WO2021230184A1 - 化合物及びその製造方法、酸発生剤、組成物、レジスト膜、下層膜、パターン形成方法、及び光学物品 - Google Patents

化合物及びその製造方法、酸発生剤、組成物、レジスト膜、下層膜、パターン形成方法、及び光学物品 Download PDF

Info

Publication number
WO2021230184A1
WO2021230184A1 PCT/JP2021/017656 JP2021017656W WO2021230184A1 WO 2021230184 A1 WO2021230184 A1 WO 2021230184A1 JP 2021017656 W JP2021017656 W JP 2021017656W WO 2021230184 A1 WO2021230184 A1 WO 2021230184A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituent
formula
film
Prior art date
Application number
PCT/JP2021/017656
Other languages
English (en)
French (fr)
Inventor
宏人 工藤
隆 佐藤
禎 大松
雅敏 越後
Original Assignee
学校法人 関西大学
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 関西大学, 三菱瓦斯化学株式会社 filed Critical 学校法人 関西大学
Priority to US17/924,277 priority Critical patent/US20230185191A1/en
Priority to KR1020227040174A priority patent/KR20230009399A/ko
Priority to JP2022521894A priority patent/JPWO2021230184A1/ja
Priority to CN202180034592.7A priority patent/CN115605458A/zh
Publication of WO2021230184A1 publication Critical patent/WO2021230184A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/06Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing halogen atoms, or nitro or nitroso groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/30Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/12Sulfonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a compound and a method for producing the same, an acid generator, a composition, a resist film, an underlayer film, a pattern forming method, and an optical article.
  • microfabrication is performed by lithography using photoresist materials, but in recent years, with the increasing integration and speed of LSIs (large-scale integrated circuits), further miniaturization by pattern rules has been performed. Is required.
  • the general resist material so far is a polymer-based resist material capable of forming an amorphous thin film.
  • examples thereof include polymer-based resist materials such as polymethylmethacrylate and polyhydroxystyrene or polyalkylmethacrylate having a dissociative reactive group.
  • ultraviolet rays, far ultraviolet rays, electron beams, extreme ultraviolet rays (Extreme UltraViolet: hereinafter, appropriately referred to as "EUV" are applied to the resist thin film prepared by applying a solution of such a polymer-based resist material on the substrate.
  • EUV extreme ultraviolet rays
  • the polymer-based resist material has a large molecular weight of about 10,000 to 100,000 and has a wide molecular weight distribution. For this reason, in lithography using a polymer-based resist material, roughness occurs on the surface of a fine pattern, it becomes difficult to control the pattern size, and the yield decreases. Therefore, there is a limit to miniaturization in lithography using a conventional polymer-based resist material.
  • Various low molecular weight resist materials have been proposed to produce finer patterns.
  • an alkali-developed negative-type radiation-sensitive composition using a low molecular weight polynuclear polyphenol compound as a main component has been proposed (see, for example, Patent Documents 1 and 2).
  • an alkali-developed negative-type negative radiation-sensitive composition using a low molecular weight cyclic polyphenol compound as a main component has been proposed (for example, Patent Document 3 and non-patent). See Document 2).
  • a polyphenol compound can impart high heat resistance while having a low molecular weight and is useful for improving the resolution and roughness of a resist pattern (see, for example, Non-Patent Document 3). ).
  • the reaction mechanism of lithography using electron beam or extreme ultraviolet (EUV) is different from that of ordinary optical lithography.
  • EUV extreme ultraviolet
  • the goal is to form a fine pattern of several tens of nm.
  • a resist material having higher sensitivity to the exposure light source is required.
  • EUV lithography it is necessary to increase the sensitivity of the resist composition in terms of throughput.
  • an inorganic resist material having titanium, hafnium or zirconium has been proposed (see, for example, Patent Documents 4 and 5).
  • the inorganic resist material has low sensitivity and short pot life. Further, in terms of resolution, it is required to further increase the resolution.
  • the present invention relates to a compound having high sensitivity, high resolution and high flatness, a method for producing the same, an acid generator, the compound or a composition containing the acid generator, a resist film, an underlayer film, an optical article, and the compound.
  • the present inventors have found that a specific compound or acid generator can solve the above-mentioned problems, and have completed the present invention. That is, the present invention is as follows.
  • Ar is a group having an aryl group having 6 to 60 carbon atoms
  • OR TS is independently a hydroxyl group, a group represented by the following formula (TS-0), or the following. It is a group represented by the formula (TS-1).
  • N 1 is an integer of 1 to 20.
  • at least one of the OR TS is a group represented by the following formula (TS-0) or the following. It is a group represented by the formula (TS-1).
  • R 1 is a divalent group having 1 to 30 carbon atoms which may have a single bond or a substituent
  • R 2 is a carbon which may have a substituent.
  • R 3 is an alkyl group or a substituted ⁇ 10 1 carbon atoms which may have a substituent It is an aryl group having 6 to 10 carbon atoms which may have a group
  • An ⁇ is an anion containing fluorine or iodine.
  • R 3 is an alkyl group having 1 to 10 carbon atoms which may have a substituent
  • An ⁇ is R 4 SO 3.
  • R 4 is a monovalent group containing fluorine or iodine having 1 to 9 carbon atoms which may have a substituent.
  • R 1 is a divalent group having 2 to 6 carbon atoms which may have a substituent [1] or [2]. ] The compound described in.
  • R 3 is a methyl group and An ⁇ is CF 3 SO 3 ⁇ , which is described in any of [1] to [5].
  • X is each independently an oxygen atom, a sulfur atom or uncrosslinked
  • R 4 is a single bond or a substituent having 1 to 30 carbon atoms which may have a 2n-valent
  • R 5 and R 6 are groups, each of which is an independent halogen atom, a linear alkyl group having 1 to 30 carbon atoms which may have a substituent, and 3 carbon atoms which may have a substituent. It has a branched alkyl group of ⁇ 30, a cyclic alkyl group having 3 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • An alkenyl group having 2 to 30 carbon atoms may be present, an alkynyl group having 2 to 30 carbon atoms may have a substituent, an alkoxy group having 1 to 30 carbon atoms may have a substituent, and a cyano group.
  • the aryl group, the alkenyl group, the alkynyl group, and the alkoxy group may contain an ether bond, a ketone bond, or an ester bond.
  • M 1 and m 2 are independently integers of 0 to 7, respectively.
  • p 1 and p 2 are independently 0 or 1
  • n 2 is an integer of 1 to 4.
  • at least one of m 1 and m 2 is an integer of 1 to 7 and the formula (P).
  • -0A) includes at least one group represented by the above formula (TS-0) or the group represented by the above formula (TS-1) as R 5 or R 6).
  • R 7 is a 2n-valent group having 1 to 30 carbon atoms
  • R 8 to R 11 may independently have a halogen atom and a substituent, respectively.
  • the group represented by the formula (TS-1), and the alkyl group, the aryl group, the alkenyl group, the alkynyl group, and the alkoxy group contain an ether bond, a ketone bond, or an ester bond.
  • M 3 and m 4 are independently integers of 0 to 8
  • m 5 and m 6 are independently integers of 0 to 9
  • p 3 to p 6 are independently 0.
  • n 3 is an integer of 1 to 4.
  • at least one of m 3 , m 4 , m 5 and m 6 is an integer of 1 or more, and the formula (P-0B) is. It contains at least one group represented by the above formula (TS-0) or a group represented by the above formula (TS-1) as R 8 , R 9 , R 10 or R 11).
  • L 1 to L 4 each have a linear alkylene group having 1 to 20 carbon atoms and a substituent which may independently have a single bond and a substituent.
  • R 20 is a hydrogen atom or an alkyl group carbon atoms 1 may have a substituent ⁇ 10 .
  • R 16 ⁇ R 19 are each independently An alkyl group having 1 to 20 carbon atoms which may have a substituent, a cycloalkyl group having 3 to 20 carbon atoms which may have a substituent, and a carbon number which may have a substituent.
  • R 12 ⁇ R 15 are each independently an alkyl group having 2 to 20 carbon atoms, a group represented by the above formula (TS-0), a group represented by the above formula (TS-1), or the following formula (P-0C). -1)
  • Each of R 21 has an alkyl group having 1 to 20 carbon atoms which may independently have a substituent, a cycloalkyl group having 3 to 20 carbon atoms which may have a substituent, and a substituent. It may have an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms which may have a substituent, a cyano group, a nitro group, a heterocyclic group, a halogen atom, a carboxyl group, and 1 to 20 carbon atoms.
  • alkylsilyl groups substituted methyl group with 2 to 20 carbon atoms, 1-substituted ethyl group with 3 to 20 carbon atoms, 1-substituted-n-propyl group with 4 to 20 carbon atoms, which have the property of being dissociated by acid.
  • 1-branched alkyl group with 3 to 20 carbon atoms silyl group with 1 to 20 carbon atoms, acyl group with 2 to 20 carbon atoms, 1-substituted alkoxyalkyl group with 2 to 20 carbon atoms, 2 to 20 carbon atoms It is a cyclic ether group, an alkoxycarbonyl group having 2 to 20 carbon atoms, or an alkoxycarbonylalkyl group.
  • R 12 to R 19 is a group represented by the above formula (TS-0) or a group represented by the above formula (TS-1).
  • m 7 to m 10 are independently integers of 1 to 4, and p 7 is an integer of 0 to 5.
  • Pattern forming method including.
  • a compound represented by the following formula (P-0') is condensed with a compound represented by the following formula (TS-0') or a compound represented by the following formula (TS-1') to form a condensate.
  • TS-0' compound represented by the following formula
  • TS-1' compound represented by the following formula
  • composition according to [19] or [20] which further contains an acid cross-linking agent.
  • composition according to [22] which further contains a silicon-containing compound.
  • a compound having high sensitivity, high resolution, and high flatness a method for producing the same, an acid generator, a composition containing the compound or the acid generator, a resist film, an underlayer film, an optical article, and an optical article.
  • a pattern forming method using the compound or the acid generator can be provided.
  • Example 8 is a 1 H-NMR spectrum of BHPMS in Example 8.
  • MTP-BHPMS in Example 8 It is 1 H-NMR spectrum of the MTP-BHPMS ion compound in Example 8.
  • the present embodiment is an example for explaining the present invention, and the present invention is not limited to the present embodiment.
  • Ar is a group having an aryl group having 6 to 60 carbon atoms
  • OR TS is independently a hydroxyl group, a group represented by the following formula (TS-0), or the following. It is a group represented by the formula (TS-1).
  • N 1 is an integer of 1 to 20.
  • at least one of the OR TS is a group represented by the following formula (TS-0) or the following. It is a group represented by the formula (TS-1).
  • R 1 is a divalent group having 1 to 30 carbon atoms which may have a single bond or a substituent
  • R 2 is a carbon which may have a substituent.
  • R 3 is an alkyl group or a substituted ⁇ 10 1 carbon atoms which may have a substituent It is an aryl group having 6 to 10 carbon atoms which may have a group
  • An ⁇ is an anion containing fluorine or iodine.
  • the chemical structure of the compound according to this embodiment can be confirmed by 1 1 H-NMR measurement and IR measurement. Since the compound has an ionic moiety having a specific structure at the terminal, it exhibits high sensitivity, high resolution, and high flatness when used as a resist material or the like. Since the molecule of the compound according to this embodiment has an appropriate diffusion rate, it exhibits high resolution while maintaining high sensitivity. In addition, since it has an appropriate molecular weight, it is difficult to volatilize, and it exhibits high flatness because the film loss during curing is relatively small.
  • substitution means that one or more hydrogen atoms in a functional group are substituted with a substituent.
  • the "substituted group” is not particularly limited, but for example, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, a thiol group, a heterocyclic group, a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, and the like.
  • Branched aliphatic hydrocarbon group having 3 to 20 carbon atoms branched aliphatic hydrocarbon group having 3 to 20 carbon atoms, cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, alkoxyl group having 1 to 20 carbon atoms, 0 to 20 carbon atoms.
  • Ar is a group having an aryl group having 6 to 60 carbon atoms.
  • the carbon number of Ar is preferably 5 to 40.
  • Ar include phenyl, naphthyl, anthratyl, biphenyl, fluorene, and groups containing these.
  • each OR TS is independently a hydroxyl group, a group represented by the formula (TS-0), or a group represented by the formula (TS-1).
  • n 1 is an integer of 1 to 20, and at least one of the OR TS is a group represented by the formula (TS-0) or a group represented by the formula (TS-1). That is, the formula (P-0) contains at least one group represented by the formula (TS-0) or a group represented by the formula (TS-1).
  • n 1 is preferably 1 to 4.
  • R 1 is a divalent group having 1 to 30 carbon atoms which may have a single bond or a substituent, and has 2 to 2 carbon atoms which may have a substituent. It is preferably a divalent group of 6. Examples of the divalent group having 2 to 6 carbon atoms include an alkyleneoxy group having 2 to 6 carbon atoms such as an ethyleneoxy group and a propyleneoxy group, and a phenylene group.
  • R 2 is an alkyl group having 1 to 10 carbon atoms which may have a substituent or an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a decyl group, a cyclohexyl group and the like.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group. Among these, as R 2 , a methyl group, an ethyl group, or a phenyl group is preferable, and a methyl group is more preferable.
  • R 3 is an alkyl group having 1 to 10 carbon atoms which may have a substituent or an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • Alkyl groups having 1 to 10 carbon atoms which may have a substituent are preferable.
  • Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a decyl group, a cyclohexyl group and the like, and a methyl group is preferable.
  • An ⁇ is an anion containing fluorine or iodine
  • R 4 SO 3 ⁇ R 4 is a monovalent group containing fluorine or iodine having 1 to 9 carbon atoms.
  • PF 6 ⁇ and SbF 6 ⁇ are preferable.
  • CF 3 SO 3 ⁇ is preferable as An ⁇ .
  • R 1 , R 3 and An ⁇ have the same meaning as the formula (TS-0), and the same group as the formula (TS-0) is preferable.
  • X is each independently an oxygen atom, a sulfur atom or uncrosslinked
  • R 4 is a single bond or a substituent having 1 to 30 carbon atoms which may have a 2n-valent
  • R 5 and R 6 are groups, each of which is an independent halogen atom, a linear alkyl group having 1 to 30 carbon atoms which may have a substituent, and 3 carbon atoms which may have a substituent. It has a branched alkyl group of ⁇ 30, a cyclic alkyl group having 3 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • An alkenyl group having 2 to 30 carbon atoms may be present, an alkynyl group having 2 to 30 carbon atoms may have a substituent, an alkoxy group having 1 to 30 carbon atoms may have a substituent, and a cyano group.
  • the aryl group, the alkenyl group, the alkynyl group, and the alkoxy group may contain an ether bond, a ketone bond, or an ester bond.
  • M 1 and m 2 are independently integers of 0 to 7, respectively.
  • p 1 and p 2 are independently 0 or 1
  • n 2 is an integer of 1 to 4.
  • at least one of m 1 and m 2 is an integer of 1 to 7 and the formula (P).
  • -0A) includes at least one group represented by the above formula (TS-0) or the group represented by the above formula (TS-1) as R 5 or R 6).
  • R 4 is a 2n-valent radical of a single bond or a carbon atoms which may have a substituent 1 to 30.
  • the 2n-valent group having 1 to 30 carbon atoms is preferably a 2n-valent group having 1 to 16 carbon atoms, and for example, a methylene group, a phenylmethylene group, a naphthylmethylene group, a biphenylmethylene group, a cyclohexylphenylmethylene group, or anthratylmethylene. Groups, biphenylethylene groups and the like can be mentioned.
  • R 4 is, R A is preferably a group represented by -R B, wherein the R A is a methine group, the R B is 1-5 carbon atoms which may have a substituent 29 In this case, n 2 is 1.
  • R 5 and R 6 each independently have a halogen atom and a linear alkyl group having 1 to 30 carbon atoms which may have a substituent and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, and the alkoxy group may contain an ether bond, a ketone bond, or an ester bond.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Examples of the linear alkyl group having 1 to 30 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a decyl group and the like.
  • Examples of the branched alkyl group having 3 to 30 carbon atoms include an isopropyl group, an isobutyl group, t-butyl and the like.
  • Examples of the cyclic alkyl group having 3 to 30 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclodexyl group, a nonahydronaphthyl group and the like.
  • Examples of the aryl group having 6 to 30 carbon atoms include a phenyl group and a naphthyl group.
  • Examples of the alkenyl group having 2 to 30 carbon atoms include a vinyl group and an allyl group.
  • Examples of the alkoxy group having 1 to 30 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a triacontyloxy group and the like.
  • m 1 and m 2 are independently integers of 0 to 7, and preferably integers of 1 to 7. However, at least one of m 1 and m 2 is an integer of 1 to 7, and the formula (P-0A) is a group represented by the above formula (TS-0) as R 5 or R 6 or the above formula (). It contains at least one group represented by TS-1).
  • p 1 and p 2 are each independently 0 or 1.
  • n 2 is an integer of 1 to 4, and preferably an integer of 1 to 2.
  • Examples of the compound represented by the formula (P-0A) include compounds in which the hydroxyl group (-OH) of the compound disclosed in International Publication No. 2013/024778 is replaced with a group represented by -OR TS. Can be mentioned. Specific examples thereof include the following compounds.
  • the compound represented by the formula (P-0A) is not limited to these specific compounds.
  • RA is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxyl group, a cyano group, a nitro group, an amino group, a thiol group, a heterocyclic group, and a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • linear aliphatic hydrocarbon group having 1 to 20 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, an octyl group, a nonyl group, a decyl group and a dodecyl group.
  • R 7 is a 2n-valent group having 1 to 30 carbon atoms
  • R 8 to R 11 may independently have a halogen atom and a substituent, respectively.
  • the group represented by the formula (TS-1), and the alkyl group, the aryl group, the alkenyl group, the alkynyl group, and the alkoxy group contain an ether bond, a ketone bond, or an ester bond.
  • M 3 and m 4 are independently integers of 0 to 8
  • m 5 and m 6 are independently integers of 0 to 9
  • p 3 to p 6 are independently 0.
  • n 3 is an integer of 1 to 4.
  • at least one of m 3 , m 4 , m 5 and m 6 is an integer of 1 or more, and the formula (P-0B) is. It contains at least one group represented by the above formula (TS-0) or a group represented by the above formula (TS-1) as R 8 , R 9 , R 10 or R 11).
  • R 7 is a 2n-valent group having 1 to 30 carbon atoms, preferably a 2n-valent group having 1 to 16 carbon atoms, for example, a methylene group, a phenylmethylene group, a naphthylmethylene group, and the like. Examples thereof include a biphenylmethylene group, a cyclohexylphenylmethylene group, an anthratylmethylene group, and a biphenylethylene group.
  • R 7 is preferably R A is a group -R represented by B, and wherein the R A is a methine group, the R B is ⁇ carbon atoms 5 may have a substituent 29 In this case, n 2 is 1.
  • R 8 to R 11 each independently have a halogen atom and a linear alkyl group having 1 to 10 carbon atoms which may have a substituent and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, and the alkoxy group may contain an ether bond, a ketone bond, or an ester bond.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Examples of the linear alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a decyl group and the like.
  • Examples of the branched alkyl group having 3 to 30 carbon atoms include an isopropyl group, an isobutyl group, t-butyl and the like.
  • Examples of the cyclic alkyl group having 3 to 30 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclodexyl group, a nonahydronaphthyl group and the like.
  • Examples of the aryl group having 6 to 30 carbon atoms include a phenyl group and a naphthyl group.
  • Examples of the alkenyl group having 2 to 30 carbon atoms include a vinyl group and an allyl group.
  • Examples of the alkoxy group having 1 to 30 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a triacontyloxy group and the like.
  • m 3 and m 4 are independently integers of 0 to 8, and preferably integers of 0 to 2.
  • m 5 and m 6 are independently integers of 0 to 9, and preferably integers of 0 to 2.
  • at least one of m 3 , m 4 , m 5 and m 6 is an integer of 1 or more, and the formula (P-0B) is the above formula (TS- ) as R 8 , R 9 , R 10 or R 11. It contains at least one group represented by 0) or a group represented by the above formula (TS-1).
  • p 3 to p 6 are independently integers of 0 to 2, and are preferably integers of 0 to 1.
  • n 3 is an integer of 1 to 4, preferably an integer of 1 to 2.
  • Examples of the compound represented by the formula (P-0B) include compounds in which the hydroxyl group (-OH) of the compound disclosed in International Publication No. 2015/137486 is replaced with a group represented by -OR TS. Specific examples thereof include the following compounds.
  • the compound represented by the formula (P-0B) is not limited to these specific compounds.
  • RA is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxyl group, a cyano group, a nitro group, an amino group, a thiol group, a heterocyclic group, and a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • linear aliphatic hydrocarbon group having 1 to 20 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, an octyl group, a nonyl group, a decyl group and a dodecyl group.
  • L 1 to L 4 each have a linear alkylene group having 1 to 20 carbon atoms and a substituent which may independently have a single bond and a substituent.
  • R 20 is a hydrogen atom or an alkyl group carbon atoms 1 may have a substituent ⁇ 10 .
  • R 16 ⁇ R 19 are each independently An alkyl group having 1 to 20 carbon atoms which may have a substituent, a cycloalkyl group having 3 to 20 carbon atoms which may have a substituent, and a carbon number which may have a substituent.
  • R 12 ⁇ R 15 are each independently an alkyl group having 2 to 20 carbon atoms, a group represented by the above formula (TS-0), a group represented by the above formula (TS-1), or the following formula (P-0C). -1)
  • Each of R 21 has an alkyl group having 1 to 20 carbon atoms which may independently have a substituent, a cycloalkyl group having 3 to 20 carbon atoms which may have a substituent, and a substituent. It may have an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms which may have a substituent, a cyano group, a nitro group, a heterocyclic group, a halogen atom, a carboxyl group, and 1 to 20 carbon atoms.
  • alkylsilyl groups substituted methyl group with 2 to 20 carbon atoms, 1-substituted ethyl group with 3 to 20 carbon atoms, 1-substituted-n-propyl group with 4 to 20 carbon atoms, which have the property of being dissociated by acid.
  • 1-branched alkyl group with 3 to 20 carbon atoms silyl group with 1 to 20 carbon atoms, acyl group with 2 to 20 carbon atoms, 1-substituted alkoxyalkyl group with 2 to 20 carbon atoms, 2 to 20 carbon atoms It is a cyclic ether group, an alkoxycarbonyl group having 2 to 20 carbon atoms, or an alkoxycarbonylalkyl group.
  • R 12 to R 19 is a group represented by the above formula (TS-0) or a group represented by the above formula (TS-1).
  • m 7 to m 10 are independently integers of 1 to 4, and p 7 is an integer of 0 to 5.
  • L 1 to L 4 each have a linear alkylene group having 1 to 20 carbon atoms and a substituent which may independently have a single bond and a substituent.
  • linear alkylene group having 1 to 20 carbon atoms a linear alkylene group having 1 to 10 carbon atoms is preferable, and examples thereof include a methylene group, an ethylene group, a propylene group and a decylene group.
  • a branched alkylene group having 1 to 16 carbon atoms is preferable, for example, an isopropylene group, an isobutylene group, a phenylmethylene group, a naphthylmethylene group, a biphenylmethylene group and a cyclohexylphenylmethylene group. , Anthratylmethylene group, biphenylethylene group and the like.
  • a cycloalkylene group having 3 to 20 carbon atoms for example, a cycloalkylene group having 3 to 10 carbon atoms is preferable, and for example, a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclodexylene group, and a nonahydro group are preferable.
  • Examples include a naphthylene group.
  • the arylene group having 6 to 24 carbon atoms for example, an arylene group having 6 to 12 carbon atoms is preferable, and examples thereof include a phenylene group, a naphthylene group, and a biphenylene group.
  • R 20 is an alkyl group having 1 to 10 carbon atoms which may have a hydrogen atom or a substituent.
  • alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group and the like.
  • R 16 to R 19 have an alkyl group having 1 to 20 carbon atoms which may independently have a substituent, and 3 to 3 carbon atoms which may have a substituent.
  • Substituent methyl group having 2 to 20 carbon atoms 1-substituted ethyl group having 3 to 20 carbon atoms, 1-substituted-n-propyl group having 4 to 20 carbon atoms, 1-branch having 3 to 20 carbon atoms
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group and a t-butyl group.
  • a cycloalkyl group having 1 to 10 carbon atoms is preferable, and for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclodexylene group, a nonahydronaphthylene group and the like are preferable.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 10 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, and a biphenyl group.
  • the alkoxy group having 1 to 20 carbon atoms is preferably an alkoxy group having 1 to 10 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and a dexyl group.
  • Examples of the heterocyclic group include a pyrrole group, an imidazole group, a carbazole group and the like.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkylsilyl group having 1 to 20 carbon atoms is preferably an alkylsilyl group having 1 to 9 carbon atoms, and examples thereof include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, and a tert-butyldimethylsilyl group.
  • substituted methyl group having 2 to 20 carbon atoms having the property of being dissociated by an acid a substituted methyl group having 4 to 18 carbon atoms is preferable, and a substituted methyl group having 6 to 16 carbon atoms is more preferable.
  • Specific examples of the substituted methyl group include, but are not limited to, a methoxymethyl group, a methylthiomethyl group, an ethoxymethyl group, an n-propoxymethyl group, an isopropoxymethyl group, an n-butoxymethyl group, and a t-butoxymethyl group.
  • R 2A in the following formula (1) include, but are not limited to, a methyl group, an ethyl group, an isopropyl group, an n-propyl group, a t-butyl group, an n-butyl group and the like. .. In the following formula (1), R 2A is an alkyl group having 1 to 4 carbon atoms.
  • the 1-substituted ethyl group having 3 to 20 carbon atoms having the property of being dissociated by an acid a 1-substituted ethyl group having 5 to 18 carbon atoms is preferable, and a substituted ethyl group having 7 to 16 carbon atoms is more preferable.
  • 1-substituted ethyl group examples include, but are not limited to, 1-methoxyethyl group, 1-methylthioethyl group, 1,1-dimethoxyethyl group, 1-ethoxyethyl group, 1-ethylthioethyl group, 1,1-diethoxyethyl group, n-propoxyethyl group, isopropoxyethyl group, n-butoxyethyl group, t-butoxyethyl group, 2-methylpropoxyethyl group, 1-phenoxyethyl group, 1-phenylthioethyl Group, 1,1-diphenoxyethyl group, 1-cyclopentyloxyethyl group, 1-cyclohexyloxyethyl group, 1-phenylethyl group, 1,1-diphenylethyl group, and substitution represented by the following formula (2).
  • the base group and the like can be mentioned.
  • R 2A has
  • the 1-substituted-n-propyl group having 4 to 20 carbon atoms which has the property of being dissociated by an acid the 1-substituted-n-propyl group having 6 to 18 carbon atoms is preferable, and the 1-substituted-n-propyl group having 8 to 16 carbon atoms is preferable.
  • the -n-propyl group is more preferred.
  • Specific examples of the 1-substituted-n-propyl group include, but are not limited to, 1-methoxy-n-propyl group and 1-ethoxy-n-propyl group.
  • the 1-branched alkyl group having 3 to 20 carbon atoms which has the property of being dissociated by an acid a 1-branched alkyl group having 5 to 18 carbon atoms is preferable, and a branched alkyl group having 7 to 16 carbon atoms is more preferable.
  • Specific examples of the 1-branched alkyl group are not limited to the following, but are limited to an isopropyl group, a sec-butyl group, a tert-butyl group, a 1,1-dimethylpropyl group, a 1-methylbutyl group and a 1,1-dimethylbutyl group. , 2-Methyl adamantyl group, 2-ethyl adamantyl group and the like.
  • silyl group having 1 to 20 carbon atoms having the property of being dissociated by an acid a silyl group having 3 to 18 carbon atoms is preferable, and a silyl group having 5 to 16 carbon atoms is more preferable.
  • Specific examples of the silyl group include, but are not limited to, a trimethylsilyl group, an ethyldimethylsilyl group, a methyldiethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a tert-butyldiethylsilyl group, and a tert-butyldiphenylsilyl.
  • Groups, tri-tert-butylsilyl groups, triphenylsilyl groups and the like can be mentioned.
  • an acyl group having 2 to 20 carbon atoms having the property of being dissociated by an acid an acyl group having 4 to 18 carbon atoms is preferable, and an acyl group having 6 to 16 carbon atoms is more preferable.
  • Specific examples of the acyl group include, but are not limited to, an acetyl group, a phenoxyacetyl group, a propionyl group, a butyryl group, a heptanoyle group, a hexanoyl group, a valeryl group, a pivaloyl group, an isovaleryl group, a laurylloyl group, an adamantyl carbonyl group and a benzoyl group.
  • Examples include groups and naphthoyl groups.
  • a 1-substituted alkoxyalkyl group having 2 to 20 carbon atoms which has the property of being dissociated by an acid a 1-substituted alkoxymethyl group having 2 to 20 carbon atoms is preferable, and a 1-substituted alkoxymethyl group having 4 to 18 carbon atoms is preferable. More preferably, a 1-substituted alkoxymethyl group having 6 to 16 carbon atoms is further preferable.
  • 1-substituted alkoxymethyl group are not limited to the following, but are limited to 1-cyclopentylmethoxymethyl group, 1-cyclopentylethoxymethyl group, 1-cyclohexylmethoxymethyl group, 1-cyclohexylethoxymethyl group and 1-cyclooctyl. Examples thereof include a methoxymethyl group and a 1-adamantyl methoxymethyl group.
  • cyclic ether group having 2 to 20 carbon atoms which has the property of being dissociated by an acid a cyclic ether group having 4 to 18 carbon atoms is preferable, and a cyclic ether group having 6 to 16 carbon atoms is more preferable.
  • Specific examples of the cyclic ether group include, but are not limited to, a tetrahydropyranyl group, a tetrahydropyranyl group, a tetrahydrothiopyranyl group, a tetrahydrothiofuranyl group, a 4-methoxytetrahydropyranyl group and a 4-methoxytetrahydrothiopyrani. Lu groups and the like can be mentioned.
  • alkoxycarbonyl group having 2 to 20 carbon atoms which has the property of being dissociated by an acid an alkoxycarbonyl group having 4 to 18 carbon atoms is preferable, and an alkoxycarbonyl group having 6 to 16 carbon atoms is more preferable.
  • alkoxycarbonylalkyl group having the property of being dissociated by an acid an alkoxycarbonylalkyl group having 3 to 20 carbon atoms is preferable, an alkoxycarbonylalkyl group having 4 to 18 carbon atoms is more preferable, and an alkoxycarbonylalkyl group having 6 to 16 carbon atoms is more preferable. Groups are even more preferred.
  • R 3A is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and n is an integer of 0 to 4.
  • R 12 to R 15 are independent alkyl groups having 2 to 20 carbon atoms, a group represented by the formula (TS-0), and a group represented by the formula (TS-1).
  • the alkyl group having 2 to 20 carbon atoms is preferably an alkyl group having 2 to 10 carbon atoms, and examples thereof include an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group and a decyl group.
  • each of R 21 has an alkyl group having 1 to 20 carbon atoms which may independently have a substituent and an alkyl group having 3 to 20 carbon atoms which may have a substituent.
  • Halogen atom carboxyl group, alkylsilyl group having 1 to 20 carbon atoms; substituted methyl group having 2 to 20 carbon atoms, 1-substituted ethyl group having 3 to 20 carbon atoms, and 4 carbon atoms having the property of being dissociated by an acid.
  • R 12 to R 19 is a group represented by the above formula (TS-0) or a group represented by the above formula (TS-1).
  • m 7 to m 10 are independently integers of 1 to 4, and preferably integers of 1 to 3.
  • p 7 is an integer of 0 to 5, preferably an integer of 0-3.
  • Examples of the compound represented by the formula (P-0C) include a group in which the hydroxyl group (-OH) of the compound disclosed in JP-A-2009-173623 and JP-A-2009-173625 is represented by -OR TS. Examples thereof include compounds substituted with, and specific examples thereof include the following compounds. The compound represented by the formula (P-0C) is not limited to these specific compounds.
  • RA is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxyl group, a cyano group, a nitro group, an amino group, a thiol group, a heterocyclic group, and a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • linear aliphatic hydrocarbon group having 1 to 20 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, an octyl group, a nonyl group, a decyl group and a dodecyl group.
  • Examples of the compound represented by the above formula (P-1) include the following compounds.
  • the compound represented by the formula (P-1) is not limited to these specific compounds.
  • the method for producing the compound according to the present embodiment is represented by a compound represented by the following formula (P-0'), a compound represented by the following formula (TS-0'), or a compound represented by the following formula (TS-1').
  • a step of condensing the compound to obtain a condensate (hereinafter, also referred to as a condensation step), and a step of reacting the condensate with a salt having an anion containing fluorine or iodine and an alkylating agent (hereinafter referred to as an alkylating agent). , Also referred to as an alkylation step).
  • alkylation means alkylation or arylation
  • alkylating agent means alkylating agent or arylating agent
  • alkylation step means. Represents an alkylation step or an arylation step.
  • the compound according to the present embodiment can be efficiently produced.
  • the halogen atom in the formula (TS-0') and the formula (TS-1') include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the compound represented by the formula (P-0') is condensed with the compound represented by the formula (TS-0') or the compound represented by the formula (TS-1').
  • the compound represented by the formula (TS-0') or the compound represented by the formula (TS-1') is, for example, XR 1 of the formula (TS-0') or the formula (TS-1').
  • a compound group is a hydroxyl group, it can be obtained by reacting the X-R 1 -X.
  • the condensation reaction between the compound represented by the formula (P-0') and the compound represented by the formula (TS-0') or the compound represented by the formula (TS-1') is, for example, a strong acid. It can be carried out by a method such as a condensation reaction in the presence of.
  • Alkylation step In this step, the condensate obtained in the condensation step is reacted with a salt having an anion containing fluorine or iodine and an alkylating agent.
  • the reaction can be carried out by, for example, a method of reacting with an alkali metal salt of anion or an acid represented by H + X ?.
  • the first composition according to the present embodiment contains the compound according to the present embodiment.
  • the first composition according to the present embodiment can be, for example, a material for lithography, a material composition for lithography, or the like.
  • the lithography material according to the present embodiment contains the compound according to the present embodiment.
  • the lithography material according to the present embodiment is a material that can be used in the lithography technique, and is not particularly limited as long as it contains the compound according to the present embodiment. Further, it can be used for resist applications (that is, resist compositions) and the like.
  • the lithography material according to the present embodiment contains the compound according to the present embodiment, it has high sensitivity, high resolution, and high flatness.
  • the lithography material according to this embodiment may not contain a solvent.
  • the lithographic material composition according to the present embodiment includes the lithographic material according to the present embodiment and a solvent. Since the material composition for lithography has high sensitivity, high resolution, and high flatness, a good resist pattern shape can be imparted. For example, a resist film can be formed from a material composition for lithography.
  • the lithography material of the present embodiment can be used for resist applications as described above, and an amorphous film can be formed by a known method such as spin coating. Further, depending on the type of developer used, either a positive resist pattern or a negative resist pattern can be produced separately.
  • a case where the lithography material composition including the lithography material of the present embodiment is used for a resist application (as a resist composition) will be described.
  • the dissolution rate of the amorphous film formed by spin-coating the lithography material composition of the present embodiment in a developing solution at 23 ° C. is 5 ⁇ / sec or less. Is preferable, 0.05 to 5 ⁇ / sec is more preferable, and 0.0005 to 5 ⁇ / sec is even more preferable.
  • the dissolution rate is 5 ⁇ / sec or less, a resist insoluble in a developing solution can be obtained. Further, when the dissolution rate is 0.0005 ⁇ / sec or more, the resolution may be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the lithography material composition of the present embodiment in a developing solution at 23 ° C. is 10 ⁇ / sec or more. Is preferable. When the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developing solution and is more suitable for a resist. Further, if the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. It is presumed that this is because the micro surface portion of the compound according to the present embodiment is dissolved and the line edge roughness is reduced. It also has the effect of reducing defects.
  • the dissolution rate can be determined by immersing the amorphous film in a developing solution at 23 ° C. and measuring the film thickness before and after the immersion by a known method such as visual inspection, ellipsometer or QCM method.
  • a KrF excimer laser, extreme ultraviolet rays, electron beams, X-rays, or the like of an amorphous film formed by spin-coating the lithography material composition of the present embodiment may be used.
  • the dissolution rate of the portion exposed to radiation in the developing solution at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developing solution and is more suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. It is presumed that this is because the micro surface portion of the compound according to the present embodiment is dissolved and the line edge roughness is reduced. It also has the effect of reducing defects.
  • the lithography material composition of the present embodiment is a negative resist pattern
  • a KrF excimer laser, extreme ultraviolet rays, electron beams, X-rays, or the like of an amorphous film formed by spin-coating the lithography material composition of the present embodiment may be used.
  • the dissolution rate of the portion exposed to the radiation in the developing solution at 23 ° C. is preferably 5 ⁇ / sec or less, more preferably 0.05 to 5 ⁇ / sec, still more preferably 0.0005 to 5 ⁇ / sec.
  • the dissolution rate is 5 ⁇ / sec or less, a resist insoluble in a developing solution can be obtained. Further, when the dissolution rate is 0.0005 ⁇ / sec or more, the resolution may be improved.
  • the lithography material composition of the present embodiment contains the compound according to the present embodiment as a solid component.
  • the lithography material composition of the present embodiment further contains a solvent in addition to the compound according to the present embodiment.
  • the solvent used in the lithography material composition of the present embodiment is not particularly limited, but for example, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, ethylene glycol mono- Ethylene glycol monoalkyl ether acetates such as n-butyl ether acetate; ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate (PGMEA), propylene Propropylene glycol monoalkyl ether acetates such as glycol mono-n-propyl ether acetate and propylene glycol mono-n-butyl ether acetate; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether (PGME) and propy
  • the solvent used in the lithography material composition of the present embodiment is preferably a safe solvent, more preferably PGMEA, PGME, CHN, CPN, 2-heptanone, anisole, butyl acetate, ethyl propionate and lactic acid. At least one selected from ethyl, more preferably at least one selected from PGMEA, PGME and CHN.
  • the relationship between the amount of the solid component and the amount of the solvent is not particularly limited, but the solid component is 1 to 80% by mass with respect to the total mass of the solid component and the solvent of 100% by mass.
  • the solvent is preferably 20 to 99% by mass, more preferably 1 to 50% by mass of the solid component and 50 to 99% by mass of the solvent, still more preferably 2 to 40% by mass of the solid component and 60 to 98% by mass of the solvent.
  • the solid component is 2 to 10% by mass and the solvent is 90 to 98% by mass.
  • the material composition for lithography of the present embodiment is selected from the group consisting of an acid generator (C), an acid cross-linking agent (G), an acid diffusion control agent (E) and other components (F) as other solid components. May contain at least one of these.
  • the content of the compound according to the present embodiment is not particularly limited, but the total mass of the solid component (the compound according to the present embodiment, the acid generator (C), the acid cross-linking agent). (G), the total of the solid components arbitrarily used such as the acid diffusion control agent (E) and the other component (F), the same applies hereinafter) is preferably 50 to 99.4% by mass, more preferably. It is 55 to 90% by mass, more preferably 60 to 80% by mass, and particularly preferably 60 to 70% by mass. In the case of the above content, the resolution is further improved and the line edge roughness (LER) is further reduced.
  • the total mass of the solid component the compound according to the present embodiment, the acid generator (C), the acid cross-linking agent).
  • G the total of the solid components arbitrarily used such as the acid diffusion control agent (E) and the other component (F), the same applies hereinafter
  • the resolution is further improved and the line edge roughness (LER) is further reduced.
  • the lithography material composition of the present embodiment is directly or indirectly acid by irradiation with any radiation selected from visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet (EUV), X-ray and ion beam. It is preferable to contain one or more of the acid generator (C) that generates the above.
  • the content of the acid generator (C) is preferably 0.001 to 49% by mass, more preferably 1 to 40% by mass, based on the total mass of the solid components. 3 to 30% by mass is more preferable, and 10 to 25% by mass is particularly preferable.
  • the method of generating the acid is not limited. Finer processing is possible by using an excimer laser instead of ultraviolet rays such as g-rays and i-rays, and further fine processing is possible by using electron beams, extreme ultraviolet rays, X-rays, and ion beams as high-energy rays. Is possible.
  • the acid generator (C) is not particularly limited, and examples thereof include compounds disclosed in International Publication No. 2017/033943.
  • an acid generator having an aromatic ring is preferable, an acid generator having a sulfonic acid ion having an aryl group is more preferable, and diphenyltrimethylphenylsulfonium p-toluenesulfonate and triphenylsulfonium p-toluene are more preferable.
  • Sulfonate, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoromethanesulfonate are particularly preferable.
  • the material composition for lithography of the present embodiment further contains a diazonaphthoquinone photoactive compound as an acid generator.
  • the diazonaphthoquinone photoactive compound is a diazonaphthoquinone substance containing a polymeric and non-polymeric diazonaphthoquinone photoactive compound, and is particularly limited as long as it is generally used as a photosensitive component in a positive resist composition. However, one type or two or more types can be arbitrarily selected and used.
  • a non-polymeric diazonaphthoquinone photoactive compound is preferable, a low molecular weight compound having a molecular weight of 1500 or less is more preferable, and a molecular weight of 1200 or less is particularly preferable, and a molecular weight is particularly preferable. It is 1000 or less.
  • Preferred specific examples of such a non-polymeric diazonaphthoquinone photoactive compound include the non-polymeric diazonaphthoquinone photoactive compound disclosed in International Publication No. 2016/158881.
  • the acid generator (C) may be used alone or in combination of two or more.
  • the lithography material composition of the present embodiment contains one or more acid cross-linking agents (G) when used as a negative resist material or as an additive for increasing the strength of a pattern even in a positive resist material. Is preferable.
  • the acid cross-linking agent (G) is a compound capable of intramolecularly or intermolecularly cross-linking the compound according to the present embodiment in the presence of the acid generated from the acid generator (C).
  • Such an acid cross-linking agent (G) is not particularly limited, and examples thereof include compounds having one or more cross-linking groups capable of cross-linking the compound according to the present embodiment.
  • crosslinkable group examples are not particularly limited, but are, for example, (i) hydroxy (alkyl group having 1 to 6 carbon atoms) and alkoxy having 1 to 6 carbon atoms (alkyl group having 1 to 6 carbon atoms). , Hydroxyalkyl groups such as acetoxy (alkyl groups with 1 to 6 carbon atoms) or groups derived from them; (ii) Formyl groups, carbonyl groups such as carboxy (alkyl groups with 1 to 6 carbon atoms) or derived from them.
  • Nitrogen-containing groups such as dimethylaminomethyl group, diethylaminomethyl group, dimethylolaminomethyl group, dietylolaminomethyl group, morpholinomethyl group;
  • glycidyl ether group glycidyl ester group, A glycidyl group-containing group such as a glycidylamino group;
  • an allyloxy having 1 to 6 carbon atoms alkyl group having 1 to 6 carbon atoms
  • such as a benzyloxymethyl group and a benzoyloxymethyl group such as a benzyloxymethyl group and a benzoyloxymethyl group
  • an aralkyl group having 1 to 6 carbon atoms such as dimethylaminomethyl group, diethylaminomethyl group, dimethylolaminomethyl group, dietylolaminomethyl group, morpholinomethyl group.
  • glycidyl ether group glycidyl ester group
  • Groups derived from aromatic groups such as oxy (alkyl groups having 1 to 6 carbon atoms); (vi) polymerizable multiple bond-containing groups such as vinyl groups and isopropenyl groups can be mentioned.
  • the crosslinkable group of the acid cross-linking agent (G) a hydroxyalkyl group, an alkoxyalkyl group and the like are preferable, and an alkoxymethyl group is particularly preferable.
  • the acid cross-linking agent (G) having a cross-linking group is not particularly limited.
  • Methylol group-containing compounds such as group-containing phenol compounds; (ii) alkoxyalkyl group-containing melamine compounds, alkoxyalkyl group-containing benzoguanamine compounds, alkoxyalkyl group-containing urea compounds, alkoxyalkyl group-containing glycol uryl compounds, alkoxyalkyl group-containing phenol compounds, etc.
  • Alkoxyalkyl group-containing compounds (iii) Carboxymethyl groups such as carboxymethyl group-containing melamine compounds, carboxymethyl group-containing benzoguanamine compounds, carboxymethyl group-containing urea compounds, carboxymethyl group-containing glycol uryl compounds, and carboxymethyl group-containing phenol compounds. Containing compounds; (iv) bisphenol A-based epoxy compounds, bisphenol F-based epoxy compounds, bisphenol S-based epoxy compounds, novolak resin-based epoxy compounds, resole resin-based epoxy compounds, poly (hydroxystyrene) -based epoxy compounds and other epoxy compounds. Can be mentioned.
  • the acid cross-linking agent (G) a compound having a phenolic hydroxyl group and a compound and a resin obtained by introducing the cross-linking group into an acidic functional group in an alkali-soluble resin and imparting cross-linking property can be used. ..
  • the introduction rate of the crosslinkable group is not particularly limited, and is, for example, 5 to 100 mol%, preferably 10 to 60, based on the total acidic functional group in the compound having a phenolic hydroxyl group and the alkali-soluble resin. It is adjusted to mol%, more preferably 15-40 mol%. Within the above range, a cross-linking reaction occurs sufficiently, and a decrease in the residual film ratio, a pattern swelling phenomenon, meandering, and the like can be avoided, which is preferable.
  • the acid cross-linking agent (G) is an alkoxyalkylated urea compound or a resin thereof, an alkoxyalkylated glycol uryl compound or a resin thereof (acid cross-linking agent (G1)), and benzene in the molecule.
  • Agent (G2)) a compound having at least one ⁇ -hydroxyisopropyl group (acid cross-linking agent (G3)) is preferable.
  • the compounds disclosed in International Publication No. 2017/033943 may be mentioned.
  • the content of the acid cross-linking agent (G) is preferably 0.5 to 49% by mass, more preferably 0.5 to 40% by mass, 1 by mass of the total mass of the solid components. It is more preferably from 30% by mass, and particularly preferably from 2 to 20% by mass.
  • the content ratio of the acid cross-linking agent (G) is 0.5% by mass or more, the effect of suppressing the solubility of the resist film in the alkaline developer is improved, the residual film ratio is lowered, and the pattern is swollen or tortuous. It is preferable because it can suppress the occurrence, and on the other hand, when it is 49% by mass or less, it is preferable because the decrease in heat resistance as a resist can be suppressed.
  • the content of at least one compound selected from the acid cross-linking agent (G1), the acid cross-linking agent (G2), and the acid cross-linking agent (G3) in the acid cross-linking agent (G) is not particularly limited.
  • the range can be various depending on the type of the substrate used when forming the resist pattern and the like.
  • the material composition for lithography of the present embodiment controls the diffusion of the acid generated from the acid generator by irradiation in the resist film, and has an action of preventing an unfavorable chemical reaction in an unexposed region.
  • the control agent (E) may be contained.
  • the storage stability of the material composition for lithography is improved.
  • the resolution is further improved, and changes in the line width of the resist pattern due to fluctuations in the leaving time before irradiation and the leaving time after irradiation can be suppressed, resulting in extremely excellent process stability.
  • Such an acid diffusion control agent (E) is not particularly limited, and examples thereof include radiolytic basic compounds such as nitrogen atom-containing basic compounds, basic sulfonium compounds, and basic iodonium compounds.
  • radiolytic basic compounds such as nitrogen atom-containing basic compounds, basic sulfonium compounds, and basic iodonium compounds.
  • Examples of the acid diffusion control agent (E) include compounds disclosed in International Publication No. 2017/033943.
  • the acid diffusion control agent (E) may be used alone or in combination of two or more.
  • the content of the acid diffusion control agent (E) is preferably 0.001 to 49% by mass, more preferably 0.01 to 10% by mass, still more preferably 0.01 to 5% by mass, based on the total mass of the solid component. 0.01 to 3% by mass is particularly preferable.
  • the content of the acid diffusion control agent (E) is within the above range, deterioration of resolution, pattern shape, dimensional fidelity and the like can be further suppressed. Further, even if the leaving time from the electron beam irradiation to the heating after the irradiation is long, the shape of the upper layer portion of the pattern does not deteriorate.
  • the content of the acid diffusion control agent (E) is 10% by mass or less, it is possible to prevent deterioration of sensitivity, developability of the unexposed portion and the like. Further, by using such an acid diffusion control agent, the storage stability of the material composition for lithography is improved, the resolution is improved, and the retention time before irradiation and the retention time after irradiation are reduced. It is possible to suppress changes in the line width of the resist pattern due to fluctuations, and the process stability is extremely excellent.
  • the total content of the other component (F) is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, further preferably 0 to 1% by mass, and particularly preferably 0% by mass of the total mass of the solid component. ..
  • the content of the compound according to the present embodiment, the acid generator (C), the acid diffusion control agent (E), and other components (F) is in mass% based on the solid substance, preferably 50 to 99.4 / 0.001 to 49 / 0.001 to. 49/0 to 49, more preferably 55 to 90/1 to 40/0.01 to 10/0 to 5, still more preferably 60 to 80/3 to 30/0.01 to 5/0 to 1, particularly preferred. Is 60 to 70/10 to 25/0.01 to 3/0.
  • the content ratio of each component is selected from each range so that the total is 100% by mass. With the above content ratio, the performance such as sensitivity, resolution, and developability is further excellent.
  • the method for preparing the material composition for lithography of the present embodiment is not particularly limited, and for example, each component is dissolved in a solvent at the time of use to form a uniform solution, and then, if necessary, a filter having a pore size of, for example, about 0.2 ⁇ m. A method of filtering with or the like can be mentioned.
  • the lithography material composition of the present embodiment may contain a resin as long as the object of the present invention is not impaired.
  • the resin is not particularly limited, and is, for example, a novolak resin, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resin, and a polymer containing acrylic acid, vinyl alcohol, or vinylphenol as a monomer unit. Alternatively, these derivatives and the like can be mentioned.
  • the content of the resin is not particularly limited and is appropriately adjusted according to the type of the compound according to the present embodiment to be used, but is preferably 30 parts by mass or less, more preferably 10 parts by mass, per 100 parts by mass of the compound. Parts or less, more preferably 5 parts by mass or less, and particularly preferably 0 parts by mass.
  • a pattern formation method When a pattern is formed on a substrate using a lithography material, for example, a lithography material according to the present embodiment and a composition containing the same (hereinafter, these may be collectively referred to as "lithographic material or the like").
  • a pattern forming method including a film forming step of forming a film on a substrate, an exposure step of exposing the film, and a developing step of developing the exposed film in the exposure step to form a pattern is used. be able to.
  • the method for forming the pattern is not particularly limited, and as a suitable method, a resist composition including the above-mentioned lithography material or the like is used.
  • a film forming step of applying an object onto a substrate to form a film (resist film), an exposure step of exposing the formed film (resist film), and a film (resist film) exposed in the exposure step are developed.
  • a method including a developing step of forming a pattern (resist pattern) can be mentioned.
  • the resist pattern of this embodiment can also be formed as an upper resist in a multilayer process.
  • the method for forming a specific resist pattern is not particularly limited, and examples thereof include the following methods.
  • a resist film is formed by applying the resist composition onto a conventionally known substrate by a coating means such as rotary coating, cast coating, and roll coating.
  • the conventionally known substrate is not particularly limited, and examples thereof include a substrate for electronic components and a substrate on which a predetermined wiring pattern is formed.
  • the present invention is not particularly limited, and examples thereof include a silicon wafer, a metal substrate such as copper, chromium, iron, and aluminum, and a glass substrate.
  • the material of the wiring pattern is not particularly limited, and examples thereof include copper, aluminum, nickel, and gold.
  • an inorganic film or an organic film may be provided on the above-mentioned substrate.
  • the inorganic film is not particularly limited, and examples thereof include an inorganic antireflection film (inorganic BARC).
  • the organic film is not particularly limited, and examples thereof include an organic antireflection film (organic BARC). Surface treatment with hexamethylene disilazane or the like may be performed.
  • the heating conditions vary depending on the content of the resist composition and the like, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C. By heating, the adhesion of the resist to the substrate may be improved, which is preferable.
  • the resist film is then exposed to the desired pattern with any radiation selected from the group consisting of visible light, ultraviolet light, excimer lasers, electron beams, extreme ultraviolet rays (EUV), X-rays, and ion beams.
  • the exposure conditions and the like are appropriately selected according to the compounding composition and the like of the resist composition.
  • the resist pattern forming method of the present embodiment it is preferable to heat after irradiation in order to stably form a fine pattern with high accuracy in exposure.
  • the heating conditions vary depending on the composition of the resist composition and the like, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C.
  • the exposed resist film is developed with a developing solution to form a predetermined resist pattern.
  • a developing solution it is preferable to select a solvent having a solubility parameter (SP value) close to that of the compound according to the present embodiment to be used, and a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent, and an ether.
  • SP value solubility parameter
  • a polar solvent such as a system solvent, a hydrocarbon solvent or an alkaline aqueous solution can be used.
  • a positive resist pattern or a negative resist pattern can be produced according to the type of the developing solution, but generally, a polar solvent such as a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent, or an ether solvent is used.
  • a negative resist pattern can be obtained, and in the case of an alkaline aqueous solution, a positive resist pattern can be obtained.
  • the ketone solvent, ester solvent, alcohol solvent, amide solvent, ether solvent, hydrocarbon solvent, and alkaline aqueous solution include those disclosed in International Publication No. 2017/033943.
  • a plurality of the solvents may be mixed, or they may be mixed with a solvent other than the above or water as long as they have performance.
  • the water content of the developer as a whole is preferably less than 70% by mass, more preferably less than 50% by mass, and more preferably less than 30% by mass. It is preferable that it is less than 10% by mass, and it is particularly preferable that it contains substantially no water. That is, the content of the organic solvent in the developing solution is not particularly limited, and is preferably 30% by mass or more and 100% by mass or less, and more preferably 50% by mass or more and 100% by mass or less with respect to the total amount of the developing solution. It is more preferably 70% by mass or more and 100% by mass or less, further preferably 90% by mass or more and 100% by mass or less, and particularly preferably 95% by mass or more and 100% by mass or less.
  • the developing solution contains at least one solvent selected from a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent and an ether solvent, and the developing solution contains the resolution and roughness of the resist pattern. It is preferable because it improves the resist performance of the solvent.
  • the vapor pressure of the developer is not particularly limited, and is preferably 5 kPa or less, more preferably 3 kPa or less, and particularly preferably 2 kPa or less, for example, at 20 ° C.
  • the vapor pressure of the developer is preferably 5 kPa or less, more preferably 3 kPa or less, and particularly preferably 2 kPa or less, for example, at 20 ° C.
  • the surfactant is not particularly limited, and for example, an ionic or nonionic fluorine-based or silicon-based surfactant can be used.
  • fluorine- or silicon-based surfactants include JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950, and Japanese Patent Application Laid-Open No. 62-170950.
  • the surfactants described in No. 5529881, No. 5296330, No. 5436098, No. 5576143, No. 5294511, and No. 5824451 can be mentioned.
  • it is a nonionic surfactant.
  • the nonionic surfactant is not particularly limited, but it is more preferable to use a fluorine-based surfactant or a silicon-based surfactant.
  • the amount of the surfactant used is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0.01 to 0.5% by mass with respect to the total amount of the developing solution.
  • Examples of the developing method include a method of immersing the substrate in a tank filled with a developing solution for a certain period of time (dip method), and a method of developing by raising the developing solution on the surface of the substrate by surface tension and allowing it to stand still for a certain period of time (paddle).
  • dip method a method of immersing the substrate in a tank filled with a developing solution for a certain period of time
  • piddle a method of developing by raising the developing solution on the surface of the substrate by surface tension and allowing it to stand still for a certain period of time
  • Method a method of spraying the developer on the surface of the substrate
  • spray method a method of continuously spraying the developer on the substrate rotating at a constant speed while scanning the developer dispensing nozzle at a constant speed
  • Etc. can be applied.
  • the time for developing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
  • a step of stopping the development may be carried out while substituting with another solvent.
  • the rinsing solution used in the rinsing step after development is not particularly limited as long as the resist pattern cured by crosslinking is not dissolved, and a solution containing a general organic solvent or water can be used.
  • a rinsing solution it is preferable to use a rinsing solution containing at least one organic solvent selected from a hydrocarbon solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent and an ether solvent. .. More preferably, after the development, a washing step is performed using a rinsing solution containing at least one organic solvent selected from the group consisting of a ketone solvent, an ester solvent, an alcohol solvent, and an amide solvent.
  • a step of washing with a rinsing solution containing an alcohol-based solvent or an ester-based solvent is performed. Even more preferably, after development, a step of washing with a rinsing solution containing a monohydric alcohol is performed. Particularly preferably, after development, a step of washing with a rinsing solution containing a monohydric alcohol having 5 or more carbon atoms is performed.
  • the time for rinsing the pattern is not particularly limited, but is preferably 10 to 90 seconds.
  • the monohydric alcohol used in the rinsing step after development is not particularly limited, and examples thereof include linear, branched, and cyclic monohydric alcohols, and specifically, 1-butanol and 2 -Butanol, 3-methyl-1-butanol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-hexanol , Cyclopentanol, 2-heptanol, 2-octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol and the like can be used, and a particularly preferable monohydric alcohol having 5 or more carbon atoms is 1-. Hexanol, 2-hexanol, 4-methyl-2-pentanol, 1-pentanol, 3-methyl-1-butanol and the like can be
  • Each of the above components may be mixed in a plurality or mixed with an organic solvent other than the above.
  • the water content in the rinse liquid is not particularly limited, and is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less. By setting the water content to 10% by mass or less, better development characteristics can be obtained.
  • the vapor pressure of the rinse solution used after development is preferably 0.05 kPa or more and 5 kPa or less, more preferably 0.1 kPa or more and 5 kPa or less, and further preferably 0.12 kPa or more and 3 kPa or less at 20 ° C.
  • the vapor pressure of the rinsing liquid By setting the vapor pressure of the rinsing liquid to 0.05 kPa or more and 5 kPa or less, the temperature uniformity in the wafer surface is further improved, and the swelling caused by the infiltration of the rinsing liquid is further suppressed, and the dimensions in the wafer surface are further suppressed. The uniformity is improved.
  • An appropriate amount of surfactant can be added to the rinse solution before use.
  • the developed wafer is washed with the rinsing liquid containing the above-mentioned organic solvent.
  • the method of cleaning treatment is not particularly limited, but for example, a method of continuously applying a rinse solution onto a substrate rotating at a constant speed (rotational coating method), or a method of immersing the substrate in a tank filled with the rinse solution for a certain period of time.
  • a method (dip method), a method of spraying a rinse solution on the surface of the substrate (spray method), etc. can be applied.
  • the cleaning treatment is performed by the rotation coating method, and after cleaning, the substrate is rotated at a rotation speed of 2000 rpm to 4000 rpm. It is preferable to rotate and remove the rinse liquid from the substrate.
  • a pattern wiring board can be obtained by etching after forming a resist pattern.
  • the etching method can be performed by a known method such as dry etching using plasma gas and wet etching with an alkaline solution, a ferric chloride solution, a ferric chloride solution or the like.
  • the plating method is not particularly limited, and examples thereof include copper plating, solder plating, nickel plating, and gold plating.
  • the residual resist pattern after etching can be peeled off with an organic solvent.
  • the organic solvent is not particularly limited, and examples thereof include PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), and EL (ethyl lactate).
  • the peeling method is not particularly limited, and examples thereof include a dipping method and a spray method.
  • the wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small-diameter through hole.
  • the wiring board can also be formed by a method of depositing a metal in a vacuum after forming a resist pattern and then dissolving the resist pattern with a solution, that is, a lift-off method.
  • the acid generator according to the present embodiment contains the compound according to the present embodiment. Since the compound has an ionic moiety having a specific structure at the terminal, it exhibits high sensitivity, high resolution, and high flatness when used as an acid generator in a resist material or the like. Since the molecule of the compound according to this embodiment has an appropriate diffusion rate, it exhibits high resolution while maintaining high sensitivity. In addition, since it has an appropriate molecular weight, it is difficult to volatilize, and it exhibits high flatness because the film loss during curing is relatively small. The acid generator according to the present embodiment generates an acid by the action of heat or radiation.
  • the radiation examples include g-ray, i-ray, KrF excimer laser, ArF excimer laser, extreme ultraviolet light (EUV), electron beam and the like.
  • the acid generator according to the present embodiment may contain an acid generator other than the compound according to the present embodiment.
  • the second composition according to the present embodiment contains the acid generator according to the present embodiment.
  • the second composition according to the present embodiment can be, for example, a composition for forming an underlayer film for lithography, a composition for forming an optical article, and the like, but is not limited thereto.
  • composition for forming an underlayer film for lithography (Composition for forming an underlayer film for lithography, an underlayer film for lithography, and a pattern forming method) [First Embodiment] ⁇ Composition for forming an underlayer film for lithography>
  • the composition for forming an underlayer film for lithography according to the first embodiment of the present invention comprises the acid generator according to the present embodiment and a silicon-containing compound (for example, hydrolyzable organosilane, a hydrolyzate thereof, or hydrolysis thereof. Condensate), and a composition for forming an underlayer film for lithography.
  • the composition for forming a lower layer film for lithography of the present embodiment can form a lower layer film for lithography such as a resist underlayer film, has high heat resistance, and has high solvent solubility.
  • the rectangularity of the pattern is excellent.
  • the composition for forming a lower layer film for lithography of the present embodiment can form a lower layer film for lithography with high flatness.
  • the composition for forming a lower layer film for lithography of the present embodiment is suitably used for, for example, a multilayer resist method in which a resist lower layer film is further provided between an upper layer resist (photoresist or the like) and a hard mask, an organic lower layer film, or the like.
  • a multilayer resist method for example, a resist underlayer film is formed on an organic underlayer film or a hard mask on a substrate by a coating method or the like, and an upper layer resist (for example, photoresist, etc.) is formed on the resist underlayer film.
  • An electron beam resist, an EUV resist is formed.
  • a resist pattern is formed by exposure and development, the resist underlayer film is dry-etched using the resist pattern to transfer the pattern, and the pattern is transferred by etching the organic underlayer film, and the organic underlayer film is used. Process the substrate.
  • the lithography lower layer film (resist lower layer film) formed by using the lithography lower layer film forming composition of the present embodiment is less likely to cause intermixing with the upper layer resist and has heat resistance, for example. Since the etching rate for the halogen-based (fluorine-based) etching gas is higher than that of the patterned upper-layer resist used as a mask, a good pattern can be obtained with a rectangular shape. Further, since the lithography underlayer film (resist underlayer film) formed by using the lithography underlayer film forming composition of the present embodiment has high resistance to oxygen-based etching gas, it is provided on a substrate such as a hard mask. It can function as a good mask when patterning layers.
  • the composition for forming an underlayer film for lithography of the present embodiment can also be used in an embodiment in which a plurality of underlayer films for resist are laminated.
  • the position of the resist lower layer film (how many layers are laminated) formed by using the composition for forming the lower layer film for lithography of the present embodiment is not particularly limited, and even if it is directly under the upper layer resist. Often, the layer may be located closest to the substrate, or may be sandwiched between resist underlayer films.
  • the resist film thickness tends to be thin in order to prevent the pattern from collapsing. Dry etching for transferring a pattern to a film existing in the lower layer by thinning the resist cannot transfer the pattern unless the etching rate is higher than that of the upper film.
  • the substrate is coated with the resist underlayer film (containing a silicon-based compound) of the present embodiment via the organic underlayer film, and further coated with the resist film (organic resist film). Can be done.
  • the dry etching rate differs greatly depending on the selection of the etching gas between the organic component film and the inorganic component film.
  • the organic component film has an oxygen-based gas and the dry etching rate increases, and the inorganic component film contains halogen. The dry etching rate increases with gas.
  • the underlying organic underlayer film is dry-etched with an oxygen-based gas to perform pattern transfer to the organic underlayer film, and the pattern-transferred organic underlayer film is a halogen-containing gas.
  • the lithography underlayer film (resist underlayer film) formed by using the lithography underlayer film forming composition of the present embodiment has good adhesion, the transfer pattern can be suppressed from collapsing.
  • the resist underlayer film formed by the composition for forming an underlayer film for lithography of the present embodiment has an acid generator according to the present embodiment having an excellent ability to absorb active light and a silicon-containing compound (for example, hydrolyzable organosilane).
  • a silicon-containing compound for example, hydrolyzable organosilane.
  • the resist underlayer film by the composition for forming the underlayer film for lithography of the present embodiment has high heat resistance, it can be used even under high temperature baking conditions. Furthermore, since it has a relatively low molecular weight and low viscosity, it is easy to uniformly fill every corner even with a substrate having a step (particularly, a fine space, a hole pattern, etc.), and as a result. , Flatness and embedding properties tend to be relatively favorably enhanced.
  • composition for forming an underlayer film for lithography may further contain a solvent, an acid, an acid cross-linking agent, and the like, in addition to the acid generator and the silicon-containing compound according to the present embodiment.
  • a solvent an acid, an acid cross-linking agent, and the like, in addition to the acid generator and the silicon-containing compound according to the present embodiment.
  • an organic polymer compound, a surfactant, water, an alcohol, a curing catalyst and the like can be included.
  • a known solvent can be appropriately used as long as the acid generator according to the present embodiment is at least soluble.
  • a solvent that can be contained in the composition for forming an underlayer film for lithography disclosed in International Publication No. 2017/188450 can be mentioned.
  • the content of the solvent is not particularly limited, but is 100 to 10,000 parts by mass with respect to 100 parts by mass of the total solid content of the composition for forming a lower layer film for lithography from the viewpoint of solubility and film formation. It is preferably 200 to 8,000 parts by mass, more preferably 200 to 5,000 parts by mass.
  • the composition for forming an underlayer film for lithography may contain an acid from the viewpoint of promoting curability.
  • the acid include hydrofluoric acid, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid and the like.
  • the acid content is not particularly limited, but from the viewpoint of solubility and shape stability of the coating film, 0.001 to 20 mass by mass with respect to 100 parts by mass of the total solid content of the composition for forming an underlayer film for lithography.
  • the amount is preferably 0.005 to 10 parts by mass, more preferably 0.01 to 5 parts by mass.
  • the composition for forming an underlayer film for lithography may contain one or more acid cross-linking agents when used as a negative resist material or as an additive for increasing the strength of a pattern even in a positive resist material. ..
  • the acid-crosslinking agent include compounds having one or more groups (hereinafter, referred to as “crosslinkable groups”) capable of forming a crosslink in the presence of an acid.
  • crosslinkable groups capable of forming a crosslink in the presence of an acid.
  • an acid cross-linking agent which may be contained in the composition for forming an underlayer film for lithography disclosed in International Publication No. 2017/188450 can be mentioned.
  • the one described in International Publication WO2013 / 024779 can be mentioned as a specific example of the acid cross-linking agent.
  • the content of the acid cross-linking agent is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the total solid content of the composition for forming an underlayer film for lithography from the viewpoint of solubility and shape stability of the coating film. It is preferably 30 parts by mass, more preferably 0.05 to 20 parts by mass, and even more preferably 0.1 to 10 parts by mass.
  • the composition for forming an underlayer film for lithography contains a silicon-containing compound together with an acid generator according to the present embodiment.
  • the silicon-containing compound may be either an organic silicon-containing compound or an inorganic silicon-containing compound, but is preferably an organic silicon-containing compound.
  • the inorganic silicon-containing compound include a silicon oxide, a silicon nitride, and a polysilazane compound composed of silicon oxide nitride, which can be formed into a film by a coating method at a low temperature.
  • the organosilicon-containing compound include polysilsesquioxane-based compounds, hydrolyzable organosilanes, hydrolyzates thereof, and hydrolyzed condensates thereof.
  • the specific material of the polysilsesquioxane base is not limited to the following, and for example, those described in JP-A-2007-226170 and JP-A-2007-226204 can be used.
  • the hydrolyzable organosilane, its hydrolyzate, or its hydrolyzed condensate is at least one selected from the group consisting of the hydrolyzable organosilane of the following formula (D1) and the following formula (D2).
  • Hydrolyzable organosilanes, their hydrolysates, or their hydrolyzed condensates (hereinafter, these are simply at least one organic silicon compound selected from the group consisting of formulas (D1) and (D2). May be referred to).
  • the composition for forming an underlayer film for lithography contains at least one organosilicon compound selected from the group consisting of the formulas (D1) and (D2)
  • the Si—O bond is controlled by adjusting the curing conditions. It is easy to use, is advantageous in terms of cost, and is suitable for introducing organic components. Therefore, the composition for forming the underlayer film for lithography is formed by using the composition for forming the underlayer film for lithography containing at least one organosilicon compound selected from the group consisting of the formula (D1) and the formula (D2).
  • the resulting layer is useful as an intermediate layer of the resist layer (a layer between the upper resist layer and the organic lower layer film provided on the substrate).
  • R 3 is an alkyl group, an aryl group, an aralkyl group, an alkyl halide group, an aryl halide group, an aralkyl halide group, an alkenyl group, an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, and the like.
  • An "organic group” having an alkoxyaryl group, an acyloxyaryl group, an isocyanurate group, a hydroxy group, a cyclic amino group, or a cyano group; or a combination thereof, which is bonded to a silicon atom by a Si—C bond. are those, R 4 represents an alkoxy group, an acyloxy group or a halogen group, a is an integer of 0-3.
  • Equation (D2) [(R 5 ) c Si (R 6 ) 4-c ] 2 Y b
  • R 5 represents an alkyl group
  • R 6 represents an alkoxy group, an acyloxy group or a halogen group
  • Y represents an alkylene group or an arylene group
  • b represents an integer of 0 or 1
  • c represents an integer of 0 or 1.
  • the ratio can be used in the range of 0.1: 99.9 to 50:50 in terms of molar ratio. In order to obtain a good resist shape, for example, it can be used in the range of 1:99 to 30:70 in the molar ratio.
  • At least one organosilicon compound selected from the group consisting of the formula (D1) and the formula (D2) is preferably used as a hydrolysis condensate (polymer of polyorganosiloxane).
  • R 3 in the hydrolyzable organosilane represented by the formula (D1) is an alkyl group, an aryl group, an aralkyl group, an alkyl halide group, an aryl halide group, an aralkyl halide group, an alkenyl group, an epoxy group or an acryloyl.
  • An "organic group” having a group, a methacryloyl group, a mercapto group, an alkoxyaryl group, an acyloxyaryl group, an isocyanurate group, a hydroxy group, a cyclic amino group, or a cyano group, or a combination thereof, and a Si—C bond.
  • R 4 represents an alkoxy group, an acyloxy group, or a halogen group, and a represents an integer of 0 to 3.
  • R 5 represents an alkyl group
  • R 6 represents an alkoxy group, an acyloxy group, or a halogen group
  • Y represents an alkylene group or an arylene group
  • b represents 0 or 1. It represents an integer and c represents an integer of 0 or 1.
  • hydrolyzable organosilanes represented by the formulas (D1) and (D2) are, for example, hydrolyzable organosilanes which may be contained in the composition for forming an underlayer film for lithography disclosed in International Publication No. 2017/188450. Silane can be mentioned.
  • the film may be formed as a mixture without reacting the acid generator according to the present embodiment with the hydrolyzable organosilane, etc., but in the composition for forming the lower layer film for lithography.
  • Examples of the acid catalyst used at this time include hydrofluoric acid, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid and the like.
  • the amount of the catalyst used is preferably 10-6 to 10 mol, more preferably 10-5 to 5 mol, per 1 mol of the monomer (total amount of the acid generator and the hydrolyzable organosilane according to the present embodiment). , More preferably 10 -4 to 1 mol.
  • the amount of water when hydrolyzing and condensing these monomers is 0.01 to 1 mol of the hydrolyzable substituent bonded to the monomer (acid generator and hydrolyzable organosilane according to the present embodiment). It is preferable to add 100 mol, more preferably 0.05 to 50 mol, still more preferably 0.1 to 30 mol. If the addition is 100 mol or less, the equipment used for the reaction does not become excessive, which is economical.
  • a monomer is added to an aqueous catalyst solution to initiate a hydrolysis condensation reaction.
  • an organic solvent may be added to the aqueous catalyst solution, the monomer may be diluted with the organic solvent, or both may be performed.
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 40 to 100 ° C.
  • a method in which the temperature is maintained at 5 to 80 ° C. when the monomer is added dropwise and then aged at 40 to 100 ° C. is preferable.
  • organic solvent examples include the organic solvent disclosed in International Publication No. 2017/188450.
  • the amount of the organic solvent used is preferably 0 to 1,000 ml, particularly preferably 0 to 500 ml, per 1 mol of the monomer (total amount of the acid generator and the hydrolyzable organosilane according to the present embodiment). If the amount of the organic solvent used is 1,000 ml or less, the reaction vessel does not become excessive, which is economical.
  • the amount of the alkaline substance that can be used for neutralization is preferably 0.1 to 2 equivalents with respect to the acid used in the catalyst.
  • This alkaline substance may be any substance as long as it is alkaline in water.
  • the temperature at which the reaction mixture is heated depends on the type of the added organic solvent and the alcohol generated by the reaction, but is preferably 0 to 100 ° C, more preferably 10 to 90 ° C, still more preferably 15 to 80 ° C. ..
  • the degree of decompression at this time varies depending on the type of organic solvent and alcohol to be removed, the exhaust device, the condensing device, and the heating temperature, but is preferably atmospheric pressure or less, more preferably 80 kPa or less in absolute pressure, and even more preferably absolute.
  • the pressure is 50 kPa or less.
  • the acid catalyst used for hydrolysis condensation may be removed from the reaction mixture.
  • a method for removing the acid catalyst a method of mixing water and a reaction mixture and extracting the product with an organic solvent can be exemplified.
  • the organic solvent used at this time is preferably one that can dissolve the product and separates into two layers when mixed with water.
  • the organic solvent disclosed in International Publication No. 2017/188450 is preferably one that can dissolve the product and separates into two layers when mixed with water.
  • the mixing ratio of the water-soluble organic solvent and the water-soluble organic solvent is appropriately selected, but 0.1 to 1,000 parts by mass of the water-soluble organic solvent is preferable with respect to 100 parts by mass of the water-soluble organic solvent. It is more preferably 1 to 500 parts by mass, still more preferably 2 to 100 parts by mass.
  • the product in which the acid catalyst remains or the product in which the acid catalyst is removed can be obtained by adding the final solvent and exchanging the solvent under reduced pressure to obtain a solution of the product.
  • the temperature of the solvent exchange at this time depends on the type of the reaction solvent to be removed and the extraction solvent, but is preferably 0 to 100 ° C, more preferably 10 to 90 ° C, and further preferably 15 to 80 ° C.
  • the degree of decompression at this time varies depending on the type of extraction solvent to be removed, the exhaust device, the condensing device, and the heating temperature, but is preferably atmospheric pressure or less, more preferably 80 kPa or less in absolute pressure, and still more preferably 50 kPa in absolute pressure. It is as follows.
  • composition for forming an underlayer film for lithography may contain an organic polymer compound, a cross-linking agent, a surfactant and the like, if necessary.
  • the dry etching rate decrease in film thickness per unit time
  • attenuation coefficient decrease in film thickness per unit time
  • refractive index etc.
  • the organic polymer compound is not particularly limited, and various organic polymers can be used.
  • a polycondensation polymer, an addition polymerization polymer and the like can be used.
  • the organic polymer compound disclosed in International Publication No. 2017/188450 can be used.
  • cross-linking agent By using a cross-linking agent, it is possible to adjust the dry etching rate (decrease in film thickness per unit time) of the resist underlayer film formed from the composition for forming the underlayer film for lithography.
  • the cross-linking agent is not particularly limited, and various cross-linking agents can be used. Specific examples of the cross-linking agent that can be used in the present embodiment include double bonds such as a melamine compound, a guanamine compound, a glycol uryl compound, a urea compound, an epoxy compound, a thioepoxy compound, an isocyanate compound, an azide compound, and an alkenyl ether group.
  • Examples of the compound containing the above include, but are not limited to, a compound having at least one group selected from a methylol group, an alkoxymethyl group and an acyloxymethyl group as a substituent (crosslinkable group).
  • a compound having at least one group selected from a methylol group, an alkoxymethyl group and an acyloxymethyl group as a substituent (crosslinkable group) for example, the cross-linking agent disclosed in International Publication No. 2017/188450.
  • the content of the cross-linking agent is not particularly limited, but is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the acid generator according to the present embodiment. It is preferably 1 to 5 parts by mass.
  • the surfactant is effective in suppressing the occurrence of surface defects and the like when the composition for forming an underlayer film for lithography is applied to a substrate.
  • the surfactant contained in the composition for forming an underlayer film for lithography include the surfactant disclosed in International Publication No. 2017/188450.
  • the ratio thereof may be, for example, 0 parts by mass to 5 parts by mass with respect to 100 parts by mass of the acid generator according to the present embodiment.
  • the lithography underlayer film according to the first embodiment of the present invention can be formed by using the lithography underlayer film forming composition according to the first embodiment of the present invention.
  • the lower layer film for lithography of the present embodiment can be suitably used as the lower layer (resist lower layer film) of the photoresist (upper layer) used in the multilayer resist method.
  • a resist underlayer film is formed using a composition for forming an underlayer film for lithography, and at least one photoresist layer is formed on the resist underlayer film, and then the photoresist layer is formed.
  • a pattern can be formed by irradiating a predetermined area with radiation and performing development.
  • the pattern forming method according to the first embodiment of the present invention using the composition for forming a lower layer film for lithography according to the first embodiment of the present invention prepared as described above.
  • An organic underlayer film is formed on the substrate by using a coating type organic underlayer film material, and a resist underlayer film is formed on the organic underlayer film by using the composition for forming a lower layer film for lithography according to the first embodiment of the present invention.
  • the resist film is formed, an upper resist film is formed on the resist lower layer film using the upper resist film composition, an upper resist pattern is formed on the upper resist film, and the upper resist pattern is used as a mask to etch the resist lower layer film.
  • the pattern is transferred with A pattern forming method in which a pattern is transferred to a body) by etching can be mentioned.
  • an organic hard mask containing carbon as a main component is formed on a substrate by a CVD method, and the first aspect of the present invention is formed on the organic hard mask.
  • a resist lower layer film is formed using the composition for forming a lower layer film for lithography of the embodiment, an upper layer resist film is formed on the resist lower layer film using the upper layer resist film composition, and an upper layer resist pattern is formed on the upper layer resist film.
  • the upper resist pattern is used as a mask to transfer the pattern to the resist lower layer film by etching, and the resist lower layer film to which the pattern is transferred is used as a mask to transfer the pattern to the organic hard mask by etching. Examples thereof include a pattern forming method in which the pattern is transferred to the substrate (workpiece) by etching using the organic hard mask on which the pattern is transferred as a mask.
  • a semiconductor substrate can be used as the base material.
  • a silicon substrate can be generally used, but is not particularly limited, and Si, amorphous silicon ( ⁇ -Si), p-Si, SiO 2 , SiN, SiON, W, TiN. , Al or the like, which is a material different from that of the layer to be processed, can be used.
  • the metals constituting the base material include silicon, titanium, tungsten, hafnium, zirconium, chromium, germanium, copper, aluminum, indium, gallium, arsenic, palladium, and iron. , Tantalum, iridium, or molybdenum, or alloys thereof.
  • a metal film, a metal carbide film, a metal oxide film, a metal nitride film, a metal oxide carbide film, or a metal oxide nitride film is formed on a semiconductor substrate as a layer to be processed (processed portion). Etc. can be used.
  • the layer to be processed containing such a metal include Si, SiO 2 , SiN, SiON, SiOC, p-Si, ⁇ -Si, TiN, WSi, BPSG, SOG, Cr, CrO, CrON, MoSi, W. , W—Si, Al, Cu, Al—Si and the like, various low dielectric films and etching stopper films thereof are used, and can be usually formed to a thickness of 50 to 10,000 nm, particularly 100 to 5,000 nm.
  • an organic underlayer film or an organic hard mask can be formed on the substrate.
  • the organic underlayer film can be formed from the coating type organic underlayer film material by the rotary coating method or the like, and the organic hard mask is formed from the material of the organic hard mask containing carbon as a main component by the CVD method. be able to.
  • the types of such an organic lower layer film and an organic hard mask are not particularly limited, but when the upper layer resist film forms a pattern by exposure, it is preferable that the upper layer resist film exhibits a sufficient antireflection film function.
  • the "carbon-based" hard mask is composed of a carbon-based material such as amorphous hydride carbon in which 50% by mass or more of the solid content is also called amorphous carbon and is labeled as a-C: H.
  • a-C H.
  • A-C: H films can be deposited by a variety of techniques, but plasma chemical vapor deposition (PECVD) is widely used for cost efficiency and film quality adjustability.
  • PECVD plasma chemical vapor deposition
  • As an example of the hard mask for example, those described in Japanese Patent Application Laid-Open No. 2013-526783 can be referred to.
  • the resist underlayer film using the resist underlayer film forming composition of the present embodiment used in the pattern forming method of the present embodiment is obtained from the composition for forming the underlayer film for lithography by an organic underlayer film or the like by a spin coating method or the like. It can be manufactured on the provided workpiece.
  • the resist undercoat is formed by the spin coating method, it is desirable to evaporate the solvent after spin coating and bake in order to promote the crosslinking reaction for the purpose of preventing mixing with the upper resist film.
  • the bake temperature is preferably in the range of 50 to 500 ° C. At this time, although it depends on the structure of the manufactured device, the baking temperature is particularly preferably 400 ° C. or lower in order to reduce heat damage to the device.
  • the baking time is preferably in the range of 10 seconds to 300 seconds.
  • a method of forming a pattern on the upper resist film as a method of forming a pattern on the upper resist film, a lithography method using light having a wavelength of 300 nm or less or EUV light; an electron beam direct drawing method and an induced self-organization method. Either method can be preferably used. By using such a method, a fine pattern can be formed on the resist upper layer film.
  • the upper-layer resist film composition can be appropriately selected depending on the method for forming a pattern on the above-mentioned upper-layer resist film.
  • a chemically amplified photoresist film material can be used as the upper resist film composition.
  • a photoresist film material a photoresist film is formed and exposed, and then a positive pattern is formed by dissolving an exposed portion with an alkaline developer, or a development made of an organic solvent.
  • An example thereof is one in which a negative pattern is formed by dissolving an unexposed portion with a liquid.
  • the resist underlayer film formed from the lithography underlayer film forming composition of the present embodiment may absorb the light depending on the wavelength of the light used in the lithography process. Then, in such a case, it can function as an antireflection film having an effect of preventing the reflected light from the substrate.
  • the EUV resist underlayer film can also be used for the following purposes.
  • EUV that can prevent the reflection of unfavorable exposure light, for example, the above-mentioned UV or DUV (ArF light, KrF light) from the substrate or interface during EUV exposure (wavelength 13.5 nm) without intermixing with the EUV resist.
  • the composition for forming the lower layer film for lithography according to the present embodiment can be used. Reflection can be efficiently prevented in the lower layer of the EUV resist.
  • the composition for forming the lower layer film is excellent in the ability to absorb EUV, it is possible to exhibit the sensitizing effect of the upper layer resist composition, which contributes to the improvement of sensitivity.
  • the process can be carried out in the same manner as the photoresist underlayer.
  • composition for forming an underlayer film for lithography is a composition for forming an underlayer film for lithography containing an acid generator according to the present embodiment.
  • the composition for forming an underlayer film for lithography of the present embodiment is capable of reducing film defects (thin film formation), has good storage stability, is highly sensitive, has long-term light resistance, and has a good resist pattern shape. Can be granted.
  • the composition for forming an underlayer film for lithography of the present embodiment may not contain a silicon-containing compound.
  • the composition for forming an underlayer film for lithography of the present embodiment is applicable to a wet process, and is useful for forming a photoresist underlayer film excellent in heat resistance, adhesion, step embedding characteristics, and particularly flatness.
  • a composition for forming a lower layer film can be realized. Since this composition for forming an underlayer film for lithography uses a compound having a specific structure, which can have a relatively high crosslink density and high solvent solubility, deterioration of the film during baking is suppressed. Therefore, it is possible to form an underlayer film having excellent etching resistance to fluorine gas-based plasma etching and the like. Furthermore, since it has excellent adhesion to the resist layer, an excellent resist pattern can be formed.
  • the composition for forming a lower layer film for lithography of the present embodiment is particularly excellent in heat resistance, step embedding characteristics and flatness, for example, as a composition for forming a lower layer film of a resist provided in the lowermost layer among a plurality of resist layers. Can be used.
  • the resist underlayer film formed by using the composition for forming the underlayer film for lithography of the present embodiment may further include another resist underlayer between the substrate and the resist underlayer.
  • the composition for forming an underlayer film for lithography according to the present embodiment may further contain a solvent, an acid cross-linking agent, and the like in addition to the acid generator according to the present embodiment. Further, as an optional component, a basic compound, other substances, water, alcohol, a curing catalyst and the like can be included. From the viewpoint of coatability and quality stability, the content of the acid generator according to the present embodiment in the composition for forming an underlayer film for lithography is preferably 0.001 to 49% by mass, preferably 1 to 40% by mass. % Is more preferable, and 3 to 30% by mass is particularly preferable.
  • a known solvent can be appropriately used as long as the acid generator according to the present embodiment is at least soluble.
  • the solvent disclosed in International Publication No. 2017/188451 the solvent disclosed in International Publication No. 2017/188451.
  • the content of the solvent is not particularly limited, but is 100 to 10,000 parts by mass with respect to 100 parts by mass of the total solid content of the composition for forming a lower layer film for lithography from the viewpoint of solubility and film formation. It is preferably 200 to 5,000 parts by mass, more preferably 200 to 1,000 parts by mass.
  • the composition for forming an underlayer film for lithography of the present embodiment may contain an acid cross-linking agent, if necessary, from the viewpoint of suppressing intermixing and the like.
  • the acid cross-linking agent that can be used in the present embodiment include double bonds such as a melamine compound, an epoxy compound, a guanamine compound, a glycoluril compound, a urea compound, a thioepoxy compound, an isocyanate compound, an azido compound, and an alkenyl ether group.
  • Examples of the compound include those having at least one group selected from a methylol group, an alkoxymethyl group and an acyloxymethyl group as a substituent (crosslinkable group), but the compound is not particularly limited thereto.
  • these acid cross-linking agents can be used individually by 1 type or in combination of 2 or more types. Moreover, these may be used as an additive. Further, a compound containing a hydroxy group can also be used as a cross-linking agent. Specific examples of the acid cross-linking agent include those described in International Publication No. 2013/024779.
  • the content of the acid cross-linking agent is not particularly limited, but is 5 to 50 mass with respect to 100 mass by mass of the total solid content of the composition for forming an underlayer film for lithography.
  • the amount is preferably 10 to 40 parts by mass, more preferably 10 to 40 parts by mass.
  • composition for forming an underlayer film for lithography of the present embodiment may contain a basic compound from the viewpoint of improving storage stability and the like.
  • the basic compound acts as a quencher for the acid to prevent the acid generated in a smaller amount than the acid generator from advancing the cross-linking reaction.
  • Examples of such basic compounds include primary, secondary or tertiary aliphatic amines, mixed amines, aromatic amines, heterocyclic amines, and nitrogen-containing compounds having a carboxyl group. Examples thereof include a nitrogen-containing compound having a sulfonyl group, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative and the like, but the present invention is not particularly limited thereto. Specific examples of the basic compound include those described in International Publication No. 2013/024779.
  • the content of the basic compound is not particularly limited, but is 0.001 with respect to 100 parts by mass of the total solid content of the composition for forming an underlayer film for lithography. It is preferably about 2 parts by mass, more preferably 0.01 to 1 part by mass.
  • composition for forming an underlayer film for lithography of the present embodiment may contain another resin or compound for the purpose of imparting thermosetting property and controlling the absorbance.
  • other resins or compounds include naphthalene resin, xylene resin, naphthalene-modified resin, phenol-modified resin of naphthalene resin, polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, dimethacrylate, trimethacrylate, and tetramethacrylate.
  • Resins containing naphthalene rings such as vinylnaphthalene and polyacenaphthalene, biphenyl rings such as phenanthrenquinone and fluorene, and heterocycles having heteroatoms such as thiophene and indene, and resins not containing aromatic rings; rosin-based resins and cyclodextrin.
  • the composition for forming an underlayer film for lithography of the present embodiment may contain a known additive. Examples of the known additives include, but are not limited to, ultraviolet absorbers, surfactants, colorants, and nonionic surfactants.
  • the resist underlayer film for lithography according to the second embodiment of the present invention is formed by using the composition for forming the underlayer film for lithography according to the second embodiment of the present invention.
  • the pattern formed in this embodiment can be used, for example, as a resist pattern or a circuit pattern.
  • the pattern forming method according to the second embodiment of the present invention is a step of forming a resist underlayer film on a substrate using the composition for forming a underlayer film for lithography according to the second embodiment of the present invention (A). -1 step), a step of forming at least one photoresist layer on the resist underlayer film (step A-2), and a step of forming at least one photoresist layer in the A-2 step. It has a step (A-3 step) of irradiating a predetermined region of the photoresist layer with radiation to develop the photoresist layer.
  • the "photoresist layer” means the outermost layer of the resist layer, that is, the layer provided on the outermost side (opposite side of the substrate) of the resist layer.
  • another pattern forming method of the second embodiment of the present invention is a step of forming a resist underlayer film on a substrate by using the composition for forming a underlayer film for lithography according to the second embodiment of the present invention.
  • B-1 step a step of forming a resist intermediate layer film on the lower layer film using a resist intermediate layer film material (for example, a resist layer containing silicon) (step B-2), and the resist intermediate layer film.
  • a resist intermediate layer film material for example, a resist layer containing silicon
  • step B-4 After the resist pattern was formed in the step of forming a resist pattern by irradiating and developing the resist (step B-4) and the step B-4, the resist intermediate layer film was etched using the resist pattern as a mask.
  • the forming method thereof is not particularly limited, and a known method can be applied. ..
  • the composition for forming an underlayer film for lithography of the present embodiment is applied onto a substrate by a known coating method such as spin coating or screen printing or a printing method, and then removed by volatilizing an organic solvent.
  • a resist underlayer film can be formed.
  • the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C, more preferably 200 to 400 ° C.
  • the baking time is also not particularly limited, but is preferably in the range of 10 seconds to 300 seconds.
  • the thickness of the resist underlayer film can be appropriately selected according to the required performance and is not particularly limited, but is usually preferably about 30 to 20,000 nm, more preferably 50 to 15,000 nm. It is preferable to do so.
  • the resist intermediate layer film can be provided between the photoresist layer and the resist underlayer film.
  • a silicon-containing resist layer, a single-layer resist made of ordinary hydrocarbons, or the like can be provided as a resist intermediate layer film on the resist underlayer film.
  • Known photoresist materials can be used for forming the photoresist layer, the resist intermediate layer film, and the resist layer provided between these layers.
  • the silicon-containing resist material for the two-layer process a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as the base polymer from the viewpoint of oxygen gas etching resistance, and an organic solvent is used, if necessary.
  • a positive photoresist material containing a basic compound or the like is preferably used.
  • the silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the resist intermediate layer film By giving the resist intermediate layer film an effect as an antireflection film, it tends to be possible to effectively suppress reflection.
  • the resist underlayer film if a material containing a large amount of aromatic groups and having high substrate etching resistance is used as the resist underlayer film, the k value tends to be high and the substrate reflection tends to be high, but the resist intermediate layer film reflects. By suppressing the above, the substrate reflection can be reduced to 0.5% or less.
  • the intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a phenyl group or an absorbent group having a silicon-silicon bond is introduced, and the polysilseskioki crosslinked with an acid or heat. Sun is preferably used.
  • a resist intermediate layer film formed by the Chemical Vapor Deposition (CVD) method can also be used.
  • the intermediate layer having a high effect as an antireflection film produced by the CVD method is not limited to the following, and for example, a SiON film is known.
  • the formation of a resist intermediate layer film by a wet process such as a spin coating method or screen printing is simpler and more cost effective than the CVD method.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same single-layer resist as normally used can be used.
  • the resist underlayer film of the present embodiment can also be used as an antireflection film for a normal single-layer resist or a base material for suppressing pattern collapse. Since the resist underlayer film of the present embodiment has excellent etching resistance for base processing, it can be expected to function as a hard mask for base processing.
  • a wet process such as a spin coating method or screen printing is preferably used as in the case of forming the resist underlayer film.
  • prebaking is usually performed, and this prebaking is preferably performed in a range of a baking temperature of 80 to 180 ° C. and a baking time of 10 seconds to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development according to a conventional method.
  • the thickness of each resist film is not particularly limited, but is generally preferably 30 nm to 500 nm, more preferably 50 nm to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material used.
  • high-energy rays having a wavelength of 300 nm or less specifically, excimer lasers having a wavelength of 248 nm, 193 nm, and 157 nm, soft X-rays having a wavelength of 3 to 20 nm, electron beams, X-rays, and the like can be mentioned.
  • the resist pattern formed by the above method is such that the pattern collapse is suppressed by the resist underlayer film of the present embodiment. Therefore, by using the resist underlayer film of the present embodiment, a finer pattern can be obtained, and the exposure amount required to obtain the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the resist underlayer film in the two-layer process.
  • gas etching etching using oxygen gas is preferable.
  • oxygen gas it is also possible to add an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 , or H 2 gas.
  • an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 , or H 2 gas.
  • the latter gas is preferably used to protect the side wall to prevent undercutting of the side wall of the pattern.
  • gas etching is also preferably used for etching the intermediate layer (the layer located between the photoresist layer and the resist underlayer film) in the three-layer process.
  • the gas etching the same one as described in the above-mentioned two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed by using a fluorocarbon-based gas and using the resist pattern as a mask.
  • the resist underlayer film can be processed by, for example, performing oxygen gas etching using the intermediate layer pattern as a mask as described above.
  • a silicon oxide film, a silicon nitride film, and a silicon oxide nitride film are formed by a CVD method, an ALD method, or the like.
  • the method for forming the nitride film is not limited to the following, and for example, the method described in JP-A-2002-334869 and WO2004 / 0666377 can be used.
  • a photoresist film can be formed directly on such an intermediate layer film, but an organic antireflection film (BARC) is formed on the intermediate layer film by spin coating, and a photoresist film is formed on the organic antireflection film (BARC). You may.
  • a polysilsesquioxane-based intermediate layer is also preferably used.
  • the resist interlayer film By giving the resist interlayer film an effect as an antireflection film, it tends to be possible to effectively suppress reflection.
  • the specific material of the polysilsesquioxane-based intermediate layer is not limited to the following, and for example, those described in JP-A-2007-226170 and JP-A-2007-226204 can be used. ..
  • Etching of the substrate can also be performed by a conventional method. For example, if the substrate is SiO 2 or SiN, etching mainly composed of chlorofluorocarbons, and if the substrate is p—Si, Al, or W, chlorine-based or bromine-based gas is used. Mainly etching can be performed. When the substrate is etched with a fluorocarbon-based gas, the silicon-containing resist in the two-layer resist process and the silicon-containing intermediate layer in the three-layer process are peeled off at the same time as the substrate is processed.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled off, and generally, dry etching peeling is performed with a fluorocarbon-based gas after the substrate is processed. ..
  • the resist underlayer film of the present embodiment is excellent in etching resistance of these substrates.
  • a known substrate can be appropriately selected and used, and the present invention is not particularly limited, and examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. Be done.
  • the substrate may be a laminated body having a film to be processed (substrate to be processed) on a base material (support).
  • various Low-k films such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, Al-Si and their stopper films and stopper films thereof.
  • Etc. and usually, a material different from the base material (support) is used.
  • the thickness of the substrate or the film to be processed is not particularly limited, but is usually preferably about 50 nm to 10,000 nm, and more preferably 75 nm to 5,000 nm.
  • the resist underlayer film of the present embodiment is excellent in embedding flatness in a substrate having a step.
  • a known method can be appropriately selected and used, and is not particularly limited. For example, a solution of each compound adjusted to a predetermined concentration is placed on a silicon substrate having a step. It is applied by spin coating, and the solvent is removed and dried at 110 ° C. for 90 seconds to form an underlayer film having a predetermined thickness, and then the line & space area is baked at a temperature of about 240 to 300 ° C. for a predetermined time. By measuring the difference ( ⁇ T) between the thickness of the lower layer film and the open region without the pattern with an ellipsometer, the embedding flatness with respect to the stepped substrate can be evaluated.
  • composition for forming optical articles and optical articles is a composition for forming an optical component containing an acid generator according to the present embodiment.
  • the composition for forming an optical component is usefully used for forming an optical article.
  • the composition for forming an optical component of the present embodiment can be expected to have a high refractive index and high transparency of the obtained optical article, and further, storage stability and a structure. Forming ability (film forming ability) and heat resistance are expected.
  • the refractive index of the optical article is preferably 1.65 or more, more preferably 1.70 or more, still more preferably 1.75 or more, from the viewpoint of miniaturization of optical components and improvement of light collection rate.
  • the transparency of the optical article is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more.
  • the method for measuring the refractive index is not particularly limited, and a known method is used.
  • spectroscopic ellipsometry method minimum declination method, critical angle method (Abbe method, Prurich method), V-block method, prism coupler method and immersion method (Becke line method) can be mentioned.
  • the method for measuring transparency is not particularly limited, and a known method is used.
  • spectrophotometers and spectroscopic ellipsometry methods can be mentioned.
  • the cured product according to the present embodiment for forming an optical article obtained by curing the composition for forming an optical component can be a three-dimensional crosslinked product, and can be colored by a wide range of heat treatment from low temperature to high temperature. It is suppressed, and high refractive index and high transparency can be expected.
  • composition for forming an optical component of the present embodiment may further contain a solvent in addition to the acid generator according to the present embodiment.
  • the solvent can be the same as the solvent used in the composition for forming the underlayer film for lithography of the present embodiment described above.
  • the relationship between the amount of the solid component and the amount of the solvent is not particularly limited, but the solid component is 1 to 80% by mass with respect to the total of 100% by mass of the solid component and the solvent.
  • the solvent is preferably 20 to 99% by mass, more preferably 1 to 50% by mass of the solid component and 50 to 99% by mass of the solvent, still more preferably 2 to 40% by mass of the solid component and 60 to 98% by mass of the solvent.
  • the solid component is 2 to 10% by mass and the solvent is 90 to 98% by mass.
  • the composition for forming an optical component of the present embodiment may not contain a solvent.
  • composition for forming an optical component of the present embodiment contains at least one selected from the group consisting of an acid cross-linking agent (G), an acid diffusion control agent (E) and another component (F) as other solid components. You may.
  • the content of the acid generator according to the present embodiment is not particularly limited, but the total mass of the solid component (the acid generator and the acid cross-linking agent according to the present embodiment (G). ),
  • the sum of the solid components arbitrarily used such as the acid diffusion control agent (E) and the other component (F), the same applies hereinafter) is preferably 0.001 to 49% by mass, more preferably 1 to 49% by mass. It is 40% by mass, more preferably 3 to 30% by mass, and particularly preferably 3 to 20% by mass.
  • the composition for forming an optical component of the present embodiment preferably contains one or more acid cross-linking agents (G) when used as an additive for increasing the strength of the structure.
  • the acid cross-linking agent (G) is not particularly limited, and can be, for example, the same as the acid cross-linking agent (G) that can be contained in the composition for forming an underlayer film for lithography of the present embodiment described above.
  • the content of the acid cross-linking agent (G) is preferably 0.5 to 49% by mass, more preferably 0.5 to 40% by mass, based on the total mass of the solid components. 1 to 30% by mass is more preferable, and 2 to 20% by mass is particularly preferable.
  • the content ratio of the acid cross-linking agent (G) is 0.5% by mass or more, it is preferable because the effect of suppressing the solubility of the composition for forming an optical component in an organic solvent can be improved, while 49% by mass or less. This is preferable because it can suppress a decrease in heat resistance as a composition for forming an optical component.
  • the content of at least one compound selected from the acid cross-linking agent (G1), the acid cross-linking agent (G2), and the acid cross-linking agent (G3) in the acid cross-linking agent (G) is not particularly limited.
  • the range can be various depending on the type of the substrate used when forming the composition for forming an optical component.
  • the composition for forming an optical component of the present embodiment is an acid diffusion control agent having an action of controlling diffusion of an acid generated from an acid generator in the composition for forming an optical component to prevent an unfavorable chemical reaction ( E) may be contained.
  • an acid diffusion control agent (E) By using such an acid diffusion control agent (E), the storage stability of the composition for forming an optical component is improved. In addition, the resolution is further improved, and changes in the line width of the structure due to fluctuations in the leaving time after heating can be suppressed, resulting in extremely excellent process stability.
  • the acid diffusion control agent (E) is not particularly limited, and can be, for example, the same as the acid diffusion control agent (E) that can be contained in the composition for forming a lower layer film for lithography of the present embodiment described above.
  • the content of the acid diffusion control agent (E) is preferably 0.001 to 49% by mass, more preferably 0.01 to 10% by mass, still more preferably 0.01 to 5% by mass, based on the total mass of the solid component. 0.01 to 3% by mass is particularly preferable.
  • the content of the acid diffusion control agent (E) is within the above range, deterioration of resolution, pattern shape, dimensional fidelity and the like can be further suppressed. Further, even if the leaving time from the electron beam irradiation to the heating after the irradiation is long, the shape of the upper layer portion of the pattern does not deteriorate.
  • the content of the acid diffusion control agent (E) is 10% by mass or less, it is possible to prevent deterioration of sensitivity, developability of the unexposed portion and the like. Further, by using such an acid diffusion control agent, the storage stability of the composition for forming an optical component is improved, the resolution is improved, and the retention time before irradiation and the retention time after irradiation are improved. It is possible to suppress the change in the line width of the composition for forming an optical component due to the fluctuation of the above, and the process stability is extremely excellent.
  • the composition for forming an optical component of the present embodiment contains a dissolution accelerator, a dissolution control agent, a sensitizer, and a surfactant as other components (F), if necessary, as long as the object of the present embodiment is not impaired.
  • One or two or more kinds of additives such as an activator and an organic carboxylic acid or an oxo acid of phosphorus or a derivative thereof can be added.
  • the other component (F) can be, for example, the same as the other component (F) that can be contained in the composition for forming a lower layer film for lithography of the present embodiment described above.
  • the total content of the other component (F) is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, further preferably 0 to 1% by mass, and particularly preferably 0% by mass of the total mass of the solid component. ..
  • the content of the acid generator, the acid diffusion control agent (E), and the other component (F) according to the present embodiment is by mass% based on the solid matter, preferably 10 to 90/1 to 30/0 to 10.
  • the content ratio of each component is selected from each range so that the total is 100% by mass. With the above content ratio, the performance such as sensitivity, resolution, and developability is further excellent.
  • the method for preparing the composition for forming an optical component of the present embodiment is not particularly limited, and for example, each component is dissolved in a solvent at the time of use to form a uniform solution, and then, if necessary, for example, a pore size of about 0.2 ⁇ m. Examples thereof include a method of filtering with a filter or the like.
  • the composition for forming an optical component of the present embodiment may contain other resins as long as the object of the present invention is not impaired.
  • Other resins are not particularly limited and include, for example, novolak resin, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resin, and acrylic acid, vinyl alcohol, or vinylphenol as a monomer unit. Examples thereof include polymers and derivatives thereof.
  • the content of the resin is not particularly limited, and is appropriately adjusted according to the type of acid generator according to the present embodiment to be used.
  • the cured product of the present embodiment is obtained by curing the composition for forming an optical component, and can be used as various resins. These cured products can be used for various purposes as highly versatile materials imparting various properties such as high melting point, high refractive index and high transparency.
  • the cured product can be obtained by irradiating the composition with a known method corresponding to each composition such as light irradiation and heating.
  • cured products can be used as various synthetic resins such as epoxy resin, polycarbonate resin, and acrylic resin, and further, by utilizing their functionality, as optical parts such as lenses and optical sheets.
  • BEPMS was synthesized by the following method. 4-Methylthiophenol (22 mmol: 3.120 g) and potassium carbonate (85 mmol; 11.71 g) were dissolved in acetone (75 ml) in a 200 ml eggplant flask and stirred at 0 ° C. under nitrogen for 15 minutes. Then, dibromoethane (69 mmol: 12.90 g) was added dropwise, and the mixture was reacted at 50 ° C. for 24 hours. The obtained substance was filtered through a membrane and applied to an evaporator to remove the solvent, and a white solid (BEPMS) was obtained. TLC measurement and melting point measurement were also performed using NMR and IR for structural analysis.
  • MTP-BEPMS was synthesized by the following method.
  • MTP 4,4', 4''-trihydroxy-triphenylmethane
  • CTP cesium carbonate
  • TBAB a phase transfer catalyst
  • 0.2 mmol: 0.0644 was dissolved in DMF (5 ml) and stirred at 80 ° C. for 30 minutes.
  • the BEPMS 2.0 mmol: 0.493 g was dissolved in DMF (2 ml), added dropwise, and reacted at 80 ° C. for 24 hours.
  • the obtained substance was reprecipitated with 1N HCl and filtered through Kiriyama to obtain a solid, which was dissolved in chloroform and reprecipitated with hexane.
  • the obtained substance was filtered through membrane to purify an orange solid (MTP-BEPMS).
  • NMR and IR were used for structural analysis, and melting point measurements were also performed.
  • the yield was 0.336 g, the yield was 85%, and the melting point was 112 to 113 ° C.
  • the 1 H-NMR spectrum of MTP-BEPMS is shown in FIG.
  • the MTP-BEPMS ion compound was synthesized by the following method.
  • MTP-BEPMS (0.1 mmol: 0.0791 g) and AgCF 3 SO 3 (0.4 mmol: 0.1027 g) were added to a 20 ml eggplant flask, degassed and replaced with nitrogen, and then iodomethane (0.4 mmol: 0). .025 ml) and acetonitrile (5 ml) as a solvent were added, and the mixture was reacted at room temperature for 24 hours under light-shielded conditions.
  • the obtained substance was filtered through a membrane, and the filtrate was applied to an evaporator to remove the solvent to obtain a brown viscous solid.
  • MTP-BEPMS ion compound brown viscous solid
  • NMR and IR were used for structural analysis.
  • the 1 H-NMR spectrum of the MTP-BEPMS ion compound is shown in FIG.
  • Examples 2 to 7 The same synthesis was carried out using the compounds shown in Table 1 in place of 4,4', 4''-trihydroxy-triphenylmethane (MTP) used in Example 1 to obtain the ionic compounds shown in Table 1. rice field.
  • MTP 4,4', 4''-trihydroxy-triphenylmethane
  • XBisN-1 the one obtained in the same manner as in Synthesis Example 15 of International Publication No. 2013/024778 was used.
  • BiF-1 the one obtained in the same manner as in Synthesis Example 1 of International Publication No. 2015/137485 was used.
  • NF71A7 the one obtained in the same manner as the production of rephenol (B) described in International Publication No. 2019/151403 was used.
  • BHPMS was synthesized by the following method. 4-Methylthiophenol (7 mmol: 0.98 g) and potassium carbonate (7 mmol: 0.96 g) were dissolved in THF (30 ml) in a 100 ml eggplant flask, and the mixture was stirred under reflux conditions under nitrogen for 2 hours. Then, 1,6 dibromohexane (35 mmol: 8.53 g) was added, and the mixture was reacted at 70 ° C. for 24 hours. The obtained substance was extracted with hydrochloric acid and chloroform, and the organic layer was concentrated with an evaporator. Then, reprecipitation was performed using methanol as a poor solvent to obtain a white solid (BHPMS).
  • the product was then purified by silica gel column chromatography. IR and NMR were used for structural analysis, and melting point measurements were also performed. The melting point was 71 to 72 ° C., the yield was 0.7 g, and the yield was 33%.
  • the 1 H-NMR spectrum of BHPMS is shown in FIG.
  • MTP-BHPMS was synthesized by the following method.
  • MTP 4,4', 4''-trihydroxy-triphenylmethane
  • potassium carbonate 2.0 mmol: 0.651 g
  • phase transfer catalyst TBAB 0.2 mmol: 0.0644
  • the MTP-BHPMS ion compound was synthesized by the following method. To a 20 ml eggplant flask, the above-mentioned MTP-BHPMS (0.83 mmol: 0.80 g) and AgCF 3 SO 3 (3 mmol: 0.77 g) were added, degassed and replaced with nitrogen, and then iodomethane (3 mmol: 0.186 ml), Acetonitrile (5 ml) was added as a solvent, and the mixture was reacted at room temperature for 24 hours under light-shielded conditions. The obtained substance was filtered through a membrane, and the filtrate was applied to an evaporator to remove the solvent to obtain a brown viscous solid.
  • MTP-BHPMS ion compound was dissolved in acetone and reprecipitated with diethyl ether to purify a red viscous solid (MTP-BHPMS ion compound). NMR and IR were used for the structural analysis. The 1 H-NMR spectrum of the MTP-BHPMS ion compound is shown in FIG.
  • thermogravimetric analyzer TGA
  • AC-1 was synthesized by the following method.
  • Tetrahydrofuran contains 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacrylloyloxy- ⁇ -butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, and 0.38 g of azobisisobutyronitrile. It was dissolved in 80 mL to prepare a reaction solution. The reaction solution was polymerized under a nitrogen atmosphere at a reaction temperature of 63 ° C. for 22 hours, and then the reaction solution was added dropwise to 400 mL of n-hexane. The obtained resin was coagulated and purified, and the obtained white powder was filtered and then dried under reduced pressure at 40 ° C. overnight to obtain AC-1.
  • the compound according to this embodiment has high sensitivity and can be used as a highly sensitive resist. Since the compound according to this embodiment can obtain high sensitivity without adding an acid generator, it is not necessary to use a mechanism of chemical amplification accompanied by diffusion of an acid that causes roughness, and when it is used as a resist. High resolution pattern can be obtained.
  • the composition was applied onto a silicon wafer having a film thickness of 300 nm by spin coating and baked at 150 ° C. for 60 seconds to form a film having a thickness of 100 nm. Further, it was baked at 400 ° C. for 60 seconds, and the reduction rate of the film thickness was measured.
  • a film thickness reduction rate of less than 40% was evaluated as A
  • a film thickness reduction rate of 40% or more and less than 60% was evaluated as B
  • a film thickness reduction rate of 60% or more was evaluated as C.
  • the evaluation results are shown in Table 5.
  • the compound according to the present embodiment can be suitably used for a resist film, an underlayer film, and an optical article.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

高感度で解像度が高く、高平坦性を有する化合物を提供する。下記式(P-0)で表される化合物。(式(P-0)中、Arは炭素数6~60のアリール基を有する基であり、ORTSは各々独立して、水酸基又は特定のイオン部位を有する基である。n1は1~20の整数である。但し、ORTSのうち少なくとも一つは、特定のイオン部位を有する基である。)

Description

化合物及びその製造方法、酸発生剤、組成物、レジスト膜、下層膜、パターン形成方法、及び光学物品
 本発明は、化合物及びその製造方法、酸発生剤、組成物、レジスト膜、下層膜、パターン形成方法、及び光学物品に関する。
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSI(大規模集積回路)の高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。
 これまでの一般的なレジスト材料は、アモルファス薄膜を形成可能な高分子系レジスト材料である。例えば、ポリメチルメタクリレートや、解離性反応基を有するポリヒドロキシスチレン又はポリアルキルメタクリレート等の高分子系レジスト材料が挙げられる。そして、このような高分子系レジスト材料の溶液を基板上に塗布することにより作製したレジスト薄膜に紫外線、遠紫外線、電子線、極端紫外線(Extreme UltraViolet:以下、適宜“EUV”と称する。)、X線などを照射することにより、45~100nm程度のラインパターンを形成している(例えば非特許文献1参照)。
 しかしながら、高分子系レジスト材料は分子量が1万~10万程度と大きく、分子量分布も広い。このため、高分子系レジスト材料を用いるリソグラフィーでは、微細パターン表面にラフネスが生じ、パターン寸法を制御することが困難となり、歩留まりが低下する。従って、従来の高分子系レジスト材料を用いるリソグラフィーでは微細化に限界がある。より微細なパターンを作製するために、種々の低分子量レジスト材料が提案されている。
 例えば、低分子量多核ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物が提案されている(例えば、特許文献1及び2参照)。また、高耐熱性を有する低分子量レジスト材料の候補として、低分子量環状ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物も提案されている(例えば、特許文献3及び非特許文献2参照)。更に、レジスト材料のベース化合物として、ポリフェノール化合物が低分子量ながら高耐熱性を付与でき、レジストパターンの解像性やラフネスの改善に有用であることが知られている(例えば、非特許文献3参照)。
 また、電子線又は極端紫外線(EUV)によるリソグラフィーは、反応メカニズムが通常の光リソグラフィーと異なる。更に、電子線又はEUVによるリソグラフィーにおいては、数十nmの微細なパターン形成を目標としている。このようにレジストパターン寸法が小さくなるほど、露光光源に対して高感度であるレジスト材料が求められる。特にEUVによるリソグラフィーでは、スループットの点で、レジスト組成物の高感度化を図る必要がある。
 これらを改善するレジスト材料として、例えばチタン、ハフニウムやジルコニウムを有する無機レジスト材料が提案されている(例えば、特許文献4及び5参照)。
特開2005-326838号公報 特開2008-145539号公報 特開2009-173623号公報 特開2015-75500号公報 特開2015-108781号公報
岡崎信次、他8名「リソグラフィ技術その40年」S&T出版 T.Nakayama,M.Nomura,K.Haga,M.Ueda:Bull.Chem.Soc.Jpn.,71,2979(1998) 岡崎信次、他22名「フォトレジスト材料開発の新展開」株式会社シーエムシー出版、2009年9月、p.211-259
 しかしながら、無機レジスト材料は低感度であり、可使時間が短い。また、解像度の点でも更なる高解像度化を図ることが求められている。
 本発明は、高感度で解像度が高く、高平坦性を有する化合物及びその製造方法、酸発生剤、該化合物又は該酸発生剤を含む組成物、レジスト膜、下層膜、光学物品、並びに該化合物又は該酸発生剤を用いたパターン形成方法を提供することを目的とする。
 本発明者らは前記課題を解決するため鋭意検討した結果、特定の化合物又は酸発生剤が前記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明は次のとおりである。
 [1]下記式(P-0)で表される化合物。
Figure JPOXMLDOC01-appb-C000012
(式(P-0)中、Arは炭素数6~60のアリール基を有する基であり、ORTSは各々独立して、水酸基、下記式(TS-0)で表される基、又は下記式(TS-1)で表される基である。nは1~20の整数である。但し、ORTSのうち少なくとも一つは、下記式(TS-0)で表される基又は下記式(TS-1)で表される基である。)
Figure JPOXMLDOC01-appb-C000013
(式(TS-0)中、Rは単結合又は置換基を有していてもよい炭素数1~30の2価の基であり、Rは置換基を有していてもよい炭素数1~10のアルキル基又は置換基を有していてもよい炭素数6~10のアリール基であり、Rは置換基を有していてもよい炭素数1~10のアルキル基又は置換基を有していてもよい炭素数6~10のアリール基であり、Anはフッ素又はヨウ素を含むアニオンである。)
Figure JPOXMLDOC01-appb-C000014
(式(TS-1)中、R、R及びAnは式(TS-0)と同義である。)
 [2]前記式(TS-0)及び前記式(TS-1)において、Rは置換基を有していてもよい炭素数1~10のアルキル基であり、AnはRSO (Rは置換基を有していてもよい炭素数1~9のフッ素又はヨウ素を含む1価の基である。)である[1]に記載の化合物。
 [3]前記式(TS-0)及び前記式(TS-1)において、Rは置換基を有していてもよい炭素数2~6の2価の基である[1]又は[2]に記載の化合物。
 [4]前記式(TS-0)において、Rはメチル基又はエチル基である[1]から[3]のいずれかに記載の化合物。
 [5]前記式(TS-0)において、Rはメチル基である[4]に記載の化合物。
 [6]前記式(TS-0)及び前記式(TS-1)において、Rはメチル基であり、AnはCFSO である[1]から[5]のいずれかに記載の化合物。
 [7]下記式(P-0A)で表される化合物である[1]から[6]のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000015
(式(P-0A)中、Xは各々独立して酸素原子、硫黄原子又は無架橋であり、Rは単結合又は置換基を有していてもよい炭素数1~30の2n価の基であり、R及びRは各々独立してハロゲン原子、置換基を有していてもよい炭素数1~30の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状アルキル基、置換基を有していてもよい炭素数3~30の環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、シアノ基、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基、前記式(TS-0)で表される基、又は前記式(TS-1)で表される基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいても良い。m及びmは各々独立して0~7の整数であり、p及びpは各々独立して0又は1であり、nは1~4の整数である。但し、m及びmの少なくとも1つは1~7の整数であり、式(P-0A)はR又はRとしての前記式(TS-0)で表される基又は前記式(TS-1)で表される基を少なくとも一つ含む。)
 [8]下記式(P-0B)で表される化合物である[1]から[6]のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000016
(式(P-0B)中、Rは炭素数1~30の2n価の基であり、R~R11は各々独立してハロゲン原子、置換基を有していてもよい炭素数1~10の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状アルキル基、置換基を有していてもよい炭素数3~30の環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、チオール基、シアノ基、ニトロ基、アミノ基、カルボン酸基、水酸基、前記式(TS-0)で表される基、又は前記式(TS-1)で表される基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいても良い。m及びmは各々独立して0~8の整数であり、m及びmは各々独立して0~9の整数であり、p~pは各々独立して0~2の整数であり、nは1~4の整数である。但し、m、m、m及びmの少なくとも1つは1以上の整数であり、式(P-0B)はR、R、R10又はR11としての前記式(TS-0)で表される基又は前記式(TS-1)で表される基を少なくとも一つ含む。)
 [9]下記式(P-0C)で表される化合物である[1]から[6]のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000017
(式(P-0C)中、L~Lは各々独立して単結合、置換基を有していてもよい炭素数1~20の直鎖状アルキレン基、置換基を有していてもよい炭素数3~20の分岐状アルキレン基、置換基を有していてもよい炭素数3~20のシクロアルキレン基、置換基を有していてもよい炭素数6~24のアリーレン基、-O-、-OC(=O)-、-OC(=O)O-、-N(R20)-C(=O)-、-N(R20)-C(=O)O-、-S-、-SO-、又は-SO-であり、R20は水素原子又は置換基を有していてもよい炭素数1~10のアルキル基である。R16~R19は各々独立して置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数3~20のシクロアルキル基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数1~20のアルコキシ基、前記式(TS-0)で表される基、前記式(TS-1)で表される基、シアノ基、ニトロ基、水酸基、複素環基、ハロゲン原子、カルボキシル基、炭素数1~20のアルキルシリル基;酸により解離する性質を有する、炭素数2~20の置換メチル基、炭素数3~20の1-置換エチル基、炭素数4~20の1-置換-n-プロピル基、炭素数3~20の1-分岐アルキル基、炭素数1~20のシリル基、炭素数2~20のアシル基、炭素数2~20の1-置換アルコキシアルキル基、炭素数2~20の環状エーテル基、炭素数2~20のアルコキシカルボニル基、アルコキシカルボニルアルキル基;又は水素原子である。R12~R15は各々独立して炭素数2~20のアルキル基、前記式(TS-0)で表される基、前記式(TS-1)で表される基、又は下記式(P-0C-1)
Figure JPOXMLDOC01-appb-C000018
で表される基である。R21は各々独立して置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数3~20のシクロアルキル基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数1~20のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、炭素数1~20のアルキルシリル基;酸により解離する性質を有する、炭素数2~20の置換メチル基、炭素数3~20の1-置換エチル基、炭素数4~20の1-置換-n-プロピル基、炭素数3~20の1-分岐アルキル基、炭素数1~20のシリル基、炭素数2~20のアシル基、炭素数2~20の1-置換アルコキシアルキル基、炭素数2~20の環状エーテル基、炭素数2~20のアルコキシカルボニル基、又はアルコキシカルボニルアルキル基である。但し、R12~R19のうち少なくとも一つは前記式(TS-0)で表される基又は前記式(TS-1)で表される基である。m~m10は各々独立して1~4の整数であり、pは0~5の整数である。)
 [10]下記式(P-1)で表される化合物である[1]から[6]のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000019
(式(P-1)中、ORTSは前記式(P-0)と同義である。)
 [11][1]から[10]のいずれかに記載の化合物を含む組成物。
 [12]溶媒を更に含有する[11]に記載の組成物。
 [13]酸発生剤を更に含有する[11]又は[12]に記載の組成物。
 [14]酸架橋剤を更に含有する[11]から[13]のいずれかに記載の組成物。
 [15][11]から[14]のいずれかに記載の組成物から形成されるレジスト膜。
 [16][11]から[14]のいずれかに記載の組成物を用いて基板上に膜を形成する膜形成工程と、
 前記膜を露光する露光工程と、
 前記露光工程において露光された膜を現像してパターンを形成する現像工程と、
を含むパターン形成方法。
 [17][1]から[10]のいずれかに記載の化合物の製造方法であって、
 下記式(P-0’)で表される化合物と、下記式(TS-0’)で表される化合物又は下記式(TS-1’)で表される化合物とを縮合して縮合物を得る工程と、
 前記縮合物と、フッ素又はヨウ素を含むアニオンを有する塩と、アルキル化剤とを反応させる工程と、
を含む方法。
Figure JPOXMLDOC01-appb-C000020
(式(P-0’)中、Ar及びnは前記式(P-0)と同義である。)
Figure JPOXMLDOC01-appb-C000021
(式(TS-0’)中、Xはハロゲン原子であり、R及びRは前記式(TS-0)と同義である。)
Figure JPOXMLDOC01-appb-C000022
(式(TS-1’)中、Xはハロゲン原子であり、Rは前記式(TS-1)と同義である。)
 [18][1]から[10]のいずれかに記載の化合物を含む酸発生剤。
 [19][18]に記載の酸発生剤を含む組成物。
 [20]溶媒を更に含有する[19]に記載の組成物。
 [21]酸架橋剤を更に含有する[19]又は[20]に記載の組成物。
 [22]リソグラフィー用下層膜形成用組成物である[19]から[21]のいずれかに記載の組成物。
 [23]ケイ素含有化合物を更に含有する[22]に記載の組成物。
 [24][22]又は[23]に記載の組成物から形成された下層膜。
 [25][22]又は[23]に記載の組成物を用いてレジスト下層膜を形成する工程と、
 前記レジスト下層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
 前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程と、
を含むパターン形成方法。
 [26]光学物品形成用組成物である[19]から[21]のいずれかに記載の組成物。
 [27][26]に記載の組成物から形成された光学物品。
 本発明によれば、高感度で解像度が高く、高平坦性を有する化合物及びその製造方法、酸発生剤、該化合物又は該酸発生剤を含む組成物、レジスト膜、下層膜、光学物品、並びに該化合物又は該酸発生剤を用いたパターン形成方法を提供することができる。
実施例1におけるBEPMSのH-NMRスペクトルである。 実施例1におけるMTP-BEPMSのH-NMRスペクトルである。 実施例1におけるMTP-BEPMSイオン化合物のH-NMRスペクトルである。 実施例8におけるBHPMSのH-NMRスペクトルである。 実施例8におけるMTP-BHPMSのH-NMRスペクトルである。 実施例8におけるMTP-BHPMSイオン化合物のH-NMRスペクトルである。
 以下、本発明の実施の形態について説明する(以下、「本実施形態」と称する場合がある)。なお、本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 [化合物]
 本実施形態に係る化合物は、下記式(P-0)で表される。
Figure JPOXMLDOC01-appb-C000023
(式(P-0)中、Arは炭素数6~60のアリール基を有する基であり、ORTSは各々独立して、水酸基、下記式(TS-0)で表される基、又は下記式(TS-1)で表される基である。nは1~20の整数である。但し、ORTSのうち少なくとも一つは、下記式(TS-0)で表される基又は下記式(TS-1)で表される基である。)
Figure JPOXMLDOC01-appb-C000024
(式(TS-0)中、Rは単結合又は置換基を有していてもよい炭素数1~30の2価の基であり、Rは置換基を有していてもよい炭素数1~10のアルキル基又は置換基を有していてもよい炭素数6~10のアリール基であり、Rは置換基を有していてもよい炭素数1~10のアルキル基又は置換基を有していてもよい炭素数6~10のアリール基であり、Anはフッ素又はヨウ素を含むアニオンである。)
Figure JPOXMLDOC01-appb-C000025
(式(TS-1)中、R、R及びAnは式(TS-0)と同義である。)
 本実施形態に係る化合物の化学構造は、H-NMR測定及びIR測定により確認できる。前記化合物は末端の特定構造を有するイオン部位を有するため、レジスト材料等として使用した場合に高感度、高解像度、及び高平坦性を示す。本実施形態に係る化合物の分子は拡散速度が適度であるため、高感度を維持したまま高解像度を示す。また、適度な分子量を持つために揮発しにくく、硬化時の膜減りが比較的少ないために高平坦性を示す。
 なお、本明細書において「置換」とは別段定義がない限り、官能基中の一つ以上の水素原子が、置換基で置換されることを意味する。「置換基」としては、特に限定されないが、例えば、ハロゲン原子、水酸基、シアノ基、ニトロ基、アミノ基、チオール基、複素環基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~20の分岐状脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~20のアリール基、炭素数1~20のアルコキシル基、炭素数0~20のアミノ基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアシル基、炭素数2~20のアルコキシカルボニル基、炭素数1~20のアルキロイルオキシ基、炭素数7~30のアリーロイルオキシ基又は炭素数1~20のアルキルシリル基が挙げられる。
 前記式(P-0)において、Arは炭素数6~60のアリール基を有する基である。Arの炭素数は5~40が好ましい。Arとしては、例えばフェニル、ナフチル、アントラチル、ビフェニル、フルオレン、及びこれらを含む基等が挙げられる。前記式(P-0)において、ORTSは各々独立して、水酸基、前記式(TS-0)で表される基、又は前記式(TS-1)で表される基である。nは1~20の整数であり、ORTSのうち少なくとも一つは、前記式(TS-0)で表される基又は前記式(TS-1)で表される基である。すなわち、前記式(P-0)は前記式(TS-0)で表される基又は前記式(TS-1)で表される基を少なくとも一つ含む。nは1~4が好ましい。
 前記式(TS-0)において、Rは単結合又は置換基を有していてもよい炭素数1~30の2価の基であり、置換基を有していてもよい炭素数2~6の2価の基であることが好ましい。炭素数2~6の2価の基としては、例えばエチレンオキシ基、プロピレンオキシ基等の炭素数2~6のアルキレンオキシ基、フェニレン基等が挙げられる。前記式(TS-0)において、Rは置換基を有していてもよい炭素数1~10のアルキル基又は置換基を有していてもよい炭素数6~10のアリール基である。炭素数1~10のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、デシル基、シクロヘキシル基等が挙げられる。炭素数6~10のアリール基としては、例えばフェニル基、ナフチル基等が挙げられる。これらの中でもRとしては、メチル基、エチル基、又はフェニル基が好ましく、メチル基がより好ましい。
 前記式(TS-0)において、Rは置換基を有していてもよい炭素数1~10のアルキル基又は置換基を有していてもよい炭素数6~10のアリール基であり、置換基を有していてもよい炭素数1~10のアルキル基が好ましい。炭素数1~10のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、デシル基、シクロヘキシル基等が挙げられ、メチル基が好ましい。前記式(TS-0)において、Anはフッ素又はヨウ素を含むアニオンであり、RSO (Rは炭素数1~9のフッ素又はヨウ素を含む1価の基である。)、PF 、SbF が好ましい。Rとしては、例えばトリフルオロメチル基、ノナフルオロブチル基等が挙げられる。これらの中でもAnとしてはCFSO が好ましい。
 前記式(TS-1)において、R、R及びAnは式(TS-0)と同義であり、式(TS-0)と同様の基が好ましい。
 前記式(P-0)で表される化合物としては、例えば下記式(P-0A)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000026
(式(P-0A)中、Xは各々独立して酸素原子、硫黄原子又は無架橋であり、Rは単結合又は置換基を有していてもよい炭素数1~30の2n価の基であり、R及びRは各々独立してハロゲン原子、置換基を有していてもよい炭素数1~30の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状アルキル基、置換基を有していてもよい炭素数3~30の環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、シアノ基、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基、前記式(TS-0)で表される基、又は前記式(TS-1)で表される基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいても良い。m及びmは各々独立して0~7の整数であり、p及びpは各々独立して0又は1であり、nは1~4の整数である。但し、m及びmの少なくとも1つは1~7の整数であり、式(P-0A)はR又はRとしての前記式(TS-0)で表される基又は前記式(TS-1)で表される基を少なくとも一つ含む。)
 前記式(P-0A)において、Rは単結合又は置換基を有していてもよい炭素数1~30の2n価の基である。炭素数1~30の2n価の基としては、炭素数1~16の2n価の基が好ましく、例えばメチレン基、フェニルメチレン基、ナフチルメチレン基、ビフェニルメチレン基、シクロヘキシルフェニルメチレン基、アントラチルメチレン基、ビフェニルエチレン基等が挙げられる。前記Rは、R-Rで表される基であることが好ましく、ここで、当該Rはメチン基であり、当該Rは置換基を有しても良い炭素数5~29のアリール基であり、この場合、前記nは1である。
 前記式(P-0A)において、R及びRは各々独立してハロゲン原子、置換基を有していてもよい炭素数1~30の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状アルキル基、置換基を有していてもよい炭素数3~30の環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、シアノ基、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基、前記式(TS-0)で表される基、又は前記式(TS-1)で表される基である。前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいても良い。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。炭素数1~30の直鎖状アルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基、デシル基等が挙げられる。炭素数3~30の分岐状アルキル基としては、例えばイソプロピル基、イソブチル基、t-ブチル等が挙げられる。炭素数3~30の環状アルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロデキシル基、ノナヒドロナフチル基等が挙げられる。炭素数6~30のアリール基としては、例えばフェニル基、ナフチル基等が挙げられる。炭素数2~30のアルケニル基としては、例えばビニル基、アリル基等が挙げられる。炭素数1~30のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、トリアコンチルオキシ基等が挙げられる。
 前記式(P-0A)において、m及びmは各々独立して0~7の整数であり、1~7の整数であることが好ましい。但し、m及びmの少なくとも1つは1~7の整数であり、式(P-0A)はR又はRとしての前記式(TS-0)で表される基又は前記式(TS-1)で表される基を少なくとも一つ含む。p及びpは各々独立して0又は1である。nは1~4の整数であり、1~2の整数であることが好ましい。
 前記式(P-0A)で表される化合物としては、例えば国際公開第2013/024778号に開示された化合物の水酸基(-OH)が、-ORTSで表される基で置換された化合物が挙げられる。具体的には、以下の化合物が挙げられる。なお、前記式(P-0A)で表される化合物はこれらの具体的な化合物に限定されない。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 式中、Rはフッ素原子、塩素原子、臭素原子、ヨウ素原子、水酸基、シアノ基、ニトロ基、アミノ基、チオール基、複素環基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~20の分岐状脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~20のアリール基、炭素数1~20のアルコキシル基、炭素数0~20のアミノ基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアシル基、炭素数2~20のアルコキシカルボニル基、炭素数1~20のアルキロイルオキシ基、炭素数7~30のアリーロイルオキシ基又は炭素数1~20のアルキルシリル基であり、ORTSは前記式(P-0)と同義である。炭素数1~20の直鎖状脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、オクチル基、ノニル基、デシル基、ドデシル基等が挙げられる。
 前記式(P-0)で表される化合物としては、例えば下記式(P-0B)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000032
(式(P-0B)中、Rは炭素数1~30の2n価の基であり、R~R11は各々独立してハロゲン原子、置換基を有していてもよい炭素数1~10の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状アルキル基、置換基を有していてもよい炭素数3~30の環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、チオール基、シアノ基、ニトロ基、アミノ基、カルボン酸基、水酸基、前記式(TS-0)で表される基、又は前記式(TS-1)で表される基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいても良い。m及びmは各々独立して0~8の整数であり、m及びmは各々独立して0~9の整数であり、p~pは各々独立して0~2の整数であり、nは1~4の整数である。但し、m、m、m及びmの少なくとも1つは1以上の整数であり、式(P-0B)はR、R、R10又はR11としての前記式(TS-0)で表される基又は前記式(TS-1)で表される基を少なくとも一つ含む。)
 前記式(P-0B)において、Rは炭素数1~30の2n価の基であり、炭素数1~16の2n価の基が好ましく、例えばメチレン基、フェニルメチレン基、ナフチルメチレン基、ビフェニルメチレン基、シクロヘキシルフェニルメチレン基、アントラチルメチレン基、ビフェニルエチレン基等が挙げられる。前記Rは、R-Rで表される基であることが好ましく、ここで、当該Rはメチン基であり、当該Rは置換基を有しても良い炭素数5~29のアリール基であり、この場合、前記nは1である。
 前記式(P-0B)において、R~R11は各々独立してハロゲン原子、置換基を有していてもよい炭素数1~10の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状アルキル基、置換基を有していてもよい炭素数3~30の環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、チオール基、シアノ基、ニトロ基、アミノ基、カルボン酸基、水酸基、前記式(TS-0)で表される基、又は前記式(TS-1)で表される基である。前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいても良い。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。炭素数1~10の直鎖状アルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基、デシル基等が挙げられる。炭素数3~30の分岐状アルキル基としては、例えばイソプロピル基、イソブチル基、t-ブチル等が挙げられる。炭素数3~30の環状アルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロデキシル基、ノナヒドロナフチル基等が挙げられる。炭素数6~30のアリール基としては、例えばフェニル基、ナフチル基等が挙げられる。炭素数2~30のアルケニル基としては、例えばビニル基、アリル基等が挙げられる。炭素数1~30のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、トリアコンチルオキシ基等が挙げられる。
 前記式(P-0B)において、m及びmは各々独立して0~8の整数であり、0~2の整数であることが好ましい。m及びmは各々独立して0~9の整数であり、0~2の整数であることが好ましい。但し、m、m、m及びmの少なくとも1つは1以上の整数であり、式(P-0B)はR、R、R10又はR11としての前記式(TS-0)で表される基又は前記式(TS-1)で表される基を少なくとも一つ含む。p~pは各々独立して0~2の整数であり、0~1の整数であることが好ましい。nは1~4の整数であり、1~2の整数であることが好ましい。
 前記式(P-0B)で表される化合物としては、例えば国際公開第2015/137486号に開示された化合物の水酸基(-OH)が、-ORTSで表される基で置換された化合物が挙げられ、具体的には、以下の化合物が挙げられる。なお、前記式(P-0B)で表される化合物はこれらの具体的な化合物に限定されない。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 式中、Rはフッ素原子、塩素原子、臭素原子、ヨウ素原子、水酸基、シアノ基、ニトロ基、アミノ基、チオール基、複素環基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~20の分岐状脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~20のアリール基、炭素数1~20のアルコキシル基、炭素数0~20のアミノ基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアシル基、炭素数2~20のアルコキシカルボニル基、炭素数1~20のアルキロイルオキシ基、炭素数7~30のアリーロイルオキシ基又は炭素数1~20のアルキルシリル基であり、ORTSは前記式(P-0)と同義である。炭素数1~20の直鎖状脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、オクチル基、ノニル基、デシル基、ドデシル基等が挙げられる。
 前記式(P-0)で表される化合物としては、例えば下記式(P-0C)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000046
(式(P-0C)中、L~Lは各々独立して単結合、置換基を有していてもよい炭素数1~20の直鎖状アルキレン基、置換基を有していてもよい炭素数3~20の分岐状アルキレン基、置換基を有していてもよい炭素数3~20のシクロアルキレン基、置換基を有していてもよい炭素数6~24のアリーレン基、-O-、-OC(=O)-、-OC(=O)O-、-N(R20)-C(=O)-、-N(R20)-C(=O)O-、-S-、-SO-、又は-SO-であり、R20は水素原子又は置換基を有していてもよい炭素数1~10のアルキル基である。R16~R19は各々独立して置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数3~20のシクロアルキル基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数1~20のアルコキシ基、前記式(TS-0)で表される基、前記式(TS-1)で表される基、シアノ基、ニトロ基、水酸基、複素環基、ハロゲン原子、カルボキシル基、炭素数1~20のアルキルシリル基;酸により解離する性質を有する、炭素数2~20の置換メチル基、炭素数3~20の1-置換エチル基、炭素数4~20の1-置換-n-プロピル基、炭素数3~20の1-分岐アルキル基、炭素数1~20のシリル基、炭素数2~20のアシル基、炭素数2~20の1-置換アルコキシアルキル基、炭素数2~20の環状エーテル基、炭素数2~20のアルコキシカルボニル基、アルコキシカルボニルアルキル基;又は水素原子である。R12~R15は各々独立して炭素数2~20のアルキル基、前記式(TS-0)で表される基、前記式(TS-1)で表される基、又は下記式(P-0C-1)
Figure JPOXMLDOC01-appb-C000047
で表される基である。R21は各々独立して置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数3~20のシクロアルキル基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数1~20のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、炭素数1~20のアルキルシリル基;酸により解離する性質を有する、炭素数2~20の置換メチル基、炭素数3~20の1-置換エチル基、炭素数4~20の1-置換-n-プロピル基、炭素数3~20の1-分岐アルキル基、炭素数1~20のシリル基、炭素数2~20のアシル基、炭素数2~20の1-置換アルコキシアルキル基、炭素数2~20の環状エーテル基、炭素数2~20のアルコキシカルボニル基、又はアルコキシカルボニルアルキル基である。但し、R12~R19のうち少なくとも一つは前記式(TS-0)で表される基又は前記式(TS-1)で表される基である。m~m10は各々独立して1~4の整数であり、pは0~5の整数である。)
 前記式(P-0C)において、L~Lは各々独立して単結合、置換基を有していてもよい炭素数1~20の直鎖状アルキレン基、置換基を有していてもよい炭素数3~20の分岐状アルキレン基、置換基を有していてもよい炭素数3~20のシクロアルキレン基、置換基を有していてもよい炭素数6~24のアリーレン基、-O-、-OC(=O)-、-OC(=O)O-、-N(R20)-C(=O)-、-N(R20)-C(=O)O-、-S-、-SO-、又は-SO-である。炭素数1~20の直鎖状アルキレン基としては、炭素数1~10の直鎖状アルキレン基が好ましく、例えばメチレン基、エチレン基、プロピレン基、デシレン基等が挙げられる。炭素数3~20の分岐状アルキレン基としては、炭素数1~16の分岐状アルキレン基が好ましく、例えばイソプロピレン基、イソブチレン基、フェニルメチレン基、ナフチルメチレン基、ビフェニルメチレン基、シクロヘキシルフェニルメチレン基、アントラチルメチレン基、ビフェニルエチレン基等が挙げられる。炭素数3~20のシクロアルキレン基としては、例えば炭素数3~10のシクロアルキレン基が好ましく、例えばシクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロデキシレン基、ノナヒドロナフチレン基等が挙げられる。炭素数6~24のアリーレン基としては、例えば炭素数6~12のアリーレン基が好ましく、例えばフェニレン基、ナフチレン基、ビフェニレン基等が挙げられる。R20は水素原子又は置換基を有していてもよい炭素数1~10のアルキル基である。炭素数1~10のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基等が挙げられる。
 前記式(P-0C)において、R16~R19は各々独立して置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数3~20のシクロアルキル基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数1~20のアルコキシ基、前記式(TS-0)で表される基、前記式(TS-1)で表される基、シアノ基、ニトロ基、水酸基、複素環基、ハロゲン原子、カルボキシル基、炭素数1~20のアルキルシリル基;酸により解離する性質を有する、炭素数2~20の置換メチル基、炭素数3~20の1-置換エチル基、炭素数4~20の1-置換-n-プロピル基、炭素数3~20の1-分岐アルキル基、炭素数1~20のシリル基、炭素数2~20のアシル基、炭素数2~20の1-置換アルコキシアルキル基、炭素数2~20の環状エーテル基、炭素数2~20のアルコキシカルボニル基、アルコキシカルボニルアルキル基;又は水素原子である。炭素数1~20のアルキル基としては、炭素数1~10のアルキル基が好ましく、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基等が挙げられる。炭素数3~20のシクロアルキル基としては、炭素数1~10のシクロアルキル基が好ましく、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロデキシレン基、ノナヒドロナフチレン基等が挙げられる。炭素数6~20のアリール基としては、炭素数6~10のアリール基が好ましく、例えばフェニル基、ナフチル基、ビフェニル基等が挙げられる。炭素数1~20のアルコキシ基としては、炭素数1~10のアルコキシ基が好ましく、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、デキシル基等が挙げられる。複素環基としては、例えばピロール基、イミダゾール基、カルバゾール基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。炭素数1~20のアルキルシリル基としては、炭素数1~9のアルキルシリル基が好ましく、例えばトリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基等が挙げられる。
 酸により解離する性質を有する炭素数2~20の置換メチル基としては、炭素数4~18の置換メチル基が好ましく、炭素数6~16の置換メチル基がより好ましい。置換メチル基の具体例としては、以下に限定されないが、メトキシメチル基、メチルチオメチル基、エトキシメチル基、n-プロポキシメチル基、イソプロポキシメチル基、n-ブトキシメチル基、t-ブトキシメチル基、2-メチルプロポキシメチル基、エチルチオメチル基、メトキシエトキシメチル基、フェニルオキシメチル基、1-シクロペンチルオキシメチル基、1-シクロヘキシルオキシメチル基、ベンジルチオメチル基、フェナシル基、4-ブロモフェナシル基、4-メトキシフェナシル基、ピペロニル基、及び下記式(1)で表される置換基群等を挙げることができる。なお、下記式(1)中のR2Aの具体例としては、以下に限定されないが、メチル基、エチル基、イソプロピル基、n-プロピル基、t-ブチル基、n-ブチル基等が挙げられる。下記式(1)中、R2Aは、炭素数1~4のアルキル基である。
Figure JPOXMLDOC01-appb-C000048
 酸により解離する性質を有する炭素数3~20の1-置換エチル基としては、炭素数5~18の1-置換エチル基が好ましく、炭素数7~16の置換エチル基がより好ましい。1-置換エチル基の具体例としては、以下に限定されないが、1-メトキシエチル基、1-メチルチオエチル基、1,1-ジメトキシエチル基、1-エトキシエチル基、1-エチルチオエチル基、1,1-ジエトキシエチル基、n-プロポキシエチル基、イソプロポキシエチル基、n-ブトキシエチル基、t-ブトキシエチル基、2-メチルプロポキシエチル基、1-フェノキシエチル基、1-フェニルチオエチル基、1,1-ジフェノキシエチル基、1-シクロペンチルオキシエチル基、1-シクロヘキシルオキシエチル基、1-フェニルエチル基、1,1-ジフェニルエチル基、及び下記式(2)で表される置換基群等を挙げることができる。下記式(2)中、R2Aは、前記式(1)と同義である。
Figure JPOXMLDOC01-appb-C000049
 酸により解離する性質を有する炭素数4~20の1-置換-n-プロピル基としては、炭素数6~18の1-置換-n-プロピル基が好ましく、炭素数8~16の1-置換-n-プロピル基がより好ましい。1-置換-n-プロピル基の具体例としては、以下に限定されないが、1-メトキシ-n-プロピル基及び1-エトキシ-n-プロピル基等を挙げることができる。
 酸により解離する性質を有する炭素数3~20の1-分岐アルキル基としては、炭素数5~18の1-分岐アルキル基が好ましく、炭素数7~16の分岐アルキル基がより好ましい。1-分岐アルキル基の具体例としては、以下に限定されないが、イソプロピル基、sec-ブチル基、tert-ブチル基、1,1-ジメチルプロピル基、1-メチルブチル基、1,1-ジメチルブチル基、2-メチルアダマンチル基、及び2-エチルアダマンチル基等を挙げることができる。
 酸により解離する性質を有する炭素数1~20のシリル基としては、炭素数3~18のシリル基が好ましく、炭素数5~16のシリル基がより好ましい。シリル基の具体例としては、以下に限定されないが、トリメチルシリル基、エチルジメチルシリル基、メチルジエチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジエチルシリル基、tert-ブチルジフェニルシリル基、トリ-tert-ブチルシリル基及びトリフェニルシリル基等を挙げることができる。
 酸により解離する性質を有する炭素数2~20のアシル基としては、炭素数4~18のアシル基が好ましく、炭素数6~16のアシル基がより好ましい。アシル基の具体例としては、以下に限定されないが、アセチル基、フェノキシアセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル基、バレリル基、ピバロイル基、イソバレリル基、ラウリロイル基、アダマンチルカルボニル基、ベンゾイル基及びナフトイル基等を挙げることができる。
 酸により解離する性質を有する炭素数2~20の1-置換アルコキシアルキル基としては、炭素数2~20の1-置換アルコキシメチル基が好ましく、炭素数4~18の1-置換アルコキシメチル基がより好ましく、炭素数6~16の1-置換アルコキシメチル基がさらに好ましい。1-置換アルコキシメチル基の具体例としては、以下に限定されないが、1-シクロペンチルメトキシメチル基、1-シクロペンチルエトキシメチル基、1-シクロヘキシルメトキシメチル基、1-シクロヘキシルエトキシメチル基、1-シクロオクチルメトキシメチル基及び1-アダマンチルメトキシメチル基等を挙げることができる。
 酸により解離する性質を有する炭素数2~20の環状エーテル基としては、炭素数4~18の環状エーテル基が好ましく、炭素数6~16の環状エーテル基がより好ましい。環状エーテル基の具体例としては、以下に限定されないが、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基、4-メトキシテトラヒドロピラニル基及び4-メトキシテトラヒドロチオピラニル基等を挙げることができる。
 酸により解離する性質を有する炭素数2~20のアルコキシカルボニル基としては、炭素数4~18のアルコキシカルボニル基が好ましく、炭素数6~16のアルコキシカルボニル基がより好ましい。アルコキシカルボニル基の具体例としては、以下に限定されないが、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、tert-ブトキシカルボニル基、下記式(3)のn=0で表される基等を挙げることができる。
 酸により解離する性質を有するアルコキシカルボニルアルキル基としては、炭素数3~20のアルコキシカルボニルアルキル基が好ましく、炭素数4~18のアルコキシカルボニルアルキル基がより好ましく、炭素数6~16のアルコキシカルボニルアルキル基が更に好ましい。アルコキシカルボニルアルキル基の具体例としては、以下に限定されないが、メトキシカルボニルメチル基、エトキシカルボニルメチル基、n-プロポキシカルボニルメチル基、イソプロポキシカルボニルメチル基、n-ブトキシカルボニルメチル基、下記式(3)のn=1~4で表される基等を挙げることができる。
Figure JPOXMLDOC01-appb-C000050
 前記式(3)中、R3Aは水素原子又は炭素数1~4の直鎖状若しくは分岐状アルキル基であり、nは0~4の整数である。
 前記式(P-0C)において、R12~R15は各々独立して炭素数2~20のアルキル基、前記式(TS-0)で表される基、前記式(TS-1)で表される基、又は前記式(P-0C-1)で表される基である。炭素数2~20のアルキル基としては、炭素数2~10のアルキル基が好ましく、例えばエチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、デシル基等が挙げられる。
 前記式(P-0C-1)において、R21は各々独立して置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数3~20のシクロアルキル基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数1~20のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、炭素数1~20のアルキルシリル基;酸により解離する性質を有する、炭素数2~20の置換メチル基、炭素数3~20の1-置換エチル基、炭素数4~20の1-置換-n-プロピル基、炭素数3~20の1-分岐アルキル基、炭素数1~20のシリル基、炭素数2~20のアシル基、炭素数2~20の1-置換アルコキシアルキル基、炭素数2~20の環状エーテル基、炭素数2~20のアルコキシカルボニル基、又はアルコキシカルボニルアルキル基である。これらの各基は、前記式(P-0C)におけるR16~R19と同様であることができる。
 但し、前記式(P-0C)において、R12~R19のうち少なくとも一つは前記式(TS-0)で表される基又は前記式(TS-1)で表される基である。前記式(P-0C)において、m~m10は各々独立して1~4の整数であり、1~3の整数であることが好ましい。前記式(P-0C-1)において、pは0~5の整数であり、0~3の整数であることが好ましい。
 前記式(P-0C)で表される化合物としては、例えば特開2009-173623号、特開2009-173625号に開示された化合物の水酸基(-OH)が、-ORTSで表される基で置換された化合物が挙げられ、具体的には、以下の化合物が挙げられる。なお、前記式(P-0C)で表される化合物はこれらの具体的な化合物に限定されない。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 式中、Rはフッ素原子、塩素原子、臭素原子、ヨウ素原子、水酸基、シアノ基、ニトロ基、アミノ基、チオール基、複素環基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~20の分岐状脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~20のアリール基、炭素数1~20のアルコキシル基、炭素数0~20のアミノ基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアシル基、炭素数2~20のアルコキシカルボニル基、炭素数1~20のアルキロイルオキシ基、炭素数7~30のアリーロイルオキシ基又は炭素数1~20のアルキルシリル基であり、ORTSは前記式(P-0)と同義である。炭素数1~20の直鎖状脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、オクチル基、ノニル基、デシル基、ドデシル基等が挙げられる。
 前記式(P-0)で表される化合物としては、例えば下記式(P-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000053
(式(P-1)中、ORTSは前記式(P-0)と同義である。)
 前記式(P-1)で表される化合物としては、例えば以下の化合物が挙げられる。なお、前記式(P-1)で表される化合物はこれらの具体的な化合物に限定されない。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
 [化合物の製造方法]
 本実施形態に係る化合物の製造方法は、下記式(P-0’)で表される化合物と、下記式(TS-0’)で表される化合物又は下記式(TS-1’)で表される化合物とを縮合して縮合物を得る工程(以下、縮合工程ともいう。)と、前記縮合物と、フッ素又はヨウ素を含むアニオンを有する塩と、アルキル化剤とを反応させる工程(以下、アルキル化工程ともいう。)と、を含む。
 なお、本明細書において「アルキル化」とは別段定義がない限り、アルキル化またはアリール化を表わし、「アルキル化剤」は、アルキル化剤またはアリール化剤を表わし、「アルキル化工程」は、アルキル化工程またはアリール化工程を表わす。
Figure JPOXMLDOC01-appb-C000056
(式(P-0’)中、Ar及びnは前記式(P-0)と同義である。)
Figure JPOXMLDOC01-appb-C000057
(式(TS-0’)中、Xはハロゲン原子であり、R及びRは前記式(TS-0)と同義である。)
Figure JPOXMLDOC01-appb-C000058
(式(TS-1’)中、Xはハロゲン原子であり、Rは前記式(TS-1)と同義である。)
 前記方法によれば、本実施形態に係る化合物を効率よく製造することができる。前記式(TS-0’)及び式(TS-1’)におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 (縮合工程)
 本工程では、前記式(P-0’)で表される化合物と、前記式(TS-0’)で表される化合物又は前記式(TS-1’)で表される化合物とを縮合して縮合物を得る。前記式(TS-0’)で表される化合物又は前記式(TS-1’)で表される化合物は、例えば前記式(TS-0’)又は前記式(TS-1’)のXR基が水酸基である化合物と、X-R-Xとを反応させることで得ることができる。前記式(P-0’)で表される化合物と、前記式(TS-0’)で表される化合物又は前記式(TS-1’)で表される化合物との縮合反応は、例えば強酸の存在下で縮合反応させる方法等により実施することができる。
 (アルキル化工程)
 本工程では、前記縮合工程で得られた縮合物と、フッ素又はヨウ素を含むアニオンを有する塩と、アルキル化剤とを反応させる。前記反応は、例えばアニオンのアルカリ金属塩又はH?で示される酸と反応させる方法等により実施することができる。
 [第一の組成物]
 本実施形態に係る第一の組成物は、本実施形態に係る化合物を含む。本実施形態に係る第一の組成物は、例えばリソグラフィー用材料、リソグラフィー用材料組成物等であることができる。
 (リソグラフィー用材料)
 本実施形態に係るリソグラフィー用材料は、本実施形態に係る化合物を含有する。本実施形態に係るリソグラフィー用材料は、リソグラフィー技術に用いることのできる材料であり、本実施形態に係る化合物を含有すれば特に限定されるものではないが、例えば、溶媒等と共にリソグラフィー用材料組成物として用いることができ、更には、レジスト用途(即ち、レジスト組成物)等に用いることができる。
 本実施形態に係るリソグラフィー用材料は、本実施形態に係る化合物を含有するため、高感度で解像度が高く、高平坦性を有する。本実施形態に係るリソグラフィー用材料は、溶媒を含まないことができる。
 (リソグラフィー用材料組成物)
 本実施形態に係るリソグラフィー用材料組成物は、本実施形態に係るリソグラフィー用材料と、溶媒と、を含む。該リソグラフィー用材料組成物は、高感度で解像度が高く、高平坦性を有するため、良好なレジストパターン形状を付与できる。例えば、リソグラフィー用材料組成物からレジスト膜を形成することができる。
 <リソグラフィー用材料組成物の物性等>
 本実施形態のリソグラフィー用材料は上述のようにレジスト用途に用いることができ、スピンコート等公知の方法によってアモルファス膜を形成することができる。また、用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。以下、本実施形態のリソグラフィー用材料を含むリソグラフィー用材料組成物をレジスト用途に(レジスト組成物として)用いた場合について説明する。
 本実施形態におけるリソグラフィー用材料組成物がポジ型レジストパターンの場合、本実施形態のリソグラフィー用材料組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secが更に好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶なレジストとすることができる。また0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、本実施形態に係る化合物の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またラインエッジラフネスの低減、ディフェクトの低減効果がある。
 本実施形態におけるリソグラフィー用材料組成物がネガ型レジストパターンの場合、本実施形態のリソグラフィー用材料組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、本実施形態に係る化合物のミクロの表面部位が溶解し、ラインエッジラフネスを低減するからと推測される。またディフェクトの低減効果がある。前記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定し決定できる。
 本実施形態のリソグラフィー用材料組成物がポジ型レジストパターンの場合、本実施形態のリソグラフィー用材料組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、本実施形態に係る化合物のミクロの表面部位が溶解し、ラインエッジラフネスを低減するからと推測される。またディフェクトの低減効果がある。
 本実施形態のリソグラフィー用材料組成物がネガ型レジストパターンの場合、本実施形態のリソグラフィー用材料組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secが更に好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶なレジストとすることができる。また0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、本実施形態に係る化合物の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またラインエッジラフネスの低減、ディフェクトの低減効果がある。
 <リソグラフィー用材料組成物の他の成分>
 本実施形態のリソグラフィー用材料組成物は、本実施形態に係る化合物を固形成分として含有する。本実施形態のリソグラフィー用材料組成物は、本実施形態に係る化合物以外に、更に溶媒を含有する。
 本実施形態のリソグラフィー用材料組成物で使用される溶媒は、特に限定されないが、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート(PGMEA)、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテルなどのプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メトキシ-3-メチルプロピオン酸ブチル、3-メトキシ-3-メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;メチルエチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)等のケトン類;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ラクトン等のラクトン類等を挙げることができる。これらの溶媒は、単独で又は2種以上を使用することができる。
 本実施形態のリソグラフィー用材料組成物で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA、PGME、CHN、CPN、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれる少なくとも一種であり、更に好ましくはPGMEA、PGME及びCHNから選ばれる少なくとも一種である。
 本実施形態のリソグラフィー用材料組成物において、固形成分の量と溶媒の量との関係は、特に限定されないが、固形成分及び溶媒の合計質量100質量%に対して、固形成分1~80質量%及び溶媒20~99質量%であることが好ましく、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、更に好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、特に好ましくは固形成分2~10質量%及び溶媒90~98質量%である。
 本実施形態のリソグラフィー用材料組成物は、他の固形成分として、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)からなる群より選ばれる少なくとも一種を含有してもよい。
 本実施形態のリソグラフィー用材料組成物において、本実施形態に係る化合物の含有量は、特に限定されないが、固形成分の全質量(本実施形態に係る化合物、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)などの任意に使用される固形成分の総和、以下同様)の50~99.4質量%であることが好ましく、より好ましくは55~90質量%、更に好ましくは60~80質量%、特に好ましくは60~70質量%である。前記含有量の場合、解像度が一層向上し、ラインエッジラフネス(LER)が一層小さくなる。
 <酸発生剤(C)>
 本実施形態のリソグラフィー用材料組成物は、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線及びイオンビームから選ばれるいずれかの放射線の照射により直接的又は間接的に酸を発生する酸発生剤(C)を一種以上含有することが好ましい。
 この場合、本実施形態のリソグラフィー用材料組成物において、酸発生剤(C)の含有量は、固形成分の全質量の0.001~49質量%が好ましく、1~40質量%がより好ましく、3~30質量%が更に好ましく、10~25質量%が特に好ましい。前記含有量の範囲内で酸発生剤(C)を使用することにより、一層高感度でかつ一層低エッジラフネスのパターンプロファイルが得られる。
 本実施形態のリソグラフィー用材料組成物では、系内に酸が発生すれば、酸の発生方法は限定されない。g線、i線などの紫外線の代わりにエキシマレーザーを使用すれば、より微細加工が可能であるし、また高エネルギー線として電子線、極端紫外線、X線、イオンビームを使用すれば更に微細加工が可能である。
 前記酸発生剤(C)は、特に限定されず、例えば国際公開第2017/033943号に開示された化合物が挙げられる。酸発生剤(C)としては、芳香環を有する酸発生剤が好ましく、アリール基を有するスルホン酸イオンを有する酸発生剤がより好ましく、ジフェニルトリメチルフェニルスルホニウム p-トルエンスルホネート、トリフェニルスルホニウム p-トルエンスルホネート、トリフェニルスルホニウム トリフルオロメタンスルホナート、トリフェニルスルホニウム ノナフルオロメタンスルホナートが特に好ましい。該酸発生剤を用いることで、ラインエッジラフネスを低減することができる。
 また、本実施形態のリソグラフィー用材料組成物は、酸発生剤としてジアゾナフトキノン光活性化合物を更に含有することが好ましい。ジアゾナフトキノン光活性化合物は、ポリマー性及び非ポリマー性ジアゾナフトキノン光活性化合物を含む、ジアゾナフトキノン物質であり、一般にポジ型レジスト組成物において、感光性成分として用いられているものであれば特に限定されず、1種又は2種以上任意に選択して用いることができる。これらの中でも低ラフネスおよび溶解性の観点から、非ポリマー性ジアゾナフトキノン光活性化合物であることが好ましく、より好ましくは分子量1500以下の低分子化合物であり、さらに好ましくは分子量1200以下、特に好ましくは分子量1000以下である。このような非ポリマー性ジアゾナフトキノン光活性化合物の好ましい具体例としては、国際公開第2016/158881号に開示された非ポリマー性ジアゾナフトキノン光活性化合物が挙げられる。前記酸発生剤(C)は、単独で又は2種以上を使用することができる。
 <酸架橋剤(G)>
 本実施形態のリソグラフィー用材料組成物は、ネガ型レジスト材料として使用する場合やポジ型レジスト材料でもパターンの強度を増す為の添加剤として使用する場合に、酸架橋剤(G)を一種以上含むことが好ましい。酸架橋剤(G)とは、酸発生剤(C)から発生した酸の存在下で、本実施形態に係る化合物を分子内又は分子間架橋し得る化合物である。このような酸架橋剤(G)は、特に限定されないが、例えば本実施形態に係る化合物を架橋し得る1種以上の架橋性基を有する化合物を挙げることができる。
 このような架橋性基の具体例としては、特に限定されないが、例えば(i)ヒドロキシ(炭素数1~6のアルキル基)、炭素数1~6のアルコキシ(炭素数1~6のアルキル基)、アセトキシ(炭素数1~6のアルキル基)等のヒドロキシアルキル基又はそれらから誘導される基;(ii)ホルミル基、カルボキシ(炭素数1~6のアルキル基)等のカルボニル基又はそれらから誘導される基;(iii)ジメチルアミノメチル基、ジエチルアミノメチル基、ジメチロールアミノメチル基、ジエチロールアミノメチル基、モルホリノメチル基等の含窒素基含有基;(iv)グリシジルエーテル基、グリシジルエステル基、グリシジルアミノ基等のグリシジル基含有基;(v)ベンジルオキシメチル基、ベンゾイルオキシメチル基等の、炭素数1~6のアリルオキシ(炭素数1~6のアルキル基)、炭素数1~6のアラルキルオキシ(炭素数1~6のアルキル基)等の芳香族基から誘導される基;(vi)ビニル基、イソプロペニル基等の重合性多重結合含有基等を挙げることができる。酸架橋剤(G)の架橋性基としては、ヒドロキシアルキル基、及びアルコキシアルキル基等が好ましく、特にアルコキシメチル基が好ましい。
 前記架橋性基を有する酸架橋剤(G)としては、特に限定されないが、例えば(i)メチロール基含有メラミン化合物、メチロール基含有ベンゾグアナミン化合物、メチロール基含有ウレア化合物、メチロール基含有グリコールウリル化合物、メチロール基含有フェノール化合物等のメチロール基含有化合物;(ii)アルコキシアルキル基含有メラミン化合物、アルコキシアルキル基含有ベンゾグアナミン化合物、アルコキシアルキル基含有ウレア化合物、アルコキシアルキル基含有グリコールウリル化合物、アルコキシアルキル基含有フェノール化合物等のアルコキシアルキル基含有化合物;(iii)カルボキシメチル基含有メラミン化合物、カルボキシメチル基含有ベンゾグアナミン化合物、カルボキシメチル基含有ウレア化合物、カルボキシメチル基含有グリコールウリル化合物、カルボキシメチル基含有フェノール化合物等のカルボキシメチル基含有化合物;(iv)ビスフェノールA系エポキシ化合物、ビスフェノールF系エポキシ化合物、ビスフェノールS系エポキシ化合物、ノボラック樹脂系エポキシ化合物、レゾール樹脂系エポキシ化合物、ポリ(ヒドロキシスチレン)系エポキシ化合物等のエポキシ化合物等を挙げることができる。
 酸架橋剤(G)としては、更に、フェノール性水酸基を有する化合物、並びにアルカリ可溶性樹脂中の酸性官能基に前記架橋性基を導入し、架橋性を付与した化合物及び樹脂を使用することができる。その場合の架橋性基の導入率は、特に限定されず、フェノール性水酸基を有する化合物、及びアルカリ可溶性樹脂中の全酸性官能基に対して、例えば、5~100モル%、好ましくは10~60モル%、更に好ましくは15~40モル%に調節される。前記範囲であると、架橋反応が十分起こり、残膜率の低下、パターンの膨潤現象や蛇行等が避けられるので好ましい。
 本実施形態のリソグラフィー用材料組成物において酸架橋剤(G)は、アルコキシアルキル化ウレア化合物若しくはその樹脂、又はアルコキシアルキル化グリコールウリル化合物若しくはその樹脂(酸架橋剤(G1))、分子内にベンゼン環を1~6有し、ヒドロキシアルキル基又はアルコキシアルキル基を分子内全体に2以上有し、該ヒドロキシアルキル基又はアルコキシアルキル基が前記いずれかのベンゼン環に結合しているフェノール誘導体(酸架橋剤(G2))、少なくとも一つのα-ヒドロキシイソプロピル基を有する化合物(酸架橋剤(G3))が好ましい。例えば、国際公開第2017/033943号に開示された化合物が挙げられる。
 本実施形態のリソグラフィー用材料組成物において、酸架橋剤(G)の含有量は、固形成分の全質量の0.5~49質量%が好ましく、0.5~40質量%がより好ましく、1~30質量%が更に好ましく、2~20質量%が特に好ましい。前記酸架橋剤(G)の含有割合を0.5質量%以上とすると、レジスト膜のアルカリ現像液に対する溶解性の抑制効果を向上させ、残膜率が低下したり、パターンの膨潤や蛇行が生じたりするのを抑制することができるので好ましく、一方、49質量%以下とすると、レジストとしての耐熱性の低下を抑制できることから好ましい。
 また、前記酸架橋剤(G)中の前記酸架橋剤(G1)、前記酸架橋剤(G2)、前記酸架橋剤(G3)から選ばれる少なくとも1種の化合物の含有量も特に限定はなく、レジストパターンを形成する際に使用される基板の種類等によって種々の範囲とすることができる。
 <酸拡散制御剤(E)>
 本実施形態のリソグラフィー用材料組成物は、放射線照射により酸発生剤から生じた酸のレジスト膜中における拡散を制御して、未露光領域での好ましくない化学反応を阻止する作用等を有する酸拡散制御剤(E)を含有してもよい。この様な酸拡散制御剤(E)を使用することにより、リソグラフィー用材料組成物の貯蔵安定性が向上する。また解像度が一層向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。
 このような酸拡散制御剤(E)は、特に限定されず、例えば、窒素原子含有塩基性化合物、塩基性スルホニウム化合物、塩基性ヨードニウム化合物等の放射線分解性塩基性化合物が挙げられる。酸拡散制御剤(E)としては、例えば、国際公開第2017/033943号に開示された化合物が挙げられる。酸拡散制御剤(E)は、単独で又は2種以上を使用することができる。
 酸拡散制御剤(E)の含有量は、固形成分の全質量の0.001~49質量%が好ましく、0.01~10質量%がより好ましく、0.01~5質量%が更に好ましく、0.01~3質量%が特に好ましい。酸拡散制御剤(E)の含有量が前記範囲内であると、解像度の低下、パターン形状、寸法忠実度等の劣化を一層抑制できる。更に、電子線照射から放射線照射後加熱までの引き置き時間が長くなっても、パターン上層部の形状が劣化することがない。また、酸拡散制御剤(E)の含有量が10質量%以下であると、感度、未露光部の現像性等の低下を防ぐことができる。またこのような酸拡散制御剤を使用することにより、リソグラフィー用材料組成物の貯蔵安定性が向上し、また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。
 (その他の成分(F))
 本実施形態のリソグラフィー用材料組成物には、本実施形態の目的を阻害しない範囲で、必要に応じて、その他の成分(F)として、溶解促進剤、溶解制御剤、増感剤、界面活性剤及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。その他の成分(F)としては、例えば、国際公開第2017/033943号に開示された化合物が挙げられる。
 その他の成分(F)の合計含有量は、固形成分の全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%が更に好ましく、0質量%が特に好ましい。
 本実施形態のリソグラフィー用材料組成物において、本実施形態に係る化合物、酸発生剤(C)、酸拡散制御剤(E)、その他の成分(F)の含有量(本実施形態に係る化合物/酸発生剤(C)/酸拡散制御剤(E)/その他の成分(F))は、固形物基準の質量%で、好ましくは50~99.4/0.001~49/0.001~49/0~49、より好ましくは55~90/1~40/0.01~10/0~5、更に好ましくは60~80/3~30/0.01~5/0~1、特に好ましくは60~70/10~25/0.01~3/0である。
 各成分の含有割合は、その総和が100質量%になるように各範囲から選ばれる。前記含有割合にすると、感度、解像度、現像性等の性能に一層優れる。
 本実施形態のリソグラフィー用材料組成物の調製方法は、特に限定されず、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば孔径0.2μm程度のフィルター等でろ過する方法等が挙げられる。
 本実施形態のリソグラフィー用材料組成物は、本発明の目的を阻害しない範囲で樹脂を含むことができる。樹脂は、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体或いはこれらの誘導体などが挙げられる。当該樹脂の含有量は、特に限定されず、使用する本実施形態に係る化合物の種類に応じて適宜調節されるが、該化合物100質量部当たり、30質量部以下が好ましく、より好ましくは10質量部以下、更に好ましくは5質量部以下、特に好ましくは0質量部である。
 [パターン形成方法]
 リソグラフィー用材料を用いて基板上にパターンを形成する場合、例えば、本実施形態に係るリソグラフィー用材料やこれを含む組成物(以下、これらを総じて「リソグラフィー用材料等」と称することがある)を用いて基板上に膜を形成する膜形成工程と、前記膜を露光する露光工程と、前記露光工程において露光された膜を現像してパターンを形成する現像工程と、を含むパターン形成方法を用いることができる。
 例えば、本実施形態のリソグラフィー用材料等を用いてレジストパターンを形成する場合、パターン(レジストパターン)の形成方法は、特に限定されず、好適な方法として、上述したリソグラフィー用材料等を含むレジスト組成物を基板上に塗布して膜(レジスト膜)を形成する膜形成工程と、形成された膜(レジスト膜)を露光する露光工程と、前記露光工程において露光された膜(レジスト膜)を現像してパターン(レジストパターン)を形成する現像工程とを含む方法が挙げられる。本実施形態のレジストパターンは多層プロセスにおける上層レジストとして形成することもできる。
 具体的なレジストパターンを形成する方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、従来公知の基板上に前記レジスト組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。従来公知の基板とは、特に限定されず、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等を例示することができる。より具体的には、特に限定されないが、例えば、シリコンウェハー、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、特に限定されないが、例えば銅、アルミニウム、ニッケル、金等が挙げられる。また必要に応じて、前述基板上に無機系の膜又は有機系の膜が設けられたものであってもよい。無機系の膜としては、特に限定されないが、例えば、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、特に限定されないが、例えば、有機反射防止膜(有機BARC)が挙げられる。ヘキサメチレンジシラザン等による表面処理を行ってもよい。
 次に、必要に応じて、塗布した基板を加熱する。加熱条件は、レジスト組成物の含有組成等により変わるが、20~250℃が好ましく、より好ましくは20~150℃である。加熱することによって、レジストの基板に対する密着性が向上する場合があり好ましい。次いで、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、レジスト組成物の配合組成等に応じて適宜選定される。
 本実施形態のレジストパターンの形成方法においては、露光における高精度の微細パターンを安定して形成するために、放射線照射後に加熱するのが好ましい。加熱条件は、レジスト組成物の配合組成等により変わるが、20~250℃が好ましく、より好ましくは20~150℃である。
 次いで、露光されたレジスト膜を現像液で現像することにより、所定のレジストパターンを形成する。前記現像液としては、使用する本実施形態に係る化合物に対して溶解度パラメーター(SP値)の近い溶剤を選択することが好ましく、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、炭化水素系溶剤又はアルカリ水溶液を用いることができる。現像液の種類によって、ポジ型レジストパターン又はネガ型レジストパターンを作り分けることができるが、一般的に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、炭化水素系溶剤の場合はネガ型レジストパターン、アルカリ水溶液の場合はポジ型レジストパターンが得られる。ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、炭化水素系溶剤、アルカリ性水溶液としては、例えば、国際公開第2017/033943号に開示されたものが挙げられる。
 前記溶剤は、複数混合してもよいし、性能を有する範囲内で、前記以外の溶剤や水と混合し使用してもよい。但し、本発明の効果を十二分に奏するためには、現像液全体としての含水率が70質量%未満、更には50質量%未満であることが好ましく、30質量%未満であることがより好ましく、10質量%未満であることが更に好ましく、実質的に水分を含有しないことが特に好ましい。すなわち、現像液に対する有機溶剤の含有量は、特に限定されず、現像液の全量に対して、30質量%以上100質量%以下、更には50質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましく、90質量%以上100質量%以下であることが更に好ましく、95質量%以上100質量%以下であることが特に好ましい。
 特に、現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の溶剤を含有する現像液が、レジストパターンの解像性やラフネス等のレジスト性能を改善するため好ましい。
 現像液の蒸気圧は、特に限定されず、例えば、20℃において、5kPa以下が好ましく、3kPa以下が更に好ましく、2kPa以下が特に好ましい。現像液の蒸気圧を5kPa以下にすることにより、現像液の基板上或いは現像カップ内での蒸発が抑制され、ウェハ面内の温度均一性が向上し、結果としてウェハ面内の寸法均一性が良化する。このような蒸気圧を有する現像液としては、例えば、国際公開第2017/033943号に開示された現像液が挙げられる。
 現像液には、必要に応じて界面活性剤を適当量添加することができる。界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系又はシリコン系界面活性剤等を用いることができる。これらのフッ素又はシリコン系界面活性剤として、例えば、特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、フッ素系界面活性剤又はシリコン系界面活性剤を用いることが更に好ましい。
 界面活性剤の使用量は現像液の全量に対して、通常0.001~5質量%、好ましくは0.005~2質量%、更に好ましくは0.01~0.5質量%である。
 現像方法としては、たとえば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)などを適用することができる。パターンの現像を行う時間には特に制限はないが、好ましくは10秒間~90秒間である。
 また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
 現像の後には、有機溶剤を含むリンス液を用いて洗浄する工程を含むことが好ましい。
 現像後のリンス工程に用いるリンス液としては、架橋により硬化したレジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液又は水を使用することができる。前記リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。より好ましくは、現像の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。更に好ましくは、現像の後に、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行う。更により好ましくは、現像の後に、1価アルコールを含有するリンス液を用いて洗浄する工程を行う。特に好ましくは、現像の後に、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。パターンのリンスを行う時間には特に制限はないが、好ましくは10秒間~90秒間である。
 ここで、現像後のリンス工程で用いられる1価アルコールとしては、特に限定されないが、例えば、直鎖状、分岐状、環状の1価アルコールが挙げられ、具体的には、1-ブタノール、2-ブタノール、3-メチル-1-ブタノール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、4-メチル-2-ペンタノール、1-ヘプタノール、1-オクタノール、2-ヘキサノール、シクロペンタノール、2-ヘプタノール、2-オクタノール、3-ヘキサノール、3-ヘプタノール、3-オクタノール、4-オクタノールなどを用いることができ、特に好ましい炭素数5以上の1価アルコールとしては、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノールなどを用いることができる。
 前記各成分は、複数混合してもよいし、前記以外の有機溶剤と混合し使用してもよい。
 リンス液中の含水率は、特に限定されず、10質量%以下が好ましく、より好ましくは5質量%以下、特に好ましくは3質量%以下である。含水率を10質量%以下にすることで、より良好な現像特性を得ることができる。
 現像後に用いるリンス液の蒸気圧は、20℃において0.05kPa以上、5kPa以下が好ましく、0.1kPa以上、5kPa以下がより好ましく、0.12kPa以上、3kPa以下が更に好ましい。リンス液の蒸気圧を0.05kPa以上、5kPa以下にすることにより、ウェハ面内の温度均一性がより向上し、更にはリンス液の浸透に起因した膨潤がより抑制され、ウェハ面内の寸法均一性がより良化する。
 リンス液には、界面活性剤を適当量添加して使用することもできる。
 リンス工程においては、現像を行ったウェハを前記の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、例えば、一定速度で回転している基板上にリンス液を塗出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)、などを適用することができ、この中でも回転塗布方法で洗浄処理を行い、洗浄後に基板を2000rpm~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
 レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングの方法はプラズマガスを使用するドライエッチング及びアルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等によるウェットエッチングなど公知の方法で行うことができる。
 レジストパターンを形成した後、めっきを行うこともできる。前記めっき法としては、特に限定されないが、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっきなどがある。
 エッチング後の残存レジストパターンは有機溶剤で剥離することができる。前記有機溶剤として、特に限定されないが、例えば、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGME(プロピレングリコールモノメチルエーテル)、EL(乳酸エチル)等が挙げられる。前記剥離方法としては、特に限定されないが、例えば、浸漬方法、スプレイ方式等が挙げられる。またレジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。
 本実施形態において、配線基板は、レジストパターン形成後、金属を真空中で蒸着し、その後レジストパターンを溶液で溶かす方法、すなわちリフトオフ法により形成することもできる。
 [酸発生剤]
 本実施形態に係る酸発生剤は、本実施形態に係る化合物を含む。前記化合物は末端の特定構造を有するイオン部位を有するため、レジスト材料等における酸発生剤として使用した場合に高感度、高解像度、及び高平坦性を示す。本実施形態に係る化合物の分子は拡散速度が適度であるため、高感度を維持したまま高解像度を示す。また、適度な分子量を持つために揮発しにくく、硬化時の膜減りが比較的少ないために高平坦性を示す。本実施形態に係る酸発生剤は、熱や放射線の作用により、酸が発生する。放射線としては、g線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外光(EUV)または電子線等が挙げられる。なお、本実施形態に係る酸発生剤は、本実施形態に係る化合物以外の他の酸発生剤を含んでもよい。
 [第二の組成物]
 本実施形態に係る第二の組成物は、本実施形態に係る酸発生剤を含む。本実施形態に係る第二の組成物は、例えばリソグラフィー用下層膜形成用組成物、光学物品形成用組成物等であることができるが、これらに限定されない。
 (リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、及びパターン形成方法)
 〔第一の実施形態〕
 <リソグラフィー用下層膜形成用組成物>
 本発明の第一の実施形態に係るリソグラフィー用下層膜形成用組成物は、本実施形態に係る酸発生剤と、ケイ素含有化合物(例えば、加水分解性オルガノシラン、その加水分解物又はその加水分解縮合物)と、を含有するリソグラフィー用下層膜形成用組成物である。本実施形態のリソグラフィー用下層膜形成用組成物は、レジスト下層膜等のリソグラフィー用下層膜を形成でき、耐熱性が高く、溶媒溶解性も高い。このため、パターンの矩形性に優れる。また、膜の欠陥低減(薄膜形成)が可能で、密着性が高く、保存安定性が良好であり、高感度で長期耐光性があり、かつ良好なレジストパターン形状を付与できる。また、本実施形態のリソグラフィー用下層膜形成用組成物は、平坦性の高いリソグラフィー用下層膜を形成できる。
 本実施形態のリソグラフィー用下層膜形成用組成物は、例えば、上層レジスト(フォトレジスト等)とハードマスクや有機下層膜などとの間に更にレジスト下層膜を備えた多層レジスト法に好適に用いることができる。このような多層レジスト法では、例えば、基板上の有機下層膜又はハードマスクを介してその上にレジスト下層膜を塗布法などによって形成し、そのレジスト下層膜上に上層レジスト(例えば、フォトレジスト、電子線レジスト、EUVレジスト)を形成する。そして、露光と現像とによってレジストパターンを形成し、そのレジストパターンを用いてレジスト下層膜をドライエッチングしてパターンの転写を行い、有機下層膜をエッチングすることによりパターンを転写しその有機下層膜により基板の加工を行う。
 即ち、本実施形態のリソグラフィー用下層膜形成用組成物を用いて形成されたリソグラフィー用下層膜(レジスト下層膜)は、上層レジストとインターミキシングを起こしにくく、また、耐熱性を有し、例えば、ハロゲン系(フッ素系)のエッチングガスに対するエッチング速度がマスクとして用いられるパターニングされた上層レジストよりも大きいため、矩形で良好なパターンを得ることができる。更に、本実施形態のリソグラフィー用下層膜形成用組成物を用いて形成されたリソグラフィー用下層膜(レジスト下層膜)は酸素系エッチングガスに対する耐性が高いため、ハードマスクなど基材上に設けられた層のパターニング時には良好なマスクとして機能することができる。尚、本実施形態のリソグラフィー用下層膜形成用組成物は、レジスト下層膜が複数積層された態様にも用いることができる。この場合、本実施形態のリソグラフィー用下層膜形成用組成物を用いて形成されたレジスト下層膜の位置(何層目に積層されているか)は特に限定はなく、上層レジストの直下であってもよく、一番基板側に位置する層であってもよいし、レジスト下層膜で挟まれた態様であってもよい。
 微細なパターンを形成する上で、パターン倒れを防ぐためにレジスト膜厚が薄くなる傾向がある。レジストの薄膜化によりその下層に存在する膜にパターンを転写するためのドライエッチングは、上層の膜よりもエッチング速度が高くなければパターン転写ができない。本実施形態では、基板上に有機下層膜を介して、その上を本実施形態のレジスト下層膜(シリコン系化合物含有)で被覆し、さらにその上をレジスト膜(有機レジスト膜)で被覆することができる。有機系成分の膜と無機系成分の膜とはエッチングガスの選択によりドライエッチング速度が大きく異なり、有機系成分の膜は酸素系ガスでドライエッチング速度が大きくなり、無機系成分の膜はハロゲン含有ガスでドライエッチング速度が大きくなる。
 例えば、パターン転写されたレジスト下層膜を用いて、その下層の有機下層膜を酸素系ガスでドライエッチングして有機下層膜にパターン転写を行い、そのパターン転写された有機下層膜で、ハロゲン含有ガスを用いて基板加工を行うことができる。本実施形態のリソグラフィー用下層膜形成用組成物を用いて形成されたリソグラフィー用下層膜(レジスト下層膜)は、密着性も良好であるため、転写パターンの倒れも抑制することができる。
 また、本実施形態のリソグラフィー用下層膜形成用組成物によるレジスト下層膜は、活性光線への吸収能に優れる本実施形態に係る酸発生剤と、ケイ素含有化合物(例えば、加水分解性オルガノシラン、その加水分解物又はその加水分解縮合物)と、を含むことにより、上層レジストの感度が向上し、上層レジストとインターミキシングを起こさず、露光及び現像後のレジスト下膜形成膜のパターンの形状が矩形になる。これにより微細なパターンによる基板加工が可能になる。
 また、本実施形態のリソグラフィー用下層膜形成用組成物によるレジスト下層膜は、高い耐熱性を有するので、高温ベーク条件でも使用可能である。さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、隅々まで均一に充填させることが容易であり、その結果、平坦化性や埋め込み特性が比較的に有利に高められる傾向にある。
 前記リソグラフィー用下層膜形成用組成物は、本実施形態に係る酸発生剤と、ケイ素含有化合物の他に、溶媒、酸、酸架橋剤などを更に含むことができる。更に、任意成分として、有機ポリマー化合物、及び界面活性剤、その他、水、アルコール、及び硬化触媒等を含むことができる。
 -溶媒-
 本実施形態において用いる溶媒としては、本実施形態に係る酸発生剤が少なくとも溶解するものであれば、公知のものを適宜用いることができる。例えば、国際公開第2017/188450号に開示された、リソグラフィー用下層膜形成用組成物に含まれ得る溶媒が挙げられる。
 溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、前記リソグラフィー用下層膜形成用組成物の全固形分100質量部に対して、100~10,000質量部であることが好ましく、200~8,000質量部であることがより好ましく、200~5,000質量部であることがさらに好ましい。
 -酸-
 前記リソグラフィー用下層膜形成用組成物は硬化性促進の観点から、酸を含むことができる。前記酸としては、例えば、フッ酸、塩酸、臭化水素酸、硫酸、硝酸、過塩素酸、リン酸、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン等が挙げられる。
 酸の含有量は、特に限定されないが、溶解性や塗膜の形状安定性の観点から、前記リソグラフィー用下層膜形成用組成物の全固形分100質量部に対して、0.001~20質量部であることが好ましく、0.005~10質量部であることがより好ましく、0.01~5質量部であることがさらに好ましい。
 -酸架橋剤-
 前記リソグラフィー用下層膜形成用組成物は、ネガ型レジスト材料として使用する場合やポジ型レジスト材料でもパターンの強度を増す為の添加剤として使用する場合に、酸架橋剤を一種以上含むことができる。酸架橋剤としては、酸の存在下で、架橋を形成し得る1種以上の基(以下、「架橋性基」という。)を有する化合物を挙げることができる。例えば、国際公開第2017/188450号に開示された、リソグラフィー用下層膜形成用組成物に含まれ得る酸架橋剤が挙げられる。また、例えば、国際公開WO2013/024779号に記載のものも前記酸架橋剤の具体例として挙げることができる。
 酸架橋剤の含有量は、特に限定されないが、溶解性や塗膜の形状安定性の観点から、前記リソグラフィー用下層膜形成用組成物の全固形分100質量部に対して、0.01~30質量部であることが好ましく、0.05~20質量部であることがより好ましく、0.1~10質量部であることがさらに好ましい。
 -ケイ素含有化合物-
 前記リソグラフィー用下層膜形成用組成物は、本実施形態に係る酸発生剤とともにケイ素含有化合物を含む。前記ケイ素含有化合物としては、有機ケイ素含有化合物又は無機ケイ素含有化合物のいずれであってもよいが、有機ケイ素含有化合物であることが好ましい。前記無機ケイ素含有化合物としては、例えば、低温での塗布方式での成膜が可能な珪素酸化物、珪素窒化物、珪素酸化窒化物からなるポリシラザン化合物等が挙げられる。また、前記有機ケイ素含有化合物としては、例えば、ポリシルセスキオキサンベースの化合物や、加水分解性オルガノシラン、その加水分解物又はその加水分解縮合物が挙げられる。前記ポリシルセスキオキサンベースの具体的な材料については、以下に限定されないが、例えば、特開2007-226170号公報、特開2007-226204号公報に記載されたものを用いることができる。また、前記加水分解性オルガノシラン、その加水分解物、又はその加水分解縮合物としては、下記式(D1)の加水分解性オルガノシラン及び下記式(D2)からなる群より選ばれた少なくとも1種の加水分解性オルガノシラン、それらの加水分解物、又はそれらの加水分解縮合物(以下、これらを単に「式(D1)及び式(D2)からなる群より選ばれた少なくとも1種の有機ケイ素化合物」と称することがある)を含むことができる。前記リソグラフィー用下層膜形成用組成物が式(D1)及び式(D2)からなる群より選ばれた少なくとも1種の有機ケイ素化合物を含んでいると、硬化条件の調整によりSi-O結合の制御が容易であり、コスト的にも有利であり、有機系成分の導入に適している。このため、リソグラフィー用下層膜形成用組成物が式(D1)及び式(D2)からなる群より選ばれた少なくとも1種の有機ケイ素化合物を含む前記リソグラフィー用下層膜形成用組成物を用いて形成された層は、レジスト層の中間層(上層レジスト層と、基材上に設けられた有機下層膜との間の層)として有用である。
 式(D1):  (RSi(R4-a
(式(D1)中、Rは、アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基、ハロゲン化アリール基、ハロゲン化アラルキル基、アルケニル基、エポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アルコキシアリール基、アシルオキシアリール基、イソシアヌレート基、ヒドロキシ基、環状アミノ基、又はシアノ基を有する“有機基”;或いは、それらの組み合わせを表し、且つSi-C結合によりケイ素原子と結合しているものであり、Rはアルコキシ基、アシルオキシ基又はハロゲン基を表し、aは0~3の整数を表す。)
 式(D2):  [(RSi(R4-c
(式(D2)中、Rはアルキル基を表し、Rはアルコキシ基、アシルオキシ基又はハロゲン基を表し、Yはアルキレン基又はアリーレン基を表し、bは0又は1の整数を表し、cは0又は1の整数を表す。)
 前記リソグラフィー用下層膜形成用組成物中、本実施形態に係る酸発生剤と、ケイ素含有化合物(例えば、式(D1)及び式(D2)からなる群より選ばれた少なくとも1種の有機ケイ素化合物)と、の割合はモル比で0.1:99.9~50:50の範囲で使用することができる。良好なレジスト形状を得るためには、例えば、前記モル比で1:99~30:70の範囲で用いることができる。式(D1)及び式(D2)からなる群より選ばれた少なくとも1種の有機ケイ素化合物は、加水分解縮合物(ポリオルガノシロキサンのポリマー)として使用することが好ましい。
 式(D1)で表される加水分解性オルガノシラン中のRは、アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基、ハロゲン化アリール基、ハロゲン化アラルキル基、アルケニル基、エポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アルコキシアリール基、アシルオキシアリール基、イソシアヌレート基、ヒドロキシ基、環状アミノ基、又はシアノ基を有する“有機基”、或いは、それらの組み合わせであり、且つSi-C結合によりケイ素原子と結合しているものであり、Rはアルコキシ基、アシルオキシ基、又はハロゲン基を表し、aは0~3の整数を表す。
 式(D2)の加水分解性オルガノシランのRはアルキル基を表し、Rはアルコキシ基、アシルオキシ基、又はハロゲン基を表し、Yはアルキレン基又はアリーレン基を表し、bは0又は1の整数を表し、cは0又は1の整数を表す。
 式(D1)及び式(D2)で示される加水分解性オルガノシランとしては、例えば、国際公開第2017/188450号に開示された、リソグラフィー用下層膜形成用組成物に含まれ得る加水分解性オルガノシランが挙げられる。
 本実施形態においては、本実施形態に係る酸発生剤と、加水分解性オルガノシラン等と、を反応させずに混合体として膜を形成してもよいが、リソグラフィー用下層膜形成用組成物中の本実施形態に係る酸発生剤と、上述の加水分解性オルガノシラン等とを、無機酸、脂肪族スルホン酸及び芳香族スルホン酸から選ばれる一種以上の化合物を酸触媒として用いて、加水分解縮合を行ってもよい。
 このとき使用される酸触媒は、フッ酸、塩酸、臭化水素酸、硫酸、硝酸、過塩素酸、リン酸、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸等を挙げることができる。触媒の使用量は、モノマー(本実施形態に係る酸発生剤と加水分解性オルガノシラン等との総量)1モルに対して10-6~10モルが好ましく、より好ましくは10-5~5モル、さらに好ましくは10-4~1モルである。
 これらのモノマーを加水分解縮合するときの水の量は、モノマー(本実施形態に係る酸発生剤及び加水分解性オルガノシラン等)に結合している加水分解性置換基1モル当たり0.01~100モルが好ましく、より好ましくは0.05~50モル、さらに好ましくは0.1~30モルを添加することが好ましい。100モル以下の添加であれば、反応に使用する装置が過大になることがないため経済的である。
 操作方法としては、例えば、触媒水溶液にモノマーを添加して加水分解縮合反応を開始させる。このとき、触媒水溶液に有機溶剤を加えてもよいし、モノマーを有機溶剤で希釈しておいてもよいし、両方行ってもよい。反応温度は好ましくは0~100℃、より好ましくは40~100℃である。モノマーの滴下時に5~80℃に温度を保ち、その後40~100℃で熟成させる方法が好ましい。
 触媒水溶液に加えることのできる、又はモノマーを希釈することのできる有機溶剤としては、例えば、国際公開第2017/188450号に開示された有機溶剤が挙げられる。
 尚、有機溶剤の使用量は、モノマー(本実施形態に係る酸発生剤と加水分解性オルガノシラン等との総量)1モルに対して0~1,000mlが好ましく、特に0~500mlが好ましい。有機溶剤の使用量が1,000ml以下であれば、反応容器が過大となることがないため経済的である。
 その後、必要であれば触媒の中和反応を行い、加水分解縮合反応で生成したアルコールを減圧除去し、反応混合物水溶液を得る。このとき、中和に使用することのできるアルカリ性物質の量は、触媒で使用された酸に対して0.1~2当量が好ましい。このアルカリ性物質は水中でアルカリ性を示すものであれば、任意の物質でよい。
 続いて、反応混合物から加水分解縮合反応で生成したアルコールなどの副生物を取り除くことが好ましい。このとき反応混合物を加熱する温度は、添加した有機溶剤と反応で発生したアルコールなどの種類によるが、好ましくは0~100℃、より好ましくは10~90℃、さらに好ましくは15~80℃である。またこのときの減圧度は、除去すべき有機溶剤及びアルコールなどの種類、排気装置、凝縮装置及び加熱温度により異なるが、好ましくは大気圧以下、より好ましくは絶対圧で80kPa以下、さらに好ましくは絶対圧で50kPa以下である。この際除去されるアルコール量を正確に知ることは難しいが、生成したアルコールなどのおよそ80質量%以上が除かれることが望ましい。
 次に、反応混合物から加水分解縮合に使用した酸触媒を除去してもよい。酸触媒を除去する方法として、水と反応混合物とを混合し、生成物を有機溶剤で抽出する方法を例示できる。このとき使用する有機溶剤としては、生成物を溶解でき、水と混合させると2層分離するものが好ましい。例えば、国際公開第2017/188450号に開示された有機溶剤が挙げられる。
 さらに、反応混合物から加水分解縮合に使用した酸触媒を除去する際に、水溶性有機溶剤と水難溶性有機溶剤との混合物を使用することも可能である。例えば国際公開第2017/188450号に開示された混合物が挙げられる。
 尚、水溶性有機溶剤と水難溶性有機溶剤との混合割合は、適宜選定されるが、水難溶性有機溶剤100質量部に対して、水溶性有機溶剤0.1~1,000質量部が好ましく、より好ましくは1~500質量部、さらに好ましくは2~100質量部である。
 酸触媒が残留している生成物、及び酸触媒が除去された生成物、いずれの場合においても、最終的な溶剤を加え、減圧で溶剤交換することで生成物の溶液を得ることができる。このときの溶剤交換の温度は、除去すべき反応溶剤や抽出溶剤の種類によるが、好ましくは0~100℃、より好ましくは10~90℃、さらに好ましくは15~80℃である。またこのときの減圧度は、除去すべき抽出溶剤の種類、排気装置、凝縮装置及び加熱温度により異なるが、好ましくは大気圧以下、より好ましくは絶対圧で80kPa以下、さらに好ましくは絶対圧で50kPa以下である。
 -その他の任意成分-
 前記リソグラフィー用下層膜形成用組成物は、前記の成分の他、必要に応じて有機ポリマー化合物、架橋剤、及び界面活性剤等を含むことができる。
 有機ポリマー化合物を使用することにより、前記リソグラフィー用下層膜形成用組成物から形成されるレジスト下層膜のドライエッチング速度(単位時間当たりの膜厚の減少量)、減衰係数及び屈折率等を調整することができる。有機ポリマー化合物としては特に制限はなく、種々の有機ポリマーを使用することができる。縮重合ポリマー及び付加重合ポリマー等を使用することができる。例えば国際公開第2017/188450号に開示された有機ポリマー化合物が使用できる。
 架橋剤を使用することにより、前記リソグラフィー用下層膜形成用組成物から形成されるレジスト下層膜のドライエッチング速度(単位時間当たりの膜厚の減少量)等を調整することができる。架橋剤としては特に制限はなく、種々の架橋剤を使用することができる。本実施形態で使用可能な架橋剤の具体例としては、例えば、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、エポキシ化合物、チオエポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物であって、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基を置換基(架橋性基)として有するものなどが挙げられるが、これらに特に限定されない。例えば国際公開第2017/188450号に開示された架橋剤が挙げられる。
 前記リソグラフィー用下層膜形成用組成物において、架橋剤の含有量は、特に限定されないが、本実施形態に係る酸発生剤100質量部に対して、1~10質量部であることが好ましく、より好ましくは1~5質量部である。上述の好ましい範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
 界面活性剤は、前記リソグラフィー用下層膜形成用組成物を基板に塗布した際に、表面欠陥等の発生を抑制するのに有効である。前記リソグラフィー用下層膜形成用組成物に含まれる界面活性剤としては、例えば、国際公開第2017/188450号に開示された界面活性剤が挙げられる。界面活性剤が使用される場合、その割合としては、本実施形態に係る酸発生剤100質量部に対して、例えば、0質量部~5質量部であることができる。
 <リソグラフィー用下層膜及びパターン形成方法>
 本発明の第一の実施形態に係るリソグラフィー用下層膜は、前記本発明の第一の実施形態に係るリソグラフィー用下層膜形成用組成物を用いて形成することができる。本実施形態のリソグラフィー用下層膜は、多層レジスト法に用いられる、フォトレジスト(上層)の下層(レジスト下層膜)として好適に用いることができる。
 本実施形態においては、例えば、リソグラフィー用下層膜形成用組成物を用いてレジスト下層膜を形成し、前記レジスト下層膜上に、少なくとも1層のフォトレジスト層を形成した後、該フォトレジスト層の所定の領域に放射線を照射し、現像を行うことでパターンを形成することができる。
 また、上述のようにして作製した前記本発明の第一の実施形態に係るリソグラフィー用下層膜形成用組成物を用いた本発明の第一の実施形態に係るパターン形成方法の一態様としては、基板上に、塗布型有機下層膜材料を用いて有機下層膜を形成し、前記有機下層膜上に本発明の第一の実施形態のリソグラフィー用下層膜形成用組成物を用いてレジスト下層膜を形成し、前記レジスト下層膜上に上層レジスト膜組成物を用いて上層レジスト膜を形成し、前記上層レジスト膜に上層レジストパターンを形成し、前記上層レジストパターンをマスクにして前記レジスト下層膜にエッチングでパターンを転写し、パターンが転写された前記レジスト下層膜をマスクにして前記有機下層膜にエッチングでパターンを転写し、さらにパターンが転写された前記有機下層膜をマスクにして前記基板(被加工体)にエッチングでパターンを転写するパターン形成方法を挙げることができる。
 本発明の第一の実施形態に係るパターン形成方法の別の態様として、基板上に炭素を主成分とする有機ハードマスクをCVD法で形成し、前記有機ハードマスク上に本発明の第一の実施形態のリソグラフィー用下層膜形成用組成物を用いてレジスト下層膜を形成し、前記レジスト下層膜上に上層レジスト膜組成物を用いて上層レジスト膜を形成し、前記上層レジスト膜に上層レジストパターンを形成し、該上層レジストパターンをマスクにして前記レジスト下層膜にエッチングでパターンを転写し、パターンが転写された前記レジスト下層膜をマスクにして前記有機ハードマスクにエッチングでパターンを転写し、さらにパターンが転写された前記有機ハードマスクをマスクにして前記基材(被加工体)にエッチングでパターンを転写するパターン形成方法を挙げることができる。
 前記基材としては、例えば、半導体基板を用いることができる。前記半導体基板としては、シリコン基板が一般的に用いることができるが、特に限定されるものではなく、Si、アモルファスシリコン(α-Si)、p-Si、SiO、SiN、SiON、W、TiN、Al等で被加工層と異なる材質のものを用いることができる。
 また、前記基材(被加工体;前記半導体基板を含む)を構成する金属としては、ケイ素、チタン、タングステン、ハフニウム、ジルコニウム、クロム、ゲルマニウム、銅、アルミニウム、インジウム、ガリウム、ヒ素、パラジウム、鉄、タンタル、イリジウム、又はモリブデンのいずれか、或いはこれらの合金を用いることができる。
 また、半導体基板上に被加工層(被加工部分)として、金属膜、金属炭化膜、金属酸化膜、金属窒化膜、金属酸化炭化膜、又は金属酸化窒化膜のいずれかが成膜されたもの等を用いることができる。このような金属を含む被加工層としては、例えば、Si、SiO、SiN、SiON、SiOC、p-Si、α-Si、TiN、WSi、BPSG、SOG、Cr、CrO、CrON、MoSi、W、W-Si、Al、Cu、Al-Si等並びに種々の低誘電膜及びそのエッチングストッパー膜が用いられ、通常、50~10,000nm、特に100~5,000nmの厚さに形成し得る。
 本実施形態のパターン形成方法では、基板上に、有機下層膜、又は有機ハードマスクを形成することができる。このうち、有機下層膜は塗布型有機下層膜材料から回転塗布法等を用いて形成することができ、有機ハードマスクは炭素を主成分とする有機ハードマスクの材料からCVD法を用いて形成することができる。このような有機下層膜及び有機ハードマスクの種類等は、特に限定されないが、上層レジスト膜が露光によりパターン形成を行う場合は、十分な反射防止膜機能を発現するものが好ましい。このような有機下層膜又は有機ハードマスクを形成することで、サイズ変換差を生じさせることなく上層レジスト膜で形成されたパターンを基材(被加工体)上に転写することができる。尚、「炭素を主成分とする」ハードマスクとは、固形分の50質量%以上がアモルファスカーボンとも呼ばれa-C:Hと表示されるアモルファス水素化炭素等の炭素系材料で構成されているハードマスクを意味する。a-C:H膜は、様々な技術によって堆積させることができるが、プラズマ化学気相堆積(PECVD)が、費用効率及び膜質調整可能性のために広く使用されている。前記ハードマスクの例としては、例えば、特表2013-526783号公報に記載のものを参照することができる。
 本実施形態のパターンの形成方法に使用される本実施形態のレジスト下膜形成用組成物を用いたレジスト下層膜は、リソグラフィー用下層膜形成用組成物からスピンコート法等で有機下層膜等が設けられた被加工体上に作製することが可能である。レジスト下膜をスピンコート法で形成する場合、スピンコート後、溶剤を蒸発させ、上層レジスト膜とのミキシング防止を目的として、架橋反応を促進させるためにベークをすることが望ましい。ベーク温度は50~500℃の範囲内が好ましい。このとき、製造されるデバイスの構造にもよるが、デバイスへの熱ダメージを少なくするため、ベーク温度は400℃以下が特に好ましい。ベーク時間は10秒~300秒の範囲内が好ましく用いられる。
 また、本実施形態のパターン形成方法では、上層レジスト膜にパターンを形成する方法として、波長が300nm以下の光又はEUV光を用いたリソグラフィー法;電子線直接描画法、及び誘導自己組織化法のいずれかの方法を好適に用いることができる。このような方法を用いることで、レジスト上層膜上に微細なパターンを形成することができる。
 前記上層レジスト膜組成物としては、上述の上層レジスト膜にパターンを形成する方法に応じて適宜選択することができる。例えば、300nm以下の光又はEUV光を用いたリソグラフィーを行う場合、上層レジスト膜組成物としては、化学増幅型のフォトレジスト膜材料を用いることができる。このようなフォトレジスト膜材料としては、フォトレジスト膜を形成して露光を行った後に、アルカリ現像液を用いて露光部を溶解することによりポジ型パターンを形成するものや、有機溶媒からなる現像液を用いて未露光部を溶解することによりネガ型パターンを形成するものを例示できる。
 本実施形態のリソグラフィー用下層膜形成用組成物より形成されるレジスト下層膜は、リソグラフィープロセスにおいて使用される光の波長によっては、その光を吸収することがある。そして、そのような場合には、基板からの反射光を防止する効果を有する反射防止膜として機能することができる。
 また、EUVレジストの下層膜としてはハードマスクとしての機能以外に以下の目的にも使用できる。EUVレジストとインターミキシングすることなく、EUV露光(波長13.5nm)に際して好ましくない露光光、例えば上述のUVやDUV(ArF光、KrF光)の基板又は界面からの反射を防止することができるEUVレジストの下層反射防止膜として、本実施形態に係るリソグラフィー用下層膜形成用組成物を用いることができる。EUVレジストの下層で効率的に反射を防止することができる。また、前記下層膜形成用組成物はEUVの吸収能に優れることから、上層レジスト組成物の増感作用を発現することが可能であり、感度向上に寄与する。EUVレジスト下層膜として用いた場合は、プロセスはフォトレジスト用下層膜と同様に行うことができる。
 〔第二の実施形態〕
 <リソグラフィー用下層膜形成用組成物>
 本発明の第二の実施形態に係るリソグラフィー用下層膜形成用組成物は、本実施形態に係る酸発生剤を含有するリソグラフィー用下層膜形成用組成物である。本実施形態のリソグラフィー用下層膜形成用組成物は、膜の欠陥低減(薄膜形成)が可能で、保存安定性が良好であり、高感度で長期耐光性があり、かつ良好なレジストパターン形状を付与できる。本実施形態のリソグラフィー用下層膜形成用組成物は、ケイ素含有化合物を含まないことができる。
 本実施形態のリソグラフィー用下層膜形成用組成物は、湿式プロセスが適用可能であり、耐熱性、密着性、段差埋め込み特性、特に平坦性に優れるフォトレジスト下層膜を形成するために有用なリソグラフィー用下層膜形成用組成物を実現することができる。そして、このリソグラフィー用下層膜形成用組成物は、架橋密度を比較的高くすることが可能で、溶媒溶解性も高い、特定構造を有する化合物を用いているため、ベーク時の膜の劣化が抑制され、フッ素ガス系プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらには、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。本実施形態のリソグラフィー用下層膜形成用組成物は、特に耐熱性、段差埋め込み特性及び平坦性に優れるため、例えば、複数のレジスト層のうち最下層に設けられるレジスト下層膜形成用の組成物として用いることができる。ただし、本実施形態のリソグラフィー用下層膜形成用組成物を用いて形成されたレジスト下層膜は、更に基板との間に他のレジスト下層を含むものであってもよい。
 本実施形態に係るリソグラフィー用下層膜形成用組成物は、本実施形態に係る酸発生剤の他に、溶媒、酸架橋剤などを更に含むことができる。更に、任意成分として、塩基性化合物、その他、水、アルコール、及び硬化触媒等を含むことができる。塗布性及び品質安定性の点から、リソグラフィー用下層膜形成用組成物中の本実施形態に係る酸発生剤の含有量は、0.001~49質量%であることが好ましく、1~40質量%であることがより好ましく、3~30質量%であることが特に好ましい。
 -溶媒-
 本実施形態において用いる溶媒としては、本実施形態に係る酸発生剤が少なくとも溶解するものであれば、公知のものを適宜用いることができる。例えば国際公開第2017/188451号に開示された溶媒が挙げられる。
 溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、前記リソグラフィー用下層膜形成用組成物の全固形分100質量部に対して、100~10,000質量部であることが好ましく、200~5,000質量部であることがより好ましく、200~1,000質量部であることがさらに好ましい。
 -酸架橋剤-
 上述のように本実施形態のリソグラフィー用下層膜形成用組成物は、インターミキシングを抑制する等の観点から、必要に応じて酸架橋剤を含有していてもよい。本実施形態で使用可能な酸架橋剤としては、例えば、メラミン化合物、エポキシ化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、チオエポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物であって、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基を置換基(架橋性基)として有するものなどが挙げられるが、これらに特に限定されない。なお、これらの酸架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。また、これらは添加剤として用いてもよい。また、ヒドロキシ基を含む化合物も架橋剤として用いることができる。前記酸架橋剤の具体例としては、例えば、国際公開2013/024779号に記載のものが挙げられる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、酸架橋剤の含有量は、特に限定されないが、前記リソグラフィー用下層膜形成用組成物の全固形分100質量に対して、5~50質量部であることが好ましく、より好ましくは10~40質量部である。上述の好ましい範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
 -塩基性化合物-
 さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
 塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、例えば、第一級、第二級又は第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシル基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられるが、これらに特に限定されない。塩基性化合物の具体例としては、例えば、国際公開2013/024779号に記載のものが挙げられる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、塩基性化合物の含有量は、特に限定されないが、前記リソグラフィー用下層膜形成用組成物の全固形分100質量部に対して、0.001~2質量部であることが好ましく、より好ましくは0.01~1質量部である。上述の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
 また、本実施形態のリソグラフィー用下層膜形成用組成物は、熱硬化性の付与や吸光度をコントロールする目的で、他の樹脂又は化合物を含有していてもよい。このような他の樹脂又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレンなどのナフタレン環、フェナントレンキノン、フルオレンなどのビフェニル環、チオフェン、インデンなどのヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、公知の添加剤を含有していてもよい。前記公知の添加剤としては、以下に限定されないが、例えば、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤が挙げられる。
 <リソグラフィー用レジスト下層膜及びパターン形成方法>
 本発明の第二の実施形態に係るリソグラフィー用レジスト下層膜は、前記本発明の第二の実施形態に係るリソグラフィー用下層膜形成用組成物を用いて形成される。本実施形態において形成されたパターンは、例えば、レジストパターンや回路パターンとして用いることができる。
 また、本発明の第二の実施形態に係るパターン形成方法は、基板上に、本発明の第二の実施形態のリソグラフィー用下層膜形成用組成物を用いてレジスト下層膜を形成する工程(A-1工程)と、前記レジスト下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2工程)と、前記A-2工程において少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3工程)と、を有する。尚、“フォトレジスト層”とは、レジスト層の最外層、即ちレジスト層中最も表側(基板とは逆側)に設けられる層を意味する。
 さらに、本発明の第二の実施形態の他のパターン形成方法は、基板上に、本発明の第二の実施形態のリソグラフィー用下層膜形成用組成物を用いてレジスト下層膜を形成する工程(B-1工程)と、前記下層膜上に、レジスト中間層膜材料(例えば、珪素含有レジスト層)を用いてレジスト中間層膜を形成する工程(B-2工程)と、前記レジスト中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3工程)と、前記B-3工程において少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4工程)と、前記B-4工程においてレジストパターンが形成された後、前記レジストパターンをマスクとして前記レジスト中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5工程)と、を有する。
 本実施形態のリソグラフィー用レジスト下層膜は、本実施形態のリソグラフィー用下層膜形成用組成物から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態のリソグラフィー用下層膜形成用組成物をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法などで基板上に付与した後、有機溶媒を揮発させるなどして除去することで、レジスト下層膜を形成することができる。
 レジスト下層膜の形成時には、上層レジスト(例えば、フォトレジスト層やレジスト中間層膜)とのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベーク処理を施すことが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10秒間~300秒間の範囲内であることが好ましい。なお、レジスト下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20,000nm程度であることが好ましく、より好ましくは50~15,000nmとすることが好ましい。
 基板上にレジスト下層膜を作製した後、フォトレジスト層とレジスト下層膜との間にレジスト中間層膜を設けることができる。例えば、2層プロセスの場合はレジスト下層膜の上に珪素含有レジスト層又は通常の炭化水素からなる単層レジスト等をレジスト中間層膜として設けることができる。また、例えば、3層プロセスの場合は、レジスト中間層膜とフォトレジスト層と間に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。これらフォトレジスト層、レジスト中間層膜、及びこれら層の間に設けられるレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
 例えば、2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
 また、例えば、3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、レジスト下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、レジスト中間層膜で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、以下に限定されないが、193nm露光用としてはフェニル基又は珪素-珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
 また、Chemical Vapour Deposition(CVD)法で形成したレジスト中間層膜を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによるレジスト中間層膜の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
 さらに、本実施形態のレジスト下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態のレジスト下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
 上述の公知のフォトレジスト材料によりレジスト層を形成する場合においては、前記レジスト下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法などで塗布した後、通常、プリベークが行われるが、このプリベークは、ベーク温度80~180℃、及び、ベーク時間10秒間~300秒間の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、各レジスト膜の厚さは特に制限されないが、一般的には、30nm~500nmが好ましく、より好ましくは50nm~400nmである。
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
 上述の方法により形成されるレジストパターンは、本実施形態のレジスト下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態のレジスト下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させることができる。
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおけるレジスト下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO、NH、SO、N、NO、Hガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO、NH、N、NO、Hガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
 一方、3層プロセスにおける中間層(フォトレジスト層とレジスト下層膜との間に位置する層)のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上述の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、レジスト下層膜の加工を行うことができる。
 ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報、WO2004/066377に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
 中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号公報、特開2007-226204号公報に記載されたものを用いることができる。
 また、基板のエッチングも、常法によって行うことができ、例えば、基板がSiO、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
 本実施形態のレジスト下層膜は、これら基板のエッチング耐性に優れる。なお、基板としては、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50nm~10,000nm程度であることが好ましく、より好ましくは75nm~5,000nmである。
 本実施形態のレジスト下層膜は段差を有する基板への埋め込み平坦性に優れる。埋め込み平坦性の評価方法としては、公知のものを適宜選択して使用することができ、特に限定はされないが、例えば、段差を有するシリコン製基板上に所定の濃度に調整した各化合物の溶液をスピンコートにより塗布し、110℃にて90秒間の溶媒除去乾燥を行い、所定の厚みとなるように下層膜を形成した後、240~300℃程度の温度で所定時間ベーク後のライン&スペース領域とパターンのない開放領域との下層膜厚みの差(ΔT)をエリプソメーターにより測定することにより、段差基板に対する埋め込み平坦性を評価することができる。
 (光学物品形成用組成物及び光学物品)
 本実施形態に係る光学部品形成用組成物は、本実施形態に係る酸発生剤を含有する光学部品形成用組成物である。該光学部品形成用組成物は、光学物品の形成に有用に用いられる。本実施形態の光学部品形成用組成物は、本実施形態に係る酸発生剤を含有することにより、得られる光学物品の高屈折率及び高透明性が期待でき、さらに、保存安定性、構造体形成能(膜形成能)、耐熱性が期待される。
 光学物品の屈折率は光学部品の小型化や集光率の向上の観点から、1.65以上が好ましく、1.70以上がより好ましく、1.75以上が更に好ましい。光学物品の透明性は集光率の向上の観点から、70%以上が好ましく、80%以上がより好ましく、90%以上が更に好ましい。
 屈折率の測定方法は特に制限されず公知の方法が用いられる。例えば、分光エリプソメトリー法、最小偏角法、臨界角法(アッベ式、プルフリッヒ式)、Vブロック法、プリズムカプラ法や液浸法(ベッケ線法)が挙げられる。透明性の測定方法は特に制限されず公知の方法が用いられる。例えば、分光光度計や分光エリプソメトリー法が挙げられる。
 また該光学部品形成用組成物を硬化して得られる、光学物品を形成する本実施形態に係る硬化物は、三次元架橋物であることができ、低温から高温までの広範囲の熱処理によって着色が抑制され、高屈折率及び高透明性が期待できる。
 本実施形態の光学部品形成用組成物は、本実施形態に係る酸発生剤以外に、更に溶媒を含有することができる。該溶媒としては、前述した本実施形態のリソグラフィー用下層膜形成用組成物に用いられる溶媒と同様であることができる。
 本実施形態の光学部品形成用組成物において、固形成分の量と溶媒の量との関係は、特に限定されないが、固形成分及び溶媒の合計100質量%に対して、固形成分1~80質量%及び溶媒20~99質量%であることが好ましく、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、更に好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、特に好ましくは固形成分2~10質量%及び溶媒90~98質量%である。なお、本実施形態の光学部品形成用組成物は溶媒を含まないこともできる。
 本実施形態の光学部品形成用組成物は、他の固形成分として、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)からなる群より選ばれる少なくとも一種を含有してもよい。
 本実施形態の光学部品形成用組成物において、本実施形態に係る酸発生剤の含有量は、特に限定されないが、固形成分の全質量(本実施形態に係る酸発生剤、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)などの任意に使用される固形成分の総和、以下同様)の0.001~49質量%であることが好ましく、より好ましくは1~40質量%、更に好ましくは3~30質量%、特に好ましくは3~20質量%である。
 -酸架橋剤(G)-
 本実施形態の光学部品形成用組成物は、構造体の強度を増す為の添加剤として使用する場合に、酸架橋剤(G)を一種以上含むことが好ましい。酸架橋剤(G)は、特に限定されず、例えば前述した本実施形態のリソグラフィー用下層膜形成用組成物に含まれ得る酸架橋剤(G)と同様であることができる。
 本実施形態の光学部品形成用組成物において、酸架橋剤(G)の含有量は、固形成分の全質量の0.5~49質量%が好ましく、0.5~40質量%がより好ましく、1~30質量%が更に好ましく、2~20質量%が特に好ましい。前記酸架橋剤(G)の含有割合を0.5質量%以上とすると、光学部品形成用組成物の有機溶媒に対する溶解性の抑制効果を向上させることができるので好ましく、一方、49質量%以下とすると、光学部品形成用組成物としての耐熱性の低下を抑制できることから好ましい。
 また、前記酸架橋剤(G)中の前記酸架橋剤(G1)、前記酸架橋剤(G2)、前記酸架橋剤(G3)から選ばれる少なくとも1種の化合物の含有量も特に限定はなく、光学部品形成用組成物を形成する際に使用される基板の種類等によって種々の範囲とすることができる。
 -酸拡散制御剤(E)-
 本実施形態の光学部品形成用組成物は、酸発生剤から生じた酸の光学部品形成用組成物中における拡散を制御して、好ましくない化学反応を阻止する作用等を有する酸拡散制御剤(E)を含有してもよい。この様な酸拡散制御剤(E)を使用することにより、光学部品形成用組成物の貯蔵安定性が向上する。また解像度が一層向上するとともに、加熱後の引き置き時間の変動による構造体の線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。酸拡散制御剤(E)は、特に限定されず、例えば前述した本実施形態のリソグラフィー用下層膜形成用組成物に含まれ得る酸拡散制御剤(E)と同様であることができる。
 酸拡散制御剤(E)の含有量は、固形成分の全質量の0.001~49質量%が好ましく、0.01~10質量%がより好ましく、0.01~5質量%が更に好ましく、0.01~3質量%が特に好ましい。酸拡散制御剤(E)の含有量が前記範囲内であると、解像度の低下、パターン形状、寸法忠実度等の劣化を一層抑制できる。更に、電子線照射から放射線照射後加熱までの引き置き時間が長くなっても、パターン上層部の形状が劣化することがない。また、酸拡散制御剤(E)の含有量が10質量%以下であると、感度、未露光部の現像性等の低下を防ぐことができる。またこのような酸拡散制御剤を使用することにより、光学部品形成用組成物の貯蔵安定性が向上し、また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動による光学部品形成用組成物の線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。
 -その他の成分(F)-
 本実施形態の光学部品形成用組成物には、本実施形態の目的を阻害しない範囲で、必要に応じて、その他の成分(F)として、溶解促進剤、溶解制御剤、増感剤、界面活性剤及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。その他の成分(F)としては、例えば前述した本実施形態のリソグラフィー用下層膜形成用組成物に含まれ得るその他の成分(F)と同様であることができる。
 その他の成分(F)の合計含有量は、固形成分の全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%が更に好ましく、0質量%が特に好ましい。
 本実施形態の光学部品形成用組成物において、本実施形態に係る酸発生剤、酸拡散制御剤(E)、その他の成分(F)の含有量(本実施形態に係る酸発生剤/酸拡散制御剤(E)/その他の成分(F))は、固形物基準の質量%で、好ましくは10~90/1~30/0~10である。各成分の含有割合は、その総和が100質量%になるように各範囲から選ばれる。前記含有割合にすると、感度、解像度、現像性等の性能に一層優れる。
 本実施形態の光学部品形成用組成物の調製方法は、特に限定されず、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば孔径0.2μm程度のフィルター等でろ過する方法等が挙げられる。
 本実施形態の光学部品形成用組成物は、本発明の目的を阻害しない範囲で他の樹脂を含むことができる。他の樹脂は、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体或いはこれらの誘導体などが挙げられる。当該樹脂の含有量は、特に限定されず、使用する本実施形態に係る酸発生剤の種類に応じて適宜調節される。
 また本実施形態の硬化物は、前記光学部品形成用組成物を硬化して得られ、各種樹脂として使用することができる。これらの硬化物は、高融点、高屈折率及び高透明性といった様々な特性を付与する高汎用性の材料として様々な用途に用いることができる。なお、当該硬化物は、前記組成物を光照射、加熱等の各組成に対応した公知の方法を用いることによって得ることができる。
 これらの硬化物は、エポキシ樹脂、ポリカーボネート樹脂、アクリル樹脂等の各種合成樹脂として、更には、機能性を活かしてレンズ、光学シート等の光学部品として用いることができる。
 以下、実施例を挙げて、本実施形態を更に具体的に説明する。但し、本発明は、これらの実施例に限定はされない。
 [実施例1]
 (BEPMSの合成)
 下記式で示されるように、下記BEPMSを合成した。
Figure JPOXMLDOC01-appb-C000059
 具体的には、以下の方法によりBEPMSを合成した。200mlナスフラスコ内で4-メチルチオフェノール(22mmol:3.120g)と炭酸カリウム(85mmol;11.71g)をアセトン(75ml)に溶解させ、窒素下0℃で15分間攪拌させた。その後ジブロモエタン(69mmol:12.90g)を滴下し、50℃で24時間反応させた。得られた物質をメンブランろ過しエバポレーターにかけ溶媒をとばすと白色の固体(BEPMS)が得られた。構造解析にはNMR、IR、を用いTLC測定と融点測定も行った。その後、展開溶媒にクロロホルムを用いてシリカゲルカラムクロマトグラフィーで生成物を精製した。構造解析にはIR、NMRを用い、融点測定も行った。融点は64~66℃、収量は1.43g、収率は27.6%であった。BEPMSのH-NMRスペクトルを図1に示す。
 (MTP-BEPMSの合成)
 下記式で示されるように、下記MTP-BEPMSを合成した。
Figure JPOXMLDOC01-appb-C000060
 具体的には、以下の方法によりMTP-BEPMSを合成した。試験管内で、4,4’,4’’-トリヒドロキシ-トリフェニルメタン(MTP)(0.5mmol:0.1461g)、炭酸セシウム(2.0mmol:0.651g)、相間移動触媒としてのTBAB(0.2mmol:0.0644)を、DMF(5ml)に溶解させて80℃で30分間攪拌させた。その後、前記BEPMS(2.0mmol:0.493g)をDMF(2ml)に溶かして滴下し80℃で24時間反応させた。得られた物質を1N HClで再沈殿させてキリヤマろ過し、固体を得てクロロホルムに溶かしてヘキサンで再沈殿させた。得られた物質をメンブランろ過しオレンジ色の固体(MTP-BEPMS)を精製した。構造解析にはNMR、IRを用い、融点測定も行った。収量は0.336g、収率は85%、融点は112~113℃であった。MTP-BEPMSのH-NMRスペクトルを図2に示す。
 (MTP-BEPMSイオン化合物の合成)
 下記式で示されるように、下記MTP-BEPMSイオン化合物を合成した。
Figure JPOXMLDOC01-appb-C000061
 具体的には、以下の方法によりMTP-BEPMSイオン化合物を合成した。20mlナスフラスコに、前記MTP-BEPMS(0.1mmol:0.0791g)とAgCFSO(0.4mmol:0.1027g)を加え、脱気し窒素置換したのち、ヨードメタン(0.4mmol:0.025ml)、溶媒としてアセトニトリル(5ml)を加え常温下24時間遮光条件で反応させた。得られた物質をメンブランろ過し、ろ液をエバポレーターにかけ溶媒をとばすことで茶色の粘性固体を得た。その後、アセトンに溶かしてジエチルエーテルで再沈殿し茶色の粘性固体(MTP-BEPMSイオン化合物)を精製した。構造解析にはNMR,IRを用いた。MTP-BEPMSイオン化合物のH-NMRスペクトルを図3に示す。
 [実施例2~7]
 実施例1で用いた4,4’,4’’-トリヒドロキシ-トリフェニルメタン(MTP)の代わりに、表1に示す化合物を用いて同様に合成を行い、表1に示すイオン化合物を得た。XBisN-1は、国際公開第2013/024778号の合成例15と同様にして得たものを使用した。BiF-1は、国際公開第2015/137485号の合成例1と同様にして得たものを使用した。NF71A7は、国際公開第2019/151403号に記載のリフェノール(B)の製造と同様にして得たものを使用した。
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 [実施例8]
 (BHPMSの合成)
 下記式で示されるように、下記BHPMSを合成した。
Figure JPOXMLDOC01-appb-C000075
 具体的には、以下の方法によりBHPMSを合成した。100mlナスフラスコ内で4-メチルチオフェノール(7mmol:0.98g)と炭酸カリウム(7mmol:0.96g)をTHF(30ml)に溶解させ、窒素下還流条件で2時間攪拌させた。その後1,6ジブロモヘキサン(35mmol:8.53g)を加え、70℃で24時間反応させた。得られた物質を塩酸とクロロホルムを用いて抽出し、有機層をエバポレーターで濃縮した。その後、メタノールを貧溶媒として用いて再沈殿をして白色の固体(BHPMS)が得られた。その後、シリカゲルカラムクロマトグラフィーで生成物を精製した。構造解析にはIR、NMRを用い、融点測定も行った。融点は71~72℃、収量は0.7g、収率は33%であった。BHPMSのH-NMRスペクトルを図4に示す。
 (MTP-BHPMSの合成)
 下記式で示されるように、下記MTP-BHPMSを合成した。
Figure JPOXMLDOC01-appb-C000076
 具体的には、以下の方法によりMTP-BHPMSを合成した。50mLのナスフラスコで、4,4’,4’’-トリヒドロキシ-トリフェニルメタン(MTP)(0.5mmol:0.1461g)、炭酸カリウム(2.0mmol:0.651g)、相間移動触媒としてのTBAB(0.2mmol:0.0644)を、DMF(7ml)に溶解させて80℃で30分間攪拌させた。その後、前記BHPMS(2.0mmol:0.493g)をDMF(3ml)に溶かして滴下し80℃で24時間反応させた。得られた物質を1N HClで再沈殿させてキリヤマろ過し、固体を得てクロロホルムに溶かしてヘキサンで再沈殿させた。得られた物質をデカンテーションで回収し赤色の固体(MTP-BHPMS)を得た。構造解析にはNMR、IRを用いた。収量は0.85g、収率は88%であった。MTP-BHPMSのH-NMRスペクトルを図5に示す。
 (MTP-BHPMSイオン化合物の合成)
 下記式で示されるように、下記MTP-BHPMSイオン化合物を合成した。
Figure JPOXMLDOC01-appb-C000077
 具体的には、以下の方法によりMTP-BHPMSイオン化合物を合成した。20mlナスフラスコに、前記MTP-BHPMS(0.83mmol:0.80g)とAgCFSO(3mmol:0.77g)を加え、脱気し窒素置換したのち、ヨードメタン(3mmol:0.186ml)、溶媒としてアセトニトリル(5ml)を加え常温下24時間遮光条件で反応させた。得られた物質をメンブランろ過し、ろ液をエバポレーターにかけ溶媒をとばすことで茶色の粘性固体を得た。その後、アセトンに溶かしてジエチルエーテルで再沈殿し赤色の粘性固体(MTP-BHPMSイオン化合物)を精製した。構造解析にはNMR、IRを用いた。MTP-BHPMSイオン化合物のH-NMRスペクトルを図6に示す。
 [耐熱性評価]
 実施例1~8で得られたイオン化合物の熱分解開始温度を熱重量測定装置(TGA)で測定した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000078
 表2に示されるように、実施例1~8で得られたイオン化合物はいずれも高い熱分解温度を示した。したがって、本実施形態に係る化合物は高い耐熱性を有することがわかった。本実施形態に係る化合物は高耐熱性であるため、成膜時のベーク温度を高くすることができ、平坦化に有利である。また、硬度の高い膜が得られるため、レジストや下層膜として使用してパターンを形成すると解像度の高いパターンを維持できる。
 [比較例1]
 (AC-1の合成)
 下記式で示される構造を有する樹脂であるAC-1を合成した。
Figure JPOXMLDOC01-appb-C000079
 具体的には、以下の方法によりAC-1を合成した。2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、及び、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。当該反応溶液を、窒素雰囲気下で、反応温度を63℃に保持して22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。得られた樹脂を凝固精製し、得られた白色粉末をろ過した後、減圧下40℃で一晩乾燥させて、AC-1を得た。
 [感度評価]
 実施例1~8で得られたイオン化合物を、プロピレングリコールモノメチルエーテルに溶解させて3%溶液とした。この溶液をシリコンウエハ上に滴下し、スピンコーターを用いて3300rpm、30秒間で塗布した。これを90℃、60秒間ベークし、50~80nmの薄膜を得た。膜厚を測定後、リソテックジャパン製「EUV露光装置(EUVES-7000)」でEUV照射し、イオン交換水に30秒間浸漬して現像を行った。膜厚が0になるEUV照射量を感度とした。また、比較例1で得られた樹脂AC-1を用いて、イオン交換水に30秒間浸漬する代わりに、TMAH2.38質量%アルカリ現像液に60秒間浸漬して現像を行い、同様に感度を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000080
 表3の結果より、本実施形態に係る化合物は感度が高く、高感度のレジストとして使用できることが分かった。本実施形態に係る化合物は、酸発生剤の添加をせずに高感度が得られるため、ラフネスの原因となる酸の拡散を伴う化学増幅のメカニズムの利用が不要であり、レジストとして用いた場合に高解像度のパターンが得られる。
 [酸発生剤として用いた場合の耐熱性評価]
 実施例1~8で得られたイオン化合物、及びみどり化学社製ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホネート(DTDPI)と、実施例5で原料に用いたXBisN-1、三和ケミカル社製ニカラックMX270(ニカラック)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を、表4に示す量で配合して、組成物を調製した。なお、表4において括弧内の数値の単位は「質量部」である。
Figure JPOXMLDOC01-appb-T000081
 前記組成物を膜厚300nmのシリコンウエハ上にスピンコートにより塗布し、150℃で60秒間ベークすることにより、厚さ100nmの膜を形成した。さらに400℃で60秒間ベークし、膜厚の減少率を測定した。膜厚減少率が40%未満であるものをA、40%以上60%未満であるものをB、60%以上であるものをCとして評価した。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000082
 表5より、本実施形態に係る化合物を酸発生剤として用いると、耐熱性の高い膜を形成できることがわかった。
 以上により、本実施形態に係る化合物は、レジスト膜、下層膜、光学物品に好適に用いることができる。
 

Claims (27)

  1.  下記式(P-0)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(P-0)中、Arは炭素数6~60のアリール基を有する基であり、ORTSは各々独立して、水酸基、下記式(TS-0)で表される基、又は下記式(TS-1)で表される基である。nは1~20の整数である。但し、ORTSのうち少なくとも一つは、下記式(TS-0)で表される基又は下記式(TS-1)で表される基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(TS-0)中、Rは単結合又は置換基を有していてもよい炭素数1~30の2価の基であり、Rは置換基を有していてもよい炭素数1~10のアルキル基又は置換基を有していてもよい炭素数6~10のアリール基であり、Rは置換基を有していてもよい炭素数1~10のアルキル基又は置換基を有していてもよい炭素数6~10のアリール基であり、Anはフッ素又はヨウ素を含むアニオンである。)
    Figure JPOXMLDOC01-appb-C000003
    (式(TS-1)中、R、R及びAnは式(TS-0)と同義である。)
  2.  前記式(TS-0)及び前記式(TS-1)において、Rは置換基を有していてもよい炭素数1~10のアルキル基であり、AnはRSO (Rは置換基を有していてもよい炭素数1~9のフッ素又はヨウ素を含む1価の基である。)である請求項1に記載の化合物。
  3.  前記式(TS-0)及び前記式(TS-1)において、Rは置換基を有していてもよい炭素数2~6の2価の基である請求項1又は2に記載の化合物。
  4.  前記式(TS-0)において、Rはメチル基又はエチル基である請求項1から3のいずれか一項に記載の化合物。
  5.  前記式(TS-0)において、Rはメチル基である請求項4に記載の化合物。
  6.  前記式(TS-0)及び前記式(TS-1)において、Rはメチル基であり、AnはCFSO である請求項1から5のいずれか一項に記載の化合物。
  7.  下記式(P-0A)で表される化合物である請求項1から6のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式(P-0A)中、Xは各々独立して酸素原子、硫黄原子又は無架橋であり、Rは単結合又は置換基を有していてもよい炭素数1~30の2n価の基であり、R及びRは各々独立してハロゲン原子、置換基を有していてもよい炭素数1~30の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状アルキル基、置換基を有していてもよい炭素数3~30の環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、シアノ基、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基、前記式(TS-0)で表される基、又は前記式(TS-1)で表される基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいても良い。m及びmは各々独立して0~7の整数であり、p及びpは各々独立して0又は1であり、nは1~4の整数である。但し、m及びmの少なくとも1つは1~7の整数であり、式(P-0A)はR又はRとしての前記式(TS-0)で表される基又は前記式(TS-1)で表される基を少なくとも一つ含む。)
  8.  下記式(P-0B)で表される化合物である請求項1から6のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    (式(P-0B)中、Rは炭素数1~30の2n価の基であり、R~R11は各々独立してハロゲン原子、置換基を有していてもよい炭素数1~10の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状アルキル基、置換基を有していてもよい炭素数3~30の環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、チオール基、シアノ基、ニトロ基、アミノ基、カルボン酸基、水酸基、前記式(TS-0)で表される基、又は前記式(TS-1)で表される基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいても良い。m及びmは各々独立して0~8の整数であり、m及びmは各々独立して0~9の整数であり、p~pは各々独立して0~2の整数であり、nは1~4の整数である。但し、m、m、m及びmの少なくとも1つは1以上の整数であり、式(P-0B)はR、R、R10又はR11としての前記式(TS-0)で表される基又は前記式(TS-1)で表される基を少なくとも一つ含む。)
  9.  下記式(P-0C)で表される化合物である請求項1から6のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    (式(P-0C)中、L~Lは各々独立して単結合、置換基を有していてもよい炭素数1~20の直鎖状アルキレン基、置換基を有していてもよい炭素数3~20の分岐状アルキレン基、置換基を有していてもよい炭素数3~20のシクロアルキレン基、置換基を有していてもよい炭素数6~24のアリーレン基、-O-、-OC(=O)-、-OC(=O)O-、-N(R20)-C(=O)-、-N(R20)-C(=O)O-、-S-、-SO-、又は-SO-であり、R20は水素原子又は置換基を有していてもよい炭素数1~10のアルキル基である。R16~R19は各々独立して置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数3~20のシクロアルキル基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数1~20のアルコキシ基、前記式(TS-0)で表される基、前記式(TS-1)で表される基、シアノ基、ニトロ基、水酸基、複素環基、ハロゲン原子、カルボキシル基、炭素数1~20のアルキルシリル基;酸により解離する性質を有する、炭素数2~20の置換メチル基、炭素数3~20の1-置換エチル基、炭素数4~20の1-置換-n-プロピル基、炭素数3~20の1-分岐アルキル基、炭素数1~20のシリル基、炭素数2~20のアシル基、炭素数2~20の1-置換アルコキシアルキル基、炭素数2~20の環状エーテル基、炭素数2~20のアルコキシカルボニル基、アルコキシカルボニルアルキル基;又は水素原子である。R12~R15は各々独立して炭素数2~20のアルキル基、前記式(TS-0)で表される基、前記式(TS-1)で表される基、又は下記式(P-0C-1)
    Figure JPOXMLDOC01-appb-C000007
    で表される基である。R21は各々独立して置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数3~20のシクロアルキル基、置換基を有していてもよい炭素数6~20のアリール基、置換基を有していてもよい炭素数1~20のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、炭素数1~20のアルキルシリル基;酸により解離する性質を有する、炭素数2~20の置換メチル基、炭素数3~20の1-置換エチル基、炭素数4~20の1-置換-n-プロピル基、炭素数3~20の1-分岐アルキル基、炭素数1~20のシリル基、炭素数2~20のアシル基、炭素数2~20の1-置換アルコキシアルキル基、炭素数2~20の環状エーテル基、炭素数2~20のアルコキシカルボニル基、又はアルコキシカルボニルアルキル基である。但し、R12~R19のうち少なくとも一つは前記式(TS-0)で表される基又は前記式(TS-1)で表される基である。m~m10は各々独立して1~4の整数であり、pは0~5の整数である。)
  10.  下記式(P-1)で表される化合物である請求項1から6のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
    (式(P-1)中、ORTSは前記式(P-0)と同義である。)
  11.  請求項1から10のいずれか一項に記載の化合物を含む組成物。
  12.  溶媒を更に含有する請求項11に記載の組成物。
  13.  酸発生剤を更に含有する請求項11又は12に記載の組成物。
  14.  酸架橋剤を更に含有する請求項11から13のいずれか一項に記載の組成物。
  15.  請求項11から14のいずれか一項に記載の組成物から形成されるレジスト膜。
  16.  請求項11から14のいずれか一項に記載の組成物を用いて基板上に膜を形成する膜形成工程と、
     前記膜を露光する露光工程と、
     前記露光工程において露光された膜を現像してパターンを形成する現像工程と、
    を含むパターン形成方法。
  17.  請求項1から10のいずれか一項に記載の化合物の製造方法であって、
     下記式(P-0’)で表される化合物と、下記式(TS-0’)で表される化合物又は下記式(TS-1’)で表される化合物とを縮合して縮合物を得る工程と、
     前記縮合物と、フッ素又はヨウ素を含むアニオンを有する塩と、アルキル化剤とを反応させる工程と、
    を含む方法。
    Figure JPOXMLDOC01-appb-C000009
    (式(P-0’)中、Ar及びnは前記式(P-0)と同義である。)
    Figure JPOXMLDOC01-appb-C000010
    (式(TS-0’)中、Xはハロゲン原子であり、R及びRは前記式(TS-0)と同義である。)
    Figure JPOXMLDOC01-appb-C000011
    (式(TS-1’)中、Xはハロゲン原子であり、Rは前記式(TS-1)と同義である。)
  18.  請求項1から10のいずれか一項に記載の化合物を含む酸発生剤。
  19.  請求項18に記載の酸発生剤を含む組成物。
  20.  溶媒を更に含有する請求項19に記載の組成物。
  21.  酸架橋剤を更に含有する請求項19又は20に記載の組成物。
  22.  リソグラフィー用下層膜形成用組成物である請求項19から21のいずれか一項に記載の組成物。
  23.  ケイ素含有化合物を更に含有する請求項22に記載の組成物。
  24.  請求項22又は23に記載の組成物から形成された下層膜。
  25.  請求項22又は23に記載の組成物を用いてレジスト下層膜を形成する工程と、
     前記レジスト下層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
     前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程と、
    を含むパターン形成方法。
  26.  光学物品形成用組成物である請求項19から21のいずれか一項に記載の組成物。
  27.  請求項26に記載の組成物から形成された光学物品。
     
PCT/JP2021/017656 2020-05-11 2021-05-10 化合物及びその製造方法、酸発生剤、組成物、レジスト膜、下層膜、パターン形成方法、及び光学物品 WO2021230184A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/924,277 US20230185191A1 (en) 2020-05-11 2021-05-10 Compound, production method therefor, acid generator, composition, resist film, underlayer film, pattern formation method, and optical component
KR1020227040174A KR20230009399A (ko) 2020-05-11 2021-05-10 화합물 및 그의 제조방법, 산발생제, 조성물, 레지스트막, 하층막, 패턴 형성방법, 및 광학물품
JP2022521894A JPWO2021230184A1 (ja) 2020-05-11 2021-05-10
CN202180034592.7A CN115605458A (zh) 2020-05-11 2021-05-10 化合物及其制造方法、产酸剂、组合物、抗蚀膜、下层膜、图案形成方法和光学物品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020083107 2020-05-11
JP2020-083105 2020-05-11
JP2020-083107 2020-05-11
JP2020083105 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021230184A1 true WO2021230184A1 (ja) 2021-11-18

Family

ID=78525885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017656 WO2021230184A1 (ja) 2020-05-11 2021-05-10 化合物及びその製造方法、酸発生剤、組成物、レジスト膜、下層膜、パターン形成方法、及び光学物品

Country Status (6)

Country Link
US (1) US20230185191A1 (ja)
JP (1) JPWO2021230184A1 (ja)
KR (1) KR20230009399A (ja)
CN (1) CN115605458A (ja)
TW (1) TW202200542A (ja)
WO (1) WO2021230184A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066380A1 (en) * 2008-12-12 2010-06-17 Bayer Schering Pharma Aktiengesellschaft Triaryl-sulphonium compounds, kit and methods for labeling positron emitting isotopes
WO2016030329A1 (en) * 2014-08-24 2016-03-03 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method for the production of 18f-labeled active esters and their application exemplified by the preparation of a psma-specific pet-tracer
JP2020046661A (ja) * 2018-09-18 2020-03-26 信越化学工業株式会社 レジスト材料及びパターン形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101127A1 (ja) 2004-04-15 2005-10-27 Mitsubishi Gas Chemical Company, Inc. レジスト組成物
JP4858136B2 (ja) 2006-12-06 2012-01-18 三菱瓦斯化学株式会社 感放射線性レジスト組成物
JP5446118B2 (ja) 2007-04-23 2014-03-19 三菱瓦斯化学株式会社 感放射線性組成物
KR101229312B1 (ko) * 2011-01-03 2013-02-04 금호석유화학 주식회사 술포늄 화합물, 광산발생제 및 이의 제조방법
JP6119544B2 (ja) 2013-10-04 2017-04-26 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP6196897B2 (ja) 2013-12-05 2017-09-13 東京応化工業株式会社 ネガ型レジスト組成物、レジストパターン形成方法及び錯体
US20170197914A1 (en) * 2016-01-11 2017-07-13 Industrial Technology Research Institute Method for preparing an aromatic sulfide or salt thereof
CN108147983B (zh) * 2016-12-05 2020-01-31 中国科学院化学研究所 一类硫鎓盐键合苯多酚型分子玻璃光刻胶及其制备方法和应用
EP3786710A4 (en) * 2018-04-27 2021-06-23 Mitsubishi Gas Chemical Company, Inc. COMPOSITION FORMING RESIST UNDERLAYER FILM, UNDERLAYER FILM FOR LITHOGRAPHY AND PATTERN MAKING METHOD
JP7099418B2 (ja) * 2018-09-18 2022-07-12 信越化学工業株式会社 レジスト材料及びパターン形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066380A1 (en) * 2008-12-12 2010-06-17 Bayer Schering Pharma Aktiengesellschaft Triaryl-sulphonium compounds, kit and methods for labeling positron emitting isotopes
WO2016030329A1 (en) * 2014-08-24 2016-03-03 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method for the production of 18f-labeled active esters and their application exemplified by the preparation of a psma-specific pet-tracer
JP2020046661A (ja) * 2018-09-18 2020-03-26 信越化学工業株式会社 レジスト材料及びパターン形成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEIDL THOMAS L., SUNDALAM SUNIL K., MCCULLOUGH BRENNEN, STUART DAVID R.: "Unsymmetrical Aryl(2,4,6-trimethoxyphenyl)iodonium Salts: One-Pot Synthesis, Scope, Stability, and Synthetic Studies", THE JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 81, no. 5, 4 March 2016 (2016-03-04), pages 1998 - 2009, XP055873403, ISSN: 0022-3263, DOI: 10.1021/acs.joc.5b02833 *
YANG, N. ET AL.: "Syntheses and active behavior of novel UV photoinitiators", CHINESE JOURNAL OF POLYMER SCIENCE, vol. 27, no. 6, 2009, pages 873 - 877 *

Also Published As

Publication number Publication date
CN115605458A (zh) 2023-01-13
TW202200542A (zh) 2022-01-01
KR20230009399A (ko) 2023-01-17
US20230185191A1 (en) 2023-06-15
JPWO2021230184A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
JP6487942B2 (ja) 反射防止コーティング組成物およびその製造方法
JP5220418B2 (ja) シリコン含有フォトレジストの基層としての低屈折率ポリマー
TWI459142B (zh) 正型光可成像底部抗反射塗層
JP5114806B2 (ja) トップコートを用いて深紫外線フォトレジストに像を形成する方法およびそのための材料
KR100754230B1 (ko) 방사선 민감성 공중합체, 이의 포토레지스트 조성물 및이의 심 자외선 이층 시스템
TW201527359A (zh) 作為硬光罩及填充材料之穩定金屬化合物、其組合物及其使用方法
EP2333610B1 (en) Negative resist composition and patterning process
JP2011520148A (ja) 反射防止コーティング組成物
JPH06118656A (ja) 反射防止膜およびレジストパターンの形成方法
JP2013515972A (ja) 縮合芳香環を含む反射防止コーティング組成物
JP5418906B2 (ja) 反射防止コーティング組成物
JP2013516643A (ja) レジスト下層膜用芳香族環含有重合体およびこれを含むレジスト下層膜組成物
TWI454849B (zh) 與上塗光阻合用之塗覆組成物
KR100533379B1 (ko) 유기 난반사 방지막용 조성물과 이의 제조방법
WO2020226150A1 (ja) 化合物及びその製造方法、樹脂、組成物、レジスト膜、パターン形成方法、リソグラフィー用下層膜、光学部品、並びに化合物又は樹脂の精製方法
WO2021230184A1 (ja) 化合物及びその製造方法、酸発生剤、組成物、レジスト膜、下層膜、パターン形成方法、及び光学物品
WO2021230185A1 (ja) 化合物及びその製造方法、組成物、レジスト膜、並びにパターン形成方法
WO2021049472A1 (ja) 化合物、樹脂、組成物、レジスト膜、パターン形成方法、下層膜、及び光学物品
TW201940967A (zh) 組成物,以及阻劑圖型之形成方法及絕緣膜之形成方法
KR20090067767A (ko) 현상액에 용해 가능한 근자외선 바닥 반사방지막 조성물 및이를 이용한 패턴화된 재료 형성 방법
WO1999042903A1 (en) RADIATION SENSITIVE TERPOLYMER, PHOTORESIST COMPOSITIONS THEREOF AND 193 nm BILAYER SYSTEMS
JP3099528B2 (ja) ドライ現像用感放射線性樹脂組成物
EP1825325A1 (en) Low refractive index polymers as underlayers for silicon-containing photoresists
WO2001022162A2 (en) Radiation sensitive copolymers, photoresist compositions thereof and deep uv bilayer systems thereof
JPS62187843A (ja) レジスト組成物およびパタ−ン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804414

Country of ref document: EP

Kind code of ref document: A1