WO2021232659A1 - 自动消像散电子枪及电子枪自动消像散方法 - Google Patents

自动消像散电子枪及电子枪自动消像散方法 Download PDF

Info

Publication number
WO2021232659A1
WO2021232659A1 PCT/CN2020/120391 CN2020120391W WO2021232659A1 WO 2021232659 A1 WO2021232659 A1 WO 2021232659A1 CN 2020120391 W CN2020120391 W CN 2020120391W WO 2021232659 A1 WO2021232659 A1 WO 2021232659A1
Authority
WO
WIPO (PCT)
Prior art keywords
zmin
astigmatism
winding
electron beam
value
Prior art date
Application number
PCT/CN2020/120391
Other languages
English (en)
French (fr)
Inventor
黄小东
韦寿祺
费翔
张彤
苏乃波
王斌
董阳
郭文明
梁祖明
黄国华
唐强
Original Assignee
桂林狮达技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林狮达技术股份有限公司 filed Critical 桂林狮达技术股份有限公司
Priority to RU2021122895A priority Critical patent/RU2769346C1/ru
Priority to EP20916250.2A priority patent/EP3951828B1/en
Publication of WO2021232659A1 publication Critical patent/WO2021232659A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/485Construction of the gun or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/56Arrangements for controlling cross-section of ray or beam; Arrangements for correcting aberration of beam, e.g. due to lenses
    • H01J29/566Arrangements for controlling cross-section of ray or beam; Arrangements for correcting aberration of beam, e.g. due to lenses for correcting aberration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1532Astigmatism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam

Definitions

  • the invention relates to the technical field of electron beam processing equipment, in particular to an automatic astigmatism dissipating electron gun and a method for automatically dissipating the astigmatism of the electron gun.
  • the electron gun of the electron beam processing equipment due to machining errors caused the electron beam and the lens to be out of axis, the pole piece material is not uniform, the edge effect of the electrode or the magnetic pole, and the pollution charge, etc., resulting in the inconsistent focus of the electron beam in all directions on the working plane. , If a circular electron beam spot is not formed, astigmatism occurs.
  • the astigmatism elimination device is used to correct the shape of the electron beam spot. At present, the correction is performed with a tiny electron beam, and the best state of the correction is judged by human experience through optical observation.
  • the power of electron guns in electron beam processing equipment such as electron beam welders, electron beam punchers, and electron beam additive manufacturing equipment is relatively large.
  • the beam spot shape is not scaled in proportion to the size of the electron beam, and the effect of eliminating astigmatism based on conventional empirical methods is quite random and difficult to achieve the best state.
  • the actual electron beam value in the processing process can be used as the electron beam value in the electron beam spot shape correction process, and the electron beam spot can be automatically searched according to the detected electron beam spot shape information
  • the excitation current of the winding of the astigmatism elimination device corresponding to the best morphology.
  • the electron beam spot shape detection element must be non-contact with the electron beam to be reused. Production requirements for electron beam processing equipment.
  • the present invention aims to solve the problem that the effect of the existing astigmatism elimination device is relatively random, and it is difficult to achieve the best state, and provides an automatic astigmatism elimination electron gun and an automatic astigmatism elimination method for the electron gun.
  • the automatic astigmatism dissipating electron gun includes a central controller, electron source power supply, driving power and the electron gun body; the electron beam generator, astigmatism dissipating device and focusing device are arranged in the electron gun body from top to bottom; the astigmatism dissipating device includes two phases Anti-astigmatism winding, the two-phase anti-astigmatism windings form multiple pairs of magnetic poles axisymmetric structure; the electron beam control voltage signal output end of the central controller is connected to the control input end of the electron source power supply, and the output end of the electron source power supply is connected to the electron beam generator The first output end of the central controller's astigmatism control voltage signal is connected to the first control input end of the driving power supply, and the first output end of the drive power supply is connected to the first elimination of astigmatism winding of the central controller; The second output end of the astigmatism control voltage signal is connected to the second control input end of the drive power supply, and the second output end of the drive power supply is
  • the head end of the detection winding is connected; the second detection winding and the fourth detection winding are arranged radially opposite to each other on the skeleton, and the end of the second detection winding is connected to the head end of the fourth detection winding; the first detection winding of the detection device
  • the terminal is connected to the head end of the second detection winding and then connected to the common input terminal of the signal processing circuit, the end of the third detection winding of the detection device is connected to the second input terminal of the signal processing circuit, and the end of the fourth detection winding of the detection device Connected to the first input end of the signal processing circuit; the output end of the signal processing circuit is connected to the input end of the central controller.
  • the above-mentioned signal processing circuit is composed of operational amplifiers A1-A2, resistors R1-R8 and capacitor C; one end of resistor R1 forms the first input terminal of the signal processing circuit, one end of resistor R2 forms the second input terminal of the signal processing circuit, and resistor R3 One end of the resistor R1 is connected to the signal common point to form the common input end of the signal processing circuit; the other end of the resistor R1 is connected to the inverting input end of the operational amplifier A1; the other end of the resistor R2 and the resistor R3 are connected to the non-inverting input end of the operational amplifier A1 at the same time ; One end of the resistor R4 is connected to the reverse input end of the operational amplifier A1, the other end of the resistor R4 is connected to the output end of the operational amplifier A1; the output end of the operational amplifier A1 is connected to one end of the resistor R5, and the other end of the resistor R5 is also connected to the capacitor C And one end of resistor R6; the
  • the resistances of the resistors R1 and R2 are the same, the resistances of the resistors R3 and R4 are the same, and the resistances of the resistors R5 and R6 are the same.
  • the skeleton of the above-mentioned detection device is made of non-magnetically conductive and insulating material.
  • the method for automatically eliminating astigmatism of an electron gun realized by the above-mentioned automatic astigmatizing electron gun includes the following steps:
  • Step 1 Initialization: Set the initial value of the optimal data D Rmin of the excitation current control of the first anti-astigmatism winding , set the initial value of the optimal data D Tmin of the excitation current control of the second anti-astigmatism winding, and set the adjustment deviation ⁇ D
  • the initial value of RT set the reduction coefficient ⁇ of the adjustment deviation ⁇ D RT , where 0 ⁇ 1; set the pulse electron beam control voltage signal U BS and the duration ⁇ ; set the sampling period ⁇ ; set the iteration threshold ⁇ , Wherein ⁇ is an integer ⁇ 1;
  • Step 2 The experiment seeks the comprehensive data of the original electron beam spot shape under the condition of no excitation current of the astigmatism elimination device; namely:
  • the central controller sets the excitation current control data of the first anti-astigmatism winding D R and the excitation current control data D T of the second anti-astigmatism winding to 0, so that the excitation current of the anti-astigmatism device Is 0; the central controller outputs the pulse electron beam control voltage signal U BS , within the duration ⁇ of the pulse electron beam control voltage signal U BS , the output voltage signal U A of the signal processing circuit is sampled with the sampling period ⁇ , and obtain The maximum absolute value D Amax and the average absolute value of the sampled data of the output voltage signal U A Then based on the maximum absolute value D Amax and the absolute value average Calculate the comprehensive data D Z of the current electron beam spot shape and record it as D Zmin (0).
  • Step 3 Experiment to find the optimal data D Rmin of the excitation current control of the first anti-astigmatism winding; namely:
  • Step 3.1 The central controller sets the excitation current control data of the first anti-astigmatism winding D R to D Rmin + ⁇ D RT , sets the excitation current control data of the second anti-astigmatism winding D T to D Tmin , and changes the anti-image
  • the excitation current of the dispersing device the central controller outputs the pulse electron beam control voltage signal U BS , and within the duration ⁇ of the pulse electron beam control voltage signal U BS , the output voltage signal U A of the signal processing circuit is sampled with the sampling period ⁇ , And obtain the maximum absolute value D Amax and the absolute average value of the sampled data of the output voltage signal U A Then based on the maximum absolute value D Amax and the absolute value average Calculate the comprehensive data D Z of the current electron beam spot shape and record it as D Zmin (1);
  • Step 3.2 The central controller sets the excitation current control data of the first anti-astigmatic winding D R to D Rmin - ⁇ D RT , sets the excitation current control data of the second anti-astigmatic winding D T to D Tmin , and changes the anti-image
  • the excitation current of the dispersing device the central controller outputs the pulse electron beam control voltage signal U BS , and within the duration ⁇ of the pulse electron beam control voltage signal U BS , the output voltage signal U A of the signal processing circuit is sampled with the sampling period ⁇ , And obtain the maximum absolute value D Amax and the absolute average value of the sampled data of the output voltage signal U A Then based on the maximum absolute value D Amax and the absolute value average Calculate the comprehensive data D Z of the current electron beam spot shape and record it as D Zmin (2);
  • Step 3.3 The central controller compares the size of the comprehensive data D Zmin (0), D Zmin (1) and D Zmin (2) of the electron beam spot shape:
  • D Zmin (0) is the minimum, assign the value of D Zmin (0) to D Zmin (3), and D Rmin remains unchanged;
  • D Zmin (1) is the minimum, assign the value of D Zmin (1) to D Zmin (3), and assign the value of D Rmin + ⁇ D RT to D Rmin ;
  • D Zmin (2) is the smallest, assign the value of D Zmin (2) to D Zmin (3), and assign the value of D Rmin - ⁇ D RT to D Rmin .
  • Step 4 Experiment to find the optimal data D Tmin for the excitation current control of the second anti-astigmatism winding; namely:
  • Step 4.1 The central controller sets the excitation current control data of the first anti-astigmatic winding D R to D Rmin and sets the excitation current control data of the second anti-astigmatic winding D T to D Tmin + ⁇ D TR , and changes the anti-image
  • the excitation current of the dispersing device the central controller outputs the pulse electron beam control voltage signal U BS , and within the duration ⁇ of the pulse electron beam control voltage signal U BS , the output voltage signal U A of the signal processing circuit is sampled with the sampling period ⁇ , And obtain the maximum absolute value D Amax and the absolute average value of the sampled data of the output voltage signal U A Then based on the maximum absolute value D Amax and the absolute value average Calculate the comprehensive data D Z of the current electron beam spot shape and record it as D Zmin (4);
  • Step 4.2 The central controller sets the excitation current control data of the first anti-astigmatism winding D R to D Rmin , and sets the excitation current control data of the second anti-astigmatism winding D T to D Tmin - ⁇ D TR , and changes the anti-image
  • the excitation current of the dispersing device the central controller outputs the pulse electron beam control voltage signal U BS , and within the duration ⁇ of the pulse electron beam control voltage signal U BS , the output voltage signal U A of the signal processing circuit is sampled with the sampling period ⁇ , And obtain the maximum absolute value D Amax and the absolute average value of the sampled data of the output voltage signal U A Then based on the maximum absolute value D Amax and the absolute value average Calculate the comprehensive data D Z of the current electron beam spot shape and record it as D Zmin (5);
  • Step 4.3 The central controller compares the size of the comprehensive data D Zmin (3), D Zmin (4) and D Zmin (5) of the electron beam spot shape:
  • D Zmin (3) is the minimum, assign the value of D Zmin (3) to D Zmin (6), and D Tmin remains unchanged;
  • D Zmin (4) is the smallest, assign the value of D Zmin (4) to D Zmin (6), and assign the value of D Tmin + ⁇ D RT to D Tmin ;
  • Step 5 Determine whether the comprehensive data reaches the minimum value; namely:
  • the central controller compares the size of the comprehensive data D Zmin (6) and D Zmin (0) of the electron beam spot shape:
  • the optimal data D Rmin of the excitation current control of the first anti-astigmatism winding finally obtained in the above process is stored as the final excitation current control data D R of the first anti-astigmatism winding, and the excitation current of the second anti-astigmatism winding
  • the control optimization data D Tmin is stored as the final excitation current control data D T of the second astigmatism winding, and the automatic astigmatism elimination test of the electron gun is completed.
  • the initial value of the optimal data D Rmin for the excitation current control of the first anti-astigmatism winding is 0, and the optimal data D Tmin for the excitation current control of the second anti-astigmatism winding is set to 0, and the first anti-astigmatism winding is set to 0.
  • the initial value of the adjustment deviation ⁇ D RT from the excitation current control data of the second anti-astigmatic winding is 0.5 ⁇ D RTM ; where D RTM is the threshold value of the anti-astigmatic winding, namely -D RTM ⁇ D R ⁇ D RTM , -D RTM ⁇ D T ⁇ D RTM .
  • the n sampling data of the output voltage signal U A of the signal processing circuit are D A1 , D A2 , ..., D An , then the number of these sampling data
  • the maximum absolute value D Amax is:
  • D Amax max[
  • is the duration of the pulsed electron beam control voltage signal U BS
  • is the sampling period
  • D Amax are the maximum absolute value and the average value of the absolute value of the sampled data of the output voltage signal U A of the signal processing circuit within the duration ⁇ of the pulse electron beam control voltage signal U BS, ⁇ is the average value of the absolute value The given weight value of 0 ⁇ 1.
  • the present invention is based on the non-contact electron beam spot shape detection element of the automatic astigmatism elimination electron gun, using the actual electron beam value in the processing process as the electron beam value in the electron beam spot shape correction process, and according to Detecting the electron beam spot shape information automatically searches for the winding excitation current of the astigmatism elimination device corresponding to the best shape of the electron beam spot, thereby achieving the purpose of improving the effect of correcting the electron beam spot shape.
  • Fig. 1 is a schematic diagram of the structure of an automatic astigmatism dissipating electron gun provided by the present invention
  • FIG. 2 is a schematic diagram of the structure of the detection device in FIG. 1;
  • FIG. 3 is a schematic diagram of the signal processing circuit in Figure 1;
  • Figure 5 is a signal diagram of the automatic astigmatism elimination of the electron gun.
  • an automatic astigmatism-eliminating electron gun is mainly composed of a central controller 1, an electron source power supply 2, a driving power supply 3, a signal processing circuit 4, an electron beam generator 5, an astigmatism elimination device 6, a focusing device 7 and a detection device.
  • the device 8 is composed.
  • Electron beam generator 5 The cathode power supply heats the cathode to saturation emission.
  • the electron acceleration power supply generates an accelerating electric field between the cathode and the anode.
  • the electron beam 9 emitted by the cathode is ejected from the anode hole under the action of the accelerating electric field.
  • the size of the electron beam 9 Controlled by the gate bias voltage.
  • the electron beam 9 emitted by the electron beam generator 5 is incident on the workpiece 10.
  • Astigmatism elimination device 6 It is composed of a first astigmatism winding (ie, R-phase winding) and a second astigmatism winding (ie, T-phase winding).
  • the first anti-astigmatism winding and the second anti-astigmatism winding form a plurality of pairs of magnetic pole axisymmetric structures.
  • the astigmatism elimination device 6 of the present invention can use the existing astigmatism elimination device 6.
  • the first astigmatism winding and the second astigmatism winding are connected to the output end of the driving power supply 3.
  • the astigmatism elimination device 6 is installed between the anode of the electron gun and the focusing device 7. When the electron beam 9 passes through the astigmatism elimination device 6,
  • the inhomogeneous magnetic field inside the astigmatism elimination device 6 acts on the envelope of the electron beam 9 in multiple directions, thereby changing the appearance of the electron beam 9 spot.
  • Focusing device 7 a necessary component of the electron gun, used to adjust the position of the focus of the electron beam 9 spot in the axial direction.
  • the detection device 8 is composed of a first detection winding 81, a second detection winding 82, a third detection winding 83, a fourth detection winding 84 and a skeleton 85, see FIG. 2.
  • the frame 85 is an axisymmetric ring structure, and the material of the frame 85 is non-magnetic and insulating.
  • the number of turns of the first detection winding 81, the second detection winding 82, the third detection winding 83, and the fourth detection winding 84 are all N and the wire diameters are the same.
  • the first detection winding 81, the second detection winding 82, the third detection winding 83, and the fourth detection winding 84 are wound on the skeleton 85 in a uniform and symmetrical distribution.
  • the axes of the first detection winding 81 and the third detection winding 83 are on the x-axis Above, the end of the first detection winding 81 is connected to the head end of the third detection winding 83.
  • the axes of the second detection winding 82 and the fourth detection winding 84 are on the vertical y-axis, and the end of the second detection winding 82 is connected to the head end of the fourth detection winding 84.
  • the head end of the first detection winding 81 is connected to the head end of the second detection winding 82 and then connected to the common input terminal C1 of the signal processing circuit 4, and the end of the third detection winding 83 is connected to the second input terminal A+ of the signal processing circuit 4 ,
  • the end of the fourth detection winding 84 is connected to the first input A- of the signal processing circuit 4; the detection device 8 is installed at the exit end of the electron beam 9 of the electron gun.
  • the electron beam 9 When the pulsed electron beam 9 passes through the detection device 8, the electron beam 9 is formed
  • Central controller 1 As the overall control device of the electron beam 9 processing equipment.
  • the central controller 1 converts the data of the electron beam 9 D BS control the D / A voltage signal U BS, the gate voltage signal U BS to the electron source 2 power control input bias adjusting circuit power supply;
  • central controller 1 The excitation current control data D R and D T of the astigmatism elimination device 6 are respectively converted into a voltage signal U R and a voltage signal U T by D/A, and the voltage signal U R and a voltage signal U T are sent to the control input terminal of the driving power supply 3;
  • the central controller 1 receives the output voltage signal U A of the signal processing circuit 4, and A/D converts the voltage signal U A into sampling data D A ;
  • the central controller 1 changes the voltage signal U by setting the electron beam 9 to control the data D BS
  • the amplitude of the BS and the pulse duration ⁇ realize the pulse electron beam 9 control;
  • the central controller 1 samples the voltage signal U A at high speed within the duration ⁇ of the pulse electron beam control
  • Electron source power supply 2 Including electron acceleration power supply, cathode heating power supply, grid bias power supply.
  • the electron acceleration power supply adopts voltage stabilization control.
  • the positive output terminal of the electron acceleration power supply is connected to the anode of the electron beam generator 5 and grounded, the negative output terminal of the electron acceleration power supply, the positive output terminal of the grid bias power supply, and the cathode heating power supply one output terminal
  • the output of the cathode heating power supply is connected to the cathode of the electron beam generator 5, and the negative output terminal of the grid bias power supply is connected to the grid of the electron beam generator 5;
  • the grid bias power supply is used to adjust the size of the electron beam 9 and the grid bias
  • the control input signal of the power regulation circuit is the U BS signal from the central controller 1, and the grid bias power regulation circuit automatically adjusts the output voltage of the grid bias power so that the electron beam 9 follows the U BS signal.
  • Driving power supply 3 It consists of two current amplifier circuits with the same structure.
  • One of the input control signals is the voltage signal U R from the central controller 1, and the output current I R proportional to the voltage signal U R is sent to the astigmatism elimination device 6 the first astigmatism winding;
  • the other input control signal is the voltage signal U T from the central controller 1, and the output current I T proportional to the voltage signal U T is sent to the second astigmatism elimination device 6 Scattered winding.
  • Signal processing circuit 4 It is composed of operational amplifiers A1-A2, resistors R1-R8 and capacitor C, see Figure 3. One end of the resistor R1 forms the first input terminal A- of the signal processing circuit 4, one end of the resistor R2 forms the second input terminal A+ of the signal processing circuit 4, and one end of the resistor R3 is connected to the signal common point C2 and forms the common of the signal processing circuit 4.
  • the output end of the operational amplifier A1 is connected to one end of the resistor R5, the other end of the resistor R5 is connected to one end of the capacitor C and the resistor R6 at the same time; the other end of the capacitor C is connected to the signal common point C2, and one end of the resistor R7 is connected to the operational amplifier A2 Non-inverting input, the other end of resistor R7 is connected to signal common point C2; the other end of resistor R6 is connected to the inverting input end of operational amplifier A2; one end of resistor R8 is connected to the inverting input end of operational amplifier A2, and the other end of resistor R8 is connected
  • the output terminal of the operational amplifier A2; the output terminal of the operational amplifier A2 forms the output terminal A of the signal processing circuit 4, and the signal common point output terminal of the signal processing circuit 4 is the C2 terminal.
  • the input of the differential amplifier circuit is connected to the output of the detection device 8.
  • the input signal of the filter shaping circuit is the output voltage signal U A1 of the differential amplifier circuit, and the transfer function of the filter shaping circuit is Among them, s is the complex variable of the transfer function, and the output voltage signal U A of the filtering and shaping circuit is sent to the central controller 1.
  • Step 1 Experiment to find the comprehensive data of the original electron beam spot shape:
  • D Zmin the preferred value of the comprehensive data D Z of the electron beam spot shape
  • D Tmin the preferred data for controlling the R-phase and T-phase excitation currents of the astigmatism elimination device 6 corresponding to D Zmin
  • the defined domains of the R-phase and T-phase excitation current control data D R and D T of the astigmatism elimination device 6 are set as -D RTM ⁇ D R ⁇ D RTM and -D RTM ⁇ D T ⁇ D RTM .
  • the R-phase and T-phase excitation current control optimal data D Rmin and D Tmin of the astigmatism elimination device 6 are both set to 0, and the adjustment deviation ⁇ D RT of the R-phase and T-phase excitation current control data of the astigmatism elimination device 6 is set to 0.5 ⁇ D RTM .
  • Step 12 Start the electron beam processing equipment, the central controller 1 assigns a value of 0 to the R-phase excitation current control data D R , and the central controller 1 assigns a value of 0 to the T-phase excitation current control data D T , that is, the central controller 1 outputs the output cancellation
  • the excitation current control voltage signals U R and U T of the astigmatism device 6 are 0 respectively.
  • the central controller 1 outputs the pulse electron beam control voltage signal U BS
  • the voltage signal of the electron beam 9 flowing through the detection device 8 is U B
  • the output voltage signal of the signal processing circuit 4 is U A
  • the voltage signals U BS , U The waveforms of B and U A are shown in Figure 5.
  • Step 13 During the duration ⁇ of the pulse electron beam control voltage signal U BS , the central controller 1 samples the voltage signal U A n times with a sampling period ⁇ , and the sampled data are stored as D A1 , D A2 , ..., D An respectively .
  • Step 14 After the central controller 1 finishes sampling, the central controller 1 calculates the largest absolute value of D A1 , D A2 , ..., D An and stores it as D Amax , and the central controller 1 calculates D A1 , D A2 , ..., D An The absolute average value coexists as The central controller 1 calculates and stores the comprehensive data of the electron beam spot shape as D Zmin (0).
  • Step 2 Experiment to find the optimal data D Rmin for the excitation current control of the R phase (the first anti-astigmatic winding):
  • Step 21 The central controller 1 assigns the value of D Rmin + ⁇ D RT to the R-phase excitation current control data D R , and assigns the D Tmin value to the T-phase excitation current control data D T , and changes the excitation current of the astigmatism elimination device 6.
  • Step 22 central control unit 1 outputs a pulse electron beam control voltage signal U BS, and a sampling period n times ⁇ sampled voltage signal U A of the duration ⁇ of the voltage signal U BS pulsed electron beam control, the sampling data are stored It is D A1 , D A2 , ..., D An .
  • Step 23 After the central controller 1 finishes sampling, the central controller 1 determines that the absolute value of D A1 , D A2 , ..., D An is the largest and stores it as D Amax , and the central controller 1 calculates D A1 , D A2 , ..., D An The absolute average value coexists as The central controller 1 calculates and stores the comprehensive data of the electron beam spot shape as D Zmin (1).
  • Step 24 The central controller 1 assigns the value of (D Rmin- ⁇ D RT ) to the R-phase excitation current control data D R , assigns the D Tmin value to the T-phase excitation current control data D T , and changes the excitation current of the astigmatism elimination device 6.
  • Step 25 the central controller 1 outputs a pulse electron beam control voltage signal U BS, and a sampling period n times ⁇ sampled voltage signal U A of the duration ⁇ of the voltage signal U BS pulsed electron beam control, the sampling data are stored It is D A1 , D A2 , ..., D An .
  • Step 27 The central controller 1 compares the three data sizes of D Zmin (0), D Zmin (1), and D Zmin (2):
  • D Zmin (0) is the minimum, assign the value of D Zmin (0) to D Zmin (3), and D Rmin remains unchanged;
  • D Zmin (1) is the smallest, assign the value of D Zmin (1) to D Zmin (3), and assign the value of D Rmin + ⁇ D RT to D Rmin ;
  • D Zmin (2) is the smallest, assign the value of D Zmin (2) to D Zmin (3), and assign the value of D Rmin - ⁇ D RT to D Rmin .
  • Step 3 Experiment to find the optimal data D Tmin for the excitation current control of the T-phase (second anti-astigmatic winding):
  • Step 31 The central controller 1 assigns the value of D Rmin to the R-phase excitation current control data D R , assigns the value of D Tmin + ⁇ D RT to the T-phase excitation current control data D T , and changes the excitation current of the astigmatism elimination device 6.
  • Step 32 the central controller 1 outputs a pulse electron beam control voltage signal U BS, and a sampling period n times ⁇ sampled voltage signal U A of the duration ⁇ of the voltage signal U BS pulsed electron beam control, the sampling data are stored It is D A1 , D A2 , ..., D An .
  • Step 33 After the central controller 1 finishes sampling, the central controller 1 determines that the absolute value of D A1 , D A2 , ..., D An is the largest and stores it as D Amax , and the central controller 1 calculates D A1 , D A2 , ..., D An The absolute average value coexists as The central controller 1 calculates the comprehensive data of the electron beam spot shape and stores it as D Zmin (4).
  • Step 34 The central controller 1 assigns the value of D Rmin to the R-phase excitation current control data D R , assigns the value of D Tmin - ⁇ D RT to the T-phase excitation current control data D T , and changes the excitation current of the astigmatism elimination device 6.
  • Step 35 the central controller 1 outputs a pulse electron beam control voltage signal U BS, and a sampling period n times ⁇ sampled voltage signal U A of the duration ⁇ of the voltage signal U BS pulsed electron beam control, the sampling data are stored It is D A1 , D A2 , ..., D An .
  • Step 36 After the central controller 1 finishes sampling, the central controller 1 determines that the absolute value of D A1 , D A2 , ..., D An is the largest and stores it as D Amax , and the central controller 1 calculates D A1 , D A2 , ..., D An The absolute average value coexists as The central controller 1 calculates the comprehensive data of the electron beam spot shape and stores it as D Zmin (5).
  • Step 37 The central controller 1 compares the three data sizes of D Zmin (3), D Zmin (4), and D Zmin (5):
  • D Zmin (3) is the minimum, assign the value of D Zmin (3) to D Zmin (6), and D Tmin remains unchanged;
  • D Zmin (4) is the smallest, assign the value of D Zmin (4) to D Zmin (6), and assign the value of D Tmin + ⁇ D RT to D Tmin ;
  • D Zmin (5) is the smallest, assign the value of D Zmin (5) to D Zmin (6), and assign the value of D Tmin - ⁇ D RT to D Tmin .
  • Step 4 Judgment of the minimum value of comprehensive data
  • the central controller 1 compares the size of the two data D Zmin (6) and D Zmin (0):
  • the central controller 1 uses the stored data of D Rmin and D Tmin as the control data of the excitation current of the first dissipative winding and the control data of the excitation current of the second dissipative winding, respectively.
  • the split Rogowski coil is used as the detection element, combined with pulsed electron beam technology, to realize the non-contact detection of the electron beam spot morphology.
  • the split Rogowski coil outputs the differential mode signal, and takes the minimum value of the detection signal as the correction target of the astigmatism elimination device, which not only simplifies the processing method of the detection signal but also eliminates the influence of the common mode interference signal, and improves the sensitivity of detection. Sex and precision. Search for the excitation current of the "best" astigmatism dissipating device on a split axis to realize a fast search.
  • the weighted value of the amplitude and average value of the detection signal can fully reflect the difference in electron beam spot morphology.
  • the comprehensive data of the weighted value is used as the judgment basis. Two rounds of search and confirmation of the "best" value can further improve reliability and reduce randomness. sex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Electron Beam Exposure (AREA)

Abstract

本发明公开自动消像散电子枪及电子枪自动消像散方法,采用分裂式罗柯夫斯基线圈作为检测元件,结合脉冲电子束技术,实现了电子束斑点形貌的无接触检测。分裂式罗柯夫斯基线圈以差模信号输出,以检测信号的最小值为消像散装置校正目标,既简化了检测信号的处理方式又消除了共模干扰信号的影响,提高检测的灵敏性和精度。分轴搜寻"最佳"消像散装置的励磁电流,实现快速搜寻。检测信号的幅值及平均值的加权值更能充分体现电子束斑点形貌的差异,以加权值综合数据作为判断依据,"最佳"值的两轮搜寻确认,进一步提高可靠性及减少随机性。

Description

自动消像散电子枪及电子枪自动消像散方法 技术领域
本发明涉及电子束加工设备技术领域,具体涉及一种自动消像散电子枪及电子枪自动消像散方法。
背景技术
电子束加工设备的电子枪由于机加工的误差引起电子束与透镜不同轴、极靴材料不均匀、电极或磁极的边沿效应及污染电荷等原因,导致电子束在工作平面上各方向的聚焦不一致,形不成圆形电子束斑,即产生了像散。在电子枪中利用消像散装置对电子束斑的形貌进行校正,目前是以微小电子束进行校正,通过光学观察由人为经验判断校正最佳状态。
在电子束焊机、电子束打孔机、电子束增材制造装备等电子束加工设备中电子枪的功率都比较大,电子束斑形貌校正过程所用电子束远小于加工过程的电子束,电子束斑形貌并没按照电子束的大小成比例缩放,常规基于经验法消像散的效果随机性较大难以达到最佳状态。为了提高消像散装置校正电子束斑形貌的效果,可用加工过程的实际电子束值作为电子束斑形貌校正过程的电子束值,并根据检测电子束斑形貌信息自动探寻电子束斑形貌最佳形貌所对应的消像散装置绕组励磁电流。
实现自动消像散控制首先要解决电子束斑形貌的检测问题,针对功率较大的电子束加工设备,电子束斑形貌的检测元件必须是与电子束非接触式的才能重复使用,满足电子束加工设备的生产要求。
发明内容
本发明所要解决的是现有消像散装置的效果随机性较大,且难以达到最佳状态的问题,提供自动消像散电子枪及电子枪自动消像散方法。
为解决上述问题,本发明是通过以下技术方案实现的:
自动消像散电子枪,包括中央控制器、电子源电源、驱动电源和电子枪本体;电子束发生器、消像散装置和聚焦装置自上而下设置在电子枪本体内;消像散装置包括两相消像散绕组,这两相消像散绕组组成多对磁极轴对称结构;中央控制器的电子束控制电压信号输出端连接电子源电源的控制输入端,电子源电源的输出端连接电子束发生器;中央控制器的第一消像散控制电压信号输出端连接驱动电源的第一控制输入端,驱动电源的第一输出端连接消像散装置的第一消像散绕组;中央控制器的第二消像散控制电压信号输出端连接驱动电源的第二控制输入端,驱动电源的第二输出端连接消像散装置的第二消像散绕组;其不同之处是:还进一步包括检测装置和信号处理电路;检测装置设置在电子枪本体内,并位于聚焦装置正下方的电子束出口端;检测装置包括骨架和四组检测绕组;骨架为非导磁绝缘材料的环状结构;四组绕组的匝数及线径都相同,并同时绕制在骨架上且呈均匀对称分布;第一检测绕组和第三检测绕组在骨架上径向相对设置,且第一检测绕组的末端与第三检测绕组的首端相连;第二检测绕组和第四检测绕组在骨架上径向相对设置,且第 二检测绕组的末端和第四检测绕组的首端相连;检测装置的第一检测绕组的首端与第二检测绕组的首端相连再接至信号处理电路的公共输入端,检测装置的第三检测绕组的末端接至信号处理电路的第二输入端,检测装置的第四检测绕组的末端接至信号处理电路的第一输入端;信号处理电路的输出端连接中央控制器的输入端。
上述信号处理电路由运算放大器A1-A2、电阻R1-R8和电容C组成;电阻R1的一端形成信号处理电路的第一输入端,电阻R2的一端形成信号处理电路的第二输入端,电阻R3的一端与信号公共点相连后,形成信号处理电路的公共输入端;电阻R1的另一端接运算放大器A1的反相输入端;电阻R2和电阻R3的另一端同时接运算放大器A1的同相输入端;电阻R4的一端接运算放大器A1的反向输入端,电阻R4的另一端接运算放大器A1的输出端;运算放大器A1的输出端与电阻R5的一端连接,电阻R5的另一端同时连接电容C和电阻R6的一端;电容C的另一端与电阻R7的一端同时连接信号公共点,电阻R7的另一端接运算放大器A2的同相输入端;电阻R6的另一端接运算放大器A2的反相输入端;电阻R8的一端接运算放大器A2的反向输入端,电阻R8的另一端接运算放大器A2的输出端;运算放大器A2的输出端形成信号处理电路的输出端。
上述信号处理电路中,电阻R1和R2的阻值相同,电阻R3和R4的阻值相同,电阻R5和R6的阻值相同,电阻
Figure PCTCN2020120391-appb-000001
上述检测装置的骨架为非导磁绝缘材料制成。
上述自动消像散电子枪所实现的电子枪自动消像散方法,包括如下步骤:
步骤1、初始化:设定第一消像散绕组的励磁电流控制优选数据D Rmin的初值,设定第二消像散绕组的励磁电流控制优选数据D Tmin的初值,设定调节偏差ΔD RT的初值;设定调节偏差ΔD RT的缩小系数λ,其中0<λ<1;设定脉冲电子束控制电压信号U BS和持续时间τ;设定采样周期μ;设定迭代阈值η,其中η为≥1的整数;
步骤2、试验寻求在消像散装置无励磁电流状态下原始电子束斑形貌综合数据;即:
起动电子束加工设备,中央控制器将第一消像散绕组的励磁电流控制数据D R和第二消像散绕组的励磁电流控制数据D T均置为0,使得消像散装置的励磁电流为0;中央控制器输出脉冲电子束控制电压信号U BS,在脉冲电子束控制电压信号U BS的持续时间τ内,以采样周期μ对信号处理电路的输出电压信号U A进行采样,并获得所述输出电压信号U A采样数据的最大绝对值D Amax和绝对值平均值
Figure PCTCN2020120391-appb-000002
进而基于该最大绝对值D Amax和绝对值平均值
Figure PCTCN2020120391-appb-000003
计算当前电子束斑形貌综合数据D Z,并将其记为D Zmin(0)。
步骤3、试验寻求第一消像散绕组的励磁电流控制优选数据D Rmin;即:
步骤3.1、中央控制器将第一消像散绕组的励磁电流控制数据D R置为D Rmin+ΔD RT,将第二消像散绕组的励磁电流控制数据D T置为D Tmin,改变消像散装置的励磁电流;中央控制器输出脉冲电子束控制电压信号U BS,在脉冲电子束控制电压信号U BS的持续时间τ内,以采样周期μ对信号处理电路的输出电压信号U A进行采样,并获得所述输出电压信号U A采样数据的最大绝对值D Amax和绝对值平均值
Figure PCTCN2020120391-appb-000004
进而基于该最大绝对值D Amax和绝对值平均值
Figure PCTCN2020120391-appb-000005
计算当前电子束斑形貌综合数据D Z,并将其记为D Zmin(1);
步骤3.2、中央控制器将第一消像散绕组的励磁电流控制数据D R置为D Rmin-ΔD RT,将第二消像散绕组的励磁电流控制数据D T置为D Tmin,改变消像散装置的励磁电流;中央控制器输出脉冲电子束控制电压信号U BS,在脉冲电子束控制电压信号U BS的持续时间τ内,以采样周期μ对信号处理电路的输出电压信号U A进行采样,并获得所述输出电压信号U A采样数据的最大绝对值D Amax和绝对值平均值
Figure PCTCN2020120391-appb-000006
进而基于该最大绝对值D Amax和绝对值平均值
Figure PCTCN2020120391-appb-000007
计算当前电子束斑形貌综合数据D Z,并将其记为D Zmin(2);
步骤3.3、中央控制器比较电子束斑形貌综合数据D Zmin(0)、D Zmin(1)和D Zmin(2)的大小:
若D Zmin(0)为最小,将D Zmin(0)值赋予D Zmin(3),且D Rmin不变;
若D Zmin(1)为最小,将D Zmin(1)值赋予D Zmin(3),且将D Rmin+ΔD RT值赋予D Rmin
若D Zmin(2)为最小,将D Zmin(2)值赋予D Zmin(3),且将D Rmin-ΔD RT值赋予D Rmin
步骤4、试验寻求第二消像散绕组的励磁电流控制优选数据D Tmin;即:
步骤4.1、中央控制器将第一消像散绕组的励磁电流控制数据D R置为D Rmin,将第二消像散绕组的励磁电流控制数据D T置为D Tmin+ΔD TR,改变消像散装置的励磁电流;中央控制器输出脉冲电子束控制电压信号U BS,在脉冲电子束控制电压信号U BS的持续时间τ内,以采样周期μ对信号处理电路的输出电压信号U A进行采样,并获得所述输出电压信号U A采样数据的最大绝对值D Amax和绝对值平均值
Figure PCTCN2020120391-appb-000008
进而基于该最大绝对值D Amax和绝对值平均值
Figure PCTCN2020120391-appb-000009
计算当前电子束斑形貌综合数据D Z,并将其记为D Zmin(4);
步骤4.2、中央控制器将第一消像散绕组的励磁电流控制数据D R置为D Rmin,将第二消像散绕组的励磁电流控制数据D T置为D Tmin-ΔD TR,改变消像散装置的励磁电流;中央控制器输出脉冲电子束控制电压信号U BS,在脉冲电子束控制电压信号U BS的持续时间τ内,以采样周期μ对信号处理电路的输出电压信号U A进行采样,并获得所述输出电压信号U A采样数据的最大绝对值D Amax和绝对值平均值
Figure PCTCN2020120391-appb-000010
进而基于该最大绝对值D Amax和绝对值平均值
Figure PCTCN2020120391-appb-000011
计算当前电子束斑形貌综合数据D Z,并将其记为D Zmin(5);
步骤4.3、中央控制器比较电子束斑形貌综合数据D Zmin(3)、D Zmin(4)和D Zmin(5)的大小:
若D Zmin(3)为最小,将D Zmin(3)值赋予D Zmin(6),且D Tmin不变;
若D Zmin(4)为最小,将D Zmin(4)值赋予D Zmin(6),且将D Tmin+ΔD RT值赋予D Tmin
若D Zmin(5)为最小,将D Zmin(5)值赋予D Zmin(6),且将D Tmin-ΔD RT值赋予D Tmin。n
步骤5、判断综合数据是否到达最小值;即:
中央控制器比较电子束斑形貌综合数据D Zmin(6)和D Zmin(0)的大小:
若D Zmin(6)<D Zmin(0),则先将结束标志K置0值;再将D Zmin(6)值赋予D Zmin(0),且将λ×ΔD RT值赋予ΔD RT后,转回步骤3;
若D Zmin(6)≥D Zmin(0),则先将结束标志K值加1;再进一步判断结束标志K是否小于η:
如果是,则D Zmin(0)不变,且将λ×ΔD RT值赋予ΔD RT,转回步骤3;
否则,将上述过程最终获得的第一消像散绕组的励磁电流控制优选数据D Rmin存储为最终的第一消像散绕组的励磁电流控制数据D R,将第二消像散绕组的励磁电流控制优选 数据D Tmin存储为最终的第二消像散绕组的励磁电流控制数据D T,完成电子枪自动消像散试验。
上述步骤1中,将第一消像散绕组的励磁电流控制优选数据D Rmin初值为0,将第二消像散绕组的励磁电流控制优选数据D Tmin为0,将第一消像散绕组和第二消像散绕组的励磁电流控制数据调节偏差ΔD RT初值为0.5×D RTM;其中D RTM为消像散绕组的阈值,即-D RTM≤D R≤D RTM、-D RTM≤D T≤D RTM
在一个脉冲电子束控制电压信号U BS的持续时间τ内,信号处理电路的输出电压信号U A的n个采样数据为D A1、D A2、…、D An,则这些采样数据的
最大绝对值D Amax为:
D Amax=max[|D A1|,|D A2|,…,|D An|]
绝对值平均值
Figure PCTCN2020120391-appb-000012
为:
Figure PCTCN2020120391-appb-000013
其中:
Figure PCTCN2020120391-appb-000014
τ为脉冲电子束控制电压信号U BS的持续时间,μ为采样周期。
上述电子束斑形貌综合数据D Z为:
Figure PCTCN2020120391-appb-000015
其中:D Amax
Figure PCTCN2020120391-appb-000016
分别为一个脉冲电子束控制电压信号U BS的持续时间τ内信号处理电路的输出电压信号U A采样数据的最大绝对值和绝对值平均值,α为绝对值平均值
Figure PCTCN2020120391-appb-000017
的给定加权值,0≤α≤1。
与现有技术相比,本发明基于非接触式电子束斑形貌检测元件的自动消像散电子枪,利用加工过程的实际电子束值作为电子束斑形貌校正过程的电子束值,并根据检测电子束斑形貌信息自动探寻电子束斑形貌最佳形貌所对应的消像散装置绕组励磁电流,从而达到提高校正电子束斑形貌的效果的目的。
附图说明
图1为本发明提供的自动消像散电子枪的结构示意图;
图2为图1中检测装置的结构示意图;
图3为图1中信号处理电路原理图;
图4为本发明提供的电子枪自动消像散方法的流程图;
图5为电子枪自动消像散信号图。
图中标号:1-中央控制器,2-电子源电源,3-驱动电源,4-信号处理电路,5-电子束发生器,6-消像散装置,7-聚焦装置,8-检测装置,81-第一检测绕组,82-第二检测绕组,83-第三检测绕组,84-第四检测绕组,85-骨架,9-电子束,10-工件,11-电子枪本体。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实例,并参照附 图,对本发明进一步详细说明。需要说明的是,实例中提到的方向用语,例如“上”、“下”、“中”、“左”“右”、“前”、“后”等,仅是参考附图的方向。因此,使用的方向仅是用来说明并非用来限制本发明的保护范围。
参见图1,一种自动消像散电子枪,主要由中央控制器1、电子源电源2、驱动电源3、信号处理电路4、电子束发生器5、消像散装置6、聚焦装置7和检测装置8组成。
电子束发生器5:阴极电源加热阴极至饱和发射,电子加速电源在阴极与阳极间产生加速电场,阴极发射的电子束9在加速电场的作用下由阳极孔喷射而出,电子束9的大小由栅偏电压控制。电子束发生器5所发出的电子束9入射到工件10上。
消像散装置6:由第一消像散绕组(即R相绕组)和第二消像散绕组(即T相绕组)组成。第一消像散绕组和第二消像散绕组组成多对磁极轴对称结构。本发明的消像散装置6可以沿用现有的消像散装置6。第一消像散绕组和第二消像散绕组接至驱动电源3的输出端,消像散装置6安装在电子枪中阳极与聚焦装置7之间,电子束9通过消像散装置6时,消像散装置6内部不均匀磁场对电子束9包络进行多方向的作用,从而改变电子束9斑的形貌。
聚焦装置7:属于电子枪的必要构件,用于调节电子束9斑的焦点在轴向上的位置。
检测装置8:由第一检测绕组81、第二检测绕组82、第三检测绕组83、第四检测绕组84和骨架85组成,参见图2。骨架85为轴对称环状结构,骨架85材料为非导磁绝缘。第一检测绕组81、第二检测绕组82、第三检测绕组83、第四检测绕组84的匝数都为N且线径相同。第一检测绕组81、第二检测绕组82、第三检测绕组83、第四检测绕组84绕制在骨架85上呈均匀对称分布,第一检测绕组81和第三检测绕组83的轴线在x轴线上,第一检测绕组81的末端与第三检测绕组83的首端相连。第二检测绕组82和第四检测绕组84的轴线在垂直的y轴线上,第二检测绕组82的末端与第四检测绕组84的首端相连。第一检测绕组81的首端与第二检测绕组82的首端相连再接至信号处理电路4的公共输入端C1,第三检测绕组83的末端接至信号处理电路4的第二输入端A+,第四检测绕组84的末端接至信号处理电路4的第一输入端A-;检测装置8安装在电子枪的电子束9出口端,当脉冲电子束9通过检测装置8时,电子束9形成的空间电荷电流产生变化磁场,变化磁场在第一检测绕组81、第二检测绕组82、第三检测绕组83、第四检测绕组84中分别感应出感应电动势e 1、e 2、e 3、e 4,即
Figure PCTCN2020120391-appb-000018
(i=1、2、3、4,φ i为通过第i检测绕组的磁通),第一检测绕组81和第三检测绕组83的感应电动势叠加成电压信号U A+(U A+=e 1+e 3),第二检测绕组82和第四检测绕组84的感应电动势叠加成电压信号U A-(U A-=e 2+e 4),若电子束9包络为轴对称形状从检测装置8的中心通过时φ 1=φ 2=φ 3=φ 4,则e 1=e 2=e 3=e 4及U A+=U A-,若电子束9为非轴对称形状时,则U A+≠U A-,通过调节消像散装置6的励磁电流I R和I T使得U A+与U A-的差值为最小,则判定电子束9斑处于最佳校正状态。
中央控制器1:作为电子束9加工设备的总控制装置。中央控制器1将电子束9控制数据D BS经D/A转换成电压信号U BS,电压信号U BS送至电子源电源2的栅偏电源的调节电路的控制输入端;中央控制器1将消像散装置6励磁电流控制数据D R和D T分别经D/A转换成电压信号U R和电压信号U T,电压信号U R和电压信号U T送至驱动电源3的控制输入端;中央控制器1接收信号处理电路4的输出电压信号U A,将电压信号U A进行A/D转换成采样数据D A;中央控制器1通过设定电子束9控制数据D BS改变电压信号U BS的幅值及脉冲持续时间τ,实现脉冲电子束 9控制;中央控制器1在脉冲电子束控制信号U BS的持续时间τ内对电压信号U A进行高速采样,然后确定电压信号U A的采样数据D A的最大绝对值D Amax及计算电压信号U A的采样数据D A绝对值平均值数据
Figure PCTCN2020120391-appb-000019
最后计算电子束斑形貌的综合数据
Figure PCTCN2020120391-appb-000020
其中0≤α≤1;中央控制器1通过改变消像散装置6的R相和T相励磁电流控制数据D R和D T,计算电子束斑形貌的综合数据D Z,当综合数据D Z达到最小值时消像散装置6励磁电流电流控制数据D R和D T即作为工作数据。
电子源电源2:包含电子加速电源、阴极加热电源、栅偏电源。电子加速电源采用稳压控制,电子加速电源的正输出端与电子束发生器5的阳极相接并接地,电子加速电源的负输出端、栅偏电源的正输出端、阴极加热电源一输出端相连接,阴极加热电源的输出接至电子束发生器5的阴极,栅偏电源的负输出端接至电子束发生器5的栅极;栅偏电源用于调节电子束9的大小,栅偏电源的调节电路的控制输入信号为来自中央控制器1的U BS信号,栅偏电源的调节电路自动调节栅偏电源输出电压的大小使得电子束9跟随U BS信号变化。
驱动电源3:有两路结构相同的电流放大电路组成,其中一路的输入控制信号为来自中央控制器1的电压信号U R,输出正比于电压信号U R的电流I R送入消像散装置6的第一消像散绕组;另一路的输入控制信号为来自中央控制器1的电压信号U T,输出正比于电压信号U T的电流I T送入消像散装置6的第二消像散绕组。
信号处理电路4:由运算放大器A1-A2、电阻R1-R8和电容C组成,参见图3。电阻R1的一端形成信号处理电路4的第一输入端A-,电阻R2的一端形成信号处理电路4的第二输入端A+,电阻R3的一端接信号公共点C2并形成信号处理电路4的公共输入端C1;电阻R1的另一端接运算放大器A1的反相输入端;电阻R2的另一端和电阻R3的另一端同时接运算放大器A1的同相输入端;电阻R4的一端接运算放大器A1的反向输入端,电阻R4的另一端接运算放大器A1的输出端。运算放大器A1的输出端与电阻R5的一端连接,电阻R5的另一端同时连接电容C和电阻R6的一端;电容C的另一端与信号公共点C2相接,电阻R7的一端接运算放大器A2的同相输入端,电阻R7的另一端接信号公共点C2;电阻R6的另一端接运算放大器A2的反相输入端;电阻R8的一端接运算放大器A2的反向输入端,电阻R8的另一端接运算放大器A2的输出端;运算放大器A2的输出端形成信号处理电路4的输出端A,信号处理电路4的信号公共点输出端为C2端。运算放大器A1、电阻R1、电阻R2、电阻R3和电阻R4组成差分放大电路,其中R1=R2,R3=R4,
Figure PCTCN2020120391-appb-000021
运算放大器A2、电阻R5、电阻R6、电阻R7、电阻R8和电容C组成反相滤波整形电路,其中R5=R6,
Figure PCTCN2020120391-appb-000022
差分放大电路的输入连接检测装置8的输出,滤波整形电路的输入信号为差分放大电路的输出电压信号U A1,滤波整形电路的传递函数为
Figure PCTCN2020120391-appb-000023
其中s为传递函数的复变量,滤波整形电路的输出电压信号U A送入中央控制器1。
上述所自动消像散电子枪所实现的电子枪自动消像散方法,如图4所示,其工作步骤为:
步骤1:试验寻求原始电子束斑形貌综合数据:
步骤11:初始化:
定义在脉冲电子束控制信号U BS幅值为B m的持续时间τ内,以采样周期μ对信号处理电路4的输出电压信号U A进行n(n≥10)次采样的数据为D A1、D A2、…、D An;这n次采样的最大绝对值为D Amax,D Amax=max[|D A1|,|D A2|,…,|D An|];这n次采样的绝对值平均值为
Figure PCTCN2020120391-appb-000024
Figure PCTCN2020120391-appb-000025
定义电子束斑形貌综合数据
Figure PCTCN2020120391-appb-000026
其中α为
Figure PCTCN2020120391-appb-000027
的加权值(0≤α≤1)。
定义电子束斑形貌综合数据D Z的优选值为D Zmin,对应D Zmin的消像散装置6的R相和T相励磁电流控制优选数据分别为D Rmin和D Tmin
设定消像散装置6的R相和T相励磁电流控制数据D R和D T的定义域为-D RTM≤D R≤D RTM、-D RTM≤D T≤D RTM
初始时,消像散装置6的R相和T相励磁电流控制优选数据D Rmin和D Tmin都置0,消像散装置6的R相和T相励磁电流控制数据的调节偏差ΔD RT置为0.5×D RTM
步骤12:起动电子束加工设备,中央控制器1将0值赋予R相励磁电流控制数据D R,中央控制器1将0值赋予T相励磁电流控制数据D T,即中央控制器1输出消像散装置6励磁电流控制电压信号U R和U T分别为0。当中央控制器1输出脉冲电子束控制电压信号U BS时,穿越检测装置8的电子束9流的电压信号为U B,信号处理电路4的输出电压信号为U A,电压信号U BS、U B、U A的波形如图5所示。
步骤13:在脉冲电子束控制电压信号U BS的持续时间τ内中央控制器1以采样周期μ对电压信号U A进行n次采样,采样数据分别存为D A1、D A2、…、D An
步骤14:中央控制器1采样结束后,中央控制器1计算D A1、D A2、…、D An绝对值最大者并存为D Amax,中央控制器1计算D A1、D A2、…、D An绝对值平均值并存为
Figure PCTCN2020120391-appb-000028
中央控制器1计算电子束斑形貌综合数据并存为D Zmin(0)。
步骤2:试验寻求R相(第一消像散绕组)励磁电流控制优选数据D Rmin
步骤21:中央控制器1将D Rmin+ΔD RT值赋予R相励磁电流控制数据D R,将D Tmin值赋予T相励磁电流控制数据D T,改变消像散装置6的励磁电流。
步骤22:中央控制器1输出脉冲电子束控制电压信号U BS,并在脉冲电子束控制电压信号U BS的持续时间τ内以采样周期μ对电压信号U A进行n次采样,采样数据分别存为D A1、D A2、…、D An
步骤23:中央控制器1采样结束后,中央控制器1确定D A1、D A2、…、D An绝对值最大者并存为D Amax,中央控制器1计算D A1、D A2、…、D An绝对值平均值并存为
Figure PCTCN2020120391-appb-000029
中央控制器1计算电子束斑形貌综合数据并存为D Zmin(1)。
步骤24:中央控制器1将(D Rmin-ΔD RT)值赋予R相励磁电流控制数据D R,将D Tmin值赋予T相励磁电流控制数据D T,改变消像散装置6的励磁电流。
步骤25:中央控制器1输出脉冲电子束控制电压信号U BS,并在脉冲电子束控制电压信号U BS的持续时间τ内以采样周期μ对电压信号U A进行n次采样,采样数据分别存为D A1、 D A2、…、D An
步骤26:中央控制器1采样结束后,中央控制器1计算D A1、D A2、…、D An绝对值最大者并存为D Amax,中央控制器1计算D A1、D A2、…、D An绝对值平均值并存为
Figure PCTCN2020120391-appb-000030
中央控制器1计算电子束斑形貌综合数据并存为D Zmin(2)。
步骤27:中央控制器1比较D Zmin(0)、D Zmin(1)、D Zmin(2)三个数据的大小:
若D Zmin(0)为最小,将D Zmin(0)值赋予D Zmin(3),且D Rmin不变;
若D Zmin(1)为最小,将D Zmin(1)值赋予D Zmin(3),且将D Rmin+ΔD RT值赋予D Rmin
若D Zmin(2)为最小,将D Zmin(2)值赋予D Zmin(3),且将D Rmin-ΔD RT值赋予D Rmin
步骤3:试验寻求T相(第二消像散绕组)励磁电流控制优选数据D Tmin
步骤31:中央控制器1将D Rmin值赋予R相励磁电流控制数据D R,将D Tmin+ΔD RT值赋予T相励磁电流控制数据D T,改变消像散装置6的励磁电流。
步骤32:中央控制器1输出脉冲电子束控制电压信号U BS,并在脉冲电子束控制电压信号U BS的持续时间τ内以采样周期μ对电压信号U A进行n次采样,采样数据分别存为D A1、D A2、…、D An
步骤33:中央控制器1采样结束后,中央控制器1确定D A1、D A2、…、D An绝对值最大者并存为D Amax,中央控制器1计算D A1、D A2、…、D An绝对值平均值并存为
Figure PCTCN2020120391-appb-000031
中央控制器1计算电子束斑形貌综合数据并存为D Zmin(4)。
步骤34:中央控制器1将D Rmin值赋予R相励磁电流控制数据D R,将D Tmin-ΔD RT值赋予T相励磁电流控制数据D T,改变消像散装置6的励磁电流。
步骤35:中央控制器1输出脉冲电子束控制电压信号U BS,并在脉冲电子束控制电压信号U BS的持续时间τ内以采样周期μ对电压信号U A进行n次采样,采样数据分别存为D A1、D A2、…、D An
步骤36:中央控制器1采样结束后,中央控制器1确定D A1、D A2、…、D An绝对值最大者并存为D Amax,中央控制器1计算D A1、D A2、…、D An绝对值平均值并存为
Figure PCTCN2020120391-appb-000032
中央控制器1计算电子束斑形貌综合数据,并存为D Zmin(5)。
步骤37:中央控制器1比较D Zmin(3)、D Zmin(4)、D Zmin(5)三个数据的大小:
若D Zmin(3)为最小,将D Zmin(3)值赋予D Zmin(6),且D Tmin不变;
若D Zmin(4)为最小,将D Zmin(4)值赋予D Zmin(6),且将D Tmin+ΔD RT值赋予D Tmin
若D Zmin(5)为最小,将D Zmin(5)值赋予D Zmin(6),且将D Tmin-ΔD RT值赋予D Tmin
步骤4:综合数据最小值判断
中央控制器1比较D Zmin(6)与D Zmin(0)两数据的大小:
若D Zmin(6)<D Zmin(0),则先将结束标志K置0;再将D Zmin(6)值赋予D Zmin(0),且将0.5×ΔD RT值赋予ΔD RT后,转回步骤2;
若D Zmin(6)≥D Zmin(0),则先将结束标志K值加1;再进一步判断结束标志K是否小于2:
如果是,则保持D Zmin(0)不变,且将0.5×ΔD RT值赋予ΔD RT,转回步骤2;
否则,储存上述过程最终获得的消像散装置6的R相和T相励磁电流控制优选数据D Rmin和D Tmin,完成电子枪自动消像散试验。
电子束加工设备正常工作时,中央控制器1将贮存的D Rmin和D Tmin数据分别作为第一消像散绕组励磁电流的控制数据和第二消像散绕组励磁电流的控制数据。
本系统特点:采用分裂式罗柯夫斯基线圈作为检测元件,结合脉冲电子束技术,实现了电子束斑点形貌的无接触检测。分裂式罗柯夫斯基线圈以差模信号输出,以检测信号的最小值为消像散装置校正目标,既简化了检测信号的处理方式又消除了共模干扰信号的影响,提高检测的灵敏性和精度。分轴搜寻“最佳”消像散装置的励磁电流,实现快速搜寻。检测信号的幅值及平均值的加权值更能充分体现电子束斑点形貌的差异,以加权值综合数据作为判断依据,“最佳”值的两轮搜寻确认,进一步提高可靠性及减少随机性。
需要说明的是,尽管以上本发明所述的实施例是说明性的,但这并非是对本发明的限制,因此本发明并不局限于上述具体实施方式中。在不脱离本发明原理的情况下,凡是本领域技术人员在本发明的启示下获得的其它实施方式,均视为在本发明的保护之内。

Claims (9)

  1. 自动消像散电子枪,包括中央控制器(1)、电子源电源(2)、驱动电源(3)和电子枪本体(11);
    电子束发生器(5)、消像散装置(6)和聚焦装置(7)自上而下设置在电子枪本体(11)内;消像散装置(6)包括两相消像散绕组,这两相消像散绕组组成多对磁极轴对称结构;
    中央控制器(1)的电子束控制电压信号输出端连接电子源电源(2)的控制输入端,电子源电源(2)的输出端连接电子束发生器(5);中央控制器(1)的第一消像散控制电压信号输出端连接驱动电源(3)的第一控制输入端,驱动电源(3)的第一输出端连接消像散装置(6)的第一消像散绕组;中央控制器(1)的第二消像散控制电压信号输出端连接驱动电源(3)的第二控制输入端,驱动电源(3)的第二输出端连接消像散装置(6)的第二消像散绕组;
    其特征在于:还进一步包括检测装置(8)和信号处理电路(4);
    检测装置(8)设置在电子枪本体(11)内,并位于聚焦装置(7)正下方的电子束(9)出口端;检测装置(8)包括骨架(85)和四组检测绕组;骨架(85)为非导磁绝缘材料的环状结构;四组绕组的匝数及线径都相同,并同时绕制在骨架(85)上且呈均匀对称分布;第一检测绕组(81)和第三检测绕组(83)在骨架(85)上径向相对设置,且第一检测绕组(81)的末端与第三检测绕组(83)的首端相连;第二检测绕组(82)和第四检测绕组(84)在骨架(85)上径向相对设置,且第二检测绕组(82)的末端和第四检测绕组(84)的首端相连;
    检测装置(8)的第一检测绕组(81)的首端与第二检测绕组(82)的首端相连再接至信号处理电路(4)的公共输入端,检测装置(8)的第三检测绕组(83)的末端接至信号处理电路(4)的第二输入端,检测装置(8)的第四检测绕组(84)的末端接至信号处理电路(4)的第一输入端;信号处理电路(4)的输出端连接中央控制器(1)的输入端。
  2. 根据权利要求1所述的自动消像散电子枪,其特征在于:信号处理电路(4)由运算放大器A1-A2、电阻R1-R8和电容C组成;
    电阻R1的一端形成信号处理电路(4)的第一输入端,电阻R2的一端形成信号处理电路(4)的第二输入端,电阻R3的一端与信号公共点相连后,形成信号处理电路(4)的公共输入端;电阻R1的另一端接运算放大器A1的反相输入端;电阻R2和电阻R3的另一端同时接运算放大器A1的同相输入端;电阻R4的一端接运算放大器A1的反向输入端,电阻R4的另一端接运算放大器A1的输出端;
    运算放大器A1的输出端与电阻R5的一端连接,电阻R5的另一端同时连接电容C和电阻R6的一端;电容C的另一端与电阻R7的一端同时连接信号公共点,电阻R7的另一端接运算放大器A2的同相输入端;电阻R6的另一端接运算放大器A2的反相输入端;电阻R8的一端接运算放大器A2的反向输入端,电阻R8的另一端接运算放大器A2的输出端;运算放大器A2的输出端形成信号处理电路(4)的输出端。
  3. 根据权利要求2所述的自动消像散电子枪,其特征在于:电阻R1和R2的阻值相同,电阻R3和R4的阻值相同,电阻R5和R6的阻值相同,电阻
    Figure PCTCN2020120391-appb-100001
  4. 根据权利要求1所述的自动消像散电子枪,其特征在于:骨架(85)为非导磁绝缘材料制成。
  5. 基于权利要求1的自动消像散电子枪所实现的电子枪自动消像散方法,其特征在于,包括如下步骤:
    步骤1、初始化:设定第一消像散绕组的励磁电流控制优选数据D Rmin的初值,设定第二消像散绕组的励磁电流控制优选数据D Tmin的初值,设定调节偏差ΔD RT的初值;设定调节偏差ΔD RT的缩小系数λ,其中0<λ<1;设定脉冲电子束控制电压信号U BS和持续时间τ;设定采样周期μ;设定迭代阈值η,其中
    η为≥1的整数;
    步骤2、试验寻求在消像散装置(6)无励磁电流状态下原始电子束斑形貌综合数据;即:
    起动电子枪,中央控制器(1)将第一消像散绕组的励磁电流控制数据D R和第二消像散绕组的励磁电流控制数据D T均置为0,使得消像散装置(6)的励磁电流为0;中央控制器(1)输出脉冲电子束控制电压信号U BS,在脉冲电子束控制电压信号U BS的持续时间τ内,以采样周期μ对信号处理电路(4)的输出电压信号U A进行采样,并获得所述输出电压信号U A采样数据的最大绝对值D Amax和绝对值平均值
    Figure PCTCN2020120391-appb-100002
    进而基于该最大绝对值D Amax和绝对值平均值
    Figure PCTCN2020120391-appb-100003
    计算当前电子束斑形貌综合数据D Z,并将其记为D Zmin(0)。
    步骤3、试验寻求第一消像散绕组的励磁电流控制优选数据D Rmin;即:
    步骤3.1、中央控制器(1)将第一消像散绕组的励磁电流控制数据D R置为D Rmin+ΔD RT,将第二消像散绕组的励磁电流控制数据D T置为D Tmin,改变消像散装置(6)的励磁电流;中央控制器(1)输出脉冲电子束控制电压信号U BS,在脉冲电子束控制电压信号U BS的持续时间τ内,以采样周期μ对信号处理电路(4)的输出电压信号U A进行采样,并获得所述输出电压信号U A采样数据的最大绝对值D Amax和绝对值平均值
    Figure PCTCN2020120391-appb-100004
    进而基于该最大绝对值D Amax和绝对值平均值
    Figure PCTCN2020120391-appb-100005
    计算当前电子束斑形貌综合数据D Z,并将其记为D Zmin(1);
    步骤3.2、中央控制器(1)将第一消像散绕组的励磁电流控制数据D R置为D Rmin-ΔD RT,将第二消像散绕组的励磁电流控制数据D T置为D Tmin,改变消像散装置(6)的励磁电流;中央控制器(1)输出脉冲电子束控制电压信号U BS,在脉冲电子束控制电压信号U BS的持续时间τ内,以采样周期μ对信号处理电路(4)的输出电压信号U A进行采样,并获得所述输出电压信号U A采样数据的最大绝对值D Amax和绝对值平均值
    Figure PCTCN2020120391-appb-100006
    进而基于该最大绝对值D Amax和绝对值平均值
    Figure PCTCN2020120391-appb-100007
    计算当前电子束斑形貌综合数据D Z,并将其记为D Zmin(2);
    步骤3.3、中央控制器(1)比较电子束斑形貌综合数据D Zmin(0)、D Zmin(1)和D Zmin(2)的大小:
    若D Zmin(0)为最小,将D Zmin(0)值赋予D Zmin(3),且D Rmin不变;
    若D Zmin(1)为最小,将D Zmin(1)值赋予D Zmin(3),且将D Rmin+ΔD RT值赋予D Rmin
    若D Zmin(2)为最小,将D Zmin(2)值赋予D Zmin(3),且将D Rmin-ΔD RT值赋予D Rmin
    步骤4、试验寻求第二消像散绕组的励磁电流控制优选数据D Tmin;即:
    步骤4.1、中央控制器(1)将第一消像散绕组的励磁电流控制数据D R置为D Rmin,将第二消像散绕组的励磁电流控制数据D T置为D Tmin+ΔD TR,改变消像散装置(6)的励磁电流;中央控制器(1)输出脉冲电子束控制电压信号U BS,在脉冲电子束控制电压信号U BS的持续时间τ内,以采样周期μ对信号处理电路(4)的输出电压信号U A进行采样,并获得所述输出电压信号U A采样数据的最大绝对值D Amax和绝对值平均值
    Figure PCTCN2020120391-appb-100008
    进而基于该最大绝对值D Amax和绝对值平均值
    Figure PCTCN2020120391-appb-100009
    计算当前电子束斑形貌综合数据D Z,并将其记为D Zmin(4);
    步骤4.2、中央控制器(1)将第一消像散绕组的励磁电流控制数据D R置为D Rmin,将第二消像散绕组的励磁电流控制数据D T置为D Tmin-ΔD TR,改变消像散装置(6)的励磁电流;中央控制器(1)输出脉冲电子束控制电压信号U BS,在脉冲电子束控制电压信号U BS的持续时间τ内,以采样周期μ对信号处理电路(4)的输出电压信号UA进行采样,并获得所述输出电压信号U A采样数据的最大绝对值D Amax和绝对值平均值
    Figure PCTCN2020120391-appb-100010
    进而基于该最大绝对值D Amax和绝对值平均值
    Figure PCTCN2020120391-appb-100011
    计算当前电子束斑形貌综合数据D Z,并将其记为D Zmin(5);
    步骤4.3、中央控制器(1)比较电子束斑形貌综合数据D Zmin(3)、D Zmin(4)和D Zmin(5)的大小:
    若D Zmin(3)为最小,将D Zmin(3)值赋予D Zmin(6),且D Tmin不变;
    若D Zmin(4)为最小,将D Zmin(4)值赋予D Zmin(6),且将D Tmin+ΔD RT值赋予D Tmin
    若D Zmin(5)为最小,将D Zmin(5)值赋予D Zmin(6),且将D Tmin-ΔD RT值赋予D Tmin
    步骤5、判断综合数据是否到达最小值;即:
    中央控制器(1)比较电子束斑形貌综合数据D Zmin(6)和D Zmin(0)的大小:
    若D Zmin(6)<D Zmin(0),则先将结束标志K置0值;再将D Zmin(6)值赋予D Zmin(0),且将λ×ΔD RT值赋予ΔD RT后,转回步骤3;
    若D Zmin(6)≥D Zmin(0),则先将结束标志K值加1;再进一步判断结束标志K是否小于迭代阈值η:
    如果是,则D Zmin(0)不变,且将λ×ΔD RT值赋予ΔD RT,转回步骤3;
    否则,将上述过程最终获得的第一消像散绕组的励磁电流控制优选数据D Rmin存储为最终的第一消像散绕组的励磁电流控制数据D R,将第二消像散绕组的励磁电流控制优选数据D Tmin存储为最终的第二消像散绕组的励磁电流控制数据D T,完成电子枪自动消像散试验。
  6. 根据权利要求5所述的电子枪自动消像散方法,其他特征是,步骤1中,将第一消像散绕组的励磁电流控制优选数据D Rmin初值为0,将第二消像散绕组的励磁电流控制优选数据D Tmin初值为0,将第一消像散绕组和第二消像散绕组的励磁电流控制数据调节偏差ΔD RT初值为0.5×D RTM;其中D RTM为消像散绕组的阈值,即-D RTM≤D R≤D RTM、-D RTM≤D T≤D RTM,D R为第一消像散绕组的励磁电流控制数据,D T为第一消像散绕组的励磁电流控制数据。
  7. 根据权利要求5所述的电子枪自动消像散方法,其他特征是,在一个脉冲电子束控制电压信号U BS的持续时间τ内,信号处理电路(4)的输出电压信号U A的n个采样数据为D A1、D A2、…、D An,则这些采样数据的
    最大绝对值D Amax为:
    D Amax=max[|D A1|,|D A2|,...,|D An|]
    绝对值平均值
    Figure PCTCN2020120391-appb-100012
    为:
    Figure PCTCN2020120391-appb-100013
    其中:
    Figure PCTCN2020120391-appb-100014
    τ为脉冲电子束控制电压信号U BS的持续时间,μ为采样周期。
  8. 根据权利要求6或7所述的电子枪自动消像散方法,其他特征是,电子束斑形貌综合 数据D Z为:
    Figure PCTCN2020120391-appb-100015
    其中:D Amax
    Figure PCTCN2020120391-appb-100016
    分别为信号处理电路(4)的输出电压信号U A采样数据的最大绝对值和绝对值平均值,α为绝对值平均值
    Figure PCTCN2020120391-appb-100017
    的给定加权值,0≤α≤1。
  9. 根据权利要求5所述的电子枪自动消像散方法,其他特征是,迭代阈值η=2。
PCT/CN2020/120391 2020-05-19 2020-10-12 自动消像散电子枪及电子枪自动消像散方法 WO2021232659A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2021122895A RU2769346C1 (ru) 2020-05-19 2020-10-12 Автоматическая электронная пушка с анастигматическим устройством и способ коррекции астигматизма электронного пучка для электронной пушки
EP20916250.2A EP3951828B1 (en) 2020-05-19 2020-10-12 Electron gun with automatic astigmatism elimination, and automatic astigmatism elimination method of an electron gun

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010425026.6 2020-05-19
CN202010425026.6A CN111477529B (zh) 2020-05-19 2020-05-19 自动消像散电子枪及电子枪自动消像散方法

Publications (1)

Publication Number Publication Date
WO2021232659A1 true WO2021232659A1 (zh) 2021-11-25

Family

ID=71763228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120391 WO2021232659A1 (zh) 2020-05-19 2020-10-12 自动消像散电子枪及电子枪自动消像散方法

Country Status (4)

Country Link
EP (1) EP3951828B1 (zh)
CN (1) CN111477529B (zh)
RU (1) RU2769346C1 (zh)
WO (1) WO2021232659A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477529B (zh) * 2020-05-19 2024-05-14 桂林狮达技术股份有限公司 自动消像散电子枪及电子枪自动消像散方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143829A (zh) * 2013-03-19 2013-06-12 桂林狮达机电技术工程有限公司 电子束焊机一枪多束焊接控制装置及其方法
CN106340339A (zh) * 2016-11-23 2017-01-18 桂林狮达机电技术工程有限公司 电子束加工设备工件表面聚焦电流自动整定方法及系统
CN111477529A (zh) * 2020-05-19 2020-07-31 桂林狮达技术股份有限公司 自动消像散电子枪及电子枪自动消像散方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2002547B (en) * 1977-07-30 1982-01-20 Tee W Investigation of astigmatism in electron beam probe instruments
US20020063567A1 (en) * 2000-11-30 2002-05-30 Applied Materials, Inc. Measurement device with remote adjustment of electron beam stigmation by using MOSFET ohmic properties and isolation devices
DE102008009410B4 (de) * 2008-02-15 2010-04-08 PTR Präzisionstechnik GmbH Elektronenstrahlvorrichtung und Verfahren zum Justieren eines Elektronenstrahls
US9053900B2 (en) * 2012-04-03 2015-06-09 Kla-Tencor Corporation Apparatus and methods for high-resolution electron beam imaging
JP6320186B2 (ja) * 2014-06-16 2018-05-09 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
JP6684717B2 (ja) * 2014-07-22 2020-04-22 インテリジェント ヴァイルス イメージング インコーポレイテッド 非点収差を自動補正するための方法
RU2614046C1 (ru) * 2015-10-27 2017-03-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" Фокусирующе-отклоняющая система для электронных пушек
JP6932050B2 (ja) * 2017-09-01 2021-09-08 株式会社日立ハイテク 走査電子顕微鏡
CN211670171U (zh) * 2020-05-19 2020-10-13 桂林狮达技术股份有限公司 自动消像散电子枪

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143829A (zh) * 2013-03-19 2013-06-12 桂林狮达机电技术工程有限公司 电子束焊机一枪多束焊接控制装置及其方法
CN106340339A (zh) * 2016-11-23 2017-01-18 桂林狮达机电技术工程有限公司 电子束加工设备工件表面聚焦电流自动整定方法及系统
CN111477529A (zh) * 2020-05-19 2020-07-31 桂林狮达技术股份有限公司 自动消像散电子枪及电子枪自动消像散方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951828A4 *

Also Published As

Publication number Publication date
RU2769346C1 (ru) 2022-03-30
EP3951828B1 (en) 2023-12-27
EP3951828A1 (en) 2022-02-09
CN111477529B (zh) 2024-05-14
CN111477529A (zh) 2020-07-31
EP3951828A4 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
CN104635617B (zh) 冷阴极电子枪电磁控制系统及其控制方法
US7442929B2 (en) Scanning electron microscope
WO2021232659A1 (zh) 自动消像散电子枪及电子枪自动消像散方法
US3291959A (en) Procedure and equipment for the automatic focussing of the charge carrier beam in devices for the working of materials by means of a charge carrier beam
JPS6255264B2 (zh)
CN109900421B (zh) 电离规和用于对高速中性气团的瞬态压强进行测量的系统
CN211670171U (zh) 自动消像散电子枪
WO2022057923A1 (zh) 四级杆质谱仪扫描速率的控制装置和方法
JP2833836B2 (ja) 走査型電子顕微鏡のオートフォーカス方法
JP2014053113A (ja) 電子ビーム加工機及びその電子ビーム加工機の調整方法
JP2946537B2 (ja) 電子光学鏡筒
CN214203609U (zh) 具有实时调整功能的质谱仪
RU2515222C1 (ru) Устройство и способы:настройки магнитной системы формирования пучка протонов в объектной плоскости протонографического комплекса, согласования магнитной индукции магнитооптической системы формирования изображения и контроля настройки многокадровой системы регистрации протонных изображений
JP2018160695A (ja) 電子ビーム加工機
JPS62108442A (ja) 静電レンズ
CN114257923B (zh) 一种动铁单元调磁电路及装置
US10468231B1 (en) Methods of operating particle microscopes and particle microscopes
JPH10208653A (ja) イオン源装置及びこれを用いた集束イオンビーム装置
JP4186334B2 (ja) イオン注入装置
CN117794041A (zh) 一种径向电场和角向磁场复用的电子束聚散焦调控装置
CN113365402A (zh) 限制等离子束的装置
JP2019091621A (ja) 荷電粒子線装置。
JP2004327118A (ja) 走査型電子顕微鏡のヒステリシス補正方法、及び走査型電子顕微鏡
JPS61220258A (ja) 走査形電子顕微鏡の自動焦点合わせ方法
van den Broek Experimental emittance diagrams of triode electron guns

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020916250

Country of ref document: EP

Effective date: 20210806

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE