WO2021238004A1 - 基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用 - Google Patents

基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用 Download PDF

Info

Publication number
WO2021238004A1
WO2021238004A1 PCT/CN2020/119094 CN2020119094W WO2021238004A1 WO 2021238004 A1 WO2021238004 A1 WO 2021238004A1 CN 2020119094 W CN2020119094 W CN 2020119094W WO 2021238004 A1 WO2021238004 A1 WO 2021238004A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape memory
benzoxazine
biomass
memory resin
shape
Prior art date
Application number
PCT/CN2020/119094
Other languages
English (en)
French (fr)
Inventor
顾嫒娟
沙新龙
梁国正
袁莉
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/927,085 priority Critical patent/US20230242707A1/en
Publication of WO2021238004A1 publication Critical patent/WO2021238004A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0233Polyamines derived from (poly)oxazolines, (poly)oxazines or having pendant acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2280/00Compositions for creating shape memory

Definitions

  • the invention relates to a shape memory resin based on biomass benzoxazine and a preparation and application method thereof, in particular to a shape memory resin based on biomass benzoxazine and a preparation and application method thereof, belonging to functional polymer materials Technical field.
  • SMP Shape memory polymer
  • SMPs are a type of stimulus-response polymer, they can change and fix the shape under certain conditions; afterwards, through external stimuli such as heat, electricity, light, chemical induction, etc., the polymer can be restored The original shape. Therefore, SMPs have important applications in many fields including aerospace, electronics, medical equipment, robotics, information, construction, textiles, daily necessities, etc.; especially when they are used as deployment components and structures, so as to achieve complex and large equipment. The large-scale and large-volume assembly greatly promotes the progress of many industries.
  • Benzoxazine resin is a typical heat-resistant thermosetting resin. It not only has the advantages of high T g , high storage modulus, and almost zero shrinkage during curing, but also has strong structural modification ability. Using different raw materials (phenols and amines), resins with different properties can be prepared. These inherent advantages of benzoxazine resins provide basic advantages for the preparation of high-performance SMPs. However, up to now, the existing pure benzoxazine resins are often fragile. At the same time, the copolymerization of benzoxazine resins with other resins can also obtain shape memory properties, but these resins are not biomass resins and T g Both are below 170°C. Simply put, no biomass benzoxazine resin has shape memory properties.
  • the present invention provides a biomass benzoxazine-based shape memory resin with high heat resistance, high tensile modulus and strength, and a preparation and application method thereof.
  • the technical solution adopted by the present invention is: a shape memory resin based on biomass benzoxazine.
  • the preparation method of the shape memory resin based on biomass benzoxazine includes the following steps: (1 ) The furfurylamine, formaldehyde compound, and vanillin are heated and reacted and then recrystallized to obtain the aldehyde group-containing benzoxazine monomer.
  • step (1) of the present invention the furfurylamine and formaldehyde compound are stirred and mixed at room temperature and then vanillin is added;
  • the formaldehyde compound is formaldehyde and/or paraformaldehyde;
  • the molar ratio of furfurylamine, formaldehyde compound and vanillin is 100: (200 ⁇ 220): 100;
  • the temperature of the heating reaction is 80 ⁇ 90 °C, and the time is 4 ⁇ 6h; it is recrystallized with ethanol.
  • step (2) of the present invention the coupling reaction does not require a solvent, and the product does not need to be purified; the temperature of the coupling reaction is 125-130°C, and the time is 1-2h; the aldehyde-containing benzoxazine monomer and polyetheramine The molar ratio is 100:50.
  • step (3) of the present invention the Schiff base benzoxazine monomer is degassed and then cured; the curing temperature is 150-240°C, and the time is 10-24h.
  • the curing is a stepped heating method, the holding time at each step temperature is not less than 1 h, and the temperature difference between adjacent steps is not more than 30°C.
  • the preparation of the shape memory resin based on biomass benzoxazine of the present invention is as follows: (1) On a mole basis, 100 parts of furfurylamine and 200-220 parts of formaldehyde are mixed, stirred at room temperature for 15 minutes, and then added to 100 parts. Part of vanillin, the reaction system was stirred and reacted for 4-6 hours at a temperature of 80-90°C, cooled to room temperature naturally, ethanol was recrystallized to remove impurities, and dried to obtain an aldehyde-containing benzoxazine monomer.
  • step (3) Degas the Schiff base benzoxazine monomer obtained in step (2), and then solidify to obtain a shape memory resin based on biomass benzoxazine.
  • the present invention discloses the application of the above-mentioned shape memory resin based on biomass benzoxazine in the preparation of shape memory materials.
  • the shape memory resin based on biomass benzoxazine of the present invention has excellent deformation recovery performance. Copolymerization of other resins.
  • the present invention discloses the shape change and recovery method of the above-mentioned biomass benzoxazine-based shape memory resin, which includes the following steps: (1) At the deformation temperature, the biomass benzoxazine-based shape memory The resin is changed into a new shape; then it is heated and cooled to room temperature to obtain a shape memory resin based on biomass benzoxazine with a new shape to complete the shape change.
  • step (1) the heating temperature is 290 ⁇ 300°C, and the time is 20 ⁇ 30s; the deformation temperature is 10 ⁇ 20° above the glass transition temperature of the shape memory resin based on biomass benzoxazine C.
  • the shape change and recovery method of the shape memory resin based on biomass benzoxazine specifically includes the following steps: (1) When the temperature is heated to 10-20°C above the glass transition temperature, it will have the original shape under the action of external force. The polymer system is changed into the required new shape; then continue to heat to 290 ⁇ 300°C, and maintain the temperature and external force, so that the reversible Schiff base dynamic bond exchange reaction occurs in the polymer system.
  • step (1) After cooling to room temperature, the new shape described in step (1) is fixed and becomes a new permanent shape II of the shape memory resin based on biomass benzoxazine.
  • the present invention uses biomass raw material furfurylamine and vanillin as raw materials to synthesize a benzoxazine monomer with a Schiff base structure. Both furfurylamine and vanillin used are green biomass raw materials.
  • the shape memory resin based on biomass benzoxazine prepared by the present invention has outstanding heat resistance, glass transition temperature (T g ) of 280°C, and high tensile modulus (2.40GPa) And strength (90.4MPa), which provides a reliable basis for its application in cutting-edge fields.
  • T g glass transition temperature
  • 90.4MPa strength
  • the high heat resistance of the resin benefits from the involvement of furan in the resin in the cross-linking and the large number of hydrogen bond structures in the cross-linking network.
  • the excellent mechanical properties are due to the combination of the rigid benzoxazine structure and the flexible polyetheramine structure in the crosslinked network.
  • the biomass-based benzoxazine thermosetting shape memory resin prepared in the present invention has the advantage of being able to change its initial shape, so that the crosslinking network can be reconstructed, thereby obtaining a stable permanent shape.
  • This application method overcomes the defect that traditional cross-linked polymers cannot be processed again after molding, and the shape recovery rate of the prepared biomass benzoxazine-based shape memory resin is as high as 98%.
  • the preparation method of the biomass benzoxazine shape memory resin provided by the present invention adopts a solvent-free method, is environmentally friendly, has a simple preparation process, avoids the use of a large amount of solvents in the preparation process, and is easy for industrialized large-scale production; at the same time, the preparation method prepared by the present invention
  • the shape memory resin based on biomass benzoxazine is applied, the original shape can be permanently changed as required, which overcomes the defect that traditional cross-linked polymers cannot be processed again after molding, and saves the processing cost of the original structure.
  • Figure 1 is a synthesis reaction formula for preparing aldehyde group-containing benzoxazine monomer in Example 1 of the present invention.
  • Figure 2 is a proton nuclear magnetic resonance spectrum (1 H NMR) of the aldehyde group-containing benzoxazine monomer in Example 1 of the present invention.
  • Figure 3 is a carbon nuclear magnetic resonance spectrum (13C NMR) of the aldehyde-containing benzoxazine monomer in Example 1 of the present invention.
  • Figure 4 is a synthesis reaction formula for preparing Schiff base-containing benzoxazine monomers in Example 1 of the present invention.
  • Figure 5 is a hydrogen nuclear magnetic resonance spectrum (1 H NMR) of a Schiff base-containing benzoxazine monomer in Example 1 of the present invention.
  • Figure 6 is the infrared spectrum of the Schiff base-containing benzoxazine monomer and the cured product in Example 1 of the present invention.
  • FIG. 7 is a dynamic thermomechanical analysis (DMA) curve of the shape memory resin based on biomass benzoxazine prepared in Example 1 of the present invention.
  • DMA dynamic thermomechanical analysis
  • Fig. 8 is a stress-strain curve of a shape memory resin based on biomass benzoxazine prepared in Example 1 of the present invention.
  • FIG. 9 is a shape memory electronic image of a shape memory resin based on biomass benzoxazine prepared in Example 1 of the present invention.
  • Fig. 10 is a schematic diagram of the preparation of a shape memory resin based on biomass benzoxazine according to the present invention.
  • the preparation process of the biomass-based benzoxazine shape memory resin disclosed in the present invention does not require a solvent, and is specifically as follows: (1) Furfurylamine, formaldehyde compound, and vanillin are heated and reacted and then recrystallized to obtain an aldehyde-containing benzoxazine monomer .
  • FIG. 2 is a proton nuclear magnetic resonance spectrum based on the aldehyde-containing biomass benzoxazine monomer provided in Example 1 of the present invention.
  • About 9.81 ppm represents the active H on the aldehyde group, about 5.08 ppm and 4.09 ppm
  • the place represents the H on the oxazine ring, indicating that the aldehyde-containing biomass benzoxazine monomer has been successfully synthesized.
  • FIG. 3 is a carbon NMR spectrum based on the aldehyde-containing biomass benzoxazine monomer provided in Example 1 of the present invention.
  • the characteristic peak of C on the aldehyde group at about 190.8 ppm is about 83.3 ppm and 56.0.
  • the ppm position represents the characteristic peak of C on the oxazine ring.
  • FIG. 5 is a proton nuclear magnetic resonance spectrum based on Schiff base biomass benzoxazine monomer provided in Example 1 of the present invention.
  • About 8.15 ppm represents the active H on the aldehyde group, about 5.01 ppm and 4.02 ppm The place represents the H on the oxazine ring, indicating that the Schiff base biomass benzoxazine monomer has been successfully synthesized.
  • FIG. 6 is the infrared spectrum of the Schiff base benzoxazine monomer and the cured product in Example 1.
  • the out-of-plane vibration peaks of oxazine ring and hydrocarbon in the spectrum of Schiff base benzoxazine resin disappear (914 cm -1 ), C ⁇
  • the asymmetric stretching vibration and phenolic hydroxyl peaks of O-C appear at 1288 cm -1 and 3331 cm -1 , respectively, indicating the formation of a cross-linked network.
  • thermosetting shape memory resin based on biomass benzoxazine prepared in Example 1 has a storage modulus of 4.20 GPa at 25°C. Its glass transition temperature (T g ) is 280°C, which proves that the biomass benzoxazine shape memory resin prepared by the present invention has outstanding heat resistance.
  • T g glass transition temperature
  • the benzoxazine prepared in the technology disclosed above is prepared based on the Mannich reaction of petroleum-based phenol and polyetheramine as two raw materials.
  • the final prepared benzoxazine resin cannot satisfy both high heat resistance and high heat resistance. Shape memory performance.
  • the synthetic method of benzoxazine in the above disclosed technology is not a general synthetic method.
  • the applicant replaced the petroleum-based phenolic raw material with the bio-based raw material vanillin, using solvent and solvent-free materials respectively.
  • a total of three methods to prepare polyetheramine backbone benzoxazine monomers failed to obtain the target product. The reason is that the aldehyde group in vanillin reacts preferentially with polyetheramine to form Schiff base.
  • the benzoxazine monomer cannot be prepared by Mannich reaction.
  • the specific operation is as follows: Method 1: Mix 1.52g vanillin, 1.15g polyetheramine D-230 (molecular weight 230) and 0.6g paraformaldehyde , React for 4h, 5h or 6h at a temperature of 85°C, cool to room temperature naturally, add 20mL chloroform, wash three times with 20mL 1N NaOH solution (to remove unreacted phenolic materials), collect the organic layer and use anhydrous sulfuric acid The sodium was dried, and the solvent was evaporated, but no product was obtained.
  • Method 2 Add 1.52g vanillin, 1.15g polyetheramine D-230 (molecular weight 230) and 0.6g paraformaldehyde to 20mL chloroform, react at reflux temperature for 4h, 5h or 6h, and cool to room temperature naturally. It was washed three times with 20 mL of 1N NaOH solution (to remove unreacted phenolic materials), and the organic layer was collected and dried with anhydrous sodium sulfate. The solvent was evaporated and no product was obtained.
  • Method 3 Add 1.52g vanillin, 1.15g polyetheramine D-230 (molecular weight 230) and 0.6g paraformaldehyde into 20mL ethanol, react at reflux temperature for 4h, 5h or 6h, evaporate the solvent and add 20mL Chloroform was washed three times with 20 mL of 1N NaOH solution (to remove unreacted phenolic materials), the organic layer was collected and dried with anhydrous sodium sulfate. Evaporation of the solvent did not yield any product.
  • the new shape is designed into other shapes such as a circle shape and an S shape, and the shape memory recovery rate of the shape memory resin based on biomass benzoxazine also reaches more than 96%.
  • step (2) of Example 1 The reaction time of step (2) of Example 1 was adjusted to 0.5 hours, and the rest remained unchanged, and the T g (DMA) of the obtained biomass benzoxazine-based shape memory resin was 241°C.
  • step (2) of Example 1 The reaction time of step (2) of Example 1 was adjusted to 3 hours, and the rest remained unchanged, and the T g (DMA) of the obtained biomass benzoxazine-based shape memory resin was 259°C.
  • the aldehyde-containing biomass benzoxazine monomer prepared in step (1) is directly cured according to the same process as in step (3), and the obtained resin does not have shape memory properties.
  • the original shape of the shape memory resin based on biomass benzoxazine is changed into the desired new shape; then it is maintained at 300 °C and maintain the external force to enable the reversible exchange reaction of Schiff base dynamic bonds in the polymer system; then cool to room temperature, the new shape is fixed, and it becomes a new shape memory resin based on biomass benzoxazine Permanent shape: Heat the shape memory resin based on biomass benzoxazine with a new permanent shape to 20°C above the glass transition temperature. After 40s, the polymer will automatically return to the original shape from the new permanent shape.
  • the original shape of the shape memory resin based on biomass benzoxazine is changed into the desired new shape; then it is maintained at 300 °C and maintain the external force to enable the reversible exchange reaction of Schiff base dynamic bonds in the polymer system; then cool to room temperature, the new shape is fixed, and it becomes a new shape memory resin based on biomass benzoxazine Permanent shape: Heat the shape memory resin based on biomass benzoxazine with a new permanent shape to 20°C above the glass transition temperature. After 40s, the polymer will automatically return to the original shape from the new permanent shape.
  • the original shape of the shape memory resin based on biomass benzoxazine is changed into the desired new shape; then it is maintained at 300 °C and maintain the external force to enable the reversible exchange reaction of Schiff base dynamic bonds in the polymer system; then cool to room temperature, the new shape is fixed, and it becomes a new shape memory resin based on biomass benzoxazine Permanent shape: Heat the shape memory resin based on biomass benzoxazine with a new permanent shape to 20°C above the glass transition temperature. After 40s, the polymer will automatically return to the original shape from the new permanent shape.
  • the original shape of the shape memory resin based on biomass benzoxazine is changed into the desired new shape; then it is maintained at 300 °C and maintain the external force to enable the reversible exchange reaction of Schiff base dynamic bonds in the polymer system; then cool to room temperature, the new shape is fixed, and it becomes a new shape memory resin based on biomass benzoxazine Permanent shape: Heat the shape memory resin based on biomass benzoxazine with a new permanent shape to 20°C above the glass transition temperature. After 40s, the polymer will automatically return to the original shape from the new permanent shape.
  • the original shape of the shape memory resin based on biomass benzoxazine is changed into the desired new shape; then it is maintained at 300 °C and maintain the external force to enable the reversible exchange reaction of Schiff base dynamic bonds in the polymer system; then cool to room temperature, the new shape is fixed, and it becomes a new shape memory resin based on biomass benzoxazine Permanent shape: Heat the shape memory resin based on biomass benzoxazine with a new permanent shape to 20°C above the glass transition temperature. After 40s, the polymer will automatically return to the original shape from the new permanent shape.
  • the original shape of the shape memory resin based on biomass benzoxazine is changed into the desired new shape; then it is maintained at 300 °C and maintain the external force to enable the reversible exchange reaction of Schiff base dynamic bonds in the polymer system; then cool to room temperature, the new shape is fixed, and it becomes a new shape memory resin based on biomass benzoxazine Permanent shape: Heat the shape memory resin based on biomass benzoxazine with a new permanent shape to 20°C above the glass transition temperature. After 40s, the polymer will automatically return to the original shape from the new permanent shape.
  • the original shape of the shape memory resin based on biomass benzoxazine is changed into the desired new shape; then it is maintained at 300 °C and maintain the external force to enable the reversible exchange reaction of Schiff base dynamic bonds in the polymer system; then cool to room temperature, the new shape is fixed, and it becomes a new shape memory resin based on biomass benzoxazine Permanent shape: Heat the shape memory resin based on biomass benzoxazine with a new permanent shape to 20°C above the glass transition temperature. After 40s, the polymer will automatically return to the original shape from the new permanent shape.
  • the original shape of the shape memory resin based on biomass benzoxazine is changed into the desired new shape; then it is maintained at 300 °C and maintain the external force to enable the reversible exchange reaction of Schiff base dynamic bonds in the polymer system; then cool to room temperature, the new shape is fixed, and it becomes a new shape memory resin based on biomass benzoxazine Permanent shape: Heat the shape memory resin based on biomass benzoxazine with a new permanent shape to 20°C above the glass transition temperature. After 40s, the polymer will automatically return to the original shape from the new permanent shape.
  • the present invention discloses a shape memory resin based on biomass benzoxazine and its preparation method and application. It uses biomass furfurylamine and paraformaldehyde as raw materials to obtain aldehyde-containing groups through heating reaction under suitable conditions. Biomass benzoxazine monomers; Mix aldehyde-containing biomass benzoxazine monomers and polyetheramines to obtain Schiff base biomass benzoxazine monomers through coupling reaction; Schiff base biomass benzene The oxazine monomer can be cured to obtain a biomass benzoxazine resin with shape memory function.
  • the preparation process of the invention is simple, the synthesis process does not require solvents, the yield is high, the raw materials are green and environmentally friendly, and the dependence of polymer materials on fossil resources is greatly reduced.
  • the benzoxazine shape memory resin of the present invention has excellent thermal properties (glass transition temperature T g of 280°C), high tensile modulus (2.46 GPa) and strength (90.4 MPa) .
  • the original shape of the benzoxazine resin obtained by the method of the present invention can be permanently changed as required, which overcomes the defect that the traditional cross-linked polymer cannot be processed again after molding, and realizes the thermal stimulation (above the glass transition temperature). )
  • the recovery function under the conditions, the excellent thermal and mechanical properties also greatly increase the applicable scope of the shape memory polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

一种基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用,以生物质糠胺、香草醛和多聚甲醛为原料,通过加热反应得到含醛基生物质苯并噁嗪单体;将含醛基生物质苯并噁嗪单体和聚醚胺混合,通过偶联反应得到希夫碱生物质苯并噁嗪单体;将希夫碱生物质苯并噁嗪单体经过固化即可得到具有形状记忆功能的生物质苯并噁嗪树脂。该苯并噁嗪形状记忆树脂具有优异的热性能、高拉伸模量和强度,原始形状可以根据需要被永久地改变,克服了传统交联聚合物在成型后无法再次加工的缺陷,并实现了在加热刺激条件下的恢复功能,优异的热性能和力学性能也提高了形状记忆聚合物的适用范围。

Description

[根据细则37.2由ISA制定的发明名称] 基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用 技术领域
本发明涉及一种基于生物质苯并噁嗪的形状记忆树脂及其制备与应用方法,特别涉及一种基于生物质苯并噁嗪的形状记忆树脂及其制备与应用方法,属于功能高分子材料技术领域。
背景技术
形状记忆聚合物(SMP)是一类刺激-响应的聚合物,它们在一定条件下可以改变和固定形状;之后,通过外部刺激如热、电、光、化学感应等,即可使得聚合物恢复原来的形状。因此,SMP在许多领域包括航空航天、电子、医疗设备、机器人、信息、建筑、纺织、日用品等有着重要的应用;尤其是当它们被用作部署组件和结构时,从而实现设备的复杂、大规模和大批量的装配,从而大大促进许多行业的进步。
高性能和绿色化是材料研究和发展的趋势, SMP的发展同样如此。高耐热性和高的机械强度是高性能聚合物的典型指标,然而,目前大多数SMP具有低玻璃化转变温度(T g),因此不能应用在航空航天和其它要求高的耐热性领域。另一方面,开发无溶剂策略和使用生物质聚合物是实现绿色化的重要方法,但有关SMP绿色制备的研究报道较少。
苯并噁嗪树脂是一种典型的耐热热固性树脂,它不仅具有高T g、高储能模量、在固化过程中收缩几乎为零等优势,而且具有很强的结构改性能力,通过采用不同的原材料(酚和胺),可以制备得到具有不同性能的树脂。苯并噁嗪树脂的这些固有优点为制备高性能SMPs提供了基本的优点。然而,迄今为止,现有的纯苯并噁嗪树脂往往是易碎的,同时,苯并噁嗪树脂与其它树脂的共聚也可获得形状记忆性能,但这些树脂并不是生物质树脂且T g都低于170°C。简单来说,没有生物质苯并噁嗪树脂具有形状记忆特性。
综上所述,现有技术在形状记忆聚合物研发方面取得了较大的进展,然而,通过无溶剂策略开发研发具有高耐热性、高拉伸模量和强度的生物质苯并噁嗪形状记忆树脂仍具有一定的挑战。
技术问题
本发明针对现有技术的不足,提供一种具有高耐热性、高拉伸模量和强度的基于生物质苯并噁嗪的形状记忆树脂及其制备与应用方法。
技术解决方案
为达到上述目的,本发明所采用的技术方案是:一种基于生物质苯并噁嗪的形状记忆树脂,所述基于生物质苯并噁嗪的形状记忆树脂的制备方法包括如下步骤:(1)将糠胺、甲醛化合物、香草醛加热反应后重结晶,得到含醛基苯并噁嗪单体。
(2)将所述含醛基苯并噁嗪单体与聚醚胺偶联反应,得到希夫碱苯并噁嗪单体。
(3)将所述希夫碱苯并噁嗪单体固化,得到基于生物质苯并噁嗪的形状记忆树脂。
本发明步骤(1)中,将糠胺和甲醛化合物在室温下搅拌混合后加入香草醛;所述的甲醛化合物为甲醛和/或多聚甲醛;糠胺、甲醛化合物、香草醛的摩尔比为100∶(200~220)∶100;加热反应的温度为80~90°C,时间为4~6h;采用乙醇重结晶。
本发明步骤(2)中,偶联反应无需溶剂,且产物无需提纯;偶联反应的温度为125~130°C,时间为1~2h;含醛基苯并噁嗪单体与聚醚胺的摩尔比为100∶50。
本发明步骤(3)中,将所述希夫碱苯并噁嗪单体脱泡后再固化;固化的温度为150~240°C,时间为10~24h。优选的,步骤(3)中,所述固化为阶梯升温方式,每个阶梯温度下保温时间不少于1h,相邻阶梯的温度差不超过30°C。
具体的,本发明基于生物质苯并噁嗪的形状记忆树脂的制备如下:(1)按摩尔份计,将100份糠胺和200-220份甲醛混合,在室温下搅拌15min,而后加入100份香草醛,反应体系在温度80-90°C的条件下搅拌反应4-6h,自然冷却至室温,乙醇重结晶除去杂质,干燥后得到含醛基苯并噁嗪单体。
(2)按摩尔份计,将100份含醛基苯并噁嗪单体和50份聚醚胺D-230(分子量为230)混合,在温度125-130°C的条件下反应1-2h,自然冷却至室温,干燥,即得到希夫碱苯并噁嗪单体。
(3)将步骤(2)得到的希夫碱苯并噁嗪单体脱泡,再经固化,得到基于生物质苯并噁嗪的形状记忆树脂。
本发明公开了上述基于生物质苯并噁嗪的形状记忆树脂在制备形状记忆材料中的应用,尤其是,本发明基于生物质苯并噁嗪的形状记忆树脂本身具有优异的形变恢复性能,无需其他树脂共聚。
本发明公开了上述基于生物质苯并噁嗪的形状记忆树脂的形状变化与恢复方法,包括如下步骤:(1)于形变温度下,将具有原始形状的基于生物质苯并噁嗪的形状记忆树脂改变成新形状;然后加热,在冷却至室温,得到具有新形状的基于生物质苯并噁嗪的形状记忆树脂,完成形状变化。
(2)将所述具有新形状的基于生物质苯并噁嗪的形状记忆树脂加热至形变温度,所述具有新形状的基于生物质苯并噁嗪的形状记忆树脂恢复为原始形状,完成形状恢复。
上述技术方案中,步骤(1)中,加热的温度为290~300℃,时间为20~30s;形变温度为基于生物质苯并噁嗪的形状记忆树脂的玻璃化转变温度以上10~20°C。
上述基于生物质苯并噁嗪的形状记忆树脂的形状变化与恢复方法具体包括如下步骤:(1)当温度加热到玻璃化转变温度以上10~20°C,在外力作用下,将具有原始形状的聚合物体系改变成所需的新形状;随后继续加热到290~300°C,并保持该温度与外力,使聚合物体系内进行希夫碱动态键的可逆交换反应。
(2)冷却到室温,步骤(1)中所述的新形状被固定住,成为基于生物质苯并噁嗪的形状记忆树脂的一个新的永久形状II。
(3)将具有新的永久形状II的基于生物质苯并噁嗪的形状记忆树脂加热到玻璃化转变温度以上10~20°C,交联聚合物将从步骤(2)中的永久形状II自动回复到永久形状I,即原始形状。
有益效果
与现有技术相比,本发明取得的有益效果是:1. 本发明以生物质原料糠胺和香草醛为原料,合成了一个具有希夫碱结构的苯并噁嗪单体。所采用的糠胺和香草醛均为绿色生物质原料。
2. 本发明制备的基于生物质苯并噁嗪的形状记忆树脂具有突出的耐热型,玻璃化转变温度(T g)为280°C,同时其还具有高拉伸模量(2.40GPa)和强度(90.4MPa),从而为其在尖端领域的应用提供了可靠的基础,树脂的高耐热性得益于树脂内呋喃参与了交联以及交联网络中大量的氢键结构,而其优异的力学性能则是因为交联网络中刚性的苯并噁嗪结构与柔性的聚醚胺结构的共同作用。
3. 本发明制备的基于生物质苯并噁嗪热固性形状记忆树脂具有可改变其初始形状的优点,使其交联网络发生重构,从而获得的稳定的永久形状。这种应用方法克服了传统交联聚合物在成型后无法再次加工的缺陷,且制备的基于生物质苯并噁嗪的形状记忆树脂形状恢复率高达98%。
4. 本发明提供的生物质苯并噁嗪形状记忆树脂的制备方法采用无溶剂法,绿色环保,制备工艺简单,避免制备过程中大量溶剂的使用,易于工业化大规模生产;同时本发明所制备的基于生物质苯并噁嗪的形状记忆树脂在应用时,原始形状可以根据需要被永久地改变,克服了传统交联聚合物在成型后无法再次加工的缺陷,节省了原始结构加工成本。
附图说明
图1 是本发明实施例1中制备含醛基苯并噁嗪单体的合成反应式。
图2 是本发明实施例1中含醛基苯并噁嗪单体的核磁共振氢谱( 1H NMR)。
图3 是本发明实施例1中含醛基苯并噁嗪单体的核磁共振碳谱( 13C NMR)。
图4 是本发明实施例1中制备含希夫碱苯并噁嗪单体的合成反应式。
图5 是本发明实施例1中含希夫碱苯并噁嗪单体的核磁共振氢谱( 1H NMR)。
图6 是本发明实施例1中含希夫碱苯并噁嗪单体以及固化产物的红外光谱。
图7 是本发明实施例1制备的基于生物质苯并噁嗪的形状记忆树脂的动态热机械分析(DMA)曲线。
图8 是本发明实施例1制备的基于生物质苯并噁嗪的形状记忆树脂的应力-应变曲线。
图9 是本发明实施例1制备的基于生物质苯并噁嗪的形状记忆树脂的形状记忆电子图像。
图10 是本发明制备基于生物质苯并噁嗪的形状记忆树脂的示意图。
本发明的实施方式
本发明公开的基于生物质苯并噁嗪形状记忆树脂制备过程无需溶剂,具体如下:(1)将糠胺、甲醛化合物、香草醛加热反应后重结晶,得到含醛基苯并噁嗪单体。
(2)将所述含醛基苯并噁嗪单体与聚醚胺偶联反应,得到希夫碱苯并噁嗪单体。
(3)将所述希夫碱苯并噁嗪单体固化,得到基于生物质苯并噁嗪的形状记忆树脂。
示意图可参考图10。
下面结合附图和实施例,对本发明技术方案作进一步的描述;所有原料都为市购,且涉及的测试方法都为本领域常规测试方法。
实施例1。
(1) 含醛基生物质苯并噁嗪单体的制备: 将9.71g糠胺和6.00g多聚甲醛(CAS#: 30525-89-4)混合,在室温下搅拌15min,而后加入15.22g香草醛,在温度85°C的条件下搅拌反应5h,自然冷却至室温,加入乙醇重结晶除去杂质,固体干燥后得到含醛基生物质苯并噁嗪单体。
在本实施例中,含醛基生物质苯并噁嗪单体的合成反应式、核磁共振氢谱和核磁共振碳谱分别参见附图1、图2和图3。
参见附图2,它是本发明实施例1提供的基于含醛基生物质苯并噁嗪单体的核磁共振氢谱,约9.81ppm处代表醛基上的活泼H,约5.08ppm和4.09ppm处代表噁嗪环上的H,说明成功合成了含醛基生物质苯并噁嗪单体。
参见附图3,它是本发明实施例1提供的基于含醛基生物质苯并噁嗪单体的核磁共振碳谱,约190.8ppm处代表醛基上的C特征峰,约83.3ppm和56.0ppm处代表噁嗪环上的C特征峰。
(2)希夫碱生物质苯并噁嗪单体的制备: 将27.31g含醛基生物质苯并噁嗪单体和11.50g聚醚胺D-230(分子量为230)混合,在温度125°C的条件下反应1h,自然冷却至室温,干燥后得到希夫碱生物质苯并噁嗪单体。
由附图4本实施例提供的希夫碱生物质苯并噁嗪单体的合成反应式可见,该反应是偶联反应。
参见附图5,它是本发明实施例1提供的基于希夫碱生物质苯并噁嗪单体的核磁共振氢谱,约8.15ppm处代表醛基上的活泼H,约5.01ppm和4.02ppm处代表噁嗪环上的H,说明成功合成了希夫碱生物质苯并噁嗪单体。
(3)基于生物质苯并噁嗪的形状记忆树脂的制备:将10.0g希夫碱生物质苯并噁嗪单体放入模具中,将模具放入烘箱中进行脱泡(150°C下10min),而后将模具放入鼓风干燥箱,依次按照160 °C/2 h + 180 °C/2 h + 200 °C/2 h + 220 °C/2 h+ 240 °C/2 h工艺进行固化;固化结束后,随烘箱自然冷却,即得到基于生物质苯并噁嗪的形状记忆树脂,其红外光谱、玻璃化转变温度和拉伸强度分别参见附图6、7、8。
参见附图6,它是实施例1中希夫碱苯并噁嗪单体以及固化产物的红外光谱。相比于希夫碱苯并噁嗪单体的谱图,希夫碱苯并噁嗪树脂的谱图中噁嗪环与碳氢化合物的平面外振动峰消失(914 cm -1),C−O−C的不对称伸缩振动和酚羟基峰分别出现在1288 cm -1 和 3331 cm -1,表明了交联网络的形成。
参见附图7,它是基于生物质苯并噁嗪的形状记忆树脂的动态热机械分析(DMA)曲线。从中可以看出,实施例1中所制备的基于生物质苯并噁嗪的热固性形状记忆树脂在25°C下的储能模量为4.20GPa。其玻璃化转变温度(T g)为280°C,证明本发明所制备的生物质苯并噁嗪形状记忆树脂具有突出的耐热型。
而现有技术公开的聚醚胺苯并噁嗪的T g(DMA)为100°C左右,以聚醚胺苯并噁嗪-聚氨酯共聚树脂的T g(DMA)最高为167°C,参见黄金柏的硕士学位论文“形状记忆聚醚胺型苯并噁嗪的合成与性能研究”,由其制得苯并噁嗪树脂的T g(DMA)为40-91°C;苏雪辉的硕士学位论文“甲酚型苯并噁嗪的合成与形状记忆性能研究”,由其制得苯并噁嗪树脂的T g(DMA)为68-123°C;李翠芸的硕士毕业论文“甲氧酚/聚醚胺型苯并噁嗪的制备与性能”,由其制得苯并噁嗪-聚氨酯共聚树脂的T g(DMA)为33-167°C。 CN105111438A公开了一种聚醚胺苯并噁嗪,具有好的耐热性能,但不具备形状记忆,不能在加热后将原始形状改变为固定的新形状。
以上公开的技术中所制备的苯并噁嗪是基于石油基酚和聚醚胺两种原料通过曼尼希反应制得的,最终制备的苯并噁嗪树脂并不能同时满足高耐热性和形状记忆性能。同时,以上公开技术中苯并噁嗪的合成方法也不是一种通用的合成方法,在相关工作中,申请人将石油基酚类原料替换成生物基原料香草醛,分别采用有溶剂和无溶剂共三种方法来制备聚醚胺主链型苯并噁嗪单体,均未得到目标产物,究其原因,发现是香草醛中的醛基与聚醚胺会优先反应生成席夫碱,而无法通过曼尼希反应制得苯并噁嗪单体,具体操作如下所示:方法1:将1.52g香草醛、1.15g聚醚胺D-230(分子量为230)和0.6g多聚甲醛混合,在温度85°C的条件下反应4h、5h或者6h,自然冷却至室温,加入20mL氯仿,用20mL 1N NaOH溶液洗涤三次(洗去未反应的酚类原料),收集有机层并用无水硫酸钠干燥,蒸发溶剂均未得到产物。
方法2:将1.52g香草醛、1.15g聚醚胺D-230(分子量为230)和0.6g多聚甲醛加入到20mL氯仿中,在回流温度下反应4h、5h或者6h,自然冷却至室温,用20mL 1N NaOH溶液洗涤三次(洗去未反应的酚类原料),收集有机层并用无水硫酸钠干燥,蒸发溶剂均未得到产物。
方法3:将1.52g香草醛、1.15g聚醚胺D-230(分子量为230)和0.6g多聚甲醛加入到20mL乙醇中,在回流温度下反应4h、5h或者6h,蒸发溶剂,加入20mL氯仿,用20mL 1N NaOH溶液洗涤三次(洗去未反应的酚类原料),收集有机层并用无水硫酸钠干燥,蒸发溶剂均未得到产物。
通过以上合成实验以及对现有技术公开的由聚醚胺为原料合成的苯并噁嗪树脂的性能总结得知,现有公开的原料配方与合成技术并不适用于制备具有高耐热性的形状记忆苯并噁嗪树脂。在本申请中,创新性地使用两步合成法:首先,用香草醛和糠胺反应,得到含醛基的苯并噁嗪单体,糠胺中的呋喃在热固化中会参与交联,从而增加树脂的耐热型。其次,与公开技术不同的是,将聚醚胺作为一个偶联反应原料,而不是曼尼希反应原料,所制备的希夫碱型苯并噁嗪单体同时具有刚性基团和柔性基团,为制备高耐热性的形状记忆苯并噁嗪树脂奠定了基础。本发明明显提供一种新的技术思路,研发了新的希夫碱生物质苯并噁嗪单体,取得了耐热以及形状记忆性能均上佳的产物。
参见附图8,它是基于生物质苯并噁嗪的形状记忆树脂的应力-应变曲线。从中可以看出,实施例1中所制备的基于生物质苯并噁嗪的形状记忆树脂的常温下的拉伸模量和拉伸强度分别为2.46GPa和90.4MPa,证明本发明所制备生物质苯并噁嗪形状记忆树脂具有突出的力学性能。
(4)上述基于生物质苯并噁嗪的形状记忆树脂的应用方法: 当温度加热到玻璃化转变温度以上20°C,即300°C,在外力作用下,将具有原始形状的基于生物质苯并噁嗪的形状记忆树脂改变成所需的新形状;随后保持300°C,并保持外力,使聚合物体系内进行希夫碱动态键的可逆交换反应;然后冷却到室温,新形状被固定住,成为基于生物质苯并噁嗪的形状记忆树脂的一个新的永久形状;将具有新的永久形状的基于生物质苯并噁嗪的形状记忆树脂加热到玻璃化转变温度以上20°C,保温40s后,聚合物将从新的永久形状自动回复到原始形状。
参见附图9,它是基于生物质苯并噁嗪的形状记忆树脂的形状记忆电子图像。从变形角计算可得,实施例1中所制备的基于生物质苯并噁嗪的形状记忆树脂的形状记忆恢复率达到98%,证明本发明所制备的形状记忆树脂具有突出的形状记忆性能。
根据上述形变-恢复方法,将新形状设计为圆圈形、S形等其他形状,基于生物质苯并噁嗪的形状记忆树脂的形状记忆恢复率也达到96%以上。
将实施例1步骤(2)的反应时间调整为0.5小时,其余不变,得到的基于生物质苯并噁嗪的形状记忆树脂的T g(DMA)为241℃。
将实施例1步骤(2)的反应时间调整为3小时,其余不变,得到的基于生物质苯并噁嗪的形状记忆树脂的T g(DMA)为259℃。
直接将步骤(1)制备的含醛基生物质苯并噁嗪单体按照步骤(3)同样的工艺固化,得到的树脂不具备形状记忆性能。
实施例2。
(1)含醛基生物质苯并噁嗪单体的制备。
将9.71g糠胺和6.60g多聚甲醛混合,在室温下搅拌15min,而后加入15.22g香草醛,反应体系在温度85°C的条件下搅拌反应5h,自然冷却至室温,乙醇重结晶除去杂质,干燥后得到含醛基生物质苯并噁嗪单体。
(2)希夫碱生物质苯并噁嗪单体的制备。
将30.04g含醛基生物质苯并噁嗪单体和12.65g聚醚胺D-230(分子量为230)混合,在温度125°C的条件下反应1.5h,自然冷却至室温,干燥后得到希夫碱生物质苯并噁嗪单体。
(3)基于生物质苯并噁嗪的形状记忆树脂的制备。
将11.0g希夫碱生物质苯并噁嗪单体放入模具中,将模具放入烘箱中进行脱泡(150°C下10min),而后将模具放入鼓风干燥箱。依次按照160 °C/2 h + 180 °C/2 h + 200 °C/2 h + 220 °C/2 h+ 240 °C/2 h工艺进行固化。结束后,随烘箱自然冷却,即得到基于生物质苯并噁嗪的形状记忆树脂。
(4)基于生物质苯并噁嗪的形状记忆树脂的应用方法。
当温度加热到玻璃化转变温度以上20°C,即300°C,在外力作用下,将具有原始形状的基于生物质苯并噁嗪的形状记忆树脂改变成所需的新形状;随后保持300°C,并保持外力,使聚合物体系内进行希夫碱动态键的可逆交换反应;然后冷却到室温,新形状被固定住,成为基于生物质苯并噁嗪的形状记忆树脂的一个新的永久形状;将具有新的永久形状的基于生物质苯并噁嗪的形状记忆树脂加热到玻璃化转变温度以上20°C,40s后,聚合物将从新的永久形状自动回复到原始形状。
实施例3。
(1)含醛基生物质苯并噁嗪单体的制备。
将9.71g糠胺和15g 40wt%甲醛水溶液混合,在室温下搅拌15min,而后加入15.22g香草醛,反应体系在温度85°C的条件下搅拌反应5h,自然冷却至室温,乙醇重结晶除去杂质,干燥后得到含醛基生物质苯并噁嗪单体。
(2)希夫碱生物质苯并噁嗪单体的制备。
将27.31g含醛基生物质苯并噁嗪单体和11.50g聚醚胺D-230(分子量为230)混合,在温度125°C的条件下反应2h,自然冷却至室温,干燥后得到希夫碱生物质苯并噁嗪单体。
(3)基于生物质苯并噁嗪的形状记忆树脂的制备。
将10.5g希夫碱生物质苯并噁嗪单体放入模具中,将模具放入烘箱中进行脱泡(150°C下10min),而后将模具放入鼓风干燥箱。依次按照160 °C/2 h + 180 °C/2 h + 200 °C/2 h + 220 °C/2 h+ 240 °C/2 h工艺进行固化。结束后,随烘箱自然冷却,即得到基于生物质苯并噁嗪的形状记忆树脂。
(4)基于生物质苯并噁嗪的形状记忆树脂的应用方法。
当温度加热到玻璃化转变温度以上20°C,即300°C,在外力作用下,将具有原始形状的基于生物质苯并噁嗪的形状记忆树脂改变成所需的新形状;随后保持300°C,并保持外力,使聚合物体系内进行希夫碱动态键的可逆交换反应;然后冷却到室温,新形状被固定住,成为基于生物质苯并噁嗪的形状记忆树脂的一个新的永久形状;将具有新的永久形状的基于生物质苯并噁嗪的形状记忆树脂加热到玻璃化转变温度以上20°C,40s后,聚合物将从新的永久形状自动回复到原始形状。
实施例4。
(1)含醛基生物质苯并噁嗪单体的制备。
将9.71g糠胺和6.0g 多聚甲醛混合,在室温下搅拌15min,而后加入15.22g香草醛,反应体系在温度80°C的条件下搅拌反应4h,自然冷却至室温,乙醇重结晶除去杂质,干燥后得到含醛基生物质苯并噁嗪单体。
(2)希夫碱生物质苯并噁嗪单体的制备。
将32.77g含醛基生物质苯并噁嗪单体和3.8g聚醚胺D-230(分子量为230)混合,在温度130°C的条件下反应1.0h,自然冷却至室温,干燥后得到希夫碱生物质苯并噁嗪单体。
(3)基于生物质苯并噁嗪的形状记忆树脂的制备。
将11.0 g希夫碱生物质苯并噁嗪单体放入模具中,将模具放入烘箱中进行脱泡(150°C下10min),而后将模具放入鼓风干燥箱。依次按照160 °C/2 h + 180 °C/2 h + 200 °C/2 h + 220 °C/2 h+ 240 °C/2 h工艺进行固化。结束后,随烘箱自然冷却,即得到基于生物质苯并噁嗪的形状记忆树脂。
(4)基于生物质苯并噁嗪的形状记忆树脂的应用方法。
当温度加热到玻璃化转变温度以上20°C,即300°C,在外力作用下,将具有原始形状的基于生物质苯并噁嗪的形状记忆树脂改变成所需的新形状;随后保持300°C,并保持外力,使聚合物体系内进行希夫碱动态键的可逆交换反应;然后冷却到室温,新形状被固定住,成为基于生物质苯并噁嗪的形状记忆树脂的一个新的永久形状;将具有新的永久形状的基于生物质苯并噁嗪的形状记忆树脂加热到玻璃化转变温度以上20°C,40s后,聚合物将从新的永久形状自动回复到原始形状。
实施例5。
(1)含醛基生物质苯并噁嗪单体的制备。
将9.71g糠胺和6.0g 多聚甲醛混合,在室温下搅拌15min,而后加入15.22g香草醛,反应体系在温度80°C的条件下搅拌反应5h,自然冷却至室温,乙醇重结晶除去杂质,干燥后得到含醛基生物质苯并噁嗪单体。
(2)希夫碱生物质苯并噁嗪单体的制备。
将27.31g含醛基生物质苯并噁嗪单体和11.50g聚醚胺D-230(分子量为230)混合,在温度130°C的条件下反应1.5h,自然冷却至室温,干燥后得到希夫碱生物质苯并噁嗪单体。
(3)基于生物质苯并噁嗪的形状记忆树脂的制备。
将11.0 g希夫碱生物质苯并噁嗪单体放入模具中,将模具放入烘箱中进行脱泡(150°C下10min),而后将模具放入鼓风干燥箱。依次按照160 °C/2 h + 180 °C/2 h + 200 °C/2 h + 220 °C/2 h+ 240 °C/2 h工艺进行固化。结束后,随烘箱自然冷却,即得到基于生物质苯并噁嗪的形状记忆树脂。
(4)基于生物质苯并噁嗪的形状记忆树脂的应用方法。
当温度加热到玻璃化转变温度以上20°C,即300°C,在外力作用下,将具有原始形状的基于生物质苯并噁嗪的形状记忆树脂改变成所需的新形状;随后保持300°C,并保持外力,使聚合物体系内进行希夫碱动态键的可逆交换反应;然后冷却到室温,新形状被固定住,成为基于生物质苯并噁嗪的形状记忆树脂的一个新的永久形状;将具有新的永久形状的基于生物质苯并噁嗪的形状记忆树脂加热到玻璃化转变温度以上20°C,40s后,聚合物将从新的永久形状自动回复到原始形状。
实施例6。
(1)含醛基生物质苯并噁嗪单体的制备。
将9.71g糠胺和6.0g 多聚甲醛混合,在室温下搅拌15min,而后加入15.22g香草醛,反应体系在温度80°C的条件下搅拌反应6h,自然冷却至室温,乙醇重结晶除去杂质,干燥后得到含醛基生物质苯并噁嗪单体。
(2)希夫碱生物质苯并噁嗪单体的制备。
将32.77g含醛基生物质苯并噁嗪单体和13.8g聚醚胺D-230(分子量为230)混合,在温度130°C的条件下反应2h,自然冷却至室温,干燥后得到希夫碱生物质苯并噁嗪单体。
(3)基于生物质苯并噁嗪的形状记忆树脂的制备。
将11.0 g希夫碱生物质苯并噁嗪单体放入模具中,将模具放入烘箱中进行脱泡(150°C下10min),而后将模具放入鼓风干燥箱。依次按照160 °C/2 h + 180 °C/2 h + 200 °C/2 h + 220 °C/2 h+ 240 °C/2 h工艺进行固化。结束后,随烘箱自然冷却,即得到基于生物质苯并噁嗪的形状记忆树脂。
(4)基于生物质苯并噁嗪的形状记忆树脂的应用方法。
当温度加热到玻璃化转变温度以上20°C,即300°C,在外力作用下,将具有原始形状的基于生物质苯并噁嗪的形状记忆树脂改变成所需的新形状;随后保持300°C,并保持外力,使聚合物体系内进行希夫碱动态键的可逆交换反应;然后冷却到室温,新形状被固定住,成为基于生物质苯并噁嗪的形状记忆树脂的一个新的永久形状;将具有新的永久形状的基于生物质苯并噁嗪的形状记忆树脂加热到玻璃化转变温度以上20°C,40s后,聚合物将从新的永久形状自动回复到原始形状。
实施例7。
(1)含醛基生物质苯并噁嗪单体的制备。
将9.71g糠胺和6.0g 多聚甲醛混合,在室温下搅拌15min,而后加入15.22g香草醛,反应体系在温度90°C的条件下搅拌反应4h,自然冷却至室温,乙醇重结晶除去杂质,干燥后得到含醛基生物质苯并噁嗪单体。
(2)希夫碱生物质苯并噁嗪单体的制备。
将27.31g含醛基生物质苯并噁嗪单体和11.50g聚醚胺D-230(分子量为230)混合,在温度125°C的条件下反应1h,自然冷却至室温,干燥后得到希夫碱生物质苯并噁嗪单体。
(3)基于生物质苯并噁嗪的形状记忆树脂的制备。
将11.0 g希夫碱生物质苯并噁嗪单体放入模具中,将模具放入烘箱中进行脱泡(150°C下10min),而后将模具放入鼓风干燥箱。依次按照160 °C/1 h + 180 °C/1 h + 200 °C/1 h + 220 °C/1 h+ 240 °C/1 h工艺进行固化。结束后,随烘箱自然冷却,即得到基于生物质苯并噁嗪的形状记忆树脂。
(4)基于生物质苯并噁嗪的形状记忆树脂的应用方法。
当温度加热到玻璃化转变温度以上20°C,即300°C,在外力作用下,将具有原始形状的基于生物质苯并噁嗪的形状记忆树脂改变成所需的新形状;随后保持300°C,并保持外力,使聚合物体系内进行希夫碱动态键的可逆交换反应;然后冷却到室温,新形状被固定住,成为基于生物质苯并噁嗪的形状记忆树脂的一个新的永久形状;将具有新的永久形状的基于生物质苯并噁嗪的形状记忆树脂加热到玻璃化转变温度以上20°C,40s后,聚合物将从新的永久形状自动回复到原始形状。
实施例8。
(1)含醛基生物质苯并噁嗪单体的制备。
将9.71g糠胺和6.0g 多聚甲醛混合,在室温下搅拌15min,而后加入15.22g香草醛,反应体系在温度90°C的条件下搅拌反应5h,自然冷却至室温,乙醇重结晶除去杂质,干燥后得到含醛基生物质苯并噁嗪单体。
(2)希夫碱生物质苯并噁嗪单体的制备。
将27.31g含醛基生物质苯并噁嗪单体和11.50g聚醚胺D-230(分子量为230)混合,在温度125°C的条件下反应1h,自然冷却至室温,干燥后得到希夫碱生物质苯并噁嗪单体。
(3)基于生物质苯并噁嗪的形状记忆树脂的制备。
将11.0 g希夫碱生物质苯并噁嗪单体放入模具中,将模具放入烘箱中进行脱泡(150°C下10min),而后将模具放入鼓风干燥箱。依次按照160 °C/1.5 h + 180 °C/1.5 h + 200 °C/1.5 h + 220 °C/1.5 h+ 240 °C/1.5 h工艺进行固化。结束后,随烘箱自然冷却,即得到基于生物质苯并噁嗪的形状记忆树脂。
(4)基于生物质苯并噁嗪的形状记忆树脂的应用方法。
当温度加热到玻璃化转变温度以上20°C,即300°C,在外力作用下,将具有原始形状的基于生物质苯并噁嗪的形状记忆树脂改变成所需的新形状;随后保持300°C,并保持外力,使聚合物体系内进行希夫碱动态键的可逆交换反应;然后冷却到室温,新形状被固定住,成为基于生物质苯并噁嗪的形状记忆树脂的一个新的永久形状;将具有新的永久形状的基于生物质苯并噁嗪的形状记忆树脂加热到玻璃化转变温度以上20°C,40s后,聚合物将从新的永久形状自动回复到原始形状。
实施例9。
(1)含醛基生物质苯并噁嗪单体的制备。
将9.71g糠胺和6.0g 多聚甲醛混合,在室温下搅拌15min,而后加入15.22g香草醛,反应体系在温度85°C的条件下搅拌反应5h,自然冷却至室温,乙醇重结晶除去杂质,干燥后得到含醛基生物质苯并噁嗪单体。
(2)希夫碱生物质苯并噁嗪单体的制备。
将30.04g含醛基生物质苯并噁嗪单体和12.65g聚醚胺D-230(分子量为230)混合,在温度125°C的条件下反应1h,自然冷却至室温,干燥后得到希夫碱生物质苯并噁嗪单体。
(3)基于生物质苯并噁嗪的形状记忆树脂的制备。
将11.0 g希夫碱生物质苯并噁嗪单体放入模具中,将模具放入烘箱中进行脱泡(150°C下10min),而后将模具放入鼓风干燥箱。依次按照150 °C/2 h + 170 °C/2 h + 190 °C/2 h + 210 °C/2 h+ 240 °C/2 h工艺进行固化。结束后,随烘箱自然冷却,即得到基于生物质苯并噁嗪的形状记忆树脂。
(4)基于生物质苯并噁嗪的形状记忆树脂的应用方法。
当温度加热到玻璃化转变温度以上20°C,即300°C,在外力作用下,将具有原始形状的基于生物质苯并噁嗪的形状记忆树脂改变成所需的新形状;随后保持300°C,并保持外力,使聚合物体系内进行希夫碱动态键的可逆交换反应;然后冷却到室温,新形状被固定住,成为基于生物质苯并噁嗪的形状记忆树脂的一个新的永久形状;将具有新的永久形状的基于生物质苯并噁嗪的形状记忆树脂加热到玻璃化转变温度以上20°C,40s后,聚合物将从新的永久形状自动回复到原始形状。
 [0182] 本发明公开了一种基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用,以生物质糠胺和多聚甲醛为原料,在适合条件下通过加热反应得到含醛基生物质苯并噁嗪单体;将含醛基生物质苯并噁嗪单体和聚醚胺混合,通过偶联反应得到希夫碱生物质苯并噁嗪单体;将希夫碱生物质苯并噁嗪单体经过固化即可得到具有形状记忆功能的生物质苯并噁嗪树脂。本发明制备工艺简单,合成过程无需溶剂、产率高,原材料绿色环保,大大降低了高分子材料对于化石资源的依赖。与现有技术相比,本发明的苯并噁嗪形状记忆树脂具有优异的热性能(玻璃化转变温度T g为280°C)、高拉伸模量(2.46GPa)和强度(90.4MPa)。由本发明方法得到的苯并噁嗪树脂,原始形状可以根据需要被永久地改变,克服了传统交联聚合物在成型后无法再次加工的缺陷,并实现了在加热刺激(高于玻璃化转变温度)条件下的恢复功能,优异的热性能和力学性能也大大提高了形状记忆聚合物的适用范围。

Claims (10)

  1. 一种基于生物质苯并噁嗪的形状记忆树脂,其特征在于,所述基于生物质苯并噁嗪的形状记忆树脂的制备方法包括如下步骤:
    (1)将糠胺、甲醛化合物、香草醛加热反应后重结晶,得到含醛基苯并噁嗪单体;
    (2)将所述含醛基苯并噁嗪单体与聚醚胺偶联反应,得到希夫碱苯并噁嗪单体;
    (3)将所述希夫碱苯并噁嗪单体固化,得到基于生物质苯并噁嗪的形状记忆树脂。
  2. 根据权利要求1所述基于生物质苯并噁嗪的形状记忆树脂,其特征于:步骤(1)中,将糠胺和甲醛化合物在室温下搅拌混合后加入香草醛;所述的甲醛化合物为甲醛和/或多聚甲醛;糠胺、甲醛化合物、香草醛的摩尔比为100∶(200~220)∶100。
  3. 根据权利要求1所述基于生物质苯并噁嗪的形状记忆树脂,其特征于:步骤(1)中,加热反应的温度为80~90°C,时间为4~6h;采用乙醇重结晶。
  4. 根据权利要求1所述基于生物质苯并噁嗪的形状记忆树脂,其特征于:步骤(2)中,偶联反应无需溶剂,且产物无需提纯;偶联反应的温度为125~130°C,时间为1~2h。
  5. 根据权利要求1所述基于生物质苯并噁嗪的形状记忆树脂,其特征于:步骤(2)中,含醛基苯并噁嗪单体与聚醚胺的摩尔比为100∶50。
  6. 根据权利要求1所述基于生物质苯并噁嗪的形状记忆树脂,其特征于:步骤(3)中,将所述希夫碱苯并噁嗪单体脱泡后再固化;固化的温度为150~240°C,时间为10~24h。
  7. 权利要求1所述基于生物质苯并噁嗪的形状记忆树脂在制备形状记忆材料中的应用。
  8. 权利要求1所述基于生物质苯并噁嗪的形状记忆树脂的形状变化与恢复方法,其特征在于,包括如下步骤:
    (1)于形变温度下,将具有原始形状的基于生物质苯并噁嗪的形状记忆树脂改变成新形状;然后加热,再冷却至室温,得到具有新形状的基于生物质苯并噁嗪的形状记忆树脂,完成形状变化;
    (2)将所述具有新形状的基于生物质苯并噁嗪的形状记忆树脂加热至形变温度,所述具有新形状的基于生物质苯并噁嗪的形状记忆树脂恢复为原始形状,完成形状恢复。
  9. 根据权利要求8所述基于生物质苯并噁嗪的形状记忆树脂的形状变化与恢复方法,其特征在于,形变温度为基于生物质苯并噁嗪的形状记忆树脂的玻璃化转变温度以上10~20°C。
  10. 根据权利要求8所述基于生物质苯并噁嗪的形状记忆树脂的形状变化与恢复方法,其特征在于,步骤(1)中,加热的温度为290~300°C,时间为20~30s。
PCT/CN2020/119094 2020-05-23 2020-09-29 基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用 WO2021238004A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/927,085 US20230242707A1 (en) 2020-05-23 2020-09-29 Biomass benzoxazine-based shape memory resin, preparation method therefor, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010444854.4 2020-05-23
CN202010444854.4A CN111423580B (zh) 2020-05-23 2020-05-23 一种基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021238004A1 true WO2021238004A1 (zh) 2021-12-02

Family

ID=71553166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119094 WO2021238004A1 (zh) 2020-05-23 2020-09-29 基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用

Country Status (3)

Country Link
US (1) US20230242707A1 (zh)
CN (1) CN111423580B (zh)
WO (1) WO2021238004A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115232274A (zh) * 2022-08-17 2022-10-25 山东大学 基于长脂肪链酚的苯并噁嗪齐聚物增韧剂及其制备方法与应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111423580B (zh) * 2020-05-23 2021-06-18 苏州大学 一种基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用
CN113004477B (zh) * 2021-02-25 2022-03-04 中国林业科学研究院林产化学工业研究所 一种基于席夫碱的植物油基自修复聚合物及其制备方法和应用
CN112979919A (zh) * 2021-02-25 2021-06-18 中国林业科学研究院林产化学工业研究所 一种生物基自修复聚氨酯弹性体的制备方法
CN113336909B (zh) * 2021-08-06 2021-10-08 苏州大学 一种可重塑与降解生物质苯并噁嗪树脂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2167503A1 (en) * 1994-05-18 1995-11-23 Hatsuo Ishida Preparation of benzoxazine compounds in solventless systems
CN105111438A (zh) * 2015-09-28 2015-12-02 中国地质大学(武汉) 一种聚醚胺型苯并噁嗪预聚体及其制备方法
CN107459512A (zh) * 2017-05-25 2017-12-12 西南石油大学 一种生物基含双键活性官能团的苯并噁嗪及其制备方法
CN111423580A (zh) * 2020-05-23 2020-07-17 苏州大学 一种基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106589819B (zh) * 2016-12-12 2018-09-25 苏州大学 一种自修复型可重塑形多重形变热固性形状记忆树脂材料及其制备方法
US11643406B2 (en) * 2017-08-21 2023-05-09 Drexel University Renewable highly biobased polybenzoxazine thermosets for composite applications
CN108164708B (zh) * 2017-12-19 2020-12-25 济南大学 一种荧光聚硅氧烷-苯并噁嗪基自修复弹性体材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2167503A1 (en) * 1994-05-18 1995-11-23 Hatsuo Ishida Preparation of benzoxazine compounds in solventless systems
CN105111438A (zh) * 2015-09-28 2015-12-02 中国地质大学(武汉) 一种聚醚胺型苯并噁嗪预聚体及其制备方法
CN107459512A (zh) * 2017-05-25 2017-12-12 西南石油大学 一种生物基含双键活性官能团的苯并噁嗪及其制备方法
CN111423580A (zh) * 2020-05-23 2020-07-17 苏州大学 一种基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUNAG JINBAI: "Preparation and Properties of Shape Memory Benzoxazines Based on Polyetheramine", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 March 2017 (2017-03-15), pages 1 - 61, XP055872891, [retrieved on 20211214] *
N. K. SINI, JAYASHREE BIJWE, INDRA K. VARMA: "Renewable benzoxazine monomer from Vanillin: Synthesis, characterization, and studies on curing behavior", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, JOHN WILEY & SONS, INC., US, vol. 52, no. 1, 1 January 2014 (2014-01-01), US , pages 7 - 11, XP055594185, ISSN: 0887-624X, DOI: 10.1002/pola.26981 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115232274A (zh) * 2022-08-17 2022-10-25 山东大学 基于长脂肪链酚的苯并噁嗪齐聚物增韧剂及其制备方法与应用
CN115232274B (zh) * 2022-08-17 2023-08-04 山东大学 基于长脂肪链酚的苯并噁嗪齐聚物增韧剂及其制备方法与应用

Also Published As

Publication number Publication date
US20230242707A1 (en) 2023-08-03
CN111423580B (zh) 2021-06-18
CN111423580A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2021238004A1 (zh) 基于生物质苯并噁嗪的形状记忆树脂及其制备方法与应用
KR101922791B1 (ko) 신속 반응형, 형상 기억 열경화성 폴리이미드 및 이의 제조 방법
CN111100120B (zh) 一种生物基双苯并噁嗪单体及其制备方法
CN110240684B (zh) 一种潜伏固化型苯并噁嗪树脂及其制备方法
CN105254878B (zh) 聚苯并恶嗪连接的双邻苯二甲腈单体及其制备方法与应用
CN110066371A (zh) 一种多羟基腰果酚苯并噁嗪树脂及其制备方法
WO2023010800A1 (zh) 一种可重塑与降解生物质苯并噁嗪树脂及其制备方法
WO2024174291A1 (zh) 生物质环氧单体、自固化环氧树脂及其制备方法
CN110835402B (zh) 一种基于香草醛的低粘度生物基环氧树脂及其制备方法
CN111574513B (zh) 生物质苯并噁嗪形状记忆树脂用单体及其制备方法与应用
CN117164532A (zh) 一种生物质可回收形状记忆环氧树脂及其单体与制备方法
CN116854679A (zh) 包含酰亚胺基元的新型环氧树脂及其制备方法
CN108912068B (zh) 一种苯并噁嗪及其制备方法
CN115260489B (zh) 一种生物基双官苯并噁嗪树脂及其制备方法
CN114031616B (zh) 一种高残碳含乙酸乙酯及三唑环结构的苯并噁嗪及其制备方法
CN105924647B (zh) 一种六官能团炔衍生的聚三唑树脂及其制备方法
CN114478426A (zh) 一种含降冰片烯型苯并噁嗪单体及其制备方法
CN109776518B (zh) 一种新型ab型苯并噁嗪单体及其制备方法
CN117004179B (zh) 一种耐高温石墨烯薄膜及其制备方法和应用
KR20210074800A (ko) 다중고리 구조를 포함하는 비스말레이미드 유래 에폭시 화합물 및 이의 제조방법
CN117362285B (zh) 一种苯并噁嗪衍生物及其制备方法
CN117304433A (zh) 一种含酰亚胺苯并噁嗪/酚醛树脂共聚物及其制备方法
CN116162241A (zh) 一种含四苯基萘单元的聚酰亚胺树脂及其制备方法
CN113999359A (zh) 一种石墨烯改性苯并噁嗪树脂及其制备方法
CN116987362A (zh) 一种苯并噁嗪树脂基石墨烯薄膜材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937729

Country of ref document: EP

Kind code of ref document: A1