료물질 유래 세라믹 원소(Y 및 Zr)와 Al2O3 복합 도핑된 전구체를 수득하였다.
도핑된 전구체에 대해 LiOH를 1.03의 몰비로 첨가하고 어쿠스틱 믹서(LabRAMⅡ)를 이용하여 80g의 음향에너지를 2분간 인가하여 혼합한 후, 산소 분위기에서 780℃로 열처리하였다. 열처리후 수득된 결과물을 탈이온수에 분산시킨 후, 어쿠스틱 믹서(LabRAMⅡ)를 이용하여 40g의 음향에너지를 5분간 인가하면서 세척하고, 3분 이상 필터한 후, 130℃ 진공오븐에서 12시간 이상 건조하여 Y, Zr 및 Al이 도핑된 리튬 복합금속 산화물의 양극활물질을 제조하였다.
실시예 1-6: 양극활물질의 제조
Ni0 . 83Co0 . 11Mn0 .06(OH)2 전구체(D50=15㎛, 판 형태 1차 입자의 평균 판 두께=95nm)에 대해 지르코니아 나노분말 (D50=50nm)을 2000ppm의 농도와 Al2O3 나노분말(D50=50nm)을 2000ppm의 농도로 첨가한 후 어쿠스틱 믹서(LabRAMⅡ)를 이용하여 60g의 음향에너지를 2분간 인가하여 혼합하였다.
혼합된 전구체에 대해 LiOH를 1.03의 몰비로 첨가하고 어쿠스틱 믹서(LabRAMⅡ)를 이용하여 80g의 음향에너지를 2분간 인가하여 혼합한 후, 산소 분위기에서 780℃로 열처리하였다. 열처리 후의 결과물을 탈이온수에 분산시킨 후, 기계식 교반기(mechanical stirrer)를 이용하여 400rpm으로 5분간 세척하고, 3분 필터한 후, 130℃ 진공오븐에서 12시간 이상 건조하여 양극활물질을 제조하였다.
실험예 5
상기 실시예 1-5 및 실시예 1-6에서 제조한 양극활물질 5g을 탈이온수 100ml에 첨가하여 5분간 교반한 후, 결과의 용액을 필터링하고, pH 적정기를 이용하여 pH 4가 될 때까지 0.1M HCl을 투입하여, pH 변화에 따른 HCl 소모량을 측정하여 적정점(EP, FP)의 HCl 투입량을 이용하여 하기 수학식 1 및 2에 따라 미반응 LiOH 및 Li2CO3를 계산하였다. 그 결과를 하기 표 3에 나타내었다.
[수학식 1]
LiOH(중량%)=100 × [(2 × EP-FP) × 0.1 X 0.001 × 23.94]/5
[수학식 2]
Li2CO3(중량%)=100 × [(FP-EP) × 0.1 × 0.001 × 73.89]/5
상기 수학식 1 및 2에서 EP는 evaluation point이고, FP는 fixed point이다.
Li2CO3
(중량%)
LiOH
(중량%)
과량의 Li (중량%) 초기 pH
실시예 1-5 0.1077 0.1452 0.2529 11.0023
실시예 1-6 0.1915 0.2106 0.4021 11.6629
실험결과, 세척 공정시 어쿠스틱 믹서를 이용한 실시예 1-5의 양극활물질은, 실시예 1-6에 비해 보다 감소된 불순물의 함량 및 pH값을 나타내었다.
또, 상기 실시예 1-6에서 제조한 양극활물질 표면을 SEM으로 관찰하고, 그 결과를 도 13에 나타내었다.
관찰결과, 통상의 방법으로 제조하여 수세한 실시예 1-6의 양극활물질에서는 표면에 Li 잔여물이 입자간에 관찰되었다.
실시예 1-7 양극활물질의 제조
YSZ 대신에 Al2O3를 사용하는 것을 제외하고는 상기 실시예 1-5에서와 동일한 방법으로 실시하여, Al으로 도핑된 리튬 복합금속 산화물의 양극활물질을 제조하였다.
실시예 1-8 양극활물질의 제조
YSZ 대신에 SSZ를 사용하는 것을 제외하고는 상기 실시예 1-5에서와 동일한 방법으로 실시하여 SSZ 도핑원소 포함 원료물질 유래 세라믹 원소(Sc 및 Zr)로 도핑된 리튬 복합금속 산화물의 양극활물질을 제조하였다.
실시예 2-1: 리튬 이차전지의 제조
상기 실시예 1-1에서 제조한 양극활물질 94 중량%, 도전재로 카본 블랙(carbon black) 3 중량%, 그리고 바인더로 폴리비닐리덴 플루오라이드(PVdF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 약 20㎛의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로 흑연 분말 96.3 중량%, 도전재로 super-p 1.0 중량% 및 바인더로 스티렌 부타디엔 고무(SBR) 및 카르복시메틸셀룰로오스(CMC)를 1.5 중량%와 1.2 중량%를 혼합하고 용매인 NMP에 첨가하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 두께 약 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
전해질로서 에틸렌카보네이트 및 디에틸카보네이트를 30:70의 부피비로 혼합하여 제조된 비수전해액 용매에 LiPF6를 첨가하여 1M의 LiPF6 비수성 전해액을 제조하였다.
상기에서 제조한 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 리튬염 함유 전해액을 주입하여, 셀을 제조하였다.
실시예 2-2 내지 2-8 리튬 이차전지의 제조
상기 실시예 1-2 내지 1-8서 제조한 양극활물질을 각각 사용하는 것을 제외하고는, 실시예 2-1에서와 동일한 방법으로 실시하여 리튬 이차전지를 제조하였다.
상기한 실험결과들로부터 본 발명에 따라 음향 공진을 이용하여 도핑원소 포함 원료물질 형성 금속원소로 도핑한 양극활물질은 보다 개선된 구조적 안정성을 가져, 전지 적용시 용량 감소가 최소화되고, 그 결과로 보다 우수한 사이클 특성을 나타냄을 확인하였다.

