WO2021237767A1 - 孔关闭可控的微孔膜及其制备方法和应用 - Google Patents

孔关闭可控的微孔膜及其制备方法和应用 Download PDF

Info

Publication number
WO2021237767A1
WO2021237767A1 PCT/CN2020/094128 CN2020094128W WO2021237767A1 WO 2021237767 A1 WO2021237767 A1 WO 2021237767A1 CN 2020094128 W CN2020094128 W CN 2020094128W WO 2021237767 A1 WO2021237767 A1 WO 2021237767A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
temperature
microporous membrane
membrane
raw material
Prior art date
Application number
PCT/CN2020/094128
Other languages
English (en)
French (fr)
Inventor
贾培梁
胡敏
赵蒙晰
翁星星
陈朝晖
Original Assignee
江苏厚生新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏厚生新能源科技有限公司 filed Critical 江苏厚生新能源科技有限公司
Priority to KR1020217037936A priority Critical patent/KR102463271B1/ko
Publication of WO2021237767A1 publication Critical patent/WO2021237767A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of microporous membranes, and the specific field is a microporous membrane with controllable pore closure and a preparation method thereof.
  • multi-layer microporous membranes are mostly used in lithium ion batteries, water treatment, serum separation and other application fields. Most of them are made of one material and only have a melting temperature. When the temperature is abnormal, the pores of the microporous membrane Almost all are closed and can no longer be used.
  • the patent CN108711604A consists of a two-layer or three-layer composite film composed of a very fine polyester fiber wet-laid non-woven fabric layer and a low melting point polyester microporous film layer.
  • the self-closing temperature of this kind of diaphragm depends on the low melting point polyester.
  • the melting point is usually 110-130°C
  • the film breaking temperature depends on the melting point of the ultrafine polyester fiber, which is usually 260-265°C
  • the safe temperature window is 130-155°C.
  • Patent CN101000952 discloses a polyolefin microporous membrane for lithium ion batteries and a manufacturing method thereof. It is composed of a layer of polyethylene, a layer of polypropylene and other overlapping multilayer materials, and the application of improved thermally induced phase separation In the overall structure of the polyolefin microporous multilayer diaphragm manufactured by the method, at least one of the adjacent polyethylene and polypropylene layers contains a certain amount of ethylene-propylene copolymer to improve their compatibility.
  • the closed cell temperature is 130-140°C
  • the membrane rupture temperature is above 160°C-170°C
  • the difference between the membrane rupture temperature and the closed cell temperature is more than 30°C, which satisfies the low closed cell temperature of the lithium ion battery separator.
  • the safety requirements of high rupture temperature That is, as the internal temperature of the battery rises, the low-melting polyethylene layer melts to close the micropores and effectively isolates the flow of current, while the high-melting polypropylene layer can still provide the integrity of the separator at higher temperatures. Therefore, a good safety performance is achieved.
  • the diaphragms involved in the above patents only have a certain closed cell temperature. When the temperature reaches the closed cell temperature, the diaphragm cannot be used again, and the entire battery system will be paralyzed and invalidated.
  • the purpose of the present invention is to provide a microporous membrane with controllable pore closure and its preparation method and application.
  • the membrane materials have different melting points, and the pores of the microporous membrane can automatically close part of the micropores at a certain temperature, thereby reducing The rate of material exchange on both sides of the membrane. It can meet the normal use under abnormal temperature, or show different separation effects at different temperatures, which greatly improves the application range and separation effect.
  • a microporous membrane with controllable pore closure which is composed of two or more polyolefin raw materials with different melting points;
  • the polyolefin raw materials include polyethylene or polypropylene;
  • the melting point difference of any two polyolefin raw materials is both Above 3°C; wherein the content of the raw material with the lowest melting point accounts for 15%-75% of the total polyolefin component, and the content of the raw material component with the highest melting point accounts for no less than 10% of the total polyolefin component.
  • the polyolefin raw material also includes one or more of polyamide and polysulfone.
  • the melting points of the polyolefin raw materials are all ⁇ 90°C; the melting point difference of any two polyolefin raw materials is above 5°C.
  • the membrane When in use, when the temperature rises to the melting point of the raw material with the lowest melting point, the membrane will partially close the cell, which reduces the material transmission rate or permeability on both sides of the membrane; when the temperature continues to rise and reaches the melting point of the next raw material, the membrane The closed cell phenomenon of the body increases; and so on until the temperature reaches the melting point of the raw material with the highest melting point, all the micropores of the film body are closed to achieve a complete barrier effect.
  • the preparation method of the microporous membrane with controllable pore closure can be prepared by a dry uniaxial stretching method, or by a dry biaxial stretching method or a wet biaxial stretching method.
  • the preparation process includes the following steps:
  • the mixed components and processing aids of different polyolefins are introduced into the twin-screw extruder for extrusion processing; (2) The extruded melt sheet is cooled and crystallized; (3) The cooled sheet Longitudinal stretching; (4) Transverse stretching of the longitudinally stretched film; (5) Immerse the film in dichloromethane for extraction, so that the processing aids in it are separated from the film body; (6) Extend the extracted film Carry out heat treatment to shape.
  • the processing aid is a paraffin oil with a boiling point above 250°C, or a liquid paraffin oil with a melting point lower than 60°C;
  • the purity of the extractant dichloromethane is above 98%.
  • the crystallinity of the test film is above 60%, and the film must be cleaned in advance with methylene chloride under ultrasonic conditions until the residual oil rate is lower than 1 during the crystallinity test. %.
  • the heat setting process needs to set multiple groups of different temperatures for heat setting, the temperature gradually increases from low to high, and each group of heat setting temperature is at least lower than the lower group of the raw materials. 3°C above the melting point.
  • the use of different heat setting temperatures can perform heat setting of different components in the film under different conditions, which is conducive to the anisotropy of the film in a high temperature environment, so that it is not easy to cause the complete failure of the film.
  • the diaphragm prepared by the present invention has multiple closed cell temperatures, which can close part of the pores when the temperature is abnormal, reducing battery efficiency, thereby reducing the chemical reaction of the battery, and having a cooling effect. When the temperature rises again, it will Close more holes to further reduce the internal reaction of the battery, and so on until the battery completely fails.
  • the biggest advantage of this multiple closed cell temperature is that the battery can automatically eliminate the influence of abnormal temperature rise, and at the same time it can cool down when the closed cell is started, and it retains the function of the battery, which can make the battery continue to run under low efficiency.
  • microporous membrane with controllable pore closure can be used in the fields of lithium ion battery separators, high-temperature water treatment membranes and the like.
  • the microporous membrane of the present invention can control the temperature sensitivity of the micropores of the membrane body by controlling the formula of the raw materials and the temperature distribution of the temperature field during the processing, so that the pore closing activity can be performed at different temperatures. Different temperature responsiveness, thereby changing the material permeability of the membrane.
  • the microporous membrane of the present invention is applied to the lithium ion battery separator, which can gradually slow down the chemical reaction inside the battery under different abnormal temperatures, reduce the chemical energy conversion process of the battery, and can prevent the battery from continuing to grow under abnormal high temperature conditions. Spontaneous combustion and explosion caused by power discharge.
  • Figure 1 shows the normal membrane surface of the diaphragm in Example 1
  • Figure 2 shows the film surface of the diaphragm of Example 1 when heated to 122°C;
  • Figure 3 shows the film surface of the diaphragm of Example 1 when heated to 129°C;
  • Figure 4 shows the film surface of the diaphragm of Example 1 when heated to 134°C
  • Figure 5 shows the membrane surface of the diaphragm prepared in Comparative Example 1 at a temperature of 131°C.
  • the density range of high-density polyethylene in the following examples is 9.3-9.7g/cm 3 , and the crystallinity is above 70%; the density range of low-density polyethylene is 9.1-9.25g/cm 3 , and the crystallinity is 55 -65%.
  • a microporous membrane with controllable pore closure composed of three polyolefin raw materials with different melting points; among them, the main raw material is high-density polyethylene (9.3g/cm 3 , crystallinity 73%), and the mass percentage is 60% , The melting point is 137°C; the second component is low-density polyethylene (9.1g/cm 3 , crystallinity 55%), the mass ratio is 24%, and the melting point is 131°C; the third component is low-density polyethylene, The mass percentage is 16%, and the melting point is 125°C.
  • the mixed components and processing aids of different polyolefins are introduced into the twin-screw extruder for extrusion processing, the extrusion temperature is 206°C, and the screw speed is 60rpm; among them, the processing aid is liquid paraffin oil with a melting point of 51°C. ;
  • melt cooling temperature is 12°C
  • rotation speed of the cooling roll is 3m/min
  • crystallinity of the test film is 78%
  • the film is pre-treated with dichloromethane during the crystallinity test. Clean under ultrasonic conditions until the residual oil rate is less than 1%.
  • the heat setting process needs to set no more than three different temperatures for heat setting.
  • the first heat setting temperature is 113°C
  • the second heat setting temperature is 117°C
  • the third heat setting temperature is 121°C.
  • the temperature gradually increases from low to high. .
  • the first closed cell temperature of the final product film was 122°C
  • the second closed cell temperature was 129°C
  • the third closed cell temperature was 134°C. As shown in Figure 1-4, they are the normal film surface, the film surface when heated to 122°C, the film surface when heated to 129°C, and the film surface when heated to 134°C.
  • a microporous membrane with controllable pore closure composed of three polyolefin raw materials with different melting points; among them, the main raw material is polypropylene, the mass proportion is 50%, and the melting point is 164°C; the second component is high-density polyolefin Ethylene (9.7g/cm 3 , crystallinity 84%), the mass proportion is 35%, the melting point is 135°C; the third component is low-density polyethylene (9.25g/cm 3 , crystallinity 63%), the mass accounts for The ratio is 15% and the melting point is 131°C.
  • the mixed components and processing aids of different polyolefins are introduced into the twin-screw extruder for extrusion processing, the extrusion temperature is 206°C, and the screw speed is 60rpm; among them, the processing aid is liquid paraffin oil with a melting point of 51°C. ;
  • melt cooling temperature is 12°C
  • rotation speed of the cooling roll is 3m/min
  • crystallinity of the test film is 69%
  • the film is pre-treated with dichloromethane during the crystallinity test. Clean under ultrasonic conditions until the residual oil rate is less than 1%.
  • the heat setting process needs to set no more than three different temperatures for heat setting.
  • the first heat setting temperature is 120°C
  • the second heat setting temperature is 123°C
  • the third heat setting temperature is 127°C.
  • the temperature gradually increases from low to high. .
  • the first closed cell temperature of the final product film is 136°C
  • the second closed cell temperature is 139°C
  • the third closed cell temperature is 169°C.
  • a microporous membrane with controllable pore closure composed of three polyolefin raw materials with different melting points; among them, the main raw material is polypropylene, the mass percentage is 30%, and the melting point is 164°C; the second component is high-density polyolefin Ethylene (9.5g/cm 3 , crystallinity 81%), the mass ratio is 53%, the melting point is 137°C; the third component is low-density polyethylene (9.2g/cm 3 , crystallinity 57%), the mass accounts for The ratio is 17%, and the melting point is 131°C.
  • the mixed components and processing aids of different polyolefins are introduced into the twin-screw extruder for extrusion processing; the extrusion temperature is 206°C, the screw speed is 60rpm; among them, the processing aid is liquid paraffin oil with a melting point of 55°C ;
  • melt cooling temperature is 12°C
  • rotation speed of the cooling roll is 3m/min
  • crystallinity of the test film is 69%
  • the film is pre-treated with dichloromethane during the crystallinity test. Clean under ultrasonic conditions until the residual oil rate is less than 1%.
  • the heat setting process needs to set no more than three different temperatures for heat setting.
  • the first heat setting temperature is 121°C
  • the second heat setting temperature is 125°C
  • the third heat setting temperature is 128°C.
  • the temperature gradually increases from low to high. .
  • the first closed cell temperature of the final product film is 125°C
  • the second closed cell temperature is 135°C
  • the third closed cell temperature is 165°C.
  • a microporous membrane with controllable pore closure composed of three polyolefin raw materials with different melting points; among them, the main raw material is polypropylene, the mass percentage is 30%, and the melting point is 164°C; the second component is high-density polyolefin Ethylene (9.5g/cm 3 , crystallinity 81%), the mass ratio is 11%, the melting point is 137°C; the third component is low-density polyethylene (9.2g/cm 3 , crystallinity 57%), the mass accounts for The ratio is 75% and the melting point is 131°C.
  • the first closed cell temperature of the final product film was 121°C
  • the second closed cell temperature was 130°C
  • the third closed cell temperature was 156°C.
  • Embodiment 5 (applied to lithium ion battery separator)
  • Example 1 The separator prepared in Example 1 was used in a lithium-ion battery for battery efficiency test at high temperature, and the test results were as follows:
  • the battery efficiency When the ambient temperature of the battery is 120°C, the battery efficiency will be 100% after 5 minutes; when the ambient temperature is 122°C, the battery efficiency will drop to 73% after 5 minutes; when the ambient temperature rises to 129°C, the battery efficiency will be 5 minutes later Reduce to 33%; when the ambient temperature rises to 134°C, the battery efficiency drops to 2% after 5 minutes.
  • the application of the membrane in the battery greatly broadens the safe use environment of the separator, and can quickly stop working when the temperature is abnormal, and play a protective role.
  • Embodiment 6 (applied to high temperature water treatment)
  • Example 1 The membrane prepared in Example 1 was used to test the efficiency of wastewater treatment at high temperature.
  • the wastewater with a heavy metal compound content of 0.5 mol/L was used at temperatures of 100°C, 122°C, and 134°C, and the pressure was all 10MPa.
  • the interception is 97.5%; at 122°C, the interception is 51.8%; when the temperature is 129°C, the interception is 26.1%; when the temperature rises to 134°C, the interception is 7.4%.
  • the mass percentage is 15%, the polyamide with a melting point of 183°C is the main raw material, the second component is high-density polyethylene (9.4g/cm 3 , the crystallinity 83%), the mass percentage is 53%, and the melting point is 138°C ;
  • the third component is low-density polyethylene (9.22g/cm 3 , crystallinity 60%), the mass ratio is 32%, and the melting point is 133°C.
  • the heat setting temperatures are: the first heat setting temperature is 125°C, the second heat setting temperature is 129°C, and the third heat setting temperature is 130°C.
  • the first closed cell temperature of the final product film was 131°C
  • the second closed cell temperature was 136°C
  • the third closed cell temperature was 176°C.
  • Example 8 Polysulfone is used for polyolefin
  • the raw material components are: the main raw material is polysulfone, the mass ratio is 22%, the melting point is 286°C; the second component is low-density polyethylene (9.25g/cm 3 , the crystallinity is 64% ), the mass proportion is 37%, and the melting point is 134°C; the third component is low-density polyethylene (9.15g/cm 3 , the crystallinity is 58%), the mass proportion is 41%, and the melting point is 127°C.
  • the first heat setting temperature is 113°C
  • the second heat setting temperature is 118°C
  • the third heat setting temperature is 123°C.
  • the first closed cell temperature of the final product film was 122°C
  • the second closed cell temperature was 135°C
  • the third closed cell temperature was 157°C.
  • the mixed components and processing aids of different polyolefins are introduced into the twin-screw extruder for extrusion processing, the melting temperature is 220°C, the extrusion temperature is 210°C, the liquid white oil is used as the porogen, and it is added in two times Polyethylene is melt-mixed and extruded.
  • the melt cooling temperature is 20°C
  • the cooling roll speed is 4m/min
  • the crystallinity of the test film is 65%
  • the film is pre-treated with methylene chloride in ultrasonic waves during the crystallinity test. Clean under the conditions until the residual oil rate is less than 1%.
  • the diaphragm prepared in Comparative Example 1 was used to test the efficiency of wastewater treatment at high temperature.
  • the test conditions were exactly the same as those in Example 6.
  • the wastewater with a heavy metal compound content of 0.5 mol/L was used at temperatures of 100° C., 122° C., Under the conditions of 134°C and 10MPa pressure, the content of heavy metal compounds in the sewage that passed the membrane was tested.
  • the test results are:
  • the interception is 93.8%; at 122°C, the interception is 94.1%; when the temperature is 129°C, the interception is 0.9%; when the temperature rises to 134°C, the interception is 0%.
  • the data of the diaphragm of this comparative example shows that the rejection is basically the same when the temperature does not reach the closed cell temperature.
  • the rejection quickly drops to almost zero.
  • the retention capacity of the diaphragm in Example 6 gradually decreases as the temperature continues to rise.
  • the diaphragm in this example can still maintain a certain level of retention of heavy metal compounds, indicating that it has better performance than Comparative Example 2. High temperature resistance selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种孔关闭可控的微孔膜及其制备方法和应用,该微孔膜由两种或者两种以上不同熔点的聚烯烃原料组成;所述聚烯烃原料包括聚乙烯或聚丙烯;任意两种聚烯烃原料的熔点差值均为3℃以上;其中,熔点最低的原料的含量占总聚烯烃组分的比例为15%-75%,熔点最高的原料组分的含量占总聚烯烃组分的比例不少于10%。

Description

孔关闭可控的微孔膜及其制备方法和应用 技术领域
本发明涉及微孔膜领域,具体领域为一种孔关闭可控的微孔膜及其制备方法。
背景技术
目前,多层微孔膜多应用于锂离子电池、水处理、血清分离等应用领域,其大多数由一种材料制备而成,只有一个熔融闭孔温度,当温度异常时微孔膜的孔几乎全部处于关闭状态,再也无法继续使用。
如专利CN108711604A由极细聚酯纤维湿法非织布层与低熔点聚酯微孔膜层构成的二层或三层复合膜,该种隔膜的自关闭温度取决于所述低熔点聚酯的熔点,通常为110-130℃,破膜温度取决于所述超细聚酯纤维的熔点,通常为260-265℃,安全温度窗为130-155℃。
专利CN101000952公开了一种锂离子电池用聚烯微多孔隔膜及其制造方法,它是由一层聚乙烯层,一层聚丙烯层等相互交叠的多层材料,应用改进后热致相分离法工艺制造成的聚烯微多孔多层隔膜的整体结构,在相邻的聚乙烯和聚丙烯层中至少有一层是含有一定量的乙烯-丙烯共聚物,以改善他们的相容性。其闭孔温度为130-140℃,破膜温度为160℃-170℃以上,破膜温度与闭孔温度的差值达30℃以上,很好地满足了锂离子电池隔膜的闭孔温度低,破膜温度高的安全性要求。也就是其低熔点的聚乙烯层随电池内部温度的升高,熔融使微孔闭合,有效地隔绝电流通过,而高熔点的聚丙烯层在更高的温度下仍能提供隔膜的完整性,因而实现了很好的安全性能。
但以上专利所涉及的隔膜均只有一个确定的闭孔温度,在温度达到其闭孔温度时,隔膜就无法再次使用,整个电池系统将瘫痪失效。
发明内容
本发明的目的在于提供一种孔关闭可控的微孔膜及其制备方法和应用,膜材料具有不同的熔点,微孔膜的孔可在一定温度下使部分微孔自动关闭,从而减小膜两侧的物料交换速率。可以满足异常温度下的正常使用,或者在不同的温度下体现出不同的分离效果,大大提高了应用范围和分离效果。
为实现上述目的,本发明提供如下技术方案:
一种孔关闭可控的微孔膜,由两种或者两种以上不同熔点的聚烯烃原料组成;所述聚烯烃原料包括聚乙烯或聚丙烯;任意两种聚烯烃原料的熔点差值均为3℃以上;其中,熔点最低的原料的含量占总聚烯烃组分的比例为15%-75%,熔点最高的原料组分的含量占总聚烯烃组分的比例不少于10%。
进一步的,所述聚烯烃原料还包括聚酰胺、聚砜中的一种或多种。
进一步的,所述聚烯烃原料的熔点均≥90℃;任意两种聚烯烃原料的熔点差值均为5℃以上。
使用时,当温度上升到熔点最低的原料的熔点时,膜体会出现部分闭孔现象,降低膜两侧的物料传输速率或通透性;当温度继续上升达到下一种原料的熔点时,膜体的闭孔现象增加;以此类推直到温度达到熔点最高的原料的熔点后,膜体所有的微孔全部关闭,达到完全阻隔的效果。
该孔关闭可控的微孔膜的制备方法,可采用干法单轴拉伸法制备,或者通过干法双向拉伸法或湿法双向拉伸法制备。
以采用湿法双向拉伸法为例,制备过程包括以下步骤:
(1)将不同聚烯烃的混合组分与加工助剂导入双螺杆挤出机进行挤出加工;(2)将挤出后的溶体片材进行冷却结晶;(3)对冷却后的片材进行纵向拉伸;(4)对纵向拉伸后的膜进行横向拉伸;(5)将膜浸入二氯甲烷中萃取,使其中的加工助剂脱离膜体;(6)将萃取后的膜进行热处理定型。
其中,所述步骤(1)中,加工助剂选择沸点在250℃以上的石蜡油,或者熔点低于60℃的液体石蜡油;
所述步骤(5)中,萃取剂二氯甲烷的纯度在98%以上。
其中,所述步骤(2)中,冷却结晶过程中,测试膜的结晶度在60%以上,结晶度测试时需预先将膜采用二氯甲烷在超声波的条件下清洗至残油率低于1%。
其中,所述步骤(6)中,热定型过程需设置多组不同的温度进行热定型,温度由低 到高逐渐递增,且每组热定型温度至少低于原料各组份中较低的组分熔点的3℃以上。采用不同的热定型温度能够对膜中不同组分进行不同条件的热定型,有利于膜在高温环境下的各向异性,从而不容易导致膜的完全失效。
本发明所制备的隔膜则有多个闭孔温度,可以在温度异常时部分孔关闭,降低电池效率,从而减电池的化学反应,可以起到降温的作用,当温度再次升高时,将会关闭更多的孔,进一步降低电池内部反应,以此类推直至电池完全失效。这种多个闭孔温度的最大优势是电池可以自动排除异常升温带来的影响,同时启动闭孔时又可以降温,而且保留了电池的功能,可以使电池在低效的情况下继续运行。
该孔关闭可控的微孔膜可用于锂离子电池隔膜、高温水处理膜等领域。
与现有技术相比,本发明的有益效果是:
本发明的微孔膜可以通过控制原料的配方和加工过程中温度场的温度分布来控制膜体微孔的温度敏感性,从而使其在不同的温度下进行孔关闭活动,对于不同温度下具有不同的温度响应性,从而改变膜的物料透过性。
本发明的微孔膜应用在锂离子电池隔膜方面,可以在不同的异常温度下使电池内部的化学反应逐渐变慢,降低电池的化学能转化过程,从而能够防止高温异常情况下电池的持续大功率放电导致的自燃和爆炸。
附图说明
图1为实施例1隔膜的正常膜面情况;
图2为实施例1的隔膜加热至122℃时膜面情况;
图3为实施例1的隔膜加热至129℃时膜面情况;
图4为实施例1的隔膜加热至134℃时膜面情况;
图5为对比例1所制备隔膜在温度为131℃时膜面情况。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通 技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
其中,以下实施例中所出现的高密度聚乙烯的密度范围为9.3-9.7g/cm 3,结晶度在70%以上;低密度聚乙烯密度范围9.1-9.25g/cm 3,结晶度在55-65%。
实施例1
一种孔关闭可控的微孔膜,由三种不同熔点的聚烯烃原料组成;其中,主体原料为高密度聚乙烯(9.3g/cm 3,结晶度73%),质量占比为60%,熔点为137℃;第二组分为低密度聚乙烯(9.1g/cm 3,结晶度55%),质量占比为24%,熔点为131℃;第三组分为低密度聚乙烯,质量占比为16%,熔点为125℃。
采用湿法双向拉伸法生产,具体制备过程为:
(1)将不同聚烯烃的混合组分与加工助剂导入双螺杆挤出机进行挤出加工,挤出温度206℃,螺杆转速60rpm;其中,加工助剂选择熔点为51℃的液体石蜡油;
(2)将挤出后的溶体片材进行冷却结晶;熔体冷却温度12℃,冷却辊转速3m/min,测试膜的结晶度为78%,结晶度测试时预先将膜采用二氯甲烷在超声波的条件下清洗至残油率低于1%。
(3)对冷却后的片材进行纵向拉伸,纵向拉伸倍率8.4倍,拉伸温度110℃;
(4)对纵向拉伸后的膜进行横向拉伸,横向拉伸倍率6.9倍,拉伸温度113℃;
(5)将膜浸入二氯甲烷中萃取,使其中的加工助剂脱离膜体,萃取温度为20℃,萃取速度35m/min;萃取剂二氯甲烷的纯度在98%以上。
(6)将萃取后的膜进行热处理定型。热定型过程需设置不超过三种不同的温度进行热定型,第一热定型温度为113℃,第二热定型温度为117℃,第三热定型温度为121℃,温度由低到高逐渐递增。
最终制得的成品膜的第一闭孔温度为122℃,第二闭孔温度为129℃,第三闭孔温度为134℃。如图1-4所示,分别为正常膜面、加热至122℃时膜面、加热至129℃时膜面,、加热至134℃时膜面情况。
实施例2
一种孔关闭可控的微孔膜,由三种不同熔点的聚烯烃原料组成;其中,主体原料为聚丙烯,质量占比为50%,熔点为164℃;第二组分为高密度聚乙烯(9.7g/cm 3,结晶度84%),质量占比为35%,熔点为135℃;第三组分为低密度聚乙烯(9.25g/cm 3,结晶度63%),质量占比为15%,熔点为131℃。
采用湿法双向拉伸法生产,具体制备过程为:
(1)将不同聚烯烃的混合组分与加工助剂导入双螺杆挤出机进行挤出加工,挤出温度206℃,螺杆转速60rpm;其中,加工助剂选择熔点为51℃的液体石蜡油;
(2)将挤出后的溶体片材进行冷却结晶;熔体冷却温度12℃,冷却辊转速3m/min,测试膜的结晶度为69%,结晶度测试时预先将膜采用二氯甲烷在超声波的条件下清洗至残油率低于1%。
(3)对冷却后的片材进行纵向拉伸,纵向拉伸倍率8.4倍,拉伸温度110℃;
(4)对纵向拉伸后的膜进行横向拉伸,横向拉伸倍率6.9倍,拉伸温度113℃;
(5)将膜浸入二氯甲烷中萃取,使其中的加工助剂脱离膜体;萃取温度为20℃,萃取速度35m/min;萃取剂二氯甲烷的纯度在98%以上。
(6)将萃取后的膜进行热处理定型。热定型过程需设置不超过三种不同的温度进行热定型,第一热定型温度为120℃,第二热定型温度为123℃,第三热定型温度为127℃,温度由低到高逐渐递增。
最终制得的成品膜的第一闭孔温度为136℃,第二闭孔温度为139℃,第三闭孔温度为169℃。
实施例3
一种孔关闭可控的微孔膜,由三种不同熔点的聚烯烃原料组成;其中,主体原料为聚丙烯,质量占比为30%,熔点为164℃;第二组分为高密度聚乙烯(9.5g/cm 3,结晶度81%), 质量占比为53%,熔点为137℃;第三组分为低密度聚乙烯(9.2g/cm 3,结晶度57%),质量占比为17%,熔点为131℃。
采用湿法双向拉伸法生产,具体制备过程为:
(1)将不同聚烯烃的混合组分与加工助剂导入双螺杆挤出机进行挤出加工;挤出温度206℃,螺杆转速60rpm;其中,加工助剂选择熔点为55℃的液体石蜡油;
(2)将挤出后的溶体片材进行冷却结晶;熔体冷却温度12℃,冷却辊转速3m/min,测试膜的结晶度为69%,结晶度测试时预先将膜采用二氯甲烷在超声波的条件下清洗至残油率低于1%。
(3)对冷却后的片材进行纵向拉伸,纵向拉伸倍率8.4倍,拉伸温度110℃;
(4)对纵向拉伸后的膜进行横向拉伸;横向拉伸倍率6.9倍,拉伸温度113℃;
(5)将膜浸入二氯甲烷中萃取,使其中的加工助剂脱离膜体;萃取温度为20℃,萃取速度35m/min;萃取剂二氯甲烷的纯度在98%以上。
(6)将萃取后的膜进行热处理定型。热定型过程需设置不超过三种不同的温度进行热定型,第一热定型温度为121℃,第二热定型温度为125℃,第三热定型温度为128℃,温度由低到高逐渐递增。
最终制得的成品膜的第一闭孔温度为125℃,第二闭孔温度为135℃,第三闭孔温度为165℃。
实施例4
与实施例3相比,仅仅其中不同熔点组份的比例不同,制备工艺相同,具体是:
一种孔关闭可控的微孔膜,由三种不同熔点的聚烯烃原料组成;其中,主体原料为聚丙烯,质量占比为30%,熔点为164℃;第二组分为高密度聚乙烯(9.5g/cm 3,结晶度81%),质量占比为11%,熔点为137℃;第三组分为低密度聚乙烯(9.2g/cm 3,结晶度57%),质量占比为75%,熔点为131℃。
最终制得的成品膜的第一闭孔温度为121℃,第二闭孔温度为130℃,第三闭孔温度 为156℃。
实施例5(应用于锂离子电池隔膜)
将实施例1所制备的隔膜用于锂离子电池中进行高温下电池效率测试,测试结果为:
在电池的使用环境温度为120℃时,5分钟后电池效率为100%;环境温度为122℃时,5分钟后电池效率降低至73%;环境温度上升至129℃时,5分钟后电池效率降低至33%;环境温度上升至134℃时,5分钟后电池效率降低至2%。
该膜在电池中的应用极大的拓宽了隔膜的安全使用环境,并且当温度异常时能够迅速停止工作,起到保护作用。
实施例6(应用于高温水处理)
将实施例1所制备的隔膜用于高温下废水处理效率测试,采用重金属化合物含量为0.5mol/L的废水分别在温度为100℃、122℃、134℃,压力均为10MPa条件下,测试通过膜体污水的重金属化合物含量,测试结果为:
100℃时,截留量为97.5%;122℃时,截留量为51.8%;温度为129℃时,截留量为26.1%;温度上升至134℃时,截留量为7.4%。
该数据表明,即使在高温的环境下,该实施例的隔膜依然可以保持一定的重金属化合物截留能力,说明其具有优秀的耐高温性。
实施例7(聚烯烃采用聚酰胺)
与实施例3相比,仅仅其中原料组成不同,具体为:
质量占比15%,熔点为183℃的聚酰胺为主体原料,第二组分为高密度聚乙烯(9.4g/cm 3,结晶度83%),质量占比为53%,熔点为138℃;第三组分为低密度聚乙烯(9.22g/cm 3,结晶度60%),质量占比为32%,熔点为133℃。
热定型温度分别为:第一热定型温度为125℃,第二热定型温度为129℃,第三热定 型温度为130℃,
最终制得的成品膜的第一闭孔温度为131℃,第二闭孔温度为136℃,第三闭孔温度为176℃。
实施例8(聚烯烃采用聚砜)
与实施例1相比,原料组分为:主体原料为聚砜,质量占比为22%,熔点为286℃;第二组分为低密度聚乙烯(9.25g/cm 3,结晶度64%),质量占比为37%,熔点为134℃;第三组分为低密度聚乙烯(9.15g/cm 3,结晶度58%),质量占比为41%,熔点为127℃。
第一热定型温度为113℃,第二热定型温度为118℃,第三热定型温度为123℃。
最终制得的成品膜的第一闭孔温度为122℃,第二闭孔温度为135℃,第三闭孔温度为157℃。
为突出本发明的有益效果,还进行了以下对比例。
对比例1
一种可闭孔的微孔膜,由聚乙烯等聚烯烃原料制备;其中所采用的原材料为超高分子量聚乙烯,分子量200000,密度9.18g/cm 3,结晶度62%,熔点为141℃;
采用湿法双向拉伸法生产,具体制备过程为:
1)将不同聚烯烃的混合组分与加工助剂导入双螺杆挤出机进行挤出加工,熔融温度220℃,挤出温度210℃,采用液体白油作为致孔剂,并分两次加入聚乙烯中熔融混合挤出。
2)将挤出后的溶体片材进行冷却;熔体冷却温度20℃,冷却辊转速4m/min,测试膜的结晶度为65%,结晶度测试时预先将膜采用二氯甲烷在超声波的条件下清洗至残油率低于1%。
3)对冷却后的片材进行纵向拉伸,纵向拉伸倍率8倍,拉伸温度100℃;
4)对纵向拉伸后的膜进行横向拉伸,横向拉伸倍率7.2倍,拉伸温度123℃;
5)将膜浸入二氯甲烷中萃取,使其中的加工助剂脱离膜体;萃取温度为20℃。
6)将萃取后的膜进行热处理定型。热定型温度为50℃,最终制得的成品膜在外界温度达到131℃时,膜面全部闭孔如图5所示。
与之相比,实施例1的图1-4,在不同的温度下,膜面的闭孔情况也不一样,随着温度的升高膜面逐渐闭孔,当温度达到最高的闭孔温度时,膜面基本全部闭孔。
对比例2
将对比例1所制备的隔膜用于高温下废水处理效率测试,测试条件与实施例6的测试条件完全相同,采用重金属化合物含量为0.5mol/L的废水分别在温度为100℃、122℃、134℃,压力均为10MPa条件下,测试通过膜体污水的重金属化合物含量,测试结果为:
100℃时,截留量为93.8%;122℃时,截留量为94.1%;温度为129℃时,截留量为0.9%;温度上升至134℃时,截留量为0%。
与实施例6的数据对比,该对比例的隔膜数据表明,在温度未达到其闭孔温度时其截留量基本保持一致,当温度达到闭孔温度时,其截留率迅速下降至几乎为0,而实施例6中的隔膜在温度不断升高下截留量逐步下降,及时在高温的环境下,该实施例的隔膜依然可以保持一定的重金属化合物截留能力,说明其具有比对比例2更优秀的耐高温选择性。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种孔关闭可控的微孔膜,其特征在于:由两种或者两种以上不同熔点的聚烯烃原料组成;所述聚烯烃原料包括聚乙烯或聚丙烯;任意两种聚烯烃原料的熔点差值均为3℃以上;其中,熔点最低的原料的含量占总聚烯烃组分的比例为15%-75%,熔点最高的原料组分的含量占总聚烯烃组分的比例不少于10%。
  2. 根据权利要求1所述的孔关闭可控的微孔膜,其特征在于:所述聚烯烃原料还包括聚酰胺、聚砜中的一种或多种。
  3. 根据权利要求1或2所述的孔关闭可控的微孔膜,其特征在于:所述聚烯烃原料的熔点均≥90℃;任意两种聚烯烃原料的熔点差值均为5℃以上。
  4. 根据权利要求3所述的孔关闭可控的微孔膜,其特征在于:使用时,当温度上升到熔点最低的原料的熔点时,膜体会出现部分闭孔现象;
    当温度继续上升达到下一种原料的熔点时,膜体的闭孔现象增加;
    以此类推直到温度达到熔点最高的原料的熔点后,膜体所有的微孔全部关闭。
  5. 权利要求1-4任一所述的孔关闭可控的微孔膜的制备方法,其特征在于:采用干法单轴拉伸法制备,或者通过干法双向拉伸法或湿法双向拉伸法制备。
  6. 根据权利要求5所述的孔关闭可控的微孔膜的制备方法,其特征在于:采用湿法双向拉伸法,包括以下步骤:
    (1)将不同聚烯烃的混合组分与加工助剂导入双螺杆挤出机进行挤出加工;(2)将挤出后的溶体片材进行冷却结晶;(3)对冷却后的片材进行纵向拉伸;(4)对纵向拉伸后的膜进行横向拉伸;(5)将膜浸入二氯甲烷中萃取,使其中的加工助剂脱离膜体;(6)将萃取后的膜进行热处理定型。
  7. 根据权利要求6所述的孔关闭可控的微孔膜的制备方法,其特征在于:所述步骤(1)中,加工助剂选择沸点在250℃以上的石蜡油,或者熔点低于60℃的液体石蜡油;
    所述步骤(5)中,萃取剂二氯甲烷的纯度在98%以上。
  8. 根据权利要求6所述的孔关闭可控的微孔膜的制备方法,其特征在于:所述步骤(2)中,冷却结晶过程中,测试膜的结晶度在60%以上,结晶度测试时需预先将膜采用 二氯甲烷在超声波的条件下清洗至残油率低于1%。
  9. 根据权利要求6所述的孔关闭可控的微孔膜的制备方法,其特征在于:所述步骤(6)中,热定型过程需设置多组不同的温度进行热定型,温度由低到高逐渐递增,且每组热定型温度均比熔点最低的原料熔点温度至少低3℃。
  10. 权利要求1-4任一所述的孔关闭可控的微孔膜在锂离子电池隔膜、高温水处理膜中的应用。
PCT/CN2020/094128 2020-05-29 2020-06-03 孔关闭可控的微孔膜及其制备方法和应用 WO2021237767A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217037936A KR102463271B1 (ko) 2020-05-29 2020-06-03 공극 폐쇄 제어가 가능한 미세 공극 막 및 그 제조방법과 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010478910.6A CN111599967B (zh) 2020-05-29 2020-05-29 孔关闭可控的微孔膜及其制备方法和应用
CN202010478910.6 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021237767A1 true WO2021237767A1 (zh) 2021-12-02

Family

ID=72184307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094128 WO2021237767A1 (zh) 2020-05-29 2020-06-03 孔关闭可控的微孔膜及其制备方法和应用

Country Status (3)

Country Link
KR (1) KR102463271B1 (zh)
CN (1) CN111599967B (zh)
WO (1) WO2021237767A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418103A (zh) * 2022-08-19 2022-12-02 深圳市赛尔美电子科技有限公司 树脂材料及其制备方法、电子雾化装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995467B2 (ja) * 2001-12-20 2007-10-24 旭化成ケミカルズ株式会社 ポリオレフィン製微多孔膜
CN101997102A (zh) * 2009-08-26 2011-03-30 比亚迪股份有限公司 一种锂离子电池隔膜及其制作方法
CN103618055A (zh) * 2013-11-12 2014-03-05 厦门聚微材料科技有限公司 一种聚烯烃锂离子电池隔膜制备方法
CN105140452A (zh) * 2015-08-12 2015-12-09 深圳市星源材质科技股份有限公司 一种具有低热收缩率的聚烯烃复合微孔膜及制备方法
CN105355811A (zh) * 2015-10-29 2016-02-24 乐凯胶片股份有限公司 一种聚烯烃微孔膜、制备方法及锂离子电池
CN108269956A (zh) * 2016-12-30 2018-07-10 比亚迪股份有限公司 一种聚合物复合膜及其制备方法和锂离子电池
CN110690389A (zh) * 2019-09-20 2020-01-14 上海恩捷新材料科技有限公司 一种增强锂电池隔膜及其制造方法
CN110931692A (zh) * 2019-12-08 2020-03-27 重庆云天化纽米科技股份有限公司 聚烯烃隔膜及其制备方法和应用
CN111138741A (zh) * 2019-12-23 2020-05-12 重庆云天化纽米科技股份有限公司 高性能聚烯烃隔膜及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371398B1 (ko) * 1998-12-08 2003-05-12 주식회사 엘지화학 폴리올레핀블렌드로제조된통기성필름과그의제조방법및2차전지의격리막
US7981536B2 (en) * 2006-08-31 2011-07-19 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane, battery separator and battery
US20090226813A1 (en) * 2008-03-07 2009-09-10 Kotaro Takita Microporous Membrane, Battery Separator and Battery
KR101404451B1 (ko) * 2008-06-03 2014-06-10 에스케이이노베이션 주식회사 다층 폴리올레핀계 미세다공막 및 그 제조방법
JP4575521B2 (ja) * 2008-08-19 2010-11-04 帝人株式会社 非水系二次電池用セパレータ
CN101961648B (zh) * 2010-11-05 2012-08-08 天津森诺过滤技术有限公司 有效去除饮用水中重金属离子的膜吸附剂及其制备方法
CN102031913A (zh) * 2010-12-25 2011-04-27 欧创塑料建材(浙江)有限公司 聚氨酯复合材料节能窗框或窗扇框型材及成型方法
CN201990781U (zh) * 2011-03-14 2011-09-28 福建省长乐市立峰纺织有限公司 紧张热定型机
CN106978637A (zh) * 2016-01-18 2017-07-25 上海金由氟材料股份有限公司 制造超高分子量聚乙烯纤维的方法
KR101964056B1 (ko) * 2016-09-22 2019-04-03 더블유스코프코리아 주식회사 리튬이차전지용 폴리올레핀 분리막 다층 필름 및 이의 제조방법
KR102064867B1 (ko) * 2017-11-23 2020-01-10 더블유스코프코리아 주식회사 다공성 분리막 및 그 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995467B2 (ja) * 2001-12-20 2007-10-24 旭化成ケミカルズ株式会社 ポリオレフィン製微多孔膜
CN101997102A (zh) * 2009-08-26 2011-03-30 比亚迪股份有限公司 一种锂离子电池隔膜及其制作方法
CN103618055A (zh) * 2013-11-12 2014-03-05 厦门聚微材料科技有限公司 一种聚烯烃锂离子电池隔膜制备方法
CN105140452A (zh) * 2015-08-12 2015-12-09 深圳市星源材质科技股份有限公司 一种具有低热收缩率的聚烯烃复合微孔膜及制备方法
CN105355811A (zh) * 2015-10-29 2016-02-24 乐凯胶片股份有限公司 一种聚烯烃微孔膜、制备方法及锂离子电池
CN108269956A (zh) * 2016-12-30 2018-07-10 比亚迪股份有限公司 一种聚合物复合膜及其制备方法和锂离子电池
CN110690389A (zh) * 2019-09-20 2020-01-14 上海恩捷新材料科技有限公司 一种增强锂电池隔膜及其制造方法
CN110931692A (zh) * 2019-12-08 2020-03-27 重庆云天化纽米科技股份有限公司 聚烯烃隔膜及其制备方法和应用
CN111138741A (zh) * 2019-12-23 2020-05-12 重庆云天化纽米科技股份有限公司 高性能聚烯烃隔膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418103A (zh) * 2022-08-19 2022-12-02 深圳市赛尔美电子科技有限公司 树脂材料及其制备方法、电子雾化装置
CN115418103B (zh) * 2022-08-19 2024-01-26 深圳市赛尔美电子科技有限公司 树脂材料及其制备方法、电子雾化装置

Also Published As

Publication number Publication date
KR20210154844A (ko) 2021-12-21
KR102463271B1 (ko) 2022-11-04
CN111599967A (zh) 2020-08-28
CN111599967B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
JP5298247B2 (ja) 積層多孔フィルム、電池用セパレータおよび電池
JP5507766B2 (ja) 積層多孔フィルムの製造方法
JP5676577B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
US9818999B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5498503B2 (ja) 遮断機能を有する電池のための単層微孔質の膜
CA2746526C (en) Multilayer microporous foil for batteries with shut-off function
JP5092072B2 (ja) ポリオレフィン樹脂多孔性フィルム、およびそれを用いた非水電解質電池用セパレータ
JP6093636B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5699212B2 (ja) 多孔性フィルム、電池用セパレータ、および電池
CN102248713A (zh) 一种聚烯微多孔多层隔膜及其制造方法
JP6936398B2 (ja) 蓄電デバイス用セパレータ
WO2021237767A1 (zh) 孔关闭可控的微孔膜及其制备方法和应用
KR20150066532A (ko) 균질한 다공성과 천공에 대해 더 큰 저항성을 가지는 미세다공성 분리막 필름
EP3676893A2 (en) Separator for electric storage device
KR20240026878A (ko) 폴리올레핀 미다공막 및 전지용 세퍼레이터
JP2016102135A (ja) 多孔体及びその製造方法
KR102148075B1 (ko) 고온 셧다운 기능을 가지며 횡 방향 물성이 우수한 미세 다공성 다층 필름의 제조 방법
JP2014124780A (ja) 積層多孔性フィルム、電池用セパレータ、および電池
TWI807690B (zh) 用於電儲存裝置之分隔件及電儲存裝置
WO2022059744A1 (ja) 蓄電デバイス用セパレータ及び蓄電デバイス
CN109421297B (zh) 微细多孔性多层膜的制造方法以及使用该方法制造的膜
KR102074053B1 (ko) 고온 수축 특성이 우수한 미세 다공성 필름의 제조방법
CN111916636A (zh) 具有多个可控闭孔温度的微孔膜及其制备方法、应用
JP2022051520A (ja) 蓄電デバイス用セパレータ及び蓄電デバイス
CN117242635A (zh) 用于蓄电装置的隔板和蓄电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20217037936

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937630

Country of ref document: EP

Kind code of ref document: A1