WO2022005133A1 - 파워모듈 - Google Patents

파워모듈 Download PDF

Info

Publication number
WO2022005133A1
WO2022005133A1 PCT/KR2021/008091 KR2021008091W WO2022005133A1 WO 2022005133 A1 WO2022005133 A1 WO 2022005133A1 KR 2021008091 W KR2021008091 W KR 2021008091W WO 2022005133 A1 WO2022005133 A1 WO 2022005133A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
layer
metal layer
semiconductor chip
power module
Prior art date
Application number
PCT/KR2021/008091
Other languages
English (en)
French (fr)
Inventor
박승곤
조태호
여인태
빈진혁
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200081492A external-priority patent/KR20220003807A/ko
Priority claimed from KR1020200082281A external-priority patent/KR20220004442A/ko
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Publication of WO2022005133A1 publication Critical patent/WO2022005133A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body

Definitions

  • the present invention relates to a power module, and more particularly, to a power module having improved performance and improved reliability by applying a high output power semiconductor chip.
  • the power module is used to supply high voltage current to drive motors such as hybrid vehicles and electric vehicles.
  • the double-sided cooling power module has a substrate on top and a bottom of a semiconductor chip, respectively, and a heat sink on the outer surface of the substrate.
  • the double-sided cooling power module has an excellent cooling performance compared to a single-sided cooling power module having a heat sink on one side, and thus its use is gradually increasing.
  • Double-sided cooling power modules used in electric vehicles, etc. have power semiconductor chips such as silicon carbide (SiC) and gallium nitride (GaN) mounted between the two substrates. It is important to satisfy both high strength and high heat dissipation characteristics at the same time.
  • SiC silicon carbide
  • GaN gallium nitride
  • oxidation occurs in the metal layer.
  • cold soldering occurs when soldering a semiconductor chip or the like to a substrate.
  • the solder does not adhere to the metal layer, resulting in poor bonding, so the bonding area can easily fall off due to impact and a short circuit can occur, which is a problem for product reliability.
  • An object of the present invention is to provide a power module that has high strength and high heat dissipation characteristics, has excellent bonding characteristics, can reduce a volume by minimizing a current path, and can improve efficiency and performance.
  • Another object of the present invention is to provide a power module including a ceramic substrate having excellent antioxidant effect and improved reliability.
  • Another object of the present invention is to provide a power module capable of increasing the heat dissipation efficiency of the semiconductor chip by arranging the semiconductor chip between the upper ceramic substrate and the lower ceramic substrate and maximizing the contact area and flip chip bonding.
  • the power module of the present invention includes a ceramic substrate, and the ceramic substrate includes a ceramic substrate and a metal layer formed on at least one of the upper and lower surfaces of the ceramic substrate and the metal layer. It includes an anti-oxidation layer that is formed to surround the upper surface and the side surface to prevent external exposure of the metal layer.
  • the metal layer is made of copper or a copper alloy.
  • the antioxidant layer includes an Organic Solderability Preservative (OSP) layer.
  • OSP Organic Solderability Preservative
  • the antioxidant layer further includes a flux layer formed to surround the top and side surfaces of the OSP layer.
  • a seed layer is further included between the antioxidant layer and the metal layer.
  • the seed layer includes nickel (Ni).
  • the thickness of the seed layer ranges from 1 k ⁇ to 5 k ⁇ .
  • the antioxidant layer can be dissolved and removed by a solder ball during soldering.
  • the ceramic substrate may be one of an AMB substrate, a TPC substrate, and a DBA substrate.
  • It may include a component that is soldered to the ceramic substrate by a solder ball.
  • the component may include at least one of a semiconductor chip, a spacer, and an electronic device.
  • the power module of the present invention is spaced apart from the ceramic substrate and the lower ceramic substrate including the metal layer formed on the upper and lower surfaces of the ceramic substrate and the lower ceramic substrate, the ceramic substrate and the electrode pattern on the upper and lower surfaces of the ceramic substrate
  • An upper ceramic substrate including a metal layer forming It includes a first bonding layer for bonding, and a second bonding layer bonding the lower surface of the semiconductor chip to the metal layer on the upper surface of the lower ceramic substrate.
  • the first bonding layer may be formed of solder or Ag paste.
  • the second bonding layer may be formed of solder or Ag paste.
  • the second bonding layer may bond the entire lower surface of the semiconductor chip to the upper surface of the lower ceramic substrate.
  • An Ag plating layer may be formed on the metal layer of the upper surface of the lower ceramic substrate, and the lower surface of the semiconductor chip may be bonded to the Ag plating layer by the second bonding layer.
  • the second bonding layer may be formed of Ag paste.
  • It may further include a heat sink bonded to the lower surface of the lower ceramic substrate, and a bonding layer bonding the lower surface of the lower ceramic substrate to the upper surface of the heat sink.
  • the bonding layer may be formed of solder or Ag paste.
  • the metal layer of the lower ceramic substrate and the metal layer of the upper ceramic substrate may be formed of copper or a copper alloy material.
  • the condition of the metal layer to be soldered is maintained even when the parts are soldered after temporary storage, thereby increasing the bonding strength between the metal layer and the component.
  • the power module including the ceramic substrate of the present invention has high strength and high heat dissipation characteristics, has excellent bonding characteristics, can reduce the volume by minimizing the current path, and is optimized for high-speed switching to improve efficiency and performance. It works.
  • the power module of the present invention has high strength and high heat dissipation characteristics, has excellent bonding characteristics, can reduce a volume by minimizing a current path, and is optimized for high-speed switching to improve efficiency and performance.
  • the power module of the present invention directly bonds the upper surface electrode of the semiconductor chip to the upper ceramic substrate and the lower surface to the lower ceramic substrate so that the semiconductor chip is placed in contact between the upper ceramic substrate and the lower ceramic substrate.
  • Ag paste is applied to the first bonding layer for bonding the semiconductor chip to the upper ceramic substrate, the second bonding layer for bonding the semiconductor chip to the lower ceramic substrate, and the bonding layer for bonding the lower ceramic substrate to the heat sink. It has the effect of increasing the heat dissipation efficiency by applying it.
  • an Ag plating layer is further formed on the entire upper surface of the lower ceramic substrate and the semiconductor chip is bonded to the Ag plating layer through a second bonding layer, thereby increasing thermal conductivity and thus heat dissipation efficiency.
  • FIG. 1 is a perspective view of a power module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a power module according to an embodiment of the present invention.
  • FIG 3 is a side cross-sectional view of a power module according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing a housing according to an embodiment of the present invention.
  • FIG. 5 is a perspective view showing a lower ceramic substrate according to an embodiment of the present invention.
  • FIG. 6 is a view showing an upper surface and a lower surface of a lower ceramic substrate according to an embodiment of the present invention.
  • FIG. 7 is a perspective view showing an upper ceramic substrate according to an embodiment of the present invention.
  • FIG. 8 is a view showing an upper surface and a lower surface of an upper ceramic substrate according to an embodiment of the present invention.
  • FIG. 9 is a plan view of a PCB substrate according to an embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a state in which a connection pin is coupled to an upper ceramic substrate according to an embodiment of the present invention.
  • FIG. 11 is a partial cross-sectional view illustrating a state in which a connection pin according to an embodiment of the present invention is fixed to a through hole of an upper ceramic substrate and a PCB substrate is installed thereon.
  • FIG. 12 is a view showing a state in which an oxidation prevention layer is formed on a metal layer of a ceramic substrate according to an embodiment of the present invention.
  • FIG. 13 is a view showing a process of forming an anti-oxidation layer on a metal layer of a ceramic substrate and then soldering bonding according to an embodiment of the present invention.
  • FIG. 14 is a cross-sectional view illustrating a state in which a semiconductor chip is connected to an upper ceramic substrate according to another embodiment of the present invention.
  • FIG. 15 is a partially enlarged view of FIG. 14 , illustrating a state in which a semiconductor chip is bonded between an upper ceramic substrate and a lower ceramic substrate;
  • 16 is a partially enlarged view showing a state in which a semiconductor chip is bonded between an upper ceramic substrate and a lower ceramic substrate according to another embodiment of the present invention.
  • first bonding layer 400 PCB substrate
  • bus bar G semiconductor chip (GaN chip)
  • connection pin 910 seed layer
  • antioxidant layer 921 OSP layer
  • FIG. 1 is a perspective view of a power module according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of a power module according to an embodiment of the present invention.
  • the power module 10 is an electronic component in the form of a package formed by accommodating various components constituting the power module in a housing 100 .
  • the power module 10 is formed in such a way that a substrate and elements are disposed in the housing 100 to protect it.
  • the power module 10 may include a plurality of substrates and a plurality of semiconductor chips.
  • the power module 10 according to the embodiment includes a housing 100 , a lower ceramic substrate 200 , an upper ceramic substrate 300 , a PCB substrate 400 , and a heat sink 500 .
  • the housing 100 has an empty space opened vertically in the center, and the first terminal 610 and the second terminal 620 are positioned on both sides.
  • a heat sink 500, a lower ceramic substrate 200, an upper ceramic substrate 300, and a PCB substrate 400 are sequentially stacked at regular intervals in the top and bottom in an empty space in the center, and the first terminals on both sides
  • a support bolt 630 for connecting an external terminal to the 610 and the second terminal 620 is fastened.
  • the first terminal 610 and the second terminal 620 are used as input/output terminals of power.
  • a lower ceramic substrate 200 , an upper ceramic substrate 300 , and a PCB substrate 400 are sequentially accommodated in an empty space in the center of the housing 100 .
  • the heat sink 500 is disposed on the lower surface of the housing 100
  • the lower ceramic substrate 200 is attached to the upper surface of the heat sink 500
  • the upper ceramic substrate 300 is on the upper side of the lower ceramic substrate 200.
  • the PCB substrate 400 is arranged at a predetermined interval on the upper ceramic substrate 300 .
  • the state in which the PCB substrate 400 is disposed in the housing 100 is the guide grooves 401 and 402 formed to be recessed into the edge of the PCB substrate 400 and the guide ribs 101 formed in the housing 100 to correspond to the guide grooves 401 and 402 .
  • the locking jaw 102 may be fixed.
  • a plurality of guide grooves 401 and 402 are formed around the edge of the PCB substrate 400 according to the embodiment, and some of the guide grooves 401 are guided by the guide rib 101 formed on the inner surface of the housing 100 . and the guide groove 402 of the remaining part of them is hung through the locking protrusion 102 formed on the inner surface of the housing 100 .
  • the heat sink 500, the lower ceramic substrate 200, and the upper ceramic substrate 300 are accommodated in the empty space in the center of the housing 100, and the state in which the PCB substrate 400 is disposed on the upper surface is a fastening bolt ( (not shown) may be fixed.
  • a fastening bolt (not shown)
  • fixing the PCB substrate 400 to the housing 100 with a guide groove and a locking jaw structure reduces assembly time and simplifies the assembly process compared to the case of fixing with a fastening bolt.
  • the housing 100 has fastening holes 103 formed at four corners.
  • the fastening hole 103 communicates with the communication hole 501 formed in the heat sink 500 .
  • the fixing bolt 150 is fastened through the fastening hole 103 and the communication hole 501 , and the end of the fixing bolt 150 passing through the fastening hole 103 and the communication hole 501 is the heat sink 500 . It may be fastened to a fixing hole of a fixing jig to be disposed on the lower surface.
  • the bus bar 700 is connected to the first terminal 610 and the second terminal 620 .
  • the bus bar 700 connects the first terminal 610 and the second terminal 620 to the upper ceramic substrate 300 .
  • Three bus bars 700 are provided.
  • One of the bus bars 700 connects the + terminal of the first terminals 610 with the first electrode pattern a of the upper ceramic substrate 300 , and the other connects the - terminal among the first terminals 610 . It is connected to the three electrode pattern (c), and the other one connects the second terminal 620 to the second electrode pattern (b).
  • the first electrode pattern (a), the second electrode pattern (b), and the third electrode pattern (c) will be described later with reference to FIGS. 7 and 10 .
  • FIG 3 is a side cross-sectional view of a power module according to an embodiment of the present invention.
  • the power module 10 has a multilayer structure of a lower ceramic substrate 200 and an upper ceramic substrate 300 , and a semiconductor chip between the lower ceramic substrate 200 and the upper ceramic substrate 300 .
  • the semiconductor chip (G) is any one of GaN (Gallium Nitride) chip, MOSFET (Metal Oxide Semiconductor Field Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), JFET (Junction Field Effect Transistor), HEMT (High Electric Mobility Transistor) However, preferably, the semiconductor chip (G) uses a GaN chip.
  • the GaN (Gallium Nitride) chip is a semiconductor chip that functions as a high-power (300A) switch and a high-speed ( ⁇ 1MHz) switch.
  • the GaN chip has the advantage of being stronger in heat than the existing silicon-based semiconductor chip and reducing the size of the chip.
  • the lower ceramic substrate 200 and the upper ceramic substrate 300 are formed of a ceramic substrate including a metal layer brazed to at least one surface of the ceramic substrate and the ceramic substrate to increase the heat dissipation efficiency of the heat generated from the semiconductor chip (G). do.
  • the ceramic substrate may be, for example, any one of alumina (Al 2 O 3 ), AlN, SiN, and Si 3 N 4 .
  • the metal layer is formed of an electrode pattern for mounting a semiconductor chip (G) and an electrode pattern for mounting a driving element, respectively, with a metal foil brazed on a ceramic substrate.
  • the metal layer is formed as an electrode pattern in a region where a semiconductor chip or peripheral components are to be mounted.
  • the metal foil may be an aluminum foil or a copper foil as an example.
  • the metal foil is fired at 780° C. to 1100° C. on a ceramic substrate and brazed to the ceramic substrate.
  • Such a ceramic substrate is called an AMB substrate.
  • AMB substrate As an example, a DBC substrate, a TPC substrate, and a DBA substrate may be applied. However, in terms of durability and heat dissipation efficiency, AMB substrates are most suitable. For the above reasons, the lower ceramic substrate 200 and the upper ceramic substrate 300 are AMB substrates as an example.
  • the PCB substrate 400 is disposed on the upper ceramic substrate 300 . That is, the power module 10 has a three-layer structure of a lower ceramic substrate 200 , an upper ceramic substrate 300 , and a PCB substrate 400 .
  • the semiconductor chip (G) for high power control is disposed between the upper ceramic substrate 200 and the lower ceramic substrate 300 to increase heat dissipation efficiency, and the PCB substrate 400 for low power control is disposed on the uppermost part of the semiconductor Prevents damage to the PCB substrate 400 due to heat generated from the chip (G).
  • the lower ceramic substrate 200 , the upper ceramic substrate 300 , and the PCB substrate 400 may be connected or fixed with pins.
  • the heat sink 500 is disposed under the lower ceramic substrate 200 .
  • the heat sink 500 is for dissipating heat generated in the semiconductor chip (G).
  • the heat sink 500 is formed in the shape of a square plate having a predetermined thickness.
  • the heat sink 500 has an area corresponding to the housing 100 and may be formed of copper or aluminum to increase heat dissipation efficiency.
  • FIG. 4 is a perspective view showing a housing according to an embodiment of the present invention.
  • an empty space is formed in the center of the housing 100 , and a first terminal 610 and a second terminal 620 are positioned at both ends.
  • the housing 100 may be formed by an insert injection method such that the first terminal 610 and the second terminal 620 are integrally fixed at both ends.
  • the housing 100 has fastening holes 103 formed at four corners.
  • the fastening hole 103 communicates with the communication hole 501 formed in the heat sink 500 .
  • a support hole 104 is formed in the first terminal 610 and the second terminal 620 .
  • a support bolt 630 for connecting the first terminal 610 and the second terminal 620 to an external terminal such as a motor is fastened to the support hole 104 (see FIG. 10 ).
  • the housing 100 is formed of a heat insulating material.
  • the housing 100 may be formed of a heat insulating material so that heat generated from the semiconductor chip G is not transferred to the PCB substrate 400 above the housing 100 through the housing 100 .
  • the housing 100 may be made of a heat-dissipating plastic material.
  • the housing 100 may be made of a heat-dissipating plastic material so that heat generated from the semiconductor chip G can be radiated to the outside through the housing 100 .
  • the housing 100 may be formed of engineering plastic.
  • Engineering plastics have high heat resistance, excellent strength, chemical resistance, and abrasion resistance, and can be used for a long time at 150°C or higher.
  • the engineering plastic may be made of one of polyamide, polycarbonate, polyester, and modified polyphenylene oxide.
  • the semiconductor chip (G) operates repeatedly as a switch, which causes the housing 100 to be stressed by high temperature and temperature changes. It also has excellent heat dissipation properties.
  • the housing 100 may be manufactured by insert-injecting a terminal made of aluminum or copper to an engineering plastic material.
  • the housing 100 made of an engineering plastic material spreads heat and radiates heat to the outside.
  • the housing 100 may be made of a high heat dissipation engineering plastic that may have higher thermal conductivity than a general engineering plastic material and is lightweight compared to aluminum by filling the resin with a high thermal conductivity filler.
  • the housing 100 may have heat dissipation properties by applying a graphene heat dissipation coating material to the inside and outside of an engineering plastic or high-strength plastic material.
  • FIG. 5 is a perspective view showing a lower ceramic substrate according to an embodiment of the present invention.
  • the lower ceramic substrate 200 is attached to the upper surface of the heat sink 500 .
  • the lower ceramic substrate 200 is disposed between the semiconductor chip G and the heat sink 500 .
  • the lower ceramic substrate 200 transfers heat generated from the semiconductor chip G to the heat sink 500 and insulates between the semiconductor chip G and the heat sink 500 to prevent a short circuit.
  • the lower ceramic substrate 200 may be soldered to the upper surface of the heat sink 500 .
  • the heat sink 500 is formed in an area corresponding to the housing 100 and may be formed of a copper material to increase heat dissipation efficiency.
  • As the solder for soldering joint SnAg, SnAgCu, etc. may be used.
  • FIG. 6 is a view showing an upper surface and a lower surface of a lower ceramic substrate according to an embodiment of the present invention.
  • the lower ceramic substrate 200 includes a ceramic substrate 201 and metal layers 202 and 203 brazed to upper and lower surfaces of the ceramic substrate 201 .
  • the thickness of the ceramic substrate 201 may be 0.68 t
  • the thickness of the metal layers 202 and 203 formed on the upper and lower surfaces of the ceramic substrate 201 may be 0.8 t.
  • the metal layer 202 of the upper surface 200a of the lower ceramic substrate 200 may be an electrode pattern on which a driving element is mounted.
  • the driving device mounted on the lower ceramic substrate 200 may be an NTC temperature sensor 210 .
  • the NTC temperature sensor 210 is mounted on the upper surface of the lower ceramic substrate 200 .
  • the NTC temperature sensor 210 is to provide temperature information in the power module due to the heat of the semiconductor chip G.
  • the metal layer 203 of the lower surface 200b of the lower ceramic substrate 200 may be formed on the entire lower surface of the lower ceramic substrate 200 to facilitate heat transfer to the heat sink 500 .
  • An insulating spacer 220 is bonded to the lower ceramic substrate 200 .
  • the insulating spacer 220 is bonded to the upper surface of the lower ceramic substrate 200 and defines a separation distance between the lower ceramic substrate 200 and the upper ceramic substrate 300 .
  • the insulating spacer 220 defines the separation distance between the lower ceramic substrate 200 and the upper ceramic substrate 300 to increase the heat dissipation efficiency of the heat generated by the semiconductor chip (G) mounted on the lower surface of the upper ceramic substrate 300, Interference between the semiconductor chips G is prevented to prevent an electric shock such as a short circuit.
  • a plurality of insulating spacers 220 are bonded to each other at predetermined intervals around the upper surface edge of the lower ceramic substrate 200 .
  • a gap between the insulating spacers 220 is used as a space to increase heat dissipation efficiency.
  • the insulating spacers 220 are disposed around the edges with respect to the lower ceramic substrate 200 , and for example, eight insulating spacers 220 are disposed at regular intervals.
  • the insulating spacer 220 is integrally bonded to the lower ceramic substrate 200 .
  • the insulating spacer 220 may be applied to check alignment when the upper ceramic substrate 300 is disposed on the lower ceramic substrate 200 .
  • the insulating spacer 220 is formed on the upper ceramic substrate 300 .
  • the insulating spacer 220 supports the lower ceramic substrate 200 and the upper ceramic substrate 300 , thereby contributing to preventing bending of the lower ceramic substrate 200 and the upper ceramic substrate 300 .
  • the insulating spacer 220 may be formed of a ceramic material for insulation between the chip mounted on the lower ceramic substrate 200 and the chip and the component mounted on the upper ceramic substrate 300 .
  • the insulating spacer may be formed of one selected from Al 2 O 3 , ZTA, Si 3 N 4 , and AlN, or an alloy in which two or more thereof are mixed.
  • Al 2 O 3 , ZTA, Si 3 N 4 , and AlN are insulating materials having excellent mechanical strength and heat resistance.
  • the insulating spacer 220 is brazed to the lower ceramic substrate 200 .
  • the substrate may be damaged due to thermal and mechanical shock during soldering or pressurization firing, so that the insulating spacer 220 is bonded by brazing.
  • a brazing bonding layer including an AgCu layer and a Ti layer may be used for the brazing bonding. Heat treatment for brazing can be performed at 780°C to 900°C.
  • the insulating spacer 220 is integrally formed with the metal layer 202 of the lower ceramic substrate 200 .
  • the thickness of the brazing bonding layer is 0.005 mm to 0.08 mm, which is thin enough not to affect the height of the insulating spacer, and the bonding strength is high.
  • An interconnection spacer 230 is installed between the lower ceramic substrate 200 and the upper ceramic substrate 300 .
  • the interconnection spacer 230 may perform electrical connection between electrode patterns in place of connection pins in a substrate having an upper and lower multilayer structure.
  • the interconnection spacer 230 may directly connect between substrates while preventing electrical loss and short circuit, increase bonding strength, and improve electrical characteristics.
  • One end of the interconnection spacer 230 may be bonded to the electrode pattern of the lower ceramic substrate 200 by a brazing bonding method.
  • the other end of the interconnection spacer 230 may be bonded to the electrode pattern of the upper ceramic substrate 300 by a brazing bonding method or a soldering bonding method.
  • the interconnection spacer 230 may be Cu or a Cu+CuMo alloy.
  • FIG. 7 is a perspective view showing an upper ceramic substrate according to an embodiment of the present invention
  • FIG. 8 is a view showing an upper surface and a lower surface of the upper ceramic substrate according to an embodiment of the present invention.
  • the upper ceramic substrate 300 is disposed on the lower ceramic substrate 200 .
  • the upper ceramic substrate 300 is an intermediate substrate having a stacked structure.
  • the upper ceramic substrate 300 has a semiconductor chip (G) mounted on its lower surface, and constitutes a high-side circuit and a low-side circuit for high-speed switching.
  • G semiconductor chip
  • the upper ceramic substrate 300 includes a ceramic substrate 301 and metal layers 302 and 303 brazed to upper and lower surfaces of the ceramic substrate 301 .
  • the thickness of the ceramic substrate is 0.38 t
  • the thickness of the electrode pattern on the upper surface 300a and the lower surface 300b of the ceramic substrate is 0.3 t as an example.
  • the ceramic substrate must have the same pattern thickness on the upper and lower surfaces to prevent distortion during brazing.
  • the electrode pattern formed by the metal layer 302 on the upper surface of the upper ceramic substrate 300 is divided into a first electrode pattern (a), a second electrode pattern (b), and a third electrode pattern (c).
  • the electrode pattern formed by the metal layer 303 on the lower surface of the upper ceramic substrate 300 corresponds to the electrode pattern formed by the metal layer 302 on the upper surface of the upper ceramic substrate 300 .
  • the division of the electrode pattern on the upper surface of the upper ceramic substrate 300 into a first electrode pattern (a), a second electrode pattern (b), and a third electrode pattern (c) is a high-side circuit for high-speed switching. and to separate the low-side circuit.
  • the semiconductor chip G is provided in the form of a flip chip by an adhesive layer such as solder and silver paste on the lower surface 300b of the upper ceramic substrate 300 .
  • an adhesive layer such as solder and silver paste
  • two semiconductor chips G may be connected in parallel for high-speed switching.
  • Two semiconductor chips (G) are disposed at positions connecting the first electrode pattern (a) and the second electrode pattern (b) among the electrode patterns of the upper ceramic substrate 300 , and the other two are the second electrode patterns (b) ) and the third electrode pattern (c) are arranged in parallel at a position connecting it.
  • the capacity of one semiconductor chip G is 150A. Therefore, two semiconductor chips (G) are connected in parallel so that the capacity becomes 300A.
  • the semiconductor chip G is a GaN chip.
  • the purpose of the power module using the semiconductor chip G is high-speed switching.
  • the gate terminal and the source terminal of the semiconductor chip G may be disposed such that the connection pin is connected to the center between the semiconductor chip G and the semiconductor chip G. If the gate terminal and the source terminal do not keep the same distance or the length of the pattern is different, a problem occurs.
  • the gate terminal is a terminal for turning on/off the semiconductor chip G by using a low voltage.
  • the gate terminal may be connected to the PCB board 400 through a connection pin.
  • the Source terminal is a terminal for high current to enter and exit.
  • the semiconductor chip G includes a drain terminal, and the source terminal and the drain terminal are divided into N-type and P-type to change the direction of the current.
  • the source terminal and the drain terminal are responsible for input and output of current through the first electrode pattern (a), the second electrode pattern (b), and the third electrode pattern (c), which are electrode patterns for mounting the semiconductor chip (G).
  • the source terminal and the drain terminal are connected to the first terminal 610 and the second terminal 620 of FIG. 1 in charge of input and output of power.
  • the first terminal 610 shown in FIG. 1 includes a + terminal and a - terminal, and power flowing from the first terminal 610 to the + terminal is the upper part shown in FIG. 8 .
  • the semiconductor chip (G) and the second electrode pattern (b) disposed between the first electrode pattern (a) and the second electrode pattern (b) 2 is output to the terminal 620 .
  • the power supplied to the second terminal 620 shown in FIG. 1 is disposed between the second electrode pattern (b), the second electrode pattern (b) and the third electrode pattern (c) shown in FIG. 8 . It is output to the - terminal of the first terminal 610 through the semiconductor chip G and the third electrode pattern c.
  • a cutting part 310 may be formed in a portion of the upper ceramic substrate 300 corresponding to the NTC temperature sensor 210 .
  • An NTC temperature sensor 210 is mounted on the upper surface of the lower ceramic substrate 200 .
  • the NTC temperature sensor 210 is to provide temperature information in the power module due to the heat of the semiconductor chip G.
  • the thickness of the NTC temperature sensor 210 is thicker than the gap between the lower ceramic substrate 200 and the upper ceramic substrate 300 , interference between the NTC temperature sensor 210 and the upper ceramic substrate 300 occurs.
  • the upper ceramic substrate 300 of the portion that interferes with the NTC temperature sensor 210 is cut to form a cutting portion 310 .
  • a silicone liquid or epoxy for molding may be injected into the space between the upper ceramic substrate 300 and the lower ceramic substrate 200 through the cutting part 310 .
  • silicone liquid or epoxy In order to insulate between the upper ceramic substrate 300 and the lower ceramic substrate 200, silicone liquid or epoxy must be injected.
  • one side of the upper ceramic substrate 300 may be cut to form a cutting part 310, and the cutting part 310 may be formed. is formed at a position corresponding to the NTC temperature sensor 210 to prevent interference between the upper ceramic substrate 300 and the NTC temperature sensor 210 .
  • Silicon liquid or epoxy is used in the space between the lower ceramic substrate 200 and the upper ceramic substrate 300 and the upper ceramic substrate 300 and the PCB substrate 400 for the purpose of protecting the semiconductor chip (G), alleviating vibration, and insulating. You can fill in the space between them.
  • a through hole 320 is formed in the upper ceramic substrate 300 .
  • the through hole 320 connects the semiconductor chip G mounted on the upper ceramic substrate 300 to the driving device mounted on the PCB substrate 400 in the shortest distance in the upper and lower multi-layered substrate structure, and the lower ceramic substrate 200 . This is to connect the NTC temperature sensor 210 mounted to the PCB board 400 to the driving device mounted on the shortest distance.
  • Eight through-holes 320 are formed at a position where the semiconductor chip is installed, and two are installed at a position where the NTC temperature sensor is installed, so that a total of 10 can be formed.
  • a plurality of through-holes 320 may be formed in the portion where the first electrode pattern (a) and the third electrode pattern (c) are formed in the upper ceramic substrate 300 .
  • the plurality of through-holes 320 formed in the first electrode pattern (a) allow the current flowing into the first electrode pattern (a) of the upper surface of the upper ceramic substrate 300 to be formed on the lower surface of the upper ceramic substrate 300 . It moves to the electrode pattern (a) and flows into the semiconductor chip (G). In the plurality of through holes 320 formed in the third electrode pattern c, the current flowing into the semiconductor chip G passes through the third electrode pattern c of the lower surface of the upper ceramic substrate 300 to the upper ceramic substrate 300 . ) to move to the third electrode pattern (c) on the upper surface.
  • the through hole 320 may have a diameter of 0.5 mm to 5.0 mm.
  • a connection pin is installed in the through hole 320 to be connected to the electrode pattern of the PCB substrate, and may be connected to the driving device mounted on the PCB substrate 400 through this.
  • the connection between the electrode patterns through the through-holes 320 and the connection pins installed in the through-holes 320 in the upper and lower multi-layered substrate structure eliminates various output losses through the shortest distance connection, thereby improving the constraints according to the size of the power module. can contribute
  • a plurality of via holes 330 may be formed in the electrode pattern of the upper ceramic substrate 300 .
  • the via hole 330 may be processed by at least 50% of the substrate area.
  • the area of the via hole 330 described above has been described as an example in which at least 50% of the substrate area is applied, but is not limited thereto, and may be processed to 50% or less.
  • 152 via holes may be formed in the first electrode pattern (a)
  • 207 via holes may be formed in the second electrode pattern (b)
  • 154 via holes may be formed in the third electrode pattern (c).
  • the plurality of via holes 330 formed in each electrode pattern are for conducting a large current and distributing a large current.
  • the via hole 330 is filled with a conductive material.
  • the conductive material may be Ag or an Ag alloy.
  • the Ag alloy may be an Ag-Pd paste.
  • the conductive material filled in the via hole 330 electrically connects the electrode pattern on the upper surface and the electrode pattern on the lower surface of the upper ceramic substrate 300 .
  • the via hole 330 may be formed by laser processing. The via hole 330 can be seen in the enlarged view of FIG. 8 .
  • FIG. 9 is a plan view of a PCB substrate according to an embodiment of the present invention.
  • the PCB substrate 400 switches the semiconductor chip G or uses the information sensed by the NTC temperature sensor (reference numeral 210 in FIG. 7 ) to switch the GaN chip (semiconductor chip).
  • the driving element is mounted.
  • the driving device includes a Gate Drive IC.
  • the capacitor 410 is mounted on the PCB substrate 400 .
  • the capacitor 410 includes a semiconductor chip G disposed to connect the first electrode pattern a and the second electrode pattern b of the upper ceramic substrate 300 and the second electrode pattern (G) of the upper ceramic substrate 300 . It is mounted on the upper surface of the PCB substrate 400 at a position corresponding to a position between the semiconductor chip G disposed to connect b) and the third electrode pattern c.
  • the gate drive IC circuit includes a high side gate drive IC and a low side gate drive IC.
  • FIG. 10 is a perspective view illustrating a state in which a connection pin is coupled to an upper ceramic substrate according to an embodiment of the present invention.
  • connection pin 800 is inserted into a through hole (reference numeral 320 in FIG. 7 ) formed at a position adjacent to the semiconductor chip G in the upper ceramic substrate 300 .
  • the connection pin 800 fitted into the through hole 320 formed at a position adjacent to the semiconductor chip G is inserted into the through hole 420 formed at a position corresponding to the PCB substrate (reference numeral 400 in FIG. 9 ) to insert the semiconductor chip G ) may be connected to a gate terminal for mounting the electrode pattern of the PCB substrate 400 .
  • connection pin 800 is inserted into the through hole 320 formed at a position adjacent to the NTC temperature sensor 210 in the upper ceramic substrate 300 .
  • the connection pin 800 fitted into the through hole 320 formed at a position adjacent to the NTC temperature sensor 210 is inserted into the through hole 420 formed at a position corresponding to the PCB substrate 400 to the NTC temperature sensor 210 .
  • the terminal and the electrode pattern of the PCB substrate 400 may be connected.
  • connection pin 800 is fitted into the plurality of through holes 320 formed in a line in the first electrode pattern (a) and the third electrode pattern (c) in the upper ceramic substrate 300 .
  • the connecting pins 800 fitted into the plurality of through holes 320 formed in the first electrode pattern (a) and the third electrode pattern (c) are inserted into the through holes 420 formed at positions corresponding to the PCB substrate 400 .
  • the semiconductor chip G may be connected to the capacitor 410 of the PCB substrate 400 .
  • connection pin 800 connects the semiconductor chip G mounted on the upper ceramic substrate 300 to the driving device mounted on the PCB substrate 400 with the shortest distance, thereby eliminating various output losses and enabling high-speed switching.
  • FIG. 11 is a partial cross-sectional view (part A-A of FIG. 10) showing a state in which a connection pin according to an embodiment of the present invention is fixed to a through hole of an upper ceramic substrate and a PCB substrate is installed thereon.
  • FIG. 11 is an exaggerated view of a state in which a connection pin is fixed to a through hole of an upper ceramic substrate and a PCB substrate is installed thereon.
  • connection pin 800 is installed in the through hole 320 formed in the upper ceramic substrate 300 .
  • the upper ceramic substrate 300 includes a ceramic substrate 301 and metal layers 302 and 303 formed on upper and lower surfaces of the ceramic substrate 301 .
  • the through hole 320 is formed to penetrate the metal layers 302 and 303 of the upper ceramic substrate 300 and the ceramic substrate 301 .
  • the connection pin 800 is fitted to the through hole 320 .
  • the connection pin 800 fitted to the through hole 320 may be bonded to the metal layer 302 on the upper surface of the upper ceramic substrate 300 by laser welding.
  • connection pin 800 is formed of copper or a copper alloy material.
  • the metal layers 302 and 303 of the upper ceramic substrate 300 are formed of copper or a copper alloy material. Copper and copper alloys facilitate electrical connections between electrical components.
  • connection pin 800 may be joined by a laser welding method via the metal layer 302 and the solder layer 850 on the upper surface of the upper ceramic substrate 300 .
  • the solder layer 850 is disposed between the metal layer 302 at the edge of the through hole 320 and the connection pin 800 to bond the connection pin 800 to the upper ceramic substrate 300 .
  • the solder layer 850 is a joint between the connecting pin 800 and the upper ceramic substrate 300 by melting the solder applied between the connecting pin 800 and the upper ceramic substrate 300 during laser welding.
  • the solder may be SnAg, SnAgCu, or the like.
  • Laser welding can be performed by irradiating a laser to the connecting pin 800 to heat the connecting pin 800 to melt the solder ball applied between the connecting pin 800 and the upper ceramic substrate 300 .
  • connection pin 800 fixed to the through hole 320 of the upper ceramic substrate 300 is fitted and coupled to the through hole 420 of the PCB substrate 400 installed on the upper ceramic substrate 300, and the upper ceramic The substrate 300 and the electrical components of the PCB substrate 400 are electrically connected.
  • connection pin 800 connects the metal layer 302 of the upper ceramic substrate 300 and the electrode pattern of the PCB substrate 400 with the shortest distance to be more advantageous for high-speed switching.
  • connection pin 800 connects the upper ceramic substrate 300 and the PCB substrate 400, but does not contact the lower ceramic substrate 200 disposed under the upper ceramic substrate 300 to prevent a short circuit. .
  • the lower ceramic substrate 200 is spaced apart from the lower portion of the upper ceramic substrate 300 at a predetermined interval to secure a space for heat dissipation between the upper ceramic substrate 300 and the lower ceramic substrate 200, and a semiconductor chip ( G) to efficiently dissipate the heat generated.
  • a heat sink 500 is attached to the lower surface of the lower ceramic substrate 200 so that heat generated in the semiconductor chip G and transferred to the lower ceramic substrate 200 can be easily radiated to the outside through the heat sink 500 .
  • the semiconductor chip G is mounted in the form of a flip chip on the lower surface of the upper ceramic substrate 300 using a solder ball.
  • the heat sink 500 bonded to the lower surface of the lower ceramic substrate 200 is formed of copper or a copper alloy material, so that it is easy to dissipate the heat transferred to the lower ceramic substrate 200 to the outside.
  • the semiconductor chip G is soldered to the lower surface of the upper ceramic substrate 300 and the upper surface of the lower ceramic substrate 200 .
  • the solder s1 for bonding the semiconductor chip G to the lower surface of the upper ceramic substrate 300 uses a solder ball having conductivity, and the solder s2 for bonding the semiconductor chip G to the upper surface of the lower ceramic substrate 200 .
  • the solder s1 for bonding the semiconductor chip G to the lower surface of the upper ceramic substrate 300 is electrically connected to the electrode of the upper ceramic substrate 300 , and the semiconductor chip G is connected to the lower surface of the ceramic substrate 200 .
  • the solder s2 bonded to the upper surface may only serve to fix the semiconductor chip G. Referring to FIG.
  • oxidation of the metal layers 202 , 203 , 302 , 303 occurs.
  • cold soldering occurs when the semiconductor chip G and the like are soldered to the metal layers 202 , 203 , 302 , and 303 .
  • Cold soldering means that the solder does not stick to the metal layer due to oxidation of the metal layer, so the bonding is not good.
  • Ceramic substrates 200 and 300 such as the upper ceramic substrate 300 and the lower ceramic substrate 200 are used for manufacturing the power module 10 .
  • the ceramic substrates 200 and 300 must be temporarily stored before use. In this case, it is necessary to prevent oxidation of the metal layers 202 , 203 , 302 , and 303 of the ceramic substrates 200 and 300 .
  • an oxidation prevention layer is formed on the metal layer of the ceramic substrate to prevent oxidation of the metal layer.
  • FIG. 12 is a view showing a state in which an oxidation prevention layer is formed on a metal layer of a ceramic substrate according to an embodiment of the present invention. 12, the lower ceramic substrate will be described as an example.
  • the lower ceramic substrate 200 includes a ceramic substrate 201 and a metal layer 202 formed on at least one of the upper and lower surfaces of the ceramic substrate 201, and the lower ceramic substrate 200.
  • the silver includes an anti-oxidation layer 920 for preventing oxidation of the metal layer 202 .
  • the metal layer 202 is included only on the upper surface of the lower ceramic substrate 200 .
  • the anti-oxidation layer 920 is formed to surround the upper surface and side surfaces of the metal layer 202 of the lower ceramic substrate 200 to prevent external exposure of the metal layer 202 .
  • the metal layer 202 may be a metal layer forming an electrode pattern.
  • the metal layer 202 is formed of copper foil.
  • the metal layer 202 is made of copper or a copper alloy material. Prevention of oxidation of the metal layer 202 reduces the occurrence of cold soldering when soldering components and the like to the lower ceramic substrate 200 . That is, the anti-oxidation layer 920 maintains the condition of the soldering surface to increase the bonding strength between the lower ceramic substrate 200 and the component. If there is no anti-oxidation layer 920 on the metal layer 202, oxidation of the metal layer 202 occurs over time, and the solder does not adhere to the metal layer 202 due to oxidation of the metal layer 202, so that bonding is not performed well. do. If the solder does not adhere well to the metal layer 202, the junction portion falls off due to a small impact, resulting in a problem in the operation reliability of the power module.
  • the antioxidant layer 920 includes an organic solderability preservative (OSP) layer 921 .
  • the antioxidant layer 920 further includes a flux layer 922 formed to surround the top and side surfaces of the OSP layer 921 .
  • the antioxidant layer 920 includes an OSP layer 921 and a flux layer 922 .
  • the OSP layer 921 is a film layer of an organic compound formed by applying an organic solder preservative to the metal layer 202 .
  • the flux layer 922 may be a post flux layer, and as an example, the oxidation prevention layer 920 may include methanol, isopropyl alcohol, or the like surrounding the film layer of the organic compound.
  • the OSP layer 921 and the flux layer 922 are illustrated as being divided into layers, the OSP layer 921 and the flux layer 922 may be in a mixed state without layer division as time passes.
  • the anti-oxidation layer 920 protects the metal layer 202 from external air and moisture and at the same time prevents oxidation of the surface of the metal layer 202 to provide a clean surface of the metal layer.
  • the OSP layer uses an organic solder preservative having excellent thermal stability, the anti-oxidation effect of the metal layer 202 is excellent.
  • a seed layer 910 is further included between the antioxidant layer 920 and the metal layer 202 .
  • the seed layer may be nickel (Ni) or nickel copper (NiCu).
  • the seed layer 910 is to facilitate soldering.
  • the seed layer 910 may improve the shelf life of the oxidation prevention layer 920 to prevent oxidation of the metal layer 202 , thereby making soldering smooth.
  • the anti-oxidation layer 920 is dissolved and removed by a solder ball during soldering.
  • a seed layer 910 is formed on the upper surface of the metal layer 202 and an oxidation prevention layer 920 is formed.
  • the seed layer 910 may be formed by a sputtering method, and the thickness of the seed layer is preferably 1 k ⁇ to 5 k ⁇ (150 nm to 500 nm).
  • the thickness of the anti-oxidation layer 920 is preferably 0.2 to 0.5 ⁇ m.
  • FIG. 13 is a view showing a process of forming an anti-oxidation layer on a metal layer of a ceramic substrate and then soldering bonding according to an embodiment of the present invention.
  • the anti-oxidation layer 920 is formed to surround the upper surface and side surfaces of the metal layer 202 of the lower ceramic substrate 200 to prevent external exposure of the metal layer 202 .
  • the metal layer 202 is copper or a copper alloy.
  • the antioxidant layer 920 includes an OSP layer 921 coated with an organic solder preservative and a flux layer 922 surrounding the OSP layer 921 .
  • a seed layer 910 may be further included between the metal layer 202 and the antioxidant layer 920 to increase the shelf life of the antioxidant layer 920 .
  • the oxidation prevention layer 920 is dissolved and removed by the solder ball s during soldering.
  • the soldering temperature is 100 ⁇ 450 °C
  • the oxidation prevention layer 920 can be dissolved and removed by the solder ball and the soldering temperature. That is, since the anti-oxidation layer 920 is rapidly dissolved and removed by a solder ball in high-temperature soldering, a clean surface of the metal layer 202 may appear, enabling soldering in a very short time.
  • the solder ball (s) may be SnAg, SnAgCu, or the like.
  • a Cu/Sn alloy layer may be formed between the solder ball s and the metal layer 202 .
  • a NiCu/Sn alloy layer may be formed between the solder ball s and the metal layer 202 . Then, as the solder ball s is melted, the metal layer 202 of the lower ceramic substrate 200 may be bonded to the semiconductor chip G mounted on the lower surface of the upper ceramic substrate 300 .
  • the above-described anti-oxidation layer 920 prevents oxidation of the metal layer 202 when soldering the temporarily stored components to the metal layer 202 of the lower ceramic substrate 200, thereby increasing the bonding force between the component and the metal layer 202.
  • Prevention of oxidation of the metal layer 202 increases the bonding strength between the component and the metal layer 202 by preventing the occurrence of cold soldering when the component is soldered to the metal layer 202 .
  • the component may correspond to various electronic components such as a semiconductor chip, a spacer, and an electronic device.
  • anti-oxidation layer 920 is applied to the upper metal layer 202 of the lower ceramic substrate 200 as an example, it is applied to the metal layer of a ceramic substrate applied to various electronic components such as a ceramic substrate applied to a power module. It is possible.
  • the oxidation prevention layer 920 is formed to surround the upper surface and the side surface of the metal layer 202 on the upper side of the lower ceramic substrate 200 to prevent external exposure of the metal layer 202 as well as the lower ceramic substrate 200 . It is formed so as to surround the lower surface and side surfaces of the metal layer 203 under the metal layer 203 to prevent external exposure of the metal layer 203 .
  • the anti-oxidation layer is formed to surround the top and side surfaces of the metal layer to prevent external exposure of the metal layer, so the shelf life of the ceramic substrate is extended and the condition of the metal layer to be soldered is maintained. can be raised
  • the heat dissipation efficiency of the semiconductor chip can be increased.
  • 14 is a cross-sectional view illustrating a state in which a semiconductor chip is connected to an upper ceramic substrate according to another embodiment of the present invention. 14 shows the configuration of the semiconductor chip connected to the upper ceramic substrate in an exaggerated manner unlike in reality.
  • the semiconductor chip G is bonded to the lower surface of the upper ceramic substrate 300 by flip-chip bonding.
  • Flip-chip bonding is advantageous for high-speed switching (high-frequency turn-on) because the electric loss and load due to resistance on the power transfer path are improved by shortening the power transfer path.
  • the upper ceramic substrate 300 is disposed to be spaced apart from the upper ceramic substrate 200 .
  • the lower ceramic substrate 200 is disposed between the semiconductor chip G and the heat sink 500 .
  • the lower ceramic substrate 200 is in contact with the semiconductor chip G to transfer heat generated from the semiconductor chip G to the heat sink 500 and insulates between the semiconductor chip G and the heat sink 500 to prevent a short circuit.
  • the lower ceramic substrate 200 is connected to the ground, and serves to prevent leakage current.
  • the lower ceramic substrate 200 includes a ceramic substrate 201 and metal layers 202 and 203 formed on upper and lower surfaces of the ceramic substrate 201 .
  • the upper ceramic substrate 300 includes a ceramic substrate 301 and metal layers 302 and 303 formed on upper and lower surfaces of the ceramic substrate 301 .
  • the metal layers 202 and 203 on the upper and lower surfaces of the lower ceramic substrate 200 perform a heat dissipation function of transferring the heat of the semiconductor chip G to the heat sink 500 , and the upper and lower metal layers of the upper ceramic substrate 300 .
  • Reference numerals 302 and 303 form electrode patterns for a switching operation of the semiconductor chip G.
  • the heat sink 500 is bonded to the lower surface of the lower ceramic substrate 200 .
  • a bonding layer 550 bonding the lower surface of the lower ceramic substrate 200 and the upper surface of the heat sink 500 is included.
  • the bonding layer 550 is made of solder or Ag paste.
  • SnPb-based, SnAg-based, SnAgCu-based, or Cu-based solder paste having high bonding strength and excellent high-temperature reliability may be used.
  • Ag paste has better high-temperature reliability and higher thermal conductivity than solder.
  • Ag nano paste may be used to further increase the thermal conductivity of the Ag paste.
  • the metal layers 202 and 203 of the lower ceramic substrate 200 and the metal layers 302 and 303 of the upper ceramic substrate 300 may be made of a metal having electrical conductivity and high thermal conductivity, for example, may be formed of copper or a copper alloy material.
  • the heat sink 500 may be made of a metal having high heat dissipation efficiency, and may be made of, for example, copper, a copper alloy, and an aluminum material.
  • FIG. 15 is a partially enlarged view of FIG. 14 , illustrating a state in which a semiconductor chip is bonded between an upper ceramic substrate and a lower ceramic substrate;
  • the top surface electrodes g1 and g2 of the semiconductor chip G are bonded to the metal layer 303 of the upper ceramic substrate 300 .
  • the surface electrodes g1 and g2 of the semiconductor chip G include a drain electrode, a source electrode, and a gate electrode.
  • a first bonding layer 350 bonding the surface electrodes g1 and g2 of the upper surface of the semiconductor chip G to the metal layer 303 of the upper ceramic substrate 300 is included.
  • the first bonding layer 350 directly connects the surface electrodes g1 and g2 of the semiconductor chip G and the metal layer 303 of the upper ceramic substrate 300 to shorten the current transfer path.
  • the first bonding layer 350 may be formed of solder or Ag paste.
  • the solder may be a SnPb-based, SnAg-based, SnAgCu-based, or Cu-based solder paste.
  • the Ag paste is preferably Ag nano paste.
  • a second bonding layer 250 bonding the lower surface of the semiconductor chip G to the metal layer 303 of the upper surface of the lower ceramic substrate 200 is included.
  • the second bonding layer 250 increases heat dissipation efficiency by bringing the lower surface of the semiconductor chip G into contact with the upper surface of the lower ceramic substrate 200 .
  • the second bonding layer 250 maximizes the contact area between the semiconductor chip G and the lower ceramic substrate 200 to be advantageous for heat dissipation.
  • the second bonding layer 250 bonds the entire lower surface of the semiconductor chip G to the upper surface of the lower ceramic substrate 200 .
  • the second bonding layer 250 may be formed of solder or Ag paste.
  • the solder may be a SnPb-based, SnAg-based, SnAgCu-based, or Cu-based solder paste.
  • the Ag paste is preferably Ag nano paste.
  • the first bonding layer 350 and the second bonding layer 250 are preferably formed of Ag paste, more preferably of Ag nanopaste.
  • Ag paste is preferably used rather than solder in order to improve heat dissipation performance because Ag paste has superior thermal conductivity compared to solder. Moreover, Ag nanopaste has better thermal conductivity than Ag paste.
  • both the first bonding layer 350 and the second bonding layer 250 are used as solder
  • thermal conductivity is higher and The heat dissipation efficiency is increased.
  • solder may be used for both the first bonding layer 350 and the second bonding layer 250
  • Ag paste may be used for the first bonding layer 350 and solder may be used for the second bonding layer 250
  • solder may be used for the first bonding layer 350 and Ag paste may be used for the second bonding layer 250 .
  • thermal conductivity is high and heat dissipation efficiency is also increased.
  • first bonding layer 350 bonding the semiconductor chip G to the upper ceramic substrate 300 , the second bonding layer 250 bonding the semiconductor chip G to the lower ceramic substrate 200 , and the lower ceramic substrate Ag paste may be applied to the bonding layer 550 bonding the substrate 200 and the heat sink 500 to increase heat dissipation efficiency.
  • 16 is a partially enlarged view showing a state in which a semiconductor chip is bonded between an upper ceramic substrate and a lower ceramic substrate according to another embodiment of the present invention.
  • an Ag plating layer 240 may be formed on the metal layer 202 on the upper surface of the lower ceramic substrate 200 .
  • the Ag plating layer 240 may be formed by Ag plating on the metal layer 202 on the upper surface of the lower ceramic substrate 200 .
  • An Ag plating layer 240 is formed on the metal layer 202 of the upper surface of the lower ceramic substrate 200 , and the lower surface of the semiconductor chip G is bonded to the Ag plating layer 240 with a second bonding layer 250 .
  • the Ag plating layer 240 is formed on the entire upper surface of the metal layer 202 on the upper surface of the lower ceramic substrate 200 .
  • the Ag plating layer 240 rapidly absorbs heat generated in the semiconductor chip G and transferred to the second bonding layer 250 and transfers it to the heat sink 500 .
  • Ag paste may be used for the second bonding layer 250 to maximize heat dissipation efficiency. That is, by further forming the Ag plating layer 240 on the entire upper surface of the lower ceramic substrate 200 and bonding the semiconductor chip G to the Ag plating layer 240 via the second bonding layer 250 as a medium, thermal conductivity is increased to dissipate heat. efficiency can be further increased.
  • the semiconductor chip G is bonded to the upper ceramic substrate with the first bonding layer 350 , the semiconductor chip G is bonded to the lower ceramic substrate 200 with the second bonding layer 250 , and the lower ceramic substrate 200 .
  • Pressure bonding using solder may be performed at about 200°C, and pressure sintering using Ag paste may be performed at 270°C or higher.
  • the semiconductor chip is disposed between two ceramic substrates and flip-chip bonding, so the current transfer path is shortened, which is advantageous for high-speed switching, and the contact area between the semiconductor chip and the ceramic substrate is large. There are advantages to heat dissipation.

Abstract

본 발명은 파워모듈에 관한 것으로, 세라믹기판(200)은 세라믹기재(201)와 상기 세라믹기재(201)의 상면과 하면 중 적어도 한 면에 형성된 금속층(202)과 상기 금속층(202)의 상면과 측면을 감싸도록 형성되어 상기 금속층(202)의 외부 노출을 방지하는 산화방지층(920)을 포함한다. 본 발명은 산화방지층이 금속층의 상면과 측면을 감싸도록 형성되어 금속층의 외부 노출을 방지하므로 세라믹기판의 저장 수명이 연장되고 솔더링되는 금속층의 컨디션을 유지하여 금속층과 부품 간의 접합력을 높일 수 있는 이점이 있다.

Description

파워모듈
본 발명은 파워모듈에 관한 것으로, 더욱 상세하게는 고출력 전력 반도체 칩을 적용하여 성능을 개선하고 신뢰성을 개선한 파워모듈에 관한 것이다.
파워모듈은 하이브리드 자동차, 전기차 등의 모터 구동을 위해 고전압 전류를 공급하기 위해 사용된다.
파워모듈 중 양면 냉각 파워모듈은 반도체 칩의 상, 하부에 각각 기판을 설치하고 그 기판의 외측면에 각각 방열판을 구비한다. 양면 냉각 파워모듈은 단면에 방열판을 구비하는 단면 냉각 파워모듈에 비해 냉각 성능이 우수하여 점차 그 사용이 증가하는 추세이다.
전기차 등에 사용되는 양면 냉각 파워모듈은 두 기판의 사이에 탄화규소(SiC), 질화갈륨(GaN) 등의 전력 반도체 칩이 실장되므로 고전압으로 인해 높은 발열과 주행 중 진동이 발생하기 때문에 이를 해결하기 위해 고강도와 고방열 특성을 동시에 만족시키는 것이 중요하다.
또한, 기판은 제조 후 바로 사용하지 않으면 금속층에 산화가 발생한다. 금속층에 산화가 발생하면 기판에 반도체 칩 등을 솔더링 접합시 냉땜이 발생한다. 냉땜이 발생하면 금속층에 솔더가 붙지 않아 접합이 잘 되지 않은 상태가 되므로 충격에 의해 접합 부위가 쉽게 떨어지고 쇼트가 발생할 수 있어 제품 신뢰성에 문제가 된다.
본 발명의 목적은 고강도와 고방열 특성을 가지고, 접합 특성이 우수하며 전류 경로를 최소화하여 부피를 줄일 수 있으며 효율 및 성능을 향상시킬 수 있는 파워모듈을 제공하는 것이다.
또한, 본 발명의 목적은 산화방지 효과가 우수하고 신뢰성을 개선할 수 있는 세라믹기판을 포함한 파워모듈을 제공하는 것이다.
또한, 본 발명의 목적은 반도체 칩을 상부 세라믹기판과 하부 세라믹기판의 사이에 배치하고 플립칩 본딩 및 접촉 면적 최대화로 반도체 칩에서 발생되는 열의 방열 효율을 높일 수 있는 파워모듈을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명의 파워모듈은 세라믹기판을 포함하고, 세라믹기판은 세라믹기재와 세라믹기재의 상면과 하면 중 적어도 한 면에 형성된 금속층과 금속층의 상면과 측면을 감싸도록 형성되어 금속층의 외부 노출을 방지하는 산화방지층을 포함한다.
금속층은 구리 또는 구리 합금으로 이루어진다.
산화방지층은 OSP(Organic Solderability Preservative)층을 포함한다.
산화방지층은 OSP층의 상면과 측면을 감싸도록 형성된 플럭스층을 더 포함한다.
산화방지층과 금속층의 사이에 시드층을 더 포함한다.
시드층은 니켈(Ni)을 포함한다.
시드층의 두께는 1kÅ~5kÅ이다.
산화방지층은 솔더링시 솔더볼에 의해 용해되고 제거될 수 있다.
세라믹기판은 AMB 기판, TPC 기판, DBA 기판 중 하나일 수 있다.
세라믹기판에 솔더볼에 의해 솔더링 접합되는 부품을 포함할 수 있다.
부품은 반도체 칩, 스페이서, 전자 소자 중 적어도 하나 이상을 포함할 수 있다.
또한, 본 발명의 파워모듈은 세라믹기재와 세라믹기재의 상면과 하면에 형성된 금속층을 포함하는 하부 세라믹기판과 하부 세라믹기판의 상부에 이격되게 배치되며 세라믹기재와 상기 세라믹기재의 상면과 하면에 전극 패턴을 형성하는 금속층을 포함하는 상부 세라믹기판과, 상부 세라믹기판의 하면의 전극 패턴에 상면의 표면 전극이 접합되는 반도체 칩과, 반도체 칩의 상면의 표면 전극을 상기 상부 세라믹기판의 하면의 전극 패턴에 접합하는 제1 본딩층과, 반도체 칩의 하면을 상기 하부 세라믹기판의 상면의 금속층에 접합하는 제2 본딩층을 포함한다.
제1 본딩층은 솔더 또는 Ag 페이스트로 이루어질 수 있다.
제2 본딩층은 솔더 또는 Ag 페이스트로 이루어질 수 있다.
제2 본딩층은 반도체 칩의 하면 전체를 하부 세라믹기판의 상면과 접합할 수 있다.
하부 세라믹기판의 상면의 금속층에 Ag 도금층이 형성되고, Ag 도금층에 반도체 칩의 하면이 제2 본딩층에 의해 접합될 수 있다.
제2 본딩층은 Ag 페이스트로 이루어질 수 있다.
하부 세라믹기판의 하면에 접합되는 방열판과 하부 세라믹기판의 하면과 상기 방열판의 상면을 접합하는 접합층을 더 포함할 수 있다.
접합층은 솔더 또는 Ag 페이스트로 이루어질 수 있다.
하부 세라믹기판의 금속층과 상부 세라믹기판의 금속층은 구리 또는 구리합금 재질로 형성될 수 있다.
본 발명의 세라믹기판은 금속층에 형성된 산화방지층에 의해 금속층의 산화가 방지되므로, 일시 보관 후 부품 등을 솔더링 접합하더라도 솔더링되는 금속층의 컨디션을 유지하여 금속층과 부품 간의 접합력을 높일 수 있는 효과가 있다.
또한, 본 발명의 세라믹기판을 포함하는 파워모듈은 고강도와 고방열 특성을 가지고, 접합 특성이 우수하며, 전류 경로를 최소화하여 부피를 줄일 수 있으며 고속 스위칭에 최적화되어 효율 및 성능을 향상시킬 수 있는 효과가 있다.
또한, 본 발명의 파워모듈은 고강도와 고방열 특성을 가지고, 접합 특성이 우수하며, 전류 경로를 최소화하여 부피를 줄일 수 있으며 고속 스위칭에 최적화되어 효율 및 성능을 향상시킬 수 있는 효과가 있다.
또한, 본 발명의 파워모듈은 반도체 칩의 상면의 표면 전극을 상부 세라믹기판에 직접 접합하고, 하면을 하부 세라믹기판에 접합하여 반도체 칩이 상부 세라믹기판과 하부 세라믹기판의 사이에 접촉되어 배치되게 하므로 전류 전달 경로를 짧게하여 고속 스위칭에 유리하고 반도체 칩과 세라믹기판의 접촉 면적이 커져 방열에 유리한 효과가 있다.
또한, 본 발명의 파워모듈은 반도체 칩을 상부 세라믹기판에 접합하는 제1 본딩층과 반도체 칩을 하부 세라믹기판에 접합하는 제2 본딩층 및 하부 세라믹기판과 방열판을 접합하는 접합층에 Ag 페이스트를 적용하여 방열 효율을 높일 수 있는 효과가 있다.
또한, 본 발명의 파워모듈은 하부 세라믹기판의 상면 전체에 Ag 도금층을 더 형성하고 Ag 도금층에 제2 본딩층을 매개로 반도체 칩을 접합함으로써 열전도도를 높여 방열 효율을 더 높일 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 의한 파워모듈의 사시도이다.
도 2는 본 발명의 실시예에 의한 파워모듈의 분해 사시도이다.
도 3은 본 발명의 실시예에 의한 파워모듈의 측단면도이다.
도 4는 본 발명의 실시예에 의한 하우징을 보인 사시도이다.
도 5는 본 발명의 실시예에 의한 하부 세라믹기판을 보인 사시도이다.
도 6은 본 발명의 실시예에 의한 하부 세라믹기판의 상면과 하면을 보인 도면이다.
도 7은 본 발명의 실시예에 의한 상부 세라믹기판을 보인 사시도이다.
도 8은 본 발명의 실시예에 의한 상부 세라믹기판의 상면과 하면을 보인 도면이다.
도 9는 본 발명의 실시예에 의한 PCB 기판의 평면도이다.
도 10은 본 발명의 실시예에 의한 상부 세라믹기판에 연결핀이 결합된 상태를 보인 사시도이다.
도 11은 본 발명의 실시예에 의한 연결핀을 상부 세라믹기판의 쓰루홀에 고정하고 그 상부에 PCB 기판을 설치한 상태를 보인 부분 단면도이다.
도 12는 본 발명의 실시예에 의한 세라믹기판의 금속층에 산화방지층을 형성한 모습을 보인 도면이다.
도 13은 본 발명의 실시예에 의한 세라믹기판의 금속층에 산화방지층을 형성하고, 이후 솔더링 접합하는 과정을 보여주는 도면이다.
도 14는 본 발명의 다른 실시예로 반도체 칩을 상부 세라믹기판에 연결한 모습을 보인 단면도이다.
도 15는 도 14의 부분 확대도로, 반도체 칩이 상부 세라믹기판과 하부 세라믹기판의 사이에 접합된 모습을 보인 도면이다.
도 16은 본 발명의 또 다른 실시예로 반도체 칩이 상부 세라믹기판과 하부 세라믹기판의 사이에 접합된 모습을 보인 부분 확대도이다.
* 부호의 설명 *
10: 파워모듈 100: 하우징
101: 안내리브 102: 걸림턱
103: 체결공 104: 지지공
200: 하부 세라믹기판 201: 세라믹기재
202,203: 금속층 210: NTC 온도센서
220: 절연 스페이서 230: 인터커넥션 스페이서
240: Ag 도금층 250: 제2 본딩층
300: 상부 세라믹기판 301: 세라믹기재
302,302: 금속층 310: 커팅부
320: 쓰루홀 330,330a: 비아홀
350: 제1 본딩층 400: PCB 기판
401,402: 안내홈 410: 캐패시터
420: 쓰루홀 500: 방열판
501: 연통공 610: 제1 단자
620: 제2 단자 630: 지지볼트
700: 버스바 G: 반도체 칩(GaN 칩)
800: 연결핀 910: 시드층
920: 산화방지층 921: OSP층
922: 플럭스층 s: 솔더볼
g1, g2: 표면 전극
이하 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
도 1은 본 발명의 실시예에 의한 파워모듈의 사시도이고, 도 2는 본 발명의 실시예에 의한 파워모듈의 분해 사시도이다.
도 1 및 도 2에 도시된 바에 의하면, 본 발명의 실시예에 따른 파워모듈(10)은 하우징(100)에 파워모듈을 이루는 각종 구성품을 수용하여 형성한 패키지 형태의 전자부품이다. 파워모듈(10)은 하우징(100) 안에 기판 및 소자를 배치하여 보호하는 형태로 형성된다.
파워모듈(10)은 다수의 기판 및 다수의 반도체 칩을 포함할 수 있다. 실시예에 따른 파워모듈(10)은 하우징(100), 하부 세라믹기판(200), 상부 세라믹기판(300), PCB 기판(400) 및 방열판(500)을 포함한다.
하우징(100)은 중앙에 상하로 개구되는 빈 공간이 형성되며 양측에 제1 단자(610)와 제2 단자(620)가 위치된다. 하우징(100)은 중앙의 빈 공간에 방열판(500), 하부 세라믹기판(200), 상부 세라믹기판(300) 및 PCB 기판(400)이 상하 일정 간격을 두고 순차적으로 적층되며, 양측의 제1 단자(610)와 제2 단자(620)에 외부 단자를 연결하기 위한 지지볼트(630)가 체결된다. 제1 단자(610)와 제2 단자(620)는 전원의 입출력단으로 사용된다.
도 2에 도시된 바에 의하면, 파워모듈(10)은 하우징(100)의 중앙의 빈 공간에 하부 세라믹기판(200), 상부 세라믹기판(300), PCB 기판(400)이 순차적으로 수용된다. 구체적으로, 하우징(100)의 하면에 방열판(500)이 배치되고, 방열판(500)의 상면에 하부 세라믹기판(200)이 부착되고, 하부 세라믹기판(200)의 상부에 상부 세라믹기판(300)이 일정 간격을 두고 배치되며, 상부 세라믹기판(300)의 상부에 PCB 기판(400)이 일정 간격을 두고 배치된다.
하우징(100)에 PCB 기판(400)이 배치된 상태는 PCB 기판(400)의 가장자리에 요입되게 형성된 안내홈(401,402)과 안내홈(401,402)에 대응되게 하우징(100)에 형성된 안내리브(101) 및 걸림턱(102)에 의해 고정될 수 있다. 실시예에 따른 PCB 기판(400)은 가장자리를 둘러 다수 개의 안내홈(401,402)이 형성되고, 이들 중 일부의 안내홈(401)은 하우징(100)의 내측면에 형성된 안내리브(101)가 안내되고 이들 중 나머지 일부의 안내홈(402)은 하우징(100)의 내측면에 형성된 걸림턱(102)이 통과되어 걸어진다.
또는, 하우징(100)의 중앙의 빈 공간에 방열판(500), 하부 세라믹기판(200), 상부 세라믹기판(300)이 수용되고, 그 상면에 PCB 기판(400)이 배치된 상태는 체결볼트(미도시)로 고정될 수도 있다. 그러나, 하우징(100)에 PCB 기판(400)을 안내홈과 걸림턱 구조로 고정하는 것이 체결볼트로 고정하는 경우 대비 조립 시간을 줄이고 조립 공정이 간편하다.
하우징(100)은 네 모서리에 체결공(103)이 형성된다. 체결공(103)은 방열판(500)에 형성된 연통공(501)과 연통된다. 체결공(103)과 연통공(501)을 관통하여 고정볼트(150)가 체결되고, 체결공(103)과 연통공(501)을 관통한 고정볼트(150)의 단부는 방열판(500)의 하면에 배치될 고정지그의 고정공에 체결될 수 있다.
제1 단자(610)와 제2 단자(620)에 버스바(700)가 연결된다. 버스바(700)는 제1 단자(610)와 제2 단자(620)를 상부 세라믹기판(300)과 연결한다. 버스바(700)는 3개가 구비된다. 버스바(700) 중 하나는 제1 단자(610) 중 +단자를 상부 세라믹기판(300)의 제1 전극 패턴(a)과 연결하고, 다른 하나는 제1 단자(610) 중 -단자를 제3 전극 패턴(c)과 연결하며, 나머지 하나는 제2 단자(620)를 제2 전극 패턴(b)과 연결한다. 제1 전극 패턴(a), 제2 전극 패턴(b) 및 제3 전극 패턴(c)은 후술할 도 7 및 도 10을 참조한다.
도 3은 본 발명의 실시예에 의한 파워모듈의 측단면도이다.
도 3에 도시된 바에 의하면, 파워모듈(10)은 하부 세라믹기판(200)과 상부 세라믹기판(300)의 복층 구조이며, 하부 세라믹기판(200)과 상부 세라믹기판(300)의 사이에 반도체 칩(G)이 위치된다. 반도체 칩(G)은 GaN(Gallium Nitride) 칩, MOSFET(Metal Oxide Semiconductor Field Effect Transistor), IGBT(Insulated Gate Bipolar Transistor), JFET(Junction Field Effect Transistor), HEMT(High Electric Mobility Transistor) 중 어느 하나일 수 있으나, 바람직하게는 반도체 칩(G)은 GaN 칩을 사용한다. GaN(Gallium Nitride) 칩(G)은 대전력(300A) 스위치 및 고속(~1MHz) 스위치로 기능하는 반도체 칩이다. GaN 칩은 기존의 실리콘 기반 반도체 칩보다 열에 강하면서 칩의 크기도 줄일 수 있는 장점이 있다.
하부 세라믹기판(200)과 상부 세라믹기판(300)은 반도체 칩(G)으로부터 발생하는 열의 방열 효율을 높일 수 있도록, 세라믹기재와 세라믹기재의 적어도 일면에 브레이징 접합된 금속층을 포함하는 세라믹기판으로 형성된다.
세라믹기재는 알루미나(Al2O3), AlN, SiN, Si3N4 중 어느 하나인 것을 일 예로 할 수 있다. 금속층은 세라믹기재 상에 브레이징 접합된 금속박으로 반도체 칩(G)을 실장하는 전극 패턴 및 구동소자를 실장하는 전극 패턴으로 각각 형성된다. 예컨데, 금속층은 반도체 칩 또는 주변 부품이 실장될 영역에 전극 패턴으로 형성된다. 금속박은 알루미늄박 또는 동박인 것을 일 예로 한다. 금속박은 세라믹기재 상에 780℃~1100℃로 소성되어 세라믹기재와 브레이징 접합된 것을 일 예로 한다. 이러한 세라믹기판을 AMB 기판이라 한다. 실시예는 AMB 기판을 예로 들어 설명하나 DBC 기판, TPC 기판, DBA 기판을 적용할 수도 있다. 그러나 내구성 및 방열 효율면에서 AMB 기판이 가장 적합하다. 상기한 이유로, 하부 세라믹기판(200)과 상부 세라믹기판(300)은 AMB 기판임을 일 예로 한다.
PCB 기판(400)은 상부 세라믹기판(300)의 상부에 배치된다. 즉, 파워모듈(10)은 하부 세라믹기판(200)과 상부 세라믹기판(300)과 PCB 기판(400)의 3층 구조로 구성된다. 고전력용 제어를 위한 반도체 칩(G)을 상부 세라믹기판(200)과 하부 세라믹기판(300)의 사이에 배치하여 방열 효율을 높이고, 저전력용 제어를 위한 PCB 기판(400)을 최상부에 배치하여 반도체 칩(G)에서 발생하는 열로 인한 PCB 기판(400)의 손상을 방지한다. 하부 세라믹기판(200), 상부 세라믹기판(300), PCB 기판(400)은 핀으로 연결 또는 고정될 수 있다.
방열판(500)은 하부 세라믹기판(200)의 하부에 배치된다. 방열판(500)은 반도체 칩(G)에서 발생하는 열의 방열을 위한 것이다. 방열판(500)은 소정의 두께를 가지는 사각 플레이트 형상으로 형성된다. 방열판(500)은 하우징(100)과 대응되는 면적으로 형성되며 방열 효율을 높이기 위해 구리 또는 알루미늄 재질로 형성될 수 있다.
이하에서는 본 발명의 파워모듈의 각 구성별 특징을 더욱 상세하게 설명하기로 한다. 파워모듈의 각 구성별 특징을 설명하는 도면에서는 각 구성별 특징을 강조하기 위해 도면을 확대하거나 과장하여 표현한 부분이 있으므로 도 1에 도시된 기본 도면과 일부 일치하지 않는 부분이 있을 수 있다.
도 4는 본 발명의 실시예에 의한 하우징을 보인 사시도이다.
도 4에 도시된 바에 의하면, 하우징(100)은 중앙에 빈 공간이 형성되며, 양단에 제1 단자(610)와 제2 단자(620)가 위치된다. 하우징(100)은 양단에 제1 단자(610)와 제2 단자(620)가 일체로 고정되게 인서트 사출 방식으로 형성될 수 있다.
기존의 파워모듈은 이격된 회로를 연결하기 위해 하우징에 연결핀을 인서트 사출하여 적용하고 있으나, 본 실시예는 하우징(100)의 제조시 연결핀을 제외하여 제조한 형상을 갖는다. 이는 하우징(100)의 내부에 연결핀이 위치하지 않음으로써 형상을 단순화하여 파워모듈의 비틀림 모멘트에 유연성을 향상시킨다.
하우징(100)은 네 모서리에 체결공(103)이 형성된다. 체결공(103)은 방열판(500)에 형성된 연통공(501)과 연통된다. 제1 단자(610)와 제2 단자(620)에는 지지공(104)이 형성된다. 지지공(104)에는 제1 단자(610) 및 제2 단자(620)를 모터 등의 외부 단자와 연결하기 위한 지지볼트(630)가 체결된다(도 10 참조).
하우징(100)은 단열 재질로 형성된다. 하우징(100)은 반도체 칩(G)에서 발생한 열이 하우징(100)을 통해 상부의 PCB 기판(400)에 전달되지 않도록 단열 재질로 형성될 수 있다.
또는 하우징(100)은 방열 플라스틱 재질을 적용할 수 있다. 하우징(100)은 반도체 칩(G)에서 발생한 열이 하우징(100)을 통해 외부로 방열될 수 있도록 방열 플라스틱 재질을 적용할 수 있다. 일 예로, 하우징(100)은 엔지니어링 플라스틱으로 형성될 수 있다. 엔지니어링 플라스틱은 높은 내열성과 뛰어난 강도, 내약품성, 내마모성을 가지며 150℃ 이상에서 장시간 사용 가능하다. 엔지니어링 플라스틱은 폴리아미드, 폴리카보네이트, 폴리에스테르, 변성 폴리페닐렌옥사이드 중 하나의 재료로 된 것일 수 있다.
반도체 칩(G)은 스위치로서 반복 동작을 하는데 그로 인해 하우징(100)은 고온과 온도변화에 스트레스를 받게 되나, 엔지니어링 플라스틱은 고온 안정성이 우수하므로 일반 플라스틱에 비해 고온과 온도변화에 상대적으로 안정적이고 방열 특성도 우수하다.
실시예는 엔지니어링 플라스틱 소재에 알루미늄 또는 구리로 된 단자를 인서트사출 적용하여 하우징(100)을 제조한 것일 수 있다. 엔지니어링 플라스틱 소재로 된 하우징(100)은 열을 전파시켜 외부로 방열시킨다. 하우징(100)은 수지에 고열 전도율 필러를 충전함으로써 일반 엔지니어링 플라스틱 소재보다 열전도성을 더 높일 수 있고 알루미늄에 비해 경량인 고방열 엔지니어링 플라스틱으로 될 수 있다.
또는, 하우징(100)은 엔지니어링 플라스틱 또는 고강도 플라스틱 소재의 내외부에 그래핀 방열코팅재를 도포하여 방열 특성을 가지도록 한 것일 수 있다.
도 5는 본 발명의 실시예에 의한 하부 세라믹기판을 보인 사시도이다.
도 3 및 도 5에 도시된 바에 의하면, 하부 세라믹기판(200)은 방열판(500)의 상면에 부착된다. 구체적으로, 하부 세라믹기판(200)은 반도체 칩(G)과 방열판(500)의 사이에 배치된다. 하부 세라믹기판(200)은 반도체 칩(G)에서 발생하는 열을 방열판(500)으로 전달하고, 반도체 칩(G)과 방열판(500)의 사이를 절연하여 쇼트를 방지하는 역할을 한다.
하부 세라믹기판(200)은 방열판(500)의 상면에 솔더링 접합될 수 있다. 방열판(500)은 하우징(100)과 대응되는 면적으로 형성되며 방열 효율을 높이기 위해 구리 재질로 형성될 수 있다. 솔더링 접합을 위한 솔더는 SnAg, SnAgCu 등이 사용될 수 있다.
도 6은 본 발명의 실시예에 의한 하부 세라믹기판의 상면과 하면을 보인 도면이다.
도 5 및 도 6에 도시된 바에 의하면, 하부 세라믹기판(200)은 세라믹기재(201)와 세라믹기재(201)의 상하면에 브레이징 접합된 금속층(202,203)을 포함한다. 하부 세라믹기판(200)은 세라믹기재(201)의 두께가 0.68t이고, 세라믹기재(201)의 상면과 하면에 형성한 금속층(202,203)의 두께가 0.8t인 것을 일 예로 할 수 있다.
하부 세라믹기판(200)의 상면(200a)의 금속층(202)은 구동소자를 실장하는 전극 패턴일 수 있다. 하부 세라믹기판(200)에 실장되는 구동소자는 NTC 온도센서(210)일 수 있다. NTC 온도센서(210)는 하부 세라믹기판(200)의 상면에 실장된다. NTC 온도센서(210)는 반도체 칩(G)의 발열로 인한 파워모듈 내의 온도 정보를 제공하기 위한 것이다. 하부 세라믹기판(200)의 하면(200b)의 금속층(203)은 방열판(500)에 열전달을 용이하게 하기 위해 하부 세라믹기판(200)의 하면 전체에 형성될 수 있다.
하부 세라믹기판(200)에 절연 스페이서(220)가 접합된다. 절연 스페이서(220)는 하부 세라믹기판(200)의 상면에 접합되며 하부 세라믹기판(200)과 상부 세라믹기판(300)의 이격 거리를 규정한다.
절연 스페이서(220)는 하부 세라믹기판(200)과 상부 세라믹기판(300)의 이격 거리를 규정하여 상부 세라믹기판(300)의 하면에 실장된 반도체 칩(G)에서 발생하는 열의 방열 효율을 높이고, 반도체 칩(G) 간의 간섭을 방지하여 쇼트와 같은 전기적 충격을 방지한다.
절연 스페이서(220)는 하부 세라믹기판(200)의 상면 가장자리를 둘러 소정 간격을 두고 다수 개가 접합된다. 절연 스페이서(220) 간의 간격은 방열 효율을 높이는 공간으로 활용된다. 도면상 절연 스페이서(220)는 하부 세라믹기판(200)을 기준으로 할 때 가장자리를 둘러 배치되며, 일 예로 8개가 일정 간격을 두고 배치된다.
절연 스페이서(220)는 하부 세라믹기판(200)에 일체로 접합된다. 절연 스페이서(220)는 하부 세라믹기판(200)의 상부에 상부 세라믹기판(300)을 배치할 때 얼라인을 확인하는 용도로 적용될 수도 있다. 하부 세라믹기판(200)에 절연 스페이서(220)가 접합된 상태에서 그 상부에 반도체 칩(G)이 실장된 상부 세라믹기판(300)을 배치할 때, 절연 스페이서(220)가 상부 세라믹기판(300)의 얼라인을 확인하는 용도로 적용될 수 있다. 또한, 절연 스페이서(220)는 하부 세라믹기판(200)과 상부 세라믹기판(300)을 지지하여 하부 세라믹기판(200)과 상부 세라믹기판(300)의 휨을 방지하는데 기여한다.
절연 스페이서(220)는 하부 세라믹기판(200)에 실장된 칩과 상부 세라믹기판(300)에 실장된 칩 및 부품 간의 절연을 위해 세라믹 소재로 형성될 수 있다. 일 예로, 절연 스페이서는 Al2O3, ZTA, Si3N4, AlN 중 선택된 1종 또는 이들 중 둘 이상이 혼합된 합금으로 형성될 수 있다. Al2O3, ZTA, Si3N4, AlN는 기계적 강도, 내열성이 우수한 절연성 재료이다.
절연 스페이서(220)는 하부 세라믹기판(200)에 브레이징 접합된다. 절연 스페이서(220)를 하부 세라믹기판(200)에 솔더링 접합하면 솔더링 또는 가압 소성시 열적 기계적 충격으로 인해 기판이 파손될 수 있으므로 브레이징 접합한다. 브레이징 접합은 AgCu층과 Ti층을 포함한 브레이징 접합층을 이용할 수 있다. 브레이징을 위한 열처리는 780℃~900℃에서 수행할 수 있다. 브레이징 후, 절연 스페이서(220)는 하부 세라믹기판(200)의 금속층(202)과 일체로 형성된다. 브레이징 접합층의 두께는 0.005mm~0.08mm로 절연 스페이서의 높이에 영향을 미치치 않을 만큼 얇고 접합 강도는 높다.
하부 세라믹기판(200)과 상부 세라믹기판(300)의 사이에 인터커넥션 스페이서(230)가 설치된다. 인터커넥션 스페이서(230)는 상하 복층 구조의 기판에서 연결핀을 대신하여 전극 패턴 간 전기적 연결을 수행할 수 있다. 인터커넥션 스페이서(230)는 전기적 로스(loss) 및 쇼트(shot)를 방지하면서 기판 간을 직접 연결하고 접합 강도를 높이며 전기적 특성도 개선할 수 있다. 인터커넥션 스페이서(230)는 일단이 브레이징 접합 방식으로 하부 세라믹기판(200)의 전극 패턴에 접합될 수 있다. 또한, 인터커넥션 스페이서(230)는 반대되는 타단이 브레이징 접합 방식 또는 솔더링 접합 방식으로 상부 세라믹기판(300)의 전극 패턴에 접합될 수 있다. 인터커넥션 스페이서(230)는 Cu 또는 Cu+CuMo 합금일 수 있다.
도 7은 본 발명의 실시예에 의한 상부 세라믹기판을 보인 사시도이고, 도 8은 본 발명의 실시예에 의한 상부 세라믹기판의 상면과 하면을 보인 도면이다.
도 7 및 도 8에 도시된 바에 의하면, 상부 세라믹기판(300)은 하부 세라믹기판(200)의 상부에 배치된다.
상부 세라믹기판(300)은 적층 구조의 중간 기판이다. 상부 세라믹기판(300)은 하면에 반도체 칩(G)을 실장하고, 고속 스위칭을 위한 하이 사이드(High Side) 회로와 로우 사이드(Low Side) 회로를 구성한다.
상부 세라믹기판(300)은 세라믹기재(301)와 세라믹기재(301)의 상하면에 브레이징 접합된 금속층(302,303)을 포함한다. 상부 세라믹기판(300)은 세라믹기재의 두께가 0.38t이고 세라믹기재의 상면(300a)과 하면(300b)에 전극 패턴의 두께가 0.3t인 것을 일 예로 한다. 세라믹기판은 상면과 하면의 패턴 두께가 동일해야 브레이징시 틀어지지 않는다.
상부 세라믹기판(300)의 상면의 금속층(302)이 형성하는 전극 패턴은 제1 전극 패턴(a), 제2 전극 패턴(b), 제3 전극 패턴(c)으로 구분된다. 상부 세라믹기판(300)의 하면의 금속층(303)이 형성하는 전극 패턴은 상부 세라믹기판(300)의 상면의 금속층(302)이 형성하는 전극 패턴과 대응된다. 상부 세라믹기판(300)의 상면의 전극 패턴을 제1 전극 패턴(a), 제2 전극 패턴(b), 제3 전극 패턴(c)으로 구분한 것은 고속 스위칭을 위해 하이 사이드(High Side) 회로와 로우 사이드(Low Side) 회로로 분리하기 위함이다.
반도체 칩(G)은 상부 세라믹기판(300)의 하면(300b)에 솔더(Solder), 은 페이스트(Ag Paste) 등의 접착층에 의해 플립칩(flip chip) 형태로 구비된다. 반도체 칩(G)이 상부 세라믹기판(300)의 하면에 플립칩 형태로 구비됨에 따라 와이어 본딩이 생략되어 인덕턴스 값을 최대한 낮출 수가 있게 되어, 이에 의해 방열 성능 또한 개선시킬 수 있다.
도 8에 도시된 바와 같이, 반도체 칩(G)은 고속 스위칭을 위해 2개씩 병렬로 연결될 수 있다. 반도체 칩(G)은 2개가 상부 세라믹기판(300)의 전극 패턴 중 제1 전극 패턴(a)과 제2 전극 패턴(b)을 연결하는 위치에 배치되고, 나머지 2개가 제2 전극 패턴(b)과 제3 전극 패턴(c)을 연결하는 위치에 병렬로 배치된다. 일 예로 반도체 칩(G) 하나의 용량은 150A이다. 따라서 반도체 칩(G) 2개를 병렬 연결하여 용량이 300A가 되도록 한다. 반도체 칩(G)은 GaN 칩이다.
반도체 칩(G)을 사용하는 파워모듈의 목적은 고속 스위칭에 있다. 고속 스위칭을 위해서는 Gate drive IC 단자에서 반도체 칩(G)의 Gate 단자 간이 매우 짧은 거리로 연결되는 것이 중요하다. 따라서 반도체 칩(G) 간을 병렬로 연결하여 Gate drive IC와 Gate 단자 간 연결 거리를 최소화한다. 또한, 반도체 칩(G)이 고속으로 스위칭하기 위해서는 반도체 칩(G)의 Gate 단자와 Source 단자가 동일한 간격을 유지하는 것이 중요하다. 이를 위해 반도체 칩(G)과 반도체 칩(G)의 사이의 중심에 연결핀이 연결되도록 Gate 단자와 Source 단자를 배치할 수 있다. Gate 단자와 Source 단자가 동일한 간격을 유지하지 않거나 패턴의 길이가 달라지면 문제가 발생한다.
Gate 단자는 낮은 전압을 이용하여 반도체 칩(G)을 온오프(on/off)시키는 단자이다. Gate 단자는 연결핀을 통해 PCB 기판(400)과 연결될 수 있다. Source 단자는 고전류가 들어오고 나가는 단자이다. 반도체 칩(G)은 Drain 단자를 포함하며, Source 단자와 Drain 단자는 N형과 P형으로 구분되어 전류의 방향을 바꿀 수 있다. Source 단자와 Drain 단자는 반도체 칩(G)을 실장하는 전극 패턴인 제1 전극 패턴(a), 제2 전극 패턴(b), 제3 전극 패턴(c)을 통해 전류의 입출력을 담당한다. Source 단자와 Drain 단자는 전원의 입출력을 담당하는 도 1의 제1 단자(610) 및 제2 단자(620)와 연결된다.
도 1 및 도 8을 참조하면, 도 1에 도시된 제1 단자(610)는 +단자와 -단자를 포함하며, 제1 단자(610)에서 +단자로 유입된 전원은 도 8에 도시된 상부 세라믹기판(300)의 제1 전극 패턴(a), 제1 전극 패턴(a)과 제2 전극 패턴(b)의 사이에 배치된 반도체 칩(G) 및 제2 전극 패턴(b)을 통해 제2 단자(620)로 출력된다. 그리고 도 1에 도시된 제2 단자(620)로 유입된 전원은 도 8에 도시된 제2 전극 패턴(b), 제2 전극 패턴(b)과 제3 전극 패턴(c)의 사이에 배치된 반도체 칩(G) 및 제3 전극 패턴(c)을 통해 제1 단자(610)의 -단자로 출력된다. 예컨데, 제1 단자(610)에서 유입되고 반도체 칩(G)을 통과하여 제2 단자(620)로 출력되는 전원을 하이 사이드(High Side), 제2 단자(620)에서 유입되고 반도체 칩(G)을 통과하여 제1 단자(610)로 출력되는 전원을 로우 사이드(Low Side)가 된다.
도 7에 도시된 바에 의하면, 상부 세라믹기판(300)은 NTC 온도센서(210)에 대응하는 부분에 커팅부(310)가 형성될 수 있다. 하부 세라믹기판(200)의 상면에 NTC 온도센서(210)가 장착된다. NTC 온도센서(210)는 반도체 칩(G)의 발열로 인한 파워모듈 내의 온도 정보를 제공하기 위한 것이다. 그런데 NTC 온도센서(210)의 두께가 하부 세라믹기판(200)과 상부 세라믹기판(300)의 사이의 간격에 비해 두꺼워 NTC 온도센서(210)와 상부 세라믹기판(300)의 간섭이 발생한다. 이를 해결하기 위해 NTC 온도센서(210)와 간섭되는 부분의 상부 세라믹기판(300)을 커팅하여 커팅부(310)를 형성한다.
커팅부(310)를 통해 상부 세라믹기판(300)과 하부 세라믹기판(200)의 사이 공간에 몰딩을 위한 실리콘액 또는 에폭시를 주입할 수 있다. 상부 세라믹기판(300)과 하부 세라믹기판(200)의 사이를 절연하기 위해 실리콘액 또는 에폭시를 주입해야 한다. 상부 세라믹기판(300)과 하부 세라믹기판(200)에 실리콘액 또는 에폭시를 주입하기 위해 상부 세라믹기판(300)의 한쪽면을 커팅하여 커팅부(310)를 형성할 수 있으며, 커팅부(310)는 NTC 온도센서(210)와 대응되는 위치에 형성하여 상부 세라믹기판(300)과 NTC 온도센서(210)의 간섭도 방지할 수 있다. 실리콘액 또는 에폭시는 반도체 칩(G)의 보호, 진동의 완화 및 절연의 목적으로 하부 세라믹기판(200)과 상부 세라믹기판(300) 사이의 공간과 상부 세라믹기판(300)과 PCB 기판(400) 사이의 공간에 충진할 수 있다.
상부 세라믹기판(300)에 쓰루홀(Through Hole)(320)이 형성된다. 쓰루홀(320)은 상하 복층의 기판 구조에서 상부 세라믹기판(300)에 실장되는 반도체 칩(G)을 PCB 기판(400)에 실장되는 구동소자와 최단거리로 연결하고, 하부 세라믹기판(200)에 실장된 NTC 온도센서(210)를 PCB 기판(400)에 실장되는 구동소자와 최단거리로 연결하기 위한 것이다.
쓰루홀(320)은 반도체 칩이 설치되는 위치에 2개씩 8개가 형성되고, NTC 온도센서가 설치되는 위치에 2개가 설치되어 총 10개가 형성될 수 있다. 또한, 쓰루홀(320)은 상부 세라믹기판(300)에서 제1 전극 패턴(a)과 제3 전극 패턴(c)이 형성된 부분에 다수 개가 형성될 수 있다.
제1 전극 패턴(a)에 형성된 다수 개의 쓰루홀(320)은 상부 세라믹기판(300)의 상면의 제1 전극 패턴(a)으로 유입된 전류가 상부 세라믹기판(300)의 하면에 형성된 제1 전극 패턴(a)으로 이동하고 반도체 칩(G)으로 유입되도록 한다. 제3 전극 패턴(c)에 형성된 다수 개의 쓰루홀(320)은 반도체 칩(G)으로 유입된 전류가 상부 세라믹기판(300)의 하면의 제3 전극 패턴(c)을 통해 상부 세라믹기판(300)의 상면의 제3 전극 패턴(c)으로 이동하도록 한다.
쓰루홀(320)의 직경은 0.5mm~5.0mm일 수 있다. 쓰루홀(320)에는 연결핀이 설치되어 PCB 기판의 전극 패턴과 연결되고 이를 통해 PCB 기판(400)에 실장되는 구동소자와 연결될 수 있다. 상하 복층의 기판 구조에서 쓰루홀(320) 및 쓰루홀(320)에 설치되는 연결핀을 통한 전극 패턴 간 연결은 최단 거리 연결을 통해 다양한 출력 손실을 제거하여 파워모듈의 크기에 따른 제약을 개선하는데 기여할 수 있다.
상부 세라믹기판(300)의 전극 패턴에는 복수 개의 비아홀(330)이 형성될 수 있다. 비아홀(330)은 기판 면적 대비 최소 50% 이상 가공될 수 있다. 상술한 비아홀(330)의 면적은 기판 면적 대비 최소 50% 이상 적용되는 예로 들어 설명하였으나, 이에 한정되는 것은 아니며 50% 이하로 가공될 수도 있다.
일 예로 제1 전극 패턴(a)에는 152개의 비아홀이 형성되고 제2 전극 패턴(b)에는 207개의 비아홀이 형성되고 제3 전극 패턴(c)에는 154개의 비아홀이 형성될 수 있다. 각 전극 패턴에 형성되는 복수 개의 비아홀(330)은 대전류 통전 및 대전류 분산을 위한 것이다. 하나의 슬롯 형태로 상부 세라믹기판(300)의 상면의 전극 패턴과 하면의 전극 패턴을 도통시키면 한쪽으로만 고전류가 흘러 쇼트, 과열 등의 문제가 발생할 수 있다.
비아홀(330)에는 전도성 물질이 충진된다. 전도성 물질은 Ag 또는 Ag 합금일 수 있다. Ag 합금은 Ag-Pd 페이스트일 수 있다. 비아홀(330)에 충진된 전도성 물질은 상부 세라믹기판(300)의 상면의 전극 패턴과 하면의 전극 패턴을 전기적으로 연결한다. 비아홀(330)은 레이저 가공하여 형성할 수 있다. 비아홀(330)은 도 8의 확대도에서 확인할 수 있다.
도 9는 본 발명의 실시예에 의한 PCB 기판의 평면도이다.
도 9에 도시된 바에 의하면, PCB 기판(400)은 반도체 칩(G)을 스위칭하거나 NTC 온도센서(도 7의 도면부호 210)가 감지한 정보를 이용하여 GaN 칩(반도체 칩)을 스위칭하기 위한 구동소자가 실장된다. 구동소자는 Gate Drive IC를 포함한다.
PCB 기판(400)은 상면에 캐패시터(410)가 장착된다. 캐패시터(410)는 상부 세라믹기판(300)의 제1 전극 패턴(a)과 제2 전극 패턴(b)을 연결하도록 배치된 반도체 칩(G)과 상부 세라믹기판(300)의 제2 전극 패턴(b)과 제3 전극 패턴(c)을 연결하도록 배치된 반도체 칩(G)의 사이에 해당하는 위치인 PCB 기판(400)의 상면에 장착된다.
반도체 칩(G)의 사이에 해당하는 위치인 PCB 기판(400)의 상면에 캐패시터(410)가 장착되면, 연결핀(도 10의 도면부호 800)을 이용하여 반도체 칩(G)과 Drive IC 회로를 최단거리로 연결할 수 있으므로 고속 스위칭에 보다 유리하다. 일 예로, 캐패시터(410)는 용량을 맞추기 위해 10개가 병렬로 연결될 수 있다. 입력단에 디커플링용도로 2.5㎌ 이상을 확보하기 위해서는 고전압의 캐패시터 10개를 연결하여 용량을 확보해야 한다. Gate Drive IC 회로는 High side gate drive IC와 Low side gate drive IC를 포함한다.
도 10은 본 발명의 실시예에 의한 상부 세라믹기판에 연결핀이 결합된 상태를 보인 사시도이다.
도 10에 도시된 바에 의하면, 연결핀(800)은 상부 세라믹기판(300)에서 반도체 칩(G)과 인접한 위치에 형성된 쓰루홀(Through Hole)(도 7의 도면부호 320)에 끼워진다. 반도체 칩(G)과 인접한 위치에 형성된 쓰루홀(320)에 끼워진 연결핀(800)은 PCB 기판(도 9의 도면부호 400)에 대응된 위치에 형성된 쓰루홀(420)에 끼워져 반도체 칩(G)을 실장하는 게이트(Gate) 단자와 PCB 기판(400)의 전극 패턴을 연결할 수 있다.
또한, 연결핀(800)은 상부 세라믹기판(300)에서 NTC 온도센서(210)와 인접하는 위치에 형성된 쓰루홀(320)에 끼워진다. NTC 온도센서(210)와 인접하는 위치에 형성된 쓰루홀(320)에 끼워진 연결핀(800)은 PCB 기판(400)에 대응되는 위치에 형성된 쓰루홀(420)에 끼워져 NTC 온도센서(210)의 단자와 PCB 기판(400)의 전극 패턴을 연결할 수 있다.
또한, 연결핀(800)은 상부 세라믹기판(300)에서 제1 전극 패턴(a)과 제3 전극 패턴(c)에 일렬로 형성된 다수 개의 쓰루홀(320)에 끼워진다. 제1 전극 패턴(a)과 제3 전극 패턴(c)에 형성된 다수 개의 쓰루홀(320)에 끼워진 연결핀(800)은 PCB 기판(400)에 대응된 위치에 형성된 쓰루홀(420)에 끼워져 반도체 칩(G)을 PCB 기판(400)의 캐패시터(410)와 연결할 수 있다.
연결핀(800)은 상부 세라믹기판(300)에 실장되는 반도체 칩(G)을 PCB 기판(400)에 실장되는 구동소자와 최단거리로 연결하여 다양한 출력 손실을 제거하고 고속 스위칭이 가능하게 한다.
도 11은 본 발명의 실시예에 의한 연결핀을 상부 세라믹기판의 쓰루홀에 고정하고 그 상부에 PCB 기판을 설치한 상태를 보인 부분 단면도(도 10의 A-A 부분 단면도)이다. 도 11은 연결핀이 상부 세라믹기판의 쓰루홀에 고정되고 그 상부에 PCB 기판이 설치된 상태를 설명하기 용이하도록 도면을 과장되게 도시하였다.
도 11에 도시된 바에 의하면, 연결핀(800)은 상부 세라믹기판(300)에 형성된 쓰루홀(320)에 설치된다.
상부 세라믹기판(300)은 세라믹기재(301)와 세라믹기재(301)의 상면과 하면에 형성된 금속층(302,303)을 포함한다. 쓰루홀(320)은 상부 세라믹기판(300)의 금속층(302,303)과 세라믹기재(301)를 관통하도록 형성된다. 쓰루홀(320)에 연결핀(800)이 끼움 결합된다. 쓰루홀(320)에 끼움 결합된 연결핀(800)은 상부 세라믹기판(300)의 상면의 금속층(302)과 레이저 웰딩에 의해 접합될 수 있다.
상부 세라믹기판(300)에 쓰루홀(320)을 형성하고 쓰루홀(320)에 연결핀(800)을 고정하면 연결핀(800)의 고정이 용이하고 위치 정밀도가 향상된다. 연결핀(800)은 구리 또는 구리합금 재질로 형성된다. 상부 세라믹기판(300)의 금속층(302,303)은 구리 또는 구리합금 재질로 형성된다. 구리 및 구리 합금은 전기 부품 간 전기적 연결을 용이하게 한다.
연결핀(800)은 상부 세라믹기판(300)의 상면의 금속층(302)과 솔더층(850)을 매개로 레이저 웰딩 방식으로 접합될 수 있다. 솔더층(850)은 쓰루홀(320)의 가장자리의 금속층(302)과 연결핀(800)의 사이에 배치되어 연결핀(800)을 상부 세라믹기판(300)에 접합한다. 솔더층(850)은 레이저 웰딩시 연결핀(800)과 상부 세라믹기판(300)의 사이에 도포한 솔더(Solder)가 녹아 연결핀(800)과 상부 세라믹기판(300)의 사이를 접합한 것이다. 솔더는 SnAg, SnAgCu 등일 수 있다. 레이저 웰딩은 레이저를 연결핀(800)에 조사하여 연결핀(800)을 가열함으로써 연결핀(800)과 상부 세라믹기판(300)의 사이에 도포한 솔더볼을 녹이는 방법으로 수행할 수 있다.
상부 세라믹기판(300)의 쓰루홀(320)에 고정된 연결핀(800)은 상부 세라믹기판(300)의 상부에 설치되는 PCB 기판(400)의 쓰루홀(420)에 끼움 결합되어, 상부 세라믹기판(300)과 PCB 기판(400)의 전기 부품을 전기적으로 연결한다.
연결핀(800)은 상부 세라믹기판(300)의 금속층(302)과 PCB 기판(400)의 전극 패턴을 최단거리로 연결하여 고속 스위칭에 보다 유리하도록 한다.
한편, 연결핀(800)은 상부 세라믹기판(300)과 PCB 기판(400)을 연결하되, 쇼트 방지를 위하여 상부 세라믹기판(300)의 하부에 배치되는 하부 세라믹기판(200)과는 접촉하지 않는다.
하부 세라믹기판(200)은 상부 세라믹기판(300)의 하부에 소정간격을 두고 이격 배치되어 상부 세라믹기판(300)과 하부 세라믹기판(200)의 사이에 방열을 위한 공간을 확보하고, 반도체 칩(G)에서 발생하는 열을 효율적으로 방열할 수 있도록 한다.
하부 세라믹기판(200)의 하면에는 방열판(500)이 부착되어 반도체 칩(G)에서 발생하여 하부 세라믹기판(200)으로 전달된 열을 방열판(500)을 통해 외부로 쉽게 방출할 수 있다.
반도체 칩(G)은 솔더볼을 이용하여 상부 세라믹기판(300)의 하면에 플립칩 형태로 실장된다. 또한, 하부 세라믹기판(200)의 하면에 접합된 방열판(500)은 구리 또는 구리 합금 재질로 형성되어, 하부 세라믹기판(200)을 전달된 열을 외부로 방출하기 용이하다.
반도체 칩(G)은 상부 세라믹기판(300)의 하면과 하부 세라믹기판(200)의 상면에 솔더링 접합된다. 반도체 칩(G)을 상부 세라믹기판(300)의 하면에 접합하는 솔더(s1)는 전도성을 가지는 솔더볼을 사용하고, 반도체 칩(G)을 하부 세라믹기판(200)의 상면에 접합하는 솔더(s2)는 전도성이 없는 솔더볼을 사용할 수 있다. 또는 반도체 칩(G)을 상부 세라믹기판(300)의 하면에 접합하는 솔더(s1)는 상부 세라믹기판(300)의 전극과 전기적으로 연결되고, 반도체 칩(G)을 하부 세라믹기판(200)의 상면에 접합하는 솔더(s2)는 반도체 칩(G)을 고정하는 역할만 할 수 있다.
상부 세라믹기판(300)과 하부 세라믹기판(200)은 제조 후 바로 사용하지 않으면 금속층(202,203,302,303)의 산화가 발생한다. 금속층(202,203,302,303)이 산화되면 금속층(202,203,302,303)에 반도체 칩(G) 등을 솔더링 접합시 냉땜이 발생한다. 냉땜은 금속층의 산화로 인해 금속층에 솔더가 붙지 않아 접합이 잘 되지 않는 것을 의미한다.
상부 세라믹기판(300) 및 하부 세라믹기판(200)과 같은 세라믹기판(200,300)은 파워모듈(10)의 제조에 사용된다. 그러나 세라믹기판(200,300)을 제조하는 곳과 제조된 세라믹기판(200,300)을 제공받아 파워모듈(10)을 조립하는 곳이 다른 경우 세라믹기판(200,300)을 일시 보관 후 사용해야 한다. 이 경우 세라믹기판(200,300)의 금속층(202,203,302,303)의 산화를 방지할 필요가 있다.
이에, 세라믹기판의 금속층에 산화방지층을 형성하여 금속층의 산화를 방지한다.
도 12는 본 발명의 실시예에 의한 세라믹기판의 금속층에 산화방지층을 형성한 모습을 보인 도면이다. 도 12에서는 하부 세라믹기판을 예로 들어 설명하기로 한다.
도 12에 도시된 바에 의하면, 하부 세라믹기판(200)은 세라믹기재(201)와 세라믹기재(201)의 상면과 하면 중 적어도 한 면에 형성된 금속층(202)을 포함하며, 하부 세라믹기판(200)은 금속층(202)의 산화를 방지하기 위한 산화방지층(920)을 포함한다. 실시예에서는 설명의 편의를 위해 하부 세라믹기판(200)의 상면에만 금속층(202)을 포함한 것으로 도시하였다.
산화방지층(920)은 하부 세라믹기판(200)의 금속층(202)의 상면과 측면을 감싸도록 형성되어 금속층(202)의 외부 노출을 방지한다. 금속층(202)은 전극 패턴을 형성하는 금속층일 수 있다. 금속층(202)은 동박으로 형성된다.
구체적으로, 금속층(202)은 구리 또는 구리 합금 재질로 이루어진다. 금속층(202)의 산화 방지는 하부 세라믹기판(200)에 부품 등을 솔더링 접합시 냉땜의 발생을 줄이게 한다. 즉, 산화방지층(920)은 솔더링 면의 컨디션을 유지하여 하부 세라믹기판(200)과 부품 간의 접합력을 높인다. 금속층(202)에 산화방지층(920)이 없을 경우 시간이 경과함에 따라 금속층(202)의 산화가 발생하고, 금속층(202)의 산화로 인해 금속층(202)에 솔더가 붙지 않아 접합이 잘 되지 않게 된다. 금속층(202)에 솔더가 잘 붙지 않으면 작은 충격에 접합 부위가 떨어져 파워모듈의 동작 신뢰성이 문제가 발생한다.
산화방지층(920)은 OSP(Organic Solderability Preservative)층(921)을 포함한다. 산화방지층(920)은 OSP층(921)의 상면과 측면을 감싸도록 형성된 플럭스층(922)을 더 포함한다. 구체적으로, 산화방지층(920)은 OSP층(921)과 플럭스층(922)을 포함한다. OSP층(921)은 유기솔더 보존제를 금속층(202)에 도포하여 형성한 유기화합물의 피막층이다. 플럭스층(922)은 포스트 플럭스(Post Flux)층일 수 있으며, 일 예로 산화방지층(920)은 유기화합물의 피막층을 감싸는 메탄올, 이소프로필알콜 등을 포함할 수 있다. OSP층(921)과 플럭스층(922)은 층이 구분되는 것으로 도시하였으나, 시간이 경과함에 따라 OSP층(921)과 플럭스층(922)은 층구분없이 혼재된 상태일 수 있다. 산화방지층(920)은 외부의 공기와 습기로부터 금속층(202)을 보호함과 동시에 금속층(202) 표면의 산화를 방지하여 청정한 금속층의 표면을 제공한다. 또한, OSP층은 열 안정성이 우수한 유기솔더 보존제를 사용하므로 금속층(202)의 산화방지 효과가 우수하다.
산화방지층(920)과 금속층(202)의 사이에 시드층(910)을 더 포함한다. 시드층은 니켈(Ni) 또는 니켈구리(NiCu)일 수 있다. 시드층(910)은 솔더링을 원활하게 해 주기 위한 것이다. 시드층(910)은 산화방지층(920)의 저장 수명을 개선하여 금속층(202)의 산화를 방지함으로써 솔더링을 원활하게 해줄 수 있다.
산화방지층(920)은 솔더링시 솔더볼에 의해 용해되고 제거된다. 그러나 솔더링을 보다 원활하게 하기 위해 금속층(202)의 상면에 시드층(910)을 형성하고 산화방지층(920)을 형성한다. 시드층(910)은 스퍼터링 방법을 형성할 수 있으며, 시드층의 두께는 1kÅ~5kÅ(150nm~500nm)인 것이 바람직하다.
산화방지층(920)의 두께는 0.2~0.5㎛인 것이 바람직하다.
도 13은 본 발명의 실시예에 의한 세라믹기판의 금속층에 산화방지층을 형성하고, 이후 솔더링 접합하는 과정을 보여주는 도면이다.
도 13에 도시된 바에 의하면, 산화방지층(920)은 하부 세라믹기판(200)의 금속층(202)의 상면과 측면을 감싸도록 형성되어 금속층(202)의 외부 노출을 방지한다. 금속층(202)의 외부 노출을 방지하여야 금속층(202)과 공기의 접촉을 방지하여 금속층(202)의 산화를 방지할 수 있다. 금속층(202)은 구리 또는 구리합금이다.
산화방지층(920)은 유기 솔더 보존제가 도포된 OSP층(921)과 OSP층(921)을 감싸는 플럭스층(922)을 포함한다. 금속층(202)과 산화방지층(920)의 사이에는 시드층(910)을 더 포함하여 산화방지층(920)의 저장수명을 늘릴 수 있다.
이 상태에서 하부 세라믹기판(200)의 금속층(202)에 솔더볼(s)을 부착하면, 산화방지층(920)은 솔더링시 솔더볼(s)에 의해 용해되고 제거된다. 또한, 솔더링 온도는 100~450℃이며, 산화방지층(920)은 솔더볼 및 솔더링 온도에 의해 용해되고 제거될 수 있다. 즉, 산화방지층(920)은 고온 솔더링에서 솔더볼에 의해 신속하게 용해 및 제거됨에 따라 깨끗한 금속층(202)의 표면이 나타날 수 있으므로 매우 짧은 시간에 솔더링이 가능하게 할 수 있다. 솔더볼(s)은 SnAg, SnAgCu 등일 수 있다.
그에 따라, 솔더볼(s)과 금속층(202)의 사이에는 Cu/Sn 합금층이 형성될 수 있다. 또는 산화방지층(920)과 금속층(202)의 사이에 시드층(910)이 형성된 경우에는 솔더볼(s)과 금속층(202)의 사이에는 NiCu/Sn 합금층이 형성될 수 있다. 그리고 솔더볼(s)이 녹으면서 하부 세라믹기판(200)의 금속층(202)이 상부 세라믹기판(300)의 하면에 실장된 반도체 칩(G)과 접합될 수 있다.
상술한 산화방지층(920)은 일시 보관된 부품 등을 하부 세라믹기판(200)의 금속층(202)에 솔더링 접합시, 금속층(202)의 산화를 방지하여 부품과 금속층(202)의 접합력을 높이는 역할을 한다. 금속층(202)의 산화방지는 금속층(202)에 부품을 솔더링 접합시 냉땜의 발생을 방지하여 부품과 금속층(202)의 접합력을 높인다.
여기서, 부품은 반도체 칩, 스페이서, 전자 소자 등 다양한 전자 부품이 해당할 수 있다.
상술한 산화방지층(920)은 하부 세라믹기판(200)의 상부의 금속층(202)에 적용되는 것을 예로 들어 설명하였지만, 파워모듈에 적용되는 세라믹기판 등 다양한 전자 부품에 적용되는 세라믹기판의 금속층에 적용 가능하다.
또한, 산화방지층(920)은 하부 세라믹기판(200)의 상부의 금속층(202)의 상면과 측면을 감싸도록 형성되어 금속층(202)의 외부 노출을 방지하는 것 뿐아니라, 하부 세라믹기판(200)의 하부의 금속층(203)의 하면과 측면을 감싸도록 형성되어 금속층(203)의 외부 노출을 방지할 수 있다.
상술한 본 발명의 실시예는 산화방지층이 금속층의 상면과 측면을 감싸도록 형성되어 금속층의 외부 노출을 방지하므로 세라믹기판의 저장 수명이 연장되고 솔더링되는 금속층의 컨디션을 유지하여 금속층과 부품 간의 접합력을 높일 수 있다.
한편, 반도체 칩을 상부 세라믹기판과 하부 세라믹기판 사이에 배치하고, 반도체 칩과 세라믹기판의 접촉 면적 최대화로 반도체 칩에서 발생되는 열의 방열 효율을 높일 수 있다.
도 14는 본 발명의 다른 실시예로 반도체 칩을 상부 세라믹기판에 연결한 모습을 보인 단면도이다. 도 14는 반도체 칩이 상부 세라믹기판에 연결된 모습을 설명하기 위해 구성들을 실제와 달리 과장되게 표현하였다.
도 14에 도시된 바에 의하면, 반도체 칩(G)은 플립칩 본딩으로 상부 세라믹기판(300)의 하면에 접합된다. 플립칩 본딩은 전력 전달 경로(pass)를 짧게하여 전력 전달 경로 상의 저항에 의한 전기적 손실과 부하를 개선하므로 고속 스위칭(고주파 turn on)에 유리하다.
상부 세라믹기판(300)은 하부 세라믹기판(200)의 상부에 이격되게 배치된다. 하부 세라믹기판(200)은 반도체 칩(G)과 방열판(500)의 사이에 배치된다. 하부 세라믹기판(200)은 반도체 칩(G)과 접하여 반도체 칩(G)에서 발생하는 열을 방열판(500)으로 전달하고 반도체 칩(G)과 방열판(500)의 사이를 절연하여 쇼트를 방지한다. 또한, 하부 세라믹기판(200)은 그라운드 연결되어 누설 전류를 방지하는 역할을 한다.
하부 세라믹기판(200)은 세라믹기재(201)와 세라믹기재(201)의 상면과 하면에 형성된 금속층(202,203)을 포함한다. 상부 세라믹기판(300)은 세라믹기재(301)와 세라믹기재(301)의 상면과 하면에 형성된 금속층(302,303)을 포함한다. 하부 세라믹기판(200)의 상면과 하면의 금속층(202,203)은 반도체 칩(G)의 열을 방열판(500)으로 전달하는 방열의 기능을 수행하고, 상부 세라믹기판(300)의 상면과 하면의 금속층(302,303)은 반도체 칩(G)의 스위칭 동작을 위한 전극 패턴을 형성한다.
방열판(500)은 하부 세라믹기판(200)의 하면에 접합된다. 하부 세라믹기판(200)의 하면과 방열판(500)의 상면을 접합하는 접합층(550)을 포함한다. 접합층(550)은 솔더 또는 Ag 페이스트로 이루어진다.
솔더는 접합 강도가 높고 고온 신뢰성이 우수한 SnPb계, SnAg계, SnAgCu계, Cu계 솔더 페이스트가 사용될 수 있다. Ag 페이스트는 솔더에 비해 고온 신뢰성이 더 우수하고 열전도도가 높다. Ag 페이스트는 열전도도를 더 높이기 위해 Ag 나노 페이스트가 사용될 수 있다.
하부 세라믹기판(200)의 금속층(202,203)과 상부 세라믹기판(300)의 금속층(302,303)은 전기 전도성이 있고 높은 열전도도를 가지는 금속으로 이루어질 수 있으며, 일 예로 구리 또는 구리합금 재질로 형성될 수 있다. 방열판(500)은 방열 효율이 높은 금속으로 이루어질 수 있으며, 일 예로 구리, 구리합금 및 알루미늄 재질로 이루어질 수 있다.
도 15는 도 14의 부분 확대도로, 반도체 칩이 상부 세라믹기판과 하부 세라믹기판의 사이에 접합된 모습을 보인 도면이다.
도 15에 도시된 바에 의하면, 반도체 칩(G)은 상면의 표면 전극(g1,g2)이 상부 세라믹기판(300)의 금속층(303)에 접합된다. 반도체 칩(G)의 표면 전극(g1,g2)은 드레인 전극, 소스 전극 및 게이트 전극을 포함한다.
반도체 칩(G)의 상면의 표면 전극(g1,g2)을 상부 세라믹기판(300)의 금속층(303)과 접합하는 제1 본딩층(350)을 포함한다. 제1 본딩층(350)은 반도체 칩(G)의 표면 전극(g1,g2)과 상부 세라믹기판(300)의 금속층(303)을 직접 접속하여 전류 전달 경로를 짧게 한다. 제1 본딩층(350)은 솔더 또는 Ag 페이스트로 이루어질 수 있다. 솔더는 SnPb계, SnAg계, SnAgCu계, Cu계 솔더 페이스트일 수 있다. Ag 페이스트는 Ag 나노 페이스트인 것이 바람직하다.
반도체 칩(G)의 하면을 하부 세라믹기판(200)의 상면의 금속층(303)과 접합하는 제2 본딩층(250)을 포함한다. 제2 본딩층(250)은 반도체 칩(G)의 하면을 하부 세라믹기판(200)의 상면과 접촉시켜 방열 효율을 높인다. 제2 본딩층(250)은 반도체 칩(G)과 하부 세라믹기판(200)의 접촉 면적을 최대화하여 방열에 유리하도록 한다. 이를 위해 제2 본딩층(250)은 반도체 칩(G)의 하면 전체를 하부 세라믹기판(200)의 상면과 접합한다.
제2 본딩층(250)은 솔더 또는 Ag 페이스트로 이루어질 수 있다. 솔더는 SnPb계, SnAg계, SnAgCu계, Cu계 솔더 페이스트일 수 있다. Ag 페이스트는 Ag 나노 페이스트인 것이 바람직하다.
제1 본딩층(350)과 제2 본딩층(250)은 Ag 페이스트로 이루어지는 것이 바람직하고, 더 바람직하게는 Ag 나노 페이스트로 이루어지는 것이 바람직하다.
제1 본딩층(350)과 제2 본딩층(250)은 모두 솔더를 사용할 수 있으나, Ag 페이스트가 솔더에 비해 열전도도가 우수하므로 방열 성능을 높이기 위해 솔더보다는 Ag 페이스트를 사용하는 것이 바람직하다. 더욱이 Ag 나노 페이스트는 Ag 페이스트에 비해 열전도도가 더 우수하다.
제1 본딩층(350)과 제2 본딩층(250)을 모두 솔더로 사용하는 경우 대비 제1 본딩층(350)과 제2 본딩층(250)을 모두 Ag 페이스트로 사용하면 열전도도가 더 높아지고 방열 효율이 높아진다.
물론, 제1 본딩층(350)과 제2 본딩층(250)에 모두 솔더를 사용할 수 있고, 제1 본딩층(350)에 Ag 페이스트를 사용하고 제2 본딩층(250)에 솔더를 사용할 수 있으며, 제1 본딩층(350)에 솔더를 사용하고 제2 본딩층(250)에 Ag 페이스트를 사용할 수 있다. 그러나 제1 본딩층(350)과 제2 본딩층(250)에 모두 Ag 페이스트를 사용하는 경우 열전도도가 높고 방열 효율도 높아진다.
또한, 반도체 칩(G)을 상부 세라믹기판(300)에 접합하는 제1 본딩층(350)과 반도체 칩(G)을 하부 세라믹기판(200)에 접합하는 제2 본딩층(250) 및 하부 세라믹기판(200)과 방열판(500)을 접합하는 접합층(550)에 Ag 페이스트를 적용하여 방열 효율을 높일 수 있다.
도 16은 본 발명의 또 다른 실시예로 반도체 칩이 상부 세라믹기판과 하부 세라믹기판의 사이에 접합된 모습을 보인 부분 확대도이다.
도 16에 도시된 바에 의하면, 하부 세라믹기판(200)의 상면의 금속층(202)에 Ag 도금층(240)이 형성될 수 있다. Ag 도금층(240)은 하부 세라믹기판(200)의 상면의 금속층(202)에 Ag 도금하여 형성할 수 있다.
하부 세라믹기판(200)의 상면의 금속층(202)에 Ag 도금층(240)이 형성되고, Ag 도금층(240)에 반도체 칩(G)의 하면이 제2 본딩층(250)으로 접합된다. Ag 도금층(240)은 하부 세라믹기판(200)의 상면의 금속층(202)의 상면 전체에 형성된다. Ag 도금층(240)은 반도체 칩(G)에서 발생되어 제2 본딩층(250)으로 전달된 열을 빠르게 흡수하여 방열판(500)으로 전달한다.
하부 세라믹기판(200)에 Ag 도금층(240)을 더 형성한 경우, Ag 페이스트를 제2 본딩층(250)에 사용하여 방열 효율을 최대화할 수 있다. 즉, 하부 세라믹기판(200)의 상면 전체에 Ag 도금층(240)을 더 형성하고 Ag 도금층(240)에 제2 본딩층(250)을 매개로 반도체 칩(G)을 접합함으로써 열전도도를 높여 방열 효율을 더 높일 수 있다.
반도체 칩(G)을 상부 세라믹기판에 제1 본딩층(350)으로 접합하고, 반도체 칩(G)을 하부 세라믹기판(200)에 제2 본딩층(250)으로 접합하고, 하부 세라믹기판(200)과 방열판(500)을 접합층(550)으로 접합시, 가압 접합 또는 가압 소결을 수행하여 접합 밀도를 높임으로써 열전도도가 높아지도록 하는 것이 바람직하다. 솔더를 이용한 가압 접합은 약 200℃에서 수행하고 Ag 페이스트를 이용한 가압 소결은 270℃ 이상에서 수행할 수 있다.
상기한 본 발명의 다른 실시예와 또 다른 실시예는 반도체 칩을 두 세라믹기판의 사이에 배치하고 플립칩 본딩하므로 전류 전달 경로를 짧게하여 고속 스위칭에 유리하고 반도체 칩과 세라믹기판의 접촉 면적이 커져 방열에 유리한 이점이 있다.
본 발명은 도면과 명세서에 최적의 실시예들이 개시되었다. 여기서, 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 발명은 기술분야의 통상의 지식을 가진 자라면, 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 권리범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (20)

  1. 세라믹기판을 포함하고,
    상기 세라믹기판은
    세라믹기재;
    상기 세라믹기재의 상면과 하면 중 적어도 한 면에 형성된 금속층; 및
    상기 금속층의 상면과 측면을 감싸도록 형성되어 상기 금속층의 외부 노출을 방지하는 산화방지층;
    을 포함하는 파워모듈.
  2. 제1항에 있어서,
    상기 금속층은 구리 또는 구리 합금으로 이루어지는 파워모듈.
  3. 제1항에 있어서,
    상기 산화방지층은 OSP(Organic Solderability Preservative)층을 포함하는 파워모듈.
  4. 제3항에 있어서,
    상기 산화방지층은 상기 OSP층의 상면과 측면을 감싸도록 형성된 플럭스층을 더 포함하는 파워모듈.
  5. 제1항에 있어서,
    상기 산화방지층과 상기 금속층의 사이에 시드층을 더 포함하는 파워모듈.
  6. 제5항에 있어서,
    상기 시드층은 니켈(Ni)을 포함하는 파워모듈.
  7. 제5항에 있어서,
    상기 시드층의 두께는 1kÅ~5kÅ인 파워모듈.
  8. 제1항에 있어서,
    상기 산화방지층은 솔더링시 솔더볼에 의해 용해되고 제거되는 파워모듈.
  9. 제1항에 있어서,
    상기 세라믹기판은 AMB 기판, TPC 기판, DBA 기판 중 하나인 파워모듈.
  10. 제1항에 있어서,
    상기 세라믹기판에 솔더볼에 의해 솔더링 접합되는 부품을 포함하는 파워모듈.
  11. 제10항에 있어서,
    상기 부품은 반도체 칩, 스페이서, 전자 소자 중 적어도 하나 이상을 포함하는 파워모듈.
  12. 세라믹기재와 상기 세라믹기재의 상면과 하면에 형성된 금속층을 포함하는 하부 세라믹기판;
    상기 하부 세라믹기판의 상부에 이격되게 배치되며, 세라믹기재와 상기 세라믹기재의 상면과 하면에 전극 패턴을 형성하는 금속층을 포함하는 상부 세라믹기판;
    상기 상부 세라믹기판의 하면의 전극 패턴에 상면의 표면 전극이 접합되는 반도체 칩;
    상기 반도체 칩의 상면의 표면 전극을 상기 상부 세라믹기판의 하면의 전극 패턴에 접합하는 제1 본딩층; 및
    상기 반도체 칩의 하면을 상기 하부 세라믹기판의 상면의 금속층에 접합하는 제2 본딩층;
    을 포함하는 파워모듈.
  13. 제12항에 있어서,
    상기 제1 본딩층은 솔더 또는 Ag 페이스트로 이루어지는 파워모듈.
  14. 제12항에 있어서,
    상기 제2 본딩층은 솔더 또는 Ag 페이스트로 이루어지는 파워모듈.
  15. 제12항에 있어서,
    상기 제2 본딩층은 상기 반도체 칩의 하면 전체를 상기 하부 세라믹기판의 상면과 접합하는 파워모듈.
  16. 제12항에 있어서,
    상기 하부 세라믹기판의 상면의 금속층에 Ag 도금층이 형성되고,
    상기 Ag 도금층에 상기 반도체 칩의 하면이 상기 제2 본딩층에 의해 접합된 파워모듈.
  17. 제16항에 있어서,
    상기 제2 본딩층은 Ag 페이스트로 이루어지는 파워모듈.
  18. 제12항에 있어서,
    상기 하부 세라믹기판의 하면에 접합되는 방열판; 및
    상기 하부 세라믹기판의 하면과 상기 방열판의 상면을 접합하는 접합층;
    을 더 포함하는 파워모듈.
  19. 제18항에 있어서,
    상기 접합층은 솔더 또는 Ag 페이스트로 이루어지는 파워모듈.
  20. 제12항에 있어서,
    상기 하부 세라믹기판의 금속층과 상기 상부 세라믹기판의 금속층은 구리 또는 구리합금 재질로 형성되는 파워모듈.
PCT/KR2021/008091 2020-07-02 2021-06-28 파워모듈 WO2022005133A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0081492 2020-07-02
KR1020200081492A KR20220003807A (ko) 2020-07-02 2020-07-02 세라믹기판 및 이를 포함하는 파워모듈
KR1020200082281A KR20220004442A (ko) 2020-07-03 2020-07-03 파워모듈
KR10-2020-0082281 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022005133A1 true WO2022005133A1 (ko) 2022-01-06

Family

ID=79315322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008091 WO2022005133A1 (ko) 2020-07-02 2021-06-28 파워모듈

Country Status (1)

Country Link
WO (1) WO2022005133A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234690A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd パワー半導体モジュール
JP2010097999A (ja) * 2008-10-14 2010-04-30 Fuji Electric Systems Co Ltd 半導体装置及び半導体装置の製造方法
KR20140047953A (ko) * 2012-10-15 2014-04-23 삼성전기주식회사 다층 인쇄회로기판 및 그 제조 방법
KR20140142256A (ko) * 2012-03-30 2014-12-11 미쓰비시 마테리알 가부시키가이샤 히트 싱크 장착 파워 모듈용 기판, 냉각기 장착 파워 모듈용 기판 및 파워 모듈
KR20180069231A (ko) * 2016-12-15 2018-06-25 현대자동차주식회사 양면냉각형 파워모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234690A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd パワー半導体モジュール
JP2010097999A (ja) * 2008-10-14 2010-04-30 Fuji Electric Systems Co Ltd 半導体装置及び半導体装置の製造方法
KR20140142256A (ko) * 2012-03-30 2014-12-11 미쓰비시 마테리알 가부시키가이샤 히트 싱크 장착 파워 모듈용 기판, 냉각기 장착 파워 모듈용 기판 및 파워 모듈
KR20140047953A (ko) * 2012-10-15 2014-04-23 삼성전기주식회사 다층 인쇄회로기판 및 그 제조 방법
KR20180069231A (ko) * 2016-12-15 2018-06-25 현대자동차주식회사 양면냉각형 파워모듈

Similar Documents

Publication Publication Date Title
US6710463B2 (en) Electrically isolated power semiconductor package
US6731002B2 (en) High frequency power device with a plastic molded package and direct bonded substrate
WO2022005099A1 (ko) 파워모듈 및 그 제조방법
WO2021112590A2 (ko) 전력반도체 모듈
WO2021241951A1 (ko) 파워모듈
WO2021162369A1 (ko) 파워모듈 및 그 제조방법
WO2022005183A1 (ko) 파워모듈
WO2022005133A1 (ko) 파워모듈
WO2021230615A1 (ko) 파워모듈 및 그 제조방법
WO2021230623A1 (ko) 파워모듈
WO2022005134A1 (ko) 파워모듈
WO2021230617A1 (ko) 파워모듈
WO2021230621A1 (ko) 파워모듈
WO2022010174A1 (ko) 파워모듈
WO2021241950A1 (ko) 파워모듈
WO2022005097A1 (ko) 파워모듈 및 이에 포함되는 세라믹기판 제조방법
KR20220004437A (ko) 파워모듈
KR20220004440A (ko) 파워모듈
KR20220004442A (ko) 파워모듈
KR20220004445A (ko) 파워모듈
WO2021230620A1 (ko) 파워모듈
KR20220010180A (ko) 파워모듈
KR20220015220A (ko) 파워모듈 및 그 제조방법
WO2023033425A1 (ko) 파워모듈용 세라믹 기판, 그 제조방법 및 이를 구비한 파워모듈
KR102661089B1 (ko) 파워모듈용 세라믹 기판, 그 제조방법 및 이를 구비한 파워모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833895

Country of ref document: EP

Kind code of ref document: A1