Claims (19)

  1. 양극활물질용 금속 전구체와 도핑원소 포함 원료물질을 음향 공진을 이용하여 혼합하여, 상기 도핑원소로 도핑된 전구체를 준비하는 단계; 및
    상기 도핑된 전구체를 리튬 원료물질과 혼합한 후 열처리하는 단계를 포함하며,
    상기 양극활물질용 금속 전구체와 도핑원소 포함 원료물질은 2000 내지 5 : 1의 평균입경비를 갖는 것인 이차전지용 양극활물질의 제조방법.
  2. 제 1 항에 있어서,
    상기 도핑원소는 Y, Zr, La, Sr, Ga, Mg, Sc, Gd, Sm, Ca, Ce, Fe, Al, Ti, Ta, Nb, W, Mo, 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하는 것인 이차전지용 양극활물질의 제조방법.
  3. 제 1 항에 있어서,
    상기 도핑원소 포함 원료물질은 도핑원소 포함 산화물, 수산화물 및 옥시수산화물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 이차전지용 양극활물질의 제조방법.
  4. 제 1 항에 있어서,
    상기 도핑원소 포함 원료물질은 이트리아 안정화 지르코니아, 가돌리니아 도핑된 세리아, 란타늄 스트론튬 갈레이트 마그네사이트, 란타늄 스트론튬 망가네이트, 칼시아 안정화 지르코니아, 스칸디아 안정화 지르코니아, 니켈-이트리아 안정화 지르코니아 서멧 및 Al2O3로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 이차전지용 양극활물질의 제조방법.
  5. 제 1 항에 있어서,
    상기 도핑원소 포함 원료물질의 평균입경(D50)은 4nm 내지 5㎛인 것인 이차전지용 양극활물질의 제조방법.
  6. 제 1 항에 있어서,
    상기 도핑원소 포함 원료물질은 양극활물질용 금속 전구체 및 도핑원소 포함 원료물질의 총 함량에 대하여, 500ppm 내지 10000ppm의 함량으로 사용되는 것인 이차전지용 양극활물질의 제조방법.
  7. 제 1 항에 있어서,
    상기 양극활물질용 금속 전구체는, 양극활물질용 금속을 포함하는 산화물, 수산화물 및 옥시수산화물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하고,
    상기 양극활물질용 금속은 니켈, 코발트, 망간 및 알루미늄으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 금속원소를 포함하는 것인 이차전지용 양극활물질의 제조방법.
  8. 제 1 항에 있어서,
    상기 양극활물질용 금속 전구체의 평균입경(D50)은 10㎛ 내지 20㎛인 것인 이차전지용 양극활물질의 제조방법.
  9. 제 1 항에 있어서,
    상기 음향 공진은 50g 내지 90g의 음향에너지를 인가하여 수행되는 것인 이차전지용 양극활물질의 제조방법.
  10. 제 1 항에 있어서,
    상기 양극활물질용 금속 전구체는 판 형태의 1차 입자가 응집되어 이루어진 2차 입자이고, 상기 1차 입자는 평균 판 두께가 150nm 이하인 것이며,
    상기 음향 공진은 50g 내지 90g의 음향에너지를 1분 내지 4분간 인가하여 수행되는 것인 이차전지용 양극활물질의 제조방법.
  11. 제 1 항에 있어서,
    상기 양극활물질용 금속 전구체는 판 형태의 1차 입자가 응집되어 이루어진 2차 입자이고, 상기 1차 입자는 평균 판 두께가 150nm 초과인 것이며,
    상기 음향 공진은 60g 내지 90g의 음향에너지를 2분 내지 5분간 인가하여 수행되는 것인 이차전지용 양극활물질의 제조방법.
  12. 제 1 항에 있어서,
    상기 음향 공진은 어쿠스틱 믹서를 이용하여 수행되는 것인 이차전지용 양극활물질의 제조방법.
  13. 제 1 항에 있어서,
    상기 도핑된 전구체와 리튬 원료물질의 혼합은 음향 공진에 의해 수행되는 것인 이차전지용 양극활물질의 제조방법.
  14. 제 1 항에 있어서,
    상기 열처리는 700℃ 내지 950℃의 온도에서 수행되는 것인 이차전지용 양극활물질의 제조방법.
  15. 제 1 항에 있어서,
    상기 열처리 후 수득된 결과물에 대한 수세 공정을 더 포함하며,
    상기 수세 공정은 음향 공진을 이용하여 수행되는 것인 이차전지용 양극활물질의 제조방법.
  16. 제 1 항에 있어서,
    상기 열처리 후 수득된 결과물에 대한 표면처리 공정을 더 포함하며,
    상기 표면처리 공정은 상기 열처리 후 수득된 결과물과 표면처리제를 음향 공진을 이용하여 혼합 후 열처리 함으로써 수행되는 것인 이차전지용 양극활물질의 제조방법.
  17. 제 1 항에 따른 제조방법에 의해 제조되며, 금속원소로 도핑된 하기 화학식 2의 리튬 복합금속 산화물을 포함하는 이차전지용 양극활물질:
    [화학식 2]
    ALi1+aNi1-b-cMbCoc· (1-A)M'sO2
    상기 화학식 2에서,
    M은 Mn 및 Al 중 어느 하나 또는 둘 이상의 원소를 포함하고,
    M'는 Y, Zr, La, Sr, Ga, Mg, Sc, Gd, Sm, Ca, Ce, Fe, Al, Ti, Ta, Nb, W, Mo, 및 Cr로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고
    0<A<1, 0≤a≤0.33, 0≤b≤0.5, 0≤c≤0.5, 0<s≤0.2이되, b와 c는 동시에 0.5는 아니다.
  18. 제 17 항에 따른 양극활물질을 포함하는 양극.
  19. 제 18 항에 따른 양극을 포함하는 리튬 이차전지.
KR1020170084337A 2016-07-04 2017-07-03 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질 KR102026918B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
TW106122406A TWI627787B (zh) 2016-07-04 2017-07-04 用於二次電池之正極活性材料的製備方法以及藉該方法製得之用於二次電池的正極活性材料
CN201780010065.6A CN108602689B (zh) 2016-07-04 2017-07-04 制备二次电池用正极活性材料的方法和由此制备的二次电池用正极活性材料
US16/069,710 US10637056B2 (en) 2016-07-04 2017-07-04 Method of preparing positive electrode active material for secondary battery and positive electrode active material for secondary battery prepared thereby
PCT/KR2017/007114 WO2018008952A1 (ko) 2016-07-04 2017-07-04 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질
EP17824508.0A EP3388394B1 (en) 2016-07-04 2017-07-04 Method for manufacturing positive electrode active material for secondary battery and positive electrode active material for secondary battery, manufactured according to same
JP2018558102A JP6968428B2 (ja) 2016-07-04 2017-07-04 二次電池用正極活物質の製造方法およびこれにより製造された二次電池用正極活物質

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160084359 2016-07-04
KR1020160084359 2016-07-04

Publications (2)

Publication Number Publication Date
KR20180004672A true KR20180004672A (ko) 2018-01-12
KR102026918B1 KR102026918B1 (ko) 2019-09-30

Family

ID=61001155

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170084337A KR102026918B1 (ko) 2016-07-04 2017-07-03 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질

Country Status (6)

Country Link
US (1) US10637056B2 (ko)
EP (1) EP3388394B1 (ko)
JP (1) JP6968428B2 (ko)
KR (1) KR102026918B1 (ko)
CN (1) CN108602689B (ko)
TW (1) TWI627787B (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194510A1 (ko) * 2018-04-06 2019-10-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200047116A (ko) * 2018-10-26 2020-05-07 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
CN113258054A (zh) * 2021-04-25 2021-08-13 浙江帕瓦新能源股份有限公司 一种锂离子电池改性三元正极材料前驱体及其制备方法
WO2021241874A1 (ko) * 2020-05-28 2021-12-02 코오롱인더스트리 주식회사 연료전지용 혼합 촉매, 그 제조방법, 그것을 이용한 전극 형성방법, 및 그것을 포함하는 막-전극 어셈블리
CN114927671A (zh) * 2022-06-17 2022-08-19 远景动力技术(江苏)有限公司 正极活性材料、其制备方法、电化学装置和电子设备
US11581535B2 (en) 2018-12-10 2023-02-14 Lg Energy Solution, Ltd. High-nickel positive electrode active material, producing method thereof, positive electrode and lithium secondary battery comprising the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178876B1 (ko) * 2017-10-20 2020-11-13 주식회사 엘지화학 이차전지용 양극활물질의 제조방법 및 이를 이용하는 이차전지
JP7157249B2 (ja) * 2018-11-30 2022-10-19 ポスコ リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
CN109616641A (zh) * 2018-12-05 2019-04-12 成都理工大学 Li-Ni-Co-Mn-V-O四元锂离子电池正极材料及其制备方法
KR20210007858A (ko) 2019-07-11 2021-01-20 니치아 카가쿠 고교 가부시키가이샤 정극 활물질 및 그 제조방법
JP7264792B2 (ja) * 2019-11-12 2023-04-25 Jx金属株式会社 全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池及び全固体リチウムイオン電池用正極活物質の製造方法
GB201916427D0 (en) * 2019-11-12 2019-12-25 Johnson Matthey Plc Process
CN110854384B (zh) * 2019-11-26 2021-04-02 河北省科学院能源研究所 一种表面改性的镍基电极材料的制备方法
CN110707315B (zh) * 2019-11-26 2022-06-24 河北省科学院能源研究所 一种表面改性镍基电极材料
CN113764655B (zh) * 2020-06-03 2023-01-20 巴斯夫杉杉电池材料有限公司 一种镍钴锰铝四元前驱体及其制备方法
CN111916723B (zh) * 2020-07-14 2021-08-17 蜂巢能源科技有限公司 梯度掺杂的无钴正极材料及其制备方法以及锂离子电池正极和锂电池
CN113644272B (zh) * 2021-08-12 2023-01-24 巴斯夫杉杉电池材料有限公司 一种铈铋复合氧化物掺杂锂离子电池正极材料及其制备方法
CN113896253B (zh) * 2021-09-24 2023-05-23 合肥国轩电池材料有限公司 一种三元正极材料及其制备方法和应用
CN114094192A (zh) * 2021-12-03 2022-02-25 宁德新能源科技有限公司 一种电解液、包含该电解液的电化学装置及电子装置
CN114497447A (zh) * 2022-01-25 2022-05-13 珠海冠宇电池股份有限公司 一种正极片和锂离子电池
CN114713265A (zh) * 2022-03-16 2022-07-08 西安近代化学研究所 一种声共振强化制备钯基催化剂的方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013405A (ja) * 2006-07-06 2008-01-24 Tosoh Corp リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途
JP2011116580A (ja) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
KR20140091557A (ko) * 2011-10-17 2014-07-21 산드빅 인터렉츄얼 프로퍼티 에이비 공진 음향 믹서를 사용함으로써 초경합금 또는 서멧 분말을 제조하는 방법
KR20160068687A (ko) * 2014-12-05 2016-06-15 주식회사 엘지화학 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3308232B2 (ja) 1999-05-17 2002-07-29 三菱電線工業株式会社 Li−Co系複合酸化物およびその製造方法
CA2320661A1 (fr) 2000-09-26 2002-03-26 Hydro-Quebec Nouveau procede de synthese de materiaux limpo4 a structure olivine
JP2009173538A (ja) * 2001-09-26 2009-08-06 Hitachi Maxell Ltd 非磁性板状粒子とその製造方法
US20050249871A1 (en) 2004-05-07 2005-11-10 Zbigniew Tokarski Process for coating particles
US8445129B2 (en) 2005-05-27 2013-05-21 Sony Corporation Cathode active material, method of manufacturing it, cathode, and battery
JP4984436B2 (ja) 2005-05-27 2012-07-25 ソニー株式会社 リチウムイオン二次電池用正極活物質およびその製造方法、並びにリチウムイオン二次電池用正極およびリチウムイオン二次電池
GB2464157B (en) * 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
