WO2021237896A1 - 结直肠癌dna甲基化的检测方法及试剂 - Google Patents
结直肠癌dna甲基化的检测方法及试剂 Download PDFInfo
- Publication number
- WO2021237896A1 WO2021237896A1 PCT/CN2020/101835 CN2020101835W WO2021237896A1 WO 2021237896 A1 WO2021237896 A1 WO 2021237896A1 CN 2020101835 W CN2020101835 W CN 2020101835W WO 2021237896 A1 WO2021237896 A1 WO 2021237896A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- methylation
- colorectal cancer
- markers
- dna
- sequence
- Prior art date
Links
- 206010009944 Colon cancer Diseases 0.000 title claims abstract description 167
- 208000001333 Colorectal Neoplasms Diseases 0.000 title claims abstract description 160
- 238000000034 method Methods 0.000 title claims abstract description 115
- 230000007067 DNA methylation Effects 0.000 title claims abstract description 30
- 239000003153 chemical reaction reagent Substances 0.000 title claims abstract description 14
- 230000011987 methylation Effects 0.000 claims abstract description 193
- 238000007069 methylation reaction Methods 0.000 claims abstract description 193
- 108020004414 DNA Proteins 0.000 claims abstract description 179
- 238000001514 detection method Methods 0.000 claims abstract description 110
- 230000002980 postoperative effect Effects 0.000 claims abstract description 35
- 238000011282 treatment Methods 0.000 claims abstract description 28
- 238000004393 prognosis Methods 0.000 claims abstract description 23
- 239000000523 sample Substances 0.000 claims description 224
- 239000003550 marker Substances 0.000 claims description 85
- 108090000623 proteins and genes Proteins 0.000 claims description 66
- 210000001519 tissue Anatomy 0.000 claims description 61
- 101000995332 Homo sapiens Protein NDRG4 Proteins 0.000 claims description 48
- 102100034432 Protein NDRG4 Human genes 0.000 claims description 48
- 210000004369 blood Anatomy 0.000 claims description 44
- 239000008280 blood Substances 0.000 claims description 44
- 210000002381 plasma Anatomy 0.000 claims description 39
- 238000001356 surgical procedure Methods 0.000 claims description 29
- 108020004707 nucleic acids Proteins 0.000 claims description 21
- 102000039446 nucleic acids Human genes 0.000 claims description 21
- 150000007523 nucleic acids Chemical class 0.000 claims description 21
- 238000004949 mass spectrometry Methods 0.000 claims description 17
- 238000007855 methylation-specific PCR Methods 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 11
- 101001132698 Homo sapiens Retinoic acid receptor beta Proteins 0.000 claims description 7
- 102100033909 Retinoic acid receptor beta Human genes 0.000 claims description 7
- 230000001225 therapeutic effect Effects 0.000 claims description 6
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 210000004072 lung Anatomy 0.000 claims description 3
- 206010036790 Productive cough Diseases 0.000 claims description 2
- 210000004381 amniotic fluid Anatomy 0.000 claims description 2
- 210000001124 body fluid Anatomy 0.000 claims description 2
- 239000010839 body fluid Substances 0.000 claims description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 claims description 2
- 210000003722 extracellular fluid Anatomy 0.000 claims description 2
- 210000002751 lymph Anatomy 0.000 claims description 2
- 210000003097 mucus Anatomy 0.000 claims description 2
- 108091033319 polynucleotide Proteins 0.000 claims description 2
- 102000040430 polynucleotide Human genes 0.000 claims description 2
- 239000002157 polynucleotide Substances 0.000 claims description 2
- 210000003296 saliva Anatomy 0.000 claims description 2
- 210000000582 semen Anatomy 0.000 claims description 2
- 210000002966 serum Anatomy 0.000 claims description 2
- 210000003802 sputum Anatomy 0.000 claims description 2
- 208000024794 sputum Diseases 0.000 claims description 2
- 210000004243 sweat Anatomy 0.000 claims description 2
- 210000001138 tear Anatomy 0.000 claims description 2
- 210000002700 urine Anatomy 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 77
- 239000000090 biomarker Substances 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 description 153
- 206010028980 Neoplasm Diseases 0.000 description 89
- 239000000047 product Substances 0.000 description 53
- 101000756632 Homo sapiens Actin, cytoplasmic 1 Proteins 0.000 description 49
- 230000035945 sensitivity Effects 0.000 description 48
- 239000000203 mixture Substances 0.000 description 47
- 101001100767 Homo sapiens Protein quaking Proteins 0.000 description 46
- 238000003908 quality control method Methods 0.000 description 43
- 102100038669 Protein quaking Human genes 0.000 description 42
- 238000005259 measurement Methods 0.000 description 35
- 238000011144 upstream manufacturing Methods 0.000 description 32
- 238000011156 evaluation Methods 0.000 description 30
- 101000632056 Homo sapiens Septin-9 Proteins 0.000 description 28
- 102100028024 Septin-9 Human genes 0.000 description 26
- 238000002474 experimental method Methods 0.000 description 26
- 230000000875 corresponding effect Effects 0.000 description 23
- 238000012216 screening Methods 0.000 description 23
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 208000003200 Adenoma Diseases 0.000 description 19
- 238000005516 engineering process Methods 0.000 description 19
- 206010001233 Adenoma benign Diseases 0.000 description 18
- 201000011510 cancer Diseases 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 18
- 230000002255 enzymatic effect Effects 0.000 description 17
- 230000000750 progressive effect Effects 0.000 description 17
- 238000012544 monitoring process Methods 0.000 description 15
- 238000009099 neoadjuvant therapy Methods 0.000 description 15
- 230000004083 survival effect Effects 0.000 description 15
- 238000013461 design Methods 0.000 description 14
- 238000012163 sequencing technique Methods 0.000 description 14
- 238000003745 diagnosis Methods 0.000 description 13
- 239000013642 negative control Substances 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 12
- 102100032050 Elongation of very long chain fatty acids protein 2 Human genes 0.000 description 11
- 101000921368 Homo sapiens Elongation of very long chain fatty acids protein 2 Proteins 0.000 description 11
- 208000037062 Polyps Diseases 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 102100028427 Pro-neuropeptide Y Human genes 0.000 description 10
- 230000003321 amplification Effects 0.000 description 10
- 238000003199 nucleic acid amplification method Methods 0.000 description 10
- 238000003753 real-time PCR Methods 0.000 description 10
- 102100028417 Fibroblast growth factor 12 Human genes 0.000 description 9
- 102100040352 Heat shock 70 kDa protein 1A Human genes 0.000 description 9
- 101000917234 Homo sapiens Fibroblast growth factor 12 Proteins 0.000 description 9
- 101001037759 Homo sapiens Heat shock 70 kDa protein 1A Proteins 0.000 description 9
- 101001037989 Homo sapiens LON peptidase N-terminal domain and RING finger protein 2 Proteins 0.000 description 9
- 102100040392 LON peptidase N-terminal domain and RING finger protein 2 Human genes 0.000 description 9
- 238000002795 fluorescence method Methods 0.000 description 9
- 206010027476 Metastases Diseases 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 239000002096 quantum dot Substances 0.000 description 8
- 238000011160 research Methods 0.000 description 8
- 108091093088 Amplicon Proteins 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 238000000137 annealing Methods 0.000 description 7
- 238000002512 chemotherapy Methods 0.000 description 7
- 230000009401 metastasis Effects 0.000 description 7
- 108091008146 restriction endonucleases Proteins 0.000 description 7
- 101000701522 Homo sapiens Phospholipid-transporting ATPase ID Proteins 0.000 description 6
- 208000032177 Intestinal Polyps Diseases 0.000 description 6
- 102100030474 Phospholipid-transporting ATPase ID Human genes 0.000 description 6
- 238000011529 RT qPCR Methods 0.000 description 6
- 238000013211 curve analysis Methods 0.000 description 6
- 238000007405 data analysis Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000001959 radiotherapy Methods 0.000 description 6
- GUAHPAJOXVYFON-ZETCQYMHSA-N (8S)-8-amino-7-oxononanoic acid zwitterion Chemical compound C[C@H](N)C(=O)CCCCCC(O)=O GUAHPAJOXVYFON-ZETCQYMHSA-N 0.000 description 5
- 108091029430 CpG site Proteins 0.000 description 5
- 101000624947 Homo sapiens Nesprin-1 Proteins 0.000 description 5
- 102100023306 Nesprin-1 Human genes 0.000 description 5
- 230000029087 digestion Effects 0.000 description 5
- 210000005259 peripheral blood Anatomy 0.000 description 5
- 239000011886 peripheral blood Substances 0.000 description 5
- 239000013641 positive control Substances 0.000 description 5
- 238000011002 quantification Methods 0.000 description 5
- 238000002271 resection Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 102100032145 Carbohydrate sulfotransferase 10 Human genes 0.000 description 4
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 4
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 4
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 4
- 101000775595 Homo sapiens Carbohydrate sulfotransferase 10 Proteins 0.000 description 4
- 101710151321 Melanostatin Proteins 0.000 description 4
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 4
- 208000015634 Rectal Neoplasms Diseases 0.000 description 4
- 101150042012 SEPTIN9 gene Proteins 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 238000002052 colonoscopy Methods 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 239000013068 control sample Substances 0.000 description 4
- 238000001976 enzyme digestion Methods 0.000 description 4
- 201000004101 esophageal cancer Diseases 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000011528 liquid biopsy Methods 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 206010038038 rectal cancer Diseases 0.000 description 4
- 201000001275 rectum cancer Diseases 0.000 description 4
- 239000013074 reference sample Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 102100031509 Fibrillin-1 Human genes 0.000 description 3
- 201000003741 Gastrointestinal carcinoma Diseases 0.000 description 3
- 101000846893 Homo sapiens Fibrillin-1 Proteins 0.000 description 3
- 101000665140 Homo sapiens Scm-like with four MBT domains protein 2 Proteins 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 3
- 241000769240 Polyozellus multiplex Species 0.000 description 3
- 102100038691 Scm-like with four MBT domains protein 2 Human genes 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009534 blood test Methods 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000002550 fecal effect Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 201000002313 intestinal cancer Diseases 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 201000005202 lung cancer Diseases 0.000 description 3
- 208000020816 lung neoplasm Diseases 0.000 description 3
- 238000012164 methylation sequencing Methods 0.000 description 3
- 238000004445 quantitative analysis Methods 0.000 description 3
- 230000007115 recruitment Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 2
- 206010064571 Gene mutation Diseases 0.000 description 2
- 101000848919 Homo sapiens Protein FAM72B Proteins 0.000 description 2
- 101000692109 Homo sapiens Syndecan-2 Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 102100034521 Protein FAM72B Human genes 0.000 description 2
- MEFKEPWMEQBLKI-AIRLBKTGSA-N S-adenosyl-L-methioninate Chemical compound O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H](N)C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-N 0.000 description 2
- 102100026087 Syndecan-2 Human genes 0.000 description 2
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 2
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 2
- 229960001570 ademetionine Drugs 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 238000001369 bisulfite sequencing Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 230000001973 epigenetic effect Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000011337 individualized treatment Methods 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000007837 multiplex assay Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 101150082072 14 gene Proteins 0.000 description 1
- 102100023287 2-acylglycerol O-acyltransferase 3 Human genes 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- 101150087690 ACTB gene Proteins 0.000 description 1
- 102100036793 Adhesion G protein-coupled receptor L3 Human genes 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 241000143060 Americamysis bahia Species 0.000 description 1
- 102100026442 Arrestin domain-containing protein 2 Human genes 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 101100240528 Caenorhabditis elegans nhr-23 gene Proteins 0.000 description 1
- 208000005443 Circulating Neoplastic Cells Diseases 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 108010063593 DNA modification methylase SssI Proteins 0.000 description 1
- 208000002699 Digestive System Neoplasms Diseases 0.000 description 1
- 206010061819 Disease recurrence Diseases 0.000 description 1
- 102100033991 E3 ubiquitin-protein ligase DTX1 Human genes 0.000 description 1
- 102100030334 Friend leukemia integration 1 transcription factor Human genes 0.000 description 1
- 208000005577 Gastroenteritis Diseases 0.000 description 1
- 206010064147 Gastrointestinal inflammation Diseases 0.000 description 1
- 208000031448 Genomic Instability Diseases 0.000 description 1
- 101001115709 Homo sapiens 2-acylglycerol O-acyltransferase 3 Proteins 0.000 description 1
- 101000928176 Homo sapiens Adhesion G protein-coupled receptor L3 Proteins 0.000 description 1
- 101000785765 Homo sapiens Arrestin domain-containing protein 2 Proteins 0.000 description 1
- 101001052060 Homo sapiens Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase Proteins 0.000 description 1
- 101001017463 Homo sapiens E3 ubiquitin-protein ligase DTX1 Proteins 0.000 description 1
- 101001062996 Homo sapiens Friend leukemia integration 1 transcription factor Proteins 0.000 description 1
- 101000893493 Homo sapiens Protein flightless-1 homolog Proteins 0.000 description 1
- 101000712956 Homo sapiens Ras association domain-containing protein 2 Proteins 0.000 description 1
- 101001091999 Homo sapiens Rho GTPase-activating protein 20 Proteins 0.000 description 1
- 101001125098 Homo sapiens Sodium/potassium-transporting ATPase subunit beta-1-interacting protein 4 Proteins 0.000 description 1
- 101000763896 Homo sapiens T cell receptor beta joining 2-5 Proteins 0.000 description 1
- 101000763986 Homo sapiens T cell receptor beta joining 2-7 Proteins 0.000 description 1
- 101000598715 Homo sapiens Thrombospondin type-1 domain-containing protein 7B Proteins 0.000 description 1
- 101000976579 Homo sapiens Zinc finger protein 132 Proteins 0.000 description 1
- 101000976250 Homo sapiens Zinc finger protein 804A Proteins 0.000 description 1
- -1 Hpa II (NEB) Proteins 0.000 description 1
- 208000007433 Lymphatic Metastasis Diseases 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 102000016397 Methyltransferase Human genes 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 102100033242 Ras association domain-containing protein 2 Human genes 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 102100035751 Rho GTPase-activating protein 20 Human genes 0.000 description 1
- 101100495925 Schizosaccharomyces pombe (strain 972 / ATCC 24843) chr3 gene Proteins 0.000 description 1
- 102100029404 Sodium/potassium-transporting ATPase subunit beta-1-interacting protein 4 Human genes 0.000 description 1
- 208000036765 Squamous cell carcinoma of the esophagus Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 102100026807 T cell receptor beta joining 2-5 Human genes 0.000 description 1
- 102100026919 T cell receptor beta joining 2-7 Human genes 0.000 description 1
- 102100037766 Thrombospondin type-1 domain-containing protein 7B Human genes 0.000 description 1
- 206010064390 Tumour invasion Diseases 0.000 description 1
- 102100023572 Zinc finger protein 132 Human genes 0.000 description 1
- 102100023875 Zinc finger protein 804A Human genes 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000011226 adjuvant chemotherapy Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 206010001584 alcohol abuse Diseases 0.000 description 1
- 208000025746 alcohol use disease Diseases 0.000 description 1
- 210000000436 anus Anatomy 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000009400 cancer invasion Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 201000002758 colorectal adenoma Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- CLBIEZBAENPDFY-HNXGFDTJSA-N dinophysistoxin 1 Chemical compound C([C@H](O1)[C@H](C)/C=C/[C@H]2CC[C@@]3(CC[C@H]4O[C@@H](C([C@@H](O)[C@@H]4O3)=C)[C@@H](O)C[C@H](C)[C@@H]3[C@@H](CC[C@@]4(O3)[C@@H](CCCO4)C)C)O2)C(C)=C[C@]21O[C@H](C[C@@](C)(O)C(O)=O)CC[C@H]2O CLBIEZBAENPDFY-HNXGFDTJSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001861 endoscopic biopsy Methods 0.000 description 1
- 208000007276 esophageal squamous cell carcinoma Diseases 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 102000054767 gene variant Human genes 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 235000009200 high fat diet Nutrition 0.000 description 1
- 238000012165 high-throughput sequencing Methods 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000007403 mPCR Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 208000022131 polyp of large intestine Diseases 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000002133 sample digestion Methods 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/118—Prognosis of disease development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/154—Methylation markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/16—Primer sets for multiplex assays
Definitions
- the present invention relates to the field of medical diagnosis, and specifically designs early diagnosis, prognosis, curative effect evaluation, etc. of colorectal cancer. And it also relates to kits and reagents for the diagnosis, prognosis and efficacy evaluation.
- Colorectal cancer is one of the common malignant tumors of the digestive tract worldwide. According to statistics, there were about 1.8 million new cases of colorectal cancer in 2018, and the death toll was about 860,000 [1] . In China, the incidence and mortality of colorectal cancer are ranked 5th in the tumor category [2] . However, in recent years, the overall incidence of colorectal cancer in developed countries represented by the United States has begun to decline [3] , while the number of incidences and deaths of colorectal cancer in China is on the rise [2] . This growth is worthy of attention and in-depth analysis. . On the one hand, lifestyles such as high-fat diet, smoking and alcohol abuse may increase the risk of colorectal cancer.
- Level I prevention can play a 35% role in reducing the occurrence of cancer.
- more than 90% of colorectal cancer patients are over 50 years old. They often ignore the early symptoms of the disease, including blood in the stool or changes in bowel habits, resulting in the tumor having advanced to the advanced stage at the time of diagnosis, and the advanced colorectal cancer patients for five years
- the survival rate is less than 15%, which is much lower than the survival rate of early patients.
- Analysis has shown that in reducing the incidence of colorectal cancer, the United States has played a 53% role in level II prevention through early colorectal cancer screening, while clinical treatment has played a 12% role [3] .
- colorectal cancer is caused by a series of genetic and epigenetic mutations [4] , including the loss of function of tumor suppressor genes, defects in the gain of function of oncogenes, etc. These mutations will confer cell selectivity. Growth advantage is considered to be a "driving" event and promotes cell clonal proliferation to the development of malignant tumors.
- Typical sporadic colorectal cancer may only contain 2-8 driver gene variants, and the rest are "passenger" gene defects caused by genomic instability and random events, which makes each patient's tumor genetically and epigenetic It is unique, which is also an important factor currently considered in precision medicine.
- colorectal cancer can be divided into different subtypes, with different phenotypes and prognostic characteristics between them [5, 6] .
- DNA methylation the more in-depth research in epigenetics is DNA methylation.
- SAM S-adenosylmethionine
- DNMT DNA methyltransferase
- DNA methylation may lead to transcriptional suppression and expression silence of related genes (including tumor suppressor genes). Abnormal DNA methylation occurs frequently during the formation of tumors.
- tumor molecular markers [8] .
- the survival rate of patients is related to the time when the tumor is discovered. Early detection is the key to improving the survival rate and cure rate of patients with colorectal cancer.
- the incidence and mortality of colorectal cancer in the United States have shown a downward trend, mainly due to the popularity of screening.
- the current screening rate for colorectal cancer in the United States has reached 60%.
- the rate of early diagnosis of colorectal cancer is much lower than that of developed countries in Europe and America.
- fecal occult blood test is one A non-invasive detection method, simple operation, low price, but low sensitivity, and the results are easily affected by the patient’s diet, drugs and other factors; colonoscopy is the gold standard, which can detect and treat the lesions that occur in the entire intestine
- this method requires high bowel preparations, is invasive, and has the risk of gastrointestinal adverse events such as bleeding and perforation. Patient compliance is not high and it is not widely available in many areas [9] . Therefore, the development of a non-invasive, more sensitive and specific screening method is the current research focus.
- the current treatment for patients with colorectal cancer is mainly surgery and postoperative adjuvant chemotherapy.
- colorectal cancer patients who are considered cured at the end of the initial treatment there is still a 35% recurrence rate after tumor resection, 80% of which appear within 2 years after resection [10] , and recurrence and metastasis are often detected later.
- high-risk patients (such as patients with stage III colorectal cancer) need to continue to receive chemotherapy after surgery to reduce the risk of recurrence and metastasis [11 , 12], but not all patients can benefit.
- the indicators that are routinely used in the evaluation of postoperative residual lesions and guide treatment are to classify tumors based on the T, N, and M systems, that is, the depth of tumor invasion (T), lymph node metastasis (N), and whether there is distant metastasis or not (M).
- TNM staging can provide relatively weak predictive information for some stage II and III patients.
- clinical follow-up monitoring is recommended to detect recurrence and metastasis as early as possible and then treat it in time, but in fact many recurrence events are discovered late [13] , and only 10%-20% of metastases are cured [ 14] .
- Currently commonly used monitoring methods include CT, endoscopic biopsy, etc.
- Carcinoembryonic antigen is currently the only blood marker recommended for colorectal cancer monitoring and prediction [15] , but its sensitivity is low [16] . Therefore, looking for non-invasive and highly sensitive prognostic markers, postoperative residual focus detection and accurate prognostic evaluation can provide early and effective treatment, which is essential for improving patient survival.
- Preoperative neoadjuvant radiotherapy and chemotherapy is an important part of the comprehensive treatment of colorectal cancer [17] .
- the purpose is to increase the resection rate and increase the anus preservation rate, which is expected to improve the disease-free survival rate of patients.
- some patients with locally advanced rectal cancer who have received neoadjuvant radiotherapy and chemotherapy have good tumor regression and their prognosis is significantly improved.
- some patients have insignificant tumor regression effects and suffer unnecessary radiotherapy and chemotherapy. Delays in response and surgery.
- how to screen suitable patients to formulate a reasonable neoadjuvant treatment plan and evaluate the efficacy is of great significance.
- liquid biopsy technology that uses the detection of circulating tumor cells and free nucleic acids in the blood as molecular diagnostic markers has been realized and has attracted increasing attention.
- colorectal cancer screening compared with colonoscopy, FIT and other methods
- liquid biopsy has the characteristics of non-invasive, simple and economical, and high sensitivity. It has better patient compliance and is easy to promote among the population to increase the census rate.
- colorectal cancer diagnosis, evaluation of prognostic efficacy, and dynamic monitoring compared with the diagnostic "gold standard" tissue biopsy method, liquid biopsy can more fully reflect tumor characteristics and overcome tumor heterogeneity. It is noninvasive and can be sampled multiple times.
- cfDNA Cell-free DNA
- ctDNA Circulating tumor DNA
- the existing Epi proColon testing product is currently the first and only FDA-approved blood screening product for colorectal cancer.
- the Epi proColon detection method is based on HeavyMethyl real-time PCR technology [22,23] , which can simultaneously detect 1 target gene SEPTIN9 and 1 internal reference gene ACTB in a QPCR reaction.
- the cfDNA extracted from the plasma is subjected to Bisulfite Conversion, and then primers and probes designed according to the SEPTIN9 gene and the internal reference gene ACTB are added to the QPCR reaction system to amplify the transformed cfDNA.
- the probes of the target gene SEPTIN9 and the internal reference gene ACTB are respectively labeled with two different fluorescent signals, and a non-extendable oligonucleotide blocker is added.
- the blocker can bind to the transformed SEPTIN9 gene non-methylated sequence, and The binding site overlaps with the primer binding site, inhibiting the amplification of unmethylated DNA.
- the final result interpretation is divided into three steps: 1Judging the validity of the reaction according to the results of the negative and positive control samples processed simultaneously; 2Judging whether the quality of the template DNA in a single PCR reaction is qualified by the signal intensity of the internal reference gene; 3Integrating 3 PCR repeats Interpret the methylation status of the sample to be tested.
- the test result is a qualitative result. Due to the low concentration of a single marker, although the fluorescence quantitative PCR method is used, the result can only be qualitatively interpreted. It is difficult to detect the dynamic change of the amount of ctDNA in the plasma, which makes it difficult to dynamically determine the tumor burden. Quantitative assessment.
- GRAIL is currently developing a blood-based "pan-cancer" early detection method.
- WGBS whole-genome bisulfite sequencing
- the machine learning algorithm screened out the panel that was finally used as the target methylation measurement for pan-cancer screening, and it contained more than 100,000 methylated regions [29] .
- This targeted methylation panel was then used to test the participants’ plasma.
- the results showed that the specificity of the test method for 12 specific cancers (including all stages) reached 99.3% (false positive rate ⁇ 1%), and the total detected The rate (sensitivity) is 54.9% (95% CI: 51.0%-58.8%).
- the specificity is 99.4%
- the detection rate of stage I is about 40-50%
- the detection rate of stage II is about 60-70%
- stage III is about 70%
- stage IV is about 80-90% [ 29] .
- This method is a pan-cancer detection method. For colorectal cancer alone, the current detection sensitivity is low.
- the present invention realizes colorectal cancer (CRC, Colorectal Cancer) detection and screening, neoadjuvant radiotherapy and chemotherapy efficacy evaluation, postoperative prognosis, postoperative residual focus detection, dynamics by detecting multiple DNA methylation markers in the blood follow-up, early detection of recurrence and metastasis, etc.
- CRC Colorectal Cancer
- neoadjuvant radiotherapy and chemotherapy efficacy evaluation postoperative prognosis
- postoperative residual focus detection dynamics by detecting multiple DNA methylation markers in the blood follow-up, early detection of recurrence and metastasis, etc.
- the main detection method is multiple quantitative methylation-specific PCR (mqMSP, multiple quantitative methylation-specific PCR).
- a variety of clinical blood samples were collected, including colorectal cancer, progressive adenoma, intestinal polyps, healthy controls, asymptomatic volunteers, esophageal cancer, lung cancer, etc.
- the feasibility and practicability of the present invention were verified by testing clinical blood samples .
- a nucleic acid flight mass spectrometry detection technology has been developed, which can simultaneously perform quantitative analysis of multiple methylation markers, which is helpful for the quantitative detection of plasma ctDNA.
- the invention uses DNA methylation technology combined with literature databases to screen multiple methylation markers.
- tissue and blood samples (30 cases of colorectal cancer patients’ cancer tissues and matched normal tissues, 15 cases of non-progressive adenoma tissue, 15 cases of progressive adenoma tissue, and 15 cases of healthy volunteers’ blood samples)
- libraries construction and bisulfite sequencing perform bioinformatics statistical analysis based on sequencing results and existing literature and databases, and screen out multiple colorectal cancer specifics including ATP8B2, LONRF2, FGF12, CHST10, ELOVL2, HSPA1A, etc.
- ATP8B2 ATP8B2, LONRF2, FGF12, CHST10, ELOVL2, HSPA1A, etc.
- the present invention uses qPCR technology, designs a quantitative detection technology, and measures the total amount of multiple markers.
- the qMSP primers and probes were designed according to the multiple colorectal cancer-specific methylation markers selected, and then the single marker determination and multiplex PCR reaction conditions were gradually optimized to obtain a sensitive and stable fluorescence quantitative detection Method, the total amount of multiple markers can be measured in a single tube reaction, so as to show the overall methylation level of multiple markers.
- the invention utilizes nucleic acid flight mass spectrometry technology to simultaneously quantify multiple markers separately.
- the present invention combines methylation-sensitive restriction endonuclease, real-competitive technology, single-base extension reaction and nucleic acid flight mass spectrometry technology, and first uses methylation-sensitive restriction endonuclease to process the sample DNA. Design measurement primers and extension primers according to the region where the methylation markers are located. Each reaction system can contain 10-20 determinations. Then, a competitor DNA that competes with the target DNA is introduced in the PCR reaction, and the copy number of the competitor is A known.
- the copy number of the target DNA can be calculated according to the ratio of the target DNA to the competitor, so as to realize the quantification of the marker, which can assist the high-throughput sequencing technology for the verification of tumor markers, and can also quantitatively analyze the plasma ctDNA.
- the present invention relates to the following aspects:
- the present invention relates to diagnosing the presence of colorectal cancer in subjects, judging the postoperative prognosis of subjects with colorectal cancer, predicting postoperative recurrence of subjects with colorectal cancer, or evaluating the
- the method for the treatment effect of a subject with colorectal cancer includes detecting methylation markers in free DNA in a sample from the subject to determine the level of methylation of the DNA. If the DNA methylation level is higher than the DNA methylation level of the normal control sample, it is determined that the subjects have colorectal cancer, subjects with colorectal cancer have poor postoperative prognosis, and sufferers of colorectal cancer.
- the subject is prone to relapse after the operation or the treatment effect on the subject is not good, and the methylation marker is one or more selected from the markers listed in Table 2, Table 3, and Table 8.
- the detection of the methylation marker is performed using multiplex quantitative methylation-specific PCR, and the methylation marker is:
- MBSF9 One or more selected from MBSF9, MBSF10, MBSF15, MBSR5, MBSR6, MBSR7, MBSR8, MBSR9, MBSR11 and MBSR16;
- the multiple quantitative methylation-specific PCR includes the determination of the internal reference gene ACTB.
- the multiplex quantitative methylation-specific PCR uses primers and probes for the methylation markers described above, and primers and probes for the internal reference gene ACTB, wherein the The primers and probes contained the sequences shown in Table 4.
- the RD2_F primer is not used in the multiplex quantitative methylation-specific PCR .
- the detection of the methylation marker is performed using multiple quantitative methylation-specific PCR, in which the methylation marker is Divide into two or more groups, and use different fluorescent labels for each group of markers and probes of internal reference genes.
- the methylation markers are divided into two groups, the first group is composed of MBSF9, MBSR16, MBSF8, MBSR13, NDRG4, NPY and QKI, and the second group is composed of MBSF15, MBSR5, MBSR6, MBSR7, MBSR8 and MBSR9 are composed of and use the internal reference gene ACTB.
- the primers and probes for the first group of markers contain the sequences shown in Table 5
- the primers and probes for the second group of markers contain the sequences shown in Table 6.
- the primers and probes for the internal reference gene ACTB contain the sequences shown in Table 7.
- the detection of the methylation marker is performed using nucleic acid flight mass spectrometry, and the methylation marker is selected from RRB10, RRB13, RRB14, RRB16, RRB17_1, RRB17_2, One or more of RRB20, RRB21_4, RRB26_2, RRB2, RRB30, RRB6_1, RRB6_4, and RRB6_5, optionally, the nucleic acid flight mass spectrometry includes the determination of the internal reference gene ACTB.
- the nucleic acid flight mass spectrometry method uses PCR primers and extension primers for the methylation markers and internal reference genes and simultaneously amplifies a competitor of a methylation marker with a known copy number Sequence, calculate the copy number of the methylation marker based on the ratio of the methylation marker to the competitor.
- the PCR primers for the methylation marker and the internal reference gene contain the sequence shown in Table 9, which is for methylation.
- the extension primers of the marker and the internal reference gene include the sequences shown in Table 10
- the competitor sequences of the methylation marker and the internal reference gene include the sequences shown in Table 11.
- the sample is selected from body fluids, blood, serum, plasma, urine, saliva, sweat, sputum, semen, mucus, tears, lymph, amniotic fluid, interstitial fluid, lung lavage, Cerebrospinal fluid, stool and tissue samples.
- the present invention relates to the diagnosis of colorectal cancer in subjects, the prognosis of subjects with colorectal cancer after surgery, the prediction of recurrence or evaluation of subjects with colorectal cancer after surgery
- a methylation marker for the therapeutic effect of a subject suffering from colorectal cancer is selected from one or more of the markers listed in Table 2, Table 3, and Table 8.
- the marker is selected from MBSF9, MBSF10, MBSF15, MBSR5, MBSR6, MBSR7, MBSR8, MBSR9, MBSR11, MBSR16, MBSF8, MBSR13, RD1, RD2, NPY, NDRG4, QKI, RRB10 , RRB13, RRB14, RRB16, RRB17_1, RRB17_2, RRB20, RRB21_4, RRB26_2, RRB2, RRB30, RRB6_1, RRB6_4, and RRB6_5.
- the present invention relates to the diagnosis of colorectal cancer in subjects, the prognosis of subjects with colorectal cancer after surgery, the prediction of recurrence or evaluation of subjects with colorectal cancer after surgery
- a kit for the therapeutic effect on subjects suffering from colorectal cancer which contains reagents for detecting methylation markers selected from those listed in Table 2, Table 3, and Table 8. One or more markers.
- the methylation marker is selected from MBSF9, MBSF10, MBSF15, MBSR5, MBSR6, MBSR7, MBSR8, MBSR9, MBSR11, MBSR16, MBSF8, MBSR13, RD1, RD2, NPY, NDRG4
- the kit includes reagents for detecting the internal reference gene ACTB.
- the reagents for detecting methylation markers and internal reference genes comprise the sequences shown in Table 4.
- the methylation marker is one selected from RRB10, RRB13, RRB14, RRB16, RRB17_1, RRB17_2, RRB20, RRB21_4, RRB26_2, RRB2, RRB30, RRB6_1, RRB6_4, and RRB6_5.
- the kit includes reagents for detecting the internal reference gene ACTB.
- the reagents for detecting methylation markers and internal reference genes comprise the sequences shown in Table 9, Table 10 and Table 11.
- the methylation marker is:
- MBSF9 One or more selected from MBSF9, MBSF10, MBSF15, MBSR5, MBSR6, MBSR7, MBSR8, MBSR9, MBSR11 and MBSR16;
- the present invention relates to a polynucleotide comprising a nucleotide sequence selected from SEQ ID NOs: 1, 2 and 9-120.
- the primers, probes and competitor sequences used are not limited to those listed in the above-mentioned table and sequence numbers, but include at least 80%, preferably at least 85%, and more preferably at least Those sequences that are 90%, more preferably at least 95%, more preferably at least 99% identical, and still retain their function. Among them, it is preferred that the 10 consecutive nucleotides at the 3'end are at least 90%, preferably at least 95%, and more preferably at least 99% identical to the primer sequence of the present invention. Those skilled in the art can determine sequence identity through routine procedures.
- the present invention relates to the preparation of reagents for detecting methylation markers for diagnosing the presence of colorectal cancer in subjects, judging the postoperative prognosis of subjects with colorectal cancer, and predicting the For use in a kit for a subject of colorectal cancer to relapse after surgery or to evaluate the therapeutic effect on a subject suffering from colorectal cancer, the methylation marker is selected from Table 2, Table 3 and Table 8. One or more of the listed markers.
- the diagnosis of the presence of colorectal cancer in the subject, the determination of the prognosis of the subject with colorectal cancer after surgery, and the prediction of the recurrence of the subject with colorectal cancer after surgery Or the evaluation of the therapeutic effect on subjects suffering from colorectal cancer is carried out by the method of the present invention described above.
- Figure 1 Cluster analysis of the methylation levels of candidate genes screened by the RRBS method in different types of samples.
- the horizontal axis is the genome location of each region, and the vertical axis is the sample type.
- FIG. 1 Methylation levels of candidate genes in tumor tissues and normal tissues in RRBS data.
- the horizontal axis is the candidate marker number, and the vertical axis is the methylation level (Meth%).
- the white box plot in the figure represents normal tissue (N), and the gray box plot represents tumor tissue (T).
- FIG. 1 Amplification curve diagram of internal reference determination test.
- FAM represents the fluorescence signal of methylation markers
- VIC represents the fluorescence signal of internal reference genes.
- Bis-CRC refers to the DNA of the tumor tissue treated with bisulfite
- Bis-BC refers to the buffy coat DNA treated with bisulfite
- BC refers to the buffy coat DNA without bisulfite treatment
- NTC Blank control without adding template.
- Figure 7 Amplification curve of non-specific signal detection during the establishment of V2 assay.
- Target 1 represents the fluorescence signal of the methylation marker
- target 2 represents the fluorescence signal of the internal reference gene.
- Figure 8 Amplification curve diagram of the quantification of multiple DNA methylation markers by dual fluorescence method.
- Target 1 represents the fluorescence signal of the methylation marker
- target 2 represents the fluorescence signal of the internal reference gene.
- Target 1 and Target 2 represent the fluorescence signal of the methylation marker
- Target 3 represents the fluorescence signal of the internal reference gene.
- FIG. 10 Nucleic acid flight mass spectrometry to quantify multiple DNA methylation markers.
- the upper figure shows the mass spectra of the methylation marker RRB14 in different samples, and the lower figure shows the mass spectra of the methylation marker RRB17_1 in different samples.
- E-T1 represents the digested tumor tissue DNA
- E-N1 represents the digested normal tissue DNA
- E-B1 represents the digested buffy coat DNA
- M-T1 represents the uncut tumor tissue DNA
- M-N1 Indicates normal tissue DNA that has not been digested
- M-B1 represents buffy coat DNA that has not been digested.
- the triangle marks the peak position of the extension primer, the arrow marks the peak position of the extension product of the competitor, and the peak position next to it is the peak position of the sample DNA extension product.
- FIG. 11 Plasma methylation test results of a positive sample and a negative sample.
- FAM indicates the fluorescence signal of the methylation marker
- VIC indicates the fluorescence signal of the internal reference gene.
- FIG. 12 V1 determination of plasma methylation levels and changing trends among each group.
- the abscissa CRC indicates bowel cancer, AA indicates progressive adenoma, "polyp” indicates intestinal polyp, and "normal” indicates normal control; the ordinate indicates methylation level.
- FIG. 13 V1 measurement of plasma methylation levels and changing trends in colorectal cancer samples of different stages.
- the abscissa represents the different stages of bowel cancer, and the ordinate represents the level of methylation.
- FIG. 15 V2 determination of plasma methylation levels and changing trends among each group.
- CRC means colorectal cancer
- AA means progressive adenoma
- polyp means intestinal polyp
- normal means normal control
- volumenteer means asymptomatic volunteers
- the ordinate means methylation level.
- FIG. 18 V4 determination of plasma methylation level and change trend between each group.
- CRC means colorectal cancer
- AA means progressive adenoma
- polyp means intestinal polyp
- GI means gastrointestinal inflammation
- ESCC means esophageal cancer
- lung means lung cancer
- normal means normal control
- ordinate means methylation level.
- FIG. 19 V4 determination of plasma methylation levels and changing trends in colorectal cancer samples of different stages.
- the abscissa represents the different stages of bowel cancer, and the ordinate represents the level of methylation.
- Figure 21 Survival curves of ctDNA and RFS in 77 patients with colorectal cancer.
- Figure 22 Comparison of preoperative and postoperative ctDNA in patients with relapsed and non-relapsed colorectal cancer.
- Figure 23 Survival curve of ctDNA RFS in patients with recurrent colorectal cancer.
- Figure 24 Quantitative analysis results of ctDNA in patients with recurrent colorectal cancer after surgery.
- Figure 25 follow-up blood ctDNA RFS survival curve of patients with colorectal cancer.
- Figure 26 The dynamic changes of plasma ctDNA during treatment and follow-up of patients with neoadjuvant colorectal cancer.
- the invention screens and verifies multiple colorectal cancer tumor-specific DNA methylation markers, which can be used for sample detection.
- mqMSP method which can detect multiple DNA methylation markers at the same time, and can have a variety of different combination methods and data analysis algorithms to detect the overall methylation of the marker combination ⁇ level.
- the markers included in the combination need to follow certain principles. First, ensure that there is no background signal in the buffy coat sample, the methylation level in the tumor sample is significantly higher than that of the normal sample, and different markers are in a number of different samples. It is better to have complementarity between the markers, and the markers cannot interfere with each other to generate non-specific signals, so as to ensure the specificity and sensitivity of the combined assay for ctDNA detection.
- the mqMSP method using three or more fluorescence channels, one of which fluorescence is used for internal reference signal detection, and the other fluorescence signals can be used to detect DNA methylation markers in groups (2 groups or more), and use each group of fluorescence signals
- the combination of specific algorithms can be used to dynamically monitor changes in the amount of ctDNA.
- Clinical use 1 A number of different combinations of mqMSP methods have been established for colorectal cancer screening (4 assay formats).
- the markers include different combinations of multiple regions of SEPTIN9, NDRG4, and QKI genes.
- the positive test results of the samples indicate that they are affected.
- the subject may have colorectal cancer.
- Clinical use 2 The established mqMSP detection method can be used to judge the prognosis after colorectal cancer surgery.
- the markers include different combinations of multiple regions of SEPTIN9, NDRG4, and QKI genes.
- a positive sample test result indicates that the subject may have a poor prognosis for colorectal cancer. .
- Clinical use 3 The established mqMSP method can be used for postoperative monitoring and recurrence prediction of colorectal cancer patients.
- the markers include different combinations of multiple regions of SEPTIN9, NDRG4, and QKI genes.
- a positive sample test result indicates that the subject may have disease recurrence Status of progress.
- Clinical use 4 The established mqMSP method can be used for full coverage dynamic monitoring of neoadjuvant treatment efficacy, postoperative evaluation, and postoperative monitoring of colorectal cancer patients.
- the markers include different combinations of multiple regions of SEPTIN9, NDRG4, and QKI genes, samples A positive test result indicates that the subject may not be satisfactory in receiving neoadjuvant therapy, and further comprehensive evaluation is required.
- the present invention has screened and verified multiple tumor-specific DNA methylation markers, including SEPTIN9, NDRG4, QKI, ATP8B2, LONRF2, FGF12, etc. Some of these markers have not been reported in the relevant literature to support the detection of colorectal cancer. , Such as ATP8B2, HSPA1A, etc., these markers need to be further explored for clinical diagnosis and treatment of colorectal cancer.
- the present invention uses multiple DNA methylation markers for combined detection. Compared with single-marker detection methods such as EpiproColon, the present invention improves the sensitivity of detection, improves the positive detection rate for patients with early colorectal cancer, and reduces missed diagnosis. To achieve the purpose of early screening. It has been verified in multiple cohorts including colorectal cancer, adenoma, polyps, and normal samples. It shows that the detection rate is about 42-74.4% in stage I colorectal cancer, and in stage II colorectal cancer. The detection rate is about 74.1-84.2%, which is better than the current detection method EpiproColon.
- the marker and detection method of the present invention can be used not only for clinical colorectal cancer screening, but also for prognostic evaluation of patients, postoperative monitoring, detection of recurrence and metastasis, and evaluation of the efficacy of neoadjuvant therapy, expanding clinical applications. It was verified in a cohort of 86 follow-up patients with colorectal cancer, and the results showed that the preoperative ctDNA positive rate was 89.5% (the positive rate of stage I patients was 80%, stage II was 90%, stage III was 90.9%, and stage IV was 90.9%.
- a patient with rectal cancer receiving neoadjuvant therapy was monitored throughout the whole process.
- the ctDNA test result was positive before the neoadjuvant therapy, and the ctDNA result turned negative after the neoadjuvant therapy, and then the patient underwent tumor resection.
- Postoperative and follow-up ctDNA test results were negative, the patient's prognosis was good, and imaging examination did not find recurrence progress, indicating that this method has application prospects in the evaluation of neoadjuvant treatment for colorectal cancer.
- the detection cost of each sample is about 80 yuan, which is relatively economical.
- the invention utilizes nucleic acid flight mass spectrometry technology, combined with methylation-sensitive restriction endonucleases and real-competitive PCR technology to optimize the design scheme, which is suitable for multiple DNA including ATP8B2, LONRF2, FGF12, CHST10, ELOVL2, HSPA1A, etc.
- the methylation markers were quantified separately. This scheme can realize the simultaneous quantification of 10-20 markers in the same reaction system, and evaluate their differences in methylation levels in the same sample, which can be used for actual tumor research Validation of markers and detection of ctDNA in clinical samples.
- primers and probes designed for the QPCR reaction of the present invention can also be used for the detection of the ddPCR platform.
- the selected markers may also be suitable for the detection of other gastrointestinal tumors such as esophageal cancer and gastric cancer.
- the real-time fluorescence quantitative detection system is used to accurately quantify the effective concentration of the library. Then, the library samples that have passed the quality inspection are subjected to high-throughput and high-depth sequencing through the Illumina Hiseq X Ten sequencing platform.
- the first screening conditions are as follows:
- the sequencing depth satisfies Depth ⁇ 10, and satisfies at the same time, the number of cases, buffy coat ⁇ 5 cases, normal tissue ⁇ 10 cases, non-progressive adenoma ⁇ 5 cases, progressive adenoma ⁇ 5 cases, cancerous tissue ⁇ 10 cases;
- the average methylation background of the genome is Avg(BC) ⁇ 2%
- the average methylation background of normal tissues is Avg(N) ⁇ 10%
- the average methylation difference between normal tissues and cancer tissues is Avg(T )-Avg(N) ⁇ 15% is the condition for screening CpG sites, and the continuous CpG spacing does not exceed 150bp to delimit the area, and each area contains at least 3 CpGs.
- a total of 1666 differentially methylated regions and 2792,068 CpG sites were obtained;
- the internal reference assay is designed for ACTB genes, which can be amplified simultaneously with multiple methylation gene assays in the mqMSP reaction, which can be used as quality control to reflect the quality of sample DNA.
- the innovation of this technology is the introduction of a mutant base in the PCR primer sequence determined by the internal reference, which can ensure that the internal reference fluorescence signal (VIC fluorescence signal) is appropriately reduced in the mqMSP reaction, and at the same time, it can reduce the methylation marker signal to be tested (FAM). Fluorescence signal) inhibition.
- the experiment process is as follows:
- Each OPCR reaction system is prepared as follows:
- the ideal internal reference measurement cannot generate non-specific signals in BC and NTC samples on the one hand, and on the other hand, it needs to ensure that appropriate fluorescence signals are generated in Bis-BC samples to reflect the quality of the input DNA without attenuating it.
- the FAM fluorescence signal intensity of methylated genes cannot interfere with the determination of methylated genes to produce non-specific FAM signals in Bis-BC, BC, and NTC samples. Therefore, the best internal reference measurement that satisfies the above conditions is combination 1.
- the second base from the 3'end of the forward primer is mutated from T to A, and the sequence of the reverse primer remains unchanged.
- the positive quality control product is the DNA of the HCT15 colon cancer cell line DNA and the human buffy coat DNA at a ratio of 1:99.
- the negative control substance is human buffy coat DNA.
- 20ng was taken as a reference sample to evaluate the validity of the experiment.
- the positive quality control product and negative quality control product need to be processed the same during the bisulfite treatment and QPCR detection.
- Each bisulfite-converted DNA is divided into two, and a double reaction is performed in QPCR.
- the number of reaction cycles is 45 cycles. After the reaction is completed, the Cq values of the FAM signal and the VIC signal of the double reaction are counted.
- Each candidate DNA methylation marker was tested in multiple samples, and a variety of possible combinations of markers (V1, V2, V3, V4 determination) were analyzed (see Examples 5-9 below).
- the mqMSP method was established, and its detection sensitivity was 10 times that of a single marker, and the corresponding data analysis algorithm was developed.
- the markers included in the combination need to follow certain principles: first, ensure that there is no background signal in the buffy coat sample; the methylation level in the tumor sample is significantly higher than that in the normal sample; and the different markers are in a number of different samples. It is best to have complementarity between them to ensure the specificity and sensitivity of the combined assay; in addition, multiple combined assays cannot interfere with each other to generate non-specific signals.
- markers are used in the qMSP test and cfDNA mqMSP products of multiple samples.
- the sequencing results have also been verified.
- 3 or more types of markers can be achieved.
- the following will also show the design of the dual-fluorescence method and the three-fluorescence method respectively.
- fluorescence 1 and 2 are used for positive markers
- fluorescence 3 is used for quality control markers.
- markers included in the combination select 10 markers (MBSF9, MBSF10, MBSF15, MBSR5, MBSR6, MBSR7, MBSR8, MBSR9, MBSR11, MBSR16) to design MGB probes, and then combine these into 1 multiplex Determination.
- the ACTB internal reference determination was added as a quality control in the multiple determination, and the optimal reaction conditions were optimized to improve the sensitivity of the determination. Therefore, the V1 determination combination was obtained, including: MBSF9, MBSF10, MBSF15, MBSR5, MBSR6, MBSR7, MBSR8, MBSR9, MBSR11, MBSR16, ACTB.
- the markers used are: MBSF9, MBSF10, MBSF15, MBSR5, MBSR6, MBSR7, MBSR8, MBSR9, MBSR11, MBSR16, ACTB, and the primer and probe sequences of each marker are shown in the summary table in Example 4.
- each primer 200 ⁇ M, mix according to the following ratio:
- the initial concentration of each probe is 100 ⁇ M, mix according to the following ratio:
- the QPCR reaction conditions are as follows:
- the Cq value in the amplification curve increases as the degree of methylation decreases, and the amplification curve shows different degrees of methylation (1%, 0.5%, 0.2%, 0.1%, 0.05%, 0 %)
- the sample fluorescence signal is arranged separately from left to right, which can be distinguished.
- the curve with the strongest FAM signal on the far left is a 1% methylated sample, and the curve with the weakest FAM signal on the far right is a 0% methylated sample.
- the results indicate that this method can detect samples with a degree of methylation as low as 0.05%. .
- the reaction system is as follows:
- KAPA probe FAST qPCR master mix 2 ⁇ 12.5 ⁇ L MBSF9 primer mix 5 ⁇ M 1.25 ⁇ L MBSF9 probe 5 ⁇ M 0.5 ⁇ L ACTB primer mix 5 ⁇ M 0.3 ⁇ L ACTB probe 5 ⁇ M 0.25 ⁇ L DNA sample to be tested / 10 ⁇ L Enzymatic water / Dilute to 25 ⁇ L
- the reaction conditions are as follows:
- the same sample has a difference of about 3-4 Cq in the detection results of the two methods.
- the combined detection of multiple methylation markers has a stronger signal than the detection of a single methylation marker, indicating multiple methylation markers
- the sensitivity of combined detection of substances is about 10 times that of detection of single markers.
- the V2 measurement combination is finally obtained, including: MBSF9, MBSF8, MBSR13, MBSR16, NDRG4, QKI, ACTB.
- T tumor tissue DNA
- N normal tissue DNA
- B buffy coat DNA
- the next step is to eliminate the measurement of non-specific signals in the combination, and select NTC (no template control) to observe the signal
- the intensity change is tested according to the following combination:
- the non-specific signal mainly comes from NPY.
- the sensitivity of the measurement with NPY removed and the measurement without NPY removed is compared.
- the 1% DNA sample test is used, and the sensitivity of the two is not much different.
- the V2 determination combination is finally obtained, including the determinations: MBSF9, MBSF8, MBSR13, MBSR16, NDRG4, QKI, ACTB, and each determination sequence is shown in the summary table of Example 4.
- each primer 200 ⁇ M, mix according to the following ratio:
- the initial concentration of each probe is 100 ⁇ M, mix according to the following ratio:
- the reaction conditions are as follows:
- sample P represents a positive control DNA sample with a methylation level of 100%
- ⁇ Cq VIC average Cq-FAM average Cq, which represents the methylation level.
- the test results of tumor tissue samples are as follows:
- the V2 measurement combinations are MBSF9, MBSF8, MBSR13, MBSR16, NDRG4, QKI, ACTB.
- Reaction system and reaction conditions same as V2 determination method.
- V3 is determined according to the included combination criteria, including: MBSF9, MBSF8, MBSR13, NDRG4, QKI, RD1, RD2, ACTB, and the sequence of the primers and probes for each determination is shown in the summary table in Example 4.
- each primer 200 ⁇ M, mix according to the following ratio:
- the initial concentration of each probe is 100 ⁇ M, mix according to the following ratio:
- the reaction conditions are as follows:
- buffy coat DNA is a DNA sample that has not undergone methylation or has a low degree of methylation
- FAM average Cq fluorescence signal of the corresponding methylated gene
- Reaction system and reaction conditions same as V2 determination method.
- the NDRG4 measurement is removed and the NDRG4 measurement is combined to form a new multiple measurement to obtain the V4 measurement, including: MBSF9, MBSF8, MBSR13, QKI, RD1 RD2 (with the RD2_F primer removed), ACTB, and each determination sequence is shown in the summary table in Example 4.
- each primer 200 ⁇ M, mix according to the following ratio:
- V4 determines the primer composition of methylated genes volume MBSF9 upstream and downstream primers 10uL each MBSR8 upstream and downstream primers 10uL each MBSR13 upstream and downstream primers 10uL each QKI upstream and downstream primers 10uL each RD1 upstream and downstream primers 10uL each RD2 downstream primer 10uL Enzymatic water 50uL
- the initial concentration of each probe is 100 ⁇ M, mix according to the following ratio:
- ACTB probe (5 ⁇ M) 0.05 ⁇ M 0.25 50 ⁇ ROX Low 1 ⁇ 0.5 DNA template / 10 H 2 O / 0.7 total capacity / 25
- the reaction conditions are as follows:
- the buffy coat DNA is a DNA sample that has not undergone methylation or has a low degree of methylation
- the corresponding fluorescence signal (FAM average Cq) of the corresponding methylated gene should theoretically be absent or weak. This method is used to detect more In the buffy coat DNA samples of different people, it can be seen that the methylation signals of all samples are absent or extremely weak, indicating that this method can more specifically distinguish between cancer tissue DNA and buffy coat DNA samples.
- Sample types include: M.SssI enzyme-treated buffy coat DNA (100% methylated DNA control), 1% Meth DNA, colorectal cancer cfDNA, progressive adenoma cfDNA, benign polyp cfDNA, healthy human cfDNA, volunteers cfDNA. There are 28 product samples tested by V2 determination, and 55 product samples tested by V1 determination.
- the 83 samples are as follows:
- X is the value obtained after processing in the following table, which can indicate the signal size of each marker effectively amplified in the mqMSP reaction, reflecting the methylation level of the region where the marker is located in the sample, and the color depth shows the value visually The size, the darker the color, the stronger the signal and the higher the methylation level.
- Each row in the table represents the value of a measurement amplicon in different samples, and each column represents the value of all measurement amplicons corresponding to a sample.
- Dual-fluorescence mqMSP method multiple MGB probes designed for DNA methylation markers (MBSF9, MBSR16, MBSF8, MBSR13, NDRG4, QKI) are all labeled with FAM fluorophores for quantitative internal reference genes
- the MGB probe is labeled with a VIC fluorophore.
- the determination sequence is shown in the summary table in Example 4, and the detection method is shown in the mqMSP method (V2 determination method) described in Example 7 above.
- Three-fluorescence mqMSP method divide multiple methylation markers into two groups, one group (MBSF9, MBSR16, MBSF8, MBSR13, NDRG4, NPY, QKI) uses FAM-labeled MGB probes, and the other group ( MBSF15, MBSR5, MBSR6, MBSR7, MBSR8, MBSR9) use VIC-labeled MGB probes, and the internal reference genes used for quantification use CY5-labeled MGB probes.
- the reaction system is as follows:
- cfDNA detection effect of the three-fluorescence mqMSP method extract plasma cfDNA from different types of samples (colorectal cancer, benign polyps, progressive adenoma, healthy control) and add 200ng carrier DNA, and then perform bisulfite conversion Processing, use this method for detection.
- the sensitivity test results of the three-fluorescence mqMSP method are as follows: For simulated methylation samples of different concentrations, the methylation signals (FAM and VIC fluorescence signals) can be detected, and the degree of methylation can be detected as low as A signal of 0.1% indicates that the sensitivity of this method is better.
- the FAM fluorescence signal (target1) in the detection result of the dual fluorescence method indicates the level of gene methylation in the colorectal cancer sample
- the VIC fluorescence signal (target2) indicates the internal reference gene, reflecting the quality of the input DNA.
- the FAM signal (target1) and VIC signal (target2) in the detection results of the three-fluorescence method respectively represent the methylation levels of the two groups of genes
- the CY5 fluorescence signal (target3) represents the internal reference gene, reflecting the quality of the input DNA.
- This embodiment combines methylation-sensitive restriction enzymes, real-competitive technology, single-base extension reaction and nucleic acid flight mass spectrometry technology to design a quantitative detection scheme.
- Cycle conditions (on/off cycle time) Number of cycles 30"/30" 13
- the enzyme digestion reaction system is prepared as follows:
- the methylation levels of 14 gene regions including FGF12, ELOVL2, HSPA1A in colorectal cancer tumor tissues are significantly higher than other tissue samples and buffy coat, which can be used as tumor-specific DNA methylation. Therefore, PCR amplification primers and extension primers were designed for multiple regions of FGF12, ELOVL2, HSPA1A and other genes.
- ACTB determination the degree of methylation in each sample is close to 0
- RRB6_5-U GCTGCTCTTGCGATG (SEQ ID NO: 91) RRB20-U CGGCGTGGAGGAAAG (SEQ ID NO: 92) RRB6_4-U TCTGAGCCCCTGCCCA (SEQ ID NO: 93) RRB21_4-U GGCGGCTGGTAACCCA (SEQ ID NO: 94) RRB16-U CCCCAGAACTCCCGAGG (SEQ ID NO: 95) RRB10-U GGAAGGCAGCAATTTAA (SEQ ID NO: 96) QC-U gGGCTGGGGTGGCGCGT (SEQ ID NO: 97) RRB2-U GCTTAGGGAACTCTCCTT (SEQ ID NO: 98) RRB17_2-U aGCCCCCTGCCCTCCGCGA (SEQ ID NO: 99) RRB14-U gtccAAGGACCGAGCTCTT (SEQ ID NO: 100) RRB13-U aCGCT
- the sequence of the designed competitor is as follows: corresponding to the target sequence amplified by each pair of PCR primers designed in step A, a variant base is introduced at the 3'end position of the extension primer (the underlined base is the introduced variant base).
- the concentration of the subsequent primer working solution is set to 0.5 ⁇ M, take 50 ⁇ L of the above mixture (1 ⁇ M) into a new Ep tube, add 50 ⁇ L ddH 2 O and dilute to 0.5 ⁇ M.
- Competitor preparation Dilute the dry powder of the competitor into a 1 ⁇ M solution and use Thermo
- the ssDNA determination kit measures the concentration and converts it to the actual copy concentration based on the molecular weight of each competitor, and then dilutes and mixes each competitor so that the amount of the competitor added in the subsequent PCR reaction meets the following conditions:
- Enzyme digestion sample normal tissue DNA/ buffy coat DNA
- T Competitors are added to the digested samples Each goal 3300 copies/PCR reaction QC 33 copies/PCR reaction
- PCR reaction Add the digested and purified sample DNA or simulated control sample and competitors into the same system for PCR amplification.
- the PCR reaction system is as follows:
- the samples to be tested are sequentially added to the reaction wells.
- SAP reaction solution system is as follows:
- Extension reaction Take 7 ⁇ L of SAP reaction product and add 2 ⁇ L of extension reaction solution for extension reaction.
- the extension reaction solution system is as follows:
- Enzyme digestion sample normal tissue DNA/ buffy coat DNA 20ng/reaction
- Enzyme digestion sample T tumor tissue DNA 20ng/reaction
- T Competitors are added to the digested samples Each goal 3300 copies/PCR reaction QC 33 copies/PCR reaction
- a simulated control sample (M-T1, M-N1, M-B1) has a ratio of the signal peak of the competitor to the signal peak of the sample close to 1:1, indicating that the PCR reaction efficiency is better, and the number of uncut input DNA copies and the input competitors The copy number is equivalent; the ratio of the signal peak of the competitor to the signal peak of the sample in the three digested samples (E-T1, E-N1, E-B1) is different, and the signal ratio of the two in the tumor sample E-T1 is 0.76, which is normal
- the signal ratio of the two signals in the sample E-N1 was 2.19, and the signal ratio of the two signals in the buffy coat sample E-B1 was 0.12.
- the DNA copy numbers of the three digested samples were 2508 copies, 144.54 copies, and 7.92 copies. , Indicating that the degree of methylation of this marker in colorectal cancer tumors is significantly higher than that of other types of samples.
- Figure 10 the figure below analyzes the methylation marker RRB17_1, the DNA copy numbers of the three digested samples are 3696 copies, 133.98 copies, and 9.24 copies, respectively.
- Plasma cfDNA test results for colorectal cancer Plasma cfDNA test results for colorectal cancer:
- Plasma cfDNA test results of progressive adenoma and intestinal polyps Plasma cfDNA test results of progressive adenoma and intestinal polyps:
- V1 determination is used for the detection of blood samples
- the positive quality control product is the DNA of the HCT15 cell line DNA and the normal human buffy coat DNA at a ratio of 1:99
- the negative control product is the normal human buffy coat DNA at a concentration of 10ng. / ⁇ L, each reaction takes 20ng as a reference sample to evaluate the validity of the experiment; (for detailed description of quality control products, please refer to Example 3)
- V1 determines the primer probe sequence, reaction system, reaction conditions, and the results are as follows:
- A.V1 determination includes the determinations: MBSF9, MBSF10, MBSF15, MBSR5, MBSR6, MBSR7, MBSR8, MBSR9, MBSR11, MBSR16, ACTB, and each determination sequence is shown in the summary table in Example 4.
- the QPCR reaction of the quality control material meets the criteria listed in the table below, and the subject sample is tested in the same QPCR reaction with the quality control material, the QPCR reaction is verified to be effective.
- the clinical characteristics and positive detection rate of the 300 subjects enrolled are as follows:
- stage I-IV The sensitivity of this method for colorectal cancer detection is 86.21%, and the specificity is 83.33%.
- the detection rates of stage I-IV were 64.3%, 84.2%, 100%, and 100%, respectively.
- Figure 11 shows the plasma methylation test result of a positive sample and the plasma methylation test result of a negative sample.
- Figure 12 shows that the plasma methylation level of patients with colorectal cancer is significantly higher than that of other groups, and the difference is statistically significant;
- Figure 13 shows that the plasma methylation level is related to tumor stage, and the later the tumor stage, the higher the plasma methylation level. high.
- the ROC curve analysis result in Figure 14 shows that the area under the curve is 0.8912, indicating that the diagnostic accuracy of this method is relatively high.
- V2 determination is used for the detection of blood samples
- the positive quality control product is the DNA of the HCT15 cell line DNA and the normal human buffy coat DNA at a ratio of 1:99
- the negative control product is the normal human buffy coat DNA at a concentration of 10ng. / ⁇ L, each reaction takes 20ng as a reference sample for the evaluation of the validity of the experiment; (for the detailed description of the quality control products, please refer to Example 3)
- V2 primer probe sequence Use primers and probes to perform multiple real-time fluorescence quantitative PCR detection on the above-mentioned bisulfite-converted DNA.
- the V2 primer probe sequence, reaction system, reaction conditions, and results are interpreted as follows:
- A.V2 determination includes the determinations: MBSF9, MBSF8, MBSR13, MBSR16, NDRG4, QKI, ACTB, and each determination sequence is shown in the summary table in Example 4.
- the QPCR reaction of the quality control material meets the criteria listed in the table below, and the subject sample is tested in the same QPCR reaction with the quality control material, the QPCR reaction is verified to be effective.
- the clinical characteristics and positive detection rate of the 305 subjects enrolled are as follows:
- stage I-IV The sensitivity of this method for colorectal cancer detection is 67.54%, and the specificity is 98.25%.
- the detection rates of stage I-IV were 42%, 75%, 67.7%, and 91.7%, respectively.
- Figure 15 shows that the plasma methylation level of patients with colorectal cancer is significantly higher than that of other groups, and the difference is statistically significant;
- Figure 16 shows that the plasma methylation level is related to the tumor stage, and the later the tumor stage, the higher the plasma methylation level. high.
- the ROC curve analysis result in Figure 17 shows that the area under the curve is 0.8663, indicating that the diagnostic accuracy of this method is relatively high.
- V4 determination is used for the detection of blood samples
- the positive quality control product is the DNA of the HCT15 cell line DNA and the normal human buffy coat DNA at a ratio of 1:99
- the negative control product is the normal human buffy coat DNA at a concentration of 10ng. / ⁇ L, each reaction takes 20ng as a reference sample for the evaluation of the validity of the experiment; (for the detailed description of the quality control products, please refer to Example 3)
- V4 primer probe sequence Use primers and probes to perform multiple real-time fluorescence quantitative PCR detection on the above-mentioned bisulfite-converted DNA.
- the V4 primer probe sequence, reaction system, reaction conditions, and results are interpreted as follows:
- A.V4 determination includes the determinations: MBSF9, MBSF8, MBSR13, QKI, RD1, RD2 (with the RD2_R primer removed), ACTB, and each determination sequence is shown in the summary table in Example 4.
- the QPCR reaction of the quality control material meets the criteria listed in the table below, and the subject sample is tested in the same QPCR reaction with the quality control material, the QPCR reaction is verified to be effective.
- the clinical characteristics and positive detection rate of the 194 subjects enrolled are as follows:
- stage I-IV The sensitivity of this method for colorectal cancer detection is 80.3%, and the specificity is 80%.
- the detection rates of stage I-IV were 74.4%, 74.1%, 95%, and 95%, respectively.
- Figure 18 shows that the plasma methylation level of patients with colorectal cancer is significantly higher than that of other groups, and the difference is statistically significant;
- Figure 19 shows that the plasma methylation level is related to tumor stage, and the later the tumor stage, the higher the plasma methylation level. high.
- the ROC curve analysis result in Figure 20 shows that the area under the curve is 0.8567, indicating that the diagnostic accuracy of this method is relatively high.
- V1 measurement primers and probes to perform multiple real-time fluorescence quantitative PCR detection on the above-mentioned bisulfite-converted DNA
- the V1 primer probe sequence, reaction system, reaction conditions, and result interpretation are the same as those described in Example 13.
- a rectal cancer patient under neoadjuvant treatment was enrolled through the First affiliated Hospital of Wenzhou Medical University, and blood samples before neoadjuvant treatment, blood samples during neoadjuvant treatment, blood samples before surgery, blood samples after surgery, and a series of blood samples for dynamic follow-up were collected 12 copies in total;
- V1 measurement primers and probes to perform multiple real-time fluorescence quantitative PCR detection on the above-mentioned bisulfite-converted DNA
- the V1 primer probe sequence, reaction system, reaction conditions, and result interpretation are the same as those described in Example 13.
- Figure 26 shows the ctDNA changes of the series of blood samples during the treatment and follow-up of this patient. It can be seen that the ctDNA test result was positive before the neoadjuvant treatment, and the ctDNA result turned negative after the neoadjuvant treatment, and the patient underwent tumor resection. The ctDNA test results before, after operation, and during follow-up were all negative, the patient had a good prognosis, and no recurrence was found in imaging examination, indicating that this method is useful in the evaluation of neoadjuvant treatment of colorectal cancer, postoperative evaluation and monitoring. Certainly.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供了结直肠癌DNA甲基化的检测方法,通过检测来自受试者的样本中的游离DNA中的甲基化标志物以判断所述DNA的甲基化水平来诊断受试者中是否存在肠癌、判断患有肠癌的受试者术后的预后、预测患有肠癌的受试者术后复发或评估对患有肠癌的受试者的治疗效果。本发明还提供了用于所述方法的标志物、试剂盒和检测试剂。
Description
本发明涉及医学诊断领域,具体设计结直肠癌的早期诊断、预后、疗效评估等。并且还涉及用于所述诊断、预后和疗效评估的试剂盒以及试剂。
结直肠癌是世界范围内常见的消化道恶性肿瘤之一。据统计2018年结直肠癌新发患者约180万例,死亡人数约86万
[1]。在我国结直肠癌发病率和死亡率均居于肿瘤类第5位
[2]。但是近年来以美国为代表的发达国家的整体结直肠癌发病率已经开始下降
[3],而我国结直肠癌发病人数和死亡人数呈上升趋势
[2],这一增长变化值得关注并深入分析。一方面,高脂饮食、吸烟和酗酒等生活方式都可能会增加罹患结直肠癌的风险,因此I级预防能发挥35%的作用以减少癌症的发生。另外,九成以上的结直肠癌患者年龄超过50岁,他们经常忽视病变的早期症状,包括粪便带血或排便习惯的变化,导致确诊时肿瘤已发展至晚期,而晚期结直肠癌患者五年生存率不足15%,远低于早期患者的生存率。分析表明,在降低结直肠癌发病率上,美国通过开展结直肠癌早期筛查的II级预防发挥了53%的作用,而临床治疗发挥了12%的作用
[3]。
研究证实结直肠癌的发生是由一系列遗传和表观遗传学变异共同作用产生的
[4],包括抑癌基因的功能丧失缺陷,癌基因的功能获得缺陷等,这些变异会赋予细胞选择性生长优势,被认为是“驱动”事件,并推动细胞克隆增殖向恶性肿瘤发展。典型的散发性结直肠癌可能仅包含2-8个驱动基因变异,其余为基因组不稳定和随机事件导致的“乘客”基因缺陷,这使得每位患者的肿瘤在遗传和表观遗传学上都是独特的,这一点也是目前精准医疗考虑的重要因素。根据这些分子特征可将结直肠癌分为不同的亚型,它们之间呈现不同的表型和预后特征
[5,6]。其中,在表观遗传学中研究较为深入的是DNA甲基化,具体机制是在基因组中通过DNA甲基转移酶(DNA methyltransferase,DNMT)从S-腺苷甲硫氨酸(SAM)转移甲基基团到CpG二核苷酸胞嘧啶的5位碳原子上,使其变为5-甲基胞嘧啶
[7]。DNA甲基化可能导致相关基因(包 括肿瘤抑制基因)的转录抑制和表达沉默。DNA异常甲基化在肿瘤形成过程中频繁发生,相对于基因突变等遗传学变异,其具有发生于肿瘤早期,范围广、变异模式多样等特点,因此可作为诊断、预后评估、个体化治疗等方面的肿瘤分子标志物
[8]。
患者的生存率和肿瘤发现的早晚相关,早发现是提高结直肠癌患者生存率和治愈率的关键。近几十年间,美国结直肠癌的发病率和死亡率总体呈下降趋势,主要归功于筛查的普及,目前美国结直肠癌筛查率达到60%;而我国由于筛查并未广泛开展,结直肠癌的早期诊断比例远低于欧美发达国家。现在临床可用的结直肠癌筛查方法包括粪便隐血实验(FOBT)、粪便免疫化学法检测(FIT)、结肠镜、Cologuard和EpiProcolon等,但这些方法各自有其优缺点,例如粪便隐血实验是一种非侵入性的检测方法,且操作简易,价格低廉,但敏感性较低,结果易受患者饮食、药物等因素影响;结肠镜检查是金标准,可检测整个肠道发生的病变并进行治疗,但此方法对肠道准备要求高,具有侵入性,存在出血、穿孔等胃肠道不良事件风险,患者依从性不高且许多地区无法广泛
[9]。因此,开发一种无创的、较为灵敏和特异的筛查方法是目前的研究热点。
当前对于结直肠癌患者的治疗手段主要为手术及术后辅助化疗。然而,对于初始治疗结束时认为已治愈的结直肠癌患者,在肿瘤切除后仍存在35%的复发率,其中80%出现于切除后2年内
[10],复发转移往往较迟被发现。此外,高危的患者(如III期结直肠癌患者)在手术治疗后需要继续接受化疗以降低复发和转移的风险
[11,12],但并非所有的病人都可以获益。临床上常规用于术后残留灶评估和指导治疗的指标是依据T、N、M系统对肿瘤进行分类,即肿瘤浸润深度(T),淋巴结转移与否(N),存在远处转移与否(M)。然而使用TNM分期对于部分II期和III期患者能提供的预测信息相对较弱。另外,在完成明确的治疗后,临床建议进行随访监测以尽早发现复发转移然后及时治疗,但是实际上许多复发事件发现较晚
[13],并且只有10%-20%的异时转移得到治愈
[14]。目前常用的监测方法包括CT、内镜下活检等
[15],这些方法具有辐射性、侵入性、缺乏敏感性等缺点。癌胚抗原(CEA)是目前唯一推荐用于结直肠癌监测和预测的血液标志物
[15],但是其敏感性较低
[16]。因此,寻找非侵入性和高灵敏度的预后标志物,进行术 后残留灶检测和准确的预后评估可以提供早期有效的治疗,对于改善患者生存至关重要。
术前新辅助放化疗是结直肠癌综合治疗的重要部分
[17],通过不同层次的治疗,目的在于提高手术切除率,提高保肛率,有望改善患者的无疾病生存率。在临床实践中,接受新辅助放化疗的局部进展期直肠癌患者,部分患者肿瘤退缩效果好,其预后也明显改善,但也有部分患者肿瘤退缩效果不明显,且承受了不必要的放化疗不良反应和手术延迟。目前,尚未有明确指标能预测放化疗敏感性。同时,放化疗后判断是否达到完全缓解也是一大难题,通过影像学、肠镜、肿瘤标志物及体格检查等手段的判断存在较大误差。在个体化治疗的背景下,如何筛选合适的患者制定合理的新辅助治疗方案及进行疗效评估有重要意义。
随着分子生物学技术的不断发展,以检测血液中循环肿瘤细胞和游离核酸作为分子诊断标志物的液体活检技术得以实现且日益受到关注。在结直肠癌筛查方面,液态活检与肠镜、FIT等方法相比,兼具无创、简单经济、灵敏度高等特点,患者依从性更好,易于在人群中推广以提高普查率。在结直肠癌诊断、评估预后疗效、动态监测方面,相对于诊断“金标准”组织活检方法,液态活检可以更全面地反映肿瘤特性、克服肿瘤异质性,无创且可进行多次取样,能及时监测肿瘤的动态变化及对治疗的敏感性;而已有的血液蛋白类肿瘤标志物易受身体内环境影响,稳定性较差,且半衰期长,准确性受限,影像学检查手段灵敏度不够,往往在肿瘤发展至晚期才能分辨。因此液态活检在肿瘤的筛查、诊断、判断预后和转归、评价治疗疗效以及高危人群随访观察等方面都具有较大的实用价值,可以使结直肠癌患者得到及时合理的诊治,改善预后生存,临床意义重大
[18,19,20]。外周血中存在细胞裂解释放的游离DNA(cfDNA,Cell-free DNA),而cfDNA中包含的循环肿瘤DNA(ctDNA,Circulating tumor DNA)是指肿瘤细胞产生的释放入外周血的DNA片段,ctDNA半衰期短,且携带有基因突变、拷贝数异常和甲基化等信息,多项研究表明可用于结直肠癌肿瘤的筛查诊断、术后残留灶检测、复发监测、预后评估等
[21]。
现有的Epi proColon检测产品是目前首个也是唯一获FDA批准的结直肠癌血液筛检产品。Epi proColon检测方法基于HeavyMethyl real-time PCR技术
[22,23],可同时在一个QPCR反应中检测1个目的基因SEPTIN9和1个内参基因ACTB。对血浆提取cfDNA进行亚硫酸氢盐转化(Bisulfite Conversion),然后在QPCR反应体系中加入根据SEPTIN9基因和内参基因ACTB设计的引物和探针以扩增转化后的cfDNA。其中目的基因SEPTIN9和内参基因ACTB的探针分别选用两种不同荧光信号进行标记,此外加入一种不可延伸的寡核苷酸blocker,blocker可结合至转化后的SEPTIN9基因非甲基化序列,并且结合位点与引物结合位点重叠,抑制非甲基化DNA的扩增。最后进行结果判读时分为三步:①根据同步处理的阴阳性对照样本结果判断反应的有效性;②通过内参基因的信号强度判断单个PCR反应中模板DNA的质量是否合格;③综合3个PCR重复的结果判读此待测样本的甲基化情况。
该技术存在以下缺点:
1)只检测了一个SEPTIN9基因的靶标,敏感性较低,阳性检出率较低,在实际的无症状人群筛查中显示结直肠癌检测的总体敏感性为48.2%,特异性为91.5%,其中I-IV期结直肠癌检测敏感性分别为35.0%、63.0%、46.0%、77.4%
[24]。
2)要确保反应中blocker特异地结合于非甲基化序列,否则可能会产生假阳性或假阴性结果。
3)临床应用有限。目前此方法仅应用于临床结直肠癌的辅助诊断和筛查,对于术后残留灶检测、预后评估、复发监测等方面未进行大规模临床实验评估。已有的一项研究将SEPTIN9测定用于结直肠癌患者随访过程中的复发检测,在复发患者中检测敏感性为71.4%(15/21)
[25];另一项研究显示在4位结直肠癌复发患者中仅有1位患者SEPTIN9测定检测结果为阳性
[26],假阴性问题严重。
4)检测结果为定性结果,由于单个标志物浓度低,虽然使用荧光定量PCR方法,但是结果只能定性解读,难以对血浆中ctDNA的量进行动态变化的检测,导致难以对肿瘤负荷等进行动态定量评估。
GRAIL公司目前正开发基于血液的“泛癌症”早期检测方法,首先通过对大量参与者的血液和组织样本进行全基因组亚硫酸氢盐测序(WGBS),建立了泛癌种甲基化数据库,结合机器学习的算法筛选出最终作为泛癌种筛查靶向甲基化测定的panel,包含了>100 000甲基化 区域
[29]。随后利用此靶向甲基化panel对参与者血浆进行检测,结果显示,该检测方法对12种特定癌症(包含所有分期)的特异性达到99.3%(假阳性率≤1%),总检出率(灵敏度)为54.9%(95%CI:51.0%-58.8%)。在结直肠癌患者中,特异性为99.4%时,I期检出率约40-50%,II期检出率约60-70%,III期约70%,IV期约80-90%
[29]。
该技术存在以下缺点:
1)此方法基于全基因组甲基化测序,成本非常高,数据分析非常复杂,在临床推广性价比极差,不符合癌症筛查的卫生经济学。
2)此方法为泛癌种检测方法,对于单独的结直肠癌来讲,目前检测的敏感性低。
因此,本领域仍然需要能够对的甲基化标志物进行定量分析,从而早期检测结直肠癌的方法。
发明内容
本发明通过对血液中多个DNA甲基化标志物的检测来实现结直肠癌(CRC,Colorectal Cancer)的检测筛查、新辅助放化疗疗效评估、术后预后、术后残留灶检测、动态随访、复发和转移早发现等。研究过程中针对结直肠癌的多个特异性甲基化区域共设计了4种血液检测panel,主要检测方法为多重定量甲基化特异性PCR(mqMSP,multiplex quantitative methylation-specific PCR),先后入组了多种类型临床血液样本,包括结直肠癌、进展性腺瘤、肠息肉、健康对照、无症状志愿者、食管癌、肺癌等,通过检测临床血液样本验证了本发明的可行性和实用性。另外开发了核酸飞行质谱检测技术,可同时对多个甲基化标志物分别进行定量分析,有助于血浆ctDNA的定量检测。
本发明利用DNA甲基化组学技术结合文献数据库,筛选了多个甲基化标志物。通过收集入组105个组织和血液样本(30例结直肠癌病人的癌组织和配对的正常组织、15例非进展性腺瘤组织、15例进展性腺瘤病组织、15例健康志愿者的血液样本),进行文库构建和亚硫酸氢盐测序,根据测序结果和已有的文献、数据库进行生物信息学统计分析,筛选出包括ATP8B2、LONRF2、FGF12、CHST10、ELOVL2、HSPA1A等多个结直肠癌特异的甲基化标志物。
本发明利用qPCR技术,设计了定量检测技术,对多个标志物进行了总量测定。首先根据筛选出的多个结直肠癌特异的甲基化标志物分别设计qMSP引物和探针,然后对单个标志物测定和多重PCR反应条件进行逐步优化,得到一种灵敏且稳定的荧光定量检测方法,可在单管反应中对多个标志物进行总量测定,从而表现多个标志物的总体甲基化水平。
本发明利用核酸飞行质谱技术,同时对多个标志物进行了分别定量。本发明将甲基化敏感的限制性内切酶、real-competitive技术、单碱基延伸反应和核酸飞行质谱技术相结合,首先使用甲基化敏感的限制性内切酶对样本DNA进行处理,根据甲基化标志物所在区域设计测定引物和延伸引物,每个反应体系可包含10-20个测定,之后在PCR反应中引入与目标DNA相竞争的竞争物(competitor)DNA,竞争物拷贝数已知。最后根据目标DNA与竞争物的比值可以计算出目标DNA的拷贝数,从而实现对标志物的定量,可辅助高通量测序技术用于肿瘤标志物的验证,也可定量分析血浆ctDNA。
具体地,本发明涉及以下方面:
一方面,本发明涉及诊断受试者中是否存在结直肠癌、判断患有结直肠癌的受试者术后的预后、预测患有结直肠癌的受试者术后复发或评估对患有结直肠癌的受试者的治疗效果的方法,包括检测来自所述受试者的样本中的游离DNA中的甲基化标志物以判断所述DNA的甲基化水平,如果所述甲基化水平高于正常对照样本的DNA甲基化水平,则确定所述受试者中存在结直肠癌、患有结直肠癌的受试者术后的预后不佳、患有结直肠癌的受试者术后容易复发或对所述受试者的治疗效果不佳,所述甲基化标志物是选自表2、表3和表8所列标志物的一种或多种。
在该方面的一些实施方案中,所述甲基化标志物的检测是使用多重定量甲基化特异性PCR进行的,并且所述甲基化标志物是:
1)选自MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、MBSR11和MBSR16中的一种或多种;
2)选自MBSF9、MBSF8、MBSR13、MBSR16、NDRG4和QKI的一种或多种;
3)选自MBSF9、MBSF8、MBSR13、NDRG4、QKI、RD1和RD2的一种或多种;或
4)选自MBSF9、MBSF8、MBSR13、QKI、RD1和RD2的一种或多种;
任选地,所述多重定量甲基化特异性PCR中包括内参基因ACTB的测定。
在该方面的一些实施方案中,所述多重定量甲基化特异性PCR使用针对上文所述甲基化标志物的引物和探针,以及针对内参基因ACTB的引物和探针,其中所述引物和探针包含如表4所示的序列。
在该方面的一些实施方案中,当甲基化标志物是选自MBSF9、MBSF8、MBSR13、QKI、RD1和RD2的一种或多种时,多重定量甲基化特异性PCR中不使用RD2_F引物。
在该方面的一些实施方案中,所述甲基化标志物的检测是使用多重定量甲基化特异性PCR进行的,在所述多重定量甲基化特异性PCR中,将甲基化标志物分为两组或更多组,针对每组标志物以及内参基因的探针各自使用不同的荧光标记。
在该方面的一些实施方案中,将甲基化标志物分为两组,第1组由MBSF9、MBSR16、MBSF8、MBSR13、NDRG4、NPY和QKI组成,并且第2组由MBSF15、MBSR5、MBSR6、MBSR7、MBSR8和MBSR9组成,并且使用内参基因ACTB,其中针对第1组标志物的引物和探针包含如表5所示的序列,针对第2组标志物的引物和探针包含如表6所示的序列,并且针对内参基因ACTB的引物和探针包含如表7所示的序列。
在该方面的一些实施方案中,所述甲基化标志物的检测是使用核酸飞行质谱法进行的,并且所述甲基化标志物是选自RRB10、RRB13、RRB14、RRB16、RRB17_1、RRB17_2、RRB20、RRB21_4、RRB26_2、RRB2、RRB30、RRB6_1、RRB6_4和RRB6_5的一种或多种,任选地,所述核酸飞行质谱法包括内参基因ACTB的测定。
在该方面的一些实施方案中,所述核酸飞行质谱法使用针对所述甲基化标志物和内参基因的PCR引物和延伸引物并且同时扩增拷贝数已知的甲基化标志物的竞争物序列,根据甲基化标志物与竞争物的比值计算出甲基化标志物的拷贝数,其中针对甲基化标志物和内参基因 的PCR引物包含如表9所示的序列,针对甲基化标志物和内参基因的延伸引物包含如表10所示的序列,甲基化标志物和内参基因的竞争物序列包含如表11所示的序列。
在该方面的一些实施方案中,所述样本选自体液、血液、血清、血浆、尿、唾液、汗液、痰、精液、粘液、泪液、淋巴液、羊水、间质液、肺灌洗液、脑脊液、粪便和组织样本。
另一方面,本发明涉及用于诊断受试者中是否存在结直肠癌、判断患有结直肠癌的受试者术后的预后、预测患有结直肠癌的受试者术后复发或评估对患有结直肠癌的受试者的治疗效果的甲基化标志物,所述标志物选自表2、表3和表8所列标志物的一种或多种。
在该方面的一些实施方案中,所述标志物选自MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、MBSR11、MBSR16、MBSF8、MBSR13、RD1、RD2、NPY、NDRG4、QKI、RRB10、RRB13、RRB14、RRB16、RRB17_1、RRB17_2、RRB20、RRB21_4、RRB26_2、RRB2、RRB30、RRB6_1、RRB6_4和RRB6_5。
另一方面,本发明涉及用于诊断受试者中是否存在结直肠癌、判断患有结直肠癌的受试者术后的预后、预测患有结直肠癌的受试者术后复发或评估对患有结直肠癌的受试者的治疗效果的试剂盒,其中包含用于检测甲基化标志物的试剂,所述甲基化标志物是选自表2、表3和表8所列标志物的一种或多种。
在该方面的一些实施方案中,所述甲基化标志物是选自MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、MBSR11、MBSR16、MBSF8、MBSR13、RD1、RD2、NPY、NDRG4、QKI的一种或多种,并且任选地,所述试剂盒包含用于检测内参基因ACTB的试剂。
在该方面的一些实施方案中,所述检测甲基化标志物和内参基因的试剂包含如表4所示的序列。
在该方面的一些实施方案中,所述甲基化标志物是选自RRB10、RRB13、RRB14、RRB16、RRB17_1、RRB17_2、RRB20、RRB21_4、RRB26_2、RRB2、RRB30、RRB6_1、RRB6_4和RRB6_5的一种或多种,并且任选地,所述试剂盒包含用于检测内参基因ACTB的试剂。
在该方面的一些实施方案中,所述检测甲基化标志物和内参基因的试剂包含如表9、表10和表11所示的序列。
在该方面的一些实施方案中,所述甲基化标志物是:
1)选自MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、MBSR11和MBSR16中的一种或多种;
2)选自MBSF9、MBSF8、MBSR13、MBSR16、NDRG4和QKI的一种或多种;
3)选自MBSF9、MBSF8、MBSR13、NDRG4、QKI、RD1和RD2的一种或多种;或
4)选自MBSF9、MBSF8、MBSR13、QKI、RD1和RD2的一种或多种。
另一方面,本发明涉及多核苷酸,其包含选自SEQ ID NOs:1、2和9-120的核苷酸序列。
在本发明的各个方面中,所用的引物、探针和竞争物序列不限于上文所述表格和序列编号所列那些,而是包括了与其具有至少80%,优选至少85%,更优选至少90%,更优选至少95%,更优选至少99%同一性,并且仍然保持其功能的那些序列。其中,优选的是3′端的10个连续核苷酸与本发明的引物序列有至少90%,优选至少95%,更优选至少99%同一性的序列。本领域技术人员可以通过常规程序确定序列同一性。
另一方面,本发明涉及用于检测甲基化标志物的试剂在制备用于诊断受试者中是否存在结直肠癌、判断患有结直肠癌的受试者术后的预后、预测患有结直肠癌的受试者术后复发或评估对患有结直肠癌的受试者的治疗效果的试剂盒中的用途,所述甲基化标志物是选自表2、表3和表8所列标志物的一种或多种。
在该方面的一些实施方案中,所述诊断受试者中是否存在结直肠癌、判断患有结直肠癌的受试者术后的预后、预测患有结直肠癌的受试者术后复发或评估对患有结直肠癌的受试者的治疗效果是通过上文所述的本发明方法进行的。
图1.通过RRBS方法筛选的候选基因在不同类型样本中的甲基化水平聚类分析。横轴为每个区域所在基因组位置,纵轴为样本类型。
图2.RRBS数据中候选基因在肿瘤组织和正常组织中的甲基化水平。横轴为候选标志物编号,纵轴为甲基化水平(Meth%)。图中白色箱线图表示正常组织(N),灰色箱线图表示肿瘤组织(T)。
图3.内参测定测试的扩增曲线图。FAM表示甲基化标志物荧光信号,VIC表示内参基因荧光信号。
图4.mqMSP方法的特异性评估。Bis-CRC表示经亚硫酸氢盐处理的肿瘤组织DNA,Bis-BC表示经亚硫酸氢盐处理的血沉棕黄层DNA,BC表示未经亚硫酸氢盐处理的血沉棕黄层DNA,NTC表示不加入模板的空白对照。
图5.mqMSP方法的灵敏度评估。0-1%指示不同甲基化水平样本中的甲基化标志物荧光信号,VIC表示内参基因荧光信号。
图6.单一甲基化标志物和多个甲基化标志物联合检测的灵敏度比较。
图7.V2测定建立过程中对非特异性信号检测的扩增曲线图。目标1表示甲基化标志物荧光信号,目标2表示内参基因荧光信号。
图8.双荧光法对多个DNA甲基化标志物进行定量的扩增曲线图。目标1表示甲基化标志物荧光信号,目标2表示内参基因荧光信号。
图9.三荧光法对多个DNA甲基化标志物进行定量的扩增曲线图。目标1、目标2表示甲基化标志物荧光信号,目标3表示内参基因荧光信号。
图10.核酸飞行质谱法对多个DNA甲基化标志物进行定量。上图为甲基化标志物RRB14在不同样本中的质谱峰图,下图为甲基化标志物RRB17_1在不同样本中的质谱峰图。E-T1表示酶切的肿瘤组织DNA,E-N1表示酶切的正常组织DNA,E-B1表示酶切的血沉棕黄层DNA;M-T1表示未酶切的肿瘤组织DNA,M-N1表示未酶切的正常组织DNA,M-B1表示未酶切的血沉棕黄层DNA。三角形标记延伸引物的峰位置,箭头标记竞争物延伸产物所在峰位置,与之紧邻的为样本DNA延伸产物所在峰位置。
图11.一个阳性样本和一个阴性样本的血浆甲基化检测结果。FAM标示甲基化标志物荧光信号,VIC标示内参基因荧光信号。
图12.V1测定在各组别间的血浆甲基化水平及变化趋势。横坐标CRC表示肠癌,AA表示进展性腺瘤,“息肉”表示肠息肉,“正常”表示正常对照;纵坐标表示甲基化水平。
图13.V1测定在不同分期结直肠癌样本中的血浆甲基化水平及变化趋势。横坐标表示肠癌不同分期,纵坐标表示甲基化水平。
图14.V1测定的ROC曲线分析结果。
图15.V2测定在各组别间的血浆甲基化水平及变化趋势。CRC表示结直肠癌,AA表示进展性腺瘤,“息肉”表示肠息肉,“正常”表示正常对照,“志愿者”表示无症状志愿者;纵坐标表示甲基化水平。
图16.V2测定在不同分期结直肠癌样本中的血浆甲基化水平及变化趋势。
图17.V2测定的ROC曲线分析结果。
图18.V4测定在各组别间的血浆甲基化水平及变化趋势。CRC表示结直肠癌,AA表示进展性腺瘤,“息肉”表示肠息肉,GI表示胃肠道炎症,ESCC表示食管癌,“肺”表示肺癌,“正常”表示正常对照;纵坐标表示甲基化水平。
图19.V4测定在不同分期结直肠癌样本中的血浆甲基化水平及变化趋势。横坐标表示肠癌不同分期,纵坐标表示甲基化水平。
图20.V4测定的ROC曲线分析结果。
图21. 77位结直肠癌患者术后ctDNA RFS生存曲线。
图22.复发和未复发结直肠癌患者术前与术后ctDNA比较。
图23.复发结直肠癌患者术后ctDNA RFS生存曲线。
图24.复发结直肠癌患者术后ctDNA定量分析结果。
图25.结直肠癌患者随访血ctDNA RFS生存曲线。
图26.新辅助治疗结直肠癌患者治疗、随访过程中的血浆ctDNA动态变化情况。
本发明筛选和验证了多个结直肠癌肿瘤特异的DNA甲基化标志物,可用于样本的检测。
建立了特异性标志物的多重检测方法1(mqMSP方法),可以同时检测多个DNA甲基化标志物,且可以有多种不同的组合方法和数据 分析算法,检测标志物组合的总体甲基化水平。纳入组合中的标志物需遵循一定的原则,首先保证不能在血沉棕黄层样本中存在背景信号,在肿瘤样本中甲基化水平显著高于正常样本,并且不同标志物在多个不同样本之间最好具有互补性,标志物测定之间不能互相干扰产生非特异性信号,据此确保组合测定用于ctDNA检测的特异性和敏感性。
采用三种或者更多荧光通道的mqMSP方法,其中一种荧光用于内参信号检测,其它荧光信号可以对DNA甲基化标志物进行分组(2组或者更多)检测,对各组荧光信号利用特定算法进行组合,可以用于动态监测ctDNA量上的变化。
建立了特异性标志物多重检测方法2(核酸飞行质谱方法),可以同步定量检测每个DNA甲基化标志物,并用于ctDNA分析。
临床用途1:建立了多个不同组合的mqMSP方法可用于结直肠癌筛查(4个测定形式),标志物包括SEPTIN9、NDRG4、QKI基因的多个区域的不同组合,样本检测结果阳性提示受试者可能存在结直肠癌变。
临床用途2:建立的mqMSP检测方法可用于结直肠癌术后判断预后,标志物包括SEPTIN9、NDRG4、QKI基因的多个区域的不同组合,样本检测结果阳性提示受试者结直肠癌可能预后不良。
临床用途3:建立的mqMSP方法可用于结直肠癌病人术后监测和复发预测,标志物包括SEPTIN9、NDRG4、QKI基因的多个区域的不同组合,样本检测结果阳性提示受试者可能存在疾病复发进展的情况。
临床用途4:建立的mqMSP方法可用于结直肠癌病人新辅助治疗疗效、术后评估、术后监测等全覆盖动态监测,标志物包括SEPTIN9、NDRG4、QKI基因的多个区域的不同组合,样本检测结果阳性提示受试者接受新辅助治疗效果可能不理想,需要进一步综合评估。
本发明筛选验证了多个肿瘤特异的DNA甲基化标志物,包括SEPTIN9、NDRG4、QKI、ATP8B2、LONRF2、FGF12等,其中有些标志物目前并未有相关文献报道支持可用于结直肠癌的检测,如ATP8B2、HSPA1A等,这些标志物有待被进一步发掘用于结直肠癌的临床诊疗。
本发明运用多个DNA甲基化标志物联合检测,与单一标志物检测方法如Epi proColon相比,提高了检测的灵敏度,对于早期结直肠癌 患者可提升阳性检出率,减少漏诊情况,从而达到早期筛查的目的。在对包括结直肠癌、腺瘤、息肉、正常等样本在内的多个队列中进行了验证,显示在I期结直肠癌中其检出率约42-74.4%,II期结直肠癌中其检出率约74.1-84.2%,优于目前的检测方法Epi proColon。
利用本发明的标志物和检测方法,不仅可用于临床结直肠癌的筛查,也有希望用于病人的预后评估、术后监测、检测复发转移、新辅助治疗疗效的评估,拓展了临床应用。在86位结直肠癌随访患者队列中进行了验证,结果显示术前ctDNA阳性率为89.5%(其中I期患者阳性率为80%,II期为90%,III期为90.9%,IV期为85.7%);在对20位复发患者的术后ctDNA检测中,其中11位患者术后ctDNA阳性,9位患者术后ctDNA阴性,而仅有4位CEA检测为阳性,根据每位患者的复发情况和术后ctDNA状态绘制生存曲线,显示术后ctDNA为阳性结果的患者其无复发生存期比ctDNA阴性的患者明显缩短(P=0.008),说明本方法检测灵敏度高于现有的临床肿瘤标志物CEA,在结直肠癌的预后评估和复发监测方面有应用前景。另外对一位接受新辅助治疗的直肠癌患者进行了全程动态监测,在接受新辅助治疗前ctDNA检测结果为阳性,新辅助治疗结束后ctDNA结果转阴,随后患者进行了肿瘤切除术,术前、术后以及随访过程的ctDNA检测结果均为阴性,患者预后较好,影像学检查也未发现复发进展,说明此方法在结直肠癌的新辅助治疗疗效评估方面有应用前景。
利用本发明的检测方法,每个样本的检测成本约80元,较为经济。
本发明利用核酸飞行质谱技术,同时结合甲基化敏感的限制性内切酶、real-competitive PCR技术优化的设计方案,对ATP8B2、LONRF2、FGF12、CHST10、ELOVL2、HSPA1A等在内的多个DNA甲基化标志物分别进行了定量,该方案可在同一个反应体系中实现10-20个标志物的同时分别定量,评估它们在同一样本中的甲基化水平差异,可用于实际研究中肿瘤标志物的验证以及临床上样本ctDNA的检测。
此外,本发明设计的用于QPCR反应的引物和探针也可以用于ddPCR平台的检测。所选标志物也可能适用于其它消化道肿瘤如食管癌、胃癌等的检测。
实施例一
结直肠癌特异的DNA甲基化标志物筛选
1.实验方法
(1)基于RRBS高通量甲基化测序技术筛选结直肠癌特异的DNA甲基化标志物。具体操作如下:于温州医科大学附属第一医院收集入组I期和II期的结直肠癌病例各15例(组织样本包括癌组织及配对正常组织共60例),非进展性腺瘤和进展性腺瘤病例各15例(良性肿块组织共30例),健康志愿者的血液样本15例。
(2)提取上述105例样本的基因组DNA,Qubit测定浓度,琼脂糖凝胶电泳鉴定DNA完整性。
(3)样本DNA文库制备及测序:首先利用MspI限制性内切酶消化基因组DNA以富集CpG片段;然后进行DNA末端修复,产物纯化;加A尾,产物纯化;衔接子(adapter)连接,连接产物纯化;接下来通过胶回收筛选衔接子连接后的大小为190-320bp的DNA文库;胶回收得到的DNA进行亚硫酸氢盐转化处理;PCR扩增文库并纯化。文库构建完成后,取1μL构建好的甲基化文库通过Agilent Bioanalyzer 2100检测其文库插入片段的大小,待符合预期结果后,使用实时荧光定量检测系统对文库的有效浓度进行准确定量。然后将质检合格的文库样本,通过Illumina Hiseq X Ten测序平台进行高通量、高深度的测序。
(4)测序数据分析:
A.第一次筛选条件如下:
1)测序深度满足Depth≥10,同时满足,病例数,血沉棕黄层(buffy coat)≥5例,正常组织≥10例,非进展性腺瘤≥5例,进展性腺瘤≥5例,癌组织≥10例;
2)对筛选出的每个位点进行秩和检验,挑选p≤0.05的位点;
3)基因组平均甲基化的背景为Avg(BC)≤2%,正常组织平均甲基化的背景为Avg(N)≤10%,正常组织与癌组织平均甲基化差值为Avg(T)-Avg(N)≥15%为条件筛选CpG位点,以连续CpG间距不超过150bp划定区域,且每个区域中至少包含3个CpG。此时一共得到1666个差异甲基化区域,2792,068个CpG位点;
再与TCGA甲基化数据库(450K)的33种肿瘤数据比对后,除掉两者无法匹配的区域后,得到两者共有的区域一共614个;之后将所 选出的614个区域左右各延伸500bp,得到了1450个CpG位点和553个差异甲基化区域。
B.在第一次筛选结果的基础上,结合TCGA数据库,进一步设置条件如下:
1)RRBS数据:Avg(T)-Avg(N)≥15%;
2)TCGA数据库:READ_N≤15%;COAD_N≤15%;LIHC_N≤10%;LIHC_T≤10%;STAD_N≤15%;ESCA_N≤15%;
一共得到33个特异性较好的候选甲基化区域(分析结果见图1和图2)
C.得到的候选基因分析总结如下表1所示:
表1候选甲基化区域
2.实验结果
根据上述测序数据分析同时结合文献
[30-33]和相关数据库查阅,筛选出包括ATP8B2、LONRF2、FGF12、CHST10、ELOVL2、HSPA1A等多个结直肠癌特异的甲基化标志物,这些标志物在结直肠癌样本中的甲基化水平显著高于其它类型样本。(见图1和图2)
筛选的甲基化标志物如下表2所示:
表2本发明筛选得到的甲基化标志物所在基因及其染色位置
对应基因 | 染色体位置 |
SEPTIN9 | Chr17:77373100-77374054 |
NDRG4 | Chr16:58463491-58463554 |
QKI | Chr6:163415625-163415707 |
NPY | Chr7:24284105-24284197 |
/ | Chr1:4654444-4654449 |
/ | Chr1:34930049-34930206 |
FAM72B | Chr1:121183956-121184188 |
FAM72B | Chr1:121184748-121185087 |
ATP8B2 | Chr1:154325859-154326048 |
LONRF2 | Chr2:100321955-100322532 |
THSD7B | Chr2:136765640-136765991 |
AC096667.1/ZNF804A | Chr2:184598991-184599015 |
CHST10 | Chr2:100417305-100417536 |
FGF12 | Chr3:192408768-192408900 |
ADGRL3 | Chr4:61202581-61202618 |
EVC | Chr4:5711114-5711347 |
ELOVL2 | Chr6:11044167-11044255 |
HSPA1A | Chr6:31815678-31815736 |
/ | Chr6:84774296-84774299 |
ELOVL2/ELOVL2-AS1 | Chr6:11043770-11043830 |
SYNE1 | Chr6:152636769-152637017 |
TRBJ2-5 | Chr7:142797077-142797220 |
TRBJ2-7 | Chr7:142797438-142797475 |
SFMBT2 | Chr10:7409160-7409216 |
FLI1/SENCR | Chr11:128693021-128693486 |
/ | Chr11:92225129-92225363 |
ARHGAP20 | Chr11:110711205-110711288 |
/ | Chr11:122984603-122984701 |
DTX1 | Chr12:113056796-113057142 |
FBN1 | Chr15:48645219-48645520 |
ARRDC2 | Chr19:18008013-18008166 |
ZNF132 | Chr19:58440049-58440160 |
RASSF2 | Chr20:4822955-4823041 |
AL096828.1 | Chr20:63179235-63179266 |
HCK | Chr20:32052524-32052627 |
NKAIN4 | Chr20:63253910-63253984 |
MGAT3 | Chr22:39457615-39457644 |
实施例二
内参测定的设计和测试
针对ACTB基因设计内参测定,可在mqMSP反应中与多个甲基化基因测定同时扩增,用以作为质控,反映样本DNA的质量。本技术的创新点为在内参测定的PCR引物序列中引入一个突变碱基,可保证在mqMSP反应中适当降低内参荧光信号(VIC荧光信号),同时能减少对待测甲基化标志物信号(FAM荧光信号)的抑制。实验过程如下:
1.实验方法
(1)针对ACTB基因区域(chr7:5536826-5536901(hg38))设计了7种不同的PCR引物组合,包括野生型引物序列和引入突变碱基的引物序列,探针用VIC荧光基团标记。
测试的7种内参测定的引物命名及序列如下:下划线标记引入的突变碱基
内参测定探针命名及序列如下:
(2)选用1个亚硫酸氢盐转化后的血沉棕黄层DNA(Bis-BC)、1个未转化的血沉棕黄层DNA(BC)进行QPCR测试,每个反应使用10ng DNA,无模板对照(NTC)作为空白对照。
(3)将这7种内参测定分别加入包含多个甲基化标志物的V1测定(FAM荧光基团标记),在同一反应中分别测试Bis-BC、BC、NTC样本。
每个OPCR反应体系配制如下:
(4)使用Bio-rad CFX96 QPCR仪,反应条件设置如下:
Channel | FAM/VIC |
聚合酶活化 | 95℃下3min |
变性 | 95℃下3s |
退火 | 60℃下30s |
延伸 | 72℃下30s |
循环数 | 45个循环 |
(5)QPCR数据采集和结果分析,选择最佳内参测定。
2.实验结果
见图3,显示了7种组合的检测扩增曲线,对应结果总结如下:
根据上述结果,理想的内参测定一方面自身不能在BC、NTC样本中产生非特异的信号,另一方面需保证在Bis-BC样本中产生合适的荧光信号来反映输入DNA的质量,同时不能减弱甲基化基因的FAM荧光信号强度,也不能干扰甲基化基因测定使其在Bis-BC、BC、NTC样本中产生非特异的FAM信号。因此满足上述条件的最佳内参测定为组合1,
即正向引物3’端倒数第2个碱基由T突变为A,反向引物序列保持不变的组合。
内参测定引物、探针命名及序列如下:下划线标记引入的突变碱基
实施例三
质控品的设置
设置阴阳性质控品用于mqMSP反应的质量控制,质控品与每批次cfDNA样本同时处理检测,通过阴阳性质控品的实验结果可以提示该产品的该次实验是否成功以及可信度有多少。
阳性质控品为HCT15肠癌细胞株DNA和人血沉棕黄层DNA按照1∶99混合的DNA。阴性质控品为人血沉棕黄层DNA。每次反应分别取20ng作为参考样本用于实验有效性的评估。
1.实验方法
(1)提取HCT15肠癌细胞株和人血沉棕黄层基因组DNA,经Qubit测定浓度,琼脂糖凝胶电泳鉴定DNA完整性。
(2)阳性质控品的准备:取5ng HCT15 DNA,加入495ng血沉棕黄层DNA,加水补足成50μL体系,浓度为10ng/μL,将DNA分装储存于-80℃,每次反应取20ng。
(3)阴性质控品的准备:取500ng血沉棕黄层DNA,同样将浓度稀释为10ng/μL,DNA分装储存于-80℃,每次反应取20ng。
(4)每批样本在亚硫酸氢盐处理及QPCR检测时需对阳性质控品和阴性质控品进行相同处理。每份亚硫酸氢盐转化后的DNA一分为二,在QPCR中作双份反应,反应循环数为45个循环,反应结束后统计双份反应FAM信号和VIC信号的Cq值。
2.实验结果
针对不同测定形式,检测结果的标准和算法如下表:其中“+”代表Cq值≤45,“-”代表无扩增信号,其中ΔCq=VIC
平均Cq-FAM
平均Cq。
如果质控品的QPCR反应结果满足下表中所列标准,该QPCR反应被验证为是有效的。
对于V1测定反应:
对于V2/V3/V4测定反应:
质控品检测结果 | FAM Cq | VIC Cq |
有效的阳性对照 | FAM(+/+) | VIC(+/+) |
有效的阴性对照 | FAM(-/-) | VIC(+/+) |
实施例四
四种形式的标志物组合方式(V1、V2、V3、V4)的测试设计
根据核酸飞行质谱实验对SEPTIN9基因多个区域的检测结果分析,筛选出17个候选甲基化区域,设计相应的qMSP引物(见下表3)。
表3标志物对应的染色体位置总结:
对应基因 | 标志物名称 | 标志物所在染色体位置 |
SEPTIN9 | MBSF9 | chr17:77373456-77373518 |
SEPTIN9 | MBSF10 | chr17:77373564-77373617 |
SEPTIN9 | MBSF15 | chr17:77373973-77374049 |
SEPTIN9 | MBSR5 | chr17:77373985-77374054 |
SEPTIN9 | MBSR6 | chr17:77373914-77373986 |
SEPTIN9 | MBSR7 | chr17:77373843-77373898 |
SEPTIN9 | MBSR8 | chr17:77373747-77373824 |
SEPTIN9 | MBSR9 | chr17:77373691-77373745 |
SEPTIN9 | MBSR11 | chr17:77373520-77373600 |
SEPTIN9 | MBSR16 | chr17:77373100-77373185 |
SEPTIN9 | MBSF8 | chr17:77373359-77373422 |
SEPTIN9 | MBSR13 | chr17:77373361-77373438 |
SEPTIN9 | RD1 | chr17:77373438-77373528 |
SEPTIN9 | RD2 | chr17:77373384-77373452 |
NDRG4 | NDRG4 | chr16:58463491-58463554 |
QKI | QKI | chr6:163415625-163415707 |
NPY | NPY | chr7:24284105-24284197 |
ACTB | ACTB | chr7:5536826-5536901 |
在多个样本中分别测试了各候选DNA甲基化标志物,分析了多种可能的标志物组合方式(V1、V2、V3、V4测定)(见下文实施例五-九)。建立了mqMSP方法,其检测灵敏度是单个标志物的10倍,并制定了相应的数据分析算法。纳入组合中的标志物需遵循一定的原则:首先保证不能在血沉棕黄层样本中存在背景信号;在肿瘤样本中甲基化水平显著高于正常样本;并且不同标志物在多个不同样本之间最好具有互补性,据此确保组合测定的特异性和敏感性;另外组合后的多 个测定之间不能互相干扰产生非特异性信号,这些标志物在多个样本的qMSP测试和cfDNA mqMSP产物测序结果中也得到了验证。此外,根据荧光通道数目,可以做到3类或者更多类标志物。下文(实施例十一)也将分别展示双荧光法和三荧光法的设计,三荧光法中荧光1、2用于阳性标志物,荧光3用于质控标志物。
表4. 4个形式的所有测定(包括内参ACTB测定)中使用的引物和探针命名以及序列(下划线标记引入的突变碱基)。
实施例五
V1测定的特异性和灵敏度评估
根据纳入组合的标志物需遵循的原则,选择10个标志物(MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、 MBSR11、MBSR16)设计MGB探针,然后将这些组合成1个多重测定。
多重测定中添加ACTB内参测定作为质控,并优化最佳反应条件提高测定的灵敏度,因此得到V1测定组合,包括:MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、MBSR11、MBSR16、ACTB。
1.实验方法
(1)选取结直肠癌肿瘤组织、配对正常组织、血沉棕黄层样本,提取基因组DNA并进行亚硫酸氢盐转化。
(2)使用的标志物为:MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、MBSR11、MBSR16、ACTB,各标志物的引物和探针序列见实施例四中的总表。
(3)QPCR引物和探针混合液准备:
各引物初始浓度为200μM,按照如下比例混合:
V1测定甲基化标志物引物成分 | 体积 |
MBSF9上下游引物 | 各10μL |
MBSF10上下游引物 | 各10μL |
MBSF15上下游引物 | 各10μL |
MBSR5上下游引物 | 各10μL |
MBSR6上下游引物 | 各10μL |
MBSR7上下游引物 | 各10μL |
MBSR8上下游引物 | 各10μL |
MBSR9上下游引物 | 各10μL |
MBSR11上下游引物 | 各10μL |
MBSR16上下游引物 | 各10μL |
去酶水 | 200μL |
内参基因引物成分 | 体积 |
ACTB上下游引物 | 各10μL |
去酶水 | 380μL |
各探针初始浓度为100μM,按照如下比例混合:
V1测定甲基化基因探针成分 | 体积 |
MBSF9探针 | 10μL |
MBSF10探针 | 10μL |
MBSF15探针 | 10μL |
MBSR5探针 | 10μL |
MBSR6探针 | 10μL |
MBSR7探针 | 10μL |
MBSR8探针 | 10μL |
MBSR9探针 | 10μL |
MBSR11探针 | 10μL |
MBSR16探针 | 10μL |
去酶水 | 100μL |
内参基因探针成分 | 体积 |
ACTB探针 | 10μL |
去酶水 | 190μL |
(4)QPCR反应体系如下:
成分 | 终浓度 | 体积/25μL反应(μL) |
KAPA探针FAST qPCR主混合物(2×) | 1× | 12.5 |
多重引物(5μM) | 0.25μM | 1.25 |
多重探针(5μM) | 0.1μM | 0.5 |
ACTB引物混合物(5μM) | 0.06μM | 0.3 |
ACTB探针(5μM) | 0.05μM | 0.25 |
H 2O | / | 0.2 |
DNA模板 | / | 10 |
总体积 | / | 25 |
QPCR反应条件如下:
Channel | FAM/VIC |
聚合酶活化 | 95℃下3min |
变性 | 95℃下3s |
退火 | 60℃下30s |
延伸 | 72℃下30s |
循环数 | 45个循环 |
(3)方法的特异性评估:通过本方法在不加入模板的空白对照、未经亚硫酸氢盐处理的血沉棕黄层DNA(BC)、经亚硫酸氢盐处理的血沉棕黄层DNA(Bis-BC)、经亚硫酸氢盐处理的肿瘤组织DNA(Bis-CRC)中进行测试,每种样本均加40ng于mqMSP反应中。结果见图4。
(4)方法的灵敏度评估:将亚硫酸氢盐转化后的癌组织DNA(作为甲基化样品)和亚硫酸氢盐修饰后的血沉棕黄层DNA(作为未甲基化样品)按照不同比例混合(1%、0.5%、0.2%、0.1%、0.05%、0%),模拟甲基化程度不同的样本,每种样本均加10ng于mqMSP反应中。(结果见图5)
2.实验结果
(1)见图4,在不加入模板的空白对照、未经亚硫酸氢盐处理的血沉棕黄层DNA及经亚硫酸氢盐处理的血沉棕黄层DNA,均未产生任何信号,只在经亚硫酸氢盐处理的癌组织DNA中才产生明显特异性信号,并在多组不同样本中得到验证,说明此方法特异性较好。
对应结果如下:
样品 | FAM Cq |
BC2 | N/A |
BC2 | N/A |
Bis-BC2 | N/A |
Bis-BC2 | N/A |
Bis-CRC2 | 23.49 |
Bis-CRC2 | 23.65 |
BC3 | N/A |
BC3 | N/A |
Bis-BC3 | N/A |
Bis-BC3 | N/A |
Bis-CRC3 | 24.26 |
Bis-CRC3 | 24.4 |
NTC | N/A |
(2)见图5,扩增曲线中Cq值随甲基化程度的降低而增大,扩增曲线显示不同甲基化程度(1%、0.5%、0.2%、0.1%、0.05%、0%)的样品荧光信号从左到右依次分开排列,可区分开来。最左侧FAM信号最强的曲线为1%甲基化样品,最右侧FAM信号最弱的曲线为0%甲基化样品,结果提示本方法可以检测甲基化程度低至0.05%的样品。
对应结果如下:
样品 | FAM Cq | VIC Cq |
1% | 32.78 | 35.50 |
1% | 32.40 | 36.00 |
1% | 32.04 | 35.56 |
0.5% | 34.50 | 35.69 |
0.5% | 34.52 | 35.90 |
0.5% | 34.08 | 35.84 |
0.2% | 34.72 | 36.02 |
0.2% | N/A | 36.01 |
0.2% | 34.51 | 35.58 |
0.1% | 36.04 | 35.86 |
0.1% | 36.51 | 35.98 |
0.1% | 36.98 | 35.94 |
0.1% | 39.25 | 35.99 |
0.05% | 39.23 | 36.17 |
0.05% | 38.55 | 36.12 |
0.05% | 35.71 | 35.92 |
0.05% | 36.88 | 35.88 |
0% | NA | 36.08 |
0% | NA | 36.07 |
0% | NA | 36.11 |
实施例六
单一甲基化标志物和多个甲基化标志物联合检测的灵敏度比较
1.实验方法
(1)单一甲基化标志物检测方法的引物和探针序列如下:
甲基化基因测定的引物和探针:
名称 | 序列(5’-3’) |
MBSF9_F | TTCGTCGTTGTTTTTCGC(SEQ ID NO:10) |
MBSF9_R | GTTAACCGCGAAATCCG(SEQ ID NO:11) |
MBSF9-探针 | 5’FAM-AACAACGAATCGCGC-3’MGB(SEQ ID NO:12) |
内参基因测定的引物和探针:下划线标示引入的突变碱基
反应体系如下:
成分 | 初始浓度 | 体积 |
KAPA探针FAST qPCR主混合物 | 2× | 12.5μL |
MBSF9引物混合物 | 5μM | 1.25μL |
MBSF9探针 | 5μM | 0.5μL |
ACTB引物混合物 | 5μM | 0.3μL |
ACTB探针 | 5μM | 0.25μL |
待测DNA样本 | / | 10μL |
去酶水 | / | 定容至25μL |
反应条件如下:
Channel | FAM/VIC |
聚合酶活化 | 95℃下3min |
变性 | 95℃下3s |
退火 | 60℃下30s |
延伸 | 72℃下30s |
循环数 | 45个循环 |
(2)多个甲基化标志物联合检测方法见上述实施例五描述的mqMSP方法(V1测定方法)。
(3)将亚硫酸氢盐转化后的癌组织DNA和亚硫酸氢盐转化后的血沉棕黄层DNA(作为未甲基化样品)按照1%比例混合,总DNA量为10ng,同一样本分别用两种方法进行检测比较。
2.实验结果
见图6,同一样本在两种方法的检测结果中相差约3-4个Cq,多个甲基化标志物联合检测较单一甲基化标志物检测信号更强,说明多个甲基化标志物联合检测的灵敏度大概是单一标志物检测的10倍。
实施例七
V2测定方法的建立和测试
由于不同标志物组合建立的方法可能具有不同的检测效果,在V1测定的测试基础上,为了摸索灵敏度和特异性更佳的方法,我们设计并建立了V2测定,主要流程如下述:
(1)根据文献报道和课题组数据筛选多个候选甲基化标志物,包括SEPTIN9、NDRG4、QKI、NPY等,针对每个区域设计相应的qMSP引物和MGB探针。
(2)然后在多种类型样本DNA(多个肿瘤组织、正常组织、血沉棕黄层样本)中通过QPCR探针法分别测试每个候选甲基化标志物。
(3)分析每个标志物测定在不同样本中的结果,根据纳入组合的标志物需遵循的原则进行相应组合,选择MBSF9、MBSR16、MBSF8、MBSR13、NDRG4、NPY、QKI组合为1个多重测定,将这些标志物均用FAM荧光基团标记,加入的内参ACTB使用VIC荧光基团标记,然后选用不同类型样本cfDNA(结直肠癌、息肉、腺瘤、健康人)和质控样本进行mqMSP测试。
(4)由于上述组合在健康对照、阴性对照、空白对照样本中出现假阳性信号,选择空白对照样本测试不同组合测定观察信号强度变化,以剔除组合中产生非特异性信号的测定。
(5)去除产生非特异信号的NPY测定后,最终得到V2测定组合,包括:MBSF9、MBSF8、MBSR13、MBSR16、NDRG4、QKI、ACTB。
具体过程如下:
1.实验方法
(1)根据文献报道和课题组数据筛选多个候选基因甲基化标志物,包括SEPTIN9、NDRG4、QKI、NPY等,针对每个区域设计相应的qMSP引物和MGB探针。
(2)提取肿瘤组织DNA(T)、正常组织DNA(N)、血沉棕黄层DNA(B),各取1μg用于亚硫酸氢盐转化处理。
(3)在肿瘤组织DNA(T)、正常组织DNA(N)、血沉棕黄层DNA(B)样本中使用QPCR探针法对每个测定进行测试,反应体系和反应条件同V1测定(实施例五)。
(4)综合上一步结果,根据纳入组合标准选择MBSF9、MBSR16、MBSF8、MBSR13、NDRG4、NPY、QKI组合为1个多重测定,将这些标志物均用FAM荧光基团标记,加入的内参ACTB使用VIC荧光基团标记,然后选用不同类型样本cfDNA(结直肠癌、息肉、腺瘤、健康人)和质控样本进行mqMSP测试。
(5)根据上一步检测结果,由于在健康对照、阴性对照、空白对照样本中均出现假阳性信号,因此接下来需要剔除组合中产生非特异性信号的测定,选择NTC(无模板对照)观察信号强度变化,按照以下组合测试:
(6)根据上一步检测结果,认为非特异性信号主要来自NPY,同时比较了去除NPY的测定和未去除NPY的测定的敏感性,使用1%Meth DNA样本测试,两者敏感性相差不大。
(7)因此去除NPY测定后,最终得到V2测定组合,包括的测定为:MBSF9、MBSF8、MBSR13、MBSR16、NDRG4、QKI、ACTB,各测定序列见实施例四的总表。
(8)V2测定QPCR引物和探针混合液准备:
各引物初始浓度为200μM,按照如下比例混合:
V2测定甲基化基因引物成分 | 体积 |
MBSF9上下游引物 | 各10uL |
MBSR8上下游引物 | 各10uL |
MBSR13上下游引物 | 各10uL |
MBSR16上下游引物 | 各10uL |
NDRG4上下游引物 | 各10uL |
QKI上下游引物 | 各10uL |
去酶水 | 40uL |
内参基因引物成分 | 体积 |
ACTB上下游引物 | 各10μL |
去酶水 | 380μL |
各探针初始浓度为100μM,按照如下比例混合:
V2测定甲基化基因探针成分 | 体积 |
MBSF9探针 | 10uL |
MBSR8探针 | 10uL |
MBSR13探针 | 10uL |
MBSR16探针 | 10uL |
NDRG4探针 | 10uL |
QKI探针 | 10uL |
去酶水 | 40uL |
内参基因探针成分 | 体积 |
ACTB探针 | 10μL |
去酶水 | 190μL |
(9)反应体系如下:
成分 | 终浓度 | 体积/25μL反应(μL) |
KAPA探针FAST qPCR主混合物(2×) | 1× | 12.5 |
多重混合物(12.5μM) | 0.25μM | 0.5 |
多重探针混合物(10μM) | 0.1μM | 0.25 |
ACTB引物混合物(5μM) | 0.06μM | 0.3 |
ACTB探针(5μM) | 0.05μM | 0.25 |
50×ROX Low | 1× | 0.5 |
DNA模板 | / | 10 |
H 2O | / | 0.7 |
总体积 | / | 25 |
反应条件如下:
Channel | FAM/VIC |
聚合酶活化 | 95℃下3min |
变性 | 95℃下3s |
退火 | 60℃下30s |
延伸 | 72℃下30s |
循环数 | 45个循环 |
2.实验结果
(1)在多种类型样本DNA(多个肿瘤组织-T、正常组织-N、血沉棕黄层样本-B)中分别测试每个候选甲基化标志物,部分标志物的结果总结如下:其中样本P表示甲基化程度100%的阳性对照DNA样本,ΔCq=VIC
平均Cq-FAM
平均Cq,表示甲基化水平。
肿瘤组织样本测试结果如下表:
RD1 | RD2 | MBSF8 | MBSR13 | NDRG4 | QKI | MBSF9 | MBSR16 | |
样本编号 | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq |
P | 2.25 | 1.50 | / | / | / | / | 7.12 | 5.45 |
T1 | / | / | 2.83 | 3.51 | 2.95 | 5.75 | 4.98 | 3.63 |
T2 | / | / | 1.43 | 2.07 | 4.51 | 6.42 | 4.95 | -10.99 |
T3 | / | / | 2.41 | 2.93 | 4.03 | 4.96 | 5.34 | 2.55 |
T4 | / | / | 1.48 | 2.14 | -0.33 | 4.46 | 3.60 | 1.71 |
T5 | / | / | 3.26 | 4.00 | -2.98 | -5.64 | 5.80 | 0.84 |
T6 | / | / | -3.20 | -3.16 | -3.48 | 0.48 | -0.91 | -11.38 |
T7 | / | / | 0.47 | 1.39 | 1.80 | 2.73 | 2.99 | -2.90 |
T8 | / | / | 1.28 | 2.16 | 4.35 | 6.43 | 5.50 | -11.45 |
T9 | / | / | -4.55 | -3.32 | -10.73 | -10.69 | -1.79 | -3.72 |
T10 | / | / | 3.06 | 4.02 | 4.41 | 5.14 | 5.60 | 4.27 |
T11 | 3.76 | 3.73 | / | / | 4.25 | 4.50 | 5.05 | 3.55 |
T12 | 3.84 | 4.09 | / | / | 3.49 | 6.19 | 4.95 | -11.35 |
T13 | 3.33 | 3.43 | / | / | 3.90 | 4.76 | 4.53 | 3.65 |
T14 | 3.52 | 3.49 | / | / | 3.77 | 5.28 | 4.84 | 3.67 |
T15 | -1.41 | 0.65 | / | / | -1.39 | 4.12 | 1.52 | -10.74 |
T16 | 3.47 | 3.51 | / | / | / | / | 4.77 | 3.57 |
T17 | 4.02 | 3.99 | / | / | / | / | 5.51 | 0.06 |
T18 | -9.14 | 3.56 | / | / | / | / | 0.66 | -11.25 |
T19 | 2.42 | 2.28 | / | / | / | / | 2.97 | -11.20 |
T20 | 4.99 | 5.23 | / | / | / | / | 5.87 | -3.95 |
T21 | / | / | / | / | / | / | 6.21 | 4.58 |
T22 | / | / | / | / | / | / | 4.79 | 3.60 |
T23 | / | / | / | / | / | / | 6.48 | -9.58 |
T24 | / | / | / | / | / | / | 4.65 | 3.78 |
T25 | / | / | / | / | / | / | -0.41 | -2.69 |
T26 | / | / | / | / | / | / | 7.14 | 5.14 |
T27 | / | / | / | / | / | / | 4.97 | 3.42 |
T28 | / | / | / | / | / | / | 6.00 | 3.31 |
T29 | / | / | / | / | / | / | 3.48 | -11.80 |
T30 | / | / | / | / | / | / | 4.47 | 3.23 |
T31 | / | / | / | / | / | / | 3.20 | -10.62 |
T32 | / | / | / | / | / | / | 5.47 | 0.98 |
T33 | / | / | / | / | / | / | 2.27 | -5.85 |
T34 | / | / | / | / | / | / | 5.72 | -5.40 |
T35 | / | / | / | / | / | / | 6.83 | 3.32 |
T36 | / | / | / | / | 3.28 | 4.80 | 5.35 | 1.28 |
T37 | / | / | / | / | 4.01 | 5.45 | 4.28 | 2.45 |
T38 | / | / | / | / | 5.35 | 7.87 | 6.39 | 5.16 |
T39 | / | / | / | / | 3.45 | 5.27 | 2.61 | -11.08 |
T40 | / | / | / | / | 3.94 | 4.86 | 4.22 | 1.72 |
正常组织样本测试结果:
RD1 | RD2 | MBSF8 | MBSR13 | NDRG4 | QKI | MBSF9 | MBSR16 | |
样本编号 | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq |
P | 2.25 | 1.50 | / | / | / | / | 7.12 | 5.45 |
N1 | / | / | -2.39 | -0.56 | -2.10 | 2.60 | 0.41 | -11.24 |
N2 | / | / | -1.79 | -1.12 | -2.03 | 0.36 | -0.90 | -11.65 |
N3 | / | / | -6.78 | -3.57 | -3.21 | -1.38 | -1.75 | -7.05 |
N4 | / | / | -3.21 | -1.83 | -0.48 | 3.33 | -0.29 | -10.82 |
N5 | / | / | -3.00 | -1.68 | -4.11 | 0.63 | -0.64 | -11.23 |
N6 | / | / | -3.49 | -4.37 | -6.45 | -0.56 | -2.08 | -9.96 |
N7 | / | / | -4.81 | -1.45 | -1.06 | 2.05 | -0.94 | -11.27 |
N8 | / | / | -11.82 | -3.29 | -3.75 | 0.34 | -4.69 | -11.67 |
N9 | / | / | -10.48 | -8.58 | -3.63 | 0.47 | -3.09 | -10.54 |
N10 | / | / | -5.28 | -2.94 | -1.46 | 1.48 | -0.87 | -10.87 |
N11 | -2.30 | 0.19 | / | / | -2.51 | 0.16 | 0.58 | -11.35 |
N12 | -4.40 | -1.23 | / | / | -3.61 | 0.93 | -1.86 | -11.42 |
N13 | -3.70 | 0.14 | / | / | -2.47 | 1.77 | 0.47 | -10.63 |
N14 | -3.95 | 1.20 | / | / | -5.02 | 1.97 | 0.81 | -10.48 |
N15 | -6.37 | -3.21 | / | / | -1.69 | 1.88 | -1.65 | -10.53 |
N16 | -5.28 | -2.91 | / | / | / | / | -1.49 | -2.83 |
N17 | -2.35 | -5.02 | / | / | / | / | -0.59 | -7.38 |
N18 | -4.41 | -2.26 | / | / | / | / | -2.62 | -10.78 |
N19 | -3.68 | -1.72 | / | / | / | / | -2.42 | -10.32 |
N20 | -3.99 | -3.00 | / | / | / | / | -2.84 | -10.52 |
N21 | / | / | / | / | / | / | -0.23 | -3.38 |
N22 | / | / | / | / | / | / | -5.73 | -10.71 |
N23 | / | / | / | / | / | / | -1.85 | -10.78 |
N24 | / | / | / | / | / | / | -1.95 | -2.98 |
N25 | / | / | / | / | / | / | 0.06 | -9.75 |
N26 | / | / | / | / | / | / | -4.64 | -3.52 |
N27 | / | / | / | / | / | / | -0.71 | -6.13 |
N28 | / | / | / | / | / | / | 0.17 | -10.02 |
N29 | / | / | / | / | / | / | -0.59 | -10.28 |
N30 | / | / | / | / | / | / | -1.59 | -3.65 |
N31 | / | / | / | / | / | / | -3.58 | -11.51 |
N32 | / | / | / | / | / | / | -1.27 | -11.02 |
N33 | / | / | / | / | / | / | -1.11 | -11.29 |
N34 | / | / | / | / | / | / | -2.31 | -11.28 |
N35 | / | / | / | / | / | / | -0.53 | -3.42 |
N36 | / | / | / | / | -2.07 | 0.81 | -0.45 | -7.34 |
N37 | / | / | / | / | -0.49 | 1.20 | -0.66 | -10.27 |
N38 | / | / | / | / | -6.00 | -1.01 | -2.73 | -11.58 |
N39 | / | / | / | / | -2.53 | 0.17 | -1.89 | -11.02 |
N40 | / | / | / | / | -2.97 | -0.39 | -2.19 | -10.83 |
血沉棕黄层样本测试结果:
RD1 | RD2 | MBSF8 | MBSR13 | NDRG4 | QKI | MBSF9 | MBSR16 | |
样本编号 | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq | ΔCq |
P | 2.25 | 1.50 | / | / | / | / | 7.12 | 5.45 |
B1 | / | / | -11.29 | -11.55 | -11.51 | -11.14 | -11.11 | -10.71 |
B2 | / | / | -11.60 | -11.80 | -1.85 | -11.48 | -11.36 | -11.43 |
B3 | / | / | -11.75 | -11.82 | -4.09 | -11.42 | -11.55 | -11.22 |
B4 | / | / | -11.60 | -11.71 | -6.17 | -11.26 | -11.38 | -11.07 |
B5 | -10.14 | -10.17 | / | / | / | -9.63 | -10.46 | -10.27 |
B6 | / | / | -10.88 | -10.96 | -10.91 | -10.74 | -10.63 | -10.50 |
B7 | / | / | -11.51 | -11.81 | -4.81 | -3.21 | -11.28 | -11.16 |
B8 | / | / | -11.22 | -11.48 | -11.27 | -11.07 | -11.14 | -10.79 |
B9 | / | / | -11.58 | -12.10 | -4.72 | -11.54 | -11.38 | -11.36 |
B10 | / | / | -11.80 | -11.94 | -11.77 | -11.60 | -11.49 | -11.34 |
B11 | -11.84 | -11.82 | -11.96 | -12.23 | -12.11 | -11.81 | -11.94 | -11.73 |
B12 | -5.89 | -11.62 | / | / | -4.75 | -11.61 | -11.64 | -11.70 |
B13 | -5.90 | -11.68 | / | / | -11.76 | -11.72 | -11.75 | -11.75 |
B14 | -11.59 | -11.65 | / | / | -7.09 | -11.75 | -11.42 | -11.40 |
B15 | -11.45 | -11.48 | / | / | -5.15 | -11.61 | -11.34 | -11.27 |
B16 | -11.71 | -11.95 | / | / | -5.68 | -11.99 | -11.92 | -11.70 |
B17 | -11.74 | -11.67 | / | / | -4.27 | -3.56 | -11.88 | -11.64 |
B18 | -11.77 | -11.72 | / | / | -6.97 | -11.98 | -11.84 | -11.86 |
B19 | -11.63 | -11.62 | / | / | -4.57 | -11.83 | -11.62 | -11.62 |
B20 | / | / | / | / | -11.71 | -11.62 | -11.73 | -11.63 |
(2)综合考虑上述结果,根据纳入组合标准选择7个标志物:MBSF9、MBSR16、MBSF8、MBSR13、NDRG4、NPY、QKI组合为1个多重测定,它们在血沉棕黄层样本中背景信号较低,在肿瘤样本中甲基化水平显著高于正常样本,并且在多个不同肿瘤样本之间具有一定互补性,将这些标志物均用FAM荧光基团标记,内参ACTB使用VIC荧光基团标记,然后选用不同类型样本血浆cfDNA(结直肠癌、息肉、腺瘤、健康人)和质控样本进行mqMSP测试,结果如下:(失败的组合检测结果)
(3)上述结果显示健康对照、阴性对照、空白对照均出现假阳性信号,因此接下来为了剔除组合中产生非特异性信号的测定,选择NTC(无模板对照)观察信号强度变化,按照以下组合测试:
检测的的扩增曲线见图7,对应结果如下:
样本 | FAM Cq | FAM平均Cq | VIC Cq | VIC平均Cq |
组合1-NTC | N/A | N/A | N/A | N/A |
组合1-NTC | N/A | N/A | ||
组合1-NTC | N/A | N/A | ||
组合1-NTC | N/A | N/A | ||
组合1-NTC | N/A | N/A | ||
组合2-NTC | N/A | N/A | N/A | N/A |
组合2-NTC | N/A | N/A | ||
组合2-NTC | N/A | N/A | ||
组合2-NTC | N/A | N/A | ||
组合2-NTC | N/A | N/A | ||
组合3-NTC | N/A | N/A | N/A | N/A |
组合3-NTC | N/A | N/A | ||
组合3-NTC | N/A | N/A | ||
组合3-NTC | N/A | N/A | ||
组合3-NTC | N/A | N/A | ||
组合4-NTC | N/A | N/A | N/A | N/A |
组合4-NTC | N/A | N/A | ||
组合4-NTC | N/A | N/A | ||
组合4-NTC | N/A | N/A | ||
组合4-NTC | N/A | N/A | ||
组合5-NTC | 41.55 | 41.27 | N/A | N/A |
组合5-NTC | 41.25 | N/A | ||
组合5-NTC | 41.24 | N/A | ||
组合5-NTC | 40.66 | N/A | ||
组合5-NTC | 41.64 | N/A |
根据上述测试结果,图7中可看出组合2背景信号最低,由于组合2中剔除了NPY,因此认为非特异性信号主要来自NPY。
(4)接下来同时比较去除NPY的测定和未去除NPY的测定的敏感性,使用1%Meth DNA,两者敏感性相差不大,结果如下:
由此得到V2测定组合为MBSF9、MBSF8、MBSR13、MBSR16、NDRG4、QKI、ACTB。
实施例八
V3测定方法的建立和测试
由于不同标志物组合建立的方法可能具有不同的检测效果,在V2测定测试基础上,为了摸索灵敏度和特异性更佳的方法,我们设计并建立了V3测定,主要流程如下述:
(1)根据文献报道和课题组数据筛选多个候选甲基化标志物,包括SEPTIN9、NDRG4、QKI、NPY、SDC2等,针对每个区域设计相应的qMSP引物和MGB探针。
(2)参照V2测定方法分析各uniplex测定在不同类型样本(多个肿瘤组织、正常组织、血沉棕黄层样本)中的测试结果。
(3)根据纳入组合标准组成V3测定,包括:MBSF9、MBSF8、MBSR13、NDRG4、QKI、RD1、RD2、ACTB,各测定序列见实施例四中的总表。
反应体系、反应条件:同V2测定方法。
(4)测试组合V测定的敏感性和特异性。
具体过程如下:
1.实验方法
(1)根据文献报道和课题组数据筛选多个候选甲基化标志物,包括SEPTIN9、NDRG4、QKI、NPY、SDC2等,针对每个区域设计相应的qMSP引物和MGB探针。
(2)参照V2测定方法分析每个标志物测定在不同类型样本(多个肿瘤组织-T、正常组织-N、血沉棕黄层样本-B)中的测试结果。
(3)根据纳入组合标准组成V3测定,包括:MBSF9、MBSF8、MBSR13、NDRG4、QKI、RD1、RD2、ACTB,各测定的引物和探针序列见实施例四中的总表。
(4)V3测定QPCR引物和探针混合液准备:
各引物初始浓度为200μM,按照如下比例混合:
V3测定甲基化基因引物成分 | 体积 |
MBSF9上下游引物 | 各10uL |
MBSR8上下游引物 | 各10uL |
MBSR13上下游引物 | 各10uL |
NDRG4上下游引物 | 各10uL |
QKI上下游引物 | 各10uL |
RD1上下游引物 | 各10uL |
RD2上下游引物 | 各10uL |
去酶水 | 20uL |
内参基因引物成分 | 体积 |
ACTB上下游引物 | 各10μL |
去酶水 | 380μL |
各探针初始浓度为100μM,按照如下比例混合:
V3测定甲基化基因探针成分 | 体积 |
MBSF9探针 | 10uL |
MBSR8探针 | 10uL |
MBSR13探针 | 10uL |
NDRG4探针 | 10uL |
QKI探针 | 10uL |
RD1探针 | 10uL |
RD2探针 | 10uL |
去酶水 | 30uL |
内参基因探针成分 | 体积 |
ACTB探针 | 10μL |
去酶水 | 190μL |
(5)反应体系如下:
成分 | 终浓度 | 体积/25μL反应(μL) |
KAPA探针FAST qPCR主混合物(2×) | 1× | 12.5 |
多重混合物(12.5μM) | 0.25μM | 0.5 |
多重探针混合物(10μM) | 0.1μM | 0.25 |
ACTB引物混合物(5μM) | 0.06μM | 0.3 |
ACTB探针(5μM) | 0.05μM | 0.25 |
50×ROX Low | 1× | 0.5 |
DNA模板 | / | 10 |
H 2O | / | 0.7 |
总体积 | / | 25 |
反应条件如下:
Channel | FAM/VIC |
聚合酶活化 | 95℃下3min |
变性 | 95℃下3s |
退火 | 60℃下30s |
延伸 | 72℃下30s |
循环数 | 45个循环 |
(6)使用1%、0.5%、0.2%、0%Meth DNA测试组合测定的敏感性,10ng DNA/反应。
(7)使用8个血沉棕黄层DNA(610B、624B、630B、642B、646B、662B、671B、625B)测试组合测定的特异性,25ng DNA/反应。
2.实验结果
(1)敏感性测试结果如下:
可见在不同甲基化程度的DNA样品中,1%Meth DNA甲基化程度最高,对应的甲基化基因荧光信号(FAM平均Cq)也最强,即FAM平均Cq值最小,0.5%、0.2%Meth DNA的甲基化基因荧光信号依次减弱,0%Meth DNA未产生甲基化信号,说明本方法可以检测甲基化程度低至0.2%的样品,敏感性较好。
(2)特异性测试结果如下:
由于血沉棕黄层DNA(buffy coat DNA)为未发生甲基化或者甲基化程度较低的DNA样本,相应的甲基化基因荧光信号(FAM平均Cq)理论上应不存在或者较弱,通过此方法检测多个不同人的血沉棕黄层DNA样本,可见除了610B、624B样本外,其余样本甲基化信号均较弱,说明本方法可以较为特异的区分癌组织DNA和血沉棕黄层DNA样本。
实施例九
V4测定方法的建立和测试
由于不同标志物组合建立的方法可能具有不同的检测效果,在V3测定的测试基础上,为了摸索灵敏度和特异性更佳的方法,我们设计并建立了V4测定,主要流程如下述:
(1)在上述V3测定的基础上,去除其中的NDRG4测定组合成新的多重测定,得到V4测定,包括:MBSF9、MBSF8、MBSR13、QKI、RD1、RD2(其中去掉RD2_F引物)、ACTB,各测定序列见实施例四中的总表。
反应体系、反应条件:同V2测定方法。
(2)测试V4测定的特异性和敏感性。
具体过程如下:
1.实验方法
(1)根据V3测定的测试结果,血沉棕黄层DNA中出现假阳性信号,因此去除其中的NDRG4测定组合成新的多重测定,得到V4测定,包括:MBSF9、MBSF8、MBSR13、QKI、RD1、RD2(其中去掉RD2_F引物)、ACTB,各测定序列见实施例四中的总表。
(2)V4测定QPCR引物和探针混合液准备:
各引物初始浓度为200μM,按照如下比例混合:
V4测定甲基化基因引物成分 | 体积 |
MBSF9上下游引物 | 各10uL |
MBSR8上下游引物 | 各10uL |
MBSR13上下游引物 | 各10uL |
QKI上下游引物 | 各10uL |
RD1上下游引物 | 各10uL |
RD2下游引物 | 10uL |
去酶水 | 50uL |
内参基因引物成分 | 体积 |
ACTB上下游引物 | 各10μL |
去酶水 | 380μL |
各探针初始浓度为100μM,按照如下比例混合:
V4测定甲基化基因探针成分 | 体积 |
MBSF9探针 | 10uL |
MBSR8探针 | 10uL |
MBSR13探针 | 10uL |
QKI探针 | 10uL |
RD1探针 | 10uL |
RD2探针 | 10uL |
去酶水 | 40uL |
内参基因探针成分 | 体积 |
ACTB探针 | 10uL |
去酶水 | 190uL |
(3)反应体系如下:
成分 | 终浓度 | 体积/25μL反应(μL) |
KAPA探针FAST qPCR主混合物(2×) | 1× | 12.5 |
多重混合物(12.5μM) | 0.25μM | 0.5 |
多重探针混合物(10μM) | 0.1μM | 0.25 |
ACTB引物混合物(5μM) | 0.06μM | 0.3 |
ACTB探针(5μM) | 0.05μM | 0.25 |
50×ROX Low | 1× | 0.5 |
DNA模板 | / | 10 |
H 2O | / | 0.7 |
总体积 | / | 25 |
反应条件如下:
Channel | FAM/VIC |
聚合酶活化 | 95℃下3min |
变性 | 95℃下3s |
退火 | 60℃下30s |
延伸 | 72℃下30s |
循环数 | 45个循环 |
(4)使用8个血沉棕黄层DNA(610B、624B、630B、642B、646B、662B、671B、625B)测试组合测定的特异性,25ng DNA/反应。
(5)使用10个肿瘤DNA混合物(10个I-II期结直肠癌肿瘤组织DNA和健康人血沉棕黄层DNA分别按照1∶9混合,甲基化程度为0.1%-0.8%)测试组合测定的敏感性,10ng DNA/反应。
2.实验结果
(1)特异性测试结果如下:
由于血沉棕黄层DNA为未发生甲基化或者甲基化程度较低的DNA样本,相应的甲基化基因荧光信号(FAM平均Cq)理论上应不存在或者较弱,通过此方法检测多个不同人的血沉棕黄层DNA样本,可见所有样本甲基化信号均不存在或者极弱,说明本方法可以较为特异的区分癌组织DNA和血沉棕黄层DNA样本。
(2)敏感性测试结果如下:
可见在不同甲基化程度(0.1%-0.8%)的肿瘤DNA混合物中,所有样本均能稳定检测到明显的甲基化基因荧光信号(FAM平均Cq),说明本方法可以检测到甲基化程度低至0.1%的样品,敏感性较好。
实施例十
cfDNA mqMSP产物扩增子测序
1.实验方法
(1)为了分析V1/V2测定中每个测定在不同类型cfDNA样本mqMSP反应中的扩增效果和信号差异,我们共挑选了83个不同类型的样本mqMSP产物样本进行建库测序,其中包括的样本类型有:M.SssI酶处理的血沉棕黄层DNA(100%甲基化DNA对照)、1%Meth DNA、结直肠癌cfDNA、进展性腺瘤cfDNA、良性息肉cfDNA、健康人cfDNA、志愿者cfDNA。经V2测定测试的产物样本有28个,经V1测定检测的产物样本有55个。
83个样本情况如下:
(2)mqMSP产物文库构建和测序:使用Zymo Oligo Clean&Concentrator试剂盒对上述样本mqMSP产物进行纯化,纯化后DNA取1μL经Qubit定量;剩余DNA进行T4 PNK磷酸化反应,然后磷酸化产物加入衔接子和T4 DNA Ligase进行连接反应;连接产物使用Zymo Oligo Clean&Concentrator试剂盒进行纯化,纯化后的DNA经Qubit定量以及Agilent 2100 bioanalyzer检测;然后将文库混样送二代测序。
(3)测序数据比对分析。
2.实验结果
测序数据分析处理:首先统计样本产物中包括V1/V2测定的所有扩增子内每个CpG位点的depth(记作N),若某位点未测到则记作N=1,然后计算以2为底N的对数x,即x=log
2N,最后取扩增子内所有位点x的均值X代表此扩增子的整体水平。X即为下述表格中经过处理得到的数值,可以表示各标志物在mqMSP反应中经有效扩增的信号大小,反映样本中此标志物所在区域的甲基化水平,颜色深浅可视化地表现数值大小,颜色越深表示信号越强,甲基化水平越高。表格中每一行表示一个测定扩增子在不同样本中的数值,每一列表示一个样本对应的所有测定扩增子的数值。
此处我们选取部分样本结果进行解释说明:
(1)对于V1测定中各甲基化标志物的分析如下:结果显示,在结直肠癌样本中,MBSR5、MBSR6、MBSR7这几个测定在大部分结直肠癌患者中检测信号较强,大约覆盖70%以上的患者(假定以大于14作为评判测定最优的标准);但仍有部分患者未被覆盖,这部分样本可由其它标志物作为互补发挥作用,例如对于22号和26号结直肠癌患者样本,MBSF10标志物可以起到互补作用,在17号结直肠癌样本中MBSF9可作为互补标志物。另外,可以看到整体上这些标志物在结直肠癌样本中的信号明显高于健康人。进一步证明了V1多重测定中这些标志物组合的规律性和合理性。
(2)对于V2测定中各甲基化标志物的分析如下:结果显示,在结直肠癌样本中,QKI测定在大部分结直肠癌患者中检测信号较强,大约覆盖90%以上的患者(假定以大于10作为评判测定最优的标准);但仍有部分患者未被覆盖,这部分样本可由其它标志物作为互补发挥作用,例如在16号结直肠癌患者样本中,NDRG4标志物可以起到互补作用;另外6号、13号、14号、15号、16号结直肠癌样本中,MBSF9和QKI、NDRG4可作为互补标志物。进一步证明了V2多重测定中这些标志物组合的规律性和合理性。
实施例十一
双荧光法和三荧光法对多个DNA甲基化标志物进行定量
1.实验方法
(1)双荧光mqMSP方法:将针对DNA甲基化标志物(MBSF9、MBSR16、MBSF8、MBSR13、NDRG4、QKI)设计的多个MGB探针均使用FAM荧光基团标记,用于定量的内参基因的MGB探针使用VIC荧光基团标记,测定序列见实施例四中的总表,检测方法见上述实施例七描述的mqMSP方法(V2测定方法)。
(2)三荧光mqMSP方法:将多个甲基化标志物分为两组,一组(MBSF9、MBSR16、MBSF8、MBSR13、NDRG4、NPY、QKI)使用FAM标记的MGB探针,另一组(MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9)使用VIC标记的MGB探针,用于定量的内参基因则使用CY5标记的MGB探针。
表5.第1组引物和探针序列:
表6.第2组引物和探针序列:
表7.内参基因引物和探针序列(下划线标示引入的突变碱基)
反应体系如下:
在ABI 7500 QPCR仪上设置反应条件如下:
Setting/Block | All channel |
聚合酶活化 | 95℃下3min |
变性 | 95℃下3s |
退火 | 60℃下30s |
延伸 | 72℃下30s |
GOTO 2 | 45个循环 |
(3)三荧光mqMSP方法的灵敏度测试:将细胞株DNA和血沉棕黄层DNA按照不同比例混合成2%、1%、0.5%、0.1%Bis-Meth DNA作为模型样本,10ng/反应,测试三荧光mqMSP方法的灵敏度。
(4)三荧光mqMSP方法对cfDNA的检测效果:提取不同类型样本血浆cfDNA(结直肠癌、良性息肉、进展性腺瘤、健康对照)并加入200ng载体(carrier)DNA,然后进行亚硫酸氢盐转化处理,用此方法进行检测。
(5)双荧光mqMSP方法和三荧光mqMSP方法的比较:选取结直肠癌样本cfDNA并加入200ng载体DNA,然后进行亚硫酸氢盐转化处理,用两种方法分别进行mqMSP定量检测。
2.实验结果
(1)三荧光mqMSP方法的灵敏度测试结果如下:对于模拟的不同浓度的甲基化样本,均能检测到甲基化信号(FAM和VIC荧光信号),且可检测到甲基化程度低至0.1%的信号,说明此方法的灵敏度较好。
(2)三荧光mqMSP方法对不同类型样本血浆cfDNA的检测结果如下:对于结直肠癌样本,均能检测到甲基化信号(FAM和VIC荧光信号),而健康对照样本甲基化水平均很低,几乎检测不到信号。
(3)双荧光mqMSP方法和三荧光mqMSP方法的比较结果:
见图8,双荧光法检测结果中FAM荧光信号(target1)表示结直肠癌样本中基因甲基化水平,VIC荧光信号(target2)表示内参基因,反映输入DNA的质量。
图9中,三荧光法检测结果中FAM信号(target1)和VIC信号(target2)分别表示两组基因的甲基化水平,CY5荧光信号(target3)表示内参基因,反映输入DNA的质量。
说明两种方法均能反映肠癌样本的甲基化水平。
实施例十二
核酸飞行质谱法对多个DNA甲基化标志物进行定量
本实施例将甲基化敏感的限制性内切酶、real-competitive技术、单碱基延伸反应和核酸飞行质谱技术相结合设计了定量检测方案。
1.实验方法
(2)取1μg上述DNA对其超声破碎打断成170bp左右的DNA片段,使用Bioruptor超声破碎仪,超声条件设置如下:
循环条件(开/关循环时间) | 循环数 |
30”/30” | 13 |
(3)超声样本纯化:使用Zymo Oligo Clean&Concentrator试剂盒对每个超声后DNA进行纯化,以去除极小片段的DNA并浓缩DNA体积,最终每管洗脱于32μL,将同一个样本混和于1管,然后取1μL通过Qubit定量;
(4)样本酶切处理:选取4种甲基化敏感的限制性内切酶,包括Hpa II(NEB)、Hha I(NEB)、Aci I(NEB)、BstU I(NEB),设置50μL反应体系,20U每种酶/反应,100ng DNA/反应,先加入除BstU I之外的其它3种酶,37℃孵育16h,取出加入2μL Bst U I酶再60℃孵育6h。
酶切反应体系配制如下:
成分 | 体积 |
H 2O | 31.6μL |
10X Cutsmart缓冲液 | 5μL |
Hpa II(50U/μL) | 0.4μL |
Hha I(20U/μL) | 1μL |
Aci I(10U/μL) | 2μL |
DNA(10ng/μL) | 10μL |
总反应体积 | 50μL |
反应条件 | 先37℃孵育16h,再60℃孵育6h |
同样条件下,不加酶,设置模拟对照(mock control)反应:
成分 | 体积 |
H 2O | 35μL |
10X Cutsmart缓冲液 | 5μL |
DNA(10ng/μL) | 10μL |
总反应体积 | 50μL |
反应条件 | 先37℃孵育16h,再60℃孵育6h |
(3)酶切产物DNA纯化:使用DNA clean Clean&Concentrator试剂盒对50μL酶切产物中的DNA进行纯化以去除杂质并浓缩体积,最终洗脱于12μL H2O中,取1μL通过Qbit测浓度,剩余用于后续反应测试。
(4)real-competitive PCR反应:
根据RRBS甲基化测序结果,FGF12、ELOVL2、HSPA1A等14个基因区域在结直肠癌肿瘤组织中的甲基化水平显著高于其它组织样本和血沉棕黄层,可作为肿瘤特异的DNA甲基化标志物,故针对FGF12、ELOVL2、HSPA1A等基因上的多个区域分别设计了PCR扩增引物和延伸引物。遵循扩增子内酶切位点数至少有3个的原则,同时加入一个内参基因ACTB测定(各样本中甲基化程度接近于0)作为质控。
表8.标志物信息
对应基因 | 标志物名称 | 标志物所在染色体位置 |
ACTB | QC | chr7:5530563-5530637 |
FGF12 | RRB10 | chr3:192408801-192408861 |
ELOVL2 | RRB13 | chr6:11044173-11044248 |
HSPA1A | RRB14 | chr6:31815656-31815713 |
ELOVL2/ELOVL2-AS1 | RRB16 | chr6:11043728-11043798 |
SYNE1 | RRB17_1 | chr6:152636778-152636838 |
SYNE1 | RRB17_2 | chr6:152636910-152636974 |
SFMBT2 | RRB20 | chr10:7409123-7409201 |
FL11/SENCR | RRB21_4 | chr11:128693445-128693513 |
FBN1 | RRB26_2 | chr15:48645387-48645456 |
/ | RRB2 | chr1:34930091-34930158 |
AL096828.1 | RRB30 | chr20:63179214-63179293 |
LONRF2 | RRB6_1 | chr2:100322008-100322068 |
LONRF2 | RRB6_4 | chr2:100322347-100322411 |
LONRF2 | RRB6_5 | chr2:100322420-100322494 |
A.根据DNA甲基化标志物所在区域设计PCR引物如下:
表9.本实验所用PCR引物
表10.本实验所用延伸引物:
引物名称 | 序列(5′至3′) |
RRB6_5-U | GCTGCTCTTGCGATG(SEQ ID NO:91) |
RRB20-U | CGGCGTGGAGGAAAG(SEQ ID NO:92) |
RRB6_4-U | TCTGAGCCCCTGCCCA(SEQ ID NO:93) |
RRB21_4-U | GGCGGCTGGTAACCCA(SEQ ID NO:94) |
RRB16-U | CCCCAGAACTCCCGAGG(SEQ ID NO:95) |
RRB10-U | GGAAGGCAGCAATTTAA(SEQ ID NO:96) |
QC-U | gGGCTGGGGTGGCGCGT(SEQ ID NO:97) |
RRB2-U | GCTTAGGGAACTCTCCTT(SEQ ID NO:98) |
RRB17_2-U | aGCCCCCTGCCCTCCGCGA(SEQ ID NO:99) |
RRB14-U | gtccAAGGACCGAGCTCTT(SEQ ID NO:100) |
RRB13-U | aCGCTGCGGATCATGGTGA(SEQ ID NO:101) |
RRB30-U | CCCTCCGCCCAGGGTCCAAA(SEQ ID NO:102) |
RRB26_2-U | ggtcaGGGCCAGGAAGCTGT(SEQ ID NO:103) |
RRB17_1-U | CCTGCCAAGCCGCCCTGGTGA(SEQ ID NO:104) |
RRB6_1-U | gggccCGGCTCCGCGCGGTCG(SEQ ID NO:105) |
设计竞争物序列如下:分别对应步骤A所设计的每对PCR引物所扩增的目的序列,在延伸引物3’末端位点处引入变异碱基(下划线标注碱基为引入的变异碱基)。
表11.本实验所用竞争物序列
B.配制1μM(每个引物)PCR引物混合物如下:
由于后续引物工作液浓度设置为0.5μM,取上述混液(1μM)50μL于新的Ep管,加入50μL ddH
2O稀释为0.5μM。
竞争物准备:将竞争物干粉稀释成1μM溶液,用Thermo
ssDNA测定试剂盒测定浓度,根据各竞争物分子量换算成实际拷贝浓度,然后对各竞争物进行稀释混合,使得后续PCR反应中竞争物加入量满足下述条件:
未酶切样本(肿瘤组织DNA/正常组织DNA/血沉棕黄层DNA):
未酶切样本中加入竞争物 | |
每个目标 | 6600个拷贝/PCR反应 |
QC | 3300个拷贝/PCR反应 |
酶切样本(正常组织DNA/血沉棕黄层DNA):
N/BC | 酶切样本中加入竞争物 |
每个目标 | 66个拷贝/PCR反应 |
QC | 33个拷贝/PCR反应 |
酶切样本T(肿瘤组织DNA):
T | 酶切样本中加入竞争物 |
每个目标 | 3300个拷贝/PCR反应 |
QC | 33个拷贝/PCR反应 |
延伸引物混合液:
先将UEP干粉稀释为200μM原液,然后如下混合成混合物:
C.PCR反应:在同一体系中同时加入酶切纯化后的样本DNA或模拟对照样本以及竞争物进行PCR扩增,PCR反应体系如下:
将待测样本依序加入反应孔位。
PCR反应程序设置如下表:
D.取5μL PCR产物加入2μL SAP(虾碱性磷酸酶)反应液进行SAP反应,SAP反应液体系如下:
反应条件:
E.延伸反应:取7μL SAP反应产物加入2μL延伸反应液进行延伸反应,延伸反应液体系如下:
反应条件:
F.核酸飞行质谱平台点样分析获取数据。
G.结果分析算法。
结果需要收集不同样本中竞争物和目标各自的峰值信号(peak signal)和比值,“call”表示产物得到延伸产生的具体峰值信号,“0”表示产物未能延伸,峰值信号为0,分析按照如下算法:
已知每个反应输入竞争物的拷贝数如下:
未酶切样本(肿瘤组织DNA/正常组织DNA/血沉棕黄层DNA 20ng/反应)PCR反应:
未酶切样本中加入竞争物 | |
每个目标 | 6600个拷贝/PCR反应 |
QC | 3300个拷贝/PCR反应 |
酶切样本(正常组织DNA/血沉棕黄层DNA 20ng/反应)PCR反应:
N/BC | 酶切样本中加入竞争物 |
每个目标 | 66个拷贝/PCR反应 |
QC | 33个拷贝/PCR反应 |
酶切样本T(肿瘤组织DNA 20ng/反应)PCR反应:
T | 酶切样本中加入竞争物 |
每个目标 | 3300个拷贝/PCR反应 |
QC | 33个拷贝/PCR反应 |
对于未酶切样本反应结果的解释如下表:
对于正常组织DNA/血沉棕黄层DNA酶切样本反应结果的解释如下表:
对于肿瘤组织DNA酶切样本反应结果的解释如下表:
(8)利用此核酸飞行质谱方法检测血浆样本cfDNA:选择28个不同类型血浆样本cfDNA,包括15个结直肠癌、4个进展性腺瘤、4个肠息肉、5个健康对照,利用此方法定量分析样本中的各候选甲基化标志物,操作同上述。
2.实验结果
(1)见图10,上图,同时分析了酶切处理的肿瘤样本、正常组织样本、血沉棕黄层样本以及对应未酶切的3种模拟对照样本中的甲基化标志物RRB14,3种模拟对照样本(M-T1、M-N1、M-B1)中竞争物信号峰与样本信号峰比值接近1∶1,说明PCR反应效率较好,未酶切输入DNA拷贝数与输入竞争物拷贝数相当;3种酶切样本(E-T1、E-N1、E-B1)中竞争物信号峰与样本信号峰比值各不相同,肿瘤样本E-T1中两者信号比值为0.76,正常样本E-N1中两者信号比值为2.19,血沉棕黄层样本E-B1中两者信号比值为0.12,据此可算出3种酶切样本DNA 拷贝数分别为2508拷贝、144.54拷贝、7.92拷贝,说明此标志物在结直肠癌肿瘤中甲基化程度明显高于其它类型样本。
同理,图10,下图分析了甲基化标志物RRB17_1,3种酶切样本DNA拷贝数分别为3696拷贝、133.98拷贝、9.24拷贝。
同时分析的所有标志物定量结果如下:单位-拷贝
对应基因 | 标志物名称 | E-T1 | E-N1 | E-B1 | M-T1 | M-N1 | M-B1 |
FGF12 | RRB10 | 8283 | 324.72 | 357.06 | 8382 | 8910 | 8646 |
ELOVL2 | RRB13 | 2706 | 27.06 | 0 | 4356 | 8580 | 7458 |
HSPA1A | RRB14 | 2508 | 144.54 | 7.92 | 4950 | 6006 | 7854 |
ELOVL2 | RRB16 | 4851 | 84.48 | 35.64 | 5280 | 6996 | 6732 |
SYNE1 | RRB17_1 | 3696 | 133.98 | 9.24 | 2376 | 4092 | 4290 |
SYNE1 | RRB17_2 | 4785 | 196.02 | 17.82 | 9240 | 12804 | 13332 |
SFMBT2 | RRB20 | 6567 | 239.58 | 73.26 | 8052 | 9372 | 10956 |
FBN1 | RRB26_2 | 1551 | 18.48 | 17.82 | 2640 | 4224 | 4224 |
AL096828.1 | RRB30 | 2046 | 126.06 | 0 | 2244 | 3168 | 3300 |
LONRF2 | RRB6_4 | 5907 | 1.98 | 5.28 | 7326 | 10494 | 12276 |
(2)血浆样本cfDNA的检测结果如下:单位-拷贝
结直肠癌血浆cfDNA检测结果:
样本类型 | CRC | CRC | CRC | CRC | CRC | CRC | CRC | CRC |
肿瘤分期 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
测定 | 2463RP | 1451RP | 1501RP | 2064RP | 3569RP | 2477RP | 2932RP | zyl-238 |
RRB10 | 111.21 | 99 | 69.63 | 17.16 | 41.25 | 119.13 | 181.17 | 112.53 |
RRB13 | 0 | 0 | 0 | 0 | 2.97 | 0 | 0 | 0 |
RRB14 | 0 | 4.62 | 0 | 0 | 0 | 5.28 | 2.31 | 5.61 |
RRB16 | 0 | 6.27 | 3.3 | 11.55 | 0 | 76.89 | >660 | 31.35 |
RRB17_1 | 4.62 | 0 | 0 | 0 | 0 | 7.26 | 0 | 11.55 |
RRB17_2 | 0 | 0 | 6.27 | 0 | 0 | 35.31 | 18.48 | 17.49 |
RRB20 | 12.87 | 57.75 | 9.57 | 0 | 15.84 | 10.89 | 27.06 | 13.2 |
RRB21_4 | 0 | 15.18 | 3.3 | 0 | 14.52 | 2.64 | 7.59 | 0 |
RRB26-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.64 |
RRB30 | 0 | 0 | 0 | 0 | 0 | 7.26 | 3.3 | 0 |
RRB6_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.23 |
样本类型 | CRC | CRC | CRC | CRC | CRC | CRC | CRC |
肿瘤分期 | 3 | 3 | 3 | 3 | 3 | 4 | 4 |
测定 | sfg-8-0 | 1722RP | 1834RP | 1816RP | 869R | 584R | 559R |
RRB10 | 165.66 | 62.7 | 254.1 | 80.85 | 158.86 | 578.11 | 499.26 |
RRB13 | 0 | 0 | 0 | 5.61 | 61.02 | >660 | >660 |
RRB14 | 6.6 | 0 | 1.98 | 2.64 | 318.06 | 8.25 | >660 |
RRB16 | 8.91 | 1.65 | 28.71 | 13.86 | 125.65 | >660 | >660 |
RRB17_1 | 4.29 | 16.5 | 10.56 | 4.29 | 44.1 | 452.29 | 578.11 |
RRB17_2 | 13.2 | 9.24 | 14.85 | 0 | >660 | >660 | >660 |
RRB20 | 17.82 | 55.77 | 5.61 | 49.83 | 168.22 | 4681.29 | >660 |
RRB21_4 | 17.16 | 0 | 4.95 | 128.04 | 224.81 | >660 | >660 |
RRB26-2 | 0 | 0 | 0 | 0 | 22.28 | 1908.18 | >660 |
RRB30 | 9.24 | 0 | 15.51 | 8.91 | 63.77 | >660 | >660 |
RRB6_4 | 0 | 0 | 15.51 | 96.36 | 318.06 | >660 | >660 |
进展性腺瘤和肠息肉血浆cfDNA检测结果:
样本类型 | AA | AA | AA | AA | Polyps | Polyps | Polyps | Polyps |
测定 | 331YP | 367YP | 439YP | 499YP | 592YP | 487YP | ZDW96P | 808YP |
RRB10 | 129.69 | 49.83 | 246.51 | 3.96 | 67.32 | 55.44 | 126.39 | 20.79 |
RRB13 | 0.33 | 0 | 0 | 0 | 0 | 1.32 | 0 | 0 |
RRB14 | 0 | 0 | 0 | 0 | 0 | 0.66 | 1.98 | 0 |
RRB16 | 0 | 6.6 | 0 | 0 | 0 | 8.25 | 7.26 | 0 |
RRB17_1 | 0 | 0 | 6.27 | 0 | 0 | 0 | 3.63 | 3.3 |
RRB17_2 | 11.22 | 9.9 | 18.15 | 14.52 | 0 | 7.26 | 0 | 7.92 |
RRB20 | 19.47 | 0.33 | 20.13 | 3.96 | 8.58 | 0 | 6.6 | 0 |
RRB21_4 | 0 | 0 | 16.17 | 0 | 0 | 0 | 0 | 0 |
RRB26-2 | 0 | 2.97 | 0 | 0 | 0 | 0 | 0.99 | 1.32 |
RRB30 | 0 | 7.92 | 18.48 | 0 | 0 | 0 | 7.26 | 4.62 |
RRB6_4 | 0 | 0 | 0 | 0 | 0 | 0 | 20.79 | 0 |
健康对照血浆cfDNA检测结果:
样本类型 | 正常 | 正常 | 正常 | 正常 | 正常 |
测定 | 1024YP | 1040YP | 1074YP | 814Y | 826Y |
RRB10 | 40.92 | 35.31 | 138.93 | 95.91 | 71.76 |
RRB13 | 0 | 0 | 4.95 | 0 | 3.03 |
RRB14 | 9.57 | 0 | 0 | 7.24 | 4.8 |
RRB16 | 0 | 0 | 8.25 | 17.54 | 40.66 |
RRB17_1 | 0 | 8.58 | 9.24 | 1.74 | 15.39 |
RRB17_2 | 0 | 21.12 | 3.63 | 45.95 | 39.05 |
RRB20 | 26.07 | 20.79 | 11.55 | 30.1 | 108.63 |
RRB21_4 | 0 | 0 | 7.26 | 0 | 9.42 |
RRB26-2 | 0 | 0 | 0 | 0 | 0 |
RRB30 | 7.59 | 0 | 12.87 | 25.82 | 21.73 |
RRB6_4 | 0 | 0 | 0 | 0 | 7.29 |
结果显示结直肠癌样本各基因甲基化水平总体较其它类型样本高,且癌症分期越晚,甲基化水平越高,即甲基化DNA拷贝数越多。证明此方法可用于血浆样本DNA甲基化标志物的定量检测。
实施例十三
V1测定用于血样的检测
1.实验方法
(1)2016-2019年期间通过温州医科大学附属第一医院及公开招募方式收集入组300位受试者,类型包括结直肠癌、进展性腺瘤、良性息肉、正常对照、无症状志愿者;
(2)对受试者使用EDTA采血管采集10mL静脉血;
(3)通过两次离心法分离全血得到血浆,收集于去酶Ep管-80℃保存;
(4)使用Apostle cfDNA提取试剂盒提取人外周血游离核酸DNA,取1μL用Thermo Fisher Qubit测定核酸浓度;
(5)质控品准备:阳性质控品为HCT15细胞株DNA和正常人血沉棕黄层DNA按照1∶99混合的DNA,阴性质控品为正常人血沉棕黄层DNA,浓度均为10ng/μL,每次反应分别取20ng作为参考样本用于实验有效性的评估;(对于质控品的详细说明参见实施例三)
(6)取上述样本游离核酸DNA 5-100ng,阳性质控品和阴性质控品各取20ng,使用EZ methylation-Gold试剂盒对DNA进行亚硫酸氢盐转化,转化后洗脱于21μL去酶水;
(7)用引物和探针对上述亚硫酸氢盐转化后的DNA进行多重实时荧光定量PCR检测,V1测定引物探针序列、反应体系、反应条件、结果判读如下:
A.V1测定包括的测定为:MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、MBSR11、MBSR16、ACTB,各测定序列见实施例四中的总表。
B.QPCR引物、探针混合液准备:见实施例五。
C.多重荧光定量PCR反应体系和反应条件:见实施例五。
D.检测结果的标准和算法如下:使用Bio-rad CFX96 QPCR检测平台,设置FAM阈值100.17,VIC阈值33;使用ABI 7500 QPCR检测平台,设置FAM阈值0.2,VIC阈值0.09;表格中“+”代表Cq值≤45,“-”代表无扩增信号,其中ΔCq=VIC
平均Cq-FAM
平均Cq
首先通过质控品验证QPCR反应的有效性:
如果质控品的QPCR反应满足下表中所列标准,并且受试者样本随同质控品在同一次QPCR反应中测定,该QPCR反应被验证为是有效的。
待测样本QPCR反应结果的解释:
2.实验结果
入组300位受试者的临床特征及阳性检出率如下:
本方法对结直肠癌检测的敏感性为86.21%,特异性为83.33%。其中I-IV期的检出率分别为64.3%、84.2%、100%、100%。
图11为一个阳性样本的血浆甲基化检测结果和一个阴性样本的血浆甲基化检测结果。
图12中显示结直肠癌患者血浆甲基化水平明显高于其它组别,差异具有统计学意义;图13中显示血浆甲基化水平与肿瘤分期有关,肿瘤分期越晚血浆甲基化水平越高。图14中ROC曲线分析结果显示曲线下面积为0.8912,说明此方法诊断准确性较高。
实施例十四
V2测定用于血样的检测
1.实验方法
(1)2016-2019年期间通过温州医科大学附属第一医院及公开招募方式收集入组305位受试者,类型包括结直肠癌、进展性腺瘤、良性息肉、正常对照、无症状志愿者;
(2)对受试者使用EDTA采血管采集10mL静脉血;
(3)通过两次离心法分离全血得到血浆,收集于去酶Ep管-80℃保存;
(4)使用Apostle cfDNA提取试剂盒提取人外周血游离核酸DNA,取1μL用Thermo Fisher Qubit测定核酸浓度;
(5)质控品准备:阳性质控品为HCT15细胞株DNA和正常人血沉棕黄层DNA按照1∶99混合的DNA,阴性质控品为正常人血沉棕黄层DNA,浓度均为10ng/μL,每次反应分别取20ng作为参考样本用于实验有效性的评估;(对于质控品的详细说明参见实施例三)
(6)取上述样本游离核酸DNA 5-100ng加入200ng载体DNA,阳性质控品和阴性质控品各取20ng也分别加入200ng载体DNA,使用EZ methylation-Gold试剂盒对DNA进行亚硫酸氢盐转化,转化后洗脱于21μL去酶水;
(7)用引物和探针对上述亚硫酸氢盐转化后的DNA进行多重实时荧光定量PCR检测,V2引物探针序列、反应体系、反应条件、结果判读如下:
A.V2测定包括的测定为:MBSF9、MBSF8、MBSR13、MBSR16、NDRG4、QKI、ACTB,各测定序列见实施例四中的总表。
B.QPCR引物、探针混合液准备:见实施例七。
C.多重荧光定量PCR反应体系和反应条件:见实施例七。
D.检测结果的标准和算法如下:使用Bio-rad CFX96 QPCR检测平台,设置FAM阈值100.17,VIC阈值33;使用ABI 7500 QPCR检测平台,设置FAM阈值0.2,VIC阈值0.09;表格中“+”代表Cq值≤45,“-”代表无扩增信号,其中ΔCq=VIC
平均Cq-FAM
平均Cq
首先通过质控品验证QPCR反应的有效性:
如果质控品的QPCR反应满足下表中所列标准,并且受试者样本随同质控品在同一次QPCR反应中测定,该QPCR反应被验证为是有效的。
质控品检测结果 | FAM Cq | VIC Cq |
有效的阳性对照 | FAM(+/+) | VIC(+/+) |
有效的阴性对照 | FAM(-/-) | VIC(+/+) |
待测样本QPCR反应结果的解释:
2.实验结果
入组305位受试者的临床特征及阳性检出率如下:
本方法对结直肠癌检测的敏感性为67.54%,特异性为98.25%。其中I-IV期的检出率分别为42%、75%、67.7%、91.7%。
图15中显示结直肠癌患者血浆甲基化水平明显高于其它组别,差异具有统计学意义;图16中显示血浆甲基化水平与肿瘤分期有关,肿瘤分期越晚血浆甲基化水平越高。图17中ROC曲线分析结果显示曲线下面积为0.8663,说明此方法诊断准确性较高。
实施例十五
V4测定用于血样的检测
1.实验方法
(1)2016-2019年期间通过温州医科大学附属第一医院及公开招募方式收集入组194位受试者,类型包括结直肠癌、进展性腺瘤、良性息肉、肠胃炎、食管癌、肺癌、正常对照;
(2)对受试者使用EDTA采血管采集10mL静脉血;
(3)通过两次离心法分离全血得到血浆,收集于去酶Ep管-80℃保存;然后由第三方公司参与将样本顺序打乱重新标记,进行盲法试验,实验人员在不知道受试者样本类型的情况下对样本进行后续处理;
(4)使用Apostle cfDNA提取试剂盒提取人外周血游离核酸DNA,取1μL用Thermo Fisher Qubit测定核酸浓度;
(5)质控品准备:阳性质控品为HCT15细胞株DNA和正常人血沉棕黄层DNA按照1∶99混合的DNA,阴性质控品为正常人血沉棕黄层DNA,浓度均为10ng/μL,每次反应分别取20ng作为参考样本用于实验有效性的评估;(对于质控品的详细说明参见实施例三)
(6)取上述样本游离核酸DNA 5-100ng加入200ng载体DNA,阳性质控品和阴性质控品各取20ng也分别加入200ng载体DNA,使用EZ methylation-Gold试剂盒对DNA进行亚硫酸氢盐转化,转化后洗脱于21μL去酶水;
(7)用引物和探针对上述亚硫酸氢盐转化后的DNA进行多重实时荧光定量PCR检测,V4引物探针序列、反应体系、反应条件、结果判读如下:
A.V4测定包括的测定为:MBSF9、MBSF8、MBSR13、QKI、RD1、RD2(其中去掉RD2_R引物)、ACTB,各测定序列见实施例四中的总表。
B.QPCR引物、探针混合液准备:见实施例九。
C.多重荧光定量PCR反应体系和反应条件:见实施例九。
D.检测结果的标准和算法如下:使用Bio-rad CFX96 QPCR检测平台,设置FAM阈值100.17,VIC阈值33;使用ABI 7500 QPCR检测平台,设置FAM阈值0.2,VIC阈值0.09;表格中“+”代表Cq值≤45,“-”代表无扩增信号,其中ΔCq=VIC
平均Cq-FAM
平均Cq
首先通过质控品验证QPCR反应的有效性:
如果质控品的QPCR反应满足下表中所列标准,并且受试者样本随同质控品在同一次QPCR反应中测定,该QPCR反应被验证为是有效的。
质控品检测结果 | FAM Cq | VIC Cq |
有效的阳性对照 | FAM(+/+) | VIC(+/+) |
有效的阴性对照 | FAM(-/-) | VIC(+/+) |
待测样本QPCR反应结果的解释:
2.实验结果
入组194位受试者的临床特征及阳性检出率如下:
本方法对结直肠癌检测的敏感性为80.3%,特异性为80%。其中I-IV期的检出率分别为74.4%、74.1%、95%、95%。
图18中显示结直肠癌患者血浆甲基化水平明显高于其它组别,差异具有统计学意义;图19中显示血浆甲基化水平与肿瘤分期有关,肿瘤分期越晚血浆甲基化水平越高。图20中ROC曲线分析结果显示曲线下面积为0.8567,说明此方法诊断准确性较高。
实施例十六
DNA甲基化标志物在肠癌预后评估和复发预测中的应用
1.实验方法
(1)2016-2019年期间通过温州医科大学附属第一医院收集入组86位受试者,均为接受手术治疗的结直肠癌患者,采集术前血样、术后血样及随访血样;
(2)血样处理及质控品准备同实施例十三所述;
(3)用V1测定引物和探针对上述亚硫酸氢盐转化后的DNA进行多重实时荧光定量PCR检测,V1引物探针序列、反应体系、反应条件、结果判读同实施例十三所述。
2.实验结果
结果显示,77位患者术前ctDNA阳性,9位患者术前ctDNA阴性,阳性检出率为89.5%(77/86)。随后对77位术前ctDNA阳性的患者继续检测其术后血以及随访血的ctDNA,结合患者临床信息和监测指标,通过ctDNA来评估结直肠癌患者的预后和复发情况。
77位结直肠癌患者中有20位复发患者,其余为未复发患者。复发患者中11位术后ctDNA阳性,9位患者术后ctDNA阴性,51位未复发患者中36位患者术后ctDNA为阴性结果,15位患者呈阳性结果。根据每位患者的复发情况和术后ctDNA状态绘制生存曲线(见图21),可见术后ctDNA为阳性结果的患者其无复发生存期比ctDNA阴性的患者明显缩短(P=0.006)。这些患者术前ctDNA均为阳性,手术切除肿瘤后,绝大部分患者ctDNA甲基化水平均有不同程度的下降(见图22)。
另外,对于20位复发患者,术后ctDNA阳性的患者RFS比术后阴性的患者RFS明显缩短(中位RFS 288 vs 460天,P=0.008,见图23),说明术后能检测到ctDNA的患者其复发时间更短。对阳性结果进一步进行定量分析,显示ctDNA甲基化水平与患者RFS成负相关,高水平甲基化ctDNA提示预后更加不良(见图24)。由此表明此方法检测术后ctDNA能用于评估患者术后的预后情况。
在77位患者中,其中有51位患者收集到了至少一份术后1个月以上的随访血,我们对这些随访血继续进行了ctDNA的检测来进一步评估患者的复发情况。在复发患者中,4位术后ctDNA阴性的患者有3位患者期随访血或复发时的ctDNA呈阳性,1位患者其随访血仍是阴性,而术后ctDNA阳性的未复发患者中有5位患者随访血转为阴性。根据51位患者随访血期间ctDNA的状态,绘制RFS生存曲线(见图25),可见ctDNA阳性的患者较ctDNA阴性的患者其RFS明显缩短 (P=0.002),表明在随访过程中通过该方法检测ctDNA能有效评估患者的复发情况,样本检测结果阳性提示受试者存在疾病复发转移的风险。
实施例十七
DNA甲基化标志物在结直肠癌病人新辅助治疗疗效、术后评估、术后监测等全覆盖动态监测方面的应用
1.实验方法
(1)通过温州医科大学附属第一医院入组了1位接受新辅助治疗的直肠癌患者,采集新辅助治疗前血样、新辅助治疗期间血样、手术前血样、手术后血样及动态随访系列血样共12份;
(2)血样处理及质控品准备同实施例十三所述;
(3)用V1测定引物和探针对上述亚硫酸氢盐转化后的DNA进行多重实时荧光定量PCR检测,V1引物探针序列、反应体系、反应条件、结果判读同实施例十三所述。
2.实验结果
图26显示了此患者治疗及随访过程中系列血样的ctDNA变化情况,可见在接受新辅助治疗前ctDNA检测结果为阳性,新辅助治疗结束后ctDNA结果转阴,随后患者进行了肿瘤切除术,术前、术后以及随访过程的ctDNA检测结果均为阴性,患者预后较好,影像学检查也未发现复发进展,说明此方法在结直肠癌的新辅助治疗疗效评估、术后评估和监测方面有一定意义。
参考文献
[1]Bray F,Ferlay J,Soerjomataram I,et al.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA:A Cancer Journal for Clinicians,2018,68(6).
[2]Chen W,Zheng R,Baade P D,et al.Cancer statistics in China,2015[J].CA:A Cancer Journal for Clinicians,2016,66(2):115-132.
[3]Siegel R L,Miller K D,Fedewa S A,et al.Colorectal cancer statistics,2017[J].CA:A Cancer Journal for Clinicians,2017,67(3):177-193.
[4]Carethers J M,Jung B H.Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer[J].Gastroenterology,2015,149(5):1177-1190.e3.
[5]Guinney J,Dienstmann R,Wang X,et al.The consensus molecular subtypes of colorectal cancer[J].Nature medicine,2015.
[6]Phipps A I,Limburg P J,Baron J A,et al.Association Between Molecular Subtypes of Colorectal Cancer and Patient Survival[J].Gastroenterology,2015,148(1):77-87.e2.
[7]Portela A,Esteller M.Epigenetic modifications and human disease[J].Nature Biotechnology,2010,28(10):1057-1068.
[8]Lao V V,Grady W M.Epigenetics and colorectal cancer[J].Nature Reviews Gastroenterology&Hepatology,2011,8(12):686-700.
[9]Choi Y,Sateia H F,Peairs K S,et al.Screening for colorectal cancer[J].Seminars in Oncology,2017,44(1):34-44.
[10]Sargent D,Sobrero A,Grothey A,et al.Evidence for Cure by Adjuvant Therapy in Colon Cancer:Observations Based on Individual Patient Data From 20,898 Patients on 18 Randomized Trials[J].Journal of Clinical Oncology,2009,27(6):872-877.
[11]Pahlman L A,Hohenberger W M,Matzel K,et al.Should the Benefit of Adjuvant Chemotherapy in Colon Cancer Be Re-Evaluated?[J].Journal of Clinical Oncology,2016:JCO.2015.65.3048.
[12]
C,Engelmann B E,Kaprio T,et al.Risk of recurrence in patients with colon cancer stage II and III:A systematic review and meta-analysis of recent literature[J].Acta Oncologica,2015,54(1):5-16.
[13]Snyder R A,Hu C-Y,Cuddy A,et al.Association Between Intensity of Posttreatment Surveillance Testing and Detection of Recurrence in Patients With Colorectal Cancer[J].Jama,2018,319(20):2104.
[14]Elferink M a G,De Jong K P,Klaase J M,et al.Metachronous metastases from colorectal cancer:a population-based study in North-East Netherlands[J].International Journal of Colorectal Disease,2014,30(2):205-212.
[15]colon_NCCN GUIDELINES FOR TREATMENT OF CANCER BY SITE.2018.
[16]Chao M,Gibbs P.Caution Is Required Before Recommending Routine Carcinoembryonic Antigen and Imaging Follow-Up for Patients With Early-Stage Colon Cancer[J].Journal of Clinical Oncology,2009,27(36):e279-e280.
[17]rectal_NCCN GUIDELINES FOR TREATMENT OF CANCER BY SITE.2018.
[18]Wang J,Chang S,Li G,et al.Application of liquid biopsy in precision medicine:opportunities and challenges[J].Frontiers of Medicine,2017,11(4).
[19]Ellen,Heitzer,Imran,et al.Current and future perspectives of liquid biopsies in genomics-driven oncology.[J].Nature reviews.Genetics,2018.
[20]Normanno N,Cervantes A,Ciardiello F,et al.The liquid biopsy in the management of colorectal cancer patients:Current applications and future scenarios.Cancer Treat Rev.2018;70:1-8.
[21]Wan J C M,Massie C,Garcia-Corbacho J,et al.Liquid biopsies come of age:towards implementation of circulating tumour DNA[J].Nature Reviews Cancer,2017,17(4):223-238.
[22]Cottrell SE,Distler J,Goodman NS,et al.A real-time PCR assay for DNA-methylation using methylation-specific blockers.Nucleic Acids Res.2004;32(1):e10
[23]Epi proColon instructions.pdf.
[24]Church T R,Wandell M,Lofton-Day C,et al.Prospective evaluation of methylatedSEPT9in plasma for detection of asymptomatic colorectal cancer[J].Gut,2014,63(2):317-325.
[25]Sun J,Fei F,Zhang M,et al.The role of mSEPT9 in screening,diagnosis,and recurrence monitoring of colorectal cancer[J].BMC Cancer,2019,19(1).
[26]Lee H S,Hwang S M,Kim T S,et al.Circulating Methylated Septin 9 Nucleic Acid in the Plasma of Patients with Gastrointestinal Cancer in the Stomach and Colon[J].Translational Oncology,2013,6(3):290-IN4.
[27]Guo S,Diep D,Plongthongkum N,et al.Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA[J].Nature Genetics,2017,49(4):635-642.
[28]Guo H,Zhu P,Wu X,et al.Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing[J].Genome Research,2013,23(12):2126-2135.
[29]Liu M C,Oxnard G R,Klein E A,et al.Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA[J].Annals of Oncology,2020.
[30]Imperiale T F,Ransohoff D F,Itzkowitz S H,et al.Multitarget Stool DNA Testing for Colorectal-Cancer Screening[J].New England Journal of Medicine,2014,370(14):1287-1297.
[31]Rasmussen S L,Krarup H B,Sunesen K G,et al.Hypermethylated DNA as a biomarker for colorectal cancer:a systematic review[J].Colorectal Disease,2016,18(6):549-561.
[32]Lofton-Day C,Model F,Devos T,et al.DNA Methylation Biomarkers for Blood-Based Colorectal Cancer Screening[J].Clinical Chemistry,2008,54(2):414-423.
[33]Wasserkort R,Kalmar A,Valcz G,et al.Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single,CpG island.[J].BMC Cancer,2013,13(1):1-11.
Claims (18)
- 诊断受试者中是否存在结直肠癌、判断患有结直肠癌的受试者术后的预后、预测患有结直肠癌的受试者术后复发或评估对患有结直肠癌的受试者的治疗效果的方法,包括检测来自所述受试者的样本中的游离DNA中的甲基化标志物以判断所述DNA的甲基化水平,如果所述甲基化水平高于正常对照样本的DNA甲基化水平,则确定所述受试者中存在结直肠癌、患有结直肠癌的受试者术后的预后不佳、患有结直肠癌的受试者术后容易复发或对所述受试者的治疗效果不佳,所述甲基化标志物是选自表2、表3和表8所列标志物的一种或多种。
- 权利要求1的方法,其中所述甲基化标志物的检测是使用多重定量甲基化特异性PCR进行的,并且所述甲基化标志物是:1)选自MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、MBSR11和MBSR16中的一种或多种;2)选自MBSF9、MBSF8、MBSR13、MBSR16、NDRG4和QKI的一种或多种;3)选自MBSF9、MBSF8、MBSR13、NDRG4、QKI、RD1和RD2的一种或多种;或4)选自MBSF9、MBSF8、MBSR13、QKI、RD1和RD2的一种或多种;任选地,所述多重定量甲基化特异性PCR中包括内参基因ACTB的测定。
- 权利要求2的方法,其中所述多重定量甲基化特异性PCR使用针对权利要求2所述甲基化标志物的引物和探针,以及针对内参基因ACTB的引物和探针,其中所述引物和探针包含如表4所示的序列或与表4所示序列具有至少80%序列同一性的序列。
- 权利要求3的方法,其中当甲基化标志物是选自MBSF9、MBSF8、MBSR13、QKI、RD1和RD2的一种或多种时,多重定量甲基化特异性PCR中不使用RD2_F引物。
- 权利要求1的方法,其中所述甲基化标志物的检测是使用多重定量甲基化特异性PCR进行的,在所述多重定量甲基化特异性PCR中, 将甲基化标志物分为两组或更多组,针对每组标志物以及内参基因的探针各自使用不同的荧光标记。
- 权利要求5的方法,其中将甲基化标志物分为两组,第1组由MBSF9、MBSR16、MBSF8、MBSR13、NDRG4、NPY和QKI组成,并且第2组由MBSF15、MBSR5、MBSR6、MBSR7、MBSR8和MBSR9组成,并且使用内参基因ACTB,其中针对第1组标志物的引物和探针包含如表5所示的序列或与表5所示序列具有至少80%序列同一性的序列,针对第2组标志物的引物和探针包含如表6所示的序列或与表6所示序列具有至少80%序列同一性的序列,并且针对内参基因ACTB的引物和探针包含如表7所示的序列或与表7所示序列具有至少80%的序列同一性。
- 权利要求1的方法,其中所述甲基化标志物的检测是使用核酸飞行质谱法进行的,并且所述甲基化标志物是选自RRB10、RRB13、RRB14、RRB16、RRB17_1、RRB17_2、RRB20、RRB21_4、RRB26_2、RRB2、RRB30、RRB6_1、RRB6_4和RRB6_5的一种或多种,任选地,所述核酸飞行质谱法包括内参基因ACTB的测定。
- 权利要求7的方法,其中所述核酸飞行质谱法使用针对所述甲基化标志物和内参基因的PCR引物和延伸引物并且同时扩增拷贝数已知的甲基化标志物的竞争物序列,根据甲基化标志物与竞争物的比值计算出甲基化标志物的拷贝数,其中针对甲基化标志物和内参基因的PCR引物包含如表9所示的序列或与表9所示序列具有至少80%序列同一性的序列,针对甲基化标志物和内参基因的延伸引物包含如表10所示的序列或与表10所示序列具有至少80%序列同一性的序列,甲基化标志物和内参基因的竞争物包含如表11所示的序列或与表11所示序列具有至少80%序列同一性的序列。
- 权利要求1-8的任一项的方法,其中所述样本选自体液、血液、血清、血浆、尿、唾液、汗液、痰、精液、粘液、泪液、淋巴液、羊水、间质液、肺灌洗液、脑脊液、粪便和组织样本。
- 用于诊断受试者中是否存在结直肠癌、判断患有结直肠癌的受试者术后的预后、预测患有结直肠癌的受试者术后复发或评估对患有结直肠癌的受试者的治疗效果的甲基化标志物,所述标志物选自表2、表3和表 8所列标志物的一种或多种。
- 权利要求10的甲基化标志物,其选自MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、MBSR11、MBSR16、MBSF8、MBSR13、RD1、RD2、NPY、NDRG4、QKI、RRB10、RRB13、RRB14、RRB16、RRB17_1、RRB17_2、RRB20、RRB21_4、RRB26_2、RRB2、RRB30、RRB6_1、RRB6_4和RRB6_5。
- 用于诊断受试者中是否存在结直肠癌、判断患有结直肠癌的受试者术后的预后、预测患有结直肠癌的受试者术后复发或评估对患有结直肠癌的受试者的治疗效果的试剂盒,其中包含用于检测甲基化标志物的试剂,所述甲基化标志物是选自表2、表3和表8所列标志物的一种或多种。
- 权利要求12的试剂盒,其中所述甲基化标志物是选自MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、MBSR11、MBSR16、MBSF8、MBSR13、RD1、RD2、NPY、NDRG4、QKI的一种或多种,并且任选地,所述试剂盒包含用于检测内参基因ACTB的试剂。
- 权利要求13的试剂盒,其中所述检测甲基化标志物和内参基因的试剂包含如表4所示的序列。
- 权利要求12的试剂盒,其中所述甲基化标志物是选自RRB10、RRB13、RRB14、RRB16、RRB17_1、RRB17_2、RRB20、RRB21_4、RRB26_2、RRB2、RRB30、RRB6_1、RRB6_4和RRB6_5的一种或多种,并且任选地,所述试剂盒包含用于检测内参基因ACTB的试剂。
- 权利要求15的试剂盒,其中所述检测甲基化标志物和内参基因的试剂包含如表9、表10和表11所示的序列或与表9、表10和表11所示序列具有至少80%序列同一性的序列。
- 权利要求13或14的试剂盒,其中所述甲基化标志物是:1)选自MBSF9、MBSF10、MBSF15、MBSR5、MBSR6、MBSR7、MBSR8、MBSR9、MBSR11和MBSR16中的一种或多种;2)选自MBSF9、MBSF8、MBSR13、MBSR16、NDRG4和QKI的一种或多种;3)选自MBSF9、MBSF8、MBSR13、NDRG4、QKI、RD1和RD2的一种或多种;或4)选自MBSF9、MBSF8、MBSR13、QKI、RD1和RD2的一种或多种。
- 多核苷酸,其包含与选自SEQ ID NOs:1、2和9-120的核苷酸序列具有至少80%序列同一性的核苷酸序列。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/927,526 US20240271219A1 (en) | 2020-05-25 | 2020-07-14 | Method for detecting colorectal cancer dna methylation and reagent |
CN202080101161.3A CN115516110A (zh) | 2020-05-25 | 2020-07-14 | 结直肠癌dna甲基化的检测方法及试剂 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010453011.0A CN112159844B (zh) | 2020-05-25 | 2020-05-25 | 结直肠癌dna甲基化的检测方法及试剂 |
CN202010453011.0 | 2020-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021237896A1 true WO2021237896A1 (zh) | 2021-12-02 |
Family
ID=73859626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/101835 WO2021237896A1 (zh) | 2020-05-25 | 2020-07-14 | 结直肠癌dna甲基化的检测方法及试剂 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240271219A1 (zh) |
CN (2) | CN112159844B (zh) |
WO (1) | WO2021237896A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114395628A (zh) * | 2022-01-13 | 2022-04-26 | 博尔诚(北京)科技有限公司 | 用于结直肠癌筛查的标志物、探针组合物及其应用 |
CN114507740A (zh) * | 2022-04-19 | 2022-05-17 | 广州滴纳生物科技有限公司 | 用于胃肠癌诊断的生物标志物、核酸产品和试剂盒 |
CN115851959A (zh) * | 2022-12-30 | 2023-03-28 | 武汉艾米森生命科技有限公司 | 一种用于食管鳞状细胞癌及癌前病变的诊断或辅助诊断的试剂及检测试剂盒 |
CN115896281A (zh) * | 2022-05-25 | 2023-04-04 | 广州市基准医疗有限责任公司 | 甲基化生物标记物、试剂盒及用途 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112992354B (zh) * | 2021-03-15 | 2024-01-19 | 南方医科大学 | 一种基于甲基标志物组合评估结直肠癌转移复发风险和动态监测的方法以及系统 |
CN115896027A (zh) * | 2022-04-07 | 2023-04-04 | 广州燃石医学检验所有限公司 | 一种生物组合物、其制备方法及应用 |
WO2024207698A1 (zh) * | 2023-04-06 | 2024-10-10 | 浙江中创生物医药有限公司 | 肿瘤的检测方法及试剂 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105331727A (zh) * | 2015-12-01 | 2016-02-17 | 湖南宏雅基因技术有限公司 | 一种人外周血循环肿瘤DNA中septin 9基因甲基化的检测试剂盒 |
CN105861672A (zh) * | 2016-04-26 | 2016-08-17 | 杭州壹锋生物科技有限公司 | 一种人体外周血游离DNA中septin9基因甲基化检测试剂盒及检测方法 |
CN106987638A (zh) * | 2017-04-27 | 2017-07-28 | 浙江唯实医学检验有限公司 | 用于检测与结直肠癌相关的血浆多基因甲基化程度的引物、探针、试剂盒及检测方法 |
WO2019144277A1 (zh) * | 2018-01-23 | 2019-08-01 | 北京艾克伦医疗科技有限公司 | 鉴定结直肠癌状态的方法和试剂盒 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020534820A (ja) * | 2017-09-15 | 2020-12-03 | クリニカル ジェノミクス ピーティーワイ リミテッド | メチル化分析のための方法 |
CN108103195B (zh) * | 2018-01-22 | 2021-08-03 | 上海酷乐生物科技有限公司 | 一种用于早期结直肠癌的无创多基因甲基化联合检测的引物对和探针、试剂盒及其应用 |
CN108531591B (zh) * | 2018-04-12 | 2019-08-23 | 广州瑞博奥生物科技有限公司 | Septin9及NDRG4基因甲基化的检测试剂盒和应用 |
CN109112216B (zh) * | 2018-07-30 | 2022-04-08 | 深圳市新合生物医疗科技有限公司 | 三重qPCR检测DNA甲基化的试剂盒和方法 |
-
2020
- 2020-05-25 CN CN202010453011.0A patent/CN112159844B/zh active Active
- 2020-07-14 CN CN202080101161.3A patent/CN115516110A/zh active Pending
- 2020-07-14 WO PCT/CN2020/101835 patent/WO2021237896A1/zh active Application Filing
- 2020-07-14 US US17/927,526 patent/US20240271219A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105331727A (zh) * | 2015-12-01 | 2016-02-17 | 湖南宏雅基因技术有限公司 | 一种人外周血循环肿瘤DNA中septin 9基因甲基化的检测试剂盒 |
CN105861672A (zh) * | 2016-04-26 | 2016-08-17 | 杭州壹锋生物科技有限公司 | 一种人体外周血游离DNA中septin9基因甲基化检测试剂盒及检测方法 |
CN106987638A (zh) * | 2017-04-27 | 2017-07-28 | 浙江唯实医学检验有限公司 | 用于检测与结直肠癌相关的血浆多基因甲基化程度的引物、探针、试剂盒及检测方法 |
WO2019144277A1 (zh) * | 2018-01-23 | 2019-08-01 | 北京艾克伦医疗科技有限公司 | 鉴定结直肠癌状态的方法和试剂盒 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114395628A (zh) * | 2022-01-13 | 2022-04-26 | 博尔诚(北京)科技有限公司 | 用于结直肠癌筛查的标志物、探针组合物及其应用 |
CN114395628B (zh) * | 2022-01-13 | 2023-11-21 | 博尔诚(北京)科技有限公司 | 用于结直肠癌筛查的标志物、探针组合物及其应用 |
CN114507740A (zh) * | 2022-04-19 | 2022-05-17 | 广州滴纳生物科技有限公司 | 用于胃肠癌诊断的生物标志物、核酸产品和试剂盒 |
CN114507740B (zh) * | 2022-04-19 | 2022-07-29 | 广州滴纳生物科技有限公司 | 用于胃肠癌诊断的生物标志物、核酸产品和试剂盒 |
CN115896281A (zh) * | 2022-05-25 | 2023-04-04 | 广州市基准医疗有限责任公司 | 甲基化生物标记物、试剂盒及用途 |
CN115896281B (zh) * | 2022-05-25 | 2023-09-29 | 广州市基准医疗有限责任公司 | 甲基化生物标记物、试剂盒及用途 |
CN115851959A (zh) * | 2022-12-30 | 2023-03-28 | 武汉艾米森生命科技有限公司 | 一种用于食管鳞状细胞癌及癌前病变的诊断或辅助诊断的试剂及检测试剂盒 |
CN115851959B (zh) * | 2022-12-30 | 2024-04-12 | 武汉艾米森生命科技有限公司 | 一种用于食管鳞状细胞癌及癌前病变的诊断或辅助诊断的试剂及检测试剂盒 |
Also Published As
Publication number | Publication date |
---|---|
CN112159844A (zh) | 2021-01-01 |
US20240271219A1 (en) | 2024-08-15 |
CN115516110A (zh) | 2022-12-23 |
CN112159844B (zh) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021237896A1 (zh) | 结直肠癌dna甲基化的检测方法及试剂 | |
JP6985753B2 (ja) | 血漿による胎児または腫瘍のメチロームの非侵襲的決定 | |
US11845991B2 (en) | Fecal sample processing and analysis comprising detection of blood | |
US20170121775A1 (en) | Detection and Prognosis of Lung Cancer | |
CN114317738B (zh) | 用于检测胃癌淋巴结节转移相关的甲基化生物标记物或其组合及应用 | |
WO2016115354A1 (en) | Methods for cancer diagnosis and prognosis | |
JP2005204651A (ja) | 乳房細胞増殖障害の患者の治療応答及び/又は生存期間の予測のための予後診断マーカー | |
US8048634B2 (en) | Cancer screening method | |
US20230042332A1 (en) | Disease Detection in Liquid Biopsies | |
US20220307091A1 (en) | Unbiased dna methylation markers define an extensive field defect in histologically normal prostate tissues associated with prostate cancer: new biomarkers for men with prostate cancer | |
WO2010118559A1 (zh) | 一种癌症筛检的方法 | |
WO2020063902A1 (zh) | Hoxa7甲基化检测试剂 | |
US20210404018A1 (en) | Unbiased dna methylation markers define an extensive field defect in histologically normal prostate tissues associated with prostate cancer: new biomarkers for men with prostate cancer | |
WO2024060775A1 (zh) | 新型的肿瘤检测标志物TAGMe及其应用 | |
EP2899272B1 (en) | Method and use for obtaining information about colorectal cancer | |
US9328379B2 (en) | Hypermethylation biomarkers for detection of head and neck squamous cell cancer | |
WO2013070950A1 (en) | Identification of a dna methylation marker for blood-based detection of ovarian cancer | |
WO2020063898A1 (zh) | Hoxa7甲基化检测试剂在制备肺癌诊断试剂中的用途 | |
TWI385252B (zh) | 一種癌症篩檢的方法 | |
JP2024519082A (ja) | 肝細胞がんのdnaメチル化バイオマーカー | |
EP2978861B1 (en) | Unbiased dna methylation markers define an extensive field defect in histologically normal prostate tissues associated with prostate cancer: new biomarkers for men with prostate cancer | |
JP2022536846A (ja) | 胃癌を診断するための高メチル化遺伝子の検出 | |
Shim et al. | Comprehensive profiling of DNA methylation in Korean patients with colorectal cancer | |
WO2024207698A1 (zh) | 肿瘤的检测方法及试剂 | |
CN116622842A (zh) | 一种用于肺腺癌非创早期诊断、药效评估的分子标志物及试剂盒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20937521 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20937521 Country of ref document: EP Kind code of ref document: A1 |