WO2021230621A1 - 파워모듈 - Google Patents

파워모듈 Download PDF

Info

Publication number
WO2021230621A1
WO2021230621A1 PCT/KR2021/005883 KR2021005883W WO2021230621A1 WO 2021230621 A1 WO2021230621 A1 WO 2021230621A1 KR 2021005883 W KR2021005883 W KR 2021005883W WO 2021230621 A1 WO2021230621 A1 WO 2021230621A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
ceramic substrate
heat sink
power module
copper
Prior art date
Application number
PCT/KR2021/005883
Other languages
English (en)
French (fr)
Inventor
김종욱
빈진혁
조태호
여인태
박승곤
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Publication of WO2021230621A1 publication Critical patent/WO2021230621A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • H01L23/4924Bases or plates or solder therefor characterised by the materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor

Definitions

  • the present invention relates to a power module, and more particularly, to a power module having improved performance by applying a high output power semiconductor chip.
  • the power module is used to supply high voltage current to drive motors such as hybrid vehicles and electric vehicles.
  • the double-sided cooling power module has a substrate on top and a bottom of a semiconductor chip, respectively, and a heat sink on the outer surface of the substrate, respectively.
  • the double-sided cooling power module has an excellent cooling performance compared to a single-sided cooling power module having a heat sink on one side, and thus its use is gradually increasing.
  • Double-sided cooling power modules used in electric vehicles, etc. have a power semiconductor chip such as silicon carbide (SiC) and gallium nitride (GaN) mounted between the two substrates. It is important to satisfy both high strength and high heat dissipation characteristics at the same time.
  • SiC silicon carbide
  • GaN gallium nitride
  • An object of the present invention is to provide a power module that has high strength and high heat dissipation characteristics, has excellent bonding characteristics, can reduce a volume by minimizing a current path, and can improve efficiency and performance.
  • Another object of the present invention is to provide a power module in which a step structure is formed on a heat sink to adjust a distance between internal components of a substrate accommodated in a housing and to have an excellent heat dissipation function.
  • Another object of the present invention is to provide a power module capable of improving bonding reliability by bonding a housing and a heat sink with an adhesive film having an elastic function or an elastic adhesive, thereby improving fixing force and sealing force.
  • the power module of the present invention has a housing having an empty space that is opened vertically in the center, and an edge is joined to the lower surface of the housing through the empty space of the housing.
  • a heat sink with an exposed upper surface, a lower ceramic substrate bonded to the upper surface of the heat sink, an upper ceramic substrate spaced apart from the upper portion of the lower ceramic substrate and mounted with a semiconductor chip on the lower surface, and spaced apart from the upper ceramic substrate Includes a PCB board.
  • the heat sink may have a stepped portion with an upper surface exposed through an empty space of the housing.
  • An upper surface of the heat sink exposed through an empty space of the housing may be an embossed step portion, and an upper surface edge joined to the lower surface of the housing may be an engraved bottom portion.
  • the gap between the upper ceramic substrate and the PCB substrate may be adjusted by etching the embossed step portion or the intaglio bottom portion.
  • an upper surface exposed through an empty space of the housing may be an intaglio step portion, and an upper surface edge joined to the lower surface of the housing may be an embossed bottom portion.
  • the gap between the upper ceramic substrate and the PCB substrate may be adjusted by etching the intaglio step portion or the embossed bottom portion.
  • the heat sink may be made of copper or aluminum.
  • the semiconductor chip may be a GaN chip.
  • the lower ceramic substrate and the upper ceramic substrate may be one of an Active Metal Brazing (AMB) substrate, a Direct Bonded Copper (DBC) substrate, and a Thick Printing Copper (TPC) substrate.
  • AMB Active Metal Brazing
  • DRC Direct Bonded Copper
  • TPC Thick Printing Copper
  • the power module includes a housing having an empty space opening vertically in the center, a heat sink joined to the lower surface of the housing and exposed through the empty space of the housing, and an elastic joint disposed between the lower surface of the housing and the upper surface of the heat sink an adhesive layer.
  • the housing may be formed of an engineering plastic material.
  • the heat sink may be made of any one of copper and copper alloy materials.
  • the heat sink may have a multi-layer structure.
  • the heat sink may have a copper-molybdenum-copper three-layer structure or a copper-molybdenum alloy-copper three-layer structure.
  • the elastic adhesive layer may include an elastic layer, a first adhesive layer formed on the upper surface of the elastic layer and bonded to the housing, and a second adhesive layer formed on the lower surface of the elastic layer and bonded to the heat sink.
  • the elastic layer may be acrylic foam or urethane foam.
  • the first adhesive layer and the second adhesive layer may be an acrylic adhesive.
  • the elastic adhesive layer may be formed by interposing an adhesive film having elastic force between the housing and the heat sink, or by applying an elastic adhesive between the housing and the heat sink.
  • the elastic adhesive may include at least one of a urethane adhesive, an acrylic adhesive, a PUR adhesive, and an anaerobic adhesive.
  • the present invention has high strength and high heat dissipation characteristics, has excellent bonding characteristics, can reduce a volume by minimizing a current path, and is optimized for high-speed switching to improve efficiency and performance.
  • the present invention forms a step portion on the heat sink, and when it is necessary to adjust the distance between internal components mounted on the board by designing the step portion to be bonded to the ceramic substrate in the housing, the step portion of the heat sink or There is an effect that the distance between the parts can be easily adjusted by selectively etching the remaining parts except for the step part.
  • step portion of the heat sink is embossed, there is an effect of increasing the thickness of the portion where the heat dissipation performance should be excellent, so that the heat dissipation performance of the power module can be improved.
  • the present invention arranges and bonds an elastic adhesive layer between the housing and the heat sink, there is an effect of improving the bonding reliability between the housing and the heat sink, which is a heterogeneous bonding material having a large difference in thermal expansion coefficient.
  • the elastic adhesive layer of the present invention has a three-layer structure including an elastic layer between the two adhesive layers, close contact between the housing and the heat sink is possible, and the silicone liquid filled for insulation counts as a gap between the housing and the heat sink.
  • the elastic layer absorbs stress such as external vibration and shock and thermal deformation such as expansion and contraction, there is an effect that can contribute to increasing the operational reliability of the power module.
  • FIG. 1 is a perspective view of a power module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a power module according to an embodiment of the present invention.
  • FIG 3 is a side cross-sectional view of a power module according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing a housing according to an embodiment of the present invention.
  • FIG. 5 is a perspective view showing a lower ceramic substrate according to an embodiment of the present invention.
  • FIG. 6 is a view showing an upper surface and a lower surface of a lower ceramic substrate according to an embodiment of the present invention.
  • FIG. 7 is a perspective view showing an upper ceramic substrate according to an embodiment of the present invention.
  • FIG. 8 is a view showing an upper surface and a lower surface of an upper ceramic substrate according to an embodiment of the present invention.
  • FIG. 9 is a plan view of a PCB substrate according to an embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a state in which a connection pin is coupled to an upper ceramic substrate according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view illustrating a state in which a heat sink is assembled to a housing according to an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view illustrating a state in which a heat sink is assembled to a housing according to another embodiment of the present invention.
  • FIG. 13 is a configuration diagram for explaining a method of adjusting a distance between components using the step structure of the heat sink of FIG. 12 .
  • FIG. 14 is a configuration diagram showing an example in which the step structure of the heat sink according to another embodiment of the present invention is modified.
  • FIG. 15 is a cross-sectional view illustrating a state in which a heat sink is bonded to a housing according to another embodiment of the present invention.
  • 16 is a cross-sectional view showing the structure of an elastic bonding layer according to another embodiment of the present invention.
  • 560a first adhesive layer 560b: elastic layer
  • first adhesive layer 610 first terminal
  • bus bar G semiconductor chip (GaN chip)
  • FIG. 1 is a perspective view showing a shape of a power module according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing a shape of a power module according to an embodiment of the present invention.
  • the power module 10 is an electronic component in the form of a package formed by accommodating various components constituting the power module in a housing 100 .
  • the power module 10 is formed in a form to protect by arranging a substrate and elements in the housing 100 .
  • the power module 10 may include a plurality of substrates and a plurality of semiconductor chips.
  • the power module 10 according to the embodiment includes a housing 100 , a lower ceramic substrate 200 , an upper ceramic substrate 300 , a PCB substrate 400 , and a heat sink 500 .
  • the housing 100 has an empty space that is opened vertically in the center, and the first terminal 610 and the second terminal 620 are positioned on both sides.
  • a heat sink 500, a lower ceramic substrate 200, an upper ceramic substrate 300, and a PCB substrate 400 are sequentially stacked at regular intervals in the top and bottom in an empty space in the center, and the first terminals on both sides
  • a support bolt 630 for connecting the external terminal to the 610 and the second terminal 620 is fastened.
  • the first terminal 610 and the second terminal 620 are used as input/output terminals of power.
  • the first terminal 610 and the second terminal 620 may be formed of a conductive metal, and for example, the first terminal 610 and the second terminal 620 may be formed of copper or a copper alloy material.
  • the lower ceramic substrate 200 , the upper ceramic substrate 300 , and the PCB substrate 400 are sequentially accommodated in an empty space in the center of the housing 100 .
  • the heat sink 500 is disposed on the lower surface of the housing 100
  • the lower ceramic substrate 200 is attached to the upper surface of the heat sink 500
  • the upper ceramic substrate 300 is on the upper side of the lower ceramic substrate 200.
  • the PCB substrate 400 is arranged at a predetermined interval on the upper ceramic substrate 300 .
  • the state in which the PCB substrate 400 is disposed in the housing 100 is the guide grooves 401 and 402 formed to be recessed into the edge of the PCB substrate 400 and the guide ribs 101 formed in the housing 100 to correspond to the guide grooves 401 and 402 .
  • the locking jaw 102 may be fixed.
  • a plurality of guide grooves 401 and 402 are formed around the edge of the PCB substrate 400 according to the embodiment, and some of the guide grooves 401 are guided by the guide rib 101 formed on the inner surface of the housing 100 . and the guide groove 402 of the remaining part of them is hung through the locking protrusion 102 formed on the inner surface of the housing 100 .
  • the heat sink 500, the lower ceramic substrate 200, and the upper ceramic substrate 300 are accommodated in the empty space in the center of the housing 100, and the state in which the PCB substrate 400 is disposed on the upper surface is a fastening bolt ( (not shown) may be fixed.
  • a fastening bolt (not shown)
  • fixing the PCB substrate 400 to the housing 100 with a guide groove and a locking jaw structure reduces the assembly time and simplifies the assembly process compared to the case of fixing with a fastening bolt.
  • the housing 100 has fastening holes 103 formed at four corners.
  • the fastening hole 103 communicates with the communication hole 501 formed in the heat sink 500 .
  • the fixing bolt 150 is fastened through the fastening hole 103 and the communication hole 501 , and the end of the fixing bolt 150 passing through the fastening hole 103 and the communication hole 501 is the heat sink 500 . It may be fastened to a fixing hole of a fixing jig to be disposed on the lower surface.
  • the bus bar 700 is connected to the first terminal 610 and the second terminal 620 .
  • the bus bar 700 connects the first terminal 610 and the second terminal 620 to the upper ceramic substrate 300 .
  • Three bus bars 700 are provided.
  • One of the bus bars 700 connects the + terminal of the first terminals 610 with the first electrode pattern (a) of the upper ceramic substrate 300 , and the other connects the - terminal of the first terminals 610 . It is connected to the three electrode pattern (c), and the other one connects the second terminal 620 to the second electrode pattern (b).
  • the first electrode pattern (a), the second electrode pattern (b), and the third electrode pattern (c) refer to FIG. 7 to be described later.
  • FIG 3 is a side cross-sectional view of a power module according to an embodiment of the present invention.
  • the power module 10 has a multilayer structure of a lower ceramic substrate 200 and an upper ceramic substrate 300 , and a semiconductor chip between the lower ceramic substrate 200 and the upper ceramic substrate 300 .
  • the semiconductor chip (G) is any one of GaN (Gallium Nitride) chip, MOSFET (Metal Oxide Semiconductor Field Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), JFET (Junction Field Effect Transistor), HEMT (High Electric Mobility Transistor) However, preferably, the semiconductor chip (G) uses a GaN chip.
  • the GaN (Gallium Nitride) chip is a semiconductor chip that functions as a high-power (300A) switch and a high-speed ( ⁇ 1MHz) switch.
  • the GaN chip has the advantage of being stronger in heat than the existing silicon-based semiconductor chip and reducing the size of the chip.
  • the GaN chip (G) is a power semiconductor chip optimized for high performance and high efficiency due to its high electron mobility and high electron density characteristics, enabling high-speed switching and miniaturization.
  • the GaN chip (G) operates stably even at high temperatures and has high output characteristics, enabling high efficiency.
  • the lower ceramic substrate 200 and the upper ceramic substrate 300 are formed of a ceramic substrate including a metal layer brazed to at least one surface of the ceramic substrate and the ceramic substrate to increase the heat dissipation efficiency of the heat generated from the semiconductor chip (G). do.
  • the ceramic substrate may be, for example, any one of alumina (Al 2 O 3 ), AlN, SiN, and Si 3 N 4 .
  • the metal layer is formed of an electrode pattern for mounting a semiconductor chip (G) and an electrode pattern for mounting a driving element, respectively, with a metal foil brazed on a ceramic substrate.
  • the metal layer is formed as an electrode pattern in a region where a semiconductor chip or peripheral components are to be mounted.
  • the metal foil may be an aluminum foil or a copper foil as an example.
  • the metal foil is fired at 780° C. to 1100° C. on a ceramic substrate and brazed to the ceramic substrate.
  • Such a ceramic substrate is called an AMB substrate.
  • AMB substrate As an example, a DBC substrate, a TPC substrate, and a DBA substrate may be applied. However, in terms of durability and heat dissipation efficiency, AMB substrates are most suitable. For the above reasons, the lower ceramic substrate 200 and the upper ceramic substrate 300 are AMB substrates as an example.
  • the PCB substrate 400 is disposed on the upper ceramic substrate 300 . That is, the power module 10 has a three-layer structure of a lower ceramic substrate 200 , an upper ceramic substrate 300 , and a PCB substrate 400 .
  • the semiconductor chip (G) for high power control is disposed between the upper ceramic substrate 200 and the lower ceramic substrate 300 to increase heat dissipation efficiency, and the PCB substrate 400 for low power control is disposed on the uppermost part of the semiconductor Prevents damage to the PCB substrate 400 due to the heat generated in the chip (G).
  • the lower ceramic substrate 200 , the upper ceramic substrate 300 , and the PCB substrate 400 may be connected or fixed with pins.
  • the heat sink 500 is disposed under the lower ceramic substrate 200 .
  • the heat sink 500 is for dissipating heat generated from the semiconductor chip (G).
  • the heat sink 500 is formed in a rectangular plate shape having a predetermined thickness.
  • the heat sink 500 is formed in an area corresponding to the housing 100 and may be formed of copper or aluminum to increase heat dissipation efficiency.
  • FIG. 4 is a perspective view showing a housing according to an embodiment of the present invention.
  • an empty space is formed in the center of the housing 100 , and a first terminal 610 and a second terminal 620 are positioned at both ends.
  • the housing 100 may be formed by an insert injection method such that the first terminal 610 and the second terminal 620 are integrally fixed at both ends.
  • the housing 100 has fastening holes 103 formed at four corners.
  • the fastening hole 103 communicates with the communication hole 501 formed in the heat sink 500 .
  • a support hole 104 is formed in the first terminal 610 and the second terminal 620 .
  • a support bolt (reference numeral 630 in FIG. 2 ) for connecting the first terminal 610 and the second terminal 620 to an external terminal such as a motor is fastened to the support hole 104 .
  • the housing 100 has at least one guide rib 101 and a locking protrusion 102 formed on an inner surface thereof.
  • the guide rib 101 and the locking protrusion 102 are configured to fix the PCB substrate 400 to the housing 100 .
  • the PCB board (reference numeral 400 in FIG. 2 ) has a guide groove 401 through which the guide rib 101 is guided and a guide groove 402 for hanging through the guide groove 401 around the outer surface.
  • the guide rib 101 and the locking protrusion 102 formed in the housing 100 stably fix the PCB substrate 400 to the housing 100 .
  • the housing 100 is formed of a heat insulating material.
  • the housing 100 may be formed of a heat insulating material so that heat generated from the semiconductor chip G is not transferred to the PCB substrate 400 above through the housing 100 .
  • the housing 100 may be made of a heat-dissipating plastic material.
  • the housing 100 may be formed of a heat-dissipating plastic material so that heat generated from the semiconductor chip G can be radiated to the outside through the housing 100 .
  • the housing 100 may be formed of engineering plastic.
  • Engineering plastics have high heat resistance, excellent strength, chemical resistance, and abrasion resistance, and can be used for a long time at 150°C or higher.
  • the engineering plastic may be made of one of polyamide, polycarbonate, polyester, and modified polyphenylene oxide.
  • the semiconductor chip (G) operates repeatedly as a switch, which causes the housing 100 to be stressed by high temperature and temperature changes. It also has excellent heat dissipation properties.
  • the housing 100 may be manufactured by insert-injecting a terminal made of aluminum or copper to an engineering plastic material.
  • the housing 100 made of an engineering plastic material spreads heat and radiates heat to the outside.
  • the housing 100 may be made of a high heat dissipation engineering plastic that may have higher thermal conductivity than a general engineering plastic material and is lightweight compared to aluminum by filling the resin with a high thermal conductivity filler.
  • the housing 100 may have heat dissipation properties by applying a graphene heat dissipation coating material to the inside and outside of an engineering plastic or high strength plastic material.
  • FIG. 5 is a perspective view showing a lower ceramic substrate according to an embodiment of the present invention.
  • the lower ceramic substrate 200 is attached to the upper surface of the heat sink 500 .
  • the lower ceramic substrate 200 is disposed between the semiconductor chip G and the heat sink 500 .
  • the lower ceramic substrate 200 transfers heat generated from the semiconductor chip G to the heat sink 500 and insulates between the semiconductor chip G and the heat sink 500 to prevent a short circuit.
  • the lower ceramic substrate 200 may be soldered to the upper surface of the heat sink 500 .
  • the heat sink 500 is formed in an area corresponding to the housing 100 and may be formed of a copper material to increase heat dissipation efficiency.
  • As a solder for soldering joint SnAg, SnAgCu, etc. may be used.
  • FIG. 6 is a view showing an upper surface and a lower surface of a lower ceramic substrate according to an embodiment of the present invention.
  • the lower ceramic substrate 200 includes a ceramic substrate 201 and metal layers 202 and 203 brazed to upper and lower surfaces of the ceramic substrate 201 .
  • the thickness of the ceramic substrate 201 may be 0.68 t
  • the thickness of the metal layers 202 and 203 formed on the upper and lower surfaces of the ceramic substrate 201 may be 0.8 t.
  • the metal layer 202 of the upper surface 200a of the lower ceramic substrate 200 may be an electrode pattern on which a driving element is mounted.
  • the driving device mounted on the lower ceramic substrate 200 may be the NTC temperature sensor 210 .
  • the NTC temperature sensor 210 is mounted on the upper surface of the lower ceramic substrate 200 .
  • the NTC temperature sensor 210 is for providing temperature information in the power module due to heat generation of the semiconductor chip G.
  • the metal layer 203 of the lower surface 200b of the lower ceramic substrate 200 may be formed on the entire lower surface of the lower ceramic substrate 200 to facilitate heat transfer to the heat sink 500 .
  • An insulating spacer 220 is bonded to the lower ceramic substrate 200 .
  • the insulating spacer 220 is bonded to the upper surface of the lower ceramic substrate 200 and defines a separation distance between the lower ceramic substrate 200 and the upper ceramic substrate 300 .
  • the insulating spacer 220 defines the separation distance between the lower ceramic substrate 200 and the upper ceramic substrate 300 to increase the heat dissipation efficiency of the heat generated by the semiconductor chip G mounted on the lower surface of the upper ceramic substrate 300, Interference between the semiconductor chips G is prevented to prevent an electric shock such as a short circuit.
  • a plurality of insulating spacers 220 are bonded to each other at predetermined intervals around the upper surface edge of the lower ceramic substrate 200 .
  • a gap between the insulating spacers 220 is used as a space to increase heat dissipation efficiency.
  • the insulating spacers 220 are arranged around the edge of the lower ceramic substrate 200 as a reference, and for example, eight insulating spacers 220 are arranged at regular intervals.
  • the insulating spacer 220 is integrally bonded to the lower ceramic substrate 200 , and may be applied to check alignment when the upper ceramic substrate 300 is disposed on the lower ceramic substrate 200 .
  • the insulating spacer 220 is formed on the upper ceramic substrate 300 .
  • the insulating spacer 220 supports the lower ceramic substrate 200 and the upper ceramic substrate 300 , thereby contributing to preventing bending of the lower ceramic substrate 200 and the upper ceramic substrate 300 .
  • the insulating spacer 220 may be formed of a ceramic material for insulation between the chip mounted on the lower ceramic substrate 200 and the chip and the component mounted on the upper ceramic substrate 300 .
  • the insulating spacer may be formed of one selected from Al 2 O 3 , ZTA, Si 3 N 4 , and AlN, or an alloy in which two or more thereof are mixed.
  • Al 2 O 3 , ZTA, Si 3 N 4 , and AlN are insulating materials having excellent mechanical strength and heat resistance.
  • the insulating spacer 220 is brazed to the lower ceramic substrate 200 .
  • the substrate may be damaged due to thermal and mechanical shock during soldering or pressure firing. Therefore, brazing is performed.
  • a brazing bonding layer including an AgCu layer and a Ti layer may be used. Heat treatment for brazing may be performed at 780°C to 900°C.
  • the insulating spacer 220 is integrally formed with the metal layer 202 of the lower ceramic substrate 200 .
  • the thickness of the brazing bonding layer is 0.005 mm to 0.08 mm, which is thin enough not to affect the height of the insulating spacer, and the bonding strength is high.
  • An interconnection spacer 230 is installed between the lower ceramic substrate 200 and the upper ceramic substrate 300 .
  • the interconnection spacer 230 may perform electrical connection between electrode patterns in place of a connection pin in a substrate having an upper and lower multilayer structure.
  • the interconnection spacer 230 may directly connect between substrates while preventing electrical loss and short circuit, increase bonding strength, and improve electrical characteristics.
  • One end of the interconnection spacer 230 may be bonded to the electrode pattern of the lower ceramic substrate 200 by a brazing bonding method.
  • the other end of the interconnection spacer 230 may be bonded to the electrode pattern of the upper ceramic substrate 300 by a brazing bonding method or a soldering bonding method.
  • the interconnection spacer 230 may be Cu or a Cu+CuMo alloy.
  • FIG. 7 is a perspective view showing an upper ceramic substrate according to an embodiment of the present invention
  • FIG. 8 is a view showing an upper surface and a lower surface of the upper ceramic substrate according to an embodiment of the present invention.
  • the upper ceramic substrate 300 is disposed on the lower ceramic substrate 200 .
  • the upper ceramic substrate 300 is an intermediate substrate having a stacked structure.
  • the upper ceramic substrate 300 has a semiconductor chip (G) mounted on its lower surface, and constitutes a high-side circuit and a low-side circuit for high-speed switching.
  • G semiconductor chip
  • the upper ceramic substrate 300 includes a ceramic substrate 301 and metal layers 302 and 303 brazed to upper and lower surfaces of the ceramic substrate 301 .
  • the thickness of the ceramic substrate is 0.38t and the thickness of the electrode pattern on the upper surface 300a and the lower surface 300b of the ceramic substrate is 0.3t as an example.
  • the ceramic substrate must have the same pattern thickness on the upper and lower surfaces to prevent distortion during brazing.
  • the electrode pattern formed by the metal layer 302 on the upper surface of the upper ceramic substrate 300 is divided into a first electrode pattern (a), a second electrode pattern (b), and a third electrode pattern (c).
  • the electrode pattern formed by the metal layer 303 on the lower surface of the upper ceramic substrate 300 corresponds to the electrode pattern formed by the metal layer 302 on the upper surface of the upper ceramic substrate 300 .
  • the division of the electrode pattern on the upper surface of the upper ceramic substrate 300 into a first electrode pattern (a), a second electrode pattern (b), and a third electrode pattern (c) is a high-side circuit for high-speed switching. and to separate the low-side circuit.
  • the semiconductor chip G is provided in the form of a flip chip by an adhesive layer such as solder or silver paste on the lower surface 300b of the upper ceramic substrate 300 .
  • an adhesive layer such as solder or silver paste
  • two semiconductor chips G may be connected in parallel for high-speed switching.
  • Two semiconductor chips (G) are disposed at positions connecting the first electrode pattern (a) and the second electrode pattern (b) among the electrode patterns of the upper ceramic substrate 300, and the other two are the second electrode pattern (b). ) and the third electrode pattern (c) are arranged in parallel at a position connecting it.
  • the capacity of one semiconductor chip G is 150A. Therefore, two semiconductor chips (G) are connected in parallel so that the capacity becomes 300A.
  • the semiconductor chip G is a GaN chip.
  • the purpose of the power module using the semiconductor chip G is high-speed switching.
  • the gate drive IC terminal be connected by a very short distance between the gate terminal of the semiconductor chip (G). Therefore, the connection distance between the gate drive IC and the gate terminal is minimized by connecting the semiconductor chips G in parallel.
  • the gate terminal and the source terminal of the semiconductor chip G may be disposed such that the connection pin is connected to the center between the semiconductor chip G and the semiconductor chip G. If the gate terminal and the source terminal do not keep the same distance or the length of the pattern is different, a problem occurs.
  • the gate terminal is a terminal for turning on/off the semiconductor chip G by using a low voltage.
  • the gate terminal may be connected to the PCB substrate 400 through a connection pin.
  • the source terminal is a terminal for high current to enter and exit.
  • the semiconductor chip G includes a drain terminal, and the source terminal and the drain terminal are divided into N-type and P-type so that the direction of the current can be changed.
  • the source terminal and the drain terminal are responsible for input and output of current through the first electrode pattern (a), the second electrode pattern (b), and the third electrode pattern (c), which are electrode patterns for mounting the semiconductor chip (G).
  • the source terminal and the drain terminal are connected to the first terminal 610 and the second terminal 620 of FIG. 1 in charge of input and output of power.
  • the first terminal 610 shown in FIG. 1 includes a + terminal and a - terminal, and power introduced from the first terminal 610 to the + terminal is the upper portion shown in FIG. 8 .
  • the semiconductor chip (G) and the second electrode pattern (b) disposed between the first electrode pattern (a) and the second electrode pattern (b) 2 is output to the terminal 620 .
  • the power supplied to the second terminal 620 shown in FIG. 1 is disposed between the second electrode pattern (b), the second electrode pattern (b) and the third electrode pattern (c) shown in FIG. 8 . It is output to the - terminal of the first terminal 610 through the semiconductor chip G and the third electrode pattern c.
  • the upper ceramic substrate 300 may have a cutting part 310 formed in a portion corresponding to the NTC temperature sensor 210 .
  • An NTC temperature sensor 210 is mounted on the upper surface of the lower ceramic substrate 200 .
  • the NTC temperature sensor 210 is for providing temperature information in the power module due to heat generation of the semiconductor chip G.
  • the thickness of the NTC temperature sensor 210 is thicker than the gap between the lower ceramic substrate 200 and the upper ceramic substrate 300 , interference between the NTC temperature sensor 210 and the upper ceramic substrate 300 occurs.
  • the upper ceramic substrate 300 of the portion that interferes with the NTC temperature sensor 210 is cut to form a cutting portion 310 .
  • a silicone liquid or epoxy for molding may be injected into the space between the upper ceramic substrate 300 and the lower ceramic substrate 200 through the cutting part 310 .
  • silicone liquid or epoxy In order to insulate between the upper ceramic substrate 300 and the lower ceramic substrate 200, silicone liquid or epoxy must be injected.
  • one side of the upper ceramic substrate 300 may be cut to form a cutting portion 310, and the cutting portion 310 may be formed. is formed at a position corresponding to the NTC temperature sensor 210 to prevent interference between the upper ceramic substrate 300 and the NTC temperature sensor 210 .
  • Silicon liquid or epoxy is used in the space between the lower ceramic substrate 200 and the upper ceramic substrate 300 and the upper ceramic substrate 300 and the PCB substrate 400 for the purpose of protecting the semiconductor chip (G), alleviating vibration, and insulating. You can fill in the space between them.
  • a through hole 320 is formed in the upper ceramic substrate 300 .
  • the through hole 320 connects the semiconductor chip G mounted on the upper ceramic substrate 300 to the driving element mounted on the PCB substrate 400 in the shortest distance in the substrate structure of the upper and lower multilayers, and the lower ceramic substrate 200 It is to connect the NTC temperature sensor 210 mounted to the PCB substrate 400 with the driving device mounted on the shortest distance.
  • Eight through-holes 320 are formed at a position where the semiconductor chip is installed, and two through-holes are installed at a position where the NTC temperature sensor is installed, so that a total of 10 can be formed.
  • a plurality of through-holes 320 may be formed in the portion where the first electrode pattern a and the third electrode pattern c are formed in the upper ceramic substrate 300 .
  • the plurality of through holes 320 formed in the first electrode pattern (a) allow the current flowing into the first electrode pattern (a) of the upper surface of the upper ceramic substrate 300 to be formed on the lower surface of the upper ceramic substrate 300 . It moves to the electrode pattern (a) and flows into the semiconductor chip (G).
  • the plurality of through-holes 320 formed in the third electrode pattern (c) allow the current flowing into the semiconductor chip (G) to pass through the third electrode pattern (c) of the lower surface of the upper ceramic substrate (300) to the upper ceramic substrate (300). ) to move to the third electrode pattern (c) on the upper surface.
  • the through hole 320 may have a diameter of 0.5 mm to 5.0 mm.
  • a connection pin is installed in the through hole 320 to be connected to the electrode pattern of the PCB substrate, and may be connected to the driving device mounted on the PCB substrate 400 through this.
  • the connection between the electrode patterns through the through-holes 320 and the connection pins installed in the through-holes 320 in the upper and lower multi-layered substrate structure eliminates various output losses through the shortest distance connection, thereby improving the constraints according to the size of the power module. can contribute
  • a plurality of via holes 330 may be formed in the electrode pattern of the upper ceramic substrate 300 .
  • the via hole 330 may be processed by at least 50% of the substrate area.
  • the area of the via hole 330 described above has been described as an example in which at least 50% or more of the substrate area is applied, but the present invention is not limited thereto and may be processed to 50% or less.
  • 152 via holes may be formed in the first electrode pattern (a)
  • 207 via holes may be formed in the second electrode pattern (b)
  • 154 via holes may be formed in the third electrode pattern (c).
  • the plurality of via holes 330 formed in each electrode pattern are for conducting a large current and distributing a large current.
  • the via hole 330 is filled with a conductive material.
  • the conductive material may be Ag or an Ag alloy.
  • the Ag alloy may be an Ag-Pd paste.
  • the conductive material filled in the via hole 330 electrically connects the electrode pattern on the upper surface and the electrode pattern on the lower surface of the upper ceramic substrate 300 .
  • the via hole 330 may be formed by laser processing. The via hole 330 can be seen in the enlarged view of FIG. 8 .
  • FIG. 9 is a plan view of a PCB substrate according to an embodiment of the present invention.
  • the PCB substrate 400 is for switching the semiconductor chip G or for switching the semiconductor chip (GaN chip) using information sensed by the NTC temperature sensor (reference numeral 210 in FIG. 7 ).
  • the driving element is mounted.
  • the driving device includes a Gate Drive IC.
  • a capacitor 410 is mounted on the PCB substrate 400 .
  • the capacitor 410 includes a semiconductor chip G disposed to connect the first electrode pattern a and the second electrode pattern b of the upper ceramic substrate 300 and a second electrode pattern (G) of the upper ceramic substrate 300 . It is mounted on the upper surface of the PCB substrate 400 at a position corresponding to a position between the semiconductor chip G disposed to connect b) and the third electrode pattern c.
  • the gate drive IC circuit includes a high side gate drive IC and a low side gate drive IC.
  • FIG. 10 is a perspective view illustrating a state in which a connection pin is coupled to an upper ceramic substrate according to an embodiment of the present invention.
  • the power module 10 includes a connection pin 900 for performing electrical connection between electrode patterns.
  • connection pin 900 is installed on the upper ceramic substrate 300 .
  • the connection pin 900 is inserted into the through hole formed in the upper ceramic substrate 300 and the PCB substrate 400 , and the gate terminal for mounting the semiconductor chip G and the electrode of the PCB substrate 400 . You can connect patterns.
  • connection pin 900 is inserted into the through hole 320 formed at a position adjacent to the NTC temperature sensor 210 in the upper ceramic substrate 300 .
  • the connection pin 900 fitted into the through hole 320 formed at a position adjacent to the NTC temperature sensor 210 is inserted into the through hole formed at a position corresponding to the PCB substrate 400 to the terminal of the NTC temperature sensor 210 and the PCB.
  • the electrode patterns of the substrate 400 may be connected.
  • connection pin 900 is inserted into the plurality of through holes 320 formed in a line in the first electrode pattern (a) and the third electrode pattern (c) in the upper ceramic substrate 300 .
  • the connection pins 900 fitted into the plurality of through holes 320 formed in the first electrode pattern (a) and the third electrode pattern (c) are inserted into the through holes formed at positions corresponding to the PCB substrate 400 to form a GaN chip ( G) may be connected to the capacitor 410 of the PCB substrate 400 .
  • connection pin 900 connects the GaN chip G mounted on the upper ceramic substrate 300 to the driving device mounted on the PCB substrate 400 with the shortest distance, thereby eliminating various output losses and enabling high-speed switching.
  • FIG. 11 is a cross-sectional view illustrating a state in which a heat sink is assembled to a housing according to an embodiment of the present invention.
  • the heat sink 500 is assembled to the lower surface of the housing 100 .
  • the heat sink 500 is formed in an area corresponding to the housing 100 and may be formed of a copper material to increase heat dissipation efficiency.
  • the lower ceramic substrate 200 is bonded to the upper surface of the heat sink 500 exposed to the empty space of the housing 100 , and the upper ceramic substrate 300 is fixed to the upper portion of the lower ceramic substrate 200 . They are arranged at intervals, and the PCB substrate 400 is arranged at regular intervals on the upper ceramic substrate 300 .
  • the heat sink 500 may have a flat top surface and may have an edge bonded to and fixed to the lower surface of the housing 100 .
  • the heat sink 500 may be bonded to the injected housing 100 using soldering bonding or a non-conductive adhesive, and fixed using a fixing bolt (reference numeral 150 in FIG. 2 ).
  • solder As the solder, SnAg, SnAgCu, or the like may be used.
  • FIG. 12 is a cross-sectional view illustrating a state in which a heat sink is assembled to a housing according to another embodiment of the present invention.
  • the heat dissipation plate 500 may have an embossed step portion 500a formed on its upper surface.
  • the embossed step portion 500a may be formed by embossing the upper surface of the heat sink 500 exposed to the empty space of the housing 100 .
  • An edge portion bonded to the housing 100 on the upper surface of the heat sink 500 becomes the engraved bottom portion 500b.
  • the embossed step portion 500a and the engraved bottom portion 500b may be used to selectively etch the upper surface of the heat sink 500 to adjust the distance between the components.
  • the embossed step portion 500a or the engraved bottom portion 500b may be used to adjust the distance between the upper ceramic substrate 300 and the PCB substrate 400 through selective additional etching.
  • FIG. 13 is a configuration diagram for explaining a method of adjusting a distance between components using the step structure of the heat sink of FIG. 12 .
  • the separation distance between the upper ceramic substrate 300 and the PCB substrate 400 should be maintained at least 0.5T (0.5mm).
  • the separation distance between the upper ceramic substrate 300 and the PCB substrate 400 is 0 mm
  • the surface temperature of the PCB substrate 400 is 85.8° C.
  • the separation distance is 0.5 mm
  • the surface temperature of the PCB substrate 400 is 77.3° C.
  • the surface temperature of the PCB substrate 400 was measured to be 74.0° C. when the separation distance was 0.8 mm. Therefore, it is preferable that the separation distance between the upper ceramic substrate 300 and the PCB substrate 400 to prevent damage to the elements mounted on the PCB substrate 400 is at least 0.5T (0.5 mm).
  • Such a power module may generate an error depending on its design, and may require adjustment of the distance between internal components mounted on the board. In this case, it is necessary to increase or decrease the height of the housing 100 . For this, a problem arises in that a new mold for molding the housing 100 needs to be made.
  • the embossed stepped portion 500a of the heat sink 500 shown in FIG. 13 is etched to the height of the embossed stepped portion 500a of the heat sink 500 ( The distance between the parts can be easily adjusted by lowering M) or increasing the height (M) of the embossed stepped portion 500a inserted into the housing 100 by etching the edge engraved bottom portion 500b.
  • the heat sink 500 may adjust the distance between internal components mounted on the substrate by increasing or decreasing the height of the stepped portion 500a through selective additional etching of the embossed step portion 500a or the intaglio bottom portion 500b. have.
  • the thickness of the heat sink 500 may be 4 mm as an example.
  • FIG. 14 is a configuration diagram showing an example in which the step structure of the heat sink according to another embodiment of the present invention is modified.
  • the heat dissipation plate 500 may have an intaglio step portion 500c formed on its upper surface.
  • the intaglio step portion 500c may be formed by engraving the upper surface of the heat sink 500 exposed to the empty space of the housing 100 .
  • An edge portion bonded to the housing 100 on the upper surface of the heat sink 500 becomes the embossed bottom portion 500d.
  • the intaglio step portion 500c and the embossed bottom portion 500d may be used to selectively etch the upper surface of the heat sink 500 to adjust the distance between the components.
  • the intaglio step portion 500c or the embossed bottom portion 500d may be used to adjust the gap between the upper ceramic substrate 300 and the PCB substrate 400 through selective additional etching.
  • the intaglio step 500c of the heat sink 500 is additionally etched to increase the height (N) of the intaglio step 500c of the heat sink 500
  • the distance between the parts can be easily adjusted by lowering or increasing the relative height of the intaglio step portion 500c disposed inside the housing 100 by additionally etching the edge embossed bottom portion 500d.
  • the embossed stepped portion 500a and the engraved bottom portion 500b or the engraved stepped portion 500c and the embossed bottom portion 500d formed on the upper surface of the heat sink 500 described above is an upper ceramic substrate disposed inside the housing 100 .
  • the separation distance between 300 and the PCB substrate 400 can be adjusted, the distance between circuits inside the power module can be adjusted according to each heating condition, and the distance between internal components can also be adjusted according to each heating condition.
  • anode step portion 500a formed on the upper surface of the heat dissipation plate 500 has an effect of increasing the thickness of the portion where the heat dissipation performance should be excellent, so that the heat dissipation performance can be improved.
  • FIG. 15 is a cross-sectional view illustrating a state in which a heat sink is bonded to a housing according to another embodiment of the present invention.
  • the heat sink 500 As shown in FIG. 15 , the heat sink 500 according to another embodiment is bonded to the lower surface of the housing 100 , and the upper surface is exposed through the empty space of the housing 100 .
  • the heat sink 500 has an area corresponding to the housing 100 .
  • the heat sink 500 includes an elastic adhesive layer 560 that is bonded and disposed between the lower surface of the housing 100 and the upper surface of the heat sink 500 .
  • the elastic adhesive layer 560 pre-bonds the heat sink 500 to the housing 100 before fixing the heat sink 500 and the housing 100 with the fixing bolts (reference numeral 150 in FIG. 2 ) to increase the fixing force of the entire power module. This is to improve sealing properties.
  • the housing 100 may be formed of an engineering plastic material.
  • the GaN chip (G) repeatedly operates as a switch, whereby the housing 100 is stressed by high temperature and temperature change.
  • the engineering plastic may be made of one of polyamide, polycarbonate, polyester, and modified polyphenylene oxide.
  • the heat sink 500 may be formed of copper or a copper alloy to increase heat dissipation efficiency.
  • the bonding strength between the engineering plastic and the metal is lowered due to a difference in coefficient of thermal expansion, so that the housing 100 and the heat sink 500 may be separated and the bonding reliability may be reduced.
  • Engineering plastics basically have weak bonding strength with metals. Therefore, by disposing an elastic adhesive layer 560 having an elastic force between the housing 100 formed of engineering plastic and the heat sink 500 made of metal, the bonding between the housing 100 and the heat sink 500 is facilitated.
  • the heat sink 500 may be formed in multiple layers.
  • the heat sink 500 may have a three-layer structure of copper-molybdenum-copper.
  • the heat sink 500 may have a three-layer structure of copper-molybdenum alloy-copper.
  • the molybdenum alloy may be molybdenum copper (CuMo).
  • 16 is a cross-sectional view showing the structure of an elastic bonding layer according to another embodiment of the present invention.
  • the elastic adhesive layer 560 includes a first adhesive layer 560a, an elastic layer 560b, and a second adhesive layer 560c.
  • the first adhesive layer 560a is formed on the upper surface of the elastic layer 560b and is bonded to the housing 100 .
  • the second adhesive layer 560c is formed on the lower surface of the elastic layer 560b and is bonded to the heat sink 500 .
  • the elastic layer 560b is disposed between the first adhesive layer 560a and the second adhesive layer 560c so that the first adhesive layer 560a is bonded to the housing 100 and the second adhesive layer 560c is attached to the heat sink 500 . It serves to increase the bonding strength by increasing the contact area during bonding.
  • the first adhesive layer 560a may be made of an acrylic adhesive
  • the elastic layer 560b may be made of acrylic foam or urethane foam
  • the second adhesive layer 560c may be made of an acrylic adhesive.
  • the thickness of the elastic layer 560b is formed to have a predetermined thickness in a range in which the sliding phenomenon of the first adhesive layer 560a and the second adhesive layer 560c does not occur. Since the elastic layer 560b exhibits rubber elasticity, it absorbs stress such as external vibration and shock and thermal deformation such as expansion and contraction.
  • the first adhesive layer 560a bonded to the housing 100 may be made of an acrylic adhesive for rubber plastics, and may be, for example, ethyl cyanoacrylate.
  • the second adhesive layer 560c bonded to the heat sink 500 may be formed of an acrylic adhesive for metal, and may be, for example, methylcyanoacrylate.
  • the elastic adhesive layer 560 may be formed by interposing an adhesive film having elastic force between the housing 100 and the heat sink 500, or by applying an elastic adhesive between the housing 100 and the heat sink 500. .
  • the adhesive film may be a film having a three-layer structure of the first adhesive layer 560a / the elastic layer 560b / the second adhesive layer 560c.
  • the adhesive film is provided with a release layer attached to each of the first adhesive layer 560a and the second adhesive layer 560c, the release layer is removed, and the housing 100 is interposed between the housing 100 and the heat sink 500 . ) and the heat sink 500 may be bonded.
  • the elastic adhesive is a flexible paste that can be uniformly applied.
  • the elastic adhesive may include one or more of a urethane adhesive, an acrylic adhesive, a PUR adhesive, and an anaerobic adhesive. Since the elastic adhesive exhibits rubber elasticity, it absorbs stress such as external vibration and shock and thermal deformation such as expansion and contraction. In addition, the elastic adhesive prevents stress concentration from occurring at the bonding interface between the housing 100 and the heat sink 500 , thereby enabling bonding of heterogeneous bonding materials having a large difference in thermal expansion coefficient.
  • urethane adhesives have higher heat resistance than epoxy adhesives, so they have a wide operating temperature range, strong impact resistance, and good flexibility.
  • the above-described elastic adhesive layer 560 increases bonding reliability by preventing a decrease in bonding strength due to a difference in thermal expansion between the housing 100 made of engineering plastic and the heat sink 500 made of metal, and the elastic layer 560b is subjected to external vibration. , and absorbs stress such as impact and thermal deformation such as expansion and contraction, thereby contributing to increasing the operational reliability of the power module 10 .
  • the distance between the internal components mounted on the board can be easily adjusted by placing a step portion on the heat sink, if necessary, and the heat dissipation performance can be improved by increasing the thickness of the portion where the heat dissipation performance should be excellent. There is this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명은 파워모듈에 관한 것으로, 중앙에 상하로 개구되는 빈 공간이 형성되는 하우징(100)과, 상기 하우징(100)의 하면에 가장자리가 접합되며 상기 하우징(100)의 빈 공간을 통해 상면이 노출되는 방열판(500)과, 상기 방열판(500)의 상면에 접합되는 하부 세라믹기판(200)과, 상기 하부 세라믹기판(200)의 상부에 배치되며 하면에 반도체 칩(G)이 실장되는 상부 세라믹기판(300)과, 상기 상부 세라믹기판(300)의 상부에 배치되는 PCB 기판(400)을 포함한다. 본 발명은 방열판에 단차부를 두어 필요시 기판에 실장되는 내부 부품 간 거리를 쉽게 조절할 수 있으며, 방열 성능이 우수해야 하는 부분의 두께 증가를 통해 방열 성능을 향상시킬 수 있는 이점이 있다.

Description

파워모듈
본 발명은 파워모듈에 관한 것으로, 더욱 상세하게는 고출력 전력 반도체 칩을 적용하여 성능을 개선한 파워모듈에 관한 것이다.
파워모듈은 하이브리드 자동차, 전기차 등의 모터 구동을 위해 고전압 전류를 공급하기 위해 사용된다.
파워모듈 중 양면 냉각 파워모듈은 반도체 칩의 상, 하부에 각각 기판을 설치하고 그 기판의 외측면에 각각 방열판을 구비한다. 양면 냉각 파워모듈은 단면에 방열판을 구비하는 단면 냉각 파워모듈에 비해 냉각 성능이 우수하여 점차 그 사용이 증가하는 추세이다.
전기차 등에 사용되는 양면 냉각 파워모듈은 두 기판의 사이에 탄화규소(SiC), 질화갈륨(GaN) 등의 전력 반도체 칩이 실장되므로 고전압으로 인해 높은 발열과 주행 중 진동이 발생하기 때문에 이를 해결하기 위해 고강도와 고방열 특성을 동시에 만족시키는 것이 중요하다.
본 발명의 목적은 고강도와 고방열 특성을 가지고, 접합 특성이 우수하며, 전류 경로를 최소화하여 부피를 줄일 수 있으며 효율 및 성능을 향상시킬 수 있는 파워모듈을 제공하는 것이다.
본 발명의 다른 목적은 방열판에 단차 구조를 형성하여 하우징에 수용되는 기판의 내부 부품 간의 거리를 조절할 수 있고 방열 기능이 우수하도록 한 파워모듈을 제공하는 것이다.
본 발명의 또 다른 목적은 하우징과 방열판을 탄성 기능이 있는 접착필름 또는 탄성접착제로 접합함으로써 접합 신뢰성을 향상시키고 이로 인해 고정력과 밀봉력을 향상시킬 수 있도록 한 파워모듈을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명의 파워모듈은 중앙에 상하로 개구되는 빈 공간이 형성되는 하우징과, 하우징의 하면에 가장자리가 접합되며 하우징의 빈 공간을 통해 상면이 노출되는 방열판과, 방열판의 상면에 접합되는 하부 세라믹기판과, 하부 세라믹기판의 상부에 이격되게 배치되며 하면에 반도체 칩이 실장되는 상부 세라믹기판과, 상부 세라믹기판의 상부에 이격되게 배치되는 PCB 기판을 포함한다.
방열판은 하우징의 빈 공간을 통해 노출되는 상면이 단차부일 수 있다.
방열판은 하우징의 빈 공간을 통해 노출되는 상면이 양각 단차부이고 하우징의 하면에 접합되는 상면 가장자리가 음각 바닥부일 수 있다.
양각 단차부 또는 음각 바닥부를 에칭하여 상부 세라믹기판과 PCB 기판 간의 간격이 조절될 수 있다.
방열판은 하우징의 빈 공간을 통해 노출되는 상면이 음각 단차부이고 하우징의 하면에 접합되는 상면 가장자리가 양각 바닥부일 수 있다.
음각 단차부 또는 양각 바닥부를 에칭하여 상부 세라믹기판과 PCB 기판 간의 간격이 조절될 수 있다.
방열판은 구리 또는 알루미늄 재질로 이루질 수 있다.
반도체 칩은 GaN 칩일 수 있다.
하부 세라믹기판과 상부 세라믹기판은 AMB(Active Metal Brazing) 기판, DBC(Direct Bonded Copper) 기판, TPC(Thick Printing Copper) 기판 중 하나일 수 있다.
파워모듈은 중앙에 상하로 개구되는 빈 공간이 형성되는 하우징과, 하우징의 하면에 접합되며 하우징의 빈 공간을 통해 상면이 노출되는 방열판과 하우징의 하면과 상기 방열판의 상면의 사이에 접합 배치되는 탄성접착층을 포함한다.
하우징은 엔지니어링 플라스틱 재질로 형성될 수 있다.
방열판은 구리, 구리합금 재질 중 어느 하나로 이루어질 수 있다.
방열판은 다층 구조로 이루어질 수 있다.
방열판은 구리-몰리브덴-구리의 3층 구조 또는 구리-몰리브덴합금-구리의 3층 구조로 이루어질 수 있다.
탄성접착층은 탄성층과, 탄성층의 상면에 형성되고 하우징에 접합되는 제1 접착층과, 탄성층의 하면에 형성되고 상기 방열판에 접합되는 제2 접착층을 포함할 수 있다.
탄성층은 아크릴 폼 또는 우레탄 폼일 수 있다.
제1 접착층과 상기 제2 접착층은 아크릴계 접착제일 수 있다.
탄성접착층은 하우징과 상기 방열판의 사이에 탄성력을 갖는 접착필름을 개재하여 형성하거나, 하우징과 상기 방열판의 사이에 탄성접착제를 도포하여 형성할 수 있다.
탄성접착제는 우레탄 접착제, 아크릴 접착제, PUR 접착제, 혐기성 접착제 중 하나 이상을 포함할 수 있다.
본 발명은 고강도와 고방열 특성을 가지고, 접합 특성이 우수하며, 전류 경로를 최소화하여 부피를 줄일 수 있으며 고속 스위칭에 최적화되어 효율 및 성능을 향상시킬 수 있는 효과가 있다.
또한, 본 발명은 방열판에 단차부를 형성하고, 단차부가 하우징 내에서 세라믹 기판과 접합되게 설계함으로써 기판에 실장되는 내부 부품 간 거리를 조절할 필요가 있는 경우, 하우징을 새로 제작하지 않고도 방열판의 단차부 또는 단차부를 제외한 나머지 부분을 선택적으로 에칭하여 부품 간의 거리를 쉽게 조절할 수 있는 효과가 있다.
또한, 방열판의 단차부는 양각으로 형성할 경우 방열 성능이 우수해야 하는 부분의 두께 증가 효과가 있어 파워모듈의 방열 성능을 향상시킬 수 있는 효과가 있다.
또한, 본 발명은 하우징과 방열판의 사이에 탄성접착층을 배치 접합하므로 열팽창 계수의 차이가 큰 이종접합 재료인 하우징과 방열판의 접합 신뢰성을 향상시키는 효과가 있다.
또한, 본 발명의 탄성접착층은 두 접착층의 사이에 탄성층을 포함하는 3층 구조이므로 하우징과 방열판 간의 긴밀한 접촉이 가능하게 하고, 절연을 위해 채워지는 실리콘액이 하우징과 방열판의 사이의 틈으로 세는 것을 방지할 뿐 아니라, 탄성층이 외부의 진동, 충격 등의 응력과 팽창, 수축 등의 열변형을 흡수하므로 파워모듈의 동작 신뢰성을 높이는데 기여할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 의한 파워모듈의 사시도이다.
도 2는 본 발명의 실시예에 의한 파워모듈의 분해 사시도이다.
도 3은 본 발명의 실시예에 의한 파워모듈의 측단면도이다.
도 4는 본 발명의 실시예에 의한 하우징을 보인 사시도이다.
도 5는 본 발명의 실시예에 의한 하부 세라믹기판을 보인 사시도이다.
도 6은 본 발명의 실시예에 의한 하부 세라믹기판의 상면과 하면을 보인 도면이다.
도 7은 본 발명의 실시예에 의한 상부 세라믹기판을 보인 사시도이다.
도 8은 본 발명의 실시예에 의한 상부 세라믹기판의 상면과 하면을 보인 도면이다.
도 9는 본 발명의 실시예에 의한 PCB 기판의 평면도이다.
도 10은 본 발명의 실시예에 의한 상부 세라믹기판에 연결핀이 결합된 상태를 보인 사시도이다.
도 11은 본 발명의 실시예로 하우징에 방열판이 조립된 상태를 보인 단면도이다.
도 12는 본 발명의 다른 실시예로 하우징에 방열판이 조립된 상태를 보인 단면도이다.
도 13은 도 12의 방열판의 단차 구조를 이용하여 부품 간의 거리를 조절하는 방법을 설명하기 위한 구성도이다.
도 14는 본 발명의 다른 실시예의 방열판의 단차 구조를 변형한 예를 보인 구성도이다.
도 15은 본 발명의 또 다른 실시예로 하우징에 방열판이 접합된 상태를 보인 단면도이다.
도 16는 본 발명의 또 다른 실시예에 의한 탄성접합층의 구조를 보인 단면도이다.
*부호의 설명*
10: 파워모듈 100: 하우징
101: 안내리브 102: 걸림턱
103: 체결공 104: 지지공
200: 하부 세라믹기판 201: 세라믹 기재
202,203: 금속층 210: NTC 온도센서
220: 절연 스페이서 230: 인터커넥션 스페이서
300: 상부 세라믹기판 301: 세라믹 기재
302,302: 금속층 310: 커팅부
320: 쓰루홀 330: 비아홀
400: PCB 기판 401: 안내홈
410: 캐패시터 500: 방열판
501: 연통공 500a: 양각 단차부
500b: 음각 바닥부 500c: 음각 단차부
500d: 양각 바닥부 560: 탄성접착층
560a: 제1 접착층 560b: 탄성층
560c: 제 접착층 610: 제1 단자
620: 제2 단자 630: 지지볼트
700: 버스바 G: 반도체 칩(GaN 칩)
이하 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
도 1은 본 발명의 실시예에 의한 파워모듈의 형상을 보인 사시도이고, 도 2는 본 발명의 실시예에 의한 파워모듈의 형상을 보인 분해 사시도이다.
도 1 및 도 2에 도시된 바에 의하면, 본 발명의 실시예에 따른 파워모듈(10)은 하우징(100)에 파워모듈을 이루는 각종 구성품을 수용하여 형성한 패키지 형태의 전자부품이다. 파워모듈(10)은 하우징(100) 안에 기판 및 소자를 배치하여 보호하는 형태로 형성된다.
파워모듈(10)은 다수의 기판 및 다수의 반도체 칩을 포함할 수 있다. 실시예에 따른 파워모듈(10)은 하우징(100), 하부 세라믹기판(200), 상부 세라믹기판(300), PCB 기판(400) 및 방열판(500)을 포함한다.
하우징(100)은 중앙에 상하로 개구되는 빈 공간이 형성되며 양측에 제1 단자(610)와 제2 단자(620)가 위치된다. 하우징(100)은 중앙의 빈 공간에 방열판(500), 하부 세라믹기판(200), 상부 세라믹기판(300) 및 PCB 기판(400)이 상하 일정 간격을 두고 순차적으로 적층되며, 양측의 제1 단자(610)와 제2 단자(620)에 외부 단자를 연결하기 위한 지지볼트(630)가 체결된다. 제1 단자(610)와 제2 단자(620)는 전원의 입출력단으로 사용된다. 제1 단자(610)와 제2 단자(620)는 도전성 금속으로 형성되며, 일예로 제1 단자(610)와 제2 단자(620)는 구리 또는 구리 합금 재질로 형성될 수 있다.
도 2에 도시된 바에 의하면, 파워모듈(10)은 하우징(100)의 중앙의 빈 공간에 하부 세라믹기판(200), 상부 세라믹기판(300), PCB 기판(400)이 순차적으로 수용된다. 구체적으로, 하우징(100)의 하면에 방열판(500)이 배치되고, 방열판(500)의 상면에 하부 세라믹기판(200)이 부착되고, 하부 세라믹기판(200)의 상부에 상부 세라믹기판(300)이 일정 간격을 두고 배치되며, 상부 세라믹기판(300)의 상부에 PCB 기판(400)이 일정 간격을 두고 배치된다.
하우징(100)에 PCB 기판(400)이 배치된 상태는 PCB 기판(400)의 가장자리에 요입되게 형성된 안내홈(401,402)과 안내홈(401,402)에 대응되게 하우징(100)에 형성된 안내리브(101) 및 걸림턱(102)에 의해 고정될 수 있다. 실시예에 따른 PCB 기판(400)은 가장자리를 둘러 다수 개의 안내홈(401,402)이 형성되고, 이들 중 일부의 안내홈(401)은 하우징(100)의 내측면에 형성된 안내리브(101)가 안내되고 이들 중 나머지 일부의 안내홈(402)은 하우징(100)의 내측면에 형성된 걸림턱(102)이 통과되어 걸어진다.
또는, 하우징(100)의 중앙의 빈 공간에 방열판(500), 하부 세라믹기판(200), 상부 세라믹기판(300)이 수용되고, 그 상면에 PCB 기판(400)이 배치된 상태는 체결볼트(미도시)로 고정될 수도 있다. 그러나, 하우징(100)에 PCB 기판(400)을 안내홈과 걸림턱 구조로 고정하는 것이 체결볼트로 고정하는 경우 대비 조립 시간을 줄이고 조립 공정이 간편하다.
하우징(100)은 네 모서리에 체결공(103)이 형성된다. 체결공(103)은 방열판(500)에 형성된 연통공(501)과 연통된다. 체결공(103)과 연통공(501)을 관통하여 고정볼트(150)가 체결되고, 체결공(103)과 연통공(501)을 관통한 고정볼트(150)의 단부는 방열판(500)의 하면에 배치될 고정지그의 고정공에 체결될 수 있다.
제1 단자(610)와 제2 단자(620)에 버스바(700)가 연결된다. 버스바(700)는 제1 단자(610)와 제2 단자(620)를 상부 세라믹기판(300)과 연결한다. 버스바(700)는 3개가 구비된다. 버스바(700) 중 하나는 제1 단자(610) 중 +단자를 상부 세라믹기판(300)의 제1 전극 패턴(a)과 연결하고, 다른 하나는 제1 단자(610) 중 -단자를 제3 전극 패턴(c)과 연결하며, 나머지 하나는 제2 단자(620)를 제2 전극 패턴(b)과 연결한다. 제1 전극 패턴(a), 제2 전극 패턴(b) 및 제3 전극 패턴(c)은 후술할 도 7을 참조한다.
도 3은 본 발명의 실시예에 의한 파워모듈의 측단면도이다.
도 3에 도시된 바에 의하면, 파워모듈(10)은 하부 세라믹기판(200)과 상부 세라믹기판(300)의 복층 구조이며, 하부 세라믹기판(200)과 상부 세라믹기판(300)의 사이에 반도체 칩(G)이 위치된다. 반도체 칩(G)은 GaN(Gallium Nitride) 칩, MOSFET(Metal Oxide Semiconductor Field Effect Transistor), IGBT(Insulated Gate Bipolar Transistor), JFET(Junction Field Effect Transistor), HEMT(High Electric Mobility Transistor) 중 어느 하나일 수 있으나, 바람직하게는 반도체 칩(G)은 GaN 칩을 사용한다. GaN(Gallium Nitride) 칩(G)은 대전력(300A) 스위치 및 고속(~1MHz) 스위치로 기능하는 반도체 칩이다. GaN 칩은 기존의 실리콘 기반 반도체 칩보다 열에 강하면서 칩의 크기도 줄일 수 있는 장점이 있다.
또한, GaN 칩(G)은 높은 전자이동도, 높은 전자밀도 특성으로 고속 스위치가 가능하고 소형화가 가능해 고성능 및 고효율화에 최적화된 전력 반도체 칩이다. 또한, GaN 칩(G)은 고온에서도 안정적으로 동작하며 고출력 특성을 가져 고효율화가 가능하다
하부 세라믹기판(200)과 상부 세라믹기판(300)은 반도체 칩(G)으로부터 발생하는 열의 방열 효율을 높일 수 있도록, 세라믹기재와 세라믹기재의 적어도 일면에 브레이징 접합된 금속층을 포함하는 세라믹기판으로 형성된다.
세라믹기재는 알루미나(Al 2O 3), AlN, SiN, Si 3N 4 중 어느 하나인 것을 일 예로 할 수 있다. 금속층은 세라믹기재 상에 브레이징 접합된 금속박으로 반도체 칩(G)을 실장하는 전극 패턴 및 구동소자를 실장하는 전극 패턴으로 각각 형성된다. 예컨데, 금속층은 반도체 칩 또는 주변 부품이 실장될 영역에 전극 패턴으로 형성된다. 금속박은 알루미늄박 또는 동박인 것을 일 예로 한다. 금속박은 세라믹기재 상에 780℃~1100℃로 소성되어 세라믹기재와 브레이징 접합된 것을 일 예로 한다. 이러한 세라믹기판을 AMB 기판이라 한다. 실시예는 AMB 기판을 예로 들어 설명하나 DBC 기판, TPC 기판, DBA 기판을 적용할 수도 있다. 그러나 내구성 및 방열 효율면에서 AMB 기판이 가장 적합하다. 상기한 이유로, 하부 세라믹기판(200)과 상부 세라믹기판(300)은 AMB 기판임을 일 예로 한다.
PCB 기판(400)은 상부 세라믹기판(300)의 상부에 배치된다. 즉, 파워모듈(10)은 하부 세라믹기판(200)과 상부 세라믹기판(300)과 PCB 기판(400)의 3층 구조로 구성된다. 고전력용 제어를 위한 반도체 칩(G)을 상부 세라믹기판(200)과 하부 세라믹기판(300)의 사이에 배치하여 방열 효율을 높이고, 저전력용 제어를 위한 PCB 기판(400)을 최상부에 배치하여 반도체 칩(G)에서 발생하는 열로 인한 PCB 기판(400)의 손상을 방지한다. 하부 세라믹기판(200), 상부 세라믹기판(300), PCB 기판(400)은 핀으로 연결 또는 고정될 수 있다.
방열판(500)은 하부 세라믹기판(200)의 하부에 배치된다. 방열판(500)은 반도체 칩(G)에서 발생하는 열의 방열을 위한 것이다. 방열판(500)은 소정의 두께를 가지는 사각 플레이트 형상으로 형성된다. 방열판(500)은 하우징(100)과 대응되는 면적으로 형성되며 방열 효율을 높이기 위해 구리 또는 알루미늄 재질로 형성될 수 있다.
이하에서는 본 발명의 파워모듈의 각 구성별 특징을 더욱 상세하게 설명하기로 한다. 파워모듈의 각 구성별 특징을 설명하는 도면에서는 각 구성별 특징을 강조하기 위해 도면을 확대하거나 과장하여 표현한 부분이 있으므로 도 1에 도시된 기본 도면과 일부 일치하지 않는 부분이 있을 수 있다.
도 4는 본 발명의 실시예에 의한 하우징을 보인 사시도이다.
도 4에 도시된 바에 의하면, 하우징(100)은 중앙에 빈 공간이 형성되며, 양단에 제1 단자(610)와 제2 단자(620)가 위치된다. 하우징(100)은 양단에 제1 단자(610)와 제2 단자(620)가 일체로 고정되게 인서트 사출 방식으로 형성될 수 있다.
기존의 파워모듈은 이격된 회로를 연결하기 위해 하우징에 연결핀을 인서트 사출하여 적용하고 있으나, 본 실시예는 하우징(100)의 제조시 연결핀을 제외하여 제조한 형상을 갖는다. 이는 하우징(100)의 내부에 연결핀이 위치하지 않음으로써 형상을 단순화하여 파워모듈의 비틀림 모멘트에 유연성을 향상시킨다.
하우징(100)은 네 모서리에 체결공(103)이 형성된다. 체결공(103)은 방열판(500)에 형성된 연통공(501)과 연통된다. 제1 단자(610)와 제2 단자(620)에는 지지공(104)이 형성된다. 지지공(104)에는 제1 단자(610) 및 제2 단자(620)를 모터 등의 외부 단자와 연결하기 위한 지지볼트(도 2의 도면부호 630)가 체결된다.
하우징(100)은 내측면에 적어도 하나 이상의 안내리브(101)와 걸림턱(102)이 형성된다. 안내리브(101)와 걸림턱(102)은 하우징(100)에 PCB 기판(400)을 고정하기 위한 구성이다. PCB 기판(도 2의 도면부호 400)은 외측면을 둘러 안내리브(101)가 안내되는 안내홈(401)과 걸림턱(102)이 통과되고 걸어지기 위한 안내홈(402)이 형성된다. 하우징(100)에 형성한 안내리브(101)와 걸림턱(102)은 하우징(100)에 PCB 기판(400)을 안정적으로 고정한다.
하우징(100)은 단열 재질로 형성된다. 하우징(100)은 반도체 칩(G)에서 발생한 열이 하우징(100)을 통해 상부의 PCB 기판(400)에 전달되지 않도록 단열 재질로 형성될 수 있다.
또는 하우징(100)은 방열 플라스틱 재질을 적용할 수 있다. 하우징(100)은 반도체 칩(G)에서 발생한 열이 하우징(100)을 통해 외부로 방열될 수 있도록 방열 플라스틱 재질을 적용할 수 있다. 일 예로, 하우징(100)은 엔지니어링 플라스틱으로 형성될 수 있다. 엔지니어링 플라스틱은 높은 내열성과 뛰어난 강도, 내약품성, 내마모성을 가지며 150℃ 이상에서 장시간 사용 가능하다. 엔지니어링 플라스틱은 폴리아미드, 폴리카보네이트, 폴리에스테르, 변성 폴리페닐렌옥사이드 중 하나의 재료로 된 것일 수 있다.
반도체 칩(G)은 스위치로서 반복 동작을 하는데 그로 인해 하우징(100)은 고온과 온도변화에 스트레스를 받게 되나, 엔지니어링 플라스틱은 고온 안정성이 우수하므로 일반 플라스틱에 비해 고온과 온도변화에 상대적으로 안정적이고 방열 특성도 우수하다.
실시예는 엔지니어링 플라스틱 소재에 알루미늄 또는 구리로 된 단자를 인서트사출 적용하여 하우징(100)을 제조한 것일 수 있다. 엔지니어링 플라스틱 소재로 된 하우징(100)은 열을 전파시켜 외부로 방열시킨다. 하우징(100)은 수지에 고열 전도율 필러를 충전함으로써 일반 엔지니어링 플라스틱 소재보다 열전도성을 더 높일 수 있고 알루미늄에 비해 경량인 고방열 엔지니어링 플라스틱으로 될 수 있다.
또는, 하우징(100)은 엔지니어링 플라스틱 또는 고강도 플라스틱 소재의 내외부에 그래핀 방열코팅재를 도포하여 방열 특성을 가지도록 한 것일 수 있다.
도 5는 본 발명의 실시예에 의한 하부 세라믹기판을 보인 사시도이다.
도 3 및 도 5에 도시된 바에 의하면, 하부 세라믹기판(200)은 방열판(500)의 상면에 부착된다. 구체적으로, 하부 세라믹기판(200)은 반도체 칩(G)과 방열판(500)의 사이에 배치된다. 하부 세라믹기판(200)은 반도체 칩(G)에서 발생하는 열을 방열판(500)으로 전달하고, 반도체 칩(G)과 방열판(500)의 사이를 절연하여 쇼트를 방지하는 역할을 한다.
하부 세라믹기판(200)은 방열판(500)의 상면에 솔더링 접합될 수 있다. 방열판(500)은 하우징(100)과 대응되는 면적으로 형성되며 방열 효율을 높이기 위해 구리 재질로 형성될 수 있다. 솔더링 접합을 위한 솔더는 SnAg, SnAgCu 등이 사용될 수 있다.
도 6은 본 발명의 실시예에 의한 하부 세라믹기판의 상면과 하면을 보인 도면이다.
도 5 및 도 6에 도시된 바에 의하면, 하부 세라믹기판(200)은 세라믹기재(201)와 세라믹기재(201)의 상하면에 브레이징 접합된 금속층(202,203)을 포함한다. 하부 세라믹기판(200)은 세라믹기재(201)의 두께가 0.68t이고, 세라믹기재(201)의 상면과 하면에 형성한 금속층(202,203)의 두께가 0.8t인 것을 일 예로 할 수 있다.
하부 세라믹기판(200)의 상면(200a)의 금속층(202)은 구동소자를 실장하는 전극 패턴일 수 있다. 하부 세라믹기판(200)에 실장되는 구동소자는 NTC 온도센서(210)일 수 있다. NTC 온도센서(210)는 하부 세라믹기판(200)의 상면에 실장된다. NTC 온도센서(210)는 반도체 칩(G)의 발열로 인한 파워모듈 내의 온도 정보를 제공하기 위한 것이다. 하부 세라믹기판(200)의 하면(200b)의 금속층(203)은 방열판(500)에 열전달을 용이하게 하기 위해 하부 세라믹기판(200)의 하면 전체에 형성될 수 있다.
하부 세라믹기판(200)에 절연 스페이서(220)가 접합된다. 절연 스페이서(220)는 하부 세라믹기판(200)의 상면에 접합되며 하부 세라믹기판(200)과 상부 세라믹기판(300)의 이격 거리를 규정한다.
절연 스페이서(220)는 하부 세라믹기판(200)과 상부 세라믹기판(300)의 이격 거리를 규정하여 상부 세라믹기판(300)의 하면에 실장된 반도체 칩(G)에서 발생하는 열의 방열 효율을 높이고, 반도체 칩(G) 간의 간섭을 방지하여 쇼트와 같은 전기적 충격을 방지한다.
절연 스페이서(220)는 하부 세라믹기판(200)의 상면 가장자리를 둘러 소정 간격을 두고 다수 개가 접합된다. 절연 스페이서(220) 간의 간격은 방열 효율을 높이는 공간으로 활용된다. 도면상 절연 스페이서(220)는 하부 세라믹기판(200)을 기준으로 할 때 가장자리를 둘러 배치되며, 일 예로 8개가 일정 간격을 두고 배치된다.
절연 스페이서(220)는 하부 세라믹기판(200)에 일체로 접합되어, 하부 세라믹기판(200)의 상부에 상부 세라믹기판(300)을 배치할 때 얼라인을 확인하는 용도로 적용될 수 있다. 하부 세라믹기판(200)에 절연 스페이서(220)가 접합된 상태에서 그 상부에 반도체 칩(G)이 실장된 상부 세라믹기판(300)을 배치할 때, 절연 스페이서(220)가 상부 세라믹기판(300)의 얼라인을 확인하는 용도로 적용될 수 있다. 또한, 절연 스페이서(220)는 하부 세라믹기판(200)과 상부 세라믹기판(300)을 지지하여 하부 세라믹기판(200)과 상부 세라믹기판(300)의 휨을 방지하는데 기여한다.
절연 스페이서(220)는 하부 세라믹기판(200)에 실장된 칩과 상부 세라믹기판(300)에 실장된 칩 및 부품 간의 절연을 위해 세라믹 소재로 형성될 수 있다. 일 예로, 절연 스페이서는 Al 2O 3, ZTA, Si 3N 4, AlN 중 선택된 1종 또는 이들 중 둘 이상이 혼합된 합금으로 형성될 수 있다. Al 2O 3, ZTA, Si 3N 4, AlN는 기계적 강도, 내열성이 우수한 절연성 재료이다.
절연 스페이서(220)는 하부 세라믹기판(200)에 브레이징 접합된다. 절연 스페이서(220)를 하부 세라믹기판(200)에 솔더링 접합하면 솔더링 또는 가압 소성시 열적 기계적 충격으로 인해 기판이 파손될 수 있으므로 브레이징 접합한다. 브레이징 접합은 AgCu층과 Ti층을 포함한 브레이징 접합층을 이용할 수 있다. 브레이징을 위한 열처리는 780℃~900℃에서 수행할 수 있다. 브레이징 후, 절연 스페이서(220)는 하부 세라믹기판(200)의 금속층(202)과 일체로 형성된다. 브레이징 접합층의 두께는 0.005mm~0.08mm로 절연 스페이서의 높이에 영향을 미치치 않을 만큼 얇고 접합 강도는 높다.
하부 세라믹기판(200)과 상부 세라믹기판(300)의 사이에 인터커넥션 스페이서(230)가 설치된다. 인터커넥션 스페이서(230)는 상하 복층 구조의 기판에서 연결핀을 대신하여 전극 패턴 간 전기적 연결을 수행할 수 있다. 인터커넥션 스페이서(230)는 전기적 로스(loss) 및 쇼트(shot)를 방지하면서 기판 간을 직접 연결하고, 접합 강도를 높이며 전기적 특성도 개선할 수 있다. 인터커넥션 스페이서(230)는 일단이 브레이징 접합 방식으로 하부 세라믹기판(200)의 전극 패턴에 접합될 수 있다. 또한, 인터커넥션 스페이서(230)는 반대되는 타단이 브레이징 접합 방식 또는 솔더링 접합 방식으로 상부 세라믹기판(300)의 전극 패턴에 접합될 수 있다. 인터커넥션 스페이서(230)는 Cu 또는 Cu+CuMo 합금일 수 있다.
도 7은 본 발명의 실시예에 의한 상부 세라믹기판을 보인 사시도이고, 도 8은 본 발명의 실시예에 의한 상부 세라믹기판의 상면과 하면을 보인 도면이다.
도 7 및 도 8에 도시된 바에 의하면, 상부 세라믹기판(300)은 하부 세라믹기판(200)의 상부에 배치된다.
상부 세라믹기판(300)은 적층 구조의 중간 기판이다. 상부 세라믹기판(300)은 하면에 반도체 칩(G)을 실장하고, 고속 스위칭을 위한 하이 사이드(High Side) 회로와 로우 사이드(Low Side) 회로를 구성한다.
상부 세라믹기판(300)은 세라믹기재(301)와 세라믹기재(301)의 상하면에 브레이징 접합된 금속층(302,303)을 포함한다. 상부 세라믹기판(300)은 세라믹기재의 두께가 0.38t이고 세라믹기재의 상면(300a)과 하면(300b)에 전극 패턴의 두께가 0.3t인 것을 일 예로 한다. 세라믹기판은 상면과 하면의 패턴 두께가 동일해야 브레이징시 틀어지지 않는다.
상부 세라믹기판(300)의 상면의 금속층(302)이 형성하는 전극 패턴은 제1 전극 패턴(a), 제2 전극 패턴(b), 제3 전극 패턴(c)으로 구분된다. 상부 세라믹기판(300)의 하면의 금속층(303)이 형성하는 전극 패턴은 상부 세라믹기판(300)의 상면의 금속층(302)이 형성하는 전극 패턴과 대응된다. 상부 세라믹기판(300)의 상면의 전극 패턴을 제1 전극 패턴(a), 제2 전극 패턴(b), 제3 전극 패턴(c)으로 구분한 것은 고속 스위칭을 위해 하이 사이드(High Side) 회로와 로우 사이드(Low Side) 회로로 분리하기 위함이다.
반도체 칩(G)은 상부 세라믹기판(300)의 하면(300b)에 솔더(Solder), 은 페이스트(Ag Paste) 등의 접착층에 의해 플립칩(flip chip) 형태로 구비된다. 반도체 칩(G)이 상부 세라믹기판(300)의 하면에 플립칩 형태로 구비됨에 따라 와이어 본딩이 생략되어 인덕턴스 값을 최대한 낮출 수가 있게 되어, 이에 의해 방열 성능 또한 개선시킬 수 있다.
도 8에 도시된 바와 같이, 반도체 칩(G)은 고속 스위칭을 위해 2개씩 병렬로 연결될 수 있다. 반도체 칩(G)은 2개가 상부 세라믹기판(300)의 전극 패턴 중 제1 전극 패턴(a)과 제2 전극 패턴(b)을 연결하는 위치에 배치되고, 나머지 2개가 제2 전극 패턴(b)과 제3 전극 패턴(c)을 연결하는 위치에 병렬로 배치된다. 일 예로 반도체 칩(G) 하나의 용량은 150A이다. 따라서 반도체 칩(G) 2개를 병렬 연결하여 용량이 300A가 되도록 한다. 반도체 칩(G)은 GaN 칩이다.
반도체 칩(G)을 사용하는 파워모듈의 목적은 고속 스위칭에 있다. 고속 스위칭을 위해서는 Gate drive IC 단자에서 반도체 칩(G)의 Gate 단자 간이 매우 짧은 거리로 연결되는 것이 중요하다. 따라서 반도체 칩(G) 간을 병렬로 연결하여 Gate drive IC와 Gate 단자 간 연결 거리를 최소화한다. 또한, 반도체 칩(G)이 고속으로 스위칭하기 위해서는 반도체 칩(G)의 Gate 단자와 Source 단자가 동일한 간격을 유지하는 것이 중요하다. 이를 위해 반도체 칩(G)과 반도체 칩(G)의 사이의 중심에 연결핀이 연결되도록 Gate 단자와 Source 단자를 배치할 수 있다. Gate 단자와 Source 단자가 동일한 간격을 유지하지 않거나 패턴의 길이가 달라지면 문제가 발생한다.
Gate 단자는 낮은 전압을 이용하여 반도체 칩(G)을 온오프(on/off)시키는 단자이다. Gate 단자는 연결핀을 통해 PCB 기판(400)과 연결될 수 있다. Source 단자는 고전류가 들어오고 나가는 단자이다. 반도체 칩(G)은 Drain 단자를 포함하며, Source 단자와 Drain 단자는 N형과 P형으로 구분되어 전류의 방향을 바꿀 수 있다. Source 단자와 Drain 단자는 반도체 칩(G)을 실장하는 전극 패턴인 제1 전극 패턴(a), 제2 전극 패턴(b), 제3 전극 패턴(c)을 통해 전류의 입출력을 담당한다. Source 단자와 Drain 단자는 전원의 입출력을 담당하는 도 1의 제1 단자(610) 및 제2 단자(620)와 연결된다.
도 1 및 도 8을 참조하면, 도 1에 도시된 제1 단자(610)는 +단자와 -단자를 포함하며, 제1 단자(610)에서 +단자로 유입된 전원은 도 8에 도시된 상부 세라믹기판(300)의 제1 전극 패턴(a), 제1 전극 패턴(a)과 제2 전극 패턴(b)의 사이에 배치된 반도체 칩(G) 및 제2 전극 패턴(b)을 통해 제2 단자(620)로 출력된다. 그리고 도 1에 도시된 제2 단자(620)로 유입된 전원은 도 8에 도시된 제2 전극 패턴(b), 제2 전극 패턴(b)과 제3 전극 패턴(c)의 사이에 배치된 반도체 칩(G) 및 제3 전극 패턴(c)을 통해 제1 단자(610)의 -단자로 출력된다. 예컨데, 제1 단자(610)에서 유입되고 반도체 칩(G)을 통과하여 제2 단자(620)로 출력되는 전원을 하이 사이드(High Side), 제2 단자(620)에서 유입되고 반도체 칩(G)을 통과하여 제1 단자(610)로 출력되는 전원을 로우 사이드(Low Side)가 된다.
도 7에 도시된 바에 의하면, 상부 세라믹기판(300)은 NTC 온도센서(210)에 대응하는 부분에 커팅부(310)가 형성될 수 있다. 하부 세라믹기판(200)의 상면에 NTC 온도센서(210)가 장착된다. NTC 온도센서(210)는 반도체 칩(G)의 발열로 인한 파워모듈 내의 온도 정보를 제공하기 위한 것이다. 그런데 NTC 온도센서(210)의 두께가 하부 세라믹기판(200)과 상부 세라믹기판(300)의 사이의 간격에 비해 두꺼워 NTC 온도센서(210)와 상부 세라믹기판(300)의 간섭이 발생한다. 이를 해결하기 위해 NTC 온도센서(210)와 간섭되는 부분의 상부 세라믹기판(300)을 커팅하여 커팅부(310)를 형성한다.
커팅부(310)를 통해 상부 세라믹기판(300)과 하부 세라믹기판(200)의 사이 공간에 몰딩을 위한 실리콘액 또는 에폭시를 주입할 수 있다. 상부 세라믹기판(300)과 하부 세라믹기판(200)의 사이를 절연하기 위해 실리콘액 또는 에폭시를 주입해야 한다. 상부 세라믹기판(300)과 하부 세라믹기판(200)에 실리콘액 또는 에폭시를 주입하기 위해 상부 세라믹기판(300)의 한쪽면을 커팅하여 커팅부(310)를 형성할 수 있으며, 커팅부(310)는 NTC 온도센서(210)와 대응되는 위치에 형성하여 상부 세라믹기판(300)과 NTC 온도센서(210)의 간섭도 방지할 수 있다. 실리콘액 또는 에폭시는 반도체 칩(G)의 보호, 진동의 완화 및 절연의 목적으로 하부 세라믹기판(200)과 상부 세라믹기판(300) 사이의 공간과 상부 세라믹기판(300)과 PCB 기판(400) 사이의 공간에 충진할 수 있다.
상부 세라믹기판(300)에 쓰루홀(Through Hole)(320)이 형성된다. 쓰루홀(320)은 상하 복층의 기판 구조에서 상부 세라믹기판(300)에 실장되는 반도체 칩(G)을 PCB 기판(400)에 실장되는 구동소자와 최단거리로 연결하고, 하부 세라믹기판(200)에 실장된 NTC 온도센서(210)를 PCB 기판(400)에 실장되는 구동소자와 최단거리로 연결하기 위한 것이다.
쓰루홀(320)은 반도체 칩이 설치되는 위치에 2개씩 8개가 형성되고, NTC 온도센서가 설치되는 위치에 2개가 설치되어 총 10개가 형성될 수 있다. 또한, 쓰루홀(320)은 상부 세라믹기판(300)에서 제1 전극 패턴(a)과 제3 전극 패턴(c)이 형성된 부분에 다수 개가 형성될 수 있다.
제1 전극 패턴(a)에 형성된 다수 개의 쓰루홀(320)은 상부 세라믹기판(300)의 상면의 제1 전극 패턴(a)으로 유입된 전류가 상부 세라믹기판(300)의 하면에 형성된 제1 전극 패턴(a)으로 이동하고 반도체 칩(G)으로 유입되도록 한다. 제3 전극 패턴(c)에 형성된 다수 개의 쓰루홀(320)은 반도체 칩(G)으로 유입된 전류가 상부 세라믹기판(300)의 하면의 제3 전극 패턴(c)을 통해 상부 세라믹기판(300)의 상면의 제3 전극 패턴(c)으로 이동하도록 한다.
쓰루홀(320)의 직경은 0.5mm~5.0mm일 수 있다. 쓰루홀(320)에는 연결핀이 설치되어 PCB 기판의 전극 패턴과 연결되고 이를 통해 PCB 기판(400)에 실장되는 구동소자와 연결될 수 있다. 상하 복층의 기판 구조에서 쓰루홀(320) 및 쓰루홀(320)에 설치되는 연결핀을 통한 전극 패턴 간 연결은 최단 거리 연결을 통해 다양한 출력 손실을 제거하여 파워모듈의 크기에 따른 제약을 개선하는데 기여할 수 있다.
상부 세라믹기판(300)의 전극 패턴에는 복수 개의 비아홀(330)이 형성될 수 있다. 비아홀(330)은 기판 면적 대비 최소 50% 이상 가공될 수 있다. 상술한 비아홀(330)의 면적은 기판 면적 대비 최소 50% 이상 적용되는 예로 들어 설명하였으나, 이에 한정되는 것은 아니며 50% 이하로 가공될 수도 있다.
일 예로 제1 전극 패턴(a)에는 152개의 비아홀이 형성되고 제2 전극 패턴(b)에는 207개의 비아홀이 형성되고 제3 전극 패턴(c)에는 154개의 비아홀이 형성될 수 있다. 각 전극 패턴에 형성되는 복수 개의 비아홀(330)은 대전류 통전 및 대전류 분산을 위한 것이다. 하나의 슬롯 형태로 상부 세라믹기판(300)의 상면의 전극 패턴과 하면의 전극 패턴을 도통시키면 한쪽으로만 고전류가 흘러 쇼트, 과열 등의 문제가 발생할 수 있다.
비아홀(330)에는 전도성 물질이 충진된다. 전도성 물질은 Ag 또는 Ag 합금일 수 있다. Ag 합금은 Ag-Pd 페이스트일 수 있다. 비아홀(330)에 충진된 전도성 물질은 상부 세라믹기판(300)의 상면의 전극 패턴과 하면의 전극 패턴을 전기적으로 연결한다. 비아홀(330)은 레이저 가공하여 형성할 수 있다. 비아홀(330)은 도 8의 확대도에서 확인할 수 있다.
도 9는 본 발명의 실시예에 의한 PCB 기판의 평면도이다.
도 9에 도시된 바에 의하면, PCB 기판(400)은 반도체 칩(G)을 스위칭하거나 NTC 온도센서(도 7의 도면부호 210)가 감지한 정보를 이용하여 반도체 칩(GaN 칩)을 스위칭하기 위한 구동소자가 실장된다. 구동소자는 Gate Drive IC를 포함한다.
PCB 기판(400)은 상면에 캐패시터(410)가 장착된다. 캐패시터(410)는 상부 세라믹기판(300)의 제1 전극 패턴(a)과 제2 전극 패턴(b)을 연결하도록 배치된 반도체 칩(G)과 상부 세라믹기판(300)의 제2 전극 패턴(b)과 제3 전극 패턴(c)을 연결하도록 배치된 반도체 칩(G)의 사이에 해당하는 위치인 PCB 기판(400)의 상면에 장착된다.
반도체 칩(G)의 사이에 해당하는 위치인 PCB 기판(400)의 상면에 캐패시터(410)가 장착되면, 연결핀(도 10의 도면부호 900)을 이용하여 반도체 칩(G)과 Drive IC 회로를 최단거리로 연결할 수 있으므로 고속 스위칭에 보다 유리하다. 일 예로, 캐패시터(410)는 용량을 맞추기 위해 10개가 병렬로 연결될 수 있다. 입력단에 디커플링용도로 2.5㎌ 이상을 확보하기 위해서는 고전압의 캐패시터 10개를 연결하여 용량을 확보해야 한다. 관련식은 56㎌/630V×5ea= 2.8㎌에서 확인된다. Gate Drive IC 회로는 High side gate drive IC와 Low side gate drive IC를 포함한다.
도 10은 본 발명의 실시예에 의한 상부 세라믹기판에 연결핀이 결합된 상태를 보인 사시도이다.
도 10에 도시된 바에 의하면, 파워모듈(10)은 전극 패턴 간 전기적 연결을 수행하기 위한 연결핀(900)을 포함한다.
연결핀(900)은 상부 세라믹기판(300)에 설치된다. 연결핀(900)은 상부 세라믹기판(300)과 PCB 기판(400)에 형성된 쓰루홀(Through Hole)에 끼워져, 반도체 칩(G)을 실장하는 게이트(Gate) 단자와 PCB 기판(400)의 전극 패턴을 연결할 수 있다.
또한, 연결핀(900)은 상부 세라믹기판(300)에서 NTC 온도센서(210)와 인접하는 위치에 형성된 쓰루홀(320)에 끼워진다. NTC 온도센서(210)와 인접하는 위치에 형성된 쓰루홀(320)에 끼워진 연결핀(900)은 PCB 기판(400)에 대응되는 위치에 형성된 쓰루홀에 끼워져 NTC 온도센서(210)의 단자와 PCB 기판(400)의 전극 패턴을 연결할 수 있다.
또한, 연결핀(900)은 상부 세라믹기판(300)에서 제1 전극 패턴(a)과 제3 전극 패턴(c)에 일렬로 형성된 다수 개의 쓰루홀(320)에 끼워진다. 제1 전극 패턴(a)과 제3 전극 패턴(c)에 형성된 다수 개의 쓰루홀(320)에 끼워진 연결핀(900)은 PCB 기판(400)에 대응된 위치에 형성된 쓰루홀에 끼워져 GaN 칩(G)을 PCB 기판(400)의 캐패시터(410)와 연결할 수 있다.
연결핀(900)은 상부 세라믹기판(300)에 실장되는 GaN 칩(G)을 PCB 기판(400)에 실장되는 구동소자와 최단거리로 연결하여 다양한 출력 손실을 제거하고 고속 스위칭이 가능하게 한다.
도 11은 본 발명의 실시예로 하우징에 방열판이 조립된 상태를 보인 단면도이다.
도 11에 도시된 바에 의하면, 방열판(500)은 하우징(100)의 하면에 조립된다. 방열판(500)은 하우징(100)과 대응되는 면적으로 형성되며, 방열 효율을 높이기 위해 구리 재질로 형성될 수 있다. 도 3을 참조하면, 하우징(100)의 빈 공간으로 노출되는 방열판(500)의 상면에는 하부 세라믹기판(200)이 접합되고, 하부 세라믹기판(200)의 상부에 상부 세라믹기판(300)이 일정 간격을 두고 배치되며, 상부 세라믹기판(300)의 상부에 PCB 기판(400)이 일정 간격을 두고 배치된다.
도 11에 도시된 바에 의하면, 방열판(500)은 상면이 평평한 플레이트 형상으로 형성되고 그 가장자리가 하우징(100)의 하면에 접합되고 고정될 수 있다. 방열판(500)은 사출된 하우징(100)에 솔더링 접합 또는 비전도성 접착제를 사용하여 접합하고 고정볼트(도 2의 도면부호 150)를 사용하여 고정할 수 있다. 솔더는 SnAg, SnAgCu 등이 사용될 수 있다.
도 12는 본 발명의 다른 실시예로 하우징에 방열판이 조립된 상태를 보인 단면도이다.
도 12에 도시된 바와 같이, 방열판(500)은 상면에 양각 단차부(500a)가 형성될 수 있다. 양각 단차부(500a)는 하우징(100)의 빈 공간으로 노출되는 방열판(500)의 상면을 양각으로 형성한 것일 수 있다. 방열판(500)의 상면에서 하우징(100)과 접합되는 가장자리 부분은 음각 바닥부(500b)가 된다. 양각 단차부(500a)와 음각 바닥부(500b)는 방열판(500)의 상면을 선택적으로 에칭하여 부품 간의 거리를 조절하는 용도로 사용할 수 있다. 다른 실시예에서 양각 단차부(500a) 또는 음각 바닥부(500b)는 선택적인 추가 에칭을 통해 상부 세라믹기판(300)과 PCB 기판(400) 간의 간격을 조절하는데 사용할 수 있다.
도 13은 도 12의 방열판의 단차 구조를 이용하여 부품 간의 거리를 조절하는 방법을 설명하기 위한 구성도이다.
도 13에 도시된 바에 의하면, GaN 칩(G)을 적용한 파워모듈은 상부 세라믹기판(300)과 PCB 기판(400) 간의 간격을 최소로 하는 것이 고속 스위칭에 유리하나, 상부 세라믹기판(300)과 PCB 기판(400) 간의 간격이 0.5T 미만이 되면 절연 문제가 발생한다. 따라서 상부 세라믹기판(300)과 PCB 기판(400) 간의 이격 거리는 최소 0.5T(0.5mm)를 유지해야 한다.
또한, 상부 세라믹기판(300)과 PCB 기판(400) 간의 간격을 줄이면 PCB 기판(400)의 표면 온도가 높아지므로 PCB 기판(400)에 실장된 소자가 손상될 수 있다. 실험 결과, 상부 세라믹기판(300)과 PCB 기판(400) 간의 이격 거리가 0mm일때 PCB 기판(400)의 표면 온도는 85.8℃이고 이격 거리가 0.5mm 일때 PCB 기판(400)의 표면 온도는 77.3℃이며, 이격 거리가 0.8mm 일때 PCB 기판(400)의 표면 온도가 74.0℃로 측정되었다. 따라서 PCB 기판(400)에 실장된 소자의 손상을 방지하는 상부 세라믹기판(300)과 PCB 기판(400) 간의 이격 거리는 최소 0.5T(0.5mm)인 것이 바람직하다.
이러한, 파워모듈은 설계에 따라 오차가 발생할 수 있고 기판에 실장되는 내부 부품 간의 거리 조절이 필요한 경우가 있다. 이 경우 하우징(100)의 높이를 높이거나 줄여야 하는데, 이를 위해서는 하우징(100)의 성형을 위한 금형을 새로 만들어야 하는 문제가 발생한다.
따라서, 기판에 실장되는 내부 부품 간 거리를 조절할 필요가 있는 경우, 도 13에 도시된 방열판(500)의 양각 단차부(500a)를 에칭하여 방열판(500)의 양각 단차부(500a)의 높이(M)를 낮추거나 가장자리 음각 바닥부(500b)를 에칭하여 하우징(100)의 내부에 삽입되는 양각 단차부(500a)의 높이(M)를 높임으로써 부품 간 거리를 쉽게 조절할 수 있다.
방열판(500)에 양극 단차부(500a)를 형성하면 가장 방열 기능이 우수해야 하는 부분에서의 두께 증가 효과가 있다. 또한, 방열판(500)에 양극 단차부(500a)를 형성하면 가장 방열 기능이 우수해야 하는 부분에서의 두께 증가 효과가 있으므로 방열에서도 유리한 두께를 확보할 수 있다. 더욱이 방열판(500)은 양각 단차부(500a) 또는 음각 바닥부(500b)의 선택적인 추가 에칭을 통해 단차부(500a)의 높이를 높이거나 줄이는 방법으로 기판에 실장되는 내부 부품 간의 거리를 조절할 수 있다. 방열판(500)의 두께는 4mm인 것을 일 예로 할 수 있다.
도 14는 본 발명의 다른 실시예의 방열판의 단차 구조를 변형한 예를 보인 구성도이다.
도 14에 도시된 바에 의하면, 방열판(500)은 상면에 음각 단차부(500c)가 형성될 수 있다. 음각 단차부(500c)는 하우징(100)의 빈 공간으로 노출되는 방열판(500)의 상면을 음각으로 형성한 것일 수 있다. 방열판(500)의 상면에서 하우징(100)과 접합되는 가장자리 부분은 양각 바닥부(500d)가 된다. 음각 단차부(500c)와 양각 바닥부(500d)는 방열판(500)의 상면을 선택적으로 에칭하여 부품 간의 거리를 조절하는 용도로 사용할 수 있다. 다른 실시예를 변형한 예에서, 음각 단차부(500c) 또는 양각 바닥부(500d)는 선택적인 추가 에칭을 통해 상부 세라믹기판(300)과 PCB 기판(400) 간의 간격을 조절하는데 사용할 수 있다. 일 예로, 기판에 실장되는 내부 부품 간 거리를 조절할 필요가 있는 경우, 방열판(500)의 음각 단차부(500c)를 추가적으로 에칭하여 방열판(500)의 음각 단차부(500c)의 높이(N)를 낮추거나, 가장자리 양각 바닥부(500d)를 추가적으로 에칭하여 하우징(100)의 내부에 배치되는 음각 단차부(500c)의 상대적인 높이를 높임으로써 부품 간 거리를 쉽게 조절할 수 있다.
상술한 방열판(500)의 상면에 형성된 양각 단차부(500a)와 음각 바닥부(500b) 또는 음각 단차부(500c)와 양각 바닥부(500d)는 하우징(100)의 내부에 배치되는 상부 세라믹기판(300)과 PCB 기판(400) 간의 이격 거리 조절이 가능하고, 파워모듈의 내부의 회로 간 거리를 각 발열 조건에 따라 조절할 수 있으며, 내부 부품 간 거리도 각 발열 조건에 따라 조절할 수 있다.
또한, 방열판(500)의 상면에 형성된 양극 단차부(500a)는 방열 성능이 우수해야 하는 부분의 두께 증가 효과가 있어 방열 성능을 향상시킬 수 있다.
도 15은 본 발명의 또 다른 실시예로 하우징에 방열판이 접합된 상태를 보인 단면도이다.
도 15에 도시된 바에 의하면, 또 다른 실시예에 의한 방열판(500)은 하우징(100)의 하면에 접합되며, 하우징(100)의 빈 공간을 통해 상면이 노출된다. 방열판(500)은 하우징(100)에 대응되는 면적으로 형성된다.
방열판(500)은 하우징(100)의 하면과 방열판(500)의 상면의 사이에 접합 배치되는 탄성접착층(560)을 포함한다. 탄성접착층(560)은 방열판(500)과 하우징(100)을 고정볼트(도 2의 도면부호 150)로 고정하기 전 방열판(500)을 하우징(100)에 미리 접합하여 파워모듈 전체의 고정력을 높이고 밀봉성을 높이기 위한 것이다.
하우징(100)은 엔지니어링 플라스틱 재질로 형성될 수 있다. GaN 칩(G)은 스위치로서 반복 동작을 하는데 그로 인해 하우징(100)은 고온과 온도변화에 스트레스를 받게 된다. 그러나 엔지니어링 플라스틱은 고온 안정성이 우수하므로, 엔지니어링 플라스틱 재질로 형성된 하우징(100)은 일반 플라스틱에 비해 고온과 온도변화에 상대적으로 안정적이고 방열 특성도 우수하다. 엔지니어링 플라스틱은 폴리아미드, 폴리카보네이트, 폴리에스테르, 변성 폴리페닐렌옥사이드 중 하나의 재료로 된 것일 수 있다.
방열판(500)은 방열 효율을 높이기 위해 구리 또는 구리합금으로 형성될 수 있다. 이 경우 엔지니어링 플라스틱과 금속(구리 또는 구리합금)은 열 팽창 계수의 차이로 인해 접합 강도가 저하되어 하우징(100)과 방열판(500)의 분리 가능성이 발생하며 접합 신뢰성이 저하될 수 있다. 엔지니어링 플라스틱은 기본적으로 금속과의 접합력이 약하다. 따라서 엔지니어링 플라스틱으로 형성된 하우징(100)과 금속으로 된 방열판(500)의 사이에 탄성력을 갖는 탄성접착층(560)을 배치하여 하우징(100)과 방열판(500)의 접합을 용이하게 한다.
방열판(500)은 다층으로 형성될 수 있다. 일 예로, 방열판(500)은 구리-몰리브덴-구리의 3층 구조로 이루어질 수 있다. 또는 방열판(500)은 구리-몰리브덴합금-구리의 3층 구조로 이루어질 수 있다. 몰리브덴합금은 몰리브덴구리(CuMo)일 수 있다. 방열판(500)의 재질을 Cu-CuMo-Cu의 3층 구조로 형성하면 저열창계수를 가져 고온에서 방열판의 열팽창 문제를 해소할 수 있다.
도 16는 본 발명의 또 다른 실시예에 의한 탄성접합층의 구조를 보인 단면도이다.
도 15 및 도 16에 도시된 바에 의하면, 탄성접착층(560)은 제1 접착층(560a), 탄성층(560b) 및 제2 접착층(560c)을 포함한다.
제1 접착층(560a)은 탄성층(560b)의 상면에 형성되고 하우징(100)에 접합된다. 제2 접착층(560c)은 탄성층(560b)의 하면에 형성되고 방열판(500)에 접합된다. 탄성층(560b)은 제1 접착층(560a)과 제2 접착층(560c)의 사이에 배치되어 제1 접착층(560a)이 하우징(100)에 접합되고 제2 접착층(560c)이 방열판(500)에 접합시 접촉면적을 넓혀 접합력을 높이는 역할을 한다.
탄성층(560b)이 없이 제1 접착층(560a)과 제2 접착층(560c)만 있는 경우 하우징(100)과 방열판(500) 간의 긴밀한 접촉이 어려워 접착이 잘 되지 않고 접착되더라도 쉽게 떨어진다.
제1 접착층(560a)은 아크릴계 접착제로 되고, 탄성층(560b)은 아크릴 폼 또는 우레탄 폼으로 되며, 제2 접착층(560c)은 아크릴계 접착제로 될 수 있다. 탄성층(560b)의 두께는 제1 접착층(560a)과 제2 접착층(560c)의 밀림 현상이 발생하지 않는 범위에서 일정 두께로 형성된다. 탄성층(560b)은 고무탄성을 나타내므로 외부의 진동, 충격 등의 응력과 팽창, 수축 등의 열변형을 흡수한다.
하우징(100)에 접합되는 제1 접착층(560a)은 고무 플라스틱용 아크릴계 접착제로 이루어질 수 있으며, 일 예로 에틸시아노아크릴레이트일 수 있다. 방열판(500)에 접합되는 제2 접착층(560c)은 금속용 아크릴계 접착제로 이루어질 수 있으며, 일 예로 메틸시아노아크릴레이트일 수 있다.
탄성접착층(560)은 하우징(100)과 방열판(500)의 사이에 탄성력을 갖는 접착필름을 개재하여 형성하거나, 하우징(100)과 방열판(500)의 사이에 탄성접착제를 도포하여 형성할 수 있다.
접착필름은 제1 접착층(560a)/탄성층(560b)/제2 접착층(560c)의 3층 구조를 갖는 필름일 수 있다. 접착필름은 제1 접착층(560a)과 제2 접착층(560c)에 각각 이형층이 부착된 상태로 제공되고, 이형층을 제거하고 하우징(100)과 방열판(500)의 사이에 개재하여 하우징(100)과 방열판(500)이 접합되도록 할 수 있다.
탄성접착제는 유연한 페이스트 제형으로 균일 도포가 가능한 것이다.
탄성접착제는 우레탄 접착제, 아크릴 접착제, PUR 접착제, 혐기성 접착제 중 하나 이상을 포함하는 것일 수 있다. 탄성접착제는 고무탄성을 나타내므로 외부의 진동, 충격 등의 응력과 팽창, 수축 등의 열변형을 흡수한다. 또한 탄성접착제는 하우징(100)과 방열판(500)의 접합계면에 응력집중이 일어나지 않도록 함으로써 열팽창 계수의 차이가 큰 이종접합 재료의 접합을 가능하게 한다. 탄성접착제 중 우레탄 접착제는 에폭시 접착제에 비해 내열성이 높아 사용온도 범위가 넓고 내충격성이 강하고 유연성이 좋은 이점이 있다.
상술한 탄성접착층(560)은 엔지니어링 플라스틱으로 이루어진 하우징(100)과 금속으로 이루어진 방열판(500)의 열 팽창 차이로 인한 접합 강도 저하를 방지하여 접합 신뢰성을 높이고, 탄성층(560b)이 외부의 진동, 충격 등의 응력과 팽창, 수축 등의 열변형을 흡수하므로 파워모듈(10)의 동작 신뢰성을 높이는데 기여한다.
상술한 본 발명의 다른 실시예는 방열판에 단차부를 두어 필요시 기판에 실장되는 내부 부품 간 거리를 쉽게 조절할 수 있고, 방열 성능이 우수해야 하는 부분의 두께 증가를 통해 방열 성능을 향상시킬 수 있는 이점이 있다.
또한, 본 발명의 또 다른 실시예는 하우징과 방열판의 사이에 탄성접착층을 배치하여 하우징과 방열판을 접합하므로, 이종접합 재료인 하우징과 방열판의 접합 신뢰성을 향상시킬 수 있는 이점이 있다.
본 발명은 도면과 명세서에 최적의 실시예들이 개시되었다. 여기서, 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 발명은 기술분야의 통상의 지식을 가진 자라면, 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 권리범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (19)

  1. 중앙에 상하로 개구되는 빈 공간이 형성되는 하우징;
    상기 하우징의 하면에 가장자리가 접합되며 상기 하우징의 빈 공간을 통해 상면이 노출되는 방열판;
    상기 방열판의 상면에 접합되는 하부 세라믹기판;
    상기 하부 세라믹기판의 상부에 이격되게 배치되며 하면에 반도체 칩이 실장되는 상부 세라믹기판; 및
    상기 상부 세라믹기판의 상부에 이격되게 배치되는 PCB 기판;
    을 포함하는 파워모듈.
  2. 제1항에 있어서,
    상기 방열판은
    상기 하우징의 빈 공간을 통해 노출되는 상면이 단차부인 파워모듈.
  3. 제1항에 있어서,
    상기 방열판은
    상기 하우징의 빈 공간을 통해 노출되는 상면이 양각 단차부이고 상기 하우징의 하면에 접합되는 상면 가장자리가 음각 바닥부인 파워모듈.
  4. 제3항에 있어서,
    상기 양각 단차부 또는 상기 음각 바닥부를 에칭하여 상기 상부 세라믹기판과 상기 PCB 기판 간의 간격이 조절된 파워모듈.
  5. 제1항에 있어서,
    상기 방열판은
    상기 하우징의 빈 공간을 통해 노출되는 상면이 음각 단차부이고 상기 하우징의 하면에 접합되는 상면 가장자리가 양각 바닥부인 파워모듈.
  6. 제5항에 있어서,
    상기 음각 단차부 또는 상기 양각 바닥부를 에칭하여 상기 상부 세라믹기판과 상기 PCB 기판 간의 간격이 조절된 파워모듈.
  7. 제1항에 있어서,
    상기 방열판은 구리 또는 알루미늄 재질로 이루지는 파워모듈.
  8. 제1항에 있어서,
    상기 반도체 칩은 GaN 칩인 파워모듈.
  9. 제1항에 있어서,
    상기 하부 세라믹기판과 상기 상부 세라믹기판은
    AMB(Active Metal Brazing) 기판, DBC(Direct Bonded Copper) 기판, TPC(Thick Printing Copper) 기판 중 하나인 파워모듈.
  10. 중앙에 상하로 개구되는 빈 공간이 형성되는 하우징;
    상기 하우징의 하면에 접합되며 상기 하우징의 빈 공간을 통해 상면이 노출되는 방열판; 및
    상기 하우징의 하면과 상기 방열판의 상면의 사이에 접합 배치되는 탄성접착층;
    을 포함하는 파워모듈.
  11. 제10항에 있어서,
    상기 하우징은 엔지니어링 플라스틱 재질로 형성된 파워모듈.
  12. 제10항에 있어서,
    상기 방열판은 구리, 구리합금 재질 중 하나로 이루어진 파워모듈.
  13. 제10항에 있어서,
    상기 방열판은 다층 구조로 이루어지는 파워모듈.
  14. 제10항에 있어서,
    상기 방열판은 구리-몰리브덴-구리의 3층 구조 또는 구리-몰리브덴합금-구리의 3층 구조로 이루어지는 파워모듈.
  15. 제10항에 있어서,
    상기 탄성접착층은
    탄성층;
    상기 탄성층의 상면에 형성되고 상기 하우징에 접합되는 제1 접착층; 및
    상기 탄성층의 하면에 형성되고 상기 방열판에 접합되는 제2 접착층;
    을 포함하는 파워모듈.
  16. 제15항에 있어서,
    상기 탄성층은 아크릴 폼 또는 우레탄 폼인 파워모듈.
  17. 제15항에 있어서,
    상기 제1 접착층과 상기 제2 접착층은 아크릴계 접착제인 파워모듈.
  18. 제10항에 있어서,
    상기 탄성접착층은
    상기 하우징과 상기 방열판의 사이에 탄성력을 갖는 접착필름을 개재하여 형성하거나,
    상기 하우징과 상기 방열판의 사이에 탄성접착제를 도포하여 형성한 파워모듈.
  19. 제18항에 있어서,
    상기 탄성접착제는
    우레탄 접착제, 아크릴 접착제, PUR 접착제, 혐기성 접착제 중 하나 이상을 포함하는 파워모듈.
PCT/KR2021/005883 2020-05-15 2021-05-11 파워모듈 WO2021230621A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0058413 2020-05-15
KR20200058413 2020-05-15
KR20200081489 2020-07-02
KR10-2020-0081489 2020-07-02

Publications (1)

Publication Number Publication Date
WO2021230621A1 true WO2021230621A1 (ko) 2021-11-18

Family

ID=78524602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005883 WO2021230621A1 (ko) 2020-05-15 2021-05-11 파워모듈

Country Status (2)

Country Link
KR (1) KR20210141373A (ko)
WO (1) WO2021230621A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200199511Y1 (ko) * 1998-07-08 2001-01-15 김충환 전력 반도체 모듈의 방수 장치
KR20110009729U (ko) * 2010-04-07 2011-10-13 엘에스산전 주식회사 전력용 반도체 모듈
KR20160035704A (ko) * 2014-09-23 2016-04-01 (주)엘지하우시스 아크릴 폼 점착 테이프
KR20180097021A (ko) * 2017-02-22 2018-08-30 주식회사 더굿시스템 방열판재
US20190206757A1 (en) * 2016-09-20 2019-07-04 Mitsubishi Electric Corporation Semiconductor device
KR20190110376A (ko) * 2018-03-20 2019-09-30 엘지전자 주식회사 양면냉각형 파워 모듈 및 그의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101836658B1 (ko) 2016-06-29 2018-03-09 현대자동차주식회사 파워 모듈 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200199511Y1 (ko) * 1998-07-08 2001-01-15 김충환 전력 반도체 모듈의 방수 장치
KR20110009729U (ko) * 2010-04-07 2011-10-13 엘에스산전 주식회사 전력용 반도체 모듈
KR20160035704A (ko) * 2014-09-23 2016-04-01 (주)엘지하우시스 아크릴 폼 점착 테이프
US20190206757A1 (en) * 2016-09-20 2019-07-04 Mitsubishi Electric Corporation Semiconductor device
KR20180097021A (ko) * 2017-02-22 2018-08-30 주식회사 더굿시스템 방열판재
KR20190110376A (ko) * 2018-03-20 2019-09-30 엘지전자 주식회사 양면냉각형 파워 모듈 및 그의 제조 방법

Also Published As

Publication number Publication date
KR20210141373A (ko) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2019182216A1 (ko) 양면냉각형 파워 모듈 및 그의 제조 방법
US20220319975A1 (en) Semiconductor device
WO2022005099A1 (ko) 파워모듈 및 그 제조방법
WO2021112590A2 (ko) 전력반도체 모듈
WO2021162369A1 (ko) 파워모듈 및 그 제조방법
WO2020159031A1 (ko) 전력 반도체 모듈 패키지 및 이의 제조방법
WO2021241951A1 (ko) 파워모듈
WO2022005183A1 (ko) 파워모듈
WO2021230621A1 (ko) 파워모듈
WO2021230623A1 (ko) 파워모듈
WO2021230617A1 (ko) 파워모듈
WO2022005134A1 (ko) 파워모듈
WO2022005133A1 (ko) 파워모듈
WO2021230615A1 (ko) 파워모듈 및 그 제조방법
WO2021241950A1 (ko) 파워모듈
WO2022010174A1 (ko) 파워모듈
WO2021230620A1 (ko) 파워모듈
WO2022005097A1 (ko) 파워모듈 및 이에 포함되는 세라믹기판 제조방법
KR20220004437A (ko) 파워모듈
KR20220004440A (ko) 파워모듈
WO2023033425A1 (ko) 파워모듈용 세라믹 기판, 그 제조방법 및 이를 구비한 파워모듈
KR20220004442A (ko) 파워모듈
KR20220015220A (ko) 파워모듈 및 그 제조방법
WO2021230390A1 (ko) 파워 모듈 및 파워 모듈을 제조하는 방법
WO2024034896A1 (ko) 세라믹 기판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21802956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21802956

Country of ref document: EP

Kind code of ref document: A1