MA32844B1 (fr) 2009-06-24 2011-12-01 Reminex Particules d'oxyde de cobalt et de lithium dopees, et leur methode de preparation en vue d'applications potentielles comme batteries a ion lithium de hautes performances en termes de securite et d'enerigie
WO2011100487A2 (en) * 2010-02-12 2011-08-18 Applied Materials, Inc. HYDROTHERMAL SYNTHESIS OF LiFePO4 NANOPARTICLES
JP2013528907A (ja) 2010-05-11 2013-07-11 ルート ジェイジェイ カンパニー リミテッド リチウム二次電池用負極活物質、その製造方法及びそれを含むリチウム二次電池
JP2012238581A (ja) 2011-04-28 2012-12-06 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP5776996B2 (ja) * 2011-05-30 2015-09-09 住友金属鉱山株式会社 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池
JP2013089321A (ja) 2011-10-13 2013-05-13 Samsung Yokohama Research Institute Co Ltd リチウムイオン二次電池及びリチウムイオン二次電池用正極活物質の製造方法
US8642241B2 (en) * 2011-12-21 2014-02-04 Xerox Corporation Mixer apparatus and method of making developer
JP5740297B2 (ja) * 2011-12-22 2015-06-24 株式会社日立製作所 リチウムイオン二次電池用正極、リチウムイオン二次電池、これを搭載した乗り物および電力貯蔵システム
US8936831B2 (en) * 2012-02-03 2015-01-20 Uchicago Argonne, Llc Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles
CN103531748B (zh) * 2012-07-06 2015-09-30 清华大学 锂离子电池电极活性物质的制备方法
EP3062373B1 (en) 2013-10-31 2019-05-22 LG Chem, Ltd. Cathode active material, method for preparing same, and lithium secondary battery comprising same
KR101644684B1 (ko) 2014-02-28 2016-08-01 주식회사 엘지화학 리튬-니켈계 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
EP3229295B1 (en) 2014-12-05 2020-07-29 LG Chem, Ltd. Method for manufacturing a cathode active material
WO2016089176A1 (ko) * 2014-12-05 2016-06-09 주식회사 엘지화학 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013405A (ja) * 2006-07-06 2008-01-24 Tosoh Corp リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途
JP2011116580A (ja) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
KR20140091557A (ko) * 2011-10-17 2014-07-21 산드빅 인터렉츄얼 프로퍼티 에이비 공진 음향 믹서를 사용함으로써 초경합금 또는 서멧 분말을 제조하는 방법
KR20160068687A (ko) * 2014-12-05 2016-06-15 주식회사 엘지화학 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190117199A (ko) * 2018-04-06 2019-10-16 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN111902978A (zh) * 2018-04-06 2020-11-06 株式会社Lg化学 锂二次电池用正极活性材料、其制备方法、包含其的锂二次电池用正极和锂二次电池
US11876210B2 (en) 2018-04-06 2024-01-16 Lg Energy Solution, Ltd. Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material
US11799066B2 (en) 2018-04-06 2023-10-24 Lg Energy Solution, Ltd. Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material
WO2019194510A1 (ko) * 2018-04-06 2019-10-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN111902978B (zh) * 2018-04-06 2023-08-15 株式会社Lg新能源 锂二次电池用正极活性材料、其制备方法、包含其的锂二次电池用正极和锂二次电池
KR20200047116A (ko) * 2018-10-26 2020-05-07 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
US11581535B2 (en) 2018-12-10 2023-02-14 Lg Energy Solution, Ltd. High-nickel positive electrode active material, producing method thereof, positive electrode and lithium secondary battery comprising the same
CN114342126A (zh) * 2020-05-28 2022-04-12 可隆工业株式会社 用于燃料电池的混合催化剂、其制备方法、使用其形成电极的方法和包含其的膜-电极组件
US11652214B2 (en) 2020-05-28 2023-05-16 Kolon Industries, Inc. Mixed catalyst for fuel cell, method for preparing same, method for forming electrode by using same, and membrane-electrode assembly comprising same
WO2021241874A1 (ko) * 2020-05-28 2021-12-02 코오롱인더스트리 주식회사 연료전지용 혼합 촉매, 그 제조방법, 그것을 이용한 전극 형성방법, 및 그것을 포함하는 막-전극 어셈블리
CN114342126B (zh) * 2020-05-28 2023-11-24 可隆工业株式会社 用于燃料电池的混合催化剂、其制备方法、使用其形成电极的方法和包含其的膜-电极组件
CN113258054A (zh) * 2021-04-25 2021-08-13 浙江帕瓦新能源股份有限公司 一种锂离子电池改性三元正极材料前驱体及其制备方法
CN114927671A (zh) * 2022-06-17 2022-08-19 远景动力技术(江苏)有限公司 正极活性材料、其制备方法、电化学装置和电子设备

Also Published As

Publication number Publication date
US20190036119A1 (en) 2019-01-31
CN108602689A (zh) 2018-09-28
CN108602689B (zh) 2020-08-14
TWI627787B (zh) 2018-06-21
US10637056B2 (en) 2020-04-28
EP3388394B1 (en) 2020-04-08
KR102026918B1 (ko) 2019-09-30
JP2019508869A (ja) 2019-03-28
TW201813167A (zh) 2018-04-01
JP6968428B2 (ja) 2021-11-17
EP3388394A4 (en) 2019-04-10
EP3388394A1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
KR102026918B1 (ko) 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질
KR101748963B1 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102402388B1 (ko) 양극 활물질, 이를 채용한 양극과 리튬 이차 전지, 및 상기 양극 활물질의 제조방법
KR101989399B1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101827055B1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101777022B1 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102006207B1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101746187B1 (ko) 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
EP2918545B1 (en) Polycrystalline lithium manganese oxide particles, method for preparing same, and anode active material containing polycrystalline lithium manganese oxide particles
CN110168785B (zh) 镍基活性物质前驱体及其制备方法、镍基活性物质以及锂二次电池
EP3249723A1 (en) Cathode active material for secondary battery and secondary battery comprising same
EP3570352A1 (en) Lithium secondary battery cathode active material, preparation method therefor, lithium secondary battery cathode comprising same, and lithium secondary battery
EP3333129A1 (en) Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery including positive electrode including the same
KR20150093542A (ko) 양극 활물질, 이를 채용한 양극과 리튬 전지, 및 상기 양극 활물질의 제조방법
CN110915035A (zh) 锂二次电池用正极材料、其制备方法以及包括该正极材料的锂二次电池用正极和锂二次电池
CN114512660A (zh) 正极活性材料前驱体及其制备方法和正极活性材料
EP4254554A1 (en) Cathode active material, cathode comprising same, and secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant