WO2021230111A1 - 固体電解コンデンサ素子および固体電解コンデンサ - Google Patents

固体電解コンデンサ素子および固体電解コンデンサ Download PDF

Info

Publication number
WO2021230111A1
WO2021230111A1 PCT/JP2021/017218 JP2021017218W WO2021230111A1 WO 2021230111 A1 WO2021230111 A1 WO 2021230111A1 JP 2021017218 W JP2021017218 W JP 2021017218W WO 2021230111 A1 WO2021230111 A1 WO 2021230111A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic capacitor
solid electrolytic
functional group
dopant
group
Prior art date
Application number
PCT/JP2021/017218
Other languages
English (en)
French (fr)
Inventor
拓弥 栗本
斉 福井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180032435.2A priority Critical patent/CN115485800A/zh
Priority to US17/923,767 priority patent/US20230178306A1/en
Priority to JP2022521847A priority patent/JPWO2021230111A1/ja
Publication of WO2021230111A1 publication Critical patent/WO2021230111A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode

Definitions

  • This disclosure relates to a solid electrolytic capacitor element and a solid electrolytic capacitor.
  • the solid electrolytic capacitor includes a solid electrolytic capacitor element, a resin exterior or a case for sealing the solid electrolytic capacitor element, and an external electrode electrically connected to the solid electrolytic capacitor element.
  • the solid electrolytic capacitor element includes an anode, a dielectric layer formed on the surface of the anode, and a cathode portion that covers at least a part of the dielectric layer.
  • the cathode portion comprises a solid electrolyte layer containing a conductive polymer and a dopant covering at least a portion of the dielectric layer.
  • Patent Document 1 describes a step of forming a preliminary conductive layer in forming a conductive polymer layer on a valve acting metal on which a dielectric oxide film is formed, and electrolytic polymerization for forming a conductive polymer on the preliminary conductive layer.
  • a method for manufacturing a solid electrolytic capacitor which comprises a step of forming a conductive polymer layer by electrolytic polymerization using a liquid.
  • the electrolytic polymer solution for forming a conductive polymer a polymerizable monomer and a compound represented by a specific formula as a supporting electrolyte are dissolved in a solvent.
  • Solid electrolytic capacitors may be exposed to high temperature environments. Therefore, the solid electrolytic capacitor and the solid electrolytic capacitor element are required to have high thermal stability.
  • a first aspect of the present disclosure comprises an anode, a dielectric layer formed on the surface of the anode, and a cathode portion covering at least a portion of the dielectric layer.
  • the cathode portion includes a solid electrolyte layer that covers at least a part of the dielectric layer.
  • the solid electrolyte constituting the solid electrolyte layer was heated to 180 ° C. by thermal weight analysis, held at 180 ° C. for 20 minutes, cooled from 180 ° C. to 30 ° C., and then 20 ° C./20 ° C. from 30 ° C. to 260 ° C.
  • the present invention relates to a solid electrolytic capacitor element having a weight loss rate of 3% or less when the temperature is raised at a rate of min.
  • a second aspect of the present disclosure comprises an anode, a dielectric layer formed on the surface of the anode, and a cathode portion covering at least a portion of the dielectric layer.
  • the cathode portion includes a solid electrolyte layer that covers at least a part of the dielectric layer.
  • the solid electrolyte layer contains a conductive polymer and a dopant component, and contains a conductive polymer and a dopant component.
  • the dopant component contains an aromatic compound having an electron-withdrawing functional group and an electron-donating functional group in an aromatic ring.
  • the aromatic compound has at least a first functional group: sulfo group and a second functional group: carboxy group as the electron-withdrawing functional group, and the third functional group as the electron-donating functional group.
  • the present invention relates to a solid electrolytic capacitor element in which ⁇ 1 and (n1 + n2 + n3) ⁇ 4.
  • the third aspect of the present disclosure relates to a solid electrolytic capacitor including at least one solid electrolytic capacitor element.
  • Solid electrolytic capacitor In a solid electrolytic capacitor, when air invades the inside, the dopant component is decomposed or the conductive polymer is oxidatively deteriorated due to the action of water or oxygen contained in the air, and the conductivity of the solid electrolyte layer is reduced. May decrease. A decrease in the conductivity of the solid electrolyte layer leads to a decrease in the performance of the solid electrolytic capacitor, such as an increase in the equivalent series resistance (ESR) of the solid electrolytic capacitor or a decrease in the capacitance. The decomposition of the dopant component and the oxidative deterioration of the conductive polymer are particularly remarkable in a high temperature environment. Solid electrolytic capacitors may be used in high temperature environments depending on the application.
  • the solid electrolytic capacitor is generally solder-bonded to the substrate through a reflow process exposed to a high temperature. If the dopant component is easily decomposed, a large amount of gas is generated in the reflow process, the airtightness is lowered, and the reliability of the solid electrolytic capacitor is lowered. Therefore, there is a demand for solid electrolytic capacitor elements and solid electrolytic capacitors having excellent thermal stability by suppressing decomposition of dopant components and oxidative deterioration of conductive polymers even in a high temperature environment.
  • the solid electrolyte constituting the solid electrolyte layer is heated to 180 ° C. by thermal weight analysis, held at 180 ° C. for 20 minutes, and from 180 ° C. After cooling to 30 ° C., the weight loss rate when the temperature is raised from 30 ° C. to 260 ° C. at a rate of 20 ° C./min is 3% or less.
  • the weight reduction rate of the above-mentioned solid electrolyte is as small as 3% or less, so that gas generation under heating conditions corresponding to the reflow step is suppressed. Therefore, it is possible to prevent the airtightness of the solid electrolytic capacitor from being lowered in the reflow process. Even when exposed to a high temperature environment, gas generation is suppressed and high airtightness is ensured, so that fluctuations in capacitor performance can be suppressed to a low level. Further, in the solid electrolytic capacitor element and the solid electrolytic capacitor, deterioration of the solid electrolyte is suppressed even when exposed to a high temperature environment, so that a decrease in capacitance or an increase in ESR can be reduced.
  • the above weight loss rate can be suppressed to 2.5% or less or 2% or less, and further to less than 1% or 0.8% or less (or 0.5% or less). Can also be suppressed.
  • a dopant component containing an aromatic compound having an electron-withdrawing functional group and, if necessary, an electron-donating functional group in an aromatic ring may be used in the solid electrolyte layer. ..
  • this aromatic compound when the number of electron-withdrawing functional groups is m1 and the number of electron-donating functional groups is m2 in one molecule of the aromatic compound, (m1-m2) ⁇ 2. ..
  • Such aromatic compounds may be referred to as dopant IA.
  • the dopant When the dopant has two or more electron-withdrawing functional groups in the aromatic ring, it is easy to strongly coordinate with the conductive polymer and dedoping tends to be suppressed even in a high temperature environment, so that it is a solid electrolyte. It is easy to secure high conductivity of the layer.
  • the electron-donating functional group has an action of capturing oxygen radicals.
  • the dopant when the dopant has an electron-donating functional group, the dopant in a state of being coordinated to the conductive polymer by the action of the electron-withdrawing functional group causes an electron-donating functional group to exist in the vicinity of the conductive polymer. be able to.
  • the electron-donating functional group can capture oxygen radicals in the vicinity of the conductive polymer, it is possible to effectively reduce the oxidative deterioration of the conductive polymer even in a high temperature environment.
  • the electron density of the aromatic ring, particularly the electron density in the carbon atom substituted with the electron-withdrawing functional group becomes low, the electron-withdrawing functional group is easily substituted with the electron-withdrawing functional group in this carbon atom, and the electron-withdrawing property becomes electron-withdrawing. Dedoping tends to proceed easily due to the desorption of functional groups.
  • the number m1 of the electron-withdrawing functional groups and the number m2 of the electron-donating functional groups satisfy (m1-m2) ⁇ 2, so that the dopant IA has an electron-donating functional group.
  • an excellent dedoping effect can be obtained, and even if the solid electrolytic capacitor element is exposed to a high temperature environment, the decrease in capacitance or the increase in ESR can be reduced. Therefore, high thermal stability and high reliability of the solid electrolytic capacitor element and the solid electrolytic capacitor can be ensured.
  • the solid electrolyte layer consists of a group consisting of a first functional group: a sulfo group, a second functional group: a carboxy group, and a third functional group: a hydroxy group and an alkoxy group.
  • a dopant component containing at least one selected and an aromatic compound having an aromatic ring on the aromatic ring is used.
  • this aromatic compound when the number of first functional groups is n1, the number of second functional groups is n2, and the number of third functional groups is n3 in one molecule of aromatic compound, n1 ⁇ 1. Satisfy n2 ⁇ 1, n3 ⁇ 1, and (n1 + n2 + n3) ⁇ 4.
  • Such aromatic compounds may be referred to as dopant IB.
  • the dopant IA and the dopant IB may be collectively referred to as the first dopant. Further, at least one selected from the group consisting of the dopant IA and the dopant IB may be referred to as a first dopant. On the first aspect, the first dopant is at least dopant IA, and on the second aspect, the first dopant is at least dopant IB.
  • the number of at least one of the first to third functional groups is 2 or more.
  • the dopant IB has an electron-donating third functional group in addition to the first functional group and the second functional group.
  • the third functional group has an action of capturing oxygen radicals.
  • the third functional group can be present in the vicinity of the conductive polymer.
  • the third functional group can capture oxygen radicals in the vicinity of the conductive polymer, it is possible to effectively reduce the oxidative deterioration of the conductive polymer even in a high temperature environment.
  • the number of the third functional group is 2 or more, the effect of capturing oxygen radicals is enhanced, so that the effect of reducing the oxidative deterioration of the conductive polymer is further enhanced.
  • the dopant component containing the dopant IB by using the dopant component containing the dopant IB, the decomposition of the dopant component and the oxidative deterioration of the conductive polymer in a high temperature environment are reduced. Therefore, excellent thermal stability of the solid electrolytic capacitor element and the solid electrolytic capacitor can be ensured. Further, since the dopant IB has excellent hydrolysis resistance, the solid electrolyte layer is less likely to be affected by moisture even in a high temperature environment. Thereby, the moisture resistance characteristics of the solid electrolytic capacitor element and the solid electrolytic capacitor can be improved.
  • the amount of gas generated in the reflow step can be reduced.
  • the solid electrolyte layer contained in such a solid electrolytic capacitor has a small weight loss rate under heating conditions corresponding to the reflow step.
  • the solid electrolyte constituting the solid electrolyte layer is heated to 180 ° C. by thermogravimetric analysis, held at 180 ° C. for 20 minutes, cooled from 180 ° C. to 30 ° C., and then cooled to 20 ° C. from 30 ° C. to 260 ° C.
  • the weight loss rate when the temperature is raised at a rate of / min is 3% or less.
  • the gas generation under the heating conditions corresponding to the reflow step is suppressed, the deterioration of the airtightness of the solid electrolytic capacitor in the reflow step is suppressed.
  • gas generation is suppressed, high airtightness is ensured, and oxidative deterioration of the conductive polymer is suppressed, so that a decrease in capacitance or an increase in ESR can be reduced. Therefore, high reliability of the solid electrolytic capacitor element and the solid electrolytic capacitor can be ensured.
  • the above weight loss rate can be suppressed to 2.5% or less or 2% or less, and to less than 1% or 0.8% or less (or 0.5% or less). You can also do it. Therefore, the excellent reliability of the solid electrolytic capacitor can be ensured.
  • the weight loss rate of the solid electrolyte can be obtained by the following procedure using thermogravimetric analysis.
  • the solid electrolytic capacitor element is taken out from the solid electrolytic capacitor, and the solid electrolyte layer is scraped off to prepare a sample of the solid electrolyte.
  • the sample was set in a thermogravimetric analyzer, heated from room temperature (temperature of 20 ° C to 35 ° C) to 180 ° C, held at 180 ° C for 20 minutes, cooled to 180 ° C to 30 ° C, and cooled. The weight w0 is measured.
  • the sample is heated from 30 ° C. to 260 ° C.
  • thermogravimetric analyzer for example, a differential thermal thermal weight simultaneous measuring device (NEXTA STA300) manufactured by Hitachi High-Tech Science Corporation is used.
  • the solid electrolytic capacitor and the solid electrolytic capacitor element (hereinafter, may be simply referred to as a capacitor element) of the present disclosure will be described more specifically with reference to the drawings as necessary.
  • Solid electrolytic capacitors include one or more capacitor elements.
  • the solid electrolyte layer may contain the first dopant.
  • the solid electrolyte layer preferably contains the first dopant, and in 75% or more, the solid electrolyte layer contains the first dopant. It is preferable that the solid electrolyte layer contains the first dopant in all the capacitor elements.
  • the anode body can include a valve acting metal, an alloy containing a valve acting metal, a compound containing a valve acting metal, and the like. These materials can be used alone or in combination of two or more.
  • the valve acting metal for example, aluminum, tantalum, niobium, and titanium are preferably used.
  • the anode body having a porous surface can be obtained by, for example, roughening the surface of a base material (such as a foil-shaped or plate-shaped base material) containing a valve acting metal by etching or the like. The roughening can be performed by, for example, an etching process.
  • the anode body may be a molded body of particles containing a valve acting metal or a sintered body thereof. The sintered body has a porous structure.
  • the dielectric layer is an insulating layer that functions as a dielectric formed so as to cover the surface of at least a part of the anode.
  • the dielectric layer is formed by anodizing the valve acting metal on the surface of the anode body by chemical conversion treatment or the like.
  • the dielectric layer may be formed so as to cover at least a part of the anode body.
  • the dielectric layer is usually formed on the surface of the anode. Since the dielectric layer is formed on the porous surface of the anode body, it is formed along the holes on the surface of the anode body and the inner wall surface of the pit.
  • the dielectric layer contains an oxide of the valve acting metal.
  • the dielectric layer when tantalum is used as the valve acting metal contains Ta 2 O 5
  • the dielectric layer when aluminum is used as the valve acting metal contains Al 2 O 3 .
  • the dielectric layer is not limited to this, and may be any layer that functions as a dielectric.
  • the cathode portion comprises at least a solid electrolyte layer that covers at least a portion of the dielectric layer.
  • the cathode portion is usually formed on the surface of at least a part of the anode body via a dielectric layer.
  • the cathode portion may include a solid electrolyte layer and a cathode extraction layer that covers at least a part of the solid electrolyte layer.
  • the solid electrolyte layer and the cathode extraction layer will be described.
  • the solid electrolyte layer is formed on the surface of the anode body so as to cover the dielectric layer via the dielectric layer.
  • the solid electrolyte layer does not necessarily have to cover the entire dielectric layer (entire surface), and may be formed so as to cover at least a part of the dielectric layer.
  • the solid electrolyte layer constitutes at least a part of the cathode portion of the solid electrolytic capacitor.
  • the solid electrolyte layer contains a conductive polymer and a dopant component.
  • a known conductive polymer used for a solid electrolytic capacitor for example, a ⁇ -conjugated conductive polymer or the like can be used.
  • the conductive polymer include polymers having polypyrrole, polythiophene, polyaniline, polyfuran, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, and polythiophene vinylene as basic skeletons. Of these, polymers having polypyrrole, polythiophene, or polyaniline as the basic skeleton are preferable.
  • the above polymers also include homopolymers, copolymers of two or more monomers, and derivatives thereof (such as substituents having substituents).
  • polythiophene includes poly (3,4-ethylenedioxythiophene) and the like.
  • the conductive polymer may be used alone or in combination of two or more.
  • the weight average molecular weight (Mw) of the conductive polymer is not particularly limited, but is, for example, 1,000 or more and 1,000,000 or less.
  • the weight average molecular weight (Mw) is a polystyrene-equivalent value measured by gel permeation chromatography (GPC). GPC is usually measured using a polystyrene gel column and water / methanol (volume ratio 8/2) as a mobile phase.
  • the dopant component may contain at least the first dopant, and may further contain a second dopant other than the first dopant, if necessary.
  • the ratio of the first dopant to the dopant component is, for example, 50% by mass or more, 75% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the ratio of the first dopant to the dopant component is 100% by mass or less.
  • the dopant component may be composed of only the first dopant.
  • the ratio of the dopant IA to the dopant component may be in the above range.
  • the ratio of the dopant IB to the dopant component may be in the above range.
  • the dopant component may be composed only of the dopant IA.
  • the dopant component may be composed only of the dopant IB.
  • first dopant examples of the aromatic ring contained in the first dopant include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring.
  • the number of carbon atoms in the aromatic ring is, for example, 6 or more and 20 or less, 6 or more and 14 or less, or 6 or more and 10 or less.
  • the molecular size is relatively small, the molecule of the first dopant is likely to be close to the conductive polymer, and the positions of the plurality of electron-withdrawing functional groups are also relatively close to each other. Therefore, it is easy to coordinate firmly to the conductive polymer, and it is easy to further secure high conductivity of the solid electrolyte layer.
  • the first dopant has a plurality of functional groups in the aromatic ring.
  • the plurality of functional groups includes at least an electron-withdrawing functional group.
  • the plurality of functional groups may further contain an electron donating functional group.
  • the first dopant has two or more electron-withdrawing functional groups in one molecule.
  • Examples of the electron-withdrawing functional group include a sulfo group, a carboxy group, a nitro group, a cyano group, an aldehyde group, an acyl group, a tosyl group, and a halogen atom (fluoro group, chloro group, bromo group, iodine group, etc.). Be done. From the viewpoint of obtaining higher capacitor performance, a sulfo group (first functional group) and a carboxy group (second functional group) are preferable among the electron-withdrawing functional groups.
  • each third functional group may be either a hydroxy group or an alkoxy group.
  • the alkoxy group has, for example, 1 to 10 carbon atoms and may be 1 to 6 carbon atoms. From the viewpoint that a higher oxygen radical scavenging effect can be easily obtained, each third functional group is preferably a hydroxy group or an alkoxy group having 1 to 4 carbon atoms.
  • the alkoxy group may be either linear or branched.
  • alkoxy group examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, hexyloxy group and 2-ethyl-hexyl. Examples thereof include, but are not limited to, an oxy group and an octoxy group.
  • a sulfo group is a first functional group, free form (-SO 3 H), the anionic form (-SO 3 -), or it may be included in the form of a salt, conductive It may be contained in a form bound or interacted with a sex polymer.
  • all these forms of sulfo groups are included and may be simply referred to as "sulfo groups”.
  • the carboxy group of all these forms may be referred to simply as "carboxy group”.
  • the hydroxy (in other words, phenolic hydroxy group) of the third functional group may be contained in a free form (—OH), an anion form (—O ⁇ ), or a salt form.
  • the salt may be a salt of a sulfonic acid anion or a carboxylate anion and any base of an organic base (organic amine, organic ammonium, etc.) and an inorganic base (metal hydroxide, ammonia, etc.).
  • the first dopant has two or more first functional groups
  • at least a part of the first functional groups may be contained in the same form, or all of the first functional groups may be contained in different forms. good.
  • the first dopant has two or more second functional groups
  • at least a part of the two or more second functional groups may be contained in the same form, or all may be contained in different forms.
  • the first dopant has two or more third functional groups
  • at least a part of the two or more third functional groups may be contained in the same form, or all may be contained in different forms.
  • the number m1 of electron-withdrawing functional groups in one molecule is m1 ⁇ 2, may be m1 ⁇ 3, or may be m1 ⁇ 4.
  • the upper limit of the number m1 can be determined according to the number of carbon atoms in the aromatic ring.
  • the number m1 may be m1 ⁇ 6 or m1 ⁇ 4.
  • the number n1 of the first functional groups is, for example, n1 ⁇ 1 and may be n1 ⁇ 2.
  • the number n2 of the second functional group is, for example, n2 ⁇ 1 and may be n2 ⁇ 2.
  • the thermal stability of the first dopant can be further improved.
  • n1 ⁇ 2 a higher bonding force of the first dopant to the conductive polymer can be obtained, so that dedoping is suppressed even in a high temperature environment, which is more advantageous in ensuring high conductivity of the solid electrolyte layer. Is.
  • the hydrolysis resistance of the first dopant can be further enhanced, and the effect of suppressing the decomposition of the first dopant is further enhanced even in a high temperature environment. Therefore, it is advantageous in further improving the thermal stability of the solid electrolyte layer.
  • the number m2 of electron-donating functional groups (or the number n3 of the third functional group) in one molecule is (m1-m2) ⁇ 2 depending on the number m1 of electron-withdrawing functional groups. It is determined within the range that is satisfied.
  • the number m2 (or n3) may be m2 (or n3) ⁇ 1.
  • the dopant IB has first to third functional groups on an aromatic ring (for example, the above aromatic ring such as a benzene ring or a naphthalene ring), and the number n1, n2 and n3 of each functional group is n1 ⁇ 1, n2 ⁇ 1. , N3 ⁇ 1, and (n1 + n2 + n3) ⁇ 4 may be satisfied.
  • the upper limit of (n1 + n2 + n3) can be determined according to the number of carbon atoms of the aromatic ring.
  • the number n3 of the third functional group is n3 ⁇ 1, and may be n3 ⁇ 2.
  • n3 ⁇ 2 the effect of capturing oxygen radicals is further enhanced, which is further advantageous from the viewpoint of suppressing oxidative deterioration of the conductive polymer.
  • the position of the first functional group in the aromatic ring is not particularly limited.
  • the first dopant has a naphthalene ring as an aromatic ring
  • at least the first functional group is contained in at least one selected from the group consisting of the 2-position, 3-position, 6-position, and 7-position of the naphthalene ring. Is preferable.
  • the first dopant since the first dopant is more likely to be in close proximity to the conductive polymer, it is advantageous in increasing the conductivity of the solid electrolyte layer.
  • the positions of the first functional group and the second functional group in the aromatic ring are not particularly limited.
  • the position of the second functional group in the benzene ring may be any of the o-position, the m-position and the p-position with respect to the first functional group. ..
  • the benzene ring when the second functional group is located at the m-position with respect to the first functional group, it is preferable in that higher hydrolysis resistance of the first dopant can be easily obtained.
  • the second functional group is located at the m-position with respect to at least one first functional group.
  • at least one second functional group is located at the m-position with respect to the first functional group.
  • an electron donating functional group (or a third functional group) in an aromatic ring (benzene ring, naphthalene ring, etc.)
  • the position of) is not particularly limited.
  • the positions of the electron donating functional group (or third functional group) in the benzene ring are the o-position, the m-position, and the position with respect to the first functional group. It may be in any of the p-positions.
  • the position of the electron-donating functional group may be the o-position or the p-position with respect to the first functional group.
  • the position of the electron-donating functional group may be the o-position or the p-position with respect to the first functional group.
  • the first dopant having a naphthalene ring as an aromatic ring is an aromatic compound having an electron-withdrawing functional group number m1 of m1 ⁇ 4, a sulfo group number n1 of n1 ⁇ 2, and a carboxy group number n2 of n2.
  • dopant IA having a naphthalene ring as an aromatic ring 6,8-disulfo-2-naphthoic acid, 5,7-disulfo-2-naphthoic acid, 3,6-disulfo-1-naphthoic acid, 4 , 8-Disulfo-2-naphthoic acid, and dopant IA excluding 3,7-disulfo-2-naphthoic acid may be used. It should be noted that these disulfonaphthoic acids have no substituent other than two sulfo groups and one carboxy group.
  • the first dopant may have a first substituent other than the electron-withdrawing functional group and the electron-donating functional group (for example, the first to third functional groups), if necessary. Further, the first dopant may be a compound having a non-aromatic ring Z condensed on an aromatic ring (benzene ring, naphthalene ring, etc.).
  • the first dopant having such a structure among the carbon atoms constituting the ring of the aromatic ring (for example, the carbon atom at the 1st to 6th positions of the benzene ring), the electron-withdrawing functional group and the electron-donating functional group Two unsubstituted carbon atoms (such as the first to third functional groups) are linked by an aliphatic chain. Aliphatic chains may be saturated or unsaturated. The first dopant may have one or more second substituents on this aliphatic chain.
  • a compound having such a first substituent on an aromatic ring (benzene ring, naphthalene ring, etc.) in addition to an electron-withdrawing functional group and an electron-donating functional group (first to third functional groups, etc.).
  • a compound in which the ring Z, which may have a second substituent, is condensed is also included in the first dopant (or dopant IA or dopant IB).
  • Examples of the first substituent that the first dopant may have on the aromatic ring include a hydrocarbon group.
  • the first substituent may be an electron donating group other than the third functional group, an electron attracting group other than the first functional group and the second functional group, and the like, but the first to third substituents may be used.
  • a hydrocarbon group is preferable from the viewpoint that the effect of the functional group is easily exhibited in a well-balanced manner.
  • the hydrocarbon group may be any of an aliphatic, alicyclic, and aromatic group. From the viewpoint of easy coordination with the conductive polymer, the hydrocarbon group is preferably an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group has, for example, 1 to 10 carbon atoms, and may be 1 to 6 or 1 to 4 carbon atoms.
  • the aliphatic hydrocarbon group may be saturated or unsaturated. Examples of the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and a dienyl group.
  • the number n4 of the first substituent may be determined according to the number of carbon atoms of the aromatic ring, the number of electron-withdrawing functional groups and the number of electron-donating functional groups.
  • the number n4 of the first substituent is, for example, 0 or more and 6 or less, and may be 0 or more and 4 or less.
  • the number n4 of the first substituents is 0, 1 or 2.
  • the first dopant has two or more first substituents, at least the two first substituents may be the same or all may be different. From the viewpoint that the effects of the electron-withdrawing functional group and the electron-donating functional group (for example, the first to third functional groups) are easily exhibited in a well-balanced manner, the first dopant may not have the first substituent. preferable.
  • the first dopant contains the ring Z
  • the second substituent that the first dopant may have on the above-mentioned aliphatic chain constituting the ring Z an electron-withdrawing functional group is described. Examples thereof include a group described for the first to third functional groups, a group described for the first substituent, and the like.
  • the number n5 of the second substituents in the first dopant may be 1, or may be 2 or more.
  • some of the second substituents may be the same and all the second substituents may be different.
  • the first dopant can be easily brought close to the conductive polymer, it is preferable that the first dopant does not have the non-aromatic ring Z as described above.
  • the dopant component may contain one kind of first dopant or two or more kinds of first dopants.
  • the dopant component may contain one type of dopant IA or may contain two or more types of dopant IA.
  • the dopant component may contain one kind of dopant IB or may contain two or more kinds of dopant IB.
  • the dopant component may include at least one dopant IB and at least one dopant IA not included in the dopant IB.
  • the second dopant may be a dopant other than the first dopant, and examples thereof include at least one selected from the group consisting of anions and polyanions.
  • anion examples include sulfate ion, nitrate ion, phosphate ion, borate ion, organic sulfonic acid ion, carboxylic acid ion and the like, but are not particularly limited.
  • dopants that generate sulfonic acid ions include p-toluenesulfonic acid and naphthalenesulfonic acid.
  • Examples of the polyanion include a polymer type polysulfonic acid and a polymer type polycarboxylic acid.
  • Examples of the polymer type polysulfonic acid include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic sulfonic acid, and polymethacrylic sulfonic acid.
  • Examples of the polymer type polycarboxylic acid include polyacrylic acid and polymethacrylic acid.
  • Polyanions also include polyester sulfonic acid, phenol sulfonic acid novolak resin and the like. However, polyanions are not limited to these.
  • the anion and the polyanion may each be contained in the solid electrolyte layer in the form of a salt.
  • each of the anion and the polyanion may be bonded or interacted with the conductive polymer to form a conductive polymer composite together with the conductive polymer.
  • the dopant component may contain one kind of second dopant or two or more kinds of second dopants.
  • the weight reduction rate of the solid electrolyte by thermogravimetric analysis can be suppressed to a low level.
  • the weight reduction rate of the solid electrolyte is determined by, for example, the type of dopant, the ratio of the dopant to the conductive polymer, and the polymerization conditions when forming the conductive polymer (for example, the polymerization potential of electrolytic polymerization, and the treatment liquid used for polymerization). It can be adjusted by the concentration of the precursor of the conductive polymer and the concentration of the dopant).
  • the amount of the dopant component contained in the solid electrolyte layer is, for example, 10 to 1000 parts by mass, and may be 20 to 500 parts by mass or 50 to 200 parts by mass with respect to 100 parts by mass of the conductive polymer.
  • the solid electrolyte layer may be a single layer or may be composed of a plurality of layers.
  • the conductive polymers contained in each layer may be the same or different.
  • the composition of the dopant component contained in each layer may be the same or different.
  • at least one layer may contain the first dopant.
  • the solid electrolyte layer may further contain known additives and known conductive materials other than the conductive polymer.
  • a conductive material include at least one selected from the group consisting of a conductive inorganic material such as manganese dioxide and a TCNQ complex salt.
  • a layer or the like for enhancing adhesion may be interposed between the dielectric layer and the solid electrolyte layer.
  • the solid electrolyte layer is formed by, for example, polymerizing the precursor on the dielectric layer using a treatment liquid containing the precursor of the conductive polymer and the dopant component.
  • the polymerization can be carried out by at least one of chemical polymerization and electrolytic polymerization.
  • the precursor of the conductive polymer include at least one selected from the group consisting of monomers, oligomers, prepolymers and the like.
  • Each of the oligomer and the prepolymer has, for example, a structure in which a plurality of monomer units are connected.
  • One type of precursor may be used, or two or more types may be used in combination.
  • the solid electrolyte layer may be formed by attaching a treatment liquid (for example, a dispersion liquid or a solution) containing a conductive polymer and a dopant component to the dielectric layer and then drying the layer.
  • a treatment liquid for example, a dispersion liquid or a solution
  • the dispersion medium include water, an organic solvent, or a mixture thereof.
  • the treatment liquid may further contain other components such as additives.
  • an oxidizing agent is used to polymerize the precursor, if necessary.
  • the first dopant may be used as an oxidizing agent, but an oxidizing agent may be used in addition to the first dopant.
  • the oxidizing agent may be contained in the treatment liquid as an additive. Further, the oxidizing agent may be applied to the anode body before or after the treatment liquid is brought into contact with the anode body on which the dielectric layer is formed. Examples of such an oxidizing agent include sulfates, sulfonic acids, and salts thereof. Oxidizing agents may be used alone or in combination of two or more.
  • the sulfate examples include a salt of sulfuric acid such as ferric sulfate and sodium persulfate, and a salt of sulfuric acid such as persulfuric acid and a metal.
  • the metal constituting the salt examples include alkali metals (sodium, potassium, etc.), iron, copper, chromium, zinc, and the like.
  • Sulfonic acid or a salt thereof has a function as a dopant in addition to a function as an oxidizing agent.
  • the sulfonic acid or a salt thereof the low molecular weight sulfonic acid exemplified for the second dopant or a salt thereof may be used.
  • oxidizing agent a compound capable of producing Fe 3+ (ferric sulfate or the like), a persulfate (sodium persulfate, ammonium persulfate or the like), hydrogen peroxide or the like may be used. Oxidizing agents may be used alone or in combination of two or more.
  • the step of forming the solid electrolyte layer by immersion in the treatment liquid and polymerization (or drying) may be performed once or may be repeated a plurality of times. Conditions such as the composition and viscosity of the treatment liquid may be the same each time, or at least one condition may be changed.
  • the electrolytic polymerization can be carried out by applying a polymerization voltage in a state where the anode having a dielectric layer is in contact with (for example, immersed) a treatment liquid containing a precursor of a conductive polymer and a dopant component.
  • the application of the polymerization voltage is performed via the feeding body.
  • the polymerization voltage is, for example, 1 V or more and 3.5 V or less (or 3 V or less), and may be 2 V or more and 3.5 V or less (or 3 V or less).
  • the polymerization voltage is the potential of the feeder with respect to the reference electrode (silver / silver chloride electrode (Ag / Ag +)).
  • the ratio of the dopant component to the precursor of the conductive polymer is, for example, 0.1 mol or more and 0.75 mol or less, and 0.4 mol or more and 0.75 mol or less per 1 mol of the monomer unit of the conductive polymer. There may be.
  • the temperature at which electrolytic polymerization is performed is, for example, 5 ° C. or higher and 60 ° C. or lower, and may be 15 ° C. or higher and 35 ° C. or lower.
  • the cathode extraction layer may include at least a first layer that comes into contact with the solid electrolyte layer and covers at least a part of the solid electrolyte layer, and may include a first layer and a second layer that covers the first layer. good.
  • the first layer include a layer containing conductive particles, a metal foil, and the like.
  • the conductive particles include at least one selected from conductive carbon and metal powder.
  • the cathode drawer layer may be composed of a layer containing conductive carbon as the first layer and a layer containing metal powder or a metal foil as the second layer. When a metal foil is used as the first layer, the cathode drawer layer may be formed of this metal foil.
  • the first layer containing the conductive carbon may be, for example, immersed in an anode having a dielectric layer in which a solid electrolyte layer is formed in a dispersion liquid containing the conductive carbon, or a paste containing the conductive carbon as a solid electrolyte. It can be formed by applying it to the surface of the layer.
  • a conductive carbon for example, graphites such as artificial graphite and natural graphite are used.
  • As the dispersion liquid and the paste for example, a mixture in which conductive carbon is dispersed in an aqueous liquid medium is used.
  • the layer containing the metal powder as the second layer can be formed, for example, by laminating a composition containing the metal powder on the surface of the first layer.
  • a metal paste layer formed by using a composition containing a metal powder such as silver particles and a resin (binder resin) can be used.
  • a resin a thermoplastic resin can be used, but it is preferable to use a thermosetting resin such as an imide resin or an epoxy resin.
  • the type of metal is not particularly limited, but it is preferable to use a valve acting metal such as aluminum, tantalum, niobium, or an alloy containing a valve acting metal. If necessary, the surface of the metal foil may be roughened by etching or the like.
  • the surface of the metal foil may be provided with a chemical conversion film, or may be provided with a metal (dissimilar metal) or non-metal film different from the metal constituting the metal foil. Examples of the dissimilar metal and the non-metal include a metal such as titanium and a non-metal such as carbon (conductive carbon and the like).
  • the above-mentioned dissimilar metal or non-metal (for example, conductive carbon) coating may be used as the first layer, and the above-mentioned metal foil may be used as the second layer.
  • each of the first layer and the second layer may be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, 0.5 ⁇ m or more and 50 ⁇ m or less, or 1 ⁇ m or more and 20 ⁇ m or less.
  • a separator When the metal foil is used for the cathode drawer layer, a separator may be arranged between the metal foil and the anode.
  • the separator is not particularly limited, and for example, a non-woven fabric containing fibers of cellulose, polyethylene terephthalate, vinylon, polyamide (for example, aromatic polyamide such as aliphatic polyamide and aramid) may be used.
  • the solid electrolytic capacitor may be a wound type and may be a chip type or a laminated type.
  • the solid electrolytic capacitor may include two or more capacitor elements.
  • a solid electrolytic capacitor may include a laminate of two or more capacitor elements.
  • the solid electrolytic capacitor may include two or more winding type capacitor elements. The configuration of the capacitor element may be selected according to the type of the solid electrolytic capacitor.
  • one end of the cathode terminal is electrically connected to the cathode extraction layer.
  • the cathode terminal is, for example, coated with a conductive adhesive on the cathode layer and bonded to the cathode layer via the conductive adhesive.
  • One end of the anode terminal is electrically connected to the anode body.
  • the other end of the anode terminal and the other end of the cathode terminal are drawn out from the resin exterior or the case, respectively.
  • the other end of each terminal exposed from the resin exterior or the case is used for solder connection with a substrate (not shown) on which a solid electrolytic capacitor should be mounted.
  • the capacitor element is sealed using a resin exterior or a case.
  • the material resin of the capacitor element and the exterior body for example, uncured thermosetting resin and filler
  • the capacitor element is sealed with the resin exterior body by a transfer molding method, a compression molding method, or the like. You may.
  • the portions on the other end side of the anode terminal and the cathode terminal connected to the anode lead drawn out from the capacitor element are exposed from the mold, respectively.
  • the capacitor element is housed in the bottomed case so that the other end side of the anode terminal and the cathode terminal is located on the opening side of the bottomed case, and the opening of the bottomed case is sealed with a sealant. May form a solid electrolytic capacitor.
  • FIG. 1 is a cross-sectional view schematically showing the structure of a solid electrolytic capacitor according to an embodiment of the present disclosure.
  • the solid electrolytic capacitor 1 includes a capacitor element 2, a resin exterior body 3 that seals the capacitor element 2, an anode terminal 4 in which at least a part thereof is exposed to the outside of the resin exterior body 3, and the like. It is provided with a cathode terminal 5.
  • the anode terminal 4 and the cathode terminal 5 can be made of a metal such as copper or a copper alloy.
  • the resin exterior body 3 has a substantially rectangular parallelepiped outer shape, and the solid electrolytic capacitor 1 also has a substantially rectangular parallelepiped outer shape.
  • the capacitor element 2 includes an anode body 6, a dielectric layer 7 covering the anode body 6, and a cathode body 8 covering the dielectric layer 7.
  • the cathode body 8 includes a solid electrolyte layer 9 that covers the dielectric layer 7, and a cathode extraction layer 10 that covers the solid electrolyte layer 9, and constitutes the above-mentioned cathode portion.
  • the cathode extraction layer 10 has a carbon layer 11 as a first layer and a metal paste layer 12 as a second layer. According to the present disclosure, the weight reduction rate of the solid electrolyte constituting the solid electrolyte layer 9 is 3% or less.
  • the solid electrolyte layer 9 contains a conductive polymer and a dopant component containing a first dopant (dopant IB or the like).
  • dopant IB dopant IB or the like.
  • the anode body 6 includes a region facing the cathode body 8 and a region not facing the cathode body 8.
  • an insulating separation layer 13 is formed so as to cover the surface of the anode body 6 in a band shape, and the cathode body 8 and the anode body 8 and the anode. Contact with body 6 is restricted.
  • the other part of the region of the anode body 6 that does not face the cathode body 8 is electrically connected to the anode terminal 4 by welding.
  • the cathode terminal 5 is electrically connected to the cathode body 8 via an adhesive layer 14 formed of a conductive adhesive.
  • the main surfaces 4S and 5S of the anode terminal 4 and the cathode terminal 5 are exposed from the same surface of the resin exterior body 3. This exposed surface is used for solder connection with a substrate (not shown) on which the solid electrolytic capacitor 1 should be mounted.
  • Solid Electrolytic Capacitor A1 The solid electrolytic capacitor 1 (solid electrolytic capacitor A1) shown in FIG. 1 was manufactured in the following manner, and its characteristics were evaluated.
  • the anode body 6 was prepared by roughening the surfaces of both aluminum foils (thickness: 100 ⁇ m) as a base material by etching.
  • the anode body 6 on which the dielectric layer 7 was formed in the above (2) and the counter electrode are immersed in the obtained aqueous solution, and electrolytic polymerization is performed at 25 ° C. at a polymerization voltage of 3 V (polymerization potential with respect to the silver reference electrode). By doing so, the solid electrolyte layer 9 was formed.
  • a silver paste containing silver particles and a binder resin (epoxy resin) is applied to the surface of the carbon layer 11 and heated at 150 to 200 ° C. for 10 to 60 minutes to cure the binder resin, and the metal paste layer 12 is formed. Formed. In this way, the cathode body 8 composed of the carbon layer 11 and the metal paste layer 12 was formed.
  • the capacitor element 2 was manufactured as described above.
  • the solid electrolytic capacitor was reflowed for 3 minutes in an environment of 260 ° C.
  • an accelerated test was performed by applying a rated voltage to the solid electrolytic capacitor for 500 hours in an environment of 145 ° C.
  • the capacitance and ESR were measured in a 20 ° C environment in the same procedure as for the initial capacitance and ESR, and the average value of 20 solid electrolytic capacitors (capacitance after acceleration test: c1). , ESR after acceleration test: r1) was determined.
  • Solid Electrolytic Capacitor A2 In the solid electrolytic capacitor A1 (3), except that 3-hydroxy-6,8-disulfo-2-naphthoic acid represented by the following formula was used instead of 4-hydroxy-5-sulfoisophthalic acid. A capacitor element and a solid electrolytic capacitor A2 were manufactured and evaluated in the same manner as the solid electrolytic capacitor A1.
  • Solid Electrolytic Capacitor A3 In the solid electrolytic capacitor A1 (3), the same as that of the solid electrolytic capacitor A1 except that 5-sulfoisophthalic acid represented by the following formula was used instead of 4-hydroxy-5-sulfoisophthalic acid. A capacitor element and a solid electrolytic capacitor A3 were manufactured and evaluated.
  • Solid Electrolytic Capacitor B1 In the solid electrolytic capacitor A1 (3), the capacitor is the same as the solid electrolytic capacitor A1 except that 5-sulfosalicylic acid represented by the following formula is used instead of 4-hydroxy-5-sulfoisophthalic acid. The element and the solid electrolytic capacitor B1 were manufactured and evaluated.
  • Solid Electrolytic Capacitor B2 Similar to the solid electrolytic capacitor A1, except that 2-naphthalene sulfonic acid represented by the following formula was used in place of 4-hydroxy-5-sulfoisophthalic acid in (3) of the solid electrolytic capacitor A1. A capacitor element and a solid electrolytic capacitor B2 were manufactured and evaluated.
  • Table 1 shows the evaluation results for the solid electrolytic capacitors A1 to A3, B1 and B2.
  • Solid Electrolytic Capacitors A4 to A6 >> In the solid electrolytic capacitor A1 (3), the capacitor element and the solid electrolytic are the same as those of the solid electrolytic capacitor A1 except that the dopant component shown in Table 2 is used instead of 4-hydroxy-5-sulfoisophthalic acid. Solids A4 to A6 were manufactured. (6) (a) and (b) were evaluated using a capacitor element or a solid electrolytic capacitor, and the airtightness reduction rate of the following (c) was evaluated.
  • (C) Rate of decrease in airtightness The solid electrolytic capacitor was reflowed and then cooled to 25 ° C.
  • the reflow treatment was performed under the conditions of a peak temperature of 260 ° C., a holding time of 10 seconds at the peak temperature, and a holding time of 140 seconds at 220 ° C. or higher.
  • the solid electrolytic capacitor was immersed in Fluorinert (fluorine-based inert liquid, manufactured by 3M) heated to 120 ° C. for 30 seconds. At this time, the state of generation of bubbles from the solid electrolytic capacitor was confirmed. A total of 20 solid electrolytic capacitors were evaluated, and the number of solid electrolytic capacitors in which bubbles were generated was evaluated as the rate of decrease in airtightness.
  • Solid Electrolytic Capacitor B3 In (3) of the solid electrolytic capacitor A1, the dopant component shown in Table 2 was used instead of 4-hydroxy-5-sulfoisophthalic acid. The concentration of the dopant component in the aqueous solution was 0.5 mol / L. The polymerization voltage of the electrolytic polymerization was set to 4V (polymerization potential with respect to the silver reference electrode). Except for these, a capacitor element and a solid electrolytic capacitor B3 were manufactured in the same manner as the solid electrolytic capacitor A1. (6) (a) and (b) were evaluated using a capacitor element or a solid electrolytic capacitor, and the airtightness reduction rate of the following (c) was evaluated.
  • Table 2 shows the evaluation results for the solid electrolytic capacitors A4 to A6 and B3.
  • Table 2 shows the results of similar evaluations for the solid electrolytic capacitors A1, A3, B1 and B2.
  • the weight reduction rate of the solid electrolyte exceeded 3%, the decrease in airtightness when exposed to high temperature was remarkable (B1 to B3).
  • the dopant component satisfies (m1-m2) ⁇ 2
  • the weight reduction rate of the solid electrolyte tends to be as low as 3% or less (comparison between A1, A3 to A6 and B1 to B3).
  • the dopant component has an electron-donating functional group (or a third functional group)
  • the weight reduction rate of the solid electrolyte tends to be further reduced (comparison between A1 and A3).
  • the weight reduction rate of the solid electrolyte is greatly affected not only by the type of the dopant component but also by the polymerization conditions of the solid electrolyte (comparison between A3 and B3).
  • a solid electrolytic capacitor element and a solid electrolytic capacitor having excellent thermal stability are provided.
  • Solid electrolytic capacitor 2 Condenser element 3: Resin exterior body 4: Anode terminal, 4S: Main surface of anode terminal 5: Cathode terminal 5S: Main surface of cathode terminal, 6: Anode body, 7: Dielectric layer, 8: cathode body, 9: solid electrolyte layer, 10: cathode extraction layer, 11: carbon layer, 12: metal paste layer, 13: separation layer, 14: adhesive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

固体電解コンデンサ素子は、陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う陰極部と、を備える。前記陰極部は、前記誘電体層の少なくとも一部を覆う固体電解質層を備える。前記固体電解質層を構成する固体電解質は、熱重量分析により、180℃まで昇温し、180℃で20分間保持し、180℃から30℃まで冷却した後、30℃から260℃まで20℃/minの速度で昇温したときの重量減少率が3%以下である。

Description

固体電解コンデンサ素子および固体電解コンデンサ
 本開示は、固体電解コンデンサ素子および固体電解コンデンサに関する。
 固体電解コンデンサは、固体電解コンデンサ素子と、固体電解コンデンサ素子を封止する樹脂外装体またはケースと、固体電解コンデンサ素子に電気的に接続される外部電極とを備える。固体電解コンデンサ素子は、陽極体と、陽極体の表面に形成された誘電体層と、誘電体層の少なくとも一部を覆う陰極部とを備える。陰極部は、誘電体層の少なくとも一部を覆う導電性高分子およびドーパントを含む固体電解質層を備えている。
 特許文献1は、誘電体酸化被膜が形成された弁作用金属上への導電性高分子層の形成において、予備導電層を形成する工程と、予備導電層上に導電性高分子形成用電解重合液を用いて電解重合により導電性高分子層を形成する工程とを有する固体電解コンデンサの製造方法を提案している。導電性高分子形成用電解重合液では、重合性モノマーと、支持電解質としての特定の式で表される化合物が溶媒に溶解されている。
特開2014-175424号公報
 固体電解コンデンサは、高温環境に晒されることがある。そのため、固体電解コンデンサおよび固体電解コンデンサ素子には、高い熱安定性が求められる。
 本開示の第1側面は、陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う陰極部と、を備え、
 前記陰極部は、前記誘電体層の少なくとも一部を覆う固体電解質層を備え、
 前記固体電解質層を構成する固体電解質は、熱重量分析により、180℃まで昇温し、180℃で20分間保持し、180℃から30℃まで冷却した後、30℃から260℃まで20℃/minの速度で昇温したときの重量減少率が3%以下である、固体電解コンデンサ素子に関する。
 本開示の第2側面は、陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う陰極部と、を備え、
 前記陰極部は、前記誘電体層の少なくとも一部を覆う固体電解質層を備え、
 前記固体電解質層は、導電性高分子とドーパント成分とを含み、
 前記ドーパント成分は、電子吸引性の官能基と電子供与性の官能基と、を芳香環に有する芳香族化合物を含み、
 前記芳香族化合物は、前記電子吸引性の官能基として、第1官能基:スルホ基と、第2官能基:カルボキシ基と、を少なくとも有し、前記電子供与性の官能基として、第3官能基:ヒドロキシ基およびアルコキシ基からなる群より選択される少なくとも1つを有し、
 前記芳香族化合物1分子において、前記第1官能基の個数をn1、前記第2官能基の個数をn2、前記第3官能基の個数をn3とするとき、n1≧1、n2≧1、n3≧1、および(n1+n2+n3)≧4である、固体電解コンデンサ素子に関する。
 本開示の第3側面は、上記固体電解コンデンサ素子を少なくとも1つ備える、固体電解コンデンサに関する。
 熱安定性に優れる固体電解コンデンサ素子およびそれを備える固体電解コンデンサを提供できる。
本開示の一実施形態に係る固体電解コンデンサの断面模式図である。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 固体電解コンデンサでは、内部に空気が侵入すると、空気中に含まれる水分または酸素の作用により、ドーパント成分が分解したり、導電性高分子が酸化劣化したりして、固体電解質層の導電性が低下することがある。固体電解質層の導電性の低下は、固体電解コンデンサの等価直列抵抗(ESR)の増加または静電容量の低下など、固体電解コンデンサの性能の低下を招く。ドーパント成分の分解および導電性高分子の酸化劣化は、特に、高温環境下で顕著である。固体電解コンデンサは、用途によって、高温環境下で用いられることがある。また、固体電解コンデンサは、一般に、高温に晒されるリフロー工程を経て基板にはんだ接合される。ドーパント成分が分解し易いと、リフロー工程において、多くのガスが発生し、気密性が低下して固体電解コンデンサの信頼性が低下する。そのため、高温環境下でも、ドーパント成分の分解および導電性高分子の酸化劣化が抑制され、優れた熱安定性を有する固体電解コンデンサ素子および固体電解コンデンサが求められている。
 上記に鑑み、本開示の第1側面の固体電解コンデンサ素子では、固体電解質層を構成する固体電解質は、熱重量分析により、180℃まで昇温し、180℃で20分間保持し、180℃から30℃まで冷却した後、30℃から260℃まで20℃/minの速度で昇温したときの重量減少率が3%以下である。
 本開示の第1側面によれば、上記の固体電解質の重量減少率が3%以下と少ないことによって、リフロー工程に相当するような加熱条件下でのガス発生が抑制される。そのため、リフロー工程において固体電解コンデンサの気密性が低下することが抑制される。高温環境に晒されても、ガス発生が抑制されて高い気密性が確保されため、コンデンサ性能の変動を低く抑えることができる。また、固体電解コンデンサ素子および固体電解コンデンサでは、高温環境に晒されても、固体電解質の劣化が抑制されるため、静電容量の低下またはESRの上昇を低減できる。よって、固体電解コンデンサ素子および固体電解コンデンサの高い熱安定性が得られ、高い信頼性を確保することができる。本開示によれば、上記の重量減少率を、2.5%以下または2%以下に抑制することもでき、さらには、1%未満または0.8%以下(または0.5%以下)にまで抑制することもできる。
 第1側面の固体電解コンデンサ素子では、固体電解質層において、電子吸引性の官能基と必要に応じて電子供与性の官能基とを芳香環に有する芳香族化合物を含むドーパント成分を用いてもよい。ここで、この芳香族化合物は、芳香族化合物1分子において、電子吸引性の官能基の個数をm1、電子供与性の官能基の個数をm2とするとき、(m1-m2)≧2である。このような芳香族化合物を、ドーパントIAと称することがある。
 ドーパントが、2つ以上の電子吸引性の官能基を芳香環に有する場合、導電性高分子に強固に配位し易く、高温環境下においても脱ドープが抑制される傾向があるため、固体電解質層の高い導電性を確保し易い。一方、電子供与性の官能基は、酸素ラジカルを捕捉する作用を有する。ドーパントが電子供与性の官能基を有する場合、電子吸引性の官能基の作用により導電性高分子に配位した状態のドーパントでは、導電性高分子の近傍に電子供与性の官能基を存在させることができる。電子供与性の官能基により、導電性高分子の近傍で酸素ラジカルを捕捉できるため、高温環境下でも、導電性高分子の酸化劣化を効果的に低減することができる。しかし、芳香環の電子密度、特に、電子吸引性の官能基が置換した炭素原子における電子密度が低くなると、この炭素原子に電子吸引性の官能基が求電子置換し易くなり、電子吸引性の官能基が脱離することで、脱ドープが進行し易くなる傾向がある。ドーパントIAを用いる場合、電子吸引性の官能基の個数m1および電子供与性の官能基の個数m2が(m1-m2)≧2を充足するため、ドーパントIAが電子供与性の官能基を有する場合でも、優れた脱ドープ効果が得られ、固体電解コンデンサ素子が高温環境に晒されても、静電容量の低下またはESRの上昇を低減できる。よって、固体電解コンデンサ素子および固体電解コンデンサの高い熱安定性および高い信頼性を確保することができる。
 本開示の第2側面の固体電解コンデンサ素子では、固体電解質層において、第1官能基:スルホ基と、第2官能基:カルボキシ基と、第3官能基:ヒドロキシ基およびアルコキシ基からなる群より選択される少なくとも1つと、を芳香環に有する芳香族化合物を含むドーパント成分を用いる。ここで、この芳香族化合物は、芳香族化合物1分子において、第1官能基の個数をn1、第2官能基の個数をn2、第3官能基の個数をn3とするとき、n1≧1、n2≧1、n3≧1、および(n1+n2+n3)≧4を充足する。このような芳香族化合物をドーパントIBと称することがある。
 本明細書中、ドーパントIAおよびドーパントIBをまとめて、単に第1ドーパントと称することがある。また、ドーパントIAおよびドーパントIBからなる群より選択される少なくとも1つを、第1ドーパントと称することがある。第1側面では、第1ドーパントは、少なくともドーパントIAであり、第2側面では、第1ドーパントは少なくともドーパントIBである。
 本開示の第2側面によれば、ドーパントIBは、芳香環(ベンゼン環、ナフタレン環など)に電子吸引性の第1官能基および第2官能基を有する化合物であることで、導電性高分子に強固に配位し易く、高温環境下においても脱ドープが抑制されるため、固体電解質層の高い導電性を確保し易い。また、ドーパントIBは、このような構造により、優れた耐加水分解性を有し、高温環境下における分解が抑制される。よって、ドーパントIBは高い熱安定性を示す。ドーパントIBにおいて、第1~第3官能基の個数の合計(=n1+n2+n3)は4以上である。つまり、第1~第3官能基の少なくともいずれか一種の個数が2以上となる。第1官能基および第2官能基の少なくとも一方の個数が2以上の場合には、ドーパントIBのさらに高い熱安定性を確保し易い。また、ドーパントIBは、第1官能基および第2官能基に加え、電子供与性の第3官能基を有する。第3官能基は酸素ラジカルを捕捉する作用を有する。第1官能基および第2官能基などの作用により導電性高分子に配位した状態のドーパントIBでは、導電性高分子の近傍に第3官能基を存在させることができる。第3官能基により、導電性高分子の近傍で酸素ラジカルを捕捉できるため、高温環境下でも、導電性高分子の酸化劣化を効果的に低減することができる。第3官能基の個数が2以上の場合には、酸素ラジカルの捕捉効果が高まることで、導電性高分子の酸化劣化を低減する効果がさらに高まる。このように、本開示では、ドーパントIBを含むドーパント成分を用いることで、高温環境下におけるドーパント成分の分解および導電性高分子の酸化劣化が低減される。よって、固体電解コンデンサ素子および固体電解コンデンサの優れた熱安定性を確保することができる。また、ドーパントIBが優れた耐加水分解性を有することで、高温環境下でも、固体電解質層が水分の影響を受け難くなる。これにより、固体電解コンデンサ素子および固体電解コンデンサの耐湿特性を向上することもできる。
 また、本開示の第2側面によれば、ドーパント成分の分解が抑制されるため、リフロー工程におけるガスの発生量を低減することができる。このような固体電解コンデンサに含まれる固体電解質層は、リフロー工程に相当するような加熱条件下における重量減少率が小さい。例えば、固体電解質層を構成する固体電解質は、熱重量分析により、180℃まで昇温し、180℃で20分間保持し、180℃から30℃まで冷却した後、30℃から260℃まで20℃/minの速度で昇温したときの重量減少率が3%以下である。このように、本開示によれば、リフロー工程に相当するような加熱条件下でのガス発生が抑制されるため、リフロー工程において固体電解コンデンサの気密性が低下することが抑制される。高温環境に晒されても、ガス発生が抑制されて高い気密性が確保され、導電性高分子の酸化劣化が抑制されるため、静電容量の低下またはESRの上昇を低減できる。よって、固体電解コンデンサ素子および固体電解コンデンサの高い信頼性を確保することができる。本開示によれば、上記の重量減少率を、2.5%以下または2%以下に抑制することができ、1%未満または0.8%以下(または0.5%以下)にまで抑制することもできる。従って、固体電解コンデンサの優れた信頼性を確保することができる。
 なお、固体電解質の重量減少率は、熱重量分析を利用して、次のような手順で求めることができる。まず、固体電解コンデンサから固体電解コンデンサ素子を取り出して、固体電解質層の部分を削りとることで固体電解質のサンプルを準備する。サンプルを、熱重量分析装置にセットし、室温(20℃以上35℃以下の温度)から180℃まで昇温して180℃で20分間保持、180℃から30℃まで冷却し、冷却したサンプルの重量w0を計測する。次いで、サンプルを、熱重量分析装置により、30℃から260℃まで20℃/minの速度で昇温し、昇温後のサンプルの重量w1を測定する。30℃から260℃まで昇温したときのサンプルの重量減少量Δw(=w0-w1)を求め、w0を100%としたときのΔwの比率(%)を算出し、固体電解質層の重量減少率とする。これらの熱重量分析は、全て、窒素ガスの流通下で行われる。熱重量分析装置としては、例えば、日立ハイテクサイエンス社製の示差熱熱重量同時測定装置(NEXTA STA300)が用いられる。
 以下、必要に応じて図面を参照しながら、本開示の固体電解コンデンサおよび固体電解コンデンサ素子(以下、単にコンデンサ素子と称することがある)についてより具体的に説明する。
[固体電解コンデンサ]
 固体電解コンデンサは、1つまたは2つ以上のコンデンサ素子を備える。固体電解コンデンサに含まれるコンデンサ素子の少なくとも1つにおいて、固体電解質層が第1ドーパントを含んでいればよい。固体電解コンデンサに含まれるコンデンサ素子の個数の50%以上において、固体電解質層が第1ドーパントを含んでいることが好ましく、75%以上において、固体電解質層が第1ドーパントを含んでいることがより好ましく、全てのコンデンサ素子において、固体電解質層が第1ドーパントを含んでいることがさらに好ましい。
(コンデンサ素子)
 (陽極体)
 陽極体は、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物などを含むことができる。これらの材料は一種を単独でまたは二種以上を組み合わせて使用できる。弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタンが好ましく使用される。表面が多孔質である陽極体は、例えば、エッチングなどにより弁作用金属を含む基材(箔状または板状の基材など)の表面を粗面化することで得られる。粗面化は、例えば、エッチング処理などにより行うことができる。また、陽極体は、弁作用金属を含む粒子の成形体またはその焼結体でもよい。なお、焼結体は、多孔質構造を有する。
 (誘電体層)
 誘電体層は、陽極体の少なくとも一部の表面を覆うように形成された誘電体として機能する絶縁性の層である。誘電体層は、陽極体の表面の弁作用金属を、化成処理などにより陽極酸化することで形成される。誘電体層は、陽極体の少なくとも一部を覆うように形成されていればよい。誘電体層は、通常、陽極体の表面に形成される。誘電体層は、陽極体の多孔質の表面に形成されるため、陽極体の表面の孔やピットの内壁面に沿って形成される。
 誘電体層は弁作用金属の酸化物を含む。例えば、弁作用金属としてタンタルを用いた場合の誘電体層はTa25を含み、弁作用金属としてアルミニウムを用いた場合の誘電体層はAl23を含む。尚、誘電体層はこれに限らず、誘電体として機能する層であればよい。
(陰極部)
 陰極部は、誘電体層の少なくとも一部を覆う固体電解質層を少なくとも備えている。陰極部は、通常、陽極体の少なくとも一部の表面に、誘電体層を介して形成されている。陰極部は、固体電解質層と、固体電解質層の少なくとも一部を覆う陰極引出層とを備えていてもよい。以下、固体電解質層および陰極引出層について説明する。
(固体電解質層)
 固体電解質層は、陽極体の表面に、誘電体層を介して、誘電体層を覆うように形成される。固体電解質層は、必ずしも誘電体層の全体(表面全体)を覆う必要はなく、誘電体層の少なくとも一部を覆うように形成されていればよい。固体電解質層は、固体電解コンデンサにおける陰極部の少なくとも一部を構成する。
 固体電解質層は、導電性高分子とドーパント成分とを含む。
 (導電性高分子)
 導電性高分子としては、固体電解コンデンサに使用される公知の導電性高分子、例えば、π共役系導電性高分子などが使用できる。導電性高分子としては、例えば、ポリピロール、ポリチオフェン、ポリアニリン、ポリフラン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、およびポリチオフェンビニレンを基本骨格とする高分子が挙げられる。これらのうち、ポリピロール、ポリチオフェン、またはポリアニリンを基本骨格とする高分子が好ましい。上記の高分子には、単独重合体、二種以上のモノマーの共重合体、およびこれらの誘導体(置換基を有する置換体など)も含まれる。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。
 導電性高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 導電性高分子の重量平均分子量(Mw)は、特に限定されないが、例えば1,000以上1,000,000以下である。
 なお、本明細書中、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算の値である。なお、GPCは、通常は、ポリスチレンゲルカラムと、移動相としての水/メタノール(体積比8/2)とを用いて測定される。
 (ドーパント成分)
 ドーパント成分は、少なくとも第1ドーパントを含んでいればよく、必要に応じて、さらに、第1ドーパント以外の第2ドーパントを含んでもよい。ドーパント成分に占める第1ドーパントの比率は、例えば、50質量%以上であり、75質量%以上であってもよく、90質量%以上または95質量%以上であってもよい。ドーパント成分に占める第1ドーパントの比率は、100質量%以下である。ドーパント成分を第1ドーパントのみで構成してもよい。また、ドーパント成分に占めるドーパントIAの比率を上記の範囲にしてもよい。ドーパント成分に占めるドーパントIBの比率を上記の範囲にしてもよい。第1側面では、ドーパント成分をドーパントIAのみで構成してもよい。第2側面では、ドーパント成分をドーパントIBのみで構成してもよい。
  (第1ドーパント)
 第1ドーパントが有する芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環などが挙げられる。芳香環の炭素数は、例えば、6以上20以下であり、6以上14以下であってもよく、6以上10以下であってもよい。ベンゼン環またはナフタレン環の場合には、比較的分子サイズが小さく、導電性高分子に第1ドーパントの分子が近接し易く、複数の電子吸引性の官能基の位置も比較的近くなり易い。そのため、導電性高分子に強固に配位し易く、固体電解質層の高い導電性をさらに確保し易い。
 第1ドーパントは、芳香環に複数の官能基を有している。複数の官能基は、少なくとも電子吸引性の官能基を含む。複数の官能基は、さらに電子供与性の官能基を含む場合がある。第1ドーパントは、1分子中に、2つ以上の電子吸引性の官能基を有する。
 電子吸引性の官能基としては、例えば、スルホ基、カルボキシ基、ニトロ基、シアノ基、アルデヒド基、アシル基、トシル基、ハロゲン原子(フルオロ基、クロロ基、ブロモ基、ヨード基など)が挙げられる。より高いコンデンサ性能が得られる観点からは、電子吸引性の官能基のうち、スルホ基(第1官能基)およびカルボキシ基(第2官能基)が好ましい。
 電子供与性の官能基(第3官能基)としては、ヒドロキシ基、アルコキシ基が好ましい。第1ドーパントが複数の第3官能基を有する場合、各第3官能基は、ヒドロキシ基またはアルコキシ基のいずれであってもよい。アルコキシ基の炭素数は、例えば、1~10であり、1~6であってもよい。より高い酸素ラジカル捕捉効果が得られやすい観点からは、各第3官能基は、ヒドロキシ基または炭素数が1~4のアルコキシ基であることが好ましい。アルコキシ基は、直鎖状および分岐鎖状のいずれであってもよい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ヘキシルオキシ基、2-エチル-ヘキシルオキシ基、オクトキシ基が挙げられるが、これらに限定されない。
 なお、固体電解質層において、第1官能基であるスルホ基は、遊離の形態(-SOH)、アニオンの形態(-SO )、または塩の形態で含まれていてもよく、導電性高分子と結合または相互作用した形態で含まれていてもよい。本明細書中、これらの全ての形態のスルホ基を含めて単に「スルホ基」と称することがある。同様に、固体電解質層において、カルボキシ基は、遊離の形態(-COOH)、アニオンの形態(-COO)、または塩の形態で含まれていてもよく、導電性高分子と結合または相互作用した形態で含まれていてもよい。本明細書中、これらの全ての形態のカルボキシ基を含めて単に「カルボキシ基」と称することがある。また、第3官能基のヒドロキシ(換言すると、フェノール性ヒドロキシ基)は、遊離の形態(-OH)、アニオンの形態(-O)、または塩の形態で含まれていてもよい。なお、塩は、スルホン酸アニオンまたはカルボン酸アニオンと、有機塩基(有機アミン、有機アンモニウムなど)および無機塩基(金属水酸化物、アンモニアなど)のいずれの塩基との塩であってもよい。
 第1ドーパントが2つ以上の第1官能基を有する場合、第1官能基の少なくとも一部は同じ形態で含まれていてもよく、第1官能基の全てが異なる形態で含まれていてもよい。第1ドーパントが2つ以上の第2官能基を有する場合、2つ以上の第2官能基の少なくとも一部は同じ形態で含まれていてもよく、全てが異なる形態で含まれていてもよい。第1ドーパントが2つ以上の第3官能基を有する場合、2つ以上の第3官能基の少なくとも一部は同じ形態で含まれていてもよく、全てが異なる形態で含まれてもよい。
 ドーパントIAにおいて、1分子中の電子吸引性の官能基の個数m1は、m1≧2であり、m1≧3であってもよく、m1≧4であってもよい。個数m1の上限は、芳香環の炭素数に応じて決定できる。個数m1は、m1≦6であってもよく、m1≦4であってもよい。これらの上限値と下限値とは任意に組み合わせられる。
 第1ドーパント(具体的には、ドーパントIAまたはドーパントIB)において、第1官能基の個数n1は、例えば、n1≧1であり、n1≧2であってもよい。第2官能基の個数n2は、例えば、n2≧1であり、n2≧2であってもよい。n1≧2およびn2≧2の少なくとも一方を充足する場合、第1ドーパントの熱安定性をさらに高めることができる。n1≧2の場合には、導電性高分子に対する第1ドーパントのより高い結合力が得られるため、高温環境下でも脱ドープが抑制され、固体電解質層の高い導電性を確保する上でより有利である。n2≧2の場合には、第1ドーパントの耐加水分解性をさらに高めることができ、高温環境下でも第1ドーパントの分解を抑制する効果がさらに高まる。よって、固体電解質層の熱安定性をさらに向上する上で有利である。
 ドーパントIAにおいて、1分子中の電子供与性の官能基の個数m2(または第3官能基の個数n3)は、電子吸引性の官能基の個数m1に応じて、(m1-m2)≧2を充足する範囲で決定される。個数m2(またはn3)は、m2(またはn3)≦1であってもよい。電子吸引性の官能基の種類および個数が同じ場合、電子供与性の官能基の個数m2(または第3官能基の個数n3)が1以上の場合には、個数m2(またはn3)が0の場合に比べて、重量減少率が低くなる傾向がある。重量減少率をさらに低減する観点からは、ドーパントIAは、電子供与性の官能基を有すること(m2(またはn3)≧1)が好ましく、m2(またはn3)=1であってもよい。
 ドーパントIBは、芳香環(例えば、ベンゼン環、ナフタレン環などの上記の芳香環)に、第1~第3官能基を各官能基の個数n1、n2およびn3が、n1≧1、n2≧1、n3≧1、および(n1+n2+n3)≧4を充足する範囲で有していればよい。ドーパントIBにおいて、(n1+n2+n3)の上限は芳香環の炭素数に応じて決定できる。例えば、芳香環がベンゼン環の場合、(n1+n2+n3)≦6であり、芳香環がナフタレン環の場合、(n1+n2+n3)≦8である。芳香環の種類によらず、(n1+n2+n3)≦6であってもよい。
 ドーパントIBにおいて、第3官能基の個数n3は、n3≧1であり、n3≧2であってもよい。n3≧2の場合、酸素ラジカルを捕捉する効果がさらに高まるため、導電性高分子の酸化劣化を抑制する観点から、さらに有利である。
 第1ドーパントが第1官能基を有する場合、芳香環における第1官能基の位置は特に制限されない。第1ドーパントが、芳香環としてナフタレン環を有する場合、少なくとも、第1官能基を、ナフタレン環の2位、3位、6位、および7位からなる群より選択される少なくとも1つに有することが好ましい。この場合、第1ドーパントが導電性高分子に、より近接し易くなるため、固体電解質層の導電性を高める上で有利である。
 第1ドーパントにおいて、芳香環(ベンゼン環、ナフタレン環など)における第1官能基および第2官能基の位置は、特に制限されない。第1ドーパントが芳香環としてベンゼン環を有する場合、ベンゼン環における第2官能基の位置は、第1官能基に対して、o-位、m-位およびp-位のいずれであってもよい。ベンゼン環において、第2官能基が、第1官能基に対してm-位に位置する場合、第1ドーパントのより高い耐加水分解性が得られ易い点で好ましい。第1ドーパントが2つ以上の第1官能基を有する場合には、少なくとも1つの第1官能基に対して、第2官能基がm-位に位置することが好ましい。第1ドーパントが2つ以上の第2官能基を有する場合には、少なくとも1つの第2官能基が第1官能基に対してm-位に位置することが好ましい。
 第1ドーパントが第1官能基と電子供与性の官能基(または第3官能基)とを有する場合、芳香環(ベンゼン環、ナフタレン環など)における電子供与性の官能基(または第3官能基)の位置は特に制限されない。第1ドーパントが芳香環としてベンゼン環を有する場合、ベンゼン環における電子供与性の官能基(または第3官能基)の位置は、第1官能基に対して、o-位、m-位、およびp-位のいずれであってもよい。電子供与性の官能基(または第3官能基)の位置が、第1官能基に対して、o-位またはm-位である場合には、導電性高分子のより近傍において酸素ラジカルを捕捉し易いことから、導電性高分子の酸化劣化を抑制する効果をさらに高めることができると考えられる。電子供与性の官能基(または第3官能基)の位置は、第1官能基に対して、o-位またはp-位であってもよい。この場合、各官能基をベンゼン環に導入し易いことに加え、電子吸引性の官能基(第1官能基および第2官能基)による高い耐加水分解性と、電子供与性の官能基(または第3官能基)による高い酸素ラジカル捕捉効果とのバランスをとり易い。よって、固体電解質層の熱安定性をさらに高める上で有利である。
 芳香環としてナフタレン環を有する第1ドーパントとしては、電子吸引性の官能基の個数m1がm1≧4である芳香族化合物、スルホ基の個数n1がn1≧2で、カルボキシ基の個数n2がn2=0である芳香族化合物、およびドーパントIB(電子供与性の官能基の個数m2(またはn3)≧1である芳香族化合物など)からなる群より選択される少なくとも一種を用いてもよい。これらの化合物では、より低い重量減少率が得られ易い。同様の観点から、芳香環としてナフタレン環を有するドーパントIAとして、6,8-ジスルホ-2-ナフトエ酸、5,7-ジスルホ-2-ナフトエ酸、3,6-ジスルホ-1-ナフトエ酸、4,8-ジスルホ-2-ナフトエ酸、および3,7-ジスルホ-2-ナフトエ酸を除くドーパントIAを用いてもよい。なお、これらのジスルホナフトエ酸は、2つのスルホ基および1つのカルボキシ基以外の置換基を有さない。
 第1ドーパントは、必要に応じて、電子吸引性の官能基および電子供与性の官能基(例えば、第1~第3官能基)以外の第1置換基を有していてもよい。また、第1ドーパントは、芳香環(ベンゼン環、ナフタレン環など)に縮合した非芳香族性の環Zを有する化合物であってもよい。このような構造を有する第1ドーパントでは、芳香環の環を構成する炭素原子(例えば、ベンゼン環の1~6位の炭素原子)のうち、電子吸引性の官能基および電子供与性の官能基(第1~第3官能基など)が置換されていない2つの炭素原子が脂肪族鎖で連結されている。脂肪族鎖は、飽和または不飽和であってもよい。第1ドーパントは、この脂肪族鎖に1つまたは2つ以上の第2置換基を有していてもよい。電子吸引性の官能基および電子供与性の官能基(第1~第3官能基など)に加えて、芳香環(ベンゼン環、ナフタレン環など)に、このような、第1置換基を有する化合物、および第2置換基を有していてもよい環Zが縮合している化合物も第1ドーパント(もしくは、ドーパントIAまたはドーパントIB)に包含される。
 第1ドーパントが芳香環(ベンゼン環、ナフタレン環など)に有していてもよい第1置換基としては、例えば、炭化水素基が挙げられる。ドーパントIBでは、第1置換基は、第3官能基以外の電子供与性基、第1官能基および第2官能基以外の電子求引性基などであってもよいが、第1~第3官能基による効果がバランスよく発揮されやすい観点からは、炭化水素基が好ましい。炭化水素基は、脂肪族、脂環族、および芳香族のいずれであってもよい。導電性高分子に配位し易い観点からは、炭化水素基は、脂肪族炭化水素基であることが好ましい。脂肪族炭化水素基の炭素数は、例えば、1~10であり、1~6または1~4であってもよい。脂肪族炭化水素基は、飽和または不飽和のいずれであってもよい。脂肪族炭化水素基としては、アルキル基、アルケニル基、ジエニル基などが挙げられる。
 第1置換基の個数n4は、芳香環の炭素数、電子吸引性の官能基および電子供与性の官能基の個数に応じて決定してもよい。第1置換基の個数n4は、例えば、0以上6以下であり、0以上4以下であってもよい。第1ドーパントが芳香環としてベンゼン環を有する場合、第1置換基の個数n4は、0、1または2である。第1ドーパントが第1置換基を2つ以上有する場合には、少なくとも2つの第1置換基は同じであってもよく、全てが異なってもよい。電子吸引性の官能基および電子供与性の官能基(例えば、第1~第3官能基)の効果がバランスよく発揮されやすい観点からは、第1ドーパントが第1置換基を有さない場合も好ましい。
 第1ドーパントが環Zを含む場合において、第1ドーパントが、環Zを構成する上記の脂肪族鎖上に有していてもよい第2置換基としては、電子吸引性の官能基について記載した基、第1~第3官能基について記載した基、および第1置換基について記載した基などが挙げられる。第1ドーパントにおける第2置換基の個数n5は、1であってもよく、2以上であってもよい。第1ドーパントが2つ以上の第2置換基を有する場合、一部の第2置換基は同じであってもよく、全ての第2置換基が異なっていてもよい。
 導電性高分子に第1ドーパントを接近させ易い観点からは、第1ドーパントは、上記のような非芳香族性の環Zを有さないことが好ましい。
 ドーパント成分は、1種の第1ドーパントを含んでもよく、2種以上の第1ドーパントを含んでもよい。ドーパント成分は、1種のドーパントIAを含んでもよく、2種以上のドーパントIAを含んでもよい。ドーパント成分は、1種のドーパントIBを含んでもよく、2種以上のドーパントIBを含んでもよい。ドーパント成分は、少なくとも1種のドーパントIBと、ドーパントIBに包含されないドーパントIAの少なくとも1種を含んでもよい。
  (第2ドーパント)
 第2ドーパントとしては、第1ドーパント以外のドーパントであればよく、例えば、アニオンおよびポリアニオンからなる群より選択される少なくとも一種が挙げられる。
 アニオンとしては、例えば、硫酸イオン、硝酸イオン、燐酸イオン、硼酸イオン、有機スルホン酸イオン、カルボン酸イオンなどが挙げられるが、特に制限されない。スルホン酸イオンを生成するドーパントとしては、例えば、p-トルエンスルホン酸、およびナフタレンスルホン酸などが挙げられる。
 ポリアニオンとしては、例えば、高分子タイプのポリスルホン酸および高分子タイプのポリカルボン酸などが挙げられる。高分子タイプのポリスルホン酸としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、およびポリメタクリルスルホン酸などが挙げられる。高分子タイプのポリカルボン酸としては、ポリアクリル酸、ポリメタクリル酸などが挙げられる。ポリアニオンには、ポリエステルスルホン酸、およびフェノールスルホン酸ノボラック樹脂なども含まれる。しかし、ポリアニオンは、これらに制限されない。
 アニオンおよびポリアニオンは、それぞれ、塩の形態で固体電解質層に含まれていてもよい。固体電解質層において、アニオンおよびポリアニオンのそれぞれは、導電性高分子に結合または相互作用して、導電性高分子とともに、導電性高分子複合体を形成していてもよい。
 ドーパント成分は、1種の第2ドーパントを含んでもよく、2種以上の第2ドーパントを含んでもよい。
 本開示の固体電解コンデンサ素子では、上述のように、熱重量分析による固体電解質の重量減少率を低く抑えることができる。固体電解質の重量減少率は、例えば、ドーパントの種類、導電性高分子に対するドーパントの比率、導電性高分子を形成する場合の重合条件(例えば、電解重合の重合電位、重合に用いる処理液中の導電性高分子の前駆体の濃度およびドーパントの濃度)などによって調節することができる。
 (その他)
 固体電解質層に含まれるドーパント成分の量は、導電性高分子100質量部に対して、例えば、10~1000質量部であり、20~500質量部または50~200質量部であってもよい。
 固体電解質層は、単層であってもよく、複数の層で構成してもよい。固体電解質層が複数層で構成される場合、各層に含まれる導電性高分子は同じであってもよく、異なっていてもよい。また、各層に含まれるドーパント成分の組成は同じであってもよく、異なっていてもよい。固体電解質層が複数層で構成される場合、少なくとも1つの層が第1ドーパントを含んでいればよい。
 固体電解質層は、必要に応じて、さらに、公知の添加剤、および導電性高分子以外の公知の導電性材料を含んでもよい。このような導電性材料としては、例えば、二酸化マンガンなどの導電性無機材料、およびTCNQ錯塩からなる群より選択される少なくとも一種が挙げられる。
 なお、誘電体層と固体電解質層との間には、密着性を高める層などを介在させてもよい。
 固体電解質層は、例えば、導電性高分子の前駆体およびドーパント成分を含む処理液を用いて、前駆体を誘電体層上で重合させることにより形成される。重合は、化学重合、および電解重合の少なくともいずれかにより行うことができる。導電性高分子の前駆体としては、モノマー、オリゴマーおよびプレポリマーなどからなる群より選択される少なくとも一種が挙げられる。オリゴマーおよびプレポリマーのそれぞれは、例えば、モノマー単位が複数連なった構造を有する。前駆体は一種を用いてもよく、二種以上を組み合わせて用いてもよい。固体電解質層は、誘電体層に、導電性高分子およびドーパント成分を含む処理液(例えば、分散液または溶液)を付着させた後、乾燥させることにより形成してもよい。分散媒(または溶媒)としては、例えば、水、有機溶媒、またはこれらの混合物が挙げられる。処理液は、さらに添加剤などの他の成分を含んでもよい。
 導電性高分子の前駆体およびドーパント成分を含む処理液を用いる場合、必要に応じて、前駆体を重合させるために酸化剤が使用される。第1ドーパントを酸化剤として用いてもよいが、第1ドーパント以外に酸化剤を用いてもよい。酸化剤は、添加剤として処理液に含まれていてもよい。また、酸化剤は、誘電体層が形成された陽極体に処理液を接触させる前または後に、陽極体に塗布してもよい。このような酸化剤としては、硫酸塩、スルホン酸またはその塩が例示できる。酸化剤は、一種を単独でまたは二種以上を組み合わせて用いることができる。硫酸塩としては、例えば、硫酸第二鉄、過硫酸ナトリウムなどの硫酸や過硫酸などの硫酸類と金属との塩が挙げられる。塩を構成する金属としては、例えば、アルカリ金属(ナトリウム、カリウムなど)、鉄、銅、クロム、亜鉛などが挙げられる。スルホン酸またはその塩は、酸化剤としての機能に加え、ドーパントとしての機能も有する。スルホン酸またはその塩としては、第2ドーパントについて例示した低分子のスルホン酸またはその塩などを使用してもよい。酸化剤としては、Fe3+を生成可能な化合物(硫酸第二鉄など)、過硫酸塩(過硫酸ナトリウム、過硫酸アンモニウムなど)、過酸化水素などを用いてもよい。酸化剤は、一種を単独でまたは二種以上を組み合わせて用いることができる。
 処理液への浸漬と重合(または乾燥)とにより固体電解質層を形成する工程は、1回行なってもよいが、複数回繰り返してもよい。各回において、処理液の組成および粘度などの条件を同じにしてもよく、少なくとも1つの条件を変化させてもよい。
 固体電解質の性状を制御し易い観点から、電解重合により固体電解質層を形成することが好ましい。電解重合は、誘電体層を有する陽極体が導電性高分子の前駆体およびドーパント成分を含む処理液に接触(例えば、浸漬)した状態で、重合電圧を印加することによって行うことができる。重合電圧の印加は給電体を介して行われる。
 電解重合において、重合電圧は、例えば、1V以上3.5V以下(または3V以下)であり、2V以上3.5V以下(または3V以下)であってもよい。なお、重合電圧は、参照電極(銀/塩化銀電極(Ag/Ag))に対する給電体の電位である。
 処理液において、ドーパント成分の導電性高分子の前駆体に対する比率は、導電性高分子のモノマー単位1mol当たり、例えば、0.1mol以上0.75mol以下であり、0.4mol以上0.75mol以下であってもよい。
 電解重合を行う温度は、例えば、5℃以上60℃以下であり、15℃以上35℃以下であってもよい。
(陰極引出層)
 陰極引出層は、固体電解質層と接触するとともに固体電解質層の少なくとも一部を覆う第1層を少なくとも備えていればよく、第1層と第1層を覆う第2層とを備えていてもよい。第1層としては、例えば、導電性粒子を含む層、金属箔などが挙げられる。導電性粒子としては、例えば、導電性カーボンおよび金属粉から選択される少なくとも一種が挙げられる。例えば、第1層としての導電性カーボンを含む層と、第2層としての金属粉を含む層または金属箔とで陰極引出層を構成してもよい。第1層として金属箔を用いる場合には、この金属箔で陰極引出層を構成してもよい。
 導電性カーボンを含む第1層は、例えば、導電性カーボンを含む分散液中に固体電解質層が形成された誘電体層を有する陽極体を浸漬したり、または導電性カーボンを含むペーストを固体電解質層の表面に塗布したりすることにより形成することができる。導電性カーボンとしては、例えば、人造黒鉛、天然黒鉛などの黒鉛類が使用される。分散液およびペーストとしては、例えば、導電性カーボンを水系の液体媒体に分散させた混合物が用いられる。
 第2層としての金属粉を含む層は、例えば、金属粉を含む組成物を第1層の表面に積層することにより形成できる。このような第2層としては、例えば、銀粒子などの金属粉と樹脂(バインダ樹脂)とを含む組成物を用いて形成される金属ペースト層などが利用できる。樹脂としては、熱可塑性樹脂を用いることもできるが、イミド系樹脂、エポキシ樹脂などの熱硬化性樹脂を用いることが好ましい。
 第1層として金属箔を用いる場合、金属の種類は特に限定されないが、アルミニウム、タンタル、ニオブなどの弁作用金属または弁作用金属を含む合金を用いることが好ましい。必要に応じて、エッチング処理などにより金属箔の表面を粗面化してもよい。金属箔の表面には、化成皮膜が設けられていてもよく、金属箔を構成する金属とは異なる金属(異種金属)や非金属の被膜が設けられていてもよい。異種金属や非金属としては、例えば、チタンのような金属やカーボン(導電性カーボンなど)のような非金属などを挙げることができる。
 上記の異種金属または非金属(例えば、導電性カーボン)の被膜を第1層として、上記の金属箔を第2層としてもよい。
 第1層および第2層のそれぞれの厚みは、例えば、0.1μm以上100μm以下であり、0.5μm以上50μm以下であってもよく、1μm以上20μm以下であってもよい。
(セパレータ)
 金属箔を陰極引出層に用いる場合、金属箔と陽極体との間にはセパレータを配置してもよい。セパレータとしては、特に制限されず、例えば、セルロース、ポリエチレンテレフタレート、ビニロン、ポリアミド(例えば、脂肪族ポリアミド、アラミドなどの芳香族ポリアミド)の繊維を含む不織布などを用いてもよい。
(その他)
 固体電解コンデンサは、巻回型であってもよく、チップ型または積層型のいずれであってもよい。固体電解コンデンサは、2つ以上のコンデンサ素子を備えていてもよい。例えば、固体電解コンデンサは、2つ以上のコンデンサ素子の積層体を備えていてもよい。固体電解コンデンサは、2つ以上の巻回型のコンデンサ素子を備えていてもよい。コンデンサ素子の構成は、固体電解コンデンサのタイプに応じて、選択すればよい。
 コンデンサ素子において、陰極引出層には、陰極端子の一端部が電気的に接続される。陰極端子は、例えば、陰極層に導電性接着剤を塗布し、この導電性接着剤を介して陰極層に接合される。陽極体には、陽極端子の一端部が電気的に接続される。陽極端子の他端部および陰極端子の他端部は、それぞれ樹脂外装体またはケースから引き出される。樹脂外装体またはケースから露出した各端子の他端部は、固体電解コンデンサを搭載すべき基板(図示せず)との半田接続などに用いられる。
 コンデンサ素子は、樹脂外装体またはケースを用いて封止される。例えば、コンデンサ素子および外装体の材料樹脂(例えば、未硬化の熱硬化性樹脂およびフィラー)を金型に収容し、トランスファー成型法、圧縮成型法等により、コンデンサ素子を樹脂外装体で封止してもよい。このとき、コンデンサ素子から引き出された陽極リードに接続された陽極端子および陰極端子の他端部側の部分を、それぞれ金型から露出させる。また、コンデンサ素子を、陽極端子および陰極端子の他端部側の部分が有底ケースの開口側に位置するように有底ケースに収納し、封止体で有底ケースの開口を封口することにより固体電解コンデンサを形成してもよい。
 図1は、本開示の一実施形態に係る固体電解コンデンサの構造を概略的に示す断面図である。図1に示すように、固体電解コンデンサ1は、コンデンサ素子2と、コンデンサ素子2を封止する樹脂外装体3と、樹脂外装体3の外部にそれぞれ少なくともその一部が露出する陽極端子4および陰極端子5と、を備えている。陽極端子4および陰極端子5は、例えば銅または銅合金などの金属で構成することができる。樹脂外装体3は、ほぼ直方体の外形を有しており、固体電解コンデンサ1もほぼ直方体の外形を有している。
 コンデンサ素子2は、陽極体6と、陽極体6を覆う誘電体層7と、誘電体層7を覆う陰極体8とを備える。陰極体8は、誘電体層7を覆う固体電解質層9と、固体電解質層9を覆う陰極引出層10とを備えており、上述の陰極部を構成する。図示例において、陰極引出層10は、第1層としてのカーボン層11および第2層としての金属ペースト層12を有する。本開示によれば、固体電解質層9を構成する固体電解質の重量減少率が3%以下である。あるいは、固体電解質層9が、導電性高分子と、第1ドーパント(ドーパントIBなど)を含むドーパント成分とを含む。このような構成により、コンデンサ素子2および固体電解コンデンサ1は高い熱安定性を示す。また、コンデンサ素子2および固体電解コンデンサ1の高い信頼性を確保できる。
 陽極体6は、陰極体8と対向する領域と、対向しない領域とを含む。陽極体6の陰極体8と対向しない領域のうち、陰極体8に隣接する部分には、陽極体6の表面を帯状に覆うように絶縁性の分離層13が形成され、陰極体8と陽極体6との接触が規制されている。陽極体6の陰極体8と対向しない領域のうち、他の一部は、陽極端子4と、溶接により電気的に接続されている。陰極端子5は、導電性接着剤により形成される接着層14を介して、陰極体8と電気的に接続している。
 陽極端子4および陰極端子5の主面4Sおよび5Sは、樹脂外装体3の同じ面から露出している。この露出面は、固体電解コンデンサ1を搭載すべき基板(図示せず)との半田接続などに用いられる。
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されない。
《固体電解コンデンサA1》
 下記の要領で、図1に示す固体電解コンデンサ1(固体電解コンデンサA1)を作製し、その特性を評価した。
 (1)陽極体6の準備
 基材としてのアルミニウム箔(厚み:100μm)の両方の表面をエッチングにより粗面化することで、陽極体6を作製した。
 (2)誘電体層7の形成
 陽極体6の他端部側の部分を、化成液に浸漬し、70Vの直流電圧を、20分間印加して、酸化アルミニウムを含む誘電体層7を形成した。
 (3)固体電解質層9の形成
 ピロールモノマーと4-ヒドロキシ-5-スルホイソフタル酸(ドーパント成分)とを含む水溶液を調製した。この水溶液中のモノマー濃度は、0.5mol/Lであり、4-ヒドロキシ-5-スルホイソフタル酸の濃度は0.3mol/Lとした。なお、用いた4-ヒドロキシ-5-スルホイソフタル酸は、下記式で表される。
Figure JPOXMLDOC01-appb-C000001
 得られた水溶液に、上記(2)で誘電体層7が形成された陽極体6と、対電極とを浸漬し、25℃で、重合電圧3V(銀参照電極に対する重合電位)で電解重合を行うことにより、固体電解質層9を形成した。
 (4)陰極体8の形成
 上記(3)で得られた固体電解質層9が形成された陽極体6を、黒鉛粒子を水に分散した分散液に浸漬し、分散液から取り出し後、乾燥することにより、少なくとも固体電解質層9の表面にカーボン層11を形成した。乾燥は、130~180℃で10~30分間行った。
 次いで、カーボン層11の表面に、銀粒子とバインダ樹脂(エポキシ樹脂)とを含む銀ペーストを塗布し、150~200℃で10~60分間加熱することでバインダ樹脂を硬化させ、金属ペースト層12を形成した。こうして、カーボン層11と金属ペースト層12とで構成される陰極体8を形成した。
 上記のようにして、コンデンサ素子2を作製した。
 (5)固体電解コンデンサ1の組み立て
 上記(4)で得られたコンデンサ素子2の陰極体8と、陰極端子5の一端部とを導電性接着剤の接着層14で接合した。コンデンサ素子2から突出した陽極体6の一端部と、陽極端子4の一端部とをレーザ溶接により接合した。
 次いで、モールド成形により、コンデンサ素子2の周囲に、絶縁性樹脂で形成された樹脂外装体3を形成した。このとき、陽極端子4の他端部と、陰極端子5の他端部とは、樹脂外装体3から引き出した状態とした。
 このようにして、固体電解コンデンサA1を完成させた。上記と同様にして、固体電解コンデンサA1を合計20個作製した。
 (6)評価
 固体電解コンデンサを用いて、下記の評価を行った。
 (a)ESRの変化率および静電容量の変化率
 20℃の環境下で、4端子測定用のLCRメータを用いて、各固体電解コンデンサの周波数120Hzにおける初期の静電容量(μF)を測定するとともに、周波数100kHzにおける初期のESR(mΩ)をそれぞれ測定した。そして、20個の固体電解コンデンサにおける平均値(初期の静電容量:c0、初期のESR:r0)を求めた。
 次いで、固体電解コンデンサを、260℃環境下で、3分間リフロー処理した。リフロー処理後、145℃環境下で、固体電解コンデンサに定格電圧を500時間印加することにより加速試験を行った。その後、初期の静電容量およびESRの場合と同様の手順で、20℃環境下で静電容量およびESRを測定し、20個の固体電解コンデンサの平均値(加速試験後の静電容量:c1、加速試験後のESR:r1)を求めた。加速試験による静電容量の変化量(=c1-c0)を求め、初期の静電容量の平均値c0を100%としたときの、静電容量の変化量の比率(%)を静電容量変化率(ΔCap)として算出した。加速試験によるESRの変化量(=r1-r0)を求め、初期のESRの平均値r0を100%としたときの、ESRの変化量の比率(%)をESR変化率(ΔESR)として算出した。
 (b)固体電解質層の加熱時の重量減少率
 既述の手順で、固体電解コンデンサ1から取り出したコンデンサ素子2の固体電解質層から固体電解質のサンプルを採取し、このサンプルについて重量減少率を求めた。
《固体電解コンデンサA2》
 固体電解コンデンサA1の(3)において、4-ヒドロキシ-5-スルホイソフタル酸に代えて、下記式で表される3-ヒドロキシ-6,8-ジスルホ-2-ナフトエ酸を用いたこと以外は、固体電解コンデンサA1と同様にして、コンデンサ素子および固体電解コンデンサA2を作製し、評価を行った。
Figure JPOXMLDOC01-appb-C000002
《固体電解コンデンサA3》
 固体電解コンデンサA1の(3)において、4-ヒドロキシ-5-スルホイソフタル酸に代えて、下記式で表される5-スルホイソフタル酸を用いたこと以外は、固体電解コンデンサA1と同様にして、コンデンサ素子および固体電解コンデンサA3を作製し、評価を行った。
Figure JPOXMLDOC01-appb-C000003
《固体電解コンデンサB1》
 固体電解コンデンサA1の(3)において、4-ヒドロキシ-5-スルホイソフタル酸に代えて、下記式で表される5-スルホサリチル酸を用いたこと以外は、固体電解コンデンサA1と同様にして、コンデンサ素子および固体電解コンデンサB1を作製し、評価を行った。
Figure JPOXMLDOC01-appb-C000004
《固体電解コンデンサB2》
 固体電解コンデンサA1の(3)において、4-ヒドロキシ-5-スルホイソフタル酸に代えて、下記式で表される2-ナフタレンスルホン酸を用いたこと以外は、固体電解コンデンサA1と同様にして、コンデンサ素子および固体電解コンデンサB2を作製し、評価を行った。
Figure JPOXMLDOC01-appb-C000005
 表1に、固体電解コンデンサA1~A3、B1、およびB2についての評価結果を示す。
Figure JPOXMLDOC01-appb-T000006
 表1に示されるように、固体電解質の重量減少率が3%以下の実施例では、3%を超える比較例に比べて、固体電解コンデンサをリフロー処理した後の静電容量およびESRの変化が顕著に低減されている。
《固体電解コンデンサA4~A6》
 固体電解コンデンサA1の(3)において、4-ヒドロキシ-5-スルホイソフタル酸に代えて、表2に示すドーパント成分を用いたこと以外は、固体電解コンデンサA1と同様にして、コンデンサ素子および固体電解コンデンサA4~A6を作製した。コンデンサ素子または固体電解コンデンサを用いて、(6)(a)および(b)の評価を行うとともに、下記(c)の気密性低下率の評価を行った。
 (c)気密性低下率
 固体電解コンデンサをリフロー処理した後、25℃まで冷却した。リフロー処理は、ピーク温度260℃、ピーク温度での保持時間10秒、および220℃以上での保持時間140秒の条件で行った。リフロー処理と25℃までの冷却とを合計3回行った後、固体電解コンデンサを、120℃に昇温したフロリナート(フッ素系不活性液体、3M社製)に30秒間浸漬した。このとき、固体電解コンデンサからの気泡の発生状態を確認した。合計20個の固体電解コンデンサについて評価を行い、気泡が生じた固体電解コンデンサの個数を、気密性低下率として評価した。
《固体電解コンデンサB3》
 固体電解コンデンサA1の(3)において、4-ヒドロキシ-5-スルホイソフタル酸に代えて、表2に示すドーパント成分を用いた。水溶液中のドーパント成分の濃度を、0.5mol/Lとした。電解重合の重合電圧を、4V(銀参照電極に対する重合電位)とした。これら以外は、固体電解コンデンサA1と同様にして、コンデンサ素子および固体電解コンデンサB3を作製した。コンデンサ素子または固体電解コンデンサを用いて、(6)(a)および(b)の評価を行うとともに、下記(c)の気密性低下率の評価を行った。
 表2に、固体電解コンデンサA4~A6およびB3についての評価結果を示す。合わせて、固体電解コンデンサA1、A3、B1およびB2についても同様の評価を行った結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 表2に示すように、固体電解質の重量減少率が3%以下の場合には、3%を超える場合と比べて、固体電解コンデンサをリフロー処理した後の静電容量およびESRの変化が顕著に低減されている。
 固体電解質の重量減少率が3%を超える場合には、高温に晒された場合の気密性の低下が顕著であった(B1~B3)。ドーパント成分が(m1-m2)≧2を充足する場合には、固体電解質の重量減少率は3%と以下と低くなる傾向がある(A1、A3~A6とB1~B3との比較)。また、ドーパント成分が電子供与性の官能基(または第3官能基)を有する場合には、固体電解質の重量減少率がさらに低下する傾向がある(A1とA3との比較)。ただし、固体電解質の重量減少率は、ドーパント成分の種類だけによらず、固体電解質の重合条件なども大きく影響する(A3とB3との比較)。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきである。
 本開示によれば、熱安定性に優れる固体電解コンデンサ素子および固体電解コンデンサが提供される。また、リフロー工程における固体電解コンデンサの気密性の低下も抑制できる。よって、固体電解コンデンサ素子および固体電解コンデンサは、高い信頼性が求められる様々な用途に用いることができる。
 1:固体電解コンデンサ、2:コンデンサ素子、3:樹脂外装体、4:陽極端子、4S:陽極端子の主面、5:陰極端子、5S:陰極端子の主面、6:陽極体、7:誘電体層、8:陰極体、9:固体電解質層、10:陰極引出層、11:カーボン層、12:金属ペースト層 、13:分離層、14:接着層

Claims (14)

  1.  陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う陰極部と、を備え、
     前記陰極部は、前記誘電体層の少なくとも一部を覆う固体電解質層を備え、
     前記固体電解質層を構成する固体電解質は、熱重量分析により、180℃まで昇温し、180℃で20分間保持し、180℃から30℃まで冷却した後、30℃から260℃まで20℃/minの速度で昇温したときの重量減少率が3%以下である、固体電解コンデンサ素子。
  2.  前記固体電解質層は、導電性高分子とドーパント成分とを含み、
     前記ドーパント成分は、芳香環に複数の官能基を有する芳香族化合物を含み、
     前記複数の官能基は、電子吸引性の官能基を含み、かつ電子供与性の官能基を含むかまたは含まず、
     前記芳香族化合物1分子において、前記電子吸引性の官能基の個数をm1、前記電子供与性の官能基の個数をm2とするとき、(m1-m2)≧2である、請求項1に記載の固体電解コンデンサ素子。
  3.  m2≦1を充足する、請求項2に記載の固体電解コンデンサ素子。
  4.  前記芳香族化合物は、前記電子吸引性の官能基として、少なくとも1つの第1官能基:スルホ基を有する、請求項2または3に記載の固体電解コンデンサ素子。
  5.  陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う陰極部と、を備え、
     前記陰極部は、前記誘電体層の少なくとも一部を覆う固体電解質層を備え、
     前記固体電解質層は、導電性高分子とドーパント成分とを含み、
     前記ドーパント成分は、電子吸引性の官能基と電子供与性の官能基と、を芳香環に有する芳香族化合物を含み、
     前記芳香族化合物は、前記電子吸引性の官能基として、第1官能基:スルホ基と、第2官能基:カルボキシ基と、を少なくとも有し、前記電子供与性の官能基として、第3官能基:ヒドロキシ基およびアルコキシ基からなる群より選択される少なくとも1つを有し、
     前記芳香族化合物1分子において、前記第1官能基の個数をn1、前記第2官能基の個数をn2、前記第3官能基の個数をn3とするとき、n1≧1、n2≧1、n3≧1、および(n1+n2+n3)≧4である、固体電解コンデンサ素子。
  6.  前記芳香族化合物は、前記芳香環としてベンゼン環を有し、
     前記第2官能基は、前記第1官能基に対してm-位に位置する、請求項5に記載の固体電解コンデンサ素子。
  7.  n1≧2およびn2≧2の少なくとも一方を充足する、請求項5または6に記載の固体電解コンデンサ素子。
  8.  n3≧2を充足する、請求項5~7のいずれか1項に記載の固体電解コンデンサ素子。
  9.  前記アルコキシ基の炭素数は、1~4である、請求項5~8のいずれか1項に記載の固体電解コンデンサ素子。
  10.  前記芳香族化合物は、前記芳香環としてベンゼン環を有し、
     前記電子供与性の官能基は、前記第1官能基に対してo-位またはp-位に位置する、請求項4~9のいずれか1項に記載の固体電解コンデンサ素子。
  11.  前記芳香族化合物は、前記芳香環としてナフタレン環を有するとともに、少なくとも、前記第1官能基を、前記ナフタレン環の2位、3位、6位、および7位からなる群より選択される少なくとも1つに有する、請求項4~9のいずれか1項に記載の固体電解コンデンサ素子。
  12.  前記固体電解質層を構成する固体電解質は、熱重量分析により、180℃まで昇温し、180℃で20分間保持し、180℃から30℃まで冷却した後、30℃から260℃まで20℃/minの速度で昇温したときの重量減少率が3%以下である、請求項5~11のいずれか1項に記載の固体電解コンデンサ素子。
  13.  前記重量減少率は、2.5%以下である、請求項1または12に記載の固体電解コンデンサ素子。
  14.  請求項1~13のいずれか1項に記載の固体電解コンデンサ素子を少なくとも1つ備える、固体電解コンデンサ。
PCT/JP2021/017218 2020-05-15 2021-04-30 固体電解コンデンサ素子および固体電解コンデンサ WO2021230111A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180032435.2A CN115485800A (zh) 2020-05-15 2021-04-30 固体电解电容器元件和固体电解电容器
US17/923,767 US20230178306A1 (en) 2020-05-15 2021-04-30 Solid electrolytic capacitor element and solid electrolytic capacitor
JP2022521847A JPWO2021230111A1 (ja) 2020-05-15 2021-04-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-086103 2020-05-15
JP2020086103 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021230111A1 true WO2021230111A1 (ja) 2021-11-18

Family

ID=78525760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017218 WO2021230111A1 (ja) 2020-05-15 2021-04-30 固体電解コンデンサ素子および固体電解コンデンサ

Country Status (4)

Country Link
US (1) US20230178306A1 (ja)
JP (1) JPWO2021230111A1 (ja)
CN (1) CN115485800A (ja)
WO (1) WO2021230111A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172969A (ja) * 1997-08-29 1999-03-16 Orient Chem Ind Ltd 荷電制御剤及びその関連技術
JP2004265941A (ja) * 2003-02-19 2004-09-24 Matsushita Electric Ind Co Ltd 固体電解コンデンサ及びその製造方法
JP2006131873A (ja) * 2004-10-08 2006-05-25 Shin Etsu Polymer Co Ltd 導電性組成物及びその製造方法
JP2011111521A (ja) * 2009-11-26 2011-06-09 Nec Tokin Corp 導電性高分子懸濁液およびその製造方法、導電性高分子材料、電解コンデンサ、ならびに固体電解コンデンサおよびその製造方法
JP2014225538A (ja) * 2013-05-16 2014-12-04 カーリットホールディングス株式会社 導電性高分子製造用酸化剤溶液及びそれを用いた固体電解コンデンサの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172969A (ja) * 1997-08-29 1999-03-16 Orient Chem Ind Ltd 荷電制御剤及びその関連技術
JP2004265941A (ja) * 2003-02-19 2004-09-24 Matsushita Electric Ind Co Ltd 固体電解コンデンサ及びその製造方法
JP2006131873A (ja) * 2004-10-08 2006-05-25 Shin Etsu Polymer Co Ltd 導電性組成物及びその製造方法
JP2011111521A (ja) * 2009-11-26 2011-06-09 Nec Tokin Corp 導電性高分子懸濁液およびその製造方法、導電性高分子材料、電解コンデンサ、ならびに固体電解コンデンサおよびその製造方法
JP2014225538A (ja) * 2013-05-16 2014-12-04 カーリットホールディングス株式会社 導電性高分子製造用酸化剤溶液及びそれを用いた固体電解コンデンサの製造方法

Also Published As

Publication number Publication date
US20230178306A1 (en) 2023-06-08
JPWO2021230111A1 (ja) 2021-11-18
CN115485800A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
JP7233015B2 (ja) 電解コンデンサおよびその製造方法
JP4983744B2 (ja) 固体電解コンデンサの製造方法
WO2011121995A1 (ja) 固体電解コンデンサ
JP7233016B2 (ja) 電解コンデンサおよびその製造方法
WO2018221096A1 (ja) 電解コンデンサおよびその製造方法
WO2015133121A1 (ja) 電解コンデンサおよびその製造方法
US10600579B2 (en) Electrolytic capacitor including hydroxy compound and manufacturing method therefor
WO2016174818A1 (ja) 電解コンデンサおよびその製造方法
JP2021193747A (ja) 電解コンデンサおよびその製造方法
JPWO2019131476A1 (ja) 電解コンデンサおよびその製造方法
WO2022085747A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
WO2021230111A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
WO2022024771A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
JP7108811B2 (ja) 電解コンデンサおよびその製造方法
JP2010028139A (ja) 積層型固体電解コンデンサ
WO2021193330A1 (ja) 電解コンデンサおよびコンデンサ素子
WO2024057931A1 (ja) 有機導電体用の添加剤
WO2023127251A1 (ja) 固体電解コンデンサ
JP7325003B2 (ja) 有機導電体用の添加剤およびその製造方法、有機導電体、ならびに電解コンデンサ
WO2022158350A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
WO2022024702A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
WO2021261359A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
WO2023032603A1 (ja) 固体電解コンデンサ用電極箔、それを用いた固体電解コンデンサ素子、および固体電解コンデンサ
WO2024070142A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
WO2022181607A1 (ja) 固体電解コンデンサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521847

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804314

Country of ref document: EP

Kind code of ref document: